WorldWideScience

Sample records for size-dependent continuum crystal

  1. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Zhi Yan

    2017-01-01

    Full Text Available Piezoelectric nanomaterials (PNs are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  2. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review.

    Science.gov (United States)

    Yan, Zhi; Jiang, Liying

    2017-01-26

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  3. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    Science.gov (United States)

    Yan, Zhi; Jiang, Liying

    2017-01-01

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented. PMID:28336861

  4. Nonlocal superelastic model of size-dependent hardening and dissipation in single crystal Cu-Al-Ni shape memory alloys.

    Science.gov (United States)

    Qiao, Lei; Rimoli, Julian J; Chen, Ying; Schuh, Christopher A; Radovitzky, Raul

    2011-02-25

    We propose a nonlocal continuum model to describe the size-dependent superelastic effect observed in recent experiments of single crystal Cu-Al-Ni shape memory alloys. The model introduces two length scales, one in the free energy and one in the dissipation, which account for the size-dependent hardening and dissipation in the loading and unloading response of micro- and nanopillars subject to compression tests. The information provided by the model suggests that the size dependence observed in the dissipation is likely to be associated with a nonuniform evolution of the distribution of the austenitic and martensitic phases during the loading cycle. © 2011 American Physical Society

  5. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8

    KAUST Repository

    Zhang, Chen

    2014-09-04

    © 2014 American Chemical Society. Understanding the crystal-size dependence of both guest adsorption and structural transitions of nanoporous solids is crucial to the development of these materials. We find that nano-sized metal-organic framework (MOF) crystals have significantly different guest adsorption properties compared to the bulk material. A new methodology is developed to simulate the adsorption and transition behavior of entire MOF nanoparticles. Our simulations predict that the transition pressure significantly increases with decreasing particle size, in agreement with crystal-size-dependent experimental measurements of the N2-ZIF-8 system. We also propose a simple core-shell model to examine this effect on length scales that are inaccessible to simulations and again find good agreement with experiments. This study is the first to examine particle size effects on structural transitions in ZIFs and provides a thermodynamic framework for understanding the underlying mechanism.

  6. Impact of feature-size dependent etching on the optical properties of photonic crystal devices

    International Nuclear Information System (INIS)

    Berrier, A.; Anand, S.; Ferrini, R.; Talneau, A.; Houdre, R.

    2008-01-01

    Feature size dependence in Ar/Cl 2 chemically assisted ion beam etching of InP-based photonic crystals (PhCs) and its influence on the optical properties of PhC devices operating in the band gap are investigated. The analysis of the measured quality factors, the determined mirror reflectivities, and losses of one-dimensional Fabry-Perot cavities clearly demonstrates the importance of feature-size dependent etching. The optical properties show a dramatic improvement up to a hole depth of about 3.5 μm that is primarily due to a significant reduction in extrinsic losses. However, beyond this hole depth, the improvement is at a lower rate, which suggests that extrinsic losses, although present, are not dominant

  7. Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles

    Science.gov (United States)

    Chen, Bin; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.

    2016-12-01

    Chalcogenide-based nanostructured phase-change materials (PCMs) are considered promising building blocks for non-volatile memory due to their high write and read speeds, high data-storage density, and low power consumption. Top-down fabrication of PCM nanoparticles (NPs), however, often results in damage and deterioration of their useful properties. Gas-phase condensation based on magnetron sputtering offers an attractive and straightforward solution to continuously down-scale the PCMs into sub-lithographic sizes. Here we unprecedentedly present the size dependence of crystallization for Ge2Sb2Te5 (GST) NPs, whose production is currently highly challenging for chemical synthesis or top-down fabrication. Both amorphous and crystalline NPs have been produced with excellent size and composition control with average diameters varying between 8 and 17 nm. The size-dependent crystallization of these NPs was carefully analyzed through in-situ heating in a transmission electron microscope, where the crystallization temperatures (Tc) decrease when the NPs become smaller. Moreover, methane incorporation has been observed as an effective method to enhance the amorphous phase stability of the NPs. This work therefore elucidates that GST NPs synthesized by gas-phase condensation with tailored properties are promising alternatives in designing phase-change memories constrained by optical lithography limitations.

  8. Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations

    International Nuclear Information System (INIS)

    Rao, S.I.; Dimiduk, D.M.; Parthasarathy, T.A.; Uchic, M.D.; Tang, M.; Woodward, C.

    2008-01-01

    Recent experimental studies have revealed that micrometer-scale face-centered cubic (fcc) crystals show strong strengthening effects, even at high initial dislocation densities. We use large-scale three-dimensional discrete dislocation simulations (DDS) to explicitly model the deformation behavior of fcc Ni microcrystals in the size range of 0.5-20 μm. This study shows that two size-sensitive athermal hardening processes, beyond forest hardening, are sufficient to develop the dimensional scaling of the flow stress, stochastic stress variation, flow intermittency and high initial strain-hardening rates, similar to experimental observations for various materials. One mechanism, source-truncation hardening, is especially potent in micrometer-scale volumes. A second mechanism, termed exhaustion hardening, results from a breakdown of the mean-field conditions for forest hardening in small volumes, thus biasing the statistics of ordinary dislocation processes

  9. Size-dependent thermoelasticity

    Directory of Open Access Journals (Sweden)

    Ali R. Hadjesfandiari

    Full Text Available In this paper a consistent theory is developed for size-dependent thermoelasticity in heterogeneous anisotropic solids. This theory shows that the temperature change can create not only thermal strains, but also thermal mean curvatures in the solids. This formulation is based on the consistent size-dependent continuum mechanics in which the couple-stress tensor is skew-symmetric. Here by including scale-dependent measures in the energy and entropy equations, the general expressions for force- and couple-stresses, as well as entropy density, are obtained. Next, for the linear material the constitutive relations and governing coupled size-dependent thermoelasticity equations are developed. For linear material, one can see that the thermal properties are characterized by the classical symmetric thermal expansion tensor and the new size-dependent skew-symmetric thermal flexion tensor. Thus, for the most general anisotropic case, there are nine independent thermoelastic constants. Interestingly, for isotropic and cubic materials the thermal flexion tensor vanishes, which shows there is no thermal mean curvature

  10. Nonlinear modeling of crystal system transition of black phosphorus using continuum-DFT model

    Science.gov (United States)

    Setoodeh, A. R.; Farahmand, H.

    2018-01-01

    In this paper, the nonlinear behavior of black phosphorus crystals is investigated in tandem with dispersion-corrected density functional theory (DFT-D) analysis under uniaxial loadings. From the identified anisotropic behavior of black phosphorus due to its morphological anisotropy, a hyperelastic anisotropic (HA) model named continuum-DFT is established to predict the nonlinear behavior of the material. In this respect, uniaxial Cauchy stresses are employed on both the DFT-D and HA models along the zig-zag and armchair directions. Simultaneously, the transition of the crystal system is recognized at about 4.5 GPa of the applied uniaxial tensile stress along the zig-zag direction on the DFT-D simulation in the nonlinear region. In order to develop the nonlinear continuum model, unknown constants are surveyed with the optimized least square technique. In this regard, the continuum model is obtained to reproduce the Cauchy stress–stretch and density of strain–stretch results of the DFT-D simulation. Consequently, the modified HA model is introduced to characterize the nonlinear behavior of black phosphorus along the zig-zag direction. More importantly, the specific transition of the crystal system is successfully predicted in the new modified continuum-DFT model. The results reveal that the multiscale continuum-DFT model is well defined to replicate the nonlinear behavior of black phosphorus along the zig-zag and armchair directions.

  11. Nonlinear modeling of crystal system transition of black phosphorus using continuum-DFT model.

    Science.gov (United States)

    Setoodeh, A R; Farahmand, H

    2018-01-24

    In this paper, the nonlinear behavior of black phosphorus crystals is investigated in tandem with dispersion-corrected density functional theory (DFT-D) analysis under uniaxial loadings. From the identified anisotropic behavior of black phosphorus due to its morphological anisotropy, a hyperelastic anisotropic (HA) model named continuum-DFT is established to predict the nonlinear behavior of the material. In this respect, uniaxial Cauchy stresses are employed on both the DFT-D and HA models along the zig-zag and armchair directions. Simultaneously, the transition of the crystal system is recognized at about 4.5 GPa of the applied uniaxial tensile stress along the zig-zag direction on the DFT-D simulation in the nonlinear region. In order to develop the nonlinear continuum model, unknown constants are surveyed with the optimized least square technique. In this regard, the continuum model is obtained to reproduce the Cauchy stress-stretch and density of strain-stretch results of the DFT-D simulation. Consequently, the modified HA model is introduced to characterize the nonlinear behavior of black phosphorus along the zig-zag direction. More importantly, the specific transition of the crystal system is successfully predicted in the new modified continuum-DFT model. The results reveal that the multiscale continuum-DFT model is well defined to replicate the nonlinear behavior of black phosphorus along the zig-zag and armchair directions.

  12. Quasi bound states in the continuum with few unit cells of photonic crystal slab

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Chung, Il-Sug

    2017-01-01

    Bound states in the continuum (BICs) in photonic crystal slabs represent the resonances with an infinite quality (Q)-factor, occurring above the light line for an infinitely periodic structure. We show that a set of BICs can turn into quasi-BICs with a very high Q-factor even for two or three unit...

  13. Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre

    DEFF Research Database (Denmark)

    Chow, K.K.; Takushima, Y.; Lin, C.

    2006-01-01

    Flat super-continuum generation spanning over the whole telecommunication band using a passively modelocked fibre laser source at 1550 nm together with a dispersion-flattened nonlinear photoinc crystal fibre is demonstrated. Since the pulses propagate in the normal dispersion regime of the fibre...

  14. In-situ measurement of bound states in the continuum in photonic crystal slabs (Conference Presentation)

    Science.gov (United States)

    Kalchmair, Stefan; Gansch, Roman; Genevet, Patrice; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Capasso, Federico; Loncar, Marko

    2016-04-01

    Photonic crystal slabs have been subject to research for more than a decade, yet the existence of bound states in the radiation continuum (BICs) in photonic crystals has been reported only recently [1]. A BIC is formed when the radiation from all possible channels interferes destructively, causing the overall radiation to vanish. In photonic crystals, BICs are the result of accidental phase matching between incident, reflected and in-plane waves at seemingly random wave vectors [2]. While BICs in photonic crystals have been discussed previously using reflection measurements, we reports for the first time in-situ measurements of the bound states in the continuum in photonic crystal slabs. By embedding a photodetector into a photonic crystal slab we were able to directly observe optical BICs. The photonic crystal slabs are processed from a GaAs/AlGaAs quantum wells heterostructure, providing intersubband absorption in the mid-infrared wavelength range. The generated photocurrent is collected via doped contact layers on top and bottom of the suspended photonic crystal slab. We were mapping out the photonic band structure by rotating the device and by acquiring photocurrent spectra every 5°. Our measured photonic bandstructure revealed several BICs, which was confirmed with a rigorously coupled-wave analysis simulation. Since coupling to external fields is suppressed, the photocurrent measured by the photodetector vanishes at the BIC wave vector. To confirm the relation between the measured photocurrent and the Q-factor we used temporal coupled mode theory, which yielded an inverse proportional relation between the photocurrent and the out-coupling loss from the photonic crystal. Implementing a plane wave expansion simulation allowed us to identify the corresponding photonic crystal modes. The ability to directly measure the field intensity inside the photonic crystal presents an important milestone towards integrated opto-electronic BIC devices. Potential

  15. A Micro-Mechanically Based Continuum Model for Strain-Induced Crystallization in Natural Rubber

    Science.gov (United States)

    Mistry, Sunny Jigger

    Recent experimental results show that strain-induced crystallization can substantially improve the crack growth resistance of natural rubber. While this might suggest superior designs of tires or other industrial applications where elastomers are used, a more thorough understanding of the underlying physics of strain-induced crystallization in natural rubber has to be developed before any design process can be started. The objective of this work is to develop a computationally-accessible micro-mechanically based continuum model, which is able to predict the macroscopic behavior of strain crystallizing natural rubber. While several researchers have developed micro-mechanical models of partially crystallized polymer chains, their results mainly give qualitative agreement with experimental data due to a lack of good micro-macro transition theories or the lack of computational power. However, recent developments in multiscale modeling in polymers provide new tools to continue this early work. In this thesis, a new model is proposed to model strain-induced crystallization in natural rubber. To this end, a micro-mechanical model of a constrained partially crystallized polymer chain with an extended-chain crystal is derived and connected to the macroscopic level using the non-affine micro-sphere model. On the macroscopic level, a thermodynamically consistent framework for strain-crystallizing materials is developed, and a description of the crystallization kinetics is introduced. For that matter, an evolution law for crystallization based on the gradient of the macroscopic Helmholtz free energy function (chemical potential) in combination with a simple threshold function is used. A numerical implementation of the model is proposed and its predictive performance assessed using published data.

  16. Effects of nanoscale size dependent parameters on lattice thermal ...

    Indian Academy of Sciences (India)

    tice thermal conductivity to that of the reported experimental curve. ... Introduction. Determination of thermal conductivity of semiconductor nanowires plays a crucial role in ..... experimental values. In order to calculate lattice thermal conductivity for Si nanowires, the crystal size dependent parameters should be taken care of.

  17. Continuum and crystal strain gradient plasticity with energetic and dissipative length scales

    Science.gov (United States)

    Faghihi, Danial

    This work, standing as an attempt to understand and mathematically model the small scale materials thermal and mechanical responses by the aid of Materials Science fundamentals, Continuum Solid Mechanics, Misro-scale experimental observations, and Numerical methods. Since conventional continuum plasticity and heat transfer theories, based on the local thermodynamic equilibrium, do not account for the microstructural characteristics of materials, they cannot be used to adequately address the observed mechanical and thermal response of the micro-scale metallic structures. Some of these cases, which are considered in this dissertation, include the dependency of thin films strength on the width of the sample and diffusive-ballistic response of temperature in the course of heat transfer. A thermodynamic-based higher order gradient framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. The concept of the thermal activation energy, the dislocations interaction mechanisms, nonlocal energy exchange between energy carriers and phonon-electrons interactions are taken into consideration in proposing the thermodynamic potentials such as Helmholtz free energy and rate of dissipation. The same approach is also adopted to incorporate the effect of the material microstructural interface between two materials (e.g. grain boundary in crystals) into the formulation. The developed grain boundary flow rule accounts for the energy storage at the grain boundary due to the dislocation pile up as well as energy dissipation caused by the dislocation transfer through the grain boundary. Some of the abovementioned responses of small scale metallic compounds are addressed by means of the numerical implementation of the developed framework within the finite element context. In this regard, both displacement and plastic strain fields are independently discretized and the numerical implementation is performed in

  18. Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique

    Directory of Open Access Journals (Sweden)

    Charles M. Reinke

    2011-12-01

    Full Text Available Recent work has demonstrated that nanostructuring of a semiconductor material to form a phononic crystal (PnC can significantly reduce its thermal conductivity. In this paper, we present a classical method that combines atomic-level information with the application of Bloch theory at the continuum level for the prediction of the thermal conductivity of finite-thickness PnCs with unit cells sized in the micron scale. Lattice dynamics calculations are done at the bulk material level, and the plane-wave expansion method is implemented at the macrosale PnC unit cell level. The combination of the lattice dynamics-based and continuum mechanics-based dispersion information is then used in the Callaway-Holland model to calculate the thermal transport properties of the PnC. We demonstrate that this hybrid approach provides both accurate and efficient predictions of the thermal conductivity.

  19. Size-dependent diffusion of membrane inclusions.

    Science.gov (United States)

    Guigas, Gernot; Weiss, Matthias

    2006-10-01

    Experimentally determined diffusion constants are often used to elucidate the size and oligomeric state of membrane proteins and domains. This approach critically relies on the knowledge of the size-dependence of diffusion. We have used mesoscopic simulations to thoroughly quantify the size-dependent diffusion properties of membrane inclusions. For small radii R, we find that the lateral diffusion coefficient D is well described by the Saffman-Delbrück relation, which predicts a logarithmic decrease of D with R. However, beyond a critical radius Rc approximately hetam/(2etac) (h, bilayer thickness; etam/c, viscosity of the membrane/surrounding solvent) we observe significant deviations and the emergence of an asymptotic scaling D approximately 1/R2. The latter originates from the asymptotic hydrodynamics and the inclusion's internal degrees of freedom that become particularly relevant on short timescales. In contrast to the lateral diffusion, the size dependence of the rotational diffusion constant Dr follows the predicted hydrodynamic scaling Dr approximately 1/R2 over the entire range of sizes studied here.

  20. Micro-Structural Evolution and Size-Effects in Plastically Deformed Single Crystals: Strain Gradient Continuum Modeling

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah

    An extensive amount of research has been devoted to the development of micro-mechanics based gradient plasticity continuum theories, which are necessary for modeling micron-scale plasticity when large spatial gradients of plastic strain appear. While many models have proven successful in capturing...... the macroscopic effects related to strain gradients, most predict smooth micro-structures. The evolution of dislocation micro-structures, during plastic straining of ductile crystalline materials, is highly complex and nonuniform. Published experimental measurements on deformed metal crystals show distinct......, to focus on their ability to capture realistic micro-structural evolution. This challenge is the main focus of the present thesis, which takes as starting point a non-work conjugate type back stress based higher order crystal plasticity theory. Within this framework, several possibilities for the back...

  1. Super continuum generation at 800 nm in highly nonlinear photonic crystal fibers with normal dispersion

    DEFF Research Database (Denmark)

    Hansen, Kim Per; Larsen, Jacob Juul; Jensen, Jacob Riis

    2001-01-01

    More than 90 nm broad self-phase modulation (SPM) induced pulses have been created from both 25 and 50 fs pulses in just 12.5 cm of fiber. The broadening is more than 2.5 times that observed in standard SMF. SPM broadening in PCFs has several advantages over more complex super continuum generatio...

  2. Continuum dislocation-density based models for the dynamic shock response of single-crystal and polycrystalline materials

    Science.gov (United States)

    Luscher, Darby

    2017-06-01

    The dynamic thermomechanical responses of polycrystalline materials under shock loading are often dominated by the interaction of defects and interfaces. For example, polymer-bonded explosives (PBX) can initiate under weak shock impacts whose energy, if distributed homogeneously throughout the material, translates to temperature increases that are insufficient to drive the rapid chemistry observed. In such cases, heterogeneous thermomechanical interactions at the mesoscale (i.e. between single-crystal and macroscale) lead to the formation of localized hot spots. Within metals, a prescribed deformation associated with a shock wave may be accommodated by crystallographic slip, provided a sufficient population of mobile dislocations is available. However, if the deformation rate is large enough, there may be an insufficient number of freely mobile dislocations. In these cases, additional dislocations may be nucleated, or alternate mechanisms (e.g. twinning, damage) activated in order to accommodate the deformation. Direct numerical simulation at the mesoscale offers insight into these physical processes that can be invaluable to the development of macroscale constitutive theories, if the mesoscale models adequately represent the anisotropic nonlinear thermomechanical response of individual crystals and their interfaces. This talk will briefly outline a continuum mesoscale modeling framework founded upon local and nonlocal variations of dislocation-density based crystal plasticity theory. The nonlocal theory couples continuum dislocation transport with the local theory. In the latter, dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. The configuration of geometrically necessary dislocation density gives rise to a back-stress that inhibits or accentuates the flow of dislocations. Development of the local theory and application to modeling the explosive molecular crystal

  3. Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory

    KAUST Repository

    Ball, John M.

    2010-07-20

    We define a continuum energy functional that effectively interpolates between the mean-field Maier-Saupe energy and the continuum Landau-de Gennes energy functional and can describe both spatially homogeneous and inhomogeneous systems. In the mean-field approach the main macroscopic variable, the Q-tensor order parameter, is defined in terms of the second moment of a probability distribution function. This definition imposes certain constraints on the eigenvalues of the Q-tensor order parameter, which may be interpreted as physical constraints. We define a thermotropic bulk potential which blows up whenever the eigenvalues of the Q-tensor order parameter approach physically unrealistic values. As a consequence, the minimizers of this continuum energy functional have physically realistic order parameters in all temperature regimes. We study the asymptotics of this bulk potential and show that this model also predicts a first-order nematic-isotropic phase transition, whilst respecting the physical constraints. In contrast, in the Landau-de Gennes framework the Q-tensor order parameter is often defined independently of the probability distribution function, and the theory makes physically unrealistic predictions about the equilibrium order parameters in the low-temperature regime. Copyright © Taylor & Francis Group, LLC.

  4. Reciprocal-Space Engineering of Quasi-Bound States in the Continuum in Photonic Crystal Slabs for High-Q Microcavities

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Taghizadeh, Alireza

    2017-01-01

    The bound states in the continuum (BICs) in photonic crystal (PhC) slabs presume infinite periodicity in the inplane direction. Thus, a large number of unit cells are typically required to implement the BICs with a high quality (Q) factor. Here, we report on a method to engineer the reciprocal...... functionalities for many important applications....

  5. Size Dependent Orientation of Knudsen Force

    KAUST Repository

    Zhu, Taishan

    2012-03-03

    Knudsen force acting on a heated microbeam adjacent to a cold substrate in a rarefied gas is a mechanical force created by unbalanced thermal gradients. The measured force has its direction pointing towards the side with a lower thermal gradient and its magnitude vanishes in both continuum and free-molecule limits. In our previous study, negative Knudsen forces were discovered at the high Knudsen regime before diminishing in the free-molecule limit. Such a phenomenon was however not observed in the experiment. In this paper, the existence of such a negative Knudsen force is further confirmed using both numerical simulation and theoretical analysis. The asymptotic order of the Knudsen force near the collisionless limit is analyzed and the analytical expression of its leading term is provided, from which approaches for the enhancement of negative Knudsen forces are proposed. Copyright © 2012 by ASME.

  6. Strain gradient crystal plasticity: A continuum mechanics approach to modeling micro-structural evolution

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2015-01-01

    In agreement with dislocation theory, recent experiments show, both quantitatively and qualitatively, how geometrically necessary dislocations (GNDs) distribute in dislocation wall and cell structures. Hence, GND density fields are highly localized with large gradients and discontinuities occurri....... A phenomenological back stress formulation is proposed, through which the effect of the GND gradient exponent can be studied. It is shown that this model can lead to more localized GND distributions.......In agreement with dislocation theory, recent experiments show, both quantitatively and qualitatively, how geometrically necessary dislocations (GNDs) distribute in dislocation wall and cell structures. Hence, GND density fields are highly localized with large gradients and discontinuities occurring...... between the cells. This behavior is not typical for strain gradient crystal plasticity models. The present study employs a higher order extension of conventional crystal plasticity theory in which the viscous slip rate is influenced by the gradients of GND densities through a back stress...

  7. Size-dependent theories of piezoelectricity: Comparisons and further developments for centrosymmetric dielectrics

    OpenAIRE

    Hadjesfandiari, Ali R.

    2014-01-01

    Here the recently developed size-dependent piezoelectricity and the strain gradient theory of flexoelectricity are compared. In the course of this investigation, the strain gradient theory of flexoelectricity is shown to violate fundamental rules of mathematics, continuum mechanics and electromagnetism. The major difficulties are associated with ill-posed boundary conditions, the missing angular (moment) equilibrium equation and the appearance of a non-physical extraneous vectorial electrosta...

  8. Size dependent nanomechanics of coil spring shaped polymer nanowires.

    Science.gov (United States)

    Ushiba, Shota; Masui, Kyoko; Taguchi, Natsuo; Hamano, Tomoki; Kawata, Satoshi; Shoji, Satoru

    2015-11-27

    Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke's law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials.

  9. On the Size Dependences of the Metallic Nanoparticle Evaporation and Sublimation Heats: Thermodynamics and Atomistic Modeling

    Science.gov (United States)

    Bembel, A. G.

    2017-02-01

    Size dependences of the nanocrystal sublimation and the evaporation heats of the corresponding nanodrops are investigated using the isothermal molecular dynamics and the tight-binding potential (on examples of Ni and Au nanoparticles). Results of computer simulation demonstrating linear dependences of the evaporation and sublimation heats on the particle reciprocal radius are compared with results of thermodynamic calculations as well as with experimental data for bulk phases of the same metals. It has been found that the size dependences of the evaporation and sublimation heats are directly related with the behavior of the size dependence of the melting heat that in its turn correlates with structural transformations in nanoparticles induced by the change of their size. The conclusion is drawn that there is some characteristic nanoparticle size (of the order of 1 nm) at which its crystal and liquid states become indistinguishable.

  10. Size-dependent melting of nanoparticles: Hundred years of ...

    Indian Academy of Sciences (India)

    Thermodynamic model first published in 1909, is being used extensively to understand the size-dependent melting of nanoparticles. Pawlow deduced an expression for the size-dependent melting temperature of small particles based on the thermodynamic model which was then modified and applied to different ...

  11. A random energy model for size dependence : recurrence vs. transience

    NARCIS (Netherlands)

    Külske, Christof

    1998-01-01

    We investigate the size dependence of disordered spin models having an infinite number of Gibbs measures in the framework of a simplified 'random energy model for size dependence'. We introduce two versions (involving either independent random walks or branching processes), that can be seen as

  12. Size-dependent melting of nanoparticles: Hundred years of ...

    Indian Academy of Sciences (India)

    Abstract. Thermodynamic model first published in 1909, is being used extensively to understand the size-dependent melting of nanoparticles. Pawlow deduced an expression for the size-dependent melting temperature of small particles based on the thermodynamic model which was then modified and applied to different ...

  13. Ionization Energies, Electron Affinities, and Polarization Energies of Organic Molecular Crystals: Quantitative Estimations from a Polarizable Continuum Model (PCM)–Tuned Range-Separated Density Functional Approach

    KAUST Repository

    Sun, Haitao

    2016-05-16

    We propose a new methodology for the first-principles description of the electronic properties relevant for charge transport in organic molecular crystals. This methodology, which is based on the combination of a non-empirical, optimally tuned range-separated hybrid functional with the polarizable continuum model, is applied to a series of eight representative molecular semiconductor crystals. We show that it provides ionization energies, electron affinities, and transport gaps in very good agreement with experimental values as well as with the results of many-body perturbation theory within the GW approximation at a fraction of the computational costs. Hence, this approach represents an easily applicable and computationally efficient tool to estimate the gas-to-crystal-phase shifts of the frontier-orbital quasiparticle energies in organic electronic materials.

  14. Continuum Physics

    CERN Document Server

    Hertel, Peter

    2012-01-01

    This small book on the properties of continuously distributed matter covers a huge field. It sets out the governing principles of continuum physics and illustrates them by carefully chosen examples. These examples comprise structural mechanics and elasticity, fluid media, electricity and optics, thermoelectricity, fluctuation phenomena and more, from Archimedes' principle via Brownian motion to white dwarfs. Metamaterials, pattern formation by reaction-diffusion and surface plasmon polaritons are dealt with as well as classical topics such as Stokes' formula, beam bending and buckling, crystal optics and electro- and magnetooptic effects, dielectric waveguides, Ohm's law, surface acoustic waves, to mention just some.   The set of balance equations for content, flow and production of particles, mass, charge, momentum, energy and entropy is augmented by material, or constitutive equations. They describe entire classes of materials, such as viscid fluids and gases, elastic media, dielectrics or electrical con...

  15. Size-dependent electronic properties of metal nanostructures

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Size-dependent electronic properties of metal nanostructures. G.U. Kulkarni. Chemistry and Physics of Materials Unit. Jawaharlal Nehru Centre for Advanced Scientific Research. Bangalore, India. kulkarni@jncasr.ac.in.

  16. Optical bound state in the continuum in the one-dimensional photonic crystal slab: Theory and experiment

    DEFF Research Database (Denmark)

    Sadrieva, Z. F.; Sinev, I. S.; Samusev, A. K.

    2016-01-01

    In this work, we implement CMOS-compatible one-dimensional photonic structure based on silicon-on-insulator wafer supporting optical bound states in the continuum at telecommunication wavelengths — localized optical state with energy lying above the light line of the surrounding space. Such high...

  17. Modeling the size dependent pull-in instability of beam-type NEMS using strain gradient theory

    Directory of Open Access Journals (Sweden)

    Ali Koochi

    Full Text Available It is well recognized that size dependency of materials characteristics, i.e. size-effect, often plays a significant role in the performance of nano-structures. Herein, strain gradient continuum theory is employed to investigate the size dependent pull-in instability of beam-type nano-electromechanical systems (NEMS. Two most common types of NEMS i.e. nano-bridge and nano-cantilever are considered. Effects of electrostatic field and dispersion forces i.e. Casimir and van der Waals (vdW attractions have been considered in the nonlinear governing equations of the systems. Two different solution methods including numerical and Rayleigh-Ritz have been employed to solve the constitutive differential equations of the system. Effect of dispersion forces, the size dependency and the importance of coupling between them on the instability performance are discussed.

  18. Direct observation of hierarchical nucleation of martensite and size-dependent superelasticity in shape memory alloys.

    Science.gov (United States)

    Liu, Lifeng; Ding, Xiangdong; Li, Ju; Lookman, Turab; Sun, Jun

    2014-02-21

    Martensitic transformation usually creates hierarchical internal structures beyond mere change of the atomic crystal structure. Multi-stage nucleation is thus required, where nucleation (level-1) of the underlying atomic crystal lattice does not have to be immediately followed by the nucleation of higher-order superstructures (level-2 and above), such as polysynthetic laths. Using in situ transmission electron microscopy (TEM), we directly observe the nucleation of the level-2 superstructure in a Cu-Al-Ni single crystal under compression, with critical super-nuclei size L2c around 500 nm. When the sample size D decreases below L2c, the superelasticity behavior changes from a flat stress plateau to a continuously rising stress-strain curve. Such size dependence definitely would impact the application of shape memory alloys in miniaturized MEMS/NEMS devices.

  19. Size-dependent elastic moduli and vibrational properties of fivefold twinned copper nanowires

    Science.gov (United States)

    Zheng, Y. G.; Zhao, Y. T.; Ye, H. F.; Zhang, H. W.

    2014-08-01

    Based on atomistic simulations, the elastic moduli and vibration behaviors of fivefold twinned copper nanowires are investigated in this paper. Simulation results show that the elastic (i.e., Young’s and shear) moduli exhibit size dependence due to the surface effect. The effective Young’s modulus is found to decrease slightly whereas the effective shear modulus increases slightly with the increase in the wire radius. Both moduli tend to approach certain values at a larger radius and can be suitably described by core-shell composite structure models. Furthermore, we show by comparing simulation results and continuum predictions that, provided the effective Young’s and shear moduli are used, classic elastic theory can be applied to describe the small-amplitude vibration of fivefold twinned copper nanowires. Moreover, for the transverse vibration, the Timoshenko beam model is more suitable because shear deformation becomes apparent.

  20. Size-dependent elastic moduli and vibrational properties of fivefold twinned copper nanowires

    International Nuclear Information System (INIS)

    Zheng, Y G; Zhao, Y T; Ye, H F; Zhang, H W

    2014-01-01

    Based on atomistic simulations, the elastic moduli and vibration behaviors of fivefold twinned copper nanowires are investigated in this paper. Simulation results show that the elastic (i.e., Young’s and shear) moduli exhibit size dependence due to the surface effect. The effective Young’s modulus is found to decrease slightly whereas the effective shear modulus increases slightly with the increase in the wire radius. Both moduli tend to approach certain values at a larger radius and can be suitably described by core-shell composite structure models. Furthermore, we show by comparing simulation results and continuum predictions that, provided the effective Young’s and shear moduli are used, classic elastic theory can be applied to describe the small-amplitude vibration of fivefold twinned copper nanowires. Moreover, for the transverse vibration, the Timoshenko beam model is more suitable because shear deformation becomes apparent. (paper)

  1. Size-dependent diffusion promotes the emergence of spatiotemporal patterns

    DEFF Research Database (Denmark)

    Zhang, Lai; Thygesen, Uffe Høgsbro; Banerjee, Malay

    2014-01-01

    intraspecific physiological variations at the individual level. Here we explore the impacts of size variation within species resulting from individual ontogeny, on the emergence of spatiotemporal patterns in a fully size-structured population model. We found that size dependency of animal's diffusivity greatly...... promotes the formation of spatiotemporal patterns, by creating regular spatiotemporal patterns out of temporal chaos. We also found that size-dependent diffusion can substitute large-amplitude base harmonics with spatiotemporal patterns with lower amplitude oscillations but with enriched harmonics. Finally...... populations. Due to the ubiquity of individual ontogeny in natural ecosystems we conclude that diffusion variability within populations is a significant driving force for the emergence of spatiotemporal patterns. Our results offer a perspective on self-organized phenomena, and pave a way to understand...

  2. Size dependent phase and morphological transformation of alumina nanoparticles

    Science.gov (United States)

    Dommisa, D. B.; Dash, R. K.

    2018-03-01

    The size effect of the alumina nanoparticles on the phase and morphological transition by thermal treatment at various temperatures is investigated by choosing two different sizes alumina nanoparticles. Our experimental results revealed that phase and morphological transformation behavior is significantly different for smaller size alumina nanoparticles than that of larger size. The more stable alpha phase transformation occurs at a higher temperature for smaller size alumina nanoparticles in comparison to that of the larger size alumina nanoparticles. Moreover, the experimental facts also elucidated that the nucleation and growth process at the nanoscale for the phase transition is also size dependent. Our experimental result from the FESEM and TEM analysis also revealed that there is a direct correlation between phase and morphological transition of alumina nanoparticles size which is consistent with the XRD results. Therefore, we believe that our experimental findings can be extended to other complex nanomaterials for understanding the size-dependent phase and morphological transformation at the nanoscale.

  3. Size Dependence of Interband Transitions in al Nanoparticle

    Science.gov (United States)

    Peng, Yajing; Yin, Xuefei; Ding, Weiqiang

    The interband transition onset frequency of nanoaluminum is found to approximately, linearly decrease as reducing aluminum diameter in the 25-100 nm range. This linear relation is indicated to originate mostly from increased inner strain of nanoparticle caused by the small size effect. This relation realizes to introduce the size dependence of interband transitions into the metallic dielectric function and has its important application in the laser ignition of nanoenergetic materials.

  4. Size-dependent electronic properties of metal nanostructures

    Indian Academy of Sciences (India)

    Table of contents. Size-dependent electronic properties of metal nanostructures · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Nanocrystalline film at liquid-liquid interface · Slide 21 · Slide 22.

  5. Flexoelectric charge separation and size dependent piezoelectricity in dielectric solids

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenhui [Department of Physics, Shantou University, Shantou, Guangdong 515063 (China)

    2010-01-15

    Flexoelectric charge separation and the associated size dependent piezoelectricity are investigated in centrosymmetric dielectric solids. Direct piezoelectricity can exist as external mechanical stress is applied to non-piezoelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective piezoelectric coefficient is analyzed in truncated pyramids, which is strongly enhanced by size reduction and depends on flexoelectricity, elastic compliance, and aspect ratio of the non-piezoelectric dielectric solids. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. Nonlocal Theories in Continuum Mechanics

    Directory of Open Access Journals (Sweden)

    M. Jirásek

    2004-01-01

    Full Text Available The purpose of this paper is to explain why the standard continuum theory fails to properly describe certain mechanical phenomena and how the description can be improved by enrichments that incorporate the influence of gradients or weighted spatial averages of strain or of an internal variable. Three typical mechanical problems that require such enrichments are presented: (i dispersion of short elastic waves in heterogeneous or discrete media, (ii size effects in microscale elastoplasticity, in particular with the size dependence of the apparent hardening modulus, and (iii localization of strain and damage in quasibrittle structures and with the resulting transitional size effect. Problems covered in the examples encompass static and dynamic phenomena, linear and nonlinear behavior, and three constitutive frameworks, namely elasticity, plasticity and continuum damage mechanics. This shows that enrichments of the standard continuum theory can be useful in a wide range of mechanical problems. 

  7. On the anomalous grain size dependence of spall strength

    Science.gov (United States)

    Wilkerson, Justin; Ramesh, Kt

    2017-06-01

    Experimental studies have identified an anomalous grain size dependence of spall strength in a few face-centered cubic metals. Here we derive the first quantitative theory capable of explaining this phenomena. The theory agrees well with experimental measurements and atomistic calculations over a very wide range of conditions. Utilizing this theory, we are able to map out three distinct regimes in which spall strength (i) increases with decreasing grain size in accordance with conventional wisdom, (ii) non-intuitively decreases with decreasing grain size, and (iii) is independent of grain size. The theory also predicts microscopic characteristics of the spall fracture surface, which agree with available data.

  8. Size-dependent electronic eigenstates of multilayer organic quantum wells

    International Nuclear Information System (INIS)

    Nguyen Ba An; Hanamura, E.

    1995-09-01

    A detailed theoretical treatment is given eigenfunctions and eigenenergies of a multilayer organic quantum well sandwiched between two different dielectric media. The abrupt change of dielectric constants at the interfaces distorts the wave function and results in possible surface states in addition to propagating states. The proper boundary conditions are accounted for by the method of image charges. Analytic criteria for existence of surface states are established using the nearest layers approximation, which depend not only on the intralayer parameters but also on the number of layers. The size dependence together with the dependence on signs and relative magnitudes of the structure parameters fully determine the energy spectrum of propagating states as well as the number and the location of surface states. (author). 28 refs, 10 figs, 2 tabs

  9. Size Dependent Heat Conduction in One-Dimensional Diatomic Lattices

    International Nuclear Information System (INIS)

    Shah, Tejal N.; Gajjar, P.N.

    2016-01-01

    We study the size dependency of heat conduction in one-dimensional diatomic FPU-β lattices and establish that for low dimensional material, contribution from optical phonons is found more effective to the thermal conductivity and enhance heat transport in the thermodynamic limit N → ∞. For the finite size, thermal conductivity of 1D diatomic lattice is found to be lower than 1D monoatomic chain of the same size made up of the constituent particle of the diatomic chain. For the present 1D diatomic chain, obtained value of power divergent exponent of thermal conductivity 0.428±0.001 and diffusion exponent 1.2723 lead to the conclusions that increase in the system size, increases the thermal conductivity and existence of anomalous energy diffusion. Existing numerical data supports our findings. (paper)

  10. Unraveling the Anomalous Grain Size Dependence of Cavitation

    Science.gov (United States)

    Wilkerson, J. W.; Ramesh, K. T.

    2016-11-01

    Experimental studies have identified an anomalous grain size dependence associated with the critical tensile pressure that a metal may sustain before catastrophic failure by cavitation processes. Here we derive the first quantitative theory (and its associated closed-form solution) capable of explaining this phenomena. The theory agrees well with experimental measurements and atomistic calculations over a very wide range of conditions. Utilizing this theory, we are able to map out three distinct regimes in which the critical tensile pressure for cavitation failure (i) increases with decreasing grain size in accordance with conventional wisdom, (ii) nonintuitively decreases with decreasing grain size, and (iii) is independent of grain size. The theory also predicts microscopic signatures of the cavitation process which agree with available data.

  11. Continuum mechanics

    CERN Document Server

    Spencer, A J M

    2004-01-01

    The mechanics of fluids and the mechanics of solids represent the two major areas of physics and applied mathematics that meet in continuum mechanics, a field that forms the foundation of civil and mechanical engineering. This unified approach to the teaching of fluid and solid mechanics focuses on the general mechanical principles that apply to all materials. Students who have familiarized themselves with the basic principles can go on to specialize in any of the different branches of continuum mechanics. This text opens with introductory chapters on matrix algebra, vectors and Cartesian ten

  12. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    Energy Technology Data Exchange (ETDEWEB)

    Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)

    2015-12-28

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.

  13. Continuum Nanofluidics

    DEFF Research Database (Denmark)

    Hansen, Jesper S; Dyre, Jeppe C; Daivis, Peter

    2015-01-01

    This paper introduces the fundamental continuum theory governing momentum transport in isotropic nanofluidic systems. The theory is an extension of the classical Navier-Stokes equation, and includes coupling between translational and rotational degrees of freedom as well as nonlocal response...

  14. Size-dependent structure of silver nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Koski, Kristie Jo [Univ. of California, Berkeley, CA (United States)

    2008-12-31

    Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.

  15. Size-dependent reactions of ammonium bisulfate clusters with dimethylamine.

    Science.gov (United States)

    Bzdek, Bryan R; Ridge, Douglas P; Johnston, Murray V

    2010-11-04

    The reaction kinetics of ammonium bisulfate clusters with dimethylamine (DMA) gas were investigated using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Clusters ranged in size from 1 to 10 bisulfate ions. Although displacement of the first several ammonium ions by DMA occurred with near unit efficiency, displacement of the final ammonium ion was cluster size dependent. For small clusters, all ammonium ions are exposed to incoming DMA molecules, allowing for facile exchange ("surface" exchange). However, with increasing cluster size, an ammonium ion can be trapped in an inaccessible region of the cluster ("core" exchange), thereby rendering exchange difficult. DMA was also observed to add onto existing dimethylaminium bisulfate clusters above a critical size, whereas ammonia did not add onto ammonium bisulfate clusters. The results suggest that as the cluster size increases, di-dimethylaminium sulfate formation becomes more favorable. The results of this study give further evidence to suggest that ambient sub-3 nm diameter particles are likely to contain aminium salts rather than ammonium salts.

  16. Probing size-dependent electrokinetics of hematite aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Kedra-Królik, Karolina; Rosso, Kevin M.; Zarzycki, Piotr

    2017-02-01

    Aqueous particle suspensions of many kinds are stabilized by the electrostatic potential developed at their surfaces from reaction with water and ions. An important and less well understood aspect of this stabilization is the dependence of the electrostatic surface potential on particle size. Surface electrostatics are typically probed by measuring particle electrophoretic mobilities and quantified in the electrokinetic potential (f), using commercially available Zeta Potential Analyzers (ZPA). Even though ZPAs provide frequency-spectra (histograms) of electrophoretic mobility and hydrodynamic diameter, typically only the maximal-intensity values are reported, despite the information in the remainder of the spectra. Here we propose a mapping procedure that inter-correlates these histograms to extract additional insight, in this case to probe particle size-dependent electrokinetics. Our method is illustrated for a suspension of prototypical iron (III) oxide (hematite, a-Fe2O3). We found that the electrophoretic mobility and f-potential are a linear function of the aggregate size. By analyzing the distribution of surface site types as a function of aggregate size we show that site coordination increases with increasing aggregate diameter. This observation explains why the acidity of the iron oxide particles decreases with increasing particle size.

  17. Size dependence of phase transitions in aerosol nanoparticles

    Science.gov (United States)

    Cheng, Yafang; Su, Hang; Koop, Thomas; Mikhailov, Eugene; Pöschl, Ulrich

    2015-04-01

    Phase transitions of nanoparticles are of fundamental importance in atmospheric sciences. Current understanding is insufficient to explain observations at the nano-scale. In particular, discrepancies exist between observations and model predictions of deliquescence and efflorescence transitions and the hygroscopic growth of salt nanoparticles. Here we show that these discrepancies can be resolved by consideration of particle size effects with consistent thermodynamic data. We present a new method for the determination of water and solute activities and interfacial energies in highly supersaturated aqueous solution droplets. Our analysis reveals that particle size can strongly alter the characteristic concentration of phase separation in mixed systems, resembling the influence of temperature. Due to similar effects, atmospheric secondary organic aerosol particles at room temperature are expected to be always liquid at diameters below ~20 nm. We thus propose and demonstrate that particle size should be included as an additional dimension in the equilibrium phase diagram of aerosol nanoparticles. Reference: Cheng, Y. et al. Size dependence of phase transitions in aerosol nanoparticles. Nature Communications. 5:5923 doi: 10.1038/ncomms6850 (2015).

  18. Size dependence of efficiency at maximum power of heat engine

    KAUST Repository

    Izumida, Y.

    2013-10-01

    We perform a molecular dynamics computer simulation of a heat engine model to study how the engine size difference affects its performance. Upon tactically increasing the size of the model anisotropically, we determine that there exists an optimum size at which the model attains the maximum power for the shortest working period. This optimum size locates between the ballistic heat transport region and the diffusive heat transport one. We also study the size dependence of the efficiency at the maximum power. Interestingly, we find that the efficiency at the maximum power around the optimum size attains a value that has been proposed as a universal upper bound, and it even begins to exceed the bound as the size further increases. We explain this behavior of the efficiency at maximum power by using a linear response theory for the heat engine operating under a finite working period, which naturally extends the low-dissipation Carnot cycle model [M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The theory also shows that the efficiency at the maximum power under an extreme condition may reach the Carnot efficiency in principle.© EDP Sciences Società Italiana di Fisica Springer-Verlag 2013.

  19. Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten

    Science.gov (United States)

    Xu, Shuozhi; Startt, Jacob K.; Payne, Thomas G.; Deo, Chaitanya S.; McDowell, David L.

    2017-05-01

    Compared with face-centered cubic metals, twinned nanopillars in body-centered cubic (BCC) systems are much less explored partly due to the more complicated plastic deformation behavior and a lack of reliable interatomic potentials for the latter. In this paper, the fault energies predicted by two semi-empirical interatomic potentials in BCC tungsten (W) are first benchmarked against density functional theory calculations. Then, the more accurate potential is employed in large scale molecular dynamics simulations of tensile and compressive loading of twinned nanopillars in BCC W with different cross sectional shapes and sizes. A single crystal, a twinned crystal, and single crystalline nanopillars are also studied as references. Analyses of the stress-strain response and defect nucleation reveal a strong tension-compression asymmetry and a weak pillar size dependence in the yield strength. Under both tensile and compressive loading, plastic deformation in the twinned nanopillars is dominated by dislocation slip on {110} planes that are nucleated from the intersections between the twin boundary and the pillar surface. It is also found that the cross sectional shape of nanopillars affects the strength and the initial site of defect nucleation but not the overall stress-strain response and plastic deformation behavior.

  20. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters.

    Science.gov (United States)

    Xu, Huacheng; Guo, Laodong

    2017-06-15

    Dissolved organic matter (DOM) is ubiquitous in natural waters. The ecological role and environmental fate of DOM are highly related to the chemical composition and size distribution. To evaluate size-dependent DOM quantity and quality, water samples were collected from river, lake, and coastal marine environments and size fractionated through a series of micro- and ultra-filtrations with different membranes having different pore-sizes/cutoffs, including 0.7, 0.4, and 0.2 μm and 100, 10, 3, and 1 kDa. Abundance of dissolved organic carbon, total carbohydrates, chromophoric and fluorescent components in the filtrates decreased consistently with decreasing filter/membrane cutoffs, but with a rapid decline when the filter cutoff reached 3 kDa, showing an evident size-dependent DOM abundance and composition. About 70% of carbohydrates and 90% of humic- and protein-like components were measured in the properties of DOM, such as specific ultraviolet absorbance, spectral slope, and biological and humification indices also varied significantly with membrane cutoffs. In addition, different ultrafiltration membranes with the same manufacture-rated cutoff also gave rise to different DOM retention efficiencies and thus different colloidal abundances and size spectra. Thus, the size-dependent DOM properties were related to both sample types and membranes used. Our results here provide not only baseline data for filter pore-size selection when exploring DOM ecological and environmental roles, but also new insights into better understanding the physical definition of DOM and its size continuum in quantity and quality in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Magnetically induced hyperthermia: size-dependent heating power of γ-Fe2O3 nanoparticles

    International Nuclear Information System (INIS)

    Levy, Michael; Wilhelm, Claire; Bacri, Jean-Claude; Gazeau, Florence; Siaugue, Jean-Michel; Horner, Olivier

    2008-01-01

    By combining magnetic properties with nanosized biocompatible materials, superparamagnetic nanoparticles may serve as colloidal heating mediators for cancer therapy. This unique potential has attracted attention for designing new magnetic nanoparticles with high efficiency heating properties. Their heating power under high frequency magnetic field is governed by the mechanisms of magnetic energy dissipation for single-domain particles due both to internal Neel fluctuations of the particle magnetic moment and to the external Brownian fluctuations. These mechanisms are highly sensitive to the crystal size, the particle material, and the solvent properties. Here we explore the heating properties of maghemite particles with large particle sizes, in the range 15-50 nm, synthesized through a new procedure which includes a hydrothermal process. Particle shape and size distribution, hydrodynamic volume, and magnetic anisotropy are characterized, respectively, by transmission electron microscopy, dynamic magnetically induced birefringence, and ferromagnetic resonance. Together with our previous data on low diameter particles (Fortin J P et al 2007 J. Am. Chem. Soc 129 2628-35), this study provides the whole size dependence of heating efficiency in the range 5-50 nm and assesses the balance between Neel and Brownian contributions to thermal losses. In agreement with theoretical predictions, the heating efficiency shows a maximum for an optimal size of about 15 nm

  2. Size-dependent and tunable crystallization of GeSbTe phasechange nanoparticles

    NARCIS (Netherlands)

    Chen, Bin; ten Brink, Gerrit; Palasantzas, Georgios; Kooi, Bart

    2016-01-01

    Chalcogenide-based nanostructured phase-change materials (PCMs) are considered promising building blocks for non-volatile memory due to their high write and read speeds, high data-storage density, and low power consumption. Top-down fabrication of PCM nanoparticles (NPs), however, often results in

  3. Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity

    International Nuclear Information System (INIS)

    Liang, Xu; Hu, Shuling; Shen, Shengping

    2015-01-01

    The symmetry breaking of inversion in solid crystals will induce electric polarization in all solid crystals, which is well known as flexoelectricity. At the nanometer scale, due to the large ratio of surface to volume, piezoelectric structures always exhibit distinct mechanical and electrical behaviors compared with their bulk counterparts. In the current work, the effects of surface and flexoelectricity on the buckling and vibration of piezoelectric nanowires is investigated based on a continuum framework and the Euler–Bernoulli beam hypothesis. Analytical solutions of the electric field in the piezoelectric nanobeam subjected to electrical and mechanical loads are obtained with the surface, flexoelectric and nonlocal electric effects. Numeric simulations demonstrate that the Young’s modulus and bending rigidity of PZT and BaTiO 3 (BT) nanowires are enhanced by flexoelectricity. In addition, the critical buckling voltage is calculated with consideration of the effects of surface and flexoelectricity, and it is found that the effects of surface piezoelectricity, flexoelectricity and residual surface stress play significant roles in determining the critical buckling voltage. Results obtained for the first resonance frequency also indicate that the effects of surface and flexoelectricity are more significant at a narrow range of beam thickness. The first resonance frequency of PZT and BT nanowires is also influenced by the residual surface stress and external applied voltage. The current work is expected to provide a fundamental study on the buckling and vibration behaviors of piezoelectric nanobeams, and it might also be helpful in devising piezoelectric nanowire-based nanoelectronics. (paper)

  4. Role of surface on the size-dependent mechanical properties of copper nanowire under tensile load: A molecular dynamics simulation

    International Nuclear Information System (INIS)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nanowires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nanowires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nanowires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress–strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nanowire. Thus the size-dependent mechanical properties of single crystal copper nanowire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  5. Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study

    Science.gov (United States)

    Liang, Tianshou; Zhou, Dejian; Wu, Zhaohua; Shi, Pengpeng

    2017-12-01

    The size-dependent melting behaviors and mechanisms of Ag nanoparticles (NPs) with diameters of 3.5–16 nm were investigated by molecular dynamics (MD). Two distinct melting modes, non-premelting and premelting with transition ranges of about 7–8 nm, for Ag NPs were demonstrated via the evolution of distribution and transition of atomic physical states during annealing. The small Ag NPs (3.5–7 nm) melt abruptly without a stable liquid shell before the melting point, which is characterized as non-premelting. A solid-solid crystal transformation is conducted through the migration of adatoms on the surface of Ag NPs with diameters of 3.5–6 nm before the initial melting, which is mainly responsible for slightly increasing the melting point of Ag NPs. On the other hand, surface premelting of Ag NPs with diameters of 8–16 nm propagates from the outer shell to the inner core with initial anisotropy and late isotropy as the temperature increases, and the close-packed facets {111} melt by a side-consumed way which is responsible for facets {111} melting in advance relative to the crystallographic plane {111}. Once a stable liquid shell is formed, its size-independent minimum thickness is obtained, and a three-layer structure of atomic physical states is set up. Lastly, the theory of point defect-pair (vacancy-interstitial) severing as the mechanism of formation and movement of the solid-liquid interface was also confirmed. Our study provides a basic understanding and theoretical guidance for the research, production and application of Ag NPs.

  6. Body size-dependent Cd accumulation in the zebra mussel Dreissena polymorpha from different routes.

    Science.gov (United States)

    Tang, Wen-Li; Evans, Douglas; Kraemer, Lisa; Zhong, Huan

    2017-02-01

    Understanding body size-dependent metal accumulation in aquatic organisms (i.e., metal allometry) is critical in interpreting biomonitoring data. While growth has received the most attention, little is known about controls of metal exposure routes on metal allometry. Here, size-dependent Cd accumulation in zebra mussels (Dreissena polymorpha) from different routes were investigated by exposing mussels to A.( 111 Cd spiked algae+ 113 Cd spiked river water) or B.( 111 Cd spiked sediments+ 113 Cd spiked river water). After exposure, 111 Cd or 113 Cd levels in mussel tissue were found to be negatively correlated with tissue weight, while Cd allometry coefficients (b values) were dependent on Cd exposure routes: -0.664 for algae, -0.241 for sediments and -0.379 for river water, compared to -0.582 in un-exposed mussels. By comparing different Cd exposure routes, we found that size-dependent Cd bioaccumulation from algae or river water could be more responsible for the overall size-dependent Cd accumulation in mussels, and the relative importance of the two sources was dependent on mussel size ranges: Cadmium obtained from algae (algae-Cd) was more important in size-dependent Cd accumulation in smaller mussels (tissue dry weight  5 mg). In contrast, sediment-Cd contributed only a small amount to Cd accumulation in zebra mussels and may have little effect on size-dependent Cd bioaccumulation. Our results suggest that size-dependent Cd accumulation in mussels could be largely affected by exposure routes, which should be considered when trying to interpret Cd biomonitoring data of zebra mussels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  8. Distribution of dislocation source length and the size dependent yield strength in freestanding thin films

    NARCIS (Netherlands)

    Shishvan, Siamak Soleymani; Van der Giessen, Erik

    A method is proposed to estimate the size-dependent yield strength of columnar-grained freestanding thin films. The estimate relies on assuming a distribution of the size of Frank-Read sources, which is then translated into a log-normal distribution of the source strength, depending on film

  9. Size-dependent axisymmetric vibration of functionally graded circular plates in bifurcation/limit point instability

    Science.gov (United States)

    Ashoori, A. R.; Vanini, S. A. Sadough; Salari, E.

    2017-04-01

    In the present paper, vibration behavior of size-dependent functionally graded (FG) circular microplates subjected to thermal loading are carried out in pre/post-buckling of bifurcation/limit-load instability for the first time. Two kinds of frequently used thermal loading, i.e., uniform temperature rise and heat conduction across the thickness direction are considered. Thermo-mechanical material properties of FG plate are supposed to vary smoothly and continuously throughout the thickness based on power law model. Modified couple stress theory is exploited to describe the size dependency of microplate. The nonlinear governing equations of motion and associated boundary conditions are extracted through generalized form of Hamilton's principle and von-Karman geometric nonlinearity for the vibration analysis of circular FG plates including size effects. Ritz finite element method is then employed to construct the matrix representation of governing equations which are solved by two different strategies including Newton-Raphson scheme and cylindrical arc-length method. Moreover, in the following a parametric study is accompanied to examine the effects of the several parameters such as material length scale parameter, temperature distributions, type of buckling, thickness to radius ratio, boundary conditions and power law index on the dimensionless frequency of post-buckled/snapped size-dependent FG plates in detail. It is found that the material length scale parameter and thermal loading have a significant effect on vibration characteristics of size-dependent circular FG plates.

  10. The impact of size-dependent predation on population dynamcis and individual life history

    NARCIS (Netherlands)

    Claessen, D.; van Oss, C.; de Roos, A.M.; Persson, L.

    2002-01-01

    In size-structured predator-prey systems, capture success depends on the sizes of both predator and prey. We study the population-dynamic consequences of size-dependent predation using a model of a size-structured, cannibalistic fish population with one shared, alternative resource. We assume that a

  11. On grain-size-dependent void swelling in pure copper irradiated with fission neutrons

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Eldrup, Morten Mostgaard; Zinkle, S.J.

    2002-01-01

    The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms. The phenomenon had already been investigated in the 1970s and it was demonstrated that the grain-size-dependent v...

  12. Size-Dependent Accumulation of PEGylated Silane-Coated Magnetic Iron Oxide Nanoparticles in Murine Tumors

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Nielsen, T.; Wittenborn, T.

    2009-01-01

    Magnetic nanoparticles (MNP) can be used as contrast-enhancing agents to visualize tumors by magnetic resonance imaging (MRI). Here we describe an easy synthesis method of magnetic nanoparticles coated with polyethylene glycol (PEG) and demonstrate size-dependent accumulation in murine tumors fol...

  13. Learning-Walk Continuum

    Science.gov (United States)

    Finch, Peter Dallas

    2010-01-01

    The continuum of learning walks can be viewed in stages with various dimensions including frequency, participants, purpose and the presence of an instructional framework within which the instructional practice is viewed. Steps in the continuum progress as the learning walks are conducted more frequently. One way to ensure this is accomplished is…

  14. Calculated Grain Size-Dependent Vacancy Supersaturation and its Effect on Void Formation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Foreman, A. J. E.

    1974-01-01

    In order to study the effect of grain size on void formation during high-energy electron irradiations, the steady-state point defect concentration and vacancy supersaturation profiles have been calculated for three-dimensional spherical grains up to three microns in size. In the calculations...... of vacancy supersaturation as a function of grain size, the effects of internal sink density and the dislocation preference for interstitial attraction have been included. The computations show that the level of vacancy supersaturation achieved in a grain decreases with decreasing grain size. The grain size...... dependence of the maximum vacancy supersaturation in the centre of the grains is found to be very similar to the grain size dependence of the maximum void number density and void volume swelling measured in the central regions of austenitic stainless steel grains. This agreement reinforces the interpretation...

  15. Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness

    Science.gov (United States)

    Awrejcewicz, J.; Krysko, A. V.; Pavlov, S. P.; Zhigalov, M. V.; Krysko, V. A.

    2017-09-01

    Chaotic dynamics of microbeams made of functionally graded materials (FGMs) is investigated in this paper based on the modified couple stress theory and von Kármán geometric nonlinearity. We assume that the beam properties are graded along the thickness direction. The influence of size-dependent and functionally graded coefficients on the vibration characteristics, scenarios of transition from regular to chaotic vibrations as well as a series of static problems with an emphasis put on the load-deflection behavior are studied. Our theoretical/numerical analysis is supported by methods of nonlinear dynamics and the qualitative theory of differential equations supplemented by Fourier and wavelet spectra, phase portraits, and Lyapunov exponents spectra estimated by different algorithms, including Wolf's, Rosenstein's, Kantz's, and neural networks. We have also detected and numerically validated a general scenario governing transition into chaotic vibrations, which follows the classical Ruelle-Takens-Newhouse scenario for the considered values of the size-dependent and grading parameters.

  16. Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment

    International Nuclear Information System (INIS)

    Fu Qiang; Song Xuefeng; Gao Jingyun; Han Xiaobing; Zhao Qing; Yu Dapeng; Jin Yu; Jiang Xingyu

    2010-01-01

    Organic nanowires/fibers have great potential in applications such as organic electronics and soft electronic techniques. Therefore investigation of their mechanical performance is of importance. The Young's modulus of poly(vinyl alcohol) (PVA) nanofibers was analyzed by scanning probe microscopy (SPM) methods. Air plasma treatment was used to reduce the nanofibers to different sizes. Size-dependent mechanical properties of PVA nanofibers were studied and revealed that the Young's modulus increased dramatically when the scales became very small (<80 nm).

  17. Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment.

    Science.gov (United States)

    Fu, Qiang; Jin, Yu; Song, Xuefeng; Gao, Jingyun; Han, Xiaobing; Jiang, Xingyu; Zhao, Qing; Yu, Dapeng

    2010-03-05

    Organic nanowires/fibers have great potential in applications such as organic electronics and soft electronic techniques. Therefore investigation of their mechanical performance is of importance. The Young's modulus of poly(vinyl alcohol) (PVA) nanofibers was analyzed by scanning probe microscopy (SPM) methods. Air plasma treatment was used to reduce the nanofibers to different sizes. Size-dependent mechanical properties of PVA nanofibers were studied and revealed that the Young's modulus increased dramatically when the scales became very small (<80 nm).

  18. Size dependent ferromagnetic resonance and magnetic anisotropy of hexagonal barium and strontium ferrite powders

    Science.gov (United States)

    Chao, Liu; Afsar, Mohammed N.

    2013-05-01

    Ferrite powders with different particle diameters were characterized in millimeter wave frequency range. Quasi-optical spectrometer in transmission mode powered by high power backward wave oscillator was employed to measure the transmittance of the powder samples. Strong ferromagnetic absorptions were acquired in the millimeter wave frequency range. The absorption frequencies exhibit distinct shift related to the size of ferrite particles. The complex dielectric permittivity and magnetic permeability are determined from the transmittance spectra. The size dependence of ferromagnetic resonance is clearly observed.

  19. Field size dependence of wedge factor: miniphantom vs full phantom measurements

    International Nuclear Information System (INIS)

    Allen Li, X.; Szanto, J.; Soubra, M.; Gerig, L. H.

    1995-01-01

    It is empirically known that the transmission factor for wedge in a high-energy photon beam is dependent upon field size and depth of measurement. The field-size dependence of wedge factors may be attributed to changes in (i) head scatter, (ii) phantom scatter, and (iii) backscatter from the wedge into the linac monitor chamber. In this work we present the results of studies designed to examine each of these factors in isolation. The wedge factors for wedges with nominal wedge angles of 15 deg. , 30 deg. , 45 deg. and 60 deg. were measured with a 3-g/cm 2 -diameter narrow cylindrical phantom (miniphantom), a brass cap with 1.5-g/cm 2 side-wall thickness and a full water phantom for 6-, 10- and 18-MV photon beams. The measurements were performed with and without flattening filter in place. The wedge factors measured with the miniphantom and the brass cap exclude the phantom scatter contribution. It has been found that the field-size behaviour of wedge factor measured with full water phantom is similar to that measured with the miniphantom and cap. This indicates that the head scatter radiation is the major contributor to the field size dependence of wedge factors. Wedge factors measured with water phantom are up to 5.0% smaller than those measured with miniphantom. This difference increases with wedge angle. When Measured with the flattening filter removed, the field size dependence of the wedge factor is reduced. This justify that the flattening filter is one of the major contributors to head scatters. The measurement results made with the brass cap agree well with those made by using the miniphantom. By measuring the monitor chamber output, it is found that the backscatters from the wedge into the linac ion chamber have little effect on the field size dependence of the wedge factor

  20. Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures

    Science.gov (United States)

    Tao, Jianmin; Perdew, John P.; Tang, Hong; Shahi, Chandra

    2018-02-01

    Nanostructures can be bound together at equilibrium by the van der Waals (vdW) effect, a small but ubiquitous many-body attraction that presents challenges to density functional theory. How does the binding energy depend upon the size or number of atoms in one of a pair of identical nanostructures? To answer this question, we treat each nanostructure as a whole object, not as a collection of atoms. Our calculations start from an accurate static dipole polarizability for each considered nanostructure, and an accurate equilibrium center-to-center distance for the pair (the latter from experiment or from the vdW-DF-cx functional). We consider the competition in each term -C2k/d2k (k = 3, 4, 5) of the long-range vdW series for the interaction energy, between the size dependence of the vdW coefficient C2k and that of the 2kth power of the center-to-center distance d. The damping of these vdW terms can be negligible, but in any case, it does not affect the size dependence for a given term in the absence of non-vdW binding. To our surprise, the vdW energy can be size-independent for quasi-spherical nanoclusters bound to one another by vdW interaction, even with strong nonadditivity of the vdW coefficient, as demonstrated for fullerenes. We also show that, for low-dimensional systems, the vdW interaction yields the strongest size-dependence, in stark contrast to that of fullerenes. We illustrate this with parallel planar polycyclic aromatic hydrocarbons. The size dependences of other morphologies or bonding types lie between, as shown by sodium clusters.

  1. Anomalous Particle Size Dependence of Magnetic Relaxation Phenomena in Goethite Nanoparticles

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Madsen, Daniel Esmarch; Boothroyd, Chris B.

    2015-01-01

    By use of Mossbauer spectroscopy we have studied the magnetic properties of samples of goethite nanoparticles with different particle size. The spectra are influenced by fluctuations of the magnetization directions, but the size dependence is not in accordance with the Neel-Brown expression...... for superparamagnetic relaxation of the magnetization vectors of the particles as a whole. The data suggest that the magnetic fluctuations can be explained by fluctuations of the magnetization directions of small interacting grains within the particles....

  2. Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures.

    Science.gov (United States)

    Tao, Jianmin; Perdew, John P; Tang, Hong; Shahi, Chandra

    2018-02-21

    Nanostructures can be bound together at equilibrium by the van der Waals (vdW) effect, a small but ubiquitous many-body attraction that presents challenges to density functional theory. How does the binding energy depend upon the size or number of atoms in one of a pair of identical nanostructures? To answer this question, we treat each nanostructure as a whole object, not as a collection of atoms. Our calculations start from an accurate static dipole polarizability for each considered nanostructure, and an accurate equilibrium center-to-center distance for the pair (the latter from experiment or from the vdW-DF-cx functional). We consider the competition in each term -C 2k /d 2k (k = 3, 4, 5) of the long-range vdW series for the interaction energy, between the size dependence of the vdW coefficient C 2k and that of the 2kth power of the center-to-center distance d. The damping of these vdW terms can be negligible, but in any case, it does not affect the size dependence for a given term in the absence of non-vdW binding. To our surprise, the vdW energy can be size-independent for quasi-spherical nanoclusters bound to one another by vdW interaction, even with strong nonadditivity of the vdW coefficient, as demonstrated for fullerenes. We also show that, for low-dimensional systems, the vdW interaction yields the strongest size-dependence, in stark contrast to that of fullerenes. We illustrate this with parallel planar polycyclic aromatic hydrocarbons. The size dependences of other morphologies or bonding types lie between, as shown by sodium clusters.

  3. The stochastic transition from size dependent to size independent yield strength in metallic glasses

    Science.gov (United States)

    Li, F. C.; Wang, S.; He, Q. F.; Zhang, H.; Sun, B. A.; Lu, Y.; Yang, Y.

    2017-12-01

    It has been an enduring and heated debate whether the yield strength of metallic glasses (MGs) is size dependent or size independent. In this work, we first develop a micromechanical model by taking into account the stochasticity for shear band initiation in microcompression. Our modeling is subsequently verified through the extensive in-situ and ex-situ microcompression experiments. Through the efforts of combined experiments and modeling, we show a size-controlled stochastic transition from the size dependent to the size independent yield strength in the MG micropillars. Such a stochastic transition is featured with a strong fluctuation in the measured yield strengths when the micropillar size is near an intrinsic length scale which varies with the chemical composition of MGs. In contrast, such a size-controlled transition appear deterministic with little data scattering in tension. At the fundamental level, our results unfold a size dependent shear band initiation process in MGs, which may be applicable to other amorphous materials of technological importance.

  4. Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect

    Science.gov (United States)

    Majdoub, M. S.; Sharma, P.; Cagin, T.

    2008-03-01

    Crystalline piezoelectric dielectrics electrically polarize upon application of uniform mechanical strain. Inhomogeneous strain, however, locally breaks inversion symmetry and can potentially polarize even nonpiezoelectric (centrosymmetric) dielectrics. Flexoelectricity—the coupling of strain gradient to polarization—is expected to show a strong size dependency due to the scaling of strain gradients with structural feature size. In this study, using a combination of atomistic and theoretical approaches, we investigate the “effective” size-dependent piezoelectric and elastic behavior of inhomogeneously strained nonpiezoelectric and piezoelectric nanostructures. In particular, to obtain analytical results and tease out physical insights, we analyze a paradigmatic nanoscale cantilever beam. We find that in materials that are intrinsically piezoelectric, the flexoelectricity and piezoelectricity effects do not add linearly and exhibit a nonlinear interaction. The latter leads to a strong size-dependent enhancement of the apparent piezoelectric coefficient resulting in, for example, a “giant” 500% enhancement over bulk properties in BaTiO3 for a beam thickness of 5nm . Correspondingly, for nonpiezoelectric materials also, the enhancement is nontrivial (e.g., 80% for 5nm size in paraelectric BaTiO3 phase). Flexoelectricity also modifies the apparent elastic modulus of nanostructures, exhibiting an asymptotic scaling of 1/h2 , where h is the characteristic feature size. Our major predictions are verified by quantum mechanically derived force-field-based molecular dynamics for two phases (cubic and tetragonal) of BaTiO3 .

  5. Direct and accurate measurement of size dependent wetting behaviors for sessile water droplets

    Science.gov (United States)

    Park, Jimin; Han, Hyung-Seop; Kim, Yu-Chan; Ahn, Jae-Pyeong; Ok, Myoung-Ryul; Lee, Kyung Eun; Lee, Jee-Wook; Cha, Pil-Ryung; Seok, Hyun-Kwang; Jeon, Hojeong

    2015-01-01

    The size-dependent wettability of sessile water droplets is an important matter in wetting science. Although extensive studies have explored this problem, it has been difficult to obtain empirical data for microscale sessile droplets at a wide range of diameters because of the flaws resulting from evaporation and insufficient imaging resolution. Herein, we present the size-dependent quantitative change of wettability by directly visualizing the three phase interfaces of droplets using a cryogenic-focused ion beam milling and SEM-imaging technique. With the fundamental understanding of the formation pathway, evaporation, freezing, and contact angle hysteresis for sessile droplets, microdroplets with diameters spanning more than three orders of magnitude on various metal substrates were examined. Wetting nature can gradually change from hydrophobic at the hundreds-of-microns scale to super-hydrophobic at the sub-μm scale, and a nonlinear relationship between the cosine of the contact angle and contact line curvature in microscale water droplets was demonstrated. We also showed that the wettability could be further tuned in a size-dependent manner by introducing regular heterogeneities to the substrate. PMID:26657208

  6. Notes on continuum mechanics

    CERN Document Server

    Chaves, Eduardo W V

    2013-01-01

    This publication is aimed at students, teachers, and researchers of Continuum Mechanics and focused extensively on stating and developing Initial Boundary Value equations used to solve physical problems. With respect to notation, the tensorial, indicial and Voigt notations have been used indiscriminately.   The book is divided into twelve chapters with the following topics: Tensors, Continuum Kinematics, Stress, The Objectivity of Tensors, The Fundamental Equations of Continuum Mechanics, An Introduction to Constitutive Equations, Linear Elasticity, Hyperelasticity, Plasticity (small and large deformations), Thermoelasticity (small and large deformations), Damage Mechanics (small and large deformations), and An Introduction to Fluids. Moreover, the text is supplemented with over 280 figures, over 100 solved problems, and 130 references.

  7. Computational Continuum Mechanics

    CERN Document Server

    Shabana, Ahmed A

    2011-01-01

    This text presents the theory of continuum mechanics using computational methods. Ideal for students and researchers, the second edition features a new chapter on computational geometry and finite element analysis.

  8. Diffusion-driven and size-dependent phase changes of gallium oxide nanocrystals in a glassy host.

    Science.gov (United States)

    Golubev, N V; Ignat'eva, E S; Sigaev, V N; Lauria, A; De Trizio, L; Azarbod, A; Paleari, A; Lorenzi, R

    2015-02-21

    Phase transformations at the nanoscale represent a challenging field of research, mainly in the case of nanocrystals (NCs) in a solid host, with size-effects and interactions with the matrix. Here we report the study of the structural evolution of γ-Ga2O3 NCs in alkali-germanosilicate glass - a technologically relevant system for its light emission and UV-to-visible conversion - showing an evolution drastically different from the expected transformation of γ-Ga2O3 into β-Ga2O3. Differential scanning calorimetry registers an irreversible endothermic process at ∼1300 K, well above the exothermic peak of γ-Ga2O3 nano-crystallization (∼960 K) and below the melting temperature (∼1620 K). Transmission electron microscopy and X-ray diffraction data clarify that glass-embedded γ-Ga2O3 NCs transform into LiGa5O8via diffusion-driven kinetics of Li incorporation into NCs. At the endothermic peak, β-Ga2O3 forms from LiGa5O8 dissociation, following a nucleation-limited kinetics promoted by size-dependent order-disorder change between LiGa5O8 polymorphs. As a result of the changes, modifications of UV-excited NC light emission are registered, with potential interest for applications.

  9. Size-dependent foraging gene expression and behavioral caste differentiation in Bombus ignitus

    Directory of Open Access Journals (Sweden)

    Yokoyama Jun

    2009-09-01

    Full Text Available Abstract Background In eusocial hymenopteran insects, foraging genes, members of the cGMP-dependent protein kinase family, are considered to contribute to division of labor through behavioral caste differentiation. However, the relationship between foraging gene expression and behavioral caste in honeybees is opposite to that observed in ants and wasps. In the previously examined eusocial Hymenoptera, workers behave as foragers or nurses depending on age. We reasoned that examination of a different system of behavioral caste determination might provide new insights into the relationship between foraging genes and division of labor, and accordingly focused on bumblebees, which exhibit size-dependent behavioral caste differentiation. We characterized a foraging gene (Bifor in bumblebees (Bombus ignitus and examined the relationship between Bifor expression and size-dependent behavioral caste differentiation. Findings A putative open reading frame of the Bifor gene was 2004 bp in length. It encoded 668 aa residues and showed high identity to orthologous genes in other hymenopterans (85.3-99.0%. As in ants and wasps, Bifor expression levels were higher in nurses than in foragers. Bifor expression was negatively correlated with individual body size even within the same behavioral castes (regression coefficient = -0.376, P P = 0.018, within foragers. Conclusion These findings indicate that Bifor expression is size dependent and support the idea that Bifor expression levels are related to behavioral caste differentiation in B. ignitus. Thus, the relationship between foraging gene expression and behavioral caste differentiation found in ants and wasps was identified in a different system of labor determination.

  10. Theoretical and experimental study: the size dependence of decomposition thermodynamics of nanomaterials

    International Nuclear Information System (INIS)

    Cui, Zixiang; Duan, Huijuan; Li, Wenjiao; Xue, Yongqiang

    2015-01-01

    In the processes of preparation and application of nanomaterials, the decomposition reactions of nanomaterials are often involved. However, there is a dramatic difference in decomposition thermodynamics between nanomaterials and the bulk counterparts, and the difference depends on the size of the particles that compose the nanomaterials. In this paper, the decomposition model of a nanoparticle was built, the theory of decomposition thermodynamics of nanomaterials was proposed, and the relations of the size dependence of thermodynamic quantities for the decomposition reactions were deduced. In experiment, taking the thermal decomposition of nano-Cu 2 (OH) 2 CO 3 with different particle sizes (the range of radius is at 8.95–27.4 nm) as a system, the reaction thermodynamic quantities were determined, and the regularities of size dependence of the quantities were summarized. These experimental regularities consist with the above thermodynamic relations. The results show that there is a significant effect of the size of particles composing a nanomaterial on the decomposition thermodynamics. When all the decomposition products are gases, the differences in thermodynamic quantities of reaction between the nanomaterials and the bulk counterparts depend on the particle size; while when one of the decomposition products is a solid, the differences depend on both the initial particle size of the nanoparticle and the decomposition ratio. When the decomposition ratio is very small, these differences are only related to the initial particle size; and when the radius of the nanoparticles approaches or exceeds 10 nm, the reaction thermodynamic functions and the logarithm of the equilibrium constant are linearly associated with the reciprocal of radius, respectively. The thermodynamic theory can quantificationally describe the regularities of the size dependence of thermodynamic quantities for decomposition reactions of nanomaterials, and contribute to the researches and the

  11. Theoretical and experimental study: the size dependence of decomposition thermodynamics of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zixiang; Duan, Huijuan; Li, Wenjiao; Xue, Yongqiang, E-mail: xyqlw@126.com [Taiyuan University of Technology, Department of Applied Chemistry (China)

    2015-07-15

    In the processes of preparation and application of nanomaterials, the decomposition reactions of nanomaterials are often involved. However, there is a dramatic difference in decomposition thermodynamics between nanomaterials and the bulk counterparts, and the difference depends on the size of the particles that compose the nanomaterials. In this paper, the decomposition model of a nanoparticle was built, the theory of decomposition thermodynamics of nanomaterials was proposed, and the relations of the size dependence of thermodynamic quantities for the decomposition reactions were deduced. In experiment, taking the thermal decomposition of nano-Cu{sub 2}(OH){sub 2}CO{sub 3} with different particle sizes (the range of radius is at 8.95–27.4 nm) as a system, the reaction thermodynamic quantities were determined, and the regularities of size dependence of the quantities were summarized. These experimental regularities consist with the above thermodynamic relations. The results show that there is a significant effect of the size of particles composing a nanomaterial on the decomposition thermodynamics. When all the decomposition products are gases, the differences in thermodynamic quantities of reaction between the nanomaterials and the bulk counterparts depend on the particle size; while when one of the decomposition products is a solid, the differences depend on both the initial particle size of the nanoparticle and the decomposition ratio. When the decomposition ratio is very small, these differences are only related to the initial particle size; and when the radius of the nanoparticles approaches or exceeds 10 nm, the reaction thermodynamic functions and the logarithm of the equilibrium constant are linearly associated with the reciprocal of radius, respectively. The thermodynamic theory can quantificationally describe the regularities of the size dependence of thermodynamic quantities for decomposition reactions of nanomaterials, and contribute to the

  12. Magnetochromic sensing and size-dependent collective excitations in iron oxide nanoparticles

    Science.gov (United States)

    O'Neal, Kenneth R.; Patete, Jonathan M.; Chen, Peng; Nanavati, Ruhani; Holinsworth, Brian S.; Smith, Jacqueline M.; Marques, Carlos; Simonson, Jack W.; Aronson, Meigan C.; McGill, Stephen A.; Wong, Stanislaus S.; Musfeldt, Janice L.

    2017-03-01

    We combine optical and magneto-optical spectroscopies with complementary vibrational and magnetic property measurements to reveal finite length scale effects in nanoscale α -Fe2O3 . Analysis of the d -to-d on-site excitations uncovers enhanced color contrast at particle sizes below approximately 75 nm due to size-induced changes in spin-charge coupling that are suppressed again below the superparamagnetic limit. These findings provide a general strategy for amplifying magnetochromism in α -Fe2O3 and other iron-containing nanomaterials that may be useful for advanced sensing applications. We also unravel the size dependence of collective excitations in this iconic antiferromagnet.

  13. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    Directory of Open Access Journals (Sweden)

    Jiji Antony

    2006-01-01

    Full Text Available Nanoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7∘C. Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM. The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET process are size-dependent and compared with the calculated data.

  14. Size-dependent cellular uptake mechanism and cytotoxicity toward calcium oxalate on Vero cells

    Science.gov (United States)

    Sun, Xin-Yuan; Gan, Qiong-Zhi; Ouyang, Jian-Ming

    2017-02-01

    Urinary crystals with various sizes are present in healthy individuals and patients with kidney stone; however, the cellular uptake mechanism of calcium oxalate of various sizes has not been elucidated. This study aims to compare the internalization of nano-/micron-sized (50 nm, 100 nm, and 1 μm) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals in African green monkey renal epithelial (Vero) cells. The internalization and adhesion of COM and COD crystals to Vero cells were enhanced with decreasing crystal size. Cell death rate was positively related to the amount of adhered and internalized crystals and exhibited higher correlation with internalization than that with adhesion. Vero cells mainly internalized nano-sized COM and COD crystals through clathrin-mediated pathways as well as micron-sized crystals through macropinocytosis. The internalized COM and COD crystals were distributed in the lysosomes and destroyed lysosomal integrity to some extent. The results of this study indicated that the size of crystal affected cellular uptake mechanism, and may provide an enlightenment for finding potential inhibitors of crystal uptake, thereby decreasing cell injury and the occurrence of kidney stones.

  15. Role of surface on the size-dependent mechanical properties of copper nano-wire under tensile load: A molecular dynamics simulation

    Science.gov (United States)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nano-wires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nano-wires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nano-wires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress-strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nano-wire. Thus the size-dependent mechanical properties of single crystal copper nano-wire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  16. Size-dependent foraging gene expression and behavioral caste differentiation in Bombus ignitus.

    Science.gov (United States)

    Kodaira, Yosuke; Ohtsuki, Hajime; Yokoyama, Jun; Kawata, Masakado

    2009-09-16

    In eusocial hymenopteran insects, foraging genes, members of the cGMP-dependent protein kinase family, are considered to contribute to division of labor through behavioral caste differentiation. However, the relationship between foraging gene expression and behavioral caste in honeybees is opposite to that observed in ants and wasps. In the previously examined eusocial Hymenoptera, workers behave as foragers or nurses depending on age. We reasoned that examination of a different system of behavioral caste determination might provide new insights into the relationship between foraging genes and division of labor, and accordingly focused on bumblebees, which exhibit size-dependent behavioral caste differentiation. We characterized a foraging gene (Bifor) in bumblebees (Bombus ignitus) and examined the relationship between Bifor expression and size-dependent behavioral caste differentiation. A putative open reading frame of the Bifor gene was 2004 bp in length. It encoded 668 aa residues and showed high identity to orthologous genes in other hymenopterans (85.3-99.0%). As in ants and wasps, Bifor expression levels were higher in nurses than in foragers. Bifor expression was negatively correlated with individual body size even within the same behavioral castes (regression coefficient = -0.376, P caste differentiation in B. ignitus. Thus, the relationship between foraging gene expression and behavioral caste differentiation found in ants and wasps was identified in a different system of labor determination.

  17. Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Guoqiang, E-mail: zhougq1982@163.com; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying [Hebei University, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science (China)

    2016-05-15

    Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.

  18. Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3

    Directory of Open Access Journals (Sweden)

    Mehedi Hasan

    2016-03-01

    Full Text Available Improvement in magnetic and electrical properties of multiferroic BiFeO3 in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived Bi0.9Ba0.1FeO3 nanoparticles of different sizes ranging from ∼ 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe2+ state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeO3 nanoparticles compared to its undoped counterpart. The saturation magnetization of Bi0.9Ba0.1FeO3 nanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for ∼ 49 nm Bi0.9Ba0.1FeO3 nanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO3.

  19. An investigation of the general regularity of size dependence of reaction kinetics of nanoparticles

    International Nuclear Information System (INIS)

    Cui, Zixiang; Duan, Huijuan; Xue, Yongqiang; Li, Ping

    2015-01-01

    In the processes of preparation and application of nanomaterials, the chemical reactions of nanoparticles are often involved, and the size of nanoparticles has dramatic influence on the reaction kinetics. Nevertheless, there are many conflicts on regularities of size dependence of reaction kinetic parameters, and these conflicts have not been explained so far. In this paper, taking the reaction of nano-ZnO (average diameter is from 20.96 to 53.31 nm) with acrylic acid solution as a system, the influence regularities of the particle size on the kinetic parameters were researched. The regularities were consistent with that in most literatures, but inconsistent with that in a few of literatures, the reasons for the conflicts were interpreted. The reasons can be attributed to two factors: one is improper data processing for fewer data points, and the other is the difference between solid particles and porous particles. A general regularity of the size dependence of reaction kinetics for solid particles was obtained. The regularity shows that with the size of nanoparticles decreasing, the rate constant and the reaction order increase, while the apparent activation energy and the pre-exponential factor decrease; and the relationships of the logarithm of rate constant, the logarithm of pre-exponential factor, and the apparent activation energy to the reciprocal of the particle size are linear, respectively

  20. Size-dependent photoacclimation of the phytoplankton community in temperate shelf waters (southern Bay of Biscay)

    KAUST Repository

    Álvarez, E

    2015-12-09

    © Inter-Research 2016. Shelf waters of the Cantabrian Sea (southern Bay of Biscay) are productive ecosystems with a marked seasonality. We present the results from 1 yr of monthly monitoring of the phytoplankton community together with an intensive sampling carried out in 2 contrasting scenarios during the summer and autumn in a mid-shelf area. Stratification was apparent on the shelf in summer, while the water column was comparatively well mixed in autumn. The size structure of the photoautotrophic community, from pico-to micro-phytoplankton, was tightly coupled with the meteo-climatic and hydrographical conditions. Over the short term, variations in the size structure and chlorophyll content of phytoplankton cells were related to changes in the physico-chemical environment, through changes in the availability of nutrients and light. Uncoupling between the dynamics of carbon biomass and chlorophyll resulted in chlorophyll to carbon ratios dependent on body size. The slope of the size dependence of chlorophyll content increased with increasing irradiance, reflecting different photoacclimation plasticity from pico-to micro-phytoplankton. The results have important implications for the productivity and the fate of biogenic carbon in this region, since the size dependence of photosynthetic rates is directly related to the size scaling of chlorophyll content.

  1. Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity

    International Nuclear Information System (INIS)

    Yan Zhi; Jiang Liying

    2013-01-01

    Flexoelectricity, representing a spontaneous electric polarization induced by a non-uniform strain field (or strain gradient), is believed to become manifest and be responsible for the size-dependent properties of dielectric materials at the nanoscale. In this paper, the influence of the flexoelectric effect on the static bending and free vibration of a simply supported piezoelectric nanobeam is investigated based on the extended linear piezoelectricity theory and the Timoshenko beam model. The governing equations of the piezoelectric nanobeam with non-homogeneous boundary conditions are obtained from Hamilton's principle. Explicit expressions of the beam deflection and resonant frequency are derived to show the size-dependency of the flexoelectric effect. It is found that the flexoelectricity has a significant effect on the deflection of the bending beam and may reverse the deflection direction under certain loading conditions. Simulation results also indicate that the influence of the flexoelectricity on the vibration behaviour of the piezoelectric nanobeam is more prominent for beams with smaller thickness. Thus, it is suggested that possible frequency tuning of piezoelectric nanobeams by adjusting the applied electrical load should incorporate the flexoelectric effect. The current study can be claimed as helpful for qualitatively characterizing the trend of the flexoelectric effect on the mechanical responses of piezoelectric nanobeams. (paper)

  2. Size-dependent bending and vibration behaviors of piezoelectric circular nanoplates

    International Nuclear Information System (INIS)

    Yan, Zhi

    2016-01-01

    The size-dependent bending and vibration behaviors of a clamped piezoelectric circular nanoplate are investigated by using a modified Kirchhoff plate model. The flexoelectricity, the surface effect and the non-local elastic effect are taken into account in the modified model by decomposing the electric Gibbs free energy into the bulk and surface parts and including the strain gradient and the electric field gradient terms into the bulk energy density function. Different from the results predicted by the classical plate model, the proposed model predicts size-dependent behaviors of the piezoelectric thin plate with nanoscale thickness. Comparisons among the models considering the flexoelectricity, the surface effect and the non-local elastic effect individually, the current model and the classical model are also given in this study. Simulation results indicate that the electromechanical coupling properties, the transverse displacements and the resonant frequencies of the plate are significantly influenced by each individual effect as well as their combined effects. It is also indicated that such effects are affected by the external applied electric potential and the plate geometries. Neglecting any individual effect may induce inaccurate characterization of the electromechanical coupling of the piezoelectric nanoplate. Therefore, the current plate model is expected to provide more accurate predictions of the electromechanical coupling and the mechanical behaviors of piezoelectric circular nanoplate-based devices in the nanoelectromechanical systems. (paper)

  3. Size-dependent electromechanical properties in piezoelectric superlattices due to flexoelectric effect

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2017-03-01

    Full Text Available Piezoelectric superlattice is a potential component for nanoelectromechanical systems. Due to the strong nonlocal effect such as flexoelectric effect at interfaces, classical piezoelectric theory is unable to accurately describe the electromechanical response of piezoelectric superlattice at nanoscale scale. Based on the previous nonlocal thermodynamics theory with flexoelectric effect Liu et al. (2016, the size-dependent electromechanical properties of piezoelectric superlattices made of BaTiO3 (BTO and PbTiO3 (PTO layers are investigated systematically in the present work. Giant strain gradient is found near the interface between BTO and PTO layers, which leads to the significant enhancement of polarization in the superlattice due to the flexoelectric effect. For the piezoelectric BTO–PTO superlattices with different unit-cell sizes, the thickness of interface with nontrivial strain gradient is almost constant. The influence of strain gradient at the interface becomes significant when the size of superlattice decreases. As a result, a strong size dependence of electromechanical properties is predicted for the piezoelectric BTO–PTO superlattices. In particular, for the superlattices with a specific thickness ratio of BTO and PTO layers, the piezoelectric response can be several times larger than that of bulk structure. The present work demonstrates a practical way to design the piezoelectric superlattices with high piezoelectric coefficient by using the nonlocal effect at nanoscale.

  4. Size-dependent bending and vibration behaviors of piezoelectric circular nanoplates

    Science.gov (United States)

    Yan, Zhi

    2016-03-01

    The size-dependent bending and vibration behaviors of a clamped piezoelectric circular nanoplate are investigated by using a modified Kirchhoff plate model. The flexoelectricity, the surface effect and the non-local elastic effect are taken into account in the modified model by decomposing the electric Gibbs free energy into the bulk and surface parts and including the strain gradient and the electric field gradient terms into the bulk energy density function. Different from the results predicted by the classical plate model, the proposed model predicts size-dependent behaviors of the piezoelectric thin plate with nanoscale thickness. Comparisons among the models considering the flexoelectricity, the surface effect and the non-local elastic effect individually, the current model and the classical model are also given in this study. Simulation results indicate that the electromechanical coupling properties, the transverse displacements and the resonant frequencies of the plate are significantly influenced by each individual effect as well as their combined effects. It is also indicated that such effects are affected by the external applied electric potential and the plate geometries. Neglecting any individual effect may induce inaccurate characterization of the electromechanical coupling of the piezoelectric nanoplate. Therefore, the current plate model is expected to provide more accurate predictions of the electromechanical coupling and the mechanical behaviors of piezoelectric circular nanoplate-based devices in the nanoelectromechanical systems.

  5. Size-dependent electromechanical coupling behaviors of circular micro-plate due to flexoelectricity

    Science.gov (United States)

    Li, Anqing; Zhou, Shenjie; Qi, Lu

    2016-10-01

    In this paper, the flexoelectric theory is re-expressed by a set of orthogonal components of strain gradient tensor. The general formulations of flexoelectric theory in orthogonal curvilinear coordinates are derived and, then, are specified for the case of cylindrical coordinates. A flexoelectric circular micro-plate model is established based on the current formulations in cylindrical coordinates to evaluate its size-dependent static and dynamic responses. The governing equations, boundary conditions and initial conditions are obtained according to the Hamilton's principle. A static bending problem of simply supported axisymmetric circular micro-plate is solved in two cases, of which one is subjected to a distributed load and the other is subjected to a voltage across the plate thickness. And the free vibration problem of a simply supported circular micro-plate is also analyzed. The bending numerical results show that both the deflection and the electric potential exhibit obvious size dependency in the two cases. Both the induced electric potential in direct flexoelectric effect and the induced deflection in inverse flexoelectric effect decrease as the decrease in flexoelectric coefficient and even disappear when the flexoelectric coefficient equals zero. Moreover, the numerical results of free vibration demonstrate the dimensionless natural frequency shows obvious size effect, while the influence of flexoelectric coefficient on dimensionless natural frequency is negligible.

  6. Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity

    Science.gov (United States)

    Yan, Zhi; Jiang, Liying

    2013-09-01

    Flexoelectricity, representing a spontaneous electric polarization induced by a non-uniform strain field (or strain gradient), is believed to become manifest and be responsible for the size-dependent properties of dielectric materials at the nanoscale. In this paper, the influence of the flexoelectric effect on the static bending and free vibration of a simply supported piezoelectric nanobeam is investigated based on the extended linear piezoelectricity theory and the Timoshenko beam model. The governing equations of the piezoelectric nanobeam with non-homogeneous boundary conditions are obtained from Hamilton's principle. Explicit expressions of the beam deflection and resonant frequency are derived to show the size-dependency of the flexoelectric effect. It is found that the flexoelectricity has a significant effect on the deflection of the bending beam and may reverse the deflection direction under certain loading conditions. Simulation results also indicate that the influence of the flexoelectricity on the vibration behaviour of the piezoelectric nanobeam is more prominent for beams with smaller thickness. Thus, it is suggested that possible frequency tuning of piezoelectric nanobeams by adjusting the applied electrical load should incorporate the flexoelectric effect. The current study can be claimed as helpful for qualitatively characterizing the trend of the flexoelectric effect on the mechanical responses of piezoelectric nanobeams.

  7. Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3

    Science.gov (United States)

    Hasan, Mehedi; Hakim, M. A.; Basith, M. A.; Hossain, Md. Sarowar; Ahmmad, Bashir; Zubair, M. A.; Hussain, A.; Islam, Md. Fakhrul

    2016-03-01

    Improvement in magnetic and electrical properties of multiferroic BiFeO3 in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived Bi0.9Ba0.1FeO3 nanoparticles of different sizes ranging from ˜ 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe2+ state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeO3 nanoparticles compared to its undoped counterpart. The saturation magnetization of Bi0.9Ba0.1FeO3 nanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for ˜ 49 nm Bi0.9Ba0.1FeO3 nanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO3.

  8. Size-dependent modification of asteroid family Yarkovsky V-shapes

    Science.gov (United States)

    Bolin, B. T.; Morbidelli, A.; Walsh, K. J.

    2018-04-01

    Context. The thermal properties of the surfaces of asteroids determine the magnitude of the drift rate cause by the Yarkovsky force. In the general case of Main Belt asteroids, the Yarkovsky force is indirectly proportional to the thermal inertia, Γ. Aim. Following the proposed relationship between Γ and asteroid diameter D, we find that asteroids' Yarkovsky drift rates might have a more complex size dependence than previous thought, leading to a curved family V-shape boundary in semi-major axis, a, vs. 1/D space. This implies that asteroids are drifting faster at larger sizes than previously considered decreasing on average the known ages of asteroid families. Methods: The V-Shape curvature is determined for >25 families located throughout the Main Belt to quantify the Yarkovsky size-dependent drift rate. Results: We find that there is no correlation between family age and V-shape curvature. In addition, the V-shape curvature decreases for asteroid families with larger heliocentric distances suggesting that the relationship between Γ and D is weaker in the outer MB possibly due to homogenous surface roughness among family members.

  9. Excited-state dynamics of size-dependent colloidal TiO{sub 2}-Au nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Karam, Tony E.; Khoury, Rami A.; Haber, Louis H., E-mail: lhaber@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2016-03-28

    The ultrafast excited-state dynamics of size-dependent TiO{sub 2}-Au nanocomposites synthesized by reducing gold nanoclusters to the surface of colloidal TiO{sub 2} nanoparticles are studied using pump-probe transient absorption spectroscopy with 400 nm excitation pulses. The results show that the relaxation processes of the plasmon depletion band, which are described by electron-phonon and phonon-phonon scattering lifetimes, are independent of the gold nanocluster shell size surrounding the TiO{sub 2} nanoparticle core. The dynamics corresponding to interfacial electron transfer between the gold nanoclusters and the TiO{sub 2} bandgap are observed to spectrally overlap with the gold interband transition signal, and the electron transfer lifetimes are shown to significantly decrease as the nanocluster shell size increases. Additionally, size-dependent periodic oscillations are observed and are attributed to acoustic phonons of a porous shell composed of aggregated gold nanoclusters around the TiO{sub 2} core, with frequencies that decrease and damping times that remain constant as the nanocluster shell size increases. These results are important for the development of improved catalytic nanomaterial applications.

  10. Origin of the Size-Dependent Stokes Shift in CsPbBr3 Perovskite Nanocrystals.

    Science.gov (United States)

    Brennan, Michael C; Herr, John E; Nguyen-Beck, Triet S; Zinna, Jessica; Draguta, Sergiu; Rouvimov, Sergei; Parkhill, John; Kuno, Masaru

    2017-09-06

    The origin of the size-dependent Stokes shift in CsPbBr 3 nanocrystals (NCs) is explained for the first time. Stokes shifts range from 82 to 20 meV for NCs with effective edge lengths varying from ∼4 to 13 nm. We show that the Stokes shift is intrinsic to the NC electronic structure and does not arise from extrinsic effects such as residual ensemble size distributions, impurities, or solvent-related effects. The origin of the Stokes shift is elucidated via first-principles calculations. Corresponding theoretical modeling of the CsPbBr 3 NC density of states and band structure reveals the existence of an intrinsic confined hole state 260 to 70 meV above the valence band edge state for NCs with edge lengths from ∼2 to 5 nm. A size-dependent Stokes shift is therefore predicted and is in quantitative agreement with the experimental data. Comparison between bulk and NC calculations shows that the confined hole state is exclusive to NCs. At a broader level, the distinction between absorbing and emitting states in CsPbBr 3 is likely a general feature of other halide perovskite NCs and can be tuned via NC size to enhance applications involving these materials.

  11. Fundamentals of continuum mechanics

    CERN Document Server

    Rudnicki, John W

    2014-01-01

    A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally.  This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energ

  12. Introduction to continuum mechanics

    CERN Document Server

    Lai, W Michael; Rubin, David

    1996-01-01

    Introduction to Continuum Mechanics is a recently updated and revised text which is perfect for either introductory courses in an undergraduate engineering curriculum or for a beginning graduate course.Continuum Mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation, and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, a

  13. Grain-size dependent accommodation due to intragranular distributions of dislocation loops

    International Nuclear Information System (INIS)

    Richeton, T.; Berbenni, S.; Berveiller, M.

    2009-01-01

    A grain-size dependent accommodation law for polycrystals is deduced from an inclusion/matrix problem (i.e., each grain is seen as embedded in a homogeneous equivalent medium) where plastic strain inside the inclusion is given as a discrete distribution of circular coaxial glide dislocation loops. The loops are assumed constrained at spherical grain boundaries. From thermodynamic considerations specific to a process of identical plastification in all the loops (considered as 'super-dislocations'), an average back-stress over the grain is derived. In order to compute the very early stages of plastic deformation in a face-centred cubic polycrystal, this back-stress is incorporated into a diluted model in terms of concentration of plastic grains. Contrary to conventional mean-field approaches, a grain-size effect is obtained for the initial overall strain-hardening behaviour. This size effect results from an intrinsic contribution of intragranular slip heterogeneities on the kinematical hardening

  14. Grain size dependence of coercivity of sintered Nd-Fe-B permanent magnets

    International Nuclear Information System (INIS)

    Tang Weizhong; Zhou Shouzeng; Hu Bing

    1991-01-01

    The grain size dependence of intrinsic coercivity H c of sintered Nd-Fe-B permanent magnets is investigated. It is confirmed that small grain sizes are connected with high Hc values, and that for magnets with different grain sizes, their coercivity can be expressed by the formula μ 0 H c =N c (kμ 0 H A -N i I s ), where H A and I s denote the magnetic anisotropy field and spontaneous magnetization of the hard magnetic Nd 2 Fe 14 B phase, respectively, and k and N i are thought to be two constants related to the perfectness and the demagnetization field of isolated grains, and N e a parameter inversely changing with the grain size. It is suggested that in analyzing the coercivity mechanism of the Nd-Fe-B magnets, the effect of magnetic interactions between individual magnetic grains should also be considered. (orig.)

  15. Noise-Induced Transitions in a Population Growth Model Based on Size-Dependent Carrying Capacity

    Directory of Open Access Journals (Sweden)

    Neeme Lumi

    2014-01-01

    Full Text Available The stochastic dynamics of a population growth model with size-dependent carrying capacity is considered. The effect of a fluctuating environment on population growth is modeled as a multiplicative dichotomous noise. At intermediate values of population size the deterministic counterpart of the model behaves similarly to the Von Foerster model for human population, but at small and very large values of population size substantial differences occur. In the stochastic case, an exact analytical solution for the stationary probability distribution is found. It is established that variation of noise correlation time can cause noise-induced transitions between three different states of the system characterized by qualitatively different behaviors of the probability distributions of the population size. Also, it is shown that, in some regions of the system parameters, variation of the amplitude of environmental fluctuations can induce single unidirectional abrupt transitions of the mean population size.

  16. Size-dependent effective properties of anisotropic piezoelectric composites with piezoelectric nano-particles

    International Nuclear Information System (INIS)

    Huang, Ming-Juan; Fang, Xue-Qian; Liu, Jin-Xi; Feng, Wen-Jie; Zhao, Yong-Mao

    2015-01-01

    Based on the electro-elastic surface/interface theory, the size-dependent effective piezoelectric and dielectric coefficients of anisotropic piezoelectric composites that consist of spherically piezoelectric inclusions under a uniform electric field are investigated, and the analytical solutions for the elastic displacement and electric potentials are derived. With consideration of the coupling effects of elasticity, permittivity and piezoelectricity, the effective field method is introduced to derive the effective dielectric and piezoelectric responses in the dilute limit. The numerical examples show that the effective dielectric constant exhibits a significant variation due to the surface/interface effect. The dielectric property of the surface/interface displays greater effect than the piezoelectric property, and the elastic property shows little effect. A comparison with the existing results validates the present approach. (paper)

  17. Age- and size-dependent mating performance and fertility in a pelagic copepod, Temora longicornis

    DEFF Research Database (Denmark)

    Sichlau, Mie Hylstofte; Kiørboe, Thomas

    2011-01-01

    males produce larger spermatophores containing more spermatozoa, and fertilize a larger fraction of available females. Females mating with large males produce more offspring than those mating with small males. Similarly, large females have higher egg production rates as well as a higher life-time egg...... fertilize females for only about eight days after they mature. The strong size- and age-dependent fertility observed in this species is conducive to the development of sexual selection via mate choice for young and large partners, as has been shown in one other copepod species......Prepress abstract: In many species, size and age have been shown to be strong determinants of the reproductive success for both sexes. Here we examine age- and size dependent reproductive performance (egg- and sperm production, mating success) in a pelagic copepod. Compared to smaller males, larger...

  18. Influence of measuring temperature in size dependence of coercivity in nanostructured alloys

    International Nuclear Information System (INIS)

    Lopez, M.; Marin, P.; Kulik, T.; Hernando, A.

    2005-01-01

    An increase of coercive field with decreasing particle size has been observed in ball milled nanocomposite of Fe-rich nanocrystals embedded in an amorphous matrix. Previous works (J. Appl. Phys. 64 (1998) 6044) have concluded that for high lattice strain, , the increase of coercivity is due to the magnetoelastic anisotropy generated by . Even though other effects can also be involved, the experimental results seem to indicate that the influence of the particle size on the average structural anisotropy noticeably contributes to the hardening observed for low . The influence of measuring temperature in size dependence of coercivity in nanostructured alloys has been analyzed. Some analogies and differences in respect of that observed in partially nanocrystallized samples have been found

  19. Film size-dependent voltage-modulated magnetism in multiferroic heterostructures

    Science.gov (United States)

    Hu, J.-M.; Shu, L.; Li, Z.; Gao, Y.; Shen, Y.; Lin, Y. H.; Chen, L. Q.; Nan, C. W.

    2014-01-01

    The electric-voltage-modulated magnetism in multiferroic heterostructures, also known as the converse magnetoelectric (ME) coupling, has drawn increasing research interest recently owing to its great potential applications in future low-power, high-speed electronic and/or spintronic devices, such as magnetic memory and computer logic. In this article, based on combined theoretical analysis and experimental demonstration, we investigate the film size dependence of such converse ME coupling in multiferroic magnetic/ferroelectric heterostructures, as well as exploring the interaction between two relating coupling mechanisms that are the interfacial strain and possibly the charge effects. We also briefly discuss some issues for the next step and describe new device prototypes that can be enabled by this technology. PMID:24421375

  20. Large Time Asymptotics for a Continuous Coagulation-Fragmentation Model with Degenerate Size-Dependent Diffusion

    KAUST Repository

    Desvillettes, Laurent

    2010-01-01

    We study a continuous coagulation-fragmentation model with constant kernels for reacting polymers (see [M. Aizenman and T. Bak, Comm. Math. Phys., 65 (1979), pp. 203-230]). The polymers are set to diffuse within a smooth bounded one-dimensional domain with no-flux boundary conditions. In particular, we consider size-dependent diffusion coefficients, which may degenerate for small and large cluster-sizes. We prove that the entropy-entropy dissipation method applies directly in this inhomogeneous setting. We first show the necessary basic a priori estimates in dimension one, and second we show faster-than-polynomial convergence toward global equilibria for diffusion coefficients which vanish not faster than linearly for large sizes. This extends the previous results of [J.A. Carrillo, L. Desvillettes, and K. Fellner, Comm. Math. Phys., 278 (2008), pp. 433-451], which assumes that the diffusion coefficients are bounded below. © 2009 Society for Industrial and Applied Mathematics.

  1. Size-dependent Fano Interaction in the Laser-etched Silicon Nanostructures

    Directory of Open Access Journals (Sweden)

    Kumar Rajesh

    2008-01-01

    Full Text Available AbstractPhoto-excitation and size-dependent Raman scattering studies on the silicon (Si nanostructures (NSs prepared by laser-induced etching are presented here. Asymmetric and red-shifted Raman line-shapes are observed due to photo-excited Fano interaction in the quantum confined nanoparticles. The Fano interaction is observed between photo-excited electronic transitions and discrete phonons in Si NSs. Photo-excited Fano studies on different Si NSs show that the Fano interaction is high for smaller size of Si NSs. Higher Fano interaction for smaller Si NSs is attributed to the enhanced interference between photo-excited electronic Raman scattering and phonon Raman scattering.

  2. Size dependent reduction-oxidation-reduction behaviour of cobalt oxide nanocrystals

    Science.gov (United States)

    Sadasivan, Sajanikumari; Bellabarba, Ronan M.; Tooze, Robert P.

    2013-10-01

    Morphologically similar cobalt oxide nanoparticles (Co3O4) of four different sizes (3 nm, 6 nm, 11 nm and 29 nm) with narrow size distribution were prepared by subtle variation of synthesis conditions. These nanoparticles were used as model materials to understand the structural and morphological changes that occur to cobalt oxide during sequential reduction, oxidation and further re-reduction process as a function of the initial size of cobalt oxide. On reduction, spherical cobalt nanoparticles were obtained independent of the original size of cobalt oxide. In contrast, subsequent oxidation of the metal particles led to solid spheres, hollow spheres or core-shell structures depending on the size of the initial metal particle. Further re-reduction of the oxidized structures was also observed to be size dependent. The hollow oxide shells formed by the large particles (29 nm) fragmented into smaller particles on reduction, while the hollow shells of the medium sized particles (11 nm) did not re-disperse on further reduction. Similarly, no re-dispersion was observed in the case of the small particles (6 nm). This model study provides useful insights into the size dependent behavior of metal/metal oxide particles during oxidation/reduction. This has important implications in petrochemical industry where cobalt is used as a catalyst in the Fischer-Tropsch process.Morphologically similar cobalt oxide nanoparticles (Co3O4) of four different sizes (3 nm, 6 nm, 11 nm and 29 nm) with narrow size distribution were prepared by subtle variation of synthesis conditions. These nanoparticles were used as model materials to understand the structural and morphological changes that occur to cobalt oxide during sequential reduction, oxidation and further re-reduction process as a function of the initial size of cobalt oxide. On reduction, spherical cobalt nanoparticles were obtained independent of the original size of cobalt oxide. In contrast, subsequent oxidation of the metal

  3. Measurements of the size dependence of the concentration of nonvolatile material in fog droplets

    Science.gov (United States)

    Ogren, J. A.; Noone, K. J.; Hallberg, A.; Heintzenberg, J.; Schell, D.; Berner, A.; Solly, I.; Kruisz, C.; Reischl, G.; Arends, B. G.; Wobrock, W.

    1992-11-01

    Measurements of the size dependence of the mass concentration of nonvolatile material dissolved and suspended in fog droplets were obtained with three complementary approaches, covering a size range from c. 1 50µm diameter: a counterflow virtual impactor, an eight-stage aerosol impactor, and a two-stage fogwater impactor. Concentrations were observed to decrease with size over the entire range, contrary to expectations of increasing concentrations at larger sizes. It is possible that the larger droplets had solute concentrations that increased with increasing size, but that the increase was too weak for the measurements to resolve. Future studies should consider the hypothesis that the droplets were coated with a surface-active substance that hindered their uptake of water.

  4. Molecular-like Redox Activity and Size-dependent Electrocatalysis of Inorganic Hybrid Nanoparticles

    DEFF Research Database (Denmark)

    Chi, Qijin; Zhu, Nan; Ulstrup, Jens

    of nanoparticles that have intrinsic electroactivity. One of representative examples is the nanoparticles composed of Prussian Blue or/and its analogues. This type of nanoparticles has advantages over classic electrocatalysts in several regards. In this communication, we present some of our recent efforts......The development of low-cost, robust and high-efficient nanoscale electrocatalysts is arguably a dream approach to the use of nanomaterials as key building blocks in design and construction of chemical and biological sensing devices as well as fuel cells. Electroactive nanoparticles are a type...... on synthesis, characterization, and electrocatalytic function of Prussian Blue nanoparticles (PBNPs). Molecule-like redox activity and size-dependent electrocatalysis are clearly revealed, which could offer crucial clues for further optimization of design of nanoscale electrocatalysts and their applications...

  5. Size-dependent gender modification in Lilium apertum (Liliaceae): does this species exhibit gender diphasy?

    Science.gov (United States)

    Zhang, Zhi-Qiang; Zhu, Xing-Fu; Sun, Hang; Yang, Yong-Ping; Barrett, Spencer C H

    2014-09-01

    Variation in the relative female and male reproductive success of flowering plants is widespread, despite the fundamental hermaphroditic condition of the majority of species. In many hermaphroditic populations, environmental conditions and their influence on development and size can influence the gender expression of individuals through the formation of hermaphroditic and unisexual flowers. This study investigates the hypothesis that the bulbous, animal-pollinated, perennial Lilium apertum (Liliaceae) exhibits a form of size-dependent gender modification known as gender diphasy, in which the sexual expression of individuals depends on their size, with plants often changing sex between seasons. Variation in floral traits was examined in relation to their size using marked individuals in natural populations, and also under glasshouse conditions. Measurements were taken of the height, flower number, floral sex expression, flower size, flower biomass and pollen production of individuals over consecutive years between 2009 and 2012 in seven populations in south-west China. Flowers of L. apertum are either perfect (hermaphroditic) or staminate (male) and, in any given season, plants exhibit one of three sex phenotypes: only hermaphrodite flowers, a mixture of hermaphroditic and male flowers, or only male flowers. Transitions between each of these sex phenotypes were observed over consecutive years and were commonly size-dependent, particularly transitions from small plants bearing only male flowers to those that were taller with hermaphroditic flowers. Hermaphroditic flowers were significantly larger, heavier and produced more pollen than male flowers. The results for L. apertum are consistent with the 'size advantage hypothesis' developed for animal species with sex change. The theory predicts that when individuals are small they should exhibit the sex for which the costs of reproduction are less, and this usually involves the male phase. L. apertum provides an example

  6. Size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles

    International Nuclear Information System (INIS)

    Chen, Yu-Shiun; Hong, Meng-Yeng; Huang, G Steve; Hung, Yao-Ching; Lin, Li-Wei; Liau, Ian

    2010-01-01

    We explored the size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles (GNPs). GNPs of 17 and 37 nm in diameter were injected intraperitoneally into BALB/c mice at doses ranging from 0.5 to 14.6 mg kg -1 . ICP-MS was performed on brain tissue collected 1, 14 and 21 days after the injection. A passive-avoidance test was performed on day 21. Monoamine levels were determined on day 21. The microscopic distribution of GNPs in the hippocampus was examined using coherent anti-Stokes Raman scattering (CARS) microscopy and transmission electron microscopy (TEM). The results indicated that 17 nm GNPs passed through the blood-brain barrier more rapidly than 37 nm GNPs. Treatment with 17 nm GNPs decreased the latency time, which was comparable to the effect of scopolamine treatment, while 37 nm GNPs showed no significant effect. Dopamine levels and serotonin levels in the brain were significantly altered by the injection of 17 and 37 nm GNPs. GNPs affected dopaminergic and serotonergic neurons. CARS microscopy indicated that 17 nm GNPs entered the Cornu Ammonis (CA) region of the hippocampus, while 37 nm GNPs were excluded from the CA region. TEM verified the presence of 17 nm GNPs in the cytoplasm of pyramidal cells. In this study, we showed that the ability of GNPs to damage cognition in mice was size-dependent and associated with the ability of the particles to invade the hippocampus. The dosage and duration of the treatment should be taken into account if GNPs are used in the future as vehicles to carry therapeutic agents into the brain.

  7. Voxel size dependency, reproducibility and sensitivity of an in vivo bone loading estimation algorithm.

    Science.gov (United States)

    Christen, Patrik; Schulte, Friederike A; Zwahlen, Alexander; van Rietbergen, Bert; Boutroy, Stephanie; Melton, L Joseph; Amin, Shreyasee; Khosla, Sundeep; Goldhahn, Jörg; Müller, Ralph

    2016-01-01

    A bone loading estimation algorithm was previously developed that provides in vivo loading conditions required for in vivo bone remodelling simulations. The algorithm derives a bone's loading history from its microstructure as assessed by high-resolution (HR) computed tomography (CT). This reverse engineering approach showed accurate and realistic results based on micro-CT and HR-peripheral quantitative CT images. However, its voxel size dependency, reproducibility and sensitivity still need to be investigated, which is the purpose of this study. Voxel size dependency was tested on cadaveric distal radii with micro-CT images scanned at 25 µm and downscaled to 50, 61, 75, 82, 100, 125 and 150 µm. Reproducibility was calculated with repeated in vitro as well as in vivo HR-pQCT measurements at 82 µm. Sensitivity was defined using HR-pQCT images from women with fracture versus non-fracture, and low versus high bone volume fraction, expecting similar and different loading histories, respectively. Our results indicate that the algorithm is voxel size independent within an average (maximum) error of 8.2% (32.9%) at 61 µm, but that the dependency increases considerably at voxel sizes bigger than 82 µm. In vitro and in vivo reproducibility are up to 4.5% and 10.2%, respectively, which is comparable to other in vitro studies and slightly higher than in other in vivo studies. Subjects with different bone volume fraction were clearly distinguished but not subjects with and without fracture. This is in agreement with bone adapting to customary loading but not to fall loads. We conclude that the in vivo bone loading estimation algorithm provides reproducible, sensitive and fairly voxel size independent results at up to 82 µm, but that smaller voxel sizes would be advantageous. © 2016 The Author(s).

  8. The MUPPLE competence continuum

    NARCIS (Netherlands)

    Wild, Joanna; Wild, Fridolin; Kalz, Marco; Specht, Marcus; Hofer, Margit

    2009-01-01

    Wild, J., Wild, F., Kalz, M., Specht, M., & Hofer, M. (2009). The MUPPLE competence continuum. In F. Wild, M. Kalz, M. Palmér & D. Müller (Eds.), Proceedings of 2nd Workshop Mash-Up Personal Learning Envrionments (MUPPLE'09). Workshop in conjunction with 4th European Conference on Technology

  9. Numerical continuum mechanics

    CERN Document Server

    Kukudzhanov, Vladimir N

    2013-01-01

    This work focuses on computational methods in continuum thermomechanics. The text is based on the author's lectures, which ensures a didactical and coherent buildup.The main emphasis is put on the presentation of ideas and qualitative considerations, illustrated by specific examples and applications. Conditions and explanations that are essential for the practical application of methods are discussed thoroughly.

  10. Can a grain size-dependent viscosity help yielding realistic seismic velocities of LLSVPs?

    Science.gov (United States)

    Schierjott, J.; Cheng, K. W.; Rozel, A.; Tackley, P. J.

    2017-12-01

    Seismic studies show two antipodal regions of low shear velocity at the core-mantle boundary (CMB), one beneath the Pacific and one beneath Africa. These regions, called Large Low Shear Velocity Provinces (LLSVPs), are thought to be thermally and chemically distinct and thus have a different density and viscosity. Whereas there is some general consensus about the density of the LLSVPs the viscosity is still a very debated topic. So far, in numerical studies the viscosity is treated as either depth- and/or temperature- dependent but the potential grain size- dependence of the viscosity is neglected most of the time. In this study we use a self-consistent convection model which includes a grain size- dependent rheology based on the approach by Rozel et al. (2011) and Rozel (2012). Further, we consider a primordial layer and a time-dependent basalt production at the surface to dynamically form the present-day chemical heterogeneities, similar to earlier studies, e.g by Nakagawa & Tackley (2014). With this model we perform a parameter study which includes different densities and viscosities of the imposed primordial layer. We detect possible thermochemical piles based on different criterions, compute their average effective viscosity, density, rheology and grain size and investigate which detecting criterion yields the most realistic results. Our preliminary results show that a higher density and/or viscosity of the piles is needed to keep them at the core-mantle boundary (CMB). Relatively to the ambient mantle grain size is high in the piles but due to the temperature at the CMB the viscosity is not remarkably different than the one of ordinary plumes. We observe that grain size is lower if the density of the LLSVP is lower than the one of our MORB material. In that case the average temperature of the LLSVP is also reduced. Interestingly, changing the reference viscosity is responsible for a change in the average viscosity of the LLSVP but not for a different average

  11. Continuum mechanics for engineers

    CERN Document Server

    Mase, G Thomas; Mase, George E

    2009-01-01

    Continuum TheoryContinuum MechanicsStarting OverNotationEssential MathematicsScalars, Vectors and Cartesian TensorsTensor Algebra in Symbolic Notation - Summation ConventionIndicial NotationMatrices and DeterminantsTransformations of Cartesian TensorsPrincipal Values and Principal DirectionsTensor Fields, Tensor CalculusIntegral Theorems of Gauss and StokesStress PrinciplesBody and Surface Forces, Mass DensityCauchy Stress PrincipleThe Stress TensorForce and Moment Equilibrium; Stress Tensor SymmetryStress Transformation LawsPrincipal Stresses; Principal Stress DirectionsMaximum and Minimum Stress ValuesMohr's Circles For Stress Plane StressDeviator and Spherical Stress StatesOctahedral Shear StressKinematics of Deformation and MotionParticles, Configurations, Deformations and MotionMaterial and Spatial CoordinatesLangrangian and Eulerian DescriptionsThe Displacement FieldThe Material DerivativeDeformation Gradients, Finite Strain TensorsInfinitesimal Deformation TheoryCompatibility EquationsStretch RatiosRot...

  12. Nonlocal continuum field theories

    CERN Document Server

    2002-01-01

    Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

  13. Continuous Size-Dependent Sorting of Ferromagnetic Nanoparticles in Laser-Ablated Microchannel

    Directory of Open Access Journals (Sweden)

    Yiqiang Fan

    2016-01-01

    Full Text Available This paper reports a low-cost method of continuous size-dependent sorting of magnetic nanoparticles in polymer-based microfluidic devices by magnetic force. A neodymium permanent magnet was used to generate a magnetic field perpendicular to the fluid flow direction. Firstly, FeNi3 magnetic nanoparticles were chemically synthesized with diameter ranges from 80 nm to 200 nm; then, the solution of magnetic nanoparticles and a buffer were passed through the microchannel in laminar flow; the magnetic nanoparticles were deflected from the flow direction under the applied magnetic field. Nanoparticles in the microchannel will move towards the direction of high-gradient magnetic fields, and the degree of deflection depends on their sizes; therefore, magnetic nanoparticles of different sizes can be separated and finally collected from different output ports. The proposed method offers a rapid and continuous approach of preparing magnetic nanoparticles with a narrow size distribution from an arbitrary particle size distribution. The proposed new method has many potential applications in bioanalysis field since magnetic nanoparticles are commonly used as solid support for biological entities such as DNA, RNA, virus, and protein. Other than the size sorting application of magnetic nanoparticles, this approach could also be used for the size sorting and separation of naturally magnetic cells, including blood cells and magnetotactic bacteria.

  14. Nanoparticle separation based on size-dependent aggregation of nanoparticles due to the critical Casimir effect.

    Science.gov (United States)

    Guo, Hongyu; Stan, Gheorghe; Liu, Yun

    2018-02-21

    Nanoparticles typically have an inherent wide size distribution that may affect the performance and reliability of many nanomaterials. Because the synthesis and purification of nanoparticles with desirable sizes are crucial to the applications of nanoparticles in various fields including medicine, biology, health care, and energy, there is a great need to search for more efficient and generic methods for size-selective nanoparticle purification/separation. Here we propose and conclusively demonstrate the effectiveness of a size-selective particle purification/separation method based on the critical Casimir force. The critical Casimir force is a generic interaction between colloidal particles near the solvent critical point and has been extensively studied in the past several decades due to its importance in reversibly controlling the aggregation and stability of colloidal particles. Combining multiple experimental techniques, we found that the critical Casimir force-induced aggregation depends on relative particle sizes in a system with larger ones aggregating first and the smaller ones remaining in solution. Based on this observation, a new size-dependent nanoparticle purification/separation method is proposed and demonstrated to be very efficient in purifying commercial silica nanoparticles in the lutidine/water binary solvent. Due to the ubiquity of the critical Casimir force for many colloidal particles in binary solvents, this method might be applicable to many types of colloidal particles.

  15. Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets

    Directory of Open Access Journals (Sweden)

    T. Kuhn

    2011-03-01

    Full Text Available The relative roles of volume and surface nucleation were investigated for the homogeneous freezing of pure water droplets. Experiments were carried out in a cryogenic laminar aerosol flow tube using supercooled water aerosols with maximum volume densities at radii between 1 and 3 μm. Temperature- and size-dependent values of volume- and surface-based homogeneous nucleation rates between 234.8 and 236.2 K were derived using a microphysical model and aerosol phase compositions and size distributions determined from infrared extinction measurements in the flow tube. The results show that the contribution from nucleation at the droplet surface increases with decreasing droplet radius and dominates over nucleation in the bulk droplet volume for droplets with radii smaller than approximately 5 μm. This is interpreted in terms of a lowered free energy of ice germ formation in the surface-based process. The implications of surface nucleation for the parameterization of homogeneous ice nucleation in numerical models are considered.

  16. Particle Size-Dependent Antibacterial Activity and Murine Cell Cytotoxicity Induced by Graphene Oxide Nanomaterials

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-01-01

    Full Text Available Recent studies have indicated that graphene and its derivative graphene oxide (GO engage in a wide range of antibacterial activities with limited toxicity to human cells. Here, we systematically evaluate the dependence of GO toxicity on the size of the nanoparticles used in treatments: we compare the cytotoxic effects of graphene quantum dots (GQDs, <15 nm, small GOs (SGOs, 50–200 nm, and large GOs (LGOs, 0.5–3 μm. We synthesize the results of bacterial colony count assays and SEM-based observations of morphological changes to assess the antibacterial properties that these GOs bring into effect against E. coli. We also use Live/Dead assays and morphological analysis to investigate changes to mammalian (Murine macrophage-like Raw 264.7 cells induced by the presence of the various GO particle types. Our results demonstrate that LGOs, SGOs, and GQDs possess antibacterial activities and cause mammalian cell cytotoxicity at descending levels of potency. Placing our observations in the context of previous simulation results, we suggest that both the lateral size and surface area of GO particles contribute to cytotoxic effects. We hope that the size dependence elucidated here provides a useful schematic for tuning GO-cell interactions in biomedical applications.

  17. Size-dependent isolation of primordial germ cells from avian species.

    Science.gov (United States)

    Jung, Kyung M; Kim, Young M; Ono, Tamao; Han, Jae Y

    2017-06-01

    Primordial germ cells (PGCs), the precursors of sperm or ova, could be used to generate transgenic animals and interspecies germ-line chimeras, which would facilitate the recovery of endangered species by making their access and manipulation in vitro easier. During early embryogenesis in avian species, PGCs are transported via the bloodstream to the gonadal anlagen. PGCs of most avian species-particularly wild or endangered birds-are not readily isolated from the embryonic bloodstream because germ-cell markers have not yet been defined for them. Here, we report a rapid, efficient, and convenient method for PGC isolation from various avian species. Blood PGCs were isolated based on the difference in size between PGCs and other blood cells, using a microporous membrane. The efficiency of this size-dependent isolation for the White Leghorn chicken was not significantly different from that of magnetic-activated cell sorting, and the isolated cells expressed chicken PGC-related genes and PGC-specific markers. The utility of the method was then verified in Japanese quail (Coturnix japonica), Mallard duck (Anas platyrhynchos), and Muscovy duck (Cairina moschata). Immunocytochemistry and an in vivo migration assay indicated that this method was able to enrich for true embryonic blood PGCs without specific antibodies, and could be applied to the development of avian interspecies chimeras for restoration of wild or endangered species. © 2017 Wiley Periodicals, Inc.

  18. Size-dependent tissue kinetics of PEG-coated gold nanoparticles

    International Nuclear Information System (INIS)

    Cho, Wan-Seob; Cho, Minjung; Jeong, Jinyoung; Choi, Mina; Han, Beom Seok; Shin, Hyung-Seon; Hong, Jin; Chung, Bong Hyun; Jeong, Jayoung; Cho, Myung-Haing

    2010-01-01

    Gold nanoparticles (AuNPs) can be used in various biomedical applications, however, very little is known about their size-dependent in vivo kinetics. Here, we performed a kinetic study in mice with different sizes of PEG-coated AuNPs. Small AuNPs (4 or 13 nm) showed high levels in blood for 24 h and were cleared by 7 days, whereas large (100 nm) AuNPs were completely cleared by 24 h. All AuNPs in blood re-increased at 3 months, which correlated with organ levels. Levels of small AuNPs were peaked at 7 days in the liver and spleen and at 1 month in the mesenteric lymph node, and remained high until 6 months, with slow elimination. In contrast, large AuNPs were taken up rapidly (∼ 30 min) into the liver, spleen, and mesenteric lymph nodes with less elimination phase. TEM showed that AuNPs were entrapped in cytoplasmic vesicles and lysosomes of Kupffer cells and macrophages of spleen and mesenteric lymph node. Small AuNPs transiently activated CYP1A1 and 2B, phase I metabolic enzymes, in liver tissues from 24 h to 7 days, which mirrored with elevated gold levels in the liver. Large AuNPs did not affect the metabolic enzymes. Thus, propensity to accumulate in the reticuloendothelial organs and activation of phase I metabolic enzymes, suggest that extensive further studies are needed for practical in vivo applications.

  19. Size dependence of adsorption kinetics of nano-MgO: a theoretical and experimental study

    International Nuclear Information System (INIS)

    Wang, Shuting; Wen, Yanzhen; Cui, Zixiang; Xue, Yongqiang

    2016-01-01

    Nanoparticles present tremendous differences in adsorption kinetics compared with corresponding bulk particles which have great influences on the applications of nanoparticles. A size-dependent adsorption kinetic theory was proposed, the relations between adsorption kinetic parameters, respectively, and particle size of nano-adsorbent were derived theoretically, and the influence mechanism of particle size on the adsorption kinetic parameters was discussed. In experiment, nanoscale magnesium oxide (nano-MgO) with different diameters between 11.5 and 41.4 nm with narrow size distribution and low agglomeration were prepared, and the kinetic parameters of adsorption of benzene on nano-MgO in aqueous solution were obtained. Then the influence regularities of the particle size on the adsorption kinetic parameters were obtained. The experimental results are consistent with the nano-adsorption kinetic theory. With particle size decreasing, the adsorption rate constant increases; the adsorption activation energy and the adsorption pre-exponential factor decrease. Furthermore, the logarithm of adsorption rate constant, the adsorption activation energy, and the logarithm of adsorption pre-exponential factor are linearly related to the reciprocal of particle diameter, respectively. The mechanism of particle size influence on the kinetic parameters is that the activation energy is influenced by the molar surface enthalpy of nano-adsorbent, the pre-exponential factor by the molar surface entropy, and the rate constant by both the molar surface enthalpy and the molar surface entropy

  20. Size-dependent collection of micrometer-sized particles using nylon mesh

    Science.gov (United States)

    Yamamoto, Naomichi; Kumagai, Kazukiyo; Fujii, Minoru; Shendell, Derek G.; Endo, Osamu; Yanagisawa, Yukio

    Our study explored the size-dependent collection characteristics for micron-sized particles using several kinds of commercially available woven nylon net filters. The particle concentrations with and without the filter were compared to determine the filtration characteristics. The theoretical efficiencies based on a single-fiber theory and a hole model were also computed. Although the theoretical efficiencies were generally consistent with the experimental results, the non-uniformity of air velocity profile within a mesh hole, and a particle's detachment from or bounce off the filters, should be further investigated in future research. Overall, the present study revealed the size-fractionation capability of the nylon wire mesh filters for micron-sized particles from experimental and theoretical points of view. Unlike impactors, the size-fractionation characteristics of the nylon wire mesh filter were determined by particle size, mesh fiber diameter, and a combination of different particle collection mechanisms including impaction, interception, and gravitational settling. Each mechanical process appears interdependently governed in part by the filter dimensions such as filter mesh size (diameter of opening) as well as related variables such as packing density and fiber diameter.

  1. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria.

    Science.gov (United States)

    Lu, Zhong; Rong, Kaifeng; Li, Ju; Yang, Hao; Chen, Rong

    2013-06-01

    Dental caries and periodontal disease are widespread diseases for which microorganism infections have been identified as the main etiology. Silver nanoparticles (Ag Nps) were considered as potential control oral bacteria infection agent due to its excellent antimicrobial activity and non acute toxic effects on human cells. In this work, stable Ag Nps with different sizes (~5, 15 and 55 nm mean values) were synthesized by using a simple reduction method or hydrothermal method. The Nps were characterized by powder X-ray diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. The antibacterial activities were evaluated by colony counting assay and growth inhibition curve method, and corresponding minimum inhibitory concentration (MIC) against five anaerobic oral pathogenic bacteria and aerobic bacteria E. coli were determined. The results showed that Ag Nps had apparent antibacterial effects against the anaerobic oral pathogenic bacteria and aerobic bacteria. The MIC values of 5-nm Ag against anaerobic oral pathogenic bacteria A. actinomycetemcomitans, F. nuceatum, S. mitis, S. mutans and S. sanguis were 25, 25, 25, 50 and 50 μg/mL, respectively. The aerobic bacteria were more susceptible to Ag NPs than the anaerobic oral pathogenic bacteria. In the mean time, Ag NPs displayed an obvious size-dependent antibacterial activity against the anaerobic bacteria. The 5-nm Ag presents the highest antibacterial activity. The results of this work indicated a potential application of Ag Nps in the inhibition of oral microorganism infections.

  2. Size-dependent interaction of silica nanoparticles with different surfactants in aqueous solution.

    Science.gov (United States)

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2012-06-26

    The size-dependent interaction of anionic silica nanoparticles with ionic (anionic and cationic) and nonionic surfactants has been studied using small-angle neutron scattering (SANS). The surfactants used are anionic sodium dodecyl sulfate (SDS), cationic dodecyltrimethyl ammonium bromide (DTAB), and nonionic decaoxyethylene n-dodecylether (C(12)E(10)). The measurements have been carried out for three different sizes of silica nanoparticles (8, 16, and 26 nm) at fixed concentrations (1 wt % each) of nanoparticles and surfactants. It is found that irrespective of the size of the nanoparticles there is no significant interaction evolved between like-charged nanoparticles and the SDS micelles leading to any structural changes. However, the strong attraction of oppositely charged DTAB micelles with silica nanoparticles results in the aggregation of nanoparticles. The number of micelles mediating the nanoparticle aggregation increases with the size of the nanoparticle. The aggregates are characterized by fractal structure where the fractal dimension is found to be constant (D ≈ 2.3) independent of the size of the nanoparticles and consistent with diffusion-limited-aggregation-type fractal morphology in these systems. In the case of nonionic surfactant C(12)E(10), micelles interact with the individual silica nanoparticles. The number of adsorbed micelles per nanoparticle increases drastically whereas the percentage of adsorbed micelles on nanoparticles decreases with the increase in the size of the nanoparticles.

  3. A size dependent dynamic model for piezoelectric nanogenerators: effects of geometry, structural and environmental parameters

    Science.gov (United States)

    Sadeghzadeh, Sadegh; Farshad Mir Saeed Ghazi, Seyyed

    2018-03-01

    Piezoelectric Nanogenerator (PENG) is one of the novel energy harvester systems that recently, has been a subject of interest for researchers. By the use of nanogenerators, it’s possible to harvest different forms of energy in the environment like mechanical vibrations and generate electricity. The structure of a PENG consists of vertical arrays of nanowires between two electrodes. In this paper, dynamic analysis of a PENG is studied numerically. The modified couple stress theory which includes one length scale material parameter is used to study the size-dependent behavior of PENGs. Then, by application of a complete form of linear hybrid piezoelectric—pyroelectric equations, and using the Euler-Bernoulli beam model, the equations of motion has been derived. Generalized Differential Quadrature (GDQ) method was employed to solve the equations of motion. The effect of damping ratio, temperature rise, excitation frequency and length scale parameter was studied. It was found that the PENG voltage maximizes at the resonant frequency of nanowire. The temperature rise has a significant effect on PENG’s efficiency. When temperature increases about 10 {{K}}, the maximum voltage increases about 26%. Increasing the damping ratio, the maximum voltage decreases gradually.

  4. Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity.

    Science.gov (United States)

    Chen, Li Qiang; Fang, Li; Ling, Jian; Ding, Cheng Zhi; Kang, Bin; Huang, Cheng Zhi

    2015-03-16

    Silver nanoparticles (AgNPs) are increasingly being used as antimicrobial agents and drug carriers in biomedical fields. However, toxicological information on their effects on red blood cells (RBCs) and the mechanisms involved remain sparse. In this article, we examined the size dependent nanotoxicity of AgNPs using three different characteristic sizes of 15 nm (AgNPs15), 50 nm (AgNPs50), and 100 nm (AgNPs100) against fish RBCs. Optical microscopy and transmission electron microscopy observations showed that AgNPs exhibited a size effect on their adsorption and uptake by RBCs. The middle sized AgNPs50, compared with the smaller or bigger ones, showed the highest level of adsorption and uptake by the RBCs, suggesting an optimal size of ∼50 nm for passive uptake by RBCs. The toxic effects determined based on the hemolysis, membrane injury, lipid peroxidation, and antioxidant enzyme production were fairly size and dose dependent. In particular, the smallest sized AgNPs15 displayed a greater ability to induce hemolysis and membrane damage than AgNPs50 and AgNPs100. Such cytotoxicity induced by AgNPs should be attributed to the direct interaction of the nanoparticle with the RBCs, resulting in the production of oxidative stress, membrane injury, and subsequently hemolysis. Overall, the results suggest that particle size is a critical factor influencing the interaction between AgNPs and the RBCs.

  5. Size-dependent production of radicals in catalyzed reduction of Eosin Y using gold nanorods

    International Nuclear Information System (INIS)

    Weng, Guojun; Qi, Ying; Li, Jianjun; Zhao, Junwu

    2015-01-01

    Gold nanostructures have been widely used as catalysts for chemical processes, energy conversion, and pollution control. The size of gold nanocatalysts is thus paramount for their catalytic activity. In this paper, gold nanorods with different sizes were prepared by means of the improved seeding growth approach by adding aromatic additive. The sizes and aspect ratios of the obtained gold nanorods were calculated according to the TEM characterization. Then, we studied the catalytic activities of gold nanorods using a model reaction based on the reduction of Eosin Y by NaBH 4 . By monitoring the absorption intensities of the radicals induced by gold nanorods in real time, we observed the clear size-dependent activity in the conversion of EY 2− to EY 3− . The conversion efficiency indicated that the gold nanorods with the smallest size were catalytically the most active probably due to their high number of coordinatively unsaturated surface atoms. In addition, a compensation effect dominated by the surface area of nanorods was observed in this catalytic reduction, which could be primarily attributed to the configuration of Eosin Y absorbed onto the surfaces of gold nanorods

  6. Soft exfoliation of 2D SnO with size-dependent optical properties

    Science.gov (United States)

    Singh, Mandeep; Della Gaspera, Enrico; Ahmed, Taimur; Walia, Sumeet; Ramanathan, Rajesh; van Embden, Joel; Mayes, Edwin; Bansal, Vipul

    2017-06-01

    Two-dimensional (2D) materials have recently gained unprecedented attention as potential candidates for next-generation (opto)electronic devices due to their fascinating optical and electrical properties. Tin monoxide, SnO, is an important p-type semiconductor with applications across photocatalysis (water splitting) and electronics (transistors). However, despite its potential in several important technological applications, SnO remains underexplored in its 2D form. Here we present a soft exfoliation strategy to produce 2D SnO nanosheets with tunable optical and electrical properties. Our approach involves the initial synthesis of layered SnO microspheres, which are readily exfoliated through a low-power sonication step to form high quality SnO nanosheets. We demonstrate that the properties of 2D SnO are strongly dependent on its dimensions. As verified through optical absorption and photoluminescence studies, a strong size-dependent quantum confinement effect in 2D SnO leads to substantial variation in its optical and electrical properties. This results in a remarkable (>1 eV) band gap widening in atomically thin SnO. Through photoconductivity measurements, we further validate a strong correlation between the quantum-confined properties of 2D SnO and the selective photoresponse of atomically thin sheets in the high energy UV light. Such tunable semiconducting properties of 2D SnO could be exploited for a variety of applications including photocatalysis, photovoltaics and optoelectronics in general.

  7. Functional-dependent and size-dependent uptake of nanoparticles in PC12

    International Nuclear Information System (INIS)

    Sakai, N; Matsui, Y; Nakayama, A; Yoneda, M; Tsuda, A

    2011-01-01

    It is suggested that the uptake of nanoparticles is changed by the particle size or the surface modification. In this study, we quantified the uptake of nanoparticles in PC12 cells exposed Quantum Dots with different surface modification or fluorescent polystyrene particles with different particle size. The PC12 cells were exposed three types of the Quantum Dots (carboxyl base-functionalized, amino base-functionalized or non-base-functionalized) or three types of the fluorescent particles (22 nm, 100 nm or 1000 nm) for 3 hours. The uptake of the nanoparticles was quantified with a spectrofluorophotometer. The carboxyl base-functionalized Quantum Dots were considerably taken up by the cells than the non-base-functionalized Quantum Dots. Conversely, the amino base-functionalized Quantum Dots were taken up by the cells less frequently than the non-base-functionalized Quantum Dots. The particle number of the 22 nm-nanoparticles taken up by the cells was about 53 times higher than the 100 nm-particles. However, the particle weight of the 100 nm-particles taken up by the cells was higher than that of the 22 nm-nanoparticles. The 1000 nm-particles were adhered to the cell membrane, but they were little taken up by the cells. We concluded that nanoparticles can be taken up nerve cells in functional-dependent and size-dependent manners.

  8. A contribution to the modeling of metal plasticity and fracture: From continuum to discrete descriptions

    Science.gov (United States)

    Keralavarma, Shyam Mohan

    behavior of a large number of nano and micro scale defects such as dislocations, vacancies and grain boundaries. Continuum models relate macroscopically observable quantities such as stress and strain by coarse graining the discrete defect microstructure. While continuum models provide a good approximation for the effective behavior of bulk materials, several deviations have been observed in experiments at small scales such as an intrinsic size dependence of the material strength. Discrete dislocation dynamics (DD) is a mesoscale method for obtaining the mechanical response of a material by direct simulation of the motion and interactions of dislocations. The model incorporates an intrinsic length scale in the dislocation Burgers vector and potentially allows for size dependent mechanical behavior to emerge naturally from the dynamics of the dislocation ensemble. In the second part of this dissertation, a simplified twodimensional DD model is employed to study several phenomena of practical interest such as strain hardening under homogeneous deformation, growth of microvoids in a crystalline matrix and creep of single crystals at elevated temperatures. These studies have been enabled by several recent enhancements to the existing two-dimensional DD framework described in Chapter V. The main contributions from this research are: (i) development of a fully anisotropic continuum model of void growth for use in ductile fracture simulations and (ii) enhancing the capabilities of an existing two-dimensional DD framework for large scale simulations in complex domains and at elevated temperatures.

  9. Size dependence of energy storage and dissipation in a discrete dislocation plasticity analysis of static friction

    NARCIS (Netherlands)

    Deshpande, VS; Needleman, A; Van der Giessen, E; Deshpande, V.S.

    2005-01-01

    The initiation of frictional sliding between a flat-bottomed indenter and a planar single crystal substrate is analyzed using discrete dislocation plasticity. Plastic deformation is modeled through the motion of edge dislocations in an elastic solid with the lattice resistance to dislocation motion,

  10. Size-dependent tuning of horseradish peroxidase bioreactivity by gold nanoparticles

    Science.gov (United States)

    Wu, Haohao; Liu, Yi; Li, Meng; Chong, Yu; Zeng, Mingyong; Lo, Y. Martin; Yin, Jun-Jie

    2015-02-01

    Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the α-helicity of the enzyme to extents inversely related to their size. Au-5 nm inhibited both HRP peroxidase activity toward 3,3',5,5'-tetramethylbenzidine and HRP compound I/II reactivity toward 5,5-dimethyl-1-pyrroline N-oxide. Au-5 nm enhanced the HRP peroxidase activity toward ascorbic acid and the HRP compound I/II reactivity toward redox-active residues in the HRP protein moiety. Further, Au-5 nm also decreased the catalase- and oxidase-like activities of HRP. Au-10 nm showed similar, but weaker effects, while Au-15 nm, Au-30 nm and Au-60 nm had no effect. Results suggest that AuNPs can size-dependently enhance or inhibit HRP bioreactivity toward substrates with different redox potentials via a mechanism involving extension of the HRP substrate access channel and decline in the redox potentials of HRP catalytic intermediates.Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the

  11. Size Dependence of Atomically Precise Gold Nanoclusters in Chemoselective Hydrogenation and Active Site Structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gao [Carnegie Mellon University (CMU); Jiang, Deen [ORNL; Kumar, Santosh [Carnegie Mellon University (CMU); Chen, Yuxiang [Carnegie Mellon University (CMU); Jin, Rongchao [Carnegie Mellon University (CMU)

    2014-01-01

    We here investigate the catalytic properties of water-soluble Aun(SG)m nanocluster catalysts (H-SG = glutathione) of different sizes, including Au15(SG)13, Au18(SG)14, Au25(SG)18, Au38(SG)24, and captopril-capped Au25(Capt)18 nanoclusters. These Aun(SR)m nanoclusters (-SR represents thiolate generally) are used as homogeneous catalysts (i.e., without supports) in the chemoselective hydrogenation of 4-nitrobenzaldehyde (4-NO2PhCHO) to 4-nitrobenzyl alcohol (4-NO2PhCH2OH) in water with H2 gas (20 bar) as the hydrogen source. These nanocluster catalysts, except Au18(SG)14, remain intact after the catalytic reaction, evidenced by UV-vis spectra which are characteristic of each sized nanoclusters and thus serve as spectroscopic fingerprints . We observe a drastic size-dependence and steric effect of protecting ligands on the gold nanocluster catalysts in the hydrogenation reaction. Density functional theory (DFT) modeling of the 4-nitrobenzaldehyde adsorption shows that both the CHO and NO2 groups are in close interact with the S-Au-S staples on the gold nanocluster surface; the adsorption of the 4-nitrobenzaldehyde molecule on the four different sized Aun(SR)m nanoclusters are moderately strong and similar in strength. The DFT results suggest that the catalytic activity of the Aun(SR)m nanoclusters is primarily determined by the surface area of the Au nanocluster, consistent with the observed trend of the conversion of 4-nitrobenzaldehyde versus the cluster size. Overall, this work offers the molecular insight into the hydrogenation of 4-nitrobenzaldehyde and the catalytically active site structure on gold nanocluster catalysts.

  12. Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams

    Science.gov (United States)

    Kim, Ijung; Worthen, Andrew J.; Johnston, Keith P.; DiCarlo, David A.; Huh, Chun

    2016-04-01

    Nanoparticles are a promising alternative to surfactants to stabilize emulsions or foams in enhanced oil recovery (EOR) processes due to their effectiveness in very harsh environments found in many of the oilfields around the world. While the size-dependent properties of nanoparticles have been extensively studied in the area of optics or cellular uptake, little is known on the effects of nanoparticle size on emulsion/foam generation, especially for EOR applications. In this study, silica nanoparticles with four different sizes (5, 12, 25, and 80 nm nominal diameter) but with the same surface treatment were employed to test their emulsion or foam generation behavior in high-salinity conditions. The decane-in-brine emulsion generated by sonication or flowing through sandpack showed smaller droplet size and higher apparent viscosity as the nanoparticle size decreased. Similarly, the CO2-in-brine foam generation in sandstone or sandpacks was also significantly affected by the nanoparticle size, exhibiting higher apparent foam viscosity as the nanoparticle size decreased. In case of foam generation in sandstone cores with 5 nm nanoparticles, a noticeable hysteresis occurred when the flow velocity was initially increased and then decreased, implying a strong foam generation initially; and then the trapping of the generated foam in the rock pores, as the flow velocity decreased. On the other hand, weak foams stabilized with larger nanoparticles indicated a rapid coalescence of bubbles which prevented foam generation. Overall, stable emulsions/foams were achievable by the smaller particles as a result of greater diffusivity and/or higher number concentration, thus allowing more nanoparticles with higher surface area to volume ratio to be adsorbed at the fluid/fluid interfaces of the emulsion/foam dispersion.

  13. Size-Dependent Characterization of Atmospheric Particles during Winter in Beijing

    Directory of Open Access Journals (Sweden)

    Haiyan Li

    2016-03-01

    Full Text Available Two real-time instruments, NCSA (Nanoparticle Chemical Speciation Analyzer and ACSA (Aerosol Chemical Speciation Analyzer, were both deployed in Beijing, China to explore the sized-dependent characterization of atmospheric particles. The mass concentrations of PM1, PM2.5, PM10, and sulfate and nitrate in the three size fractions were hourly measured in situ from 13 December 2013 to 7 January 2014. Generally, “sawtooth cycles” are common during winter in Beijing, with the PM concentrations increasing slowly over a few days, then falling to a low level abruptly in only a few hours. The secondary species, sulfate and nitrate, play important roles in haze formation and account for 10.5% and 11.1% of total PM1 mass on average. Based on the variation of PM1 mass concentrations, we classify the study periods into three categories, clean, slightly polluted, and polluted. The oxidation ratios of sulfur and nitrogen both increase from clean to polluted periods, indicating the significant contribution of secondary transformation to haze evolution. While the PM2.5/PM10 ratio shows high dependence on PM pollution level, the ratio of PM1/PM2.5 remains almost stable during the entire study, with an average of 0.90. With respect to the mass-size distribution of chemical components, both sulfate and nitrate show dominant contributions in PM1 size fraction, accounting for 80.7% and 60.3% of total sulfate and nitrate, respectively. Our results also reveal that the elevated sulfate in PM1, and the enhanced nitrate in PM1 and PM2.5–1 size fraction, prompt the formation of haze pollution.

  14. Size Dependent Male Reproductive Tactic in the Two-Spotted Goby (Gobiusculus flavescens).

    Science.gov (United States)

    Utne-Palm, A C; Eduard, K; Jensen, K H; Mayer, I; Jakobsen, P J

    2015-01-01

    Male investment in testes and sperm duct gland in the polygamous nest breeding two-spotted goby Gobiusculus flavescens (Fabricius) was investigated in relation to time in reproductive season and individual physical parameters. This small teleost fish is most likely the most abundant species found along the rocky shores of the North East Atlantic. The two-spotted goby has a single reproductive season, during which nest-caring males can raise several clutches of offspring. According to the literature the males are on average larger than the females. Here we report for the first time a population showing a reversal of this trend, with males on average being smaller than females, a difference likely caused by a large proportion of small males. Early in the breeding season these small males have typical sneaker characters, with relatively large testes and small seminal duct glands compared to the larger dominant territorial males. The presence of these two alternative male reproductive tactics is confirmed by histological studies, which shows the presence of sperm in the sperm duct glands (SDG) of smaller males, but not in the SDG of intermediate and larger males. To our knowledge, males with typical sneaker characters have not been reported in earlier studied populations of two-spotted goby. Interestingly we found that testes investment declined significantly over the course of the breeding season, and that this reduction was significantly more pronounced in small compared to the large males. Further, a significant increase in seminal duct gland (SDG) mass was observed for the smaller males over the breeding season. We propose that this indicates a possible shift in mating tactic by smaller males from a parasitic to a nest-holding tactic over the course of the breeding season. Thus, the observed size dependent plasticity in investment in SDG over time suggests that the reproductive tactic of G. flavescens is conditional, and possibly influenced by mate availability and

  15. Size Dependent Male Reproductive Tactic in the Two-Spotted Goby (Gobiusculus flavescens.

    Directory of Open Access Journals (Sweden)

    A C Utne-Palm

    Full Text Available Male investment in testes and sperm duct gland in the polygamous nest breeding two-spotted goby Gobiusculus flavescens (Fabricius was investigated in relation to time in reproductive season and individual physical parameters. This small teleost fish is most likely the most abundant species found along the rocky shores of the North East Atlantic. The two-spotted goby has a single reproductive season, during which nest-caring males can raise several clutches of offspring. According to the literature the males are on average larger than the females. Here we report for the first time a population showing a reversal of this trend, with males on average being smaller than females, a difference likely caused by a large proportion of small males. Early in the breeding season these small males have typical sneaker characters, with relatively large testes and small seminal duct glands compared to the larger dominant territorial males. The presence of these two alternative male reproductive tactics is confirmed by histological studies, which shows the presence of sperm in the sperm duct glands (SDG of smaller males, but not in the SDG of intermediate and larger males. To our knowledge, males with typical sneaker characters have not been reported in earlier studied populations of two-spotted goby. Interestingly we found that testes investment declined significantly over the course of the breeding season, and that this reduction was significantly more pronounced in small compared to the large males. Further, a significant increase in seminal duct gland (SDG mass was observed for the smaller males over the breeding season. We propose that this indicates a possible shift in mating tactic by smaller males from a parasitic to a nest-holding tactic over the course of the breeding season. Thus, the observed size dependent plasticity in investment in SDG over time suggests that the reproductive tactic of G. flavescens is conditional, and possibly influenced by mate

  16. Size dependent structural and polymorphic transitions in ZnO: from nanocluster to bulk.

    Science.gov (United States)

    Viñes, Francesc; Lamiel-Garcia, Oriol; Illas, Francesc; Bromley, Stefan T

    2017-07-20

    We report on an extensive survey of (ZnO) N nanostructures ranging from bottom-up generated nanoclusters to top-down nanoparticles cuts from bulk polymorphs. The obtained results enable us to follow the energetic preferences of structure and polymorphism in (ZnO) N systems with N varying between 10-1026. This size range encompasses small nanoclusters with 10s of atoms and nanoparticles with 100s of atoms, which we also compare with appropriate bulk limits. In all cases the nanostructures and bulk systems are optimized using accurate all-electron, relativistic density functional theory based calculations with numeric atom centered orbital basis sets. Specifically, sets of five families of (ZnO) N species are considered: single-layered and multi-layered nanocages, and bulk cut nanoparticles from the sodalite (SOD), body centered tetragonal (BCT), and wurtzite (WZ) ZnO polymorphs. Using suitable fits to interpolate and extrapolate these data allows us to assess the size-dependent energetic stabilities of each family. With increasing size our results indicate a progressive change in energetic stability from single-layered to multi-layered cage-like nanoclusters. For nanoparticles of around 2.6 nm diameter we identify a transitional region where multi-layered cages, SOD, and BCT nanostructures are very similar in energetic stability. This transition size also marks the size regime at which bottom-up nanoclusters give way to top-down bulk-cut nanoparticles. Eventually, a final crossover is found where the most stable WZ-ZnO polymorph begins to energetically dominate at N ∼ 2200. This size corresponds to an approximate nanoparticle diameter of 4.7 nm, in line with experiments reporting the observation of wurtzite crystallinity in isolated ligand-free ZnO nanoparticles of 4-5 nm size or larger.

  17. Modelling size-dependent cannibalism in barramundi Lates calcarifer: cannibalistic polyphenism and its implication to aquaculture.

    Directory of Open Access Journals (Sweden)

    Flavio F Ribeiro

    Full Text Available This study quantified size-dependent cannibalism in barramundi Lates calcarifer through coupling a range of prey-predator pairs in a different range of fish sizes. Predictive models were developed using morphological traits with the alterative assumption of cannibalistic polyphenism. Predictive models were validated with the data from trials where cannibals were challenged with progressing increments of prey sizes. The experimental observations showed that cannibals of 25-131 mm total length could ingest the conspecific prey of 78-72% cannibal length. In the validation test, all predictive models underestimate the maximum ingestible prey size for cannibals of a similar size range. However, the model based on the maximal mouth width at opening closely matched the empirical observations, suggesting a certain degree of phenotypic plasticity of mouth size among cannibalistic individuals. Mouth size showed allometric growth comparing with body depth, resulting in a decreasing trend on the maximum size of ingestible prey as cannibals grow larger, which in parts explains why cannibalism in barramundi is frequently observed in the early developmental stage. Any barramundi has the potential to become a cannibal when the initial prey size was 58% of their size, suggesting that 50% of size difference can be the threshold to initiate intracohort cannibalism in a barramundi population. Cannibalistic polyphenism was likely to occur in barramundi that had a cannibalistic history. An experienced cannibal would have a greater ability to stretch its mouth size to capture a much larger prey than the models predict. The awareness of cannibalistic polyphenism has important application in fish farming management to reduce cannibalism.

  18. Introduction to continuum mechanics

    CERN Document Server

    Rubin, David; Lai, W Michael

    1994-01-01

    Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples and problems, many with solutions. Through the addition of more advanced material (solution of classical elasticity problems, constitutive e

  19. Particle size dependence of the electrocatalytic activity of nanocrystalline RuO.sub.2./sub. electrodes

    Czech Academy of Sciences Publication Activity Database

    Jirkovský, Jakub; Hoffmannová, Hana; Klementová, Mariana; Krtil, Petr

    2006-01-01

    Roč. 153, č. 6 (2006), E111-E118 ISSN 0013-4651 R&D Projects: GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : single-crystal surfaces * oxygen evolution * electrochemical behaviour * mass-spectrometry Subject RIV: CG - Electrochemistry Impact factor: 2.387, year: 2006

  20. Equations of motion for anisotropic nonlinear elastic continuum in gravitational field

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1994-01-01

    Equations of motion for anisotropic nonlinear elastic continuum in the gravitational field are written in the form convenient for numerical calculations. The energy-stress tensor is expressed through scalar and tensor products of three vectors frozen in the continuum. Examples of expansion of the energy-stress tensor into scalar and tensor invariants corresponding to some crystal classes are given. 47 refs

  1. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins

    Science.gov (United States)

    Yadav, Indresh; Aswal, Vinod K.; Kohlbrecher, Joachim

    2016-05-01

    The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be

  2. Patch-size dependent habitat modification and facilitation on New England cobble beaches by Spartina alterniflora.

    Science.gov (United States)

    Bruno, J F; Kennedy, C W

    2000-01-01

    indicate that smaller S. alterniflora patches are usually unoccupied because they do not stabilize the substrate to a degree that meets the establishment requirements of seedlings. Thus, both habitat modification and facilitation by S. alterniflora are patch-size dependent. The conditionality of this facilitation appears to generate a pattern of patchy yet predictable population and community distribution at a landscape spatial scale.

  3. Size-dependent cytotoxicity and inflammatory responses of PEGylated silica-iron oxide nanocomposite size series

    Science.gov (United States)

    Injumpa, Wishulada; Ritprajak, Patcharee; Insin, Numpon

    2017-04-01

    incubation with the highest concentration of 1000 μg/mL. Although 1000 μg/mL of all sizes of the nanocomposites decreased macrophage viability, the cytotoxicity of the nanocomposites was notably less than silica. The inflammatory response of macrophage was also observed by ELISA, and we found that the size of 20 and 40 nm, but not 100 and 200 nm, obviously stimulated IL-6 production. From this study, the preparations of multifunctional superparamagnetic nanocomposites of different sizes along with the size-dependent effects on cellular toxicity and inflammatory response were demonstrated and could be applied for designing of new drug carriers.

  4. Particle size dependence on oxygen reduction reaction activity of electrodeposited TaOx catalysts in acidic media

    KAUST Repository

    Seo, J.

    2013-11-13

    The size dependence of the oxygen reduction reaction activity was studied for TaOx nanoparticles electrodeposited on carbon black for application to polymer electrolyte fuel cells (PEFCs). Compared with a commercial Ta2O5 material, the ultrafine oxide nanoparticles exhibited a distinctively high onset potential different from that of the bulky oxide particles.

  5. Continuum gauge theories

    International Nuclear Information System (INIS)

    Stora, R.

    1976-09-01

    The mathematics of gauge fields and some related concepts are discussed: some corrections on the principal fiber bundles emphasize the idea that the present formulation of continuum theories is incomplete. The main ingredients used through the construction of the renormalized perturbation series are then described: the Faddeev Popov argument, and the Faddeev Popov Lagrangian; the Slavnov symmetry and the nature of the Faddeev Popov ghost fields; the Slavnov identity, with an obstruction: the Adler Bardeen anomaly, and its generalization to the local cohomology of the gauge Lie algebra. Some smooth classical configurations of gauge fields which ought to play a prominent role in the evaluation of the functional integral describing the theory are also reviewed

  6. Size-dependent cytotoxicity and inflammatory responses of PEGylated silica-iron oxide nanocomposite size series

    Energy Technology Data Exchange (ETDEWEB)

    Injumpa, Wishulada [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Ritprajak, Patcharee [Department of Microbiology, and RU in Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 (Thailand); Insin, Numpon, E-mail: Numpon.I@chula.ac.th [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2017-04-01

    incubation with the highest concentration of 1000 μg/mL. Although 1000 μg/mL of all sizes of the nanocomposites decreased macrophage viability, the cytotoxicity of the nanocomposites was notably less than silica. The inflammatory response of macrophage was also observed by ELISA, and we found that the size of 20 and 40 nm, but not 100 and 200 nm, obviously stimulated IL-6 production. From this study, the preparations of multifunctional superparamagnetic nanocomposites of different sizes along with the size-dependent effects on cellular toxicity and inflammatory response were demonstrated and could be applied for designing of new drug carriers. - Highlights: • Magnetic iron oxide-silica nanocomposites (MNCs) size series were synthesized. • PPEGMA-MNCs exhibited low cytotoxicity against fibroblast and macrophage lines. • The effects on the sizes of PPEGMA-coated MNCs on immune responses were observed.

  7. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study.

    Science.gov (United States)

    Bailey, Christina M; Kamaloo, Elaheh; Waterman, Kellie L; Wang, Kathleen F; Nagarajan, Ramanathan; Camesano, Terri A

    2015-01-01

    Knowledge of nanoparticle (NP)-membrane interactions is important to advances in nanomedicine as well as for determining the safety of NPs to humans and the ecosystem. This study focuses on a unique mechanism of cytotoxicity, cell membrane destabilization, which is principally dependent on the nanoparticle nature of the material rather than on its molecular properties. We investigated the interactions of 2, 5, 10, and 40nm gold NPs with supported lipid bilayer (SLB) of L-α-phosphatidylcholine using quartz crystal microbalance with dissipation monitoring (QCM-D). Gold NPs were tested both in the absence of and in the presence of polymethacrylic acid (PMAA), used to simulate the natural organic matter (NOM) in the environment. In the absence of PMAA, for all NP sizes, we observed only small mass losses (1 to 6ng) from the membrane. This small lipid removal may be a free energy lowering mechanism to relieve stresses induced by the adsorption of NPs, with the changes too small to affect the membrane integrity. In the presence of PMAA, we observed a net mass increase in the case of smaller NPs. We suggest that the increased adhesion between the NP and the bilayer, promoted by PMAA, causes sufficient NP adsorption on the bilayer to overcompensate for any loss of lipid. The most remarkable observation is the significant mass loss (60ng) for the case of 40nm NPs. We attribute this to the lipid bilayer engulfing the NP and leaving the crystal surface. We propose a simple phenomenological model to describe the competition between the particle-bilayer adhesion energy, the bilayer bending energy, and the interfacial energy at bilayer defect edges. The model shows that the larger NPs, which become more adhesive because of the polymer adsorption, are engulfed by the bilayer and leave the crystal surface, causing large mass loss and membrane disruption. The QCM-D measurements thus offer direct evidence that even if NPs are intrinsically not cytotoxic, they can become cytotoxic

  8. Continuum robots and underactuated grasping

    Directory of Open Access Journals (Sweden)

    N. Giri

    2011-02-01

    Full Text Available We discuss the capabilities of continuum (continuous backbone robot structures in the performance of under-actuated grasping. Continuum robots offer the potential of robust grasps over a wide variety of object classes, due to their ability to adapt their shape to interact with the environment via non-local continuum contact conditions. Furthermore, this capability can be achieved with simple, low degree of freedom hardware. However, there are practical issues which currently limit the application of continuum robots to grasping. We discuss these issues and illustrate via an experimental continuum grasping case study.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  9. Continuum limbed robots for locomotion

    Science.gov (United States)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  10. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  11. Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis

    International Nuclear Information System (INIS)

    Masadeh, A. S.; Bozin, E. S.; Farrow, C. L.; Paglia, G.; Juhas, P.; Billinge, S. J. L.; Karkamkar, A.; Kanatzidis, M. G.

    2007-01-01

    The size-dependent structure of CdSe nanoparticles, with diameters ranging from 2 to 4 nm, has been studied using the atomic pair distribution function (PDF) method. The core structure of the measured CdSe nanoparticles can be described in terms of the wurtzite atomic structure with extensive stacking faults. The density of faults in the nanoparticles is ∼50%. The diameter of the core region was extracted directly from the PDF data and is in good agreement with the diameter obtained from standard characterization methods, suggesting that there is little surface amorphous region. A compressive strain was measured in the Cd-Se bond length that increases with decreasing particle size being 0.5% with respect to bulk CdSe for the 2 nm diameter particles. This study demonstrates the size-dependent quantitative structural information that can be obtained even from very small nanoparticles using the PDF approach

  12. Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis

    Science.gov (United States)

    Masadeh, A. S.; Božin, E. S.; Farrow, C. L.; Paglia, G.; Juhas, P.; Billinge, S. J. L.; Karkamkar, A.; Kanatzidis, M. G.

    2007-09-01

    The size-dependent structure of CdSe nanoparticles, with diameters ranging from 2to4nm , has been studied using the atomic pair distribution function (PDF) method. The core structure of the measured CdSe nanoparticles can be described in terms of the wurtzite atomic structure with extensive stacking faults. The density of faults in the nanoparticles is ˜50% . The diameter of the core region was extracted directly from the PDF data and is in good agreement with the diameter obtained from standard characterization methods, suggesting that there is little surface amorphous region. A compressive strain was measured in the Cd-Se bond length that increases with decreasing particle size being 0.5% with respect to bulk CdSe for the 2nm diameter particles. This study demonstrates the size-dependent quantitative structural information that can be obtained even from very small nanoparticles using the PDF approach.

  13. A study of size-dependent properties of MoS2 monolayer nanoflakes using density-functional theory.

    Science.gov (United States)

    Javaid, M; Drumm, Daniel W; Russo, Salvy P; Greentree, Andrew D

    2017-08-29

    Novel physical phenomena emerge in ultra-small sized nanomaterials. We study the limiting small-size-dependent properties of MoS 2 monolayer rhombic nanoflakes using density-functional theory on structures of size up to Mo 35 S 70 (1.74 nm). We investigate the structural and electronic properties as functions of the lateral size of the nanoflakes, finding zigzag is the most stable edge configuration, and that increasing size is accompanied by greater stability. We also investigate passivation of the structures to explore realistic settings, finding increased HOMO-LUMO gaps and energetic stability. Understanding the size-dependent properties will inform efforts to engineer electronic structures at the nano-scale.

  14. Numerical simulation of pore size dependent anhydrite precipitation in geothermal reservoirs

    Science.gov (United States)

    Mürmann, Mario; Kühn, Michael; Pape, Hansgeorg; Clauser, Christoph

    2013-04-01

    Porosity and permeability of reservoirs are key parameters for an economical use of hot water from geothermal installations and can be significantly reduced by precipitation of minerals, such as anhydrite. The borehole Allermöhe 1 near Hamburg (Germany) represents a failed attempt of geothermal heat mining due to anhydrite precipitation (Baermann et al. 2000). For a risk assessment of future boreholes it is essential to understand how and when anhydrite cementation occurred under reservoir conditions. From core samples of the Allermöhe borehole it was determined that anhydrite precipitation took place in regions of relatively high porosity while regions of low porosity remained uncemented (Wagner et al. 2005). These findings correspond to the fact that e.g. halite precipitation in porous media is found only in relatively large pores (Putnis and Mauthe 2001). This study and others underline that pore size controls crystallization and that it is therefore necessary to establish a relation between pore size and nucleation. The work presented here is based on investigations of Emmanuel and Berkowitz (2007) who present such a relation by applying a thermodynamic approach. However this approach cannot explain the heterogeneous precipitation observed in the Allermöhe core samples. We chose an advanced approach by considering electric system properties resulting in another relation between pore size and crystallization. It is well known that a high fluid supersaturation can be maintained in porous rocks (Putnis and Mauthe 2001). This clearly indicates that a supersaturation threshold exists exceeding thermodynamic equilibrium considerably. In order to quantify spatially heterogeneous anhydrite cementation a theoretical approach was chosen which considered the electric interaction between surface charges of the matrix and calcium and sulphate ions in the fluid. This approach was implemented into the numerical code SHEMAT (Clauser 2003) and used to simulate anhydrite

  15. Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency

    Science.gov (United States)

    Sahmani, S.; Aghdam, M. M.

    2018-03-01

    A wide range of biological applications such as drug delivery, biosensors and hemodialysis can be provided by nanoporous biomaterials due to their uniform pore size as well as considerable pore density. In the current study, the size dependency in the nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials is anticipated. To accomplish this end, a refined truncated cube is introduced to model the lattice structure of nanoporous biomaterial. Accordingly, analytical expressions for the mechanical properties of material are derived as functions of pore size. After that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear Duffing type equation of motion is constructed. The Galerkin technique together with the multiple time-scales method is employed to obtain the nonlocal strain gradient frequency-response and amplitude-response related to the nonlinear primary resonance of a micro/nano-beam made of the nanoporous biomaterial with different pore sizes. It is indicated that the nonlocality causes to decrease the response amplitudes associated with the both bifurcation points of the jump phenomenon, while the strain gradient size dependency causes to increase them. Also, it is found that increasing the pore size leads to enhance the nonlinearity, so the maximum deflection of response occurs at higher excitation frequency.

  16. Uniform TiO2 nanoparticles induce apoptosis in epithelial cell lines in a size-dependent manner.

    Science.gov (United States)

    Sun, Qingqing; Ishii, Takayuki; Kanehira, Koki; Sato, Takeshi; Taniguchi, Akiyoshi

    2017-05-02

    The size of titanium dioxide (TiO 2 ) nanoparticles is a vital parameter that determines their cytotoxicity. However, most reported studies have employed irregular shapes and sizes of TiO 2 nanoparticles, as it is difficult to produce nanoparticles of suitable sizes for research. We produced good model TiO 2 nanoparticles of uniform shape and size for use in studying their cytotoxicity. In this work, spherical, uniform polyethylene glycol-modified TiO 2 (TiO 2 -PEG) nanoparticles of differing sizes (100, 200, and 300 nm) were prepared using the sol-gel method. A size-dependent decrease in cell viability was observed with increasing nanoparticle size. Furthermore, apoptosis was found to be positively associated with nanoparticle size, as evidenced by an increase in caspase-3 activity with increasing nanoparticle size. Larger nanoparticles exhibited higher cellular uptake, suggesting that larger nanoparticles more strongly induce apoptosis. In addition, the cellular uptake of different sizes of nanoparticles was energy dependent, suggesting that there are size-dependent uptake pathways. We found that 100 and 200 nm (but not 300 nm) nanoparticles were taken up via clathrin-mediated endocytosis. These results utilizing uniform nanoparticles suggest that the size-dependent cytotoxicity of nanoparticles involves active cellular uptake, caspase-3 activation, and apoptosis in the epithelial cell line (NCI-H292). These findings will hopefully aid in the future design and safe use of nanoparticles.

  17. ICMS Workshop on Differential Geometry and Continuum Mechanics

    CERN Document Server

    Grinfeld, Michael; Knops, R

    2015-01-01

    This book examines the exciting interface between differential geometry and continuum mechanics, now recognised as being of increasing technological significance. Topics discussed include isometric embeddings in differential geometry and the relation with microstructure in nonlinear elasticity, the use of manifolds in the description of microstructure in continuum mechanics, experimental measurement of microstructure, defects, dislocations, surface energies, and nematic liquid crystals. Compensated compactness in partial differential equations is also treated. The volume is intended for specialists and non-specialists in pure and applied geometry, continuum mechanics, theoretical physics, materials and engineering sciences, and partial differential equations. It will also be of interest to postdoctoral scientists and advanced postgraduate research students. These proceedings include revised written versions of the majority of papers presented by leading experts at the ICMS Edinburgh Workshop on Differential G...

  18. Continuum of Care (COC) Areas

    Data.gov (United States)

    Department of Housing and Urban Development — The purpose of the Continuum of Care (CoC) Homeless Assistance Programs is to reduce the incidence of homelessness in CoC communities by assisting homeless...

  19. Aerosol size-dependent below-cloud scavenging by rain and snow in the ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    R. Posselt

    2009-07-01

    Full Text Available Wet deposition processes are highly efficient in the removal of aerosols from the atmosphere, and thus strongly influence global aerosol concentrations, and clouds, and their respective radiative forcings. In this study, physically detailed size-dependent below-cloud scavenging parameterizations for rain and snow are implemented in the ECHAM5-HAM global aerosol-climate model. Previously, below-cloud scavenging by rain in the ECHAM5-HAM was simply a function of the aerosol mode, and then scaled by the rainfall rate. The below-cloud scavenging by snow was a function of the snowfall rate alone. The global mean aerosol optical depth, and sea salt burden are sensitive to the below-cloud scavenging coefficients, with reductions near to 15% when the more vigorous size-dependent below-cloud scavenging by rain and snow is implemented. The inclusion of a prognostic rain scheme significantly reduces the fractional importance of below-cloud scavenging since there is higher evaporation in the lower troposphere, increasing the global mean sea salt burden by almost 15%. Thermophoretic effects are shown to produce increases in the global and annual mean number removal of Aitken size particles of near to 10%, but very small increases (near 1% in the global mean below-cloud mass scavenging of carbonaceous and sulfate aerosols. Changes in the assumptions about the below-cloud scavenging by rain of particles with radius smaller than 10 nm do not cause any significant changes to the global and annual mean aerosol mass or number burdens, despite a change in the below-cloud number removal rate for nucleation mode particles by near to five-fold. Annual and zonal mean nucleation mode number concentrations are enhanced by up to 30% in the lower troposphere with the more vigourous size-dependent below-cloud scavenging. Closer agreement with different observations is found when the more physically detailed below-cloud scavenging parameterization is employed in the ECHAM5

  20. In Vivo Quantitative Study of Sized-Dependent Transport and Toxicity of Single Silver Nanoparticles Using Zebrafish Embryos

    Science.gov (United States)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Desai, Tanvi; Cherukui, Pavan K.; Xu, Xiao-Hong Nancy

    2012-01-01

    Nanomaterials possess distinctive physicochemical properties (e.g., small sizes, high surface area-to-volume ratios) and promise a wide variety of applications, ranging from design of high quality consumer products to effective disease diagnosis and therapy. These properties can lead to toxic effects, potentially hindering advance in nanotechnology. In this study, we have synthesized and characterized purified and stable (non-aggregation) silver nanoparticles (Ag NPs, 41.6±9.1 nm in average diameters), and utilized early-developing (cleavage-stage) zebrafish embryos (critical aquatic and eco- species) as in vivo model organisms to probe diffusion and toxicity of Ag NPs. We found that single Ag NPs (30–72 nm diameters) passively diffused into the embryos through chorionic pores via random Brownian motion and stayed inside the embryos throughout their entire development (120 hours-post-fertilization, hpf). Dose and size dependent toxic effects of the NPs on embryonic development were observed, showing the possibility of tuning biocompatibility and toxicity of the NPs. At lower concentrations of the NPs (≤ 0.02 nM), 75–91% of embryos developed to normal zebrafish. At the higher concentrations of NPs (≥ 0.20 nM), 100% of embryos became dead. At the concentrations in between (0.02–0.2 nM), embryos developed to various deformed zebrafish. Number and sizes of individual Ag NPs embedded in tissues of normal and deformed zebrafish at 120 hpf were quantitatively analyzed, showing deformed zebrafish with higher number of larger NPs than normal zebrafish, and size-dependent nanotoxicity. By comparing with our previous studies of smaller Ag NPs (11.6±3.5 nm), the results further demonstrate striking size-dependent nanotoxicity that, at the same molar concentration, the larger Ag NPs (41.6±9.1 nm) are more toxic than the smaller Ag NPs (11.6±3.5 nm). PMID:22486336

  1. Size-dependent Young’s modulus in ZnO nanowires with strong surface atomic bonds

    Science.gov (United States)

    Fan, Shiwen; Bi, Sheng; Li, Qikun; Guo, Qinglei; Liu, Junshan; Ouyang, Zhongliang; Jiang, Chengming; Song, Jinhui

    2018-03-01

    The mechanical properties of size-dependent nanowires are important in nano-electro-mechanical systems (NEMSs), and have attracted much research interest. Characterization of the size effect of nanowires in atmosphere directly to broaden their practical application instead of just in high vacuum situations, as reported previously, is desperately needed. In this study, we systematically studied the Young’s modulus of vertical ZnO nanowires in atmosphere. The diameters ranged from 48 nm to 239 nm with a resonance method using non-contact atomic force microscopy. The values of Young’s modulus in atmosphere present extremely strong increasing tendency with decreasing diameter of nanowire due to stronger surface atomic bonds compared with that in vacuum. A core-shell model for nanowires is proposed to explore the Young’s modulus enhancement in atmosphere, which is correlated with atoms of oxygen occurring near the nanowire surface. The modified model is more accurate for analyzing the mechanical behavior of nanowires in atmosphere compared with the model in vacuum. Furthermore, it is possible to use this characterization method to measure the size-related elastic properties of similar wire-sharp nanomaterials in atmosphere and estimate the corresponding mechanical behavior. The study of the size-dependent Young’s modulus in ZnO nanowires in atmosphere will improve the understanding of the mechanical properties of nanomaterials as well as providing guidance for applications in NEMSs, nanogenerators, biosensors and other related areas.

  2. Particle-size dependent sorption and desorption of pesticides within a water-soil-nonionic surfactant system.

    Science.gov (United States)

    Wang, Peng; Keller, Arturo A

    2008-05-01

    Although nonionic surfactants have been considered in surfactant-aided soil washing systems, there is little information on the particle-size dependence of these processes, and this may have significant implications for the design of these systems. In this study, Triton-100 (TX) was selected to study its effect on the sorption and desorption of two pesticides (Atrazine and Diuron) from different primary soil size fractions (clay, silt, and sand fractions) under equilibrium sorption and sequential desorption. Soil properties, TX sorption, and pesticide sorption and desorption all exhibited significant particle-size dependence. The cation exchange capacity (CEC) of the bulk soils and the soil fractions determined TX sorption capacity, which in turn determined the desorption efficiency. Desorption of pesticide out of the clay raction is the limiting factor in a surfactant-aided washing system. The solubilization efficiency of the individual surfactant micelles decreased as the amount of surfactant added to the systems increased. Thus, instead of attempting to wash the bulk soil, a better strategy might be to either (1) use only the amount of surfactant that is sufficient to clean the coarse fraction, then separate the fine fraction, and dispose or treat it separately, or (2) to separate the coarse fractions mechanically and then treatthe coarse and fine fractions separately. These results may be applicable to many other hydrophobic organic compounds such as polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) strongly sorbed onto soils and sediments.

  3. Nanoscale size dependence in the conjugation of amyloid beta and ovalbumin proteins on the surface of gold colloidal particles

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, K; Briglio, N M; Hartati, D Sri; Tsang, S M W; MacCormac, J E; Welchons, D R [Department of Chemistry, State University of New York College at Geneseo, One College Circle, Geneseo, NY 14454 (United States)], E-mail: yokoyama@geneseo.edu

    2008-09-17

    Absorption spectroscopy was utilized to investigate the conjugation of amyloid {beta} protein solution (A{beta}{sub 1-40}) and chicken egg albumin (ovalbumin) with various sizes of gold colloidal nanoparticles for various pHs, ranging from pH 2 to pH 10. The pH value that indicates the colour change, pH{sub o}, exhibited colloidal size dependence for both A{beta}{sub 1-40} and ovalbumin coated particles. In particular, A{beta}{sub 1-40} coated gold colloidal particles exhibited non-continuous size dependence peaking at 40 and 80 nm, implying that their corresponding cage-like structures provide efficient net charge cancellation at these core sizes. Remarkably, only the pH{sub o} value for ovalbumin coated 80 nm gold colloid was pH>7, and a specific cage-like structure is speculated to have a positive net charge facing outward when ovalbumin self-assembles over this particular gold colloid. The previously reported reversible colour change between pH 4 and 10 took place only with A{beta}{sub 1-40} coated 20 nm gold colloids; this was also explored with ovalbumin coated gold colloids. Interestingly, gold colloidal nanoparticles showed a quasi-reversible colour change when they were coated with ovalbumin for all test sizes. The ovalbumin coated gold colloid was found to maintain reversible properties longer than A{beta}{sub 1-40} coated gold colloid.

  4. Hydrothermal synthesis of HoMn{sub 2}O{sub 5} nanorods and their size-dependent magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yichao; Wu, Songping, E-mail: chwsp@scut.edu.cn; Xu, Rui

    2017-03-01

    The HoMn{sub 2}O{sub 5} nanorods were synthesized by a surfactant-assisted hydrothermal process. The length of nanorods is readily controllable with basically constant diameter. HoMn{sub 2}O{sub 5} nanorods show recognizable divagation at T{sub N}(Ho) of 13 K between FC and ZFC curve due to the contribution of the magnetic ordering of holmium. Size-dependent magnetic properties (i.e. a critical length for magnetization) of HoMn{sub 2}O{sub 5} nanorods can be ascribed to the competition between surface strain and uncompensated spin at the surface. - Highlights: • HoMn{sub 2}O{sub 5} nanorods were synthesized by a surfactant-assisted hydrothermal route. • HoMn{sub 2}O{sub 5} nanorods show recognizable divagation at T{sub N}(Ho) of 13 K between FC and ZFC. • Size-dependent magnetic properties of HoMn{sub 2}O{sub 5} nanorods can be observed.

  5. Lagrangian continuum dynamics in ALEGRA.

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Michael K. W.; Love, Edward

    2007-12-01

    Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.

  6. Elementary Continuum Mechanics for Everyone

    DEFF Research Database (Denmark)

    Byskov, Esben

    numerical method, the finite element method, including means of mending inherent problems •An informal, yet precise exposition that emphasizes not just how a topic is treated, but discusses why a particular choice is made The book opens with a derivation of kinematically nonlinear 3-D continuum mechanics...

  7. The geometry of continuum regularization

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1987-03-01

    This lecture is primarily an introduction to coordinate-invariant regularization, a recent advance in the continuum regularization program. In this context, the program is seen as fundamentally geometric, with all regularization contained in regularized DeWitt superstructures on field deformations

  8. Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-09-01

    In this paper, size-dependent free vibration analysis of a sandwich nanoplate is presented. The sandwich nanoplate is including an elastic nano core and two piezo-electro-magnetic face-sheets as sensor and actuator actuated by electric and magnetic potentials. The sandwich nanoplate is resting on visco-Pasternak's foundation. Hamilton's principle is employed to derive the governing equations of motion based on Kirchhoff plate and nonlocal elasticity theory. The numerical results are presented to study the influence of important parameters of the problem such as applied electric and magnetic potentials, nonlocal parameter and visco-Pasternak's parameters. Furthermore, the influence of various boundary conditions is discussed on the vibration characteristics of the sandwich nanoplate.

  9. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-10-01

    This paper develops nonlocal elasticity equations and magneto-electro-elastic relations to size-dependent electro-magneto-elastic bending analyses of the functionally graded axisymmetric circular nanoplates based on the first-order shear deformation theory. All material properties are graded along the thickness direction based on exponential varying. It is assumed that a circular nanoplate is made from piezo-magnetic materials. The energy method and Ritz approach is employed for the derivation of governing equations of electro-magneto-elastic bending and the solution of the problem, respectively. The nanoplate is subjected to applied electric and magnetic potentials at top and transverse loads while it is rested on Pasternak's foundation. Some important numerical results are presented in various figures to show the influence of applied electric and magnetic potentials, small scale parameter and inhomogeneous index of an exponentially graded nanoplate.

  10. Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-10-01

    This paper investigates the thermal stability of magneto-electro-thermo-elastic functionally graded (METE-FG) nanoplates based on the nonlocal theory and a refined plate model. The METE-FG nanoplate is subjected to the external electric potential, magnetic potential and different temperature rises. Interaction of elastic medium with the METE-FG nanoplate is modeled via Winkler-Pasternak foundation model. The governing equations are derived by using the Hamilton principle and solved by using an analytical method to determine the critical buckling temperatures. To verify the validity of the developed model, the results of the present work are compared with those available in the literature. A detailed parametric study is conducted to study the influences of the nonlocal parameter, foundation parameters, temperature rise, external electric and magnetic potentials on the size-dependent thermal buckling characteristics of METE-FG nanoplates.

  11. Size dependent bandgap of molecular beam epitaxy grown InN quantum dots measured by scanning tunneling spectroscopy

    International Nuclear Information System (INIS)

    Kumar, Mahesh; Roul, Basanta; Rajpalke, Mohana K.; Bhat, Thirumaleshwara N.; Krupanidhi, S. B.; Kalghatgi, A. T.

    2011-01-01

    InN quantum dots (QDs) were grown on Si (111) by epitaxial Stranski-Krastanow growth mode using plasma-assisted molecular beam epitaxy. Single-crystalline wurtzite structure of InN QDs was verified by the x-ray diffraction and transmission electron microscopy. Scanning tunneling microscopy has been used to probe the structural aspects of QDs. A surface bandgap of InN QDs was estimated from scanning tunneling spectroscopy (STS) I-V curves and found that it is strongly dependent on the size of QDs. The observed size-dependent STS bandgap energy shifts with diameter and height were theoretical explained based on an effective mass approximation with finite-depth square-well potential model.

  12. Hydrothermal synthesis of size-dependent Pt in Pt/MWCNTs nanocomposites for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Chen Liang; Lu Gongxuan

    2008-01-01

    A hydrothermal method has been developed to prepare size-controlled Pt nanoparticles dispersed highly on multiwalled carbon nanotubes (Pt/MWCNTs). It was found that the size of Pt nanoparticles was strongly dependent on the solution pH in synthesis. The Pt nanoparticles with mean size of 3.0, 4.2 and 9.1 nm were obtained at pHs 13, 12 and 10 separately. After Pt/MWCNTs composites were fabricated, the different properties of cyclic voltammetry and chronoamperometry in electro-oxidation of methanol were found. The results showed that the smaller diameter Pt deposited Pt/MWCNTs nanocomposites exhibited higher electrocatalytic activity for methanol oxidation. By characterization of X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), size-dependent activities were identified

  13. CdS quantum dots for measurement of the size-dependent optical properties of thiol capping

    Science.gov (United States)

    Liji Sobhana, S. S.; Vimala Devi, M.; Sastry, T. P.; Mandal, Asit Baran

    2011-04-01

    The optical- and size-dependent properties of CdS quantum dots (QDs) were analyzed in the presence and absence of different capping agents in aqueous medium. The QDs have been characterized by UV-Vis, Photoluminescence, Fourier-transform infrared spectroscopy, X-ray diffraction, and Fluorescence lifetime measurements. QDs with the presence of thiol group in cubic phase with small grain size were observed in XRD and decrease in particle size of the same with increase in band gap is deduced through UV-Vis and XRD studies. The FT-IR spectrum confirms the interaction of thiol group with CdS. Fluorescence lifetime of capped QDs was higher compared to uncapped CdS QDs. The surface passivation of thiol group on CdS is shown in photoluminescence studies.

  14. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images

    Directory of Open Access Journals (Sweden)

    Lee Chia-Wei

    2010-12-01

    Full Text Available Abstract Background Understanding the endocytosis process of gold nanoparticles (AuNPs is important for the drug delivery and photodynamic therapy applications. The endocytosis in living cells is usually studied by fluorescent microscopy. The fluorescent labeling suffers from photobleaching. Besides, quantitative estimation of the cellular uptake is not easy. In this paper, the size-dependent endocytosis of AuNPs was investigated by using plasmonic scattering images without any labeling. Results The scattering images of AuNPs and the vesicles were mapped by using an optical sectioning microscopy with dark-field illumination. AuNPs have large optical scatterings at 550-600 nm wavelengths due to localized surface plasmon resonances. Using an enhanced contrast between yellow and blue CCD images, AuNPs can be well distinguished from cellular organelles. The tracking of AuNPs coated with aptamers for surface mucin glycoprotein shows that AuNPs attached to extracellular matrix and moved towards center of the cell. Most 75-nm-AuNPs moved to the top of cells, while many 45-nm-AuNPs entered cells through endocytosis and accumulated in endocytic vesicles. The amounts of cellular uptake decreased with the increase of particle size. Conclusions We quantitatively studied the endocytosis of AuNPs with different sizes in various cancer cells. The plasmonic scattering images confirm the size-dependent endocytosis of AuNPs. The 45-nm-AuNP is better for drug delivery due to its higher uptake rate. On the other hand, large AuNPs are immobilized on the cell membrane. They can be used to reconstruct the cell morphology.

  15. Size-dependent piezoelectric energy-harvesting analysis of micro/nano bridges subjected to random ambient excitations

    Science.gov (United States)

    Radgolchin, Moeen; Moeenfard, Hamid

    2018-02-01

    The construction of self-powered micro-electro-mechanical units by converting the mechanical energy of the systems into electrical power has attracted much attention in recent years. While power harvesting from deterministic external excitations is state of the art, it has been much more difficult to derive mathematical models for scavenging electrical energy from ambient random vibrations, due to the stochastic nature of the excitations. The current research concerns analytical modeling of micro-bridge energy harvesters based on random vibration theory. Since classical elasticity fails to accurately predict the mechanical behavior of micro-structures, strain gradient theory is employed as a powerful tool to increase the accuracy of the random vibration modeling of the micro-harvester. Equations of motion of the system in the time domain are derived using the Lagrange approach. These are then utilized to determine the frequency and impulse responses of the structure. Assuming the energy harvester to be subjected to a combination of broadband and limited-band random support motion and transverse loading, closed-form expressions for mean, mean square, correlation and spectral density of the output power are derived. The suggested formulation is further exploited to investigate the effect of the different design parameters, including the geometric properties of the structure as well as the properties of the electrical circuit on the resulting power. Furthermore, the effect of length scale parameters on the harvested energy is investigated in detail. It is observed that the predictions of classical and even simple size-dependent theories (such as couple stress) appreciably differ from the findings of strain gradient theory on the basis of random vibration. This study presents a first-time modeling of micro-scale harvesters under stochastic excitations using a size-dependent approach and can be considered as a reliable foundation for future research in the field of

  16. An expedition to continuum theory

    CERN Document Server

    Müller, Wolfgang H

    2014-01-01

    This book introduces field theory as required in solid and fluid mechanics as well as in electromagnetism. It also presents the necessary mathematical framework, namely tensor algebra and tensor calculus, by using an inductive approach, which makes it particularly suitable for beginners. In general, the book can be used in undergraduate classes on continuum theory and, more specifically, in courses on continuum mechanics, for students of physics and engineering alike. The benefits for the readers consist of providing a sound basis of the subject as a whole and of training their ability for solving specific problems in a rational manner.  For this purpose the general laws of nature in terms of the balances for mass, momentum, and energy are applied and combined with constitutive relations, which are material specific. Various examples and homework problems illustrate how to use the theory in daily practice. Numerous mini-biographies have been added to the mathematical text for diversion and amusement.

  17. Continuum description for jointed media

    International Nuclear Information System (INIS)

    Thomas, R.K.

    1982-04-01

    A general three-dimensional continuum description is presented for a material containing regularly spaced and approximately parallel jointing planes within a representative elementary volume. Constitutive relationships are introduced for linear behavior of the base material and nonlinear normal and shear behavior across jointing planes. Furthermore, a fracture permeability tensor is calculated so that deformation induced alterations to the in-situ values can be measured. Examples for several strain-controlled loading paths are presented

  18. Continuum representations of cellular solids

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, M.K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  19. Continuum mechanical and computational aspects of material behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fried, Eliot; Gurtin, Morton E.

    2000-02-10

    The focus of the work is the application of continuum mechanics to materials science, specifically to the macroscopic characterization of material behavior at small length scales. The long-term goals are a continuum-mechanical framework for the study of materials that provides a basis for general theories and leads to boundary-value problems of physical relevance, and computational methods appropriate to these problems supplemented by physically meaningful regularizations to aid in their solution. Specific studies include the following: the development of a theory of polycrystalline plasticity that incorporates free energy associated with lattice mismatch between grains; the development of a theory of geometrically necessary dislocations within the context of finite-strain plasticity; the development of a gradient theory for single-crystal plasticity with geometrically necessary dislocations; simulations of dynamical fracture using a theory that allows for the kinking and branching of cracks; computation of segregation and compaction in flowing granular materials.

  20. Size-dependent dynamic stability analysis of microbeams actuated by piezoelectric voltage based on strain gradient elasticity theory

    Energy Technology Data Exchange (ETDEWEB)

    Sahmani, Saeid; Bahrami, Mohsen [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-01-15

    In the current paper, dynamic stability analysis of microbeams subjected to piezoelectric voltage is presented in which the microbeam is integrated with piezoelectric layers on the lower and upper surfaces. Both of the flutter and divergence instabilities of microbeams with clamped-clamped and clamped-free boundary conditions are predicted corresponding to various values of applied voltage. To take size effect into account, the classical Timoshenko beam theory in conjunction with strain gradient elasticity theory is utilized to develop nonclassical beam model containing three additional internal length scale parameters. By using Hamilton's principle, the higher-order governing differential equations and associated boundary conditions are derived. Afterward, generalized differential quadrature method is employed to discretize the size-dependent governing differential equations along with clamped-clamped and clamped-free end supports. The critical piezoelectric voltages corresponding to various values dimensionless length scale parameter are evaluated and compared with those predicted by the classical beam theory. It is revealed that in the case of clamped-free boundary conditions, the both of flutter and divergence instabilities occur. However, for the clamped-clamped microbeams, only divergence instability takes place.

  1. Signal or noise? Separating grain size-dependent Nd isotope variability from provenance shifts in Indus delta sediments, Pakistan

    Science.gov (United States)

    Jonell, T. N.; Li, Y.; Blusztajn, J.; Giosan, L.; Clift, P. D.

    2017-12-01

    Rare earth element (REE) radioisotope systems, such as neodymium (Nd), have been traditionally used as powerful tracers of source provenance, chemical weathering intensity, and sedimentary processes over geologic timescales. More recently, the effects of physical fractionation (hydraulic sorting) of sediments during transport have called into question the utility of Nd isotopes as a provenance tool. Is source terrane Nd provenance resolvable if sediment transport strongly induces noise? Can grain-size sorting effects be quantified? This study works to address such questions by utilizing grain size analysis, trace element geochemistry, and Nd isotope geochemistry of bulk and grain-size fractions (Standard deviations (2σ) indicate that bulk sediment uncertainties are no more than ±1.0 ɛNd points. This argues that excursions of ≥1.0 ɛNd points in any bulk Indus delta sediments must in part reflect an external shift in provenance irrespective of sample composition, grain size, and grain size distribution. Sample standard deviations (2s) estimate that any terrigenous bulk sediment composition should vary no greater than ±1.1 ɛNd points if provenance remains constant. Findings from this study indicate that although there are grain-size dependent Nd isotope effects, they are minimal in the Indus delta such that resolvable provenance-driven trends can be identified in bulk sediment ɛNd compositions over the last 20 k.y., and that overall provenance trends remain consistent with previous findings.

  2. Size-dependent effects in supported highly dispersed Fe2O3 catalysts, doped with Pt and Pd

    International Nuclear Information System (INIS)

    Cherkezova-Zheleva, Zara; Shopska, Maya; Mitov, Ivan; Kadinov, Georgi

    2010-01-01

    Series of Fe and Fe–Me (Me = Pt or Pd) catalyst supported on γ-Al 2 O 3 , TiO 2 (anatase) or diatomite were prepared by the incipient wetness impregnation method. The metal loading was 8 wt.% Fe and 0.7 wt.% noble metal. The preparation and pretreatment conditions of all studied samples were kept to be the same. X-ray diffraction, Moessbauer spectroscopy, X-ray photoelectron spectroscopy and temperature-programmed reduction are used for characterization of the supports and the samples at different steps during their treatment and catalytic tests. The catalytic activity of the samples was tested in the reaction of total benzene oxidation. The physicochemical and catalytic properties of the obtained materials are compared with respect of the different chemical composition, dispersion of used carriers and of the supported phases. Samples with the same composition prepared by mechanical mixing are studied as catalysts for comparison and for clearing up the presence of size-dependent effect, also.

  3. Size dependence in non-sperm ejaculate production is reflected in daily energy expenditure and resting metabolic rate.

    Science.gov (United States)

    Friesen, Christopher R; Powers, Donald R; Copenhaver, Paige E; Mason, Robert T

    2015-05-01

    The non-sperm components of an ejaculate, such as copulatory plugs, can be essential to male reproductive success. But the costs of these ejaculate components are often considered trivial. In polyandrous species, males are predicted to increase energy allocation to the production of non-sperm components, but this allocation is often condition dependent and the energetic costs of their production have never been quantified. Red-sided garter snakes (Thamnophis sirtalis parietalis) are an excellent model with which to quantify the energetic costs of non-sperm components of the ejaculate as they exhibit a dissociated reproductive pattern in which sperm production is temporally disjunct from copulatory plug production, mating and plug deposition. We estimated the daily energy expenditure and resting metabolic rate of males after courtship and mating, and used bomb calorimetry to estimate the energy content of copulatory plugs. We found that both daily energy expenditure and resting metabolic rate were significantly higher in small mating males than in courting males, and a single copulatory plug without sperm constitutes 5-18% of daily energy expenditure. To our knowledge, this is the first study to quantify the energetic expense of size-dependent ejaculate strategies in any species. © 2015. Published by The Company of Biologists Ltd.

  4. Function of male and hermaphroditic flowers and size-dependent gender diphasy of Lloydia oxycarpa (Liliaceae from Hengduan Mountains

    Directory of Open Access Journals (Sweden)

    Yang Niu

    2017-08-01

    Full Text Available Although hermaphroditism is common in flowering plants, unisexual flowers occur in many plant taxa, forming various sexual systems. However, the sexual system of some plants is difficult to determine morphologically, given that their sex expression may be influenced by both genetic and environmental factors. Specifically, androdioecy (the coexistence of both male and hermaphroditic individuals in the same population has often been confused with the gender diphasy, a gender strategy in which plants change their sex expression between seasons. We studied the reproductive function of male and hermaphroditic flowers of Lloydia oxycarpa (Liliaceae, in order to investigate its sexual system and determine whether it is a gender-diphasic species. We found that although male flowers occur in a considerable number of plants, relative to hermaphrodites, they did not exhibit any significant reproductive advantage in terms of flower size, pollen quantity, attractiveness to visitors or siring success. In addition, this plant has spontaneous self-pollination and showed no inbreeding depression. These results render the maintenance of male individuals almost impossible. Furthermore, a considerable number of individuals changed their sex in successive years. The sex expression was found to be related to bulb size and dry weight, with larger individuals producing hermaphroditic flowers and smaller individuals producing male flowers. These results suggest that L. oxycarpa is not an androdioecious plant but represents a rare case of size-dependent gender diphasy.

  5. Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories

    Energy Technology Data Exchange (ETDEWEB)

    Ielmini, D; Nardi, F; Cagli, C, E-mail: ielmini@elet.polimi.it [Dipartimento di Elettronica e Informazione-Politecnico di Milano and IU.NET, Piazza L. da Vinci 32, I-20133 Milano (Italy)

    2011-06-24

    NiO films display unipolar resistance switching characteristics, due to the electrically induced formation and rupture of nanofilaments. While the applicative interest for possible use in highly dense resistance switching memory (RRAM) is extremely high, switching phenomena pose strong fundamental challenges in understanding the physical mechanisms and models. This work addresses the set and reset mechanisms for the formation and rupture of nanofilaments in NiO RRAM devices. Reset is described in terms of thermally-accelerated diffusion and oxidation processes, and its resistance dependence is explained by size-dependent Joule heating and oxidation. The filament is described as a region with locally-enhanced doping, resulting in an insulator-metal transition driven by structural and chemical defects. The set mechanism is explained by a threshold switching effect, triggering chemical reduction and a consequent local increase of metallic doping. The possible use of the observed resistance-dependent reset and set parameters to improve the memory array operation and variability is finally discussed.

  6. Critical currents in polycrystalline Y Ba2Cu3O7-x: Self-field and grain size dependence

    International Nuclear Information System (INIS)

    Babic, E.; Prester, M.; Dobrac, D.; Marohnic, Z.; Nazar, P.; Stastny, P.; Matacotta, F.C.

    1991-10-01

    The variation of critical currents (I c ) and their distributions (CCD) with thickness (t) has been investigated for two high quality YBa 2 Cu 3 O 7-x samples with different average grain size (AG≅10 and 30 μm for samples S 1 and S 2 respectively) in the temperature range 78-90K and in the applied magnetic field H c ) for S 1 initially increased but later on leveled off on reducing the thickness, whereas for S 2 remained essentially unchanged even after three-fold reduction in thickness. Since the other parameters related to macroscopic homogeneity have not changed on reducing the thickness of the samples, the variations of J c are interpreted in terms of thickness and grain size dependent self-field effects. The same model explains well the changes of CCD curves with thickness and may also explain the variation of J c with the grain size, as reported recently for ceramic YBaCuO samples. (author). 18 refs, 7 figs, 2 tabs

  7. Size-dependent giant-magnetoresistance in millimeter scale GaAs/AlGaAs 2D electron devices

    Science.gov (United States)

    Mani, R. G.

    2013-01-01

    Large changes in the electrical resistance induced by the application of a small magnetic field are potentially useful for device-applications. Such Giant Magneto-Resistance (GMR) effects also provide new insights into the physical phenomena involved in the associated electronic transport. This study examines a “bell-shape” negative GMR that grows in magnitude with decreasing temperatures in mm-wide devices fabricated from the high-mobility GaAs/AlGaAs 2-Dimensional Electron System (2DES). Experiments show that the span of this magnetoresistance on the magnetic-field-axis increases with decreasing device width, W, while there is no concurrent Hall resistance, Rxy, correction. A multi-conduction model, including negative diagonal-conductivity, and non-vanishing off-diagonal conductivity, reproduces experimental observations. The results suggest that a size effect in the mm-wide 2DES with mm-scale electron mean-free-paths is responsible for the observed “non-ohmic” size-dependent negative GMR. PMID:24067264

  8. Pronounced Size Dependence in Structure and Morphology of Gas-Phase Produced, Partially Oxidized Cobalt Nanoparticles under Catalytic Reaction Conditions.

    Science.gov (United States)

    Bartling, Stephan; Yin, Chunrong; Barke, Ingo; Oldenburg, Kevin; Hartmann, Hannes; von Oeynhausen, Viola; Pohl, Marga-Martina; Houben, Kelly; Tyo, Eric C; Seifert, Sönke; Lievens, Peter; Meiwes-Broer, Karl-Heinz; Vajda, Stefan

    2015-06-23

    It is generally accepted that optimal particle sizes are key for efficient nanocatalysis. Much less attention is paid to the role of morphology and atomic arrangement during catalytic reactions. Here, we unravel the structural, stoichiometric, and morphological evolution of gas-phase produced and partially oxidized cobalt nanoparticles in a broad size range. Particles with diameters between 1.4 and 22 nm generated in cluster sources are size selected and deposited on amorphous alumina (Al2O3) and ultrananocrystalline diamond (UNCD) films. A combination of different techniques is employed to monitor particle properties at the stages of production, exposure to ambient conditions, and catalytic reaction, in this case, the oxidative dehydrogenation of cyclohexane at elevated temperatures. A pronounced size dependence is found, naturally classifying the particles into three size regimes. While small and intermediate clusters essentially retain their compact morphology, large particles transform into hollow spheres due to the nanoscale Kirkendall effect. Depending on the substrate, an isotropic (Al2O3) or anisotropic (UNCD) Kirkendall effect is observed. The latter results in dramatic lateral size changes. Our results shed light on the interplay between chemical reactions and the catalyst's structure and provide an approach to tailor the cobalt oxide phase composition required for specific catalytic schemes.

  9. Pronounced Size Dependence in Structure and Morphology of Gas-Phase Produced, Partially Oxidized Cobalt Nanoparticles under Catalytic Reaction Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bartling, Stephan; Yin, Chunrong; Barke, Ingo; Oldenburg, Kevin; Hartmann, Hannes; von Oeynhausen, Viola; Pohl, Marga-Martina; Houben, Kelly; Tyo, Eric C.; Seifert, Sönke; Lievens, Peter; Meiwes-Broer, Karl-Heinz; Vajda, Stefan

    2015-06-23

    It is generally accepted that optimal particle sizes are key for efficient nanocatalysis. Much less attention is paid to the role of morphology and atomic arrangement during catalytic reactions. Here we unravel the structural, stoichiometric, and morphological evolution of gas-phase produced cobalt nanoparticles in a broad size range. Particles with diameters between 1.4 nm and 22nm generated in cluster sources are size selected and deposited on amorphous alumina (Al2O3) and ultrananocrystalline diamond (UNCD) films. A combination of different techniques is employed to monitor particle properties at the stages of production, exposure to ambient conditions, and catalytic reaction, in this case the oxidative dehydrogenation of cyclohexane at elevated temperatures. A pronounced size dependence is found, naturally classifying the particles into three size regimes. While small and intermediate clusters essentially retain their compact morphology, large particles transform into hollow spheres due to the nanoscale Kirkendall effect. Depending on the substrate an isotropic (Al2O3) or anisotropic (UNCD) Kirkendall effect is observed. The latter results in dramatic lateral size changes. Our results shed light on the interplay between chemical reactions and the catalyst's structure and provide an approach to tailor the cobalt oxide phase composition required for specific catalytic schemes.

  10. Modeling and Analysis of Size-Dependent Structural Problems by Using Low- Order Finite Elements with Strain Gradient Plasticity

    International Nuclear Information System (INIS)

    Park, Moon Shik; Suh, Yeong Sung; Song, Seung

    2011-01-01

    An elasto-plastic finite element method using the theory of strain gradient plasticity is proposed to evaluate the size dependency of structural plasticity that occurs when the configuration size decreases to micron scale. For this method, we suggest a low-order plane and three-dimensional displacement-based elements, eliminating the need for a high order, many degrees of freedom, a mixed element, or super elements, which have been considered necessary in previous researches. The proposed method can be performed in the framework of nonlinear incremental analysis in which plastic strains are calculated and averaged at nodes. These strains are then interpolated and differentiated for gradient calculation. We adopted a strain-gradient-hardening constitutive equation from the Taylor dislocation model, which requires the plastic strain gradient. The developed finite elements are tested numerically on the basis of typical size-effect problems such as micro-bending, micro-torsion, and micro-voids. With respect to the strain gradient plasticity, i.e., the size effects, the results obtained by using the proposed method, which are simple in their calculation, are in good agreement with the experimental results cited in previously published papers

  11. Size dependent Raman and absorption studies of single walled carbon nanotubes synthesized by pulse laser deposition at room temperature

    Science.gov (United States)

    Dixit, Saurabh; Singhal, Sonal; Vankar, V. D.; Shukla, A. K.

    2017-10-01

    In this article, size dependent correlation of acoustic states is established for radial breathing mode (RBM). Single walled carbon nanotubes (SWCNTs) are synthesized along with carbon encapsulated iron nanoparticles by pulse laser deposition at room temperature. Ferrocene is used as a catalyst for growth of SWCNTs. Various studies such as HR-TEM, X-Ray Diffraction (XRD), Raman spectroscopy and NIR-Absorption spectroscopy are utilized to confirm the presence of SWCNTs in the as-synthesized and purified samples. RBM of SWCNTs can be differentiated here from Raman modes of carbon encapsulated iron nanoparticles by comparing their line shape asymmetry as well as oscillator strength. Furthermore, a quantum confinement model is proposed for RBM. It is invoked here that RBM is manifestation of quantum confinement of acoustic phonons. Well reported analytical relation of RBM is utilized to explore the nature of phonons responsible for RBM on the basis of quantum confinement model. Diameters of SWCNTs estimated by Raman studies are found to be in reasonably good agreement with that of NIR-absorption studies.

  12. Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell

    Science.gov (United States)

    Sahmani, S.; Aghdam, M. M.

    2017-12-01

    Morphology and pore size plays an essential role in the mechanical properties as well as the associated biological capability of a porous structure made of biomaterials. The objective of the current study is to predict the Young's modulus and Poisson's ratio of nanoporous biomaterials including refined truncated cube cells based on a hyperbolic shear deformable beam model. Analytical relationships for the mechanical properties of nanoporous biomaterials are given as a function of the refined cell's dimensions. After that, the size dependency in the nonlinear bending behavior of micro/nano-beams made of such nanoporous biomaterials is analyzed using the nonlocal strain gradient elasticity theory. It is assumed that the micro/nano-beam has one movable end under axial compression in conjunction with a uniform distributed lateral load. The Galerkin method together with an improved perturbation technique is employed to propose explicit analytical expression for nonlocal strain gradient load-deflection curves of the micro/nano-beams made of nanoporous biomaterials subjected to uniform transverse distributed load. It is found that through increment of the pore size, the micro/nano-beam will undergo much more deflection corresponding to a specific distributed load due to the reduction in the stiffness of nanoporous biomaterial. This pattern is more prominent for lower value of applied axial compressive load at the free end of micro/nano-beam.

  13. Fast Soot Aging and Pronounced Diurnal Evolution of Size-dependent Soot Mixing State in the Megacity Beijing

    Science.gov (United States)

    Cheng, Y.; Su, H.; Wiedensohler, A.; Berghof, M.; Wehner, B.; Achtert, P.; Nowak, A.; Zhang, Y.; Shao, M.; Zhu, T.; Zeng, L.; Carmichael, G. R.

    2009-12-01

    The mixing state of soot has great implication in its optical and hygroscopic properties, and hence on its direct/indirect radiative effects. Up to date, understanding about the mechanism of the soot mixing state evolution is still poor and only a few techniques are able to measure the soot mixing state with a high-time and -size resolution. During the CAREBEIJING-2006 (Aug-Sep), a Volatility Tandem Differential Mobility Analyzer was applied to measure the soot mixture in a particle size range of 30 to 320 nm at a regional polluted site in the area of megacity Beijing [Wehner et al., 2009]. The number fraction of externally mixed soot (Fex) varied from 5 to 60% and showed a clear size-dependent diurnal variation. After a peak in the morning, Fex started decreasing and reached a minimum at around noon. Smaller particles reached the minimum earlier than the larger ones, i.e., Fex of 30 nm particles reached its minimum at 8:00-9:00 while that of 320 nm reached the minimum at 13:00-14:00. The different Fex variations among different sizes reflect a combined effect of size-dependent condensable vapor supersaturations and particle growth rates. Fast evolution of soot mixing states was found. During a typical day with new particle formation followed by continuously condensational growth [Wiedensohler et al., 2009], the coating enhancement in light absorption (σap) and scattering of coated soot can simultaneously reach up to a factor of 8-10 within several hours. It was contributed not only by the increasing thickness of coating shell but also by the fast transition from externally mixed soots to coated ones [Cheng et al., 2009]. The number fraction of coated soot (Fcoat) is strongly correlated with the photochemical aging process (e.g., OH time integrals (TOH) calculated by the ratio of m+p xylnene to ethylbenzen). Similar phenomena were found by Moteki et al. [2007] and Shiraiwa et al. [2007]. Interestingly, an “exponential decay” of the external mixed to coated

  14. Size-dependent bending, buckling and vibration of higher-order shear deformable magneto-electro-thermo-elastic rectangular nanoplates

    Science.gov (United States)

    Gholami, Raheb; Ansari, Reza; Gholami, Yousef

    2017-06-01

    The aim of the present study is to propose a unified size-dependent higher-order shear deformable plate model for magneto-electro-thermo-elastic (METE) rectangular nanoplates by adopting the nonlocal elasticity theory to capture the size effect, and by utilizing a generalized shape function to consider the effects of transverse shear deformation and rotary inertia. By considering various shape functions, the proposed plate model can be reduced to the nonlocal plate model based upon the Kirchhoff, Mindlin and Reddy plate theories, as well as the parabolic, trigonometric, hyperbolic and exponential shear deformation plate theories. The governing equations of motion and corresponding boundary conditions of METE nanoplates subjected to external in-plane, transverse loads as well as magnetic, electric and thermal loadings, are obtained using Hamilton’s principle. Then, as in some case studies, the static bending, buckling, and free vibration characteristics of simply-supported METE rectangular nanoplates are investigated based upon the Navier solution approach. Numerical results are provided in order to investigate the influences of various parameters including the nondimensional nonlocal parameter, type of transverse loading, temperature change, applied voltage, and external magnetic potential on the mechanical behaviors of METE nanoplates. Furthermore, comparisons are made between the results predicted by different nonlocal plate models by utilizing the developed unified nonlocal plate model and selecting the associated shape functions. It is illustrated that by using the presented unified nonlocal plate model, the development of a nonlocal plate model based upon any existing higher-order shear deformable plate theory is a simple task.

  15. Diurnal and seasonal variability in size-dependent atmospheric deposition fluxes of polycyclic aromatic hydrocarbons in an urban center

    Science.gov (United States)

    Zhang, Kai; Zhang, Bao-Zhong; Li, Shao-Meng; Zhang, Lei-Ming; Staebler, Ralf; Zeng, Eddy Y.

    2012-09-01

    Atmospheric gaseous and size-segregated particle samples were collected from urban Guangzhou at the heights of 100 and 150 m above the ground in daytime and at night in August and December 2010, and were analyzed for polycyclic aromatic hydrocarbons (PAHs). Particulate PAHs were more abundant at night than in daytime, and significantly higher in winter than in summer. The observed vertical, diurnal, and seasonal variability in the occurrences of PAH were attributed to varying meteorological conditions and atmospheric boundary layers. More than 60% of the particulate PAHs were contained in particles in the accumulation mode with an aerodynamic diameter (Dp) in the range of 0.1-1.8 μm. Different mass transfer velocities by volatilization and condensation are considered the main causes for the different particle size distributions among individual PAHs, while combustion at different temperatures and atmospheric transport were probable causes of the observed seasonal variation in the size distribution of PAHs. Based on the modeled size-dependent dry deposition velocities, daily mean dry deposition fluxes of particulate PAHs ranged from 604 to 1190 ng m-2 d-1, with PAHs in coarse particles (Dp > 1.8 μm) accounting for 55-95% of the total fluxes. In addition, gaseous PAHs were estimated to contribute 0.6-3.1% to the total dry deposition fluxes if a conservative dry deposition velocity for gaseous species (2 × 10-4 m s-1) were used. Finally, disequilibrium phase partitioning, meteorological conditions and atmospheric transport were regarded as the main reasons for the variances in dry deposition velocities of individual PAHs.

  16. Size-dependent emission characteristics of airborne parent and halogenated PAHs from municipal solid waste incinerators in Shenzhen, China.

    Science.gov (United States)

    Shu, Wen-Bo; Zhao, Yi-Bo; Ni, Hong-Gang; Zeng, Hui

    2018-02-01

    Two waste incinerators were selected for investigation of size-dependent emission characteristics of airborne parent and halogenated PAHs (PAHs and HPAHs) and incidence of these pollutants from trash incineration. The concentrations of total PAHs (gas and particles with aerodynamic diameter 0.43-10 μm) in ambient air of Shenzhen incinerators were at the lower end of the global range while those of HPAHs were higher than those of urban air in other studies. High-ring PAHs dominated in PM 2.5 (66%-86%), while low-ring PAHs dominated in PM 10 (83%-86%). As for PAHs in gaseous phase, low-ring PAHs were collectively account for 86%-97%. ΣHPAH mainly enriched in coarse particles (>83%). The size distributions of ΣPAH and ΣHPAH were both characterized by bimodal peaks dominate in 9.0-10 μm and subordinate in 4.7-5.8 μm. PAHs and HPAHs enrichment in the coarse particles indicates that particle-bound PAHs and HPAHs from incinerators cannot travel great distances. Model simulation results showed the peak of airborne PAHs and HPAHs occurred in approximate 300 m from incinerator, then their concentrations reduced sharply. The extent of affected areas by municipal solid waste incinerators (MSWIs) seem very large, intensity of impacts can be neglected for the very low level of pollutants. Although waste incineration is perceived as most polluting way to manage waste, our study found the damage from incinerator to be far less than originally feared. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Continuum theory for nanotube piezoelectricity.

    Science.gov (United States)

    Michalski, P J; Sai, Na; Mele, E J

    2005-09-09

    We develop and solve a continuum theory for the piezoelectric response of one-dimensional nanotubes and nanowires, and apply the theory to study electromechanical effects in boron-nitride nanotubes. We find that the polarization of a nanotube depends on its aspect ratio, and a dimensionless constant specifying the ratio of the strengths of the elastic and electrostatic interactions. The solutions of the model as these two parameters are varied are discussed. The theory is applied to estimate the electric potential induced along the length of a boron-nitride nanotube in response to a uniaxial stress.

  18. Continuum-regularized quantum gravity

    International Nuclear Information System (INIS)

    Chan Huesum; Halpern, M.B.

    1987-01-01

    The recent continuum regularization of d-dimensional Euclidean gravity is generalized to arbitrary power-law measure and studied in some detail as a representative example of coordinate-invariant regularization. The weak-coupling expansion of the theory illustrates a generic geometrization of regularized Schwinger-Dyson rules, generalizing previous rules in flat space and flat superspace. The rules are applied in a non-trivial explicit check of Einstein invariance at one loop: the cosmological counterterm is computed and its contribution is included in a verification that the graviton mass is zero. (orig.)

  19. Continuum radiation of argon plasma

    International Nuclear Information System (INIS)

    D'Yachkov, L.G.

    1995-01-01

    A simple completely analytical method of the calculation of radiative continuum of plasmas is derived and an analysis of experimental data on continuum radiation of argon plasma is made. The method is based on the semiclassical quantum defect theory. To calculate radial matrix elements of dipole transitions the asymptotic expansion in powers of E c /ω 2/3 , with an accuracy to the linear term, where E, is the arithmetic mean of the initial and final energies of the transition, is used. This expansion has the same form for free-free, free-bound and bound-bound transitions. If the quantum defects are also approximated by a linear function of energy, the integration over the electron energy (the Maxwell-Boltzmann distribution is assumed) can be performed in analytical form. For Rydberg states the sum of photoionization continua can be replaced by an integral. We have calculated the absorption coefficient pf argon plasma. The photoionization cross section is calculated for all the states of 4s, 5s, 6s, 4p, 5p, 3d, 4d, 4s', 5s', 6s', 4p', 5p', 3d' and 4d' configurations taking into account P-coupling and multiplet splitting (56 states). Other excited states are allowed for by the integral formula together with free-free transitions

  20. Study on Size-Dependent Young’s Modulus of a Silicon Nano beam by Molecular Dynamics Simulation

    International Nuclear Information System (INIS)

    Yu, H.; Sun, C.; Zhang, W.W.; Lei, S.Y.; Huang, K.A.

    2013-01-01

    Young’s modulus of a silicon nano beam with a rectangular cross-section is studied by molecular dynamics method. Dynamic simulations are performed for doubly clamped silicon nano beams with lengths ranging from 4.888 to 12.491 nm and cross-sections ranging from 1.22 nm ×1.22 nm to 3.39 nm × 3.39 nm. The results show that Young’s moduli of such small silicon nano beams are much higher than the value of Young’s modulus for bulk silicon. Moreover, the resonant frequency and Young’s modulus of the Si nano beam are strongly dependent not only on the size of the nano beam but also on surface effects. Young’s modulus increases significantly with the decreasing of the thickness of the silicon nano beam. This result qualitatively agrees with one of the conclusions based on a semi continuum model, in which the surface relaxation and the surface tension were taken into consideration. The impacts of the surface reconstruction with (2 ×1) dimmers on the resonant frequency and Young’s modulus are studied in this paper too. It is shown that the surface reconstruction makes the silicon nano beam stiffer than the one without the surface reconstruction, resulting in a higher resonant frequency and a larger Young’s modulus

  1. Extension versus Bending for Continuum Robots

    Directory of Open Access Journals (Sweden)

    George Grimes

    2008-11-01

    Full Text Available In this paper, we analyze the capabilities of a novel class of continuous-backbone ("continuum" robots. These robots are inspired by biological "trunks, and tentacles". However, the capabilities of established continuum robot designs, which feature controlled bending but not extension, fall short of those of their biological counterparts. In this paper, we argue that the addition of controlled extension provides dual and complementary functionality, and correspondingly enhanced performance, in continuum robots. We present an interval-based analysis to show how the inclusion of controllable extension significantly enhances the workspace and capabilities of continuum robots.

  2. Control and Modeling of Extensible Continuum Robots

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this research is to develop fundamental control theory, dynamic modeling, and control technology for extensible continuum robotic manipulators. These...

  3. Passing waves from atomistic to continuum

    Science.gov (United States)

    Chen, Xiang; Diaz, Adrian; Xiong, Liming; McDowell, David L.; Chen, Youping

    2018-02-01

    Progress in the development of coupled atomistic-continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic-continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic-continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic-continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic-continuum interfaces. This work is the first step towards developing a concurrent atomistic-continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.

  4. Continuum Fitting HST QSO Spectra

    Science.gov (United States)

    Tytler, David; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The Principal Component Analysis (PCA) method which we are using to fit and describe QSO spectra relies upon the fact that QSO continuum are generally very smooth and simple except for emission and absorption lines. To see this we need high signal-to-noise (S/N) spectra of QSOs at low redshift which have relatively few absorption lines in the Lyman-a forest. We need a large number of such spectra to use as the basis set for the PCA analysis which will find the set of principal component spectra which describe the QSO family as a whole. We have found that too few HST spectra have the required S/N and hence we need to supplement them with ground based spectra of QSOs at higher redshift. We have many such spectra and we have been working to make them suitable for this analysis. We have concentrated on this topic since 12/15/01.

  5. Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states

    DEFF Research Database (Denmark)

    Leistikow, M.D.; Johansen, Jeppe; Kettelarij, A.J.

    2009-01-01

    , allowing us to determine the size-dependent quantum efficiency and oscillator strength. We find that the quantum efficiency decreases with increasing emission energy mostly due to an increase in nonradiative decay. We manage to obtain the oscillator strength of the important class of CdSe quantum dots...

  6. Exponential size-dependent tunability of strain on the transport behavior in ZnO tunnel junctions: an ab initio study.

    Science.gov (United States)

    Zhu, Jia; Chen, W J; Zhang, G H; Zheng, Yue

    2015-10-14

    It is an interesting issue if the transport behavior of a piezoelectric tunnel junction is sensitive to external strain or stress, and it implies a prospect for developing novel mechanical sensors, transducers, piezotronic devices, etc. Many studies paid attention to this issue, yet how the strain and stress tunable transport behavior of a tunnel junction depends on the barrier thickness is still rarely known. Using the first principles calculations, we investigate the size-dependent and strain-tunable transport behavior in the tunnel junctions. It was confirmed that external strain has strong control over the transport properties of ZnO tunnel junctions, with several times amplification of tunnel conductance obtained by strain reversal. More importantly, the conductance amplification by strain reversal exponentially changes with the barrier thickness, indicating the size-dependent strain tunability of the transport behavior. The electrostatic quantities (i.e., built-in field, depolarization field, polarization, interfacial dipoles and potential barrier) and the transport properties of tunnel junctions were comprehensively analyzed to reveal the relationships between these quantities and their size dependence. The exponential size-dependence of strain tunable transport behavior in ZnO tunnel junctions is attributed to the linear change in the potential barrier with the barrier thickness. Our simulations provide an insight of how to maximize the strain tunability of transport behavior of piezoelectric tunnel junctions by thickness design and strain engineering.

  7. Giant resonances in the deformed continuum

    International Nuclear Information System (INIS)

    Nakatsukasa, T.; Yabana, K.

    2004-01-01

    Giant resonances in the continuum for deformed nuclei are studied with the time-dependent Hartree-Fock (TDHF) theory in real time and real space. The continuum effect is effectively taken into account by introducing a complex Absorbing Boundary Condition (ABC). (orig.)

  8. Physics of the continuum of borromean nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vaagen, J.S.; Rogde, T. [Dept. of Physics, Univ. of Bergen (Norway); Danilin, B.V. [RRC The Kurchatov Inst., Kurchatov, Moscow (Russian Federation); Ershov, S.N. [JINR, Dubna, Moscow (Russian Federation); Thompson, I.J. [Dept. of Physics, Univ. of Surrey, Guildford (United Kingdom); Zhukov, M.V. [Chalmers Univ. of Technology and Goeteborg Univ., Goeteborg (Sweden); RNBT Collaboration

    1998-06-01

    The continuum states of two-neutron halo nuclei are calculated in the method of hyperspherical harmonics. Using DWIA theory appropriate for dilute halo matter we have probed the structure of the low-lying {sup 6}He continuum via calculations of charge-exchange and inelastic scattering. (orig.)

  9. Continuum and computational modeling of flexoelectricity

    Science.gov (United States)

    Mao, Sheng

    Flexoelectricity refers to the linear coupling of strain gradient and electric polarization. Early studies of this subject mostly look at liquid crystals and biomembranes. Recently, the advent of nanotechnology revealed its importance also in solid structures, such as flexible electronics, thin films, energy harvesters, etc. The energy storage function of a flexoelectric solid depends not only on polarization and strain, but also strain-gradient. This is our basis to formulate a consistent model of flexoelectric solids under small deformation. We derive a higher-order Navier equation for linear isotropic flexoelectric materials which resembles that of Mindlin in gradient elasticity. Closed-form solutions can be obtained for problems such as beam bending, pressurized tube, etc. Flexoelectric coupling can be enhanced in the vicinity of defects due to strong gradients and decay away in far field. We quantify this expectation by computing elastic and electric fields near different types of defects in flexoelectric solids. For point defects, we recover some well-known results of non-local theories. For dislocations, we make connections with experimental results on NaCl, ice, etc. For cracks, we perform a crack-tip asymptotic analysis and the results share features from gradient elasticity and piezoelectricity. We compute the J integral and use it for determining fracture criteria. Conventional finite element methods formulated solely on displacement are inadequate to treat flexoelectric solids due to higher order governing equations. Therefore, we introduce a mixed formulation which uses displacement and displacement-gradient as separate variables. Their known relation is constrained in a weighted integral sense. We derive a variational formulation for boundary value problems for piezeo- and/or flexoelectric solids. We validate this computational framework against exact solutions. With this method more complex problems, including a plate with an elliptical hole

  10. Parallel algorithms for continuum dynamics

    International Nuclear Information System (INIS)

    Hicks, D.L.; Liebrock, L.M.

    1987-01-01

    Simply porting existing parallel programs to a new parallel processor may not achieve the full speedup possible; to achieve the maximum efficiency may require redesigning the parallel algorithms for the specific architecture. The authors discuss here parallel algorithms that were developed first for the HEP processor and then ported to the CRAY X-MP/4, the ELXSI/10, and the Intel iPSC/32. Focus is mainly on the most recent parallel processing results produced, i.e., those on the Intel Hypercube. The applications are simulations of continuum dynamics in which the momentum and stress gradients are important. Examples of these are inertial confinement fusion experiments, severe breaks in the coolant system of a reactor, weapons physics, shock-wave physics. Speedup efficiencies on the Intel iPSC Hypercube are very sensitive to the ratio of communication to computation. Great care must be taken in designing algorithms for this machine to avoid global communication. This is much more critical on the iPSC than it was on the three previous parallel processors

  11. Continuum mechanics elasticity, plasticity, viscoelasticity

    CERN Document Server

    Dill, Ellis H

    2006-01-01

    FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...

  12. Continuum methods in lattice perturbation theory

    International Nuclear Information System (INIS)

    Becher, Thomas G

    2002-01-01

    We show how methods of continuum perturbation theory can be used to simplify perturbative lattice calculations. We use the technique of asymptotic expansions to expand lattice loop integrals around the continuum limit. After the expansion, all nontrivial dependence on momenta and masses is encoded in continuum loop integrals and the only genuine lattice integrals left are tadpole integrals. Using integration-by-parts relations all of these can be expressed in terms of a small number of master integrals. Four master integrals are needed for bosonic one loop integrals, sixteen in QCD with Wilson or staggered fermions

  13. Area Regge calculus and continuum limit

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2002-01-01

    Encountered in the literature generalisations of general relativity to independent area variables are considered, the discrete (generalised Regge calculus) and continuum ones. The generalised Regge calculus can be either with purely area variables or, as we suggest, with area tensor-connection variables. Just for the latter, in particular, we prove that in analogy with corresponding statement in ordinary Regge calculus (by Feinberg, Friedberg, Lee and Ren), passing to the (appropriately defined) continuum limit yields the generalised continuum area tensor-connection general relativity

  14. Continuum mechanics of single-substance bodies

    CERN Document Server

    Eringen, A Cemal

    1975-01-01

    Continuum Physics, Volume II: Continuum Mechanics of Single-Substance Bodies discusses the continuum mechanics of bodies constituted by a single substance, providing a thorough and precise presentation of exact theories that have evolved during the past years. This book consists of three parts-basic principles, constitutive equations for simple materials, and methods of solution. Part I of this publication is devoted to a discussion of basic principles irrespective of material geometry and constitution that are valid for all kinds of substances, including composites. The geometrical notions, k

  15. The effect of the magnetic nanoparticle's size dependence of the relaxation time constant on the specific loss power of magnetic nanoparticle hyperthermia

    Science.gov (United States)

    Harabech, Mariem; Leliaert, Jonathan; Coene, Annelies; Crevecoeur, Guillaume; Van Roost, Dirk; Dupré, Luc

    2017-03-01

    Magnetic nanoparticle hyperthermia is a cancer treatment in which magnetic nanoparticles (MNPs) are subjected to an alternating magnetic field to induce heat in the tumor. The generated heat of MNPs is characterized by the specific loss power (SLP) due to relaxation phenomena of the MNP. Up to now, several models have been proposed to predict the SLP, one of which is the Linear Response Theory. One parameter in this model is the relaxation time constant. In this contribution, we employ a macrospin model based on the Landau-Lifshitz-Gilbert equation to investigate the relation between the Gilbert damping parameter and the relaxation time constant. This relaxation time has a pre-factor τ0 which is often taken as a fixed value ranging between 10-8 and 10-12 s. However, in reality it has small size dependence. Here, the influence of this size dependence on the calculation of the SLP is demonstrated, consequently improving the accuracy of this estimate.

  16. Precise large deviations of aggregate claims in a size-dependent renewal risk model with stopping time claim-number process

    Directory of Open Access Journals (Sweden)

    Shuo Zhang

    2017-04-01

    Full Text Available Abstract In this paper, we consider a size-dependent renewal risk model with stopping time claim-number process. In this model, we do not make any assumption on the dependence structure of claim sizes and inter-arrival times. We study large deviations of the aggregate amount of claims. For the subexponential heavy-tailed case, we obtain a precise large-deviation formula; our method substantially relies on a martingale for the structure of our models.

  17. Geometric continuum mechanics and induced beam theories

    CERN Document Server

    R Eugster, Simon

    2015-01-01

    This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories.

  18. Loop quantization as a continuum limit

    International Nuclear Information System (INIS)

    Manrique, Elisa; Oeckl, Robert; Weber, Axel; Zapata, Jose A

    2006-01-01

    We present an implementation of Wilson's renormalization group and a continuum limit tailored for loop quantization. The dynamics of loop-quantized theories is constructed as a continuum limit of the dynamics of effective theories. After presenting the general formalism we show as a first explicit example the 2D Ising field theory, an interacting relativistic quantum field theory with local degrees of freedom quantized by loop quantization techniques

  19. On the Derivation of Boundary Conditions for Continuum Dislocation Dynamics

    Directory of Open Access Journals (Sweden)

    Thomas Hochrainer

    2017-07-01

    Full Text Available Continuum dislocation dynamics (CDD is a single crystal strain gradient plasticity theory based exclusively on the evolution of the dislocation state. Recently, we derived a constitutive theory for the average dislocation velocity in CDD in a phase field-type description for an infinite domain. In the current work, so-called rational thermodynamics is employed to obtain thermodynamically consistent boundary conditions for the dislocation density variables of CDD. We find that rational thermodynamics reproduces the bulk constitutive equations as obtained from irreversible thermodynamics. The boundary conditions we find display strong parallels to the microscopic traction conditions derived by Gurtin and Needleman (M.E. Gurtin and A. Needleman, J. Mech. Phys. Solids 53 (2005 1–31 for strain gradient theories based on the Kröner–Nye tensor.

  20. Queue Length and Server Content Distribution in an Infinite-Buffer Batch-Service Queue with Batch-Size-Dependent Service

    Directory of Open Access Journals (Sweden)

    U. C. Gupta

    2015-01-01

    Full Text Available We analyze an infinite-buffer batch-size-dependent batch-service queue with Poisson arrival and arbitrarily distributed service time. Using supplementary variable technique, we derive a bivariate probability generating function from which the joint distribution of queue and server content at departure epoch of a batch is extracted and presented in terms of roots of the characteristic equation. We also obtain the joint distribution of queue and server content at arbitrary epoch. Finally, the utility of analytical results is demonstrated by the inclusion of some numerical examples which also includes the investigation of multiple zeros.

  1. Hyperbolic conservation laws in continuum physics

    CERN Document Server

    Dafermos, Constantine M

    2016-01-01

    This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conser...

  2. Lattice gravity near the continuum limit

    International Nuclear Information System (INIS)

    Feinberg, G.; Friedberg, R.; Lee, T.D.; Ren, H.C.

    1984-01-01

    We prove that the lattice gravity always approaches the usual continuum limit when the link length l -> 0, provided that certain general boundary conditions are satisfied. This result holds for any lattice, regular or irregular. Furthermore, for a given lattice, the deviation from its continuum limit can be expressed as a power series in l 2 . General formulas for such a perturbative calculation are given, together with a number of illustrative examples, including the graviton propagator. The lattice gravity satisfies all the invariance properties of Einstein's theory of general relativity. In addition, it is symmetric under a new class of transformations that are absent in the usual continuum theory. The possibility that the lattice theory (with a nonzero l) may be more fundamental is discussed. (orig.)

  3. Stiffness Control of Surgical Continuum Manipulators.

    Science.gov (United States)

    Mahvash, Mohsen; Dupont, Pierre E

    2011-04-01

    This paper introduces the first stiffness controller for continuum robots. The control law is based on an accurate approximation of a continuum robot's coupled kinematic and static force model. To implement a desired tip stiffness, the controller drives the actuators to positions corresponding to a deflected robot configuration that produces the required tip force for the measured tip position. This approach provides several important advantages. First, it enables the use of robot deflection sensing as a means to both sense and control tip forces. Second, it enables stiffness control to be implemented by modification of existing continuum robot position controllers. The proposed controller is demonstrated experimentally in the context of a concentric tube robot. Results show that the stiffness controller achieves the desired stiffness in steady state, provides good dynamic performance, and exhibits stability during contact transitions.

  4. Size-Dependent Bending, Buckling and Free Vibration Analyses of Microscale Functionally Graded Mindlin Plates Based on the Strain Gradient Elasticity Theory

    Directory of Open Access Journals (Sweden)

    R. Ansari

    Full Text Available Abstract In this paper, a size-dependent microscale plate model is developed to describe the bending, buckling and free vibration behaviors of microplates made of functionally graded materials (FGMs. The size effects are captured based on the modified strain gradient theory (MSGT, and the formulation of the paper is on the basis of Mindlin plate theory. The presented model accommodates the models based upon the classical theory (CT and the modified couple stress theory (MCST if all or two scale parameters are set to zero, respectively. By using Hamilton's principle, the governing equations and related boundary conditions are derived. The bending, buckling and free vibration problems are considered and are solved through the generalized differential quadrature (GDQ method. A detailed parametric and comparative study is conducted to evaluate the effects of length scale parameter, material gradient index and aspect ratio predicted by the CT, MCST and MSGT on the deflection, critical buckling load and first natural frequency of the microplate. The numerical results indicate that the model developed herein is significantly size-dependent when the thickness of the microplate is on the order of the material scale parameters.

  5. Finite continuum quasi distributions from lattice QCD

    Science.gov (United States)

    Monahan, Christopher; Orginos, Kostas

    2018-03-01

    We present a new approach to extracting continuum quasi distributions from lattice QCD. Quasi distributions are defined by matrix elements of a Wilson-line operator extended in a spatial direction, evaluated between nucleon states at finite momentum. We propose smearing this extended operator with the gradient flow to render the corresponding matrix elements finite in the continuum limit. This procedure provides a nonperturbative method to remove the power-divergence associated with the Wilson line and the resulting matrix elements can be directly matched to light-front distributions via perturbation theory.

  6. Continuum mechanics concise theory and problems

    CERN Document Server

    Chadwick, P

    1998-01-01

    Written in response to the dearth of practical and meaningful textbooks in the field of fundamental continuum mechanics, this comprehensive treatment offers students and instructors an immensely useful tool. Its 115 solved problems and exercises not only provide essential practice but also systematically advance the understanding of vector and tensor theory, basic kinematics, balance laws, field equations, jump conditions, and constitutive equations.Readers follow clear, formally precise steps through the central ideas of classical and modern continuum mechanics, expressed in a common, effici

  7. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion...... of the zeolite particles, particularly after thermal treatment. When using mesoporous zeolites, the particles were evenly distributed throughout the mesopore system of the zeolitic support, even after calcination, leading to nanocrystals within mesoporous zeolite single crystals....

  8. Strategic management of a continuum of care.

    Science.gov (United States)

    Evashwick, C J

    1993-01-01

    Why would an organization want to undertake the changes required to be a continuum of care? Because providers of residential and long-term nursing care that continue to function in isolation may survive, but they will not thrive in the 21st century.

  9. Continuum treatment of electronic polarization effect.

    Science.gov (United States)

    Tan, Yu-Hong; Luo, Ray

    2007-03-07

    A continuum treatment of electronic polarization has been explored for in molecular mechanics simulations in implicit solvents. The dielectric constant for molecule interior is the only parameter in the continuum polarizable model. A value of 4 is found to yield optimal agreement with high-level ab initio quantum mechanical calculations for the tested molecular systems. Interestingly, its performance is not sensitive to the definition of molecular volume, in which the continuum electronic polarization is defined. In this model, quantum mechanical electrostatic field in different dielectric environments from vacuum, low-dielectric organic solvent, and water can be used simultaneously in atomic charge fitting to achieve consistent treatment of electrostatic interactions. The tests show that a single set of atomic charges can be used consistently in different dielectric environments and different molecular conformations, and the atomic charges transfer well from training monomers to tested dimers. The preliminary study gives us the hope of developing a continuum polarizable force field for more consistent simulations of proteins and nucleic acids in implicit solvents.

  10. Continuum Modeling in the Physical Sciences

    NARCIS (Netherlands)

    Groesen, van E.; Molenaar, J.

    2007-01-01

    Mathematical modeling—the ability to apply mathematical concepts and techniques to real-life systems—has expanded considerably over the last decades, making it impossible to cover all of its aspects in one course or textbook. Continuum Modeling in the Physical Sciences provides an extensive

  11. Continuum treatment of electronic polarization effect

    Science.gov (United States)

    Tan, Yu-Hong; Luo, Ray

    2007-03-01

    A continuum treatment of electronic polarization has been explored for in molecular mechanics simulations in implicit solvents. The dielectric constant for molecule interior is the only parameter in the continuum polarizable model. A value of 4 is found to yield optimal agreement with high-level ab initio quantum mechanical calculations for the tested molecular systems. Interestingly, its performance is not sensitive to the definition of molecular volume, in which the continuum electronic polarization is defined. In this model, quantum mechanical electrostatic field in different dielectric environments from vacuum, low-dielectric organic solvent, and water can be used simultaneously in atomic charge fitting to achieve consistent treatment of electrostatic interactions. The tests show that a single set of atomic charges can be used consistently in different dielectric environments and different molecular conformations, and the atomic charges transfer well from training monomers to tested dimers. The preliminary study gives us the hope of developing a continuum polarizable force field for more consistent simulations of proteins and nucleic acids in implicit solvents.

  12. The grain size dependency of vesicular particle shapes strongly affects the drag of particles. First results from microtomography investigations of Campi Flegrei fallout deposits

    Science.gov (United States)

    Mele, Daniela; Dioguardi, Fabio

    2018-03-01

    Acknowledging the grain size dependency of shape is important in volcanology, in particular when dealing with tephra produced and emplaced during and after explosive volcanic eruptions. A systematic measurement of the tridimensional shape of vesicular pyroclasts of Campi Flegrei fallout deposits (Agnano-Monte Spina, Astroni 6 and Averno 2 eruptions) varying in size from 8.00 to 0.016 mm has been carried out by means of X-Ray Microtomography. Data show that particle shape changes with size, especially for juvenile vesicular clasts, since it is dependent on the distribution and size of vesicles that contour the external clast outline. Two drag laws that include sphericity in the formula were used for estimating the dependency of settling velocity on shape. Results demonstrate that it is not appropriate to assume a size-independent shape for vesicular particles, in contrast with the approach commonly employed when simulating the ash dispersion in the atmosphere.

  13. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nano composites-A Review

    International Nuclear Information System (INIS)

    Ismail, A.R.; Vejayakumaran, P.

    2012-01-01

    Application of silica nanoparticles as fillers in the preparation of nano composite of polymers has drawn much attention, due to the increased demand for new materials with improved thermal, mechanical, physical, and chemical properties. Recent developments in the synthesis of monodispersed, narrow-size distribution of nanoparticles by sol-gel method provide significant boost to development of silica-polymer nano composites. This paper is written by emphasizing on the synthesis of silica nanoparticles, characterization on size-dependent properties, and surface modification for the preparation of homogeneous nano composites, generally by sol-gel technique. The effect of nano silica on the properties of various types of silica-polymer composites is also summarized.

  14. Nano/micro Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18} crystallites: Size dependent structural, second harmonic and piezoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Tukaram, Shet; Bhimireddi, Rajasekhar; Varma, K.B.R., E-mail: kbrvarma@mrc.iisc.ernet.in

    2016-09-15

    Graphical abstract: Synthesis of Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18} nano/micro crystallites and their size dependent non-linear optical and piezoelectric responses. - Highlights: • Nano/microcrystallites of Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18} were synthesized via sol-gel route. • Crystallite size dependent structural and physical properties were studied. • SHG intensity (1.4 times that of KDP powder) from these crystallites was recorded. • PFM studies on isolated crystallite of 480 nm exhibited d{sub 33} as high as 27 pm/V. • Single domain nature of the crystallites below 160 nm was observed. - Abstract: Strontium bismuth titanate (Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18}) powders comprising crystallites of average sizes in the range of 94–1400 nm were prepared via citrate-assisted sol-gel route. With an increase in the average crystallite size there was a change in the lattice parameters and shift in the Raman vibration modes. Second harmonic signal (532 nm) intensity of the Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18} powders increased with the increase in the average crystallite size and the maximum intensity obtained in the reflection mode was 1.4 times as high as that of the powdered KH{sub 2}PO{sub 4}. Piezo Force Microscopic analyses carried out on isolated crystallite of size 74 nm, established a single domain nature with the coercive field as high as 347 kV/cm. There was a systematic increase in the d{sub 33} value with an increase in the size of the isolated crystallites and a high piezoelectric coefficient of ∼27 pm/V was obtained from an isolated crystallite of size 480 nm.

  15. Millennial size-dependent velocity of coarse river sediment determined using 10Be in cobbles of the Aroma canyon (Atacama, Chile).

    Science.gov (United States)

    Carretier, Sebastien; Regard, Vincent; Leanni, Laetitia; Farias, Marcelo

    2017-04-01

    We focus on coarse sediment routing velocity in fluvial systems. The millennial mean velocity at which coarse sediment move along the fluvial system lies at the heart of many source-to-sink issues. For example, this velocity determines if a climatic or tectonic pulse of sediment generated in the mountain is advected or diluted towards the basin, and thus if the basin stratigraphy is able to record such variations. Whether this millennial velocity depends on pebble size or not is still unclear. Yet, quantifying this possible size dependence is fundamental to interpret the observed transitions between coarse and fine sediment in basin architecture. These uncertainties result from the difficulty to measure coarse sediment velocities and flux that integrate a wide range of floods over periods longer than several years. Here we show that the 10Be concentrations in distinct river pebbles can bridge this gap. We selected cobbles and pebbles ([0.01-0.3] m) along a 50 km Andean arid canyon in the Atacama. These samples come from a unique lithological source at catchment head. We obtained the mean 10Be concentrations of 20 to 100 samples at 7 river stations downstream. In addition, the 10Be concentration of individual pebbles was measured for 3 of these 7 locations. They show a downstream increase of both the mean and scattering of 10Be concentrations. Using a simple stochastic model of grain transport and 10Be evolution, we show that: 1- the millennial maximum mean velocity of 10 cm pebbles is on the order of several meters by year, and 2- that the velocity is inversely related to pebble size, despite a large variability for a given size. This size-dependence is consistent with the observed downstream fining in this river. Such velocities imply a wide range of residence times ([0.1-100] ka) of pebbles ([0.01-0.3] m) in this arid canyon.

  16. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.

    Science.gov (United States)

    Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B

    2016-06-15

    Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs.

  17. On the design of the NIF Continuum Spectrometer

    Science.gov (United States)

    Thorn, D. B.; MacPhee, A.; Ayers, J.; Galbraith, J.; Hardy, C. M.; Izumi, N.; Bradley, D. K.; Pickworth, L. A.; Bachmann, B.; Kozioziemski, B.; Landen, O.; Clark, D.; Schneider, M. B.; Hill, K. W.; Bitter, M.; Nagel, S.; Bell, P. M.; Person, S.; Khater, H. Y.; Smith, C.; Kilkenny, J.

    2017-08-01

    In inertial confinement fusion (ICF) experiments on the National Ignition Facility (NIF), measurements of average ion temperature using DT neutron time of flight broadening and of DD neutrons do not show the same apparent temperature. Some of this may be due to time and space dependent temperature profiles in the imploding capsule which are not taken into account in the analysis. As such, we are attempting to measure the electron temperature by recording the free-free electron-ion scattering-spectrum from the tail of the Maxwellian temperature distribution. This will be accomplished with the new NIF Continuum Spectrometer (ConSpec) which spans the x-ray range of 20 keV to 30 keV (where any opacity corrections from the remaining mass of the ablator shell are negligible) and will be sensitive to temperatures between ˜ 3 keV and 6 keV. The optical design of the ConSpec is designed to be adaptable to an x-ray streak camera to record time resolved free-free electron continuum spectra for direct measurement of the dT/dt evolution across the burn width of a DT plasma. The spectrometer is a conically bent Bragg crystal in a focusing geometry that allows for the dispersion plane to be perpendicular to the spectrometer axis. Additionally, to address the spatial temperature dependence, both time integrated and time resolved pinhole and penumbral imaging will be provided along the same polar angle. The optical and mechanical design of the instrument is presented along with estimates for the dispersion, solid angle, photometric sensitivity, and performance.

  18. Solid microparticles in nematic liquid crystals

    Science.gov (United States)

    Muševič, Igor

    A brief historic overview of colloidal experiments in the 1990's is given in the introduction. These experiments have later inspired research on nematic colloids, after the technique of laser tweezers manipulation of particles was introduced to this field. Basic topological properties of colloidal inclusions in the nematic liquid crystals are discussed and the nematic-mediated forces between dipolar and quadrupolar colloidal particles in bulk nematic are explained. Structural and topological properties of 2D and 3D colloidal crystals and superstructures made of colloidal particles of different size and symmetry in bulk nematic liquid crystal are described. Laser-tweezer manipulation and rewiring of topological defect loops around colloidal particles is introduced. This results in the colloidal entanglement, as well as knotting and linking of defect loops of the order parameter field. Shape and size-dependent colloidal interactions in the nematic liquid crystals are reviewed. The chapter concludes with the discussion of bulk chiral nematic and blue phase colloids.

  19. Jacobian elliptic wave solutions in an anharmonic molecular crystal model

    International Nuclear Information System (INIS)

    Teh, C.G.R.; Lee, B.S.; Koo, W.K.

    1997-07-01

    Explicit Jacobian elliptic wave solutions are found in the anharmonic molecular crystal model for both the continuum limit and discrete modes. This class of wave solutions include the famous pulse-like and kink-like solitary modes. We would also like to report on the existence of some highly discrete staggered solitary wave modes not found in the continuum limit. (author). 9 refs, 1 fig

  20. Hyperbolic theories and problems of continuum mechanics

    Directory of Open Access Journals (Sweden)

    Yuri N. Radayev

    2015-03-01

    Full Text Available Theories and problems of that part of continuum thermomechanics which can not be properly formulated without partial differential equations of hyperbolic analytical type are considered. Special attention is paid to comparatively new hyperbolic continuum theories: the theory of three-dimensional perfect plasticity and the theory of micropolar thermoelasticity. The latter is accepted as type-II thermoelasticity. Three-dimensional statical and kinematical equations of the perfect plasticity theory by Ishlinskii and Ivlev are studied in order to elucidate their analytical type and opportunity to obtain integrable equations along some special lines. A new approach to hyperbolic formulations of thermoelasticity presumes consideration of referential gradients of thermodynamic state variables and extra field variables (rapid variables as independent functional arguments in the action density. New hyperbolic thermomechanics of micropolar thermoelastic media is developed within the framework of classical field theory by the variational action integral and the least action principle.

  1. Continuum analogues of contragredient Lie algebras

    International Nuclear Information System (INIS)

    Saveliev, M.V.; Vershik, A.M.

    1989-03-01

    We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs

  2. Mesoscopic and continuum modelling of angiogenesis

    KAUST Repository

    Spill, F.

    2014-03-11

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  3. Nonlinear continuum mechanics and large inelastic deformations

    CERN Document Server

    Dimitrienko, Yuriy I

    2010-01-01

    This book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics - kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead t...

  4. The geometrical language of continuum mechanics

    CERN Document Server

    Epstein, Marcelo

    2010-01-01

    This book presents the fundamental concepts of modern differential geometry within the framework of continuum mechanics. It is divided into three parts of roughly equal length. The book opens with a motivational chapter to impress upon the reader that differential geometry is indeed the natural language of continuum mechanics or, better still, that the latter is a prime example of the application and materialization of the former. In the second part, the fundamental notions of differential geometry are presented with rigor using a writing style that is as informal as possible. Differentiable manifolds, tangent bundles, exterior derivatives, Lie derivatives, and Lie groups are illustrated in terms of their mechanical interpretations. The third part includes the theory of fiber bundles, G-structures, and groupoids, which are applicable to bodies with internal structure and to the description of material inhomogeneity. The abstract notions of differential geometry are thus illuminated by practical and intuitivel...

  5. On the Continuum of Eating Disorders

    OpenAIRE

    Hawkins, Lana Lee Munro

    2007-01-01

    Theorists and researchers have long debated as to whether the differences between subthreshold levels of eating disturbances and diagnosable eating disorders are a difference of degree (the continuum hypothesis) or a difference of kind (the discontinuity hypothesis). The present study investigated the relationship between level of eating disordered behaviour and the psychopathology associated with, and thought by some to be prodromal factors in, the development of clinically diagnosable eatin...

  6. Continuum angular distributions in the transition regions

    International Nuclear Information System (INIS)

    Kalbach, C.

    1993-01-01

    One of the open questions from the 1988 published systematics of continuum angular distributions in light particle reactions is addressed. Evidence for a smooth transition in the systematics at incident energies of ∼125 MeV is summarized, and appropriate revisions to the global parameterization are proposed. Applying similar changes to the second-order term helps to remove problems noted in the literature with low-energy (N,α) reactions

  7. Sensitivity filtering from a continuum mechanics perspective

    DEFF Research Database (Denmark)

    Sigmund, Ole; Maute, Kurt

    2012-01-01

    In topology optimization filtering is a popular approach for preventing numerical instabilities. This short note shows that the well-known sensitivity filtering technique, that prevents checkerboards and ensures mesh-independent designs in density-based topology optimization, is equivalent to min...... to minimizing compliance for nonlocal elasticity problems known from continuum mechanics. Hence, the note resolves the long-standing quest for finding an explanation and physical motivation for the sensitivity filter....

  8. New examples of continuum graded Lie algebras

    International Nuclear Information System (INIS)

    Savel'ev, M.V.

    1989-01-01

    Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs

  9. Continuum mechanics the birthplace of mathematical models

    CERN Document Server

    Allen, Myron B

    2015-01-01

    Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer.  This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe

  10. How do we model continuum QCD

    International Nuclear Information System (INIS)

    Cornwall, J.M.

    1986-01-01

    The nonperturbative aspects of continuum QCD are so complex that one can only hope to approach them through well-motivated models. The author reviews the general properties that any such model must have, based on the understanding of the gluon condensate in the QCD vacuum. A specific, practical model is proposed motivated by a picture of the condensate as made of thick vortex sheets self-consistently constructed from dynamically massive gluons. (author)

  11. Improvements in continuum modeling for biomolecular systems

    Science.gov (United States)

    Yu, Qiao; Ben-Zhuo, Lu

    2016-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.

  12. Continuum regularized Yang-Mills theory

    International Nuclear Information System (INIS)

    Sadun, L.A.

    1987-01-01

    Using the machinery of stochastic quantization, Z. Bern, M. B. Halpern, C. Taubes and I recently proposed a continuum regularization technique for quantum field theory. This regularization may be implemented by applying a regulator to either the (d + 1)-dimensional Parisi-Wu Langevin equation or, equivalently, to the d-dimensional second order Schwinger-Dyson (SD) equations. This technique is non-perturbative, respects all gauge and Lorentz symmetries, and is consistent with a ghost-free gauge fixing (Zwanziger's). This thesis is a detailed study of this regulator, and of regularized Yang-Mills theory, using both perturbative and non-perturbative techniques. The perturbative analysis comes first. The mechanism of stochastic quantization is reviewed, and a perturbative expansion based on second-order SD equations is developed. A diagrammatic method (SD diagrams) for evaluating terms of this expansion is developed. We apply the continuum regulator to a scalar field theory. Using SD diagrams, we show that all Green functions can be rendered finite to all orders in perturbation theory. Even non-renormalizable theories can be regularized. The continuum regulator is then applied to Yang-Mills theory, in conjunction with Zwanziger's gauge fixing. A perturbative expansion of the regulator is incorporated into the diagrammatic method. It is hoped that the techniques discussed in this thesis will contribute to the construction of a renormalized Yang-Mills theory is 3 and 4 dimensions

  13. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiun [Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, EE137, Hsinchu 300, Taiwan (China); Hung, Yao-Ching [Department of Obstetrics and Gynecology, School of Medicine, China Medical University and Hospital, 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Lin, Wei-Hsu [Institute of Nanotechnology, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan (China); Huang, Guewha Steven, E-mail: gstevehuang@mail.nctu.edu.tw [Department of Materials Science and Engineering, Institute of Nanotechnology, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China (China)

    2010-05-14

    To assess the ability of gold nanoparticles (GNPs) to act as a size-dependent carrier, a synthetic peptide resembling foot-and-mouth disease virus (FMDV) protein was conjugated to GNPs ranging from 2 to 50 nm in diameter (2, 5, 8, 12, 17, 37, and 50 nm). An extra cysteine was added to the C-terminus of the FMDV peptide (pFMDV) to ensure maximal conjugation to the GNPs, which have a high affinity for sulfhydryl groups. The resultant pFMDV-GNP conjugates were then injected into BALB/c mice. Immunization with pFMDV-keyhole limpet hemocyanin (pFMDV-KLH) conjugate was also performed as a control. Blood was obtained from the mice after 4, 6, 8, and 10 weeks and antibody titers against both pFMDV and the carriers were measured. For the pFMDV-GNP immunization, specific antibodies against the synthetic peptide were detected in the sera of mice injected with 2, 5, 8, 12, and 17 nm pFMDV-GNP conjugates. Maximal antibody binding was noted for GNPs of diameter 8-17 nm. The pFMDV-GNPs induced a three-fold increase in the antibody response compared to the response to pFMDV-KLH. However, sera from either immunized mouse group did not exhibit an antibody response to GNPs, while the sera from pFMDV-KLH-immunized mice presented high levels of binding activity against KLH. Additionally, the uptake of pFMDV-GNP in the spleen was examined by inductively coupled plasma mass spectroscopy (ICP-MS) and transmission electron microscopy (TEM). The quantity of GNPs that accumulated in the spleen correlated to the magnitude of the immune response induced by pFMDV-GNP. In conclusion, we demonstrated the size-dependent immunogenic properties of pFMDV-GNP conjugates. Furthermore, we established that GNPs ranging from 8 to 17 nm in diameter may be ideal for eliciting a focused antibody response against a synthetic pFMDV peptide.

  14. Size-dependent photodegradation of CdS particles deposited onto TiO{sub 2} mesoporous films by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rasin; Will, Geoffrey; Bell, John; Wang Hongxia, E-mail: hx.wang@qut.edu.au [Queensland University of Technology, School of Chemistry, Physics and Mechanical Engineering (Australia)

    2012-09-15

    The particle size, size distribution and photostability of CdS nanoparticles incorporated onto mesoporous TiO{sub 2} films by a successive ionic layer adsorption and reaction (SILAR) method were investigated by Raman spectroscopy, UV-Visible spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). High-resolution TEM indicated that the synthesized CdS particles were hexagonal phase and the particle sizes were less than 5 nm for up to nine SILAR deposition cycles. Quantum size effect was found with the CdS-sensitized TiO{sub 2} films prepared with up to nine SILAR cycles. The band gap of CdS nanoparticles decreased from 2.65 to 2.37 eV with the increase of the SILAR cycles from 1 to 11. The investigation of the stability of the CdS/TiO{sub 2} films in air under illumination (440.6 {mu}W/cm{sup 2}) showed that the photodegradation rate was up to 85 % per day for the sample prepared with three SILAR cycles. XPS analysis indicated that the photodegradation was due to the oxidation of CdS, leading to the transformation from sulphide to sulphate (CdSO{sub 4}). Furthermore, the degradation rate was strongly dependent upon the particle size of CdS. Smaller particles showed faster degradation rate. The size-dependent photo-induced oxidization was rationalized with the variation of size-dependent distribution of surface atoms of CdS particles. Molecular dynamics-based theoretical calculation has indicated that the surface sulphide anion of a large CdS particle such as CdS made with 11 cycles (CdS Multiplication-Sign 11, average particle size = 5.6 nm) accounts for 9.6 % of the material whereas this value is increased to 19.2 % for (CdS Multiplication-Sign 3)-based smaller particles (average particle size = 2.7 nm). The photostability of CdS nanoparticles was significantly enhanced when coated with ZnS particles deposited with four SILAR cycles. The growth mechanism of ZnS upon CdS nanoparticles was discussed.

  15. Strong crystal size effect on deformation twinning

    DEFF Research Database (Denmark)

    Yu, Qian; Shan, Zhi-Wei; Li, Ju

    2010-01-01

    find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation...... plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9, 10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning....... The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence11, 12, 13, 14, 15, 16, 17 relevant for applications....

  16. Self-cavity lasing in optically pumped single crystals of p-sexiphenyl

    Energy Technology Data Exchange (ETDEWEB)

    Yanagi, Hisao, E-mail: yanagi@ms.naist.jp; Tamura, Kenji [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Sasaki, Fumio [Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2016-08-15

    Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.

  17. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations

    Science.gov (United States)

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott

    2017-12-01

    Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely resolved (e.g., molecular dynamics) and coarse-grained (e.g., continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 084115 (2016)], simulated using a particle-based continuum method known as smoothed dissipative particle dynamics. An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.

  18. Development of Advanced Continuum Models that Incorporate Nanomechanical Deformation into Engineering Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jonathan A.; Jones, Reese E.; Templeton, Jeremy Alan; McDowell, David L.; Mayeur, Jason R.; Tucker, Garritt J.; Bammann, Douglas J.; Gao, Huajian

    2008-09-01

    Materials with characteristic structures at nanoscale sizes exhibit significantly different mechani-cal responses from those predicted by conventional, macroscopic continuum theory. For example,nanocrystalline metals display an inverse Hall-Petch effect whereby the strength of the materialdecreases with decreasing grain size. The origin of this effect is believed to be a change in defor-mation mechanisms from dislocation motion across grains and pileup at grain boundaries at mi-croscopic grain sizes to rotation of grains and deformation within grain boundary interface regionsfor nanostructured materials. These rotational defects are represented by the mathematical conceptof disclinations. The ability to capture these effects within continuum theory, thereby connectingnanoscale materials phenomena and macroscale behavior, has eluded the research community.The goal of our project was to develop a consistent theory to model both the evolution ofdisclinations and their kinetics. Additionally, we sought to develop approaches to extract contin-uum mechanical information from nanoscale structure to verify any developed continuum theorythat includes dislocation and disclination behavior. These approaches yield engineering-scale ex-pressions to quantify elastic and inelastic deformation in all varieties of materials, even those thatpossess highly directional bonding within their molecular structures such as liquid crystals, cova-lent ceramics, polymers and biological materials. This level of accuracy is critical for engineeringdesign and thermo-mechanical analysis is performed in micro- and nanosystems. The researchproposed here innovates on how these nanoscale deformation mechanisms should be incorporatedinto a continuum mechanical formulation, and provides the foundation upon which to develop ameans for predicting the performance of advanced engineering materials.4 AcknowledgmentThe authors acknowledge helpful discussions with Farid F. Abraham, Youping Chen, Terry J

  19. Size-dependent effects in supported highly dispersed Fe{sub 2}O{sub 3} catalysts, doped with Pt and Pd

    Energy Technology Data Exchange (ETDEWEB)

    Cherkezova-Zheleva, Zara; Shopska, Maya, E-mail: shopska@ic.bas.bg; Mitov, Ivan; Kadinov, Georgi [Bulgarian Academy of Sciences, Institute of Catalysis (Bulgaria)

    2010-06-15

    Series of Fe and Fe-Me (Me = Pt or Pd) catalyst supported on {gamma}-Al{sub 2}O{sub 3}, TiO{sub 2} (anatase) or diatomite were prepared by the incipient wetness impregnation method. The metal loading was 8 wt.% Fe and 0.7 wt.% noble metal. The preparation and pretreatment conditions of all studied samples were kept to be the same. X-ray diffraction, Moessbauer spectroscopy, X-ray photoelectron spectroscopy and temperature-programmed reduction are used for characterization of the supports and the samples at different steps during their treatment and catalytic tests. The catalytic activity of the samples was tested in the reaction of total benzene oxidation. The physicochemical and catalytic properties of the obtained materials are compared with respect of the different chemical composition, dispersion of used carriers and of the supported phases. Samples with the same composition prepared by mechanical mixing are studied as catalysts for comparison and for clearing up the presence of size-dependent effect, also.

  20. PARTICLE SIZE-DEPENDENT PULVERIZATION OF B4C AND GENERATION OF B4C/STS NANOPARTICLES USED FOR NEUTRON ABSORBING COMPOSITES

    Directory of Open Access Journals (Sweden)

    JAEWOO KIM

    2014-10-01

    Full Text Available Pulverization of two different sized micro-B4C particles (∼10 μm and ∼150 μm was investigated using a STS based high energy ball milling system. Shapes, generation of the impurities, and reduction of the particle size dependent on milling time and initial particle size were investigated using various analytic tools including SEM-EDX, XRD, and ICP-MS. Most of impurity was produced during the early stage of milling, and impurity content became independent on the milling time after the saturation. The degree of particle size reduction was also dependent on the initial B4C size. It was found that the STS nanoparticles produced from milling is strongly bounded with the B4C particles forming the B4C/STS composite particles that can be used as a neutron absorbing nanocomposite. Based on the morphological evolution of the milled particles, a schematic pulverization model for the B4C particles was constructed.

  1. Size-dependent validation of MODIS MCD64A1 burned area over six vegetation types in boreal Eurasia: Large underestimation in croplands.

    Science.gov (United States)

    Zhu, Chunmao; Kobayashi, Hideki; Kanaya, Yugo; Saito, Masahiko

    2017-07-05

    Pollutants emitted from wildfires in boreal Eurasia can be transported to the Arctic, and their subsequent deposition could accelerate global warming. The Moderate Resolution Imaging Spectroradiometer (MODIS) MCD64A1 burned area product is the basis of fire emission products. However, uncertainties due to the "moderate resolution" (500 m) characteristic of the MODIS sensor could be introduced. Here, we present a size-dependent validation of MCD64A1 with reference to higher resolution (better than 30 m) satellite products (Landsat 7 ETM+, RapidEye, WorldView-2, and GeoEye-1) for six ecotypes over 12 regions of boreal Eurasia. We considered the 2012 boreal Eurasia burning season when severe wildfires occurred and when Arctic sea ice extent was historically low. Among the six ecotypes, we found MCD64A1 burned areas comprised only 13% of the reference products in croplands because of inadequate detection of small fires (<100 ha). Our results indicate that over all ecotypes, the actual burned area in boreal Eurasia (15,256 km 2 ) could have been ~16% greater than suggested by MCD64A1 (13,187 km 2 ) when applying the correction factors proposed in this study. This implies the effects of wildfire emissions in boreal Eurasia on Arctic warming could be greater than currently estimated.

  2. Size-Controlled Synthesis of CoFe2O4 Nanoparticles Potential Contrast Agent for MRI and Investigation on Their Size-Dependent Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Fujun Liu

    2013-01-01

    Full Text Available Cobalt ferrite nanoparticles (CoFe2O4 NPs were synthesized by coprecipitation followed by treatments with diluted nitric acid and sodium citrate. Transmission electron microscope (TEM and photon correlation spectroscopy (PCS characterization showed that the size distributions of these nanoparticles were monodisperse and that no aggregation occurred. This colloid showed a long-term stability. Through adjustment of the concentrations of reactants and reaction temperature, the size of the NPs can be tuned from 6 to 80 nm. The size-control mechanism is explained by a nucleation-growth model, where the local concentration of monomers is assumed to decide the size of nuclei, and reaction temperatures influence the growth of nuclei. Magnetization and relaxivity r1,2 measurements showed that the NPs revealed size-dependent magnetization and relaxivity properties, which are explained via a “dead magnetic layer” theory where reductions of saturation magnetization (Ms and r1,2 are assumed to be caused by the demagnetization of surface spins.

  3. Insight into size dependence of C2 oxygenate synthesis from syngas on Cu cluster: The effect of cluster size on the selectivity

    Science.gov (United States)

    Zhang, Riguang; Peng, Mao; Duan, Tian; Wang, Baojun

    2017-06-01

    Size dependence of C2 oxygenate formation from syngas on Cu cluster has been investigated to qualitatively probe into the effect of Cu cluster size on the selectivity of C2 oxygenates, which includes two key steps: CHx and C2 oxygenate formations; Cu13, Cu38 and Cu55 clusters have been employed to model different sizes of Cu cluster. Here, density functional theory method has been performed. Our results show that the adsorption ability of the species involving in C2 oxygenate formation decreases with the increasing of Cu cluster size; Cu cluster size significantly affects the dominant existence forms of CHx(x = 1-3) species and C2 oxygenates. Among three Cu clusters, Cu13 cluster exhibits the highest selectivity toward C2 oxygenates compared to other two clusters, suggesting that Cu cluster size can affect the selectivity toward C2 oxygenates, moreover, the smaller Cu cluster size is, the higher the selectivity of C2 oxygenates is. That is probably related to the high concentration of low-coordinated defect sites on small size Cu cluster, which results in the higher activity and selectivity toward C2 oxygenates. The identification of higher intrinsic selectivity of C2 oxygenates, active sites, and stronger cluster size effect would be valuable for developing more efficient and stable Cu catalyst with higher selectivity toward C2 oxygenate in syngas conversion.

  4. Nanoparticles in liquid crystals, and liquid crystals in nanoparticles

    Science.gov (United States)

    de Pablo, Juan

    2015-03-01

    Liquid crystals are remarkably sensitive to interfacial interactions. Small perturbations at a liquid crystal interface, for example, can be propagated over relatively long length scales, thereby providing the basis for a wide range of applications that rely on amplification of molecular events into macroscopic observables. Our recent research efforts have focused on the reverse phenomenon; that is, we have sought to manipulate the interfacial assembly of nanoparticles or the organization of surface active molecules by controlling the structure of a liquid crystal. This presentation will consist of a review of the basic principles that are responsible for liquid crystal-mediated interactions, followed by demonstrations of those principles in the context of two types of systems. In the first, a liquid crystal is used to direct the assembly of nanoparticles; through a combination of molecular and continuum models, it is found that minute changes in interfacial energy and particle size lead to liquid-crystal induced attractions that can span multiple orders of magnitude. Theoretical predictions are confirmed by experimental observations, which also suggest that LC-mediated assembly provides an effective means for fabrication of plasmonic devices. In the second type of system, the structure of a liquid crystal is controlled by confinement in submicron droplets. The morphology of the liquid crystal in a drop depends on a delicate balance between bulk and interfacial contributions to the free energy; that balance can be easily perturbed by adsorption of analytes or nanoparticles at the interface, thereby providing the basis for development of hierarchical assembly of responsive, anisotropic materials. Theoretical predictions also indicate that the three-dimensional order of a liquid crystal can be projected onto a two-dimensional interface, and give rise to novel nanostructures that are not found in simple isotropic fluids.

  5. Determination of strain concentration by microfluorescent densitometry of X-ray topography: a bridge between microfracture and continuum mechanics

    International Nuclear Information System (INIS)

    Kalman, Z.H.; Chaudhuri, J.; Weng, G.J.; Weissmann, S.

    1980-01-01

    The strain distribution in the vicinity of the notches of a double-notched, elastically bent silicon crystal was determined by measuring the diffracted X-ray intensities. The measurements were carried out on traverse-oscillation topographs of a crystal section extending through both notches. Strain distributions were determined by measuring the local densities of silver deposits (measurements of 'opacities') with a scanning electron microscope. It was shown that both the density range and spatial resolution of X-ray densitometry were larger by an order of magnitude than those of optical densitometry. The strain concentration factors associated with the notches were measured experimentally and calculated by continuum mechanics. The results were in satisfactory agreement. Also, the experimentally found rise of strains, to a maximum in the critical area adjacent to the notch root, followed the trend predicted by continuum mechanics. (Auth.)

  6. Continuum modeling an approach through practical examples

    CERN Document Server

    Muntean, Adrian

    2015-01-01

    This book develops continuum modeling skills and approaches the topic from three sides: (1) derivation of global integral laws together with the associated local differential equations, (2) design of constitutive laws and (3) modeling boundary processes. The focus of this presentation lies on many practical examples covering aspects such as coupled flow, diffusion and reaction in porous media or microwave heating of a pizza, as well as traffic issues in bacterial colonies and energy harvesting from geothermal wells. The target audience comprises primarily graduate students in pure and applied mathematics as well as working practitioners in engineering who are faced by nonstandard rheological topics like those typically arising in the food industry.

  7. Continuum description of avalanches in granular media.

    Energy Technology Data Exchange (ETDEWEB)

    Aranson, I. S.; Tsimring, L. S.

    2000-12-05

    A continuum theory of partially fluidized granular flows is proposed. The theory is based on a combination of the mass and momentum conservation equations with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this model to the dynamics of avalanches in chutes. The theory provides a quantitative description of recent observations of granular flows on rough inclined planes (Daerr and Douady 1999): layer bistability, and the transition from triangular avalanches propagating downhill at small inclination angles to balloon-shaped avalanches also propagating uphill for larger angles.

  8. Histidine in Continuum Electrostatics Protonation State Calculations

    Science.gov (United States)

    Couch, Vernon; Stuchebruckhov, Alexei

    2014-01-01

    A modification to the standard continuum electrostatics approach to calculate protein pKas which allows for the decoupling of histidine tautomers within a two state model is presented. Histidine with four intrinsically coupled protonation states cannot be easily incorporated into a two state formalism because the interaction between the two protonatable sites of the imidazole ring is not purely electrostatic. The presented treatment, based on a single approximation of the interrelation between histidine’s charge states, allows for a natural separation of the two protonatable sites associated with the imidazole ring as well as the inclusion of all protonation states within the calculation. PMID:22072521

  9. On nonlocal modeling in continuum mechanics

    Directory of Open Access Journals (Sweden)

    Adam Martowicz

    2018-01-01

    Full Text Available The objective of the paper is to provide an overview of nonlocal formulations for models of elastic solids. The author presents the physical foundations for nonlocal theories of continuum mechanics, followed by various analytical and numerical techniques. The characteristics and range of practical applications for the presented approaches are discussed. The results of numerical simulations for the selected case studies are provided to demonstrate the properties of the described methods. The paper is illustrated with outcomes from peridynamic analyses. Fatigue and axial stretching were simulated to show the capabilities of the developed numerical tools.

  10. Lyman Continuum Leakage in the Local Universe

    Science.gov (United States)

    Leitherer, Claus; Hernandez, Svea; Lee, Janice; Oey, Sally

    2015-08-01

    Star-forming galaxies are viable candidates for providing the ionizing photon supply accounting for the reionization of the early universe. However, direct determination of the fraction of ionizing photons that can escape the optically thick galaxy ISM is challenging. I will discuss Lyman continuum observations of a sample of massive young star clusters in local galaxies which take advantage of a new capability of HST's Cosmic Origins Spectrograph. The derived photon leakages are compared to values found at high redshift and discussed in the context of cosmological models.

  11. Non-classical continuum mechanics a dictionary

    CERN Document Server

    Maugin, Gérard A

    2017-01-01

    This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, every entry is followed by a cross-reference to other related subject entries in the dictionary.

  12. Theoretical Analysis of a Modified Continuum Model

    Science.gov (United States)

    Ge, Hong-Xia; Wu, Shu-Zhen; Cheng, Rong-Jun; Lo, Siu-ming

    2011-09-01

    Based on the optimal velocity (OV) model, a new car-following model for traffic flow with the consideration of the driver's forecast effect (DFE) was proposed by Tang et al., which can be used to describe some complex traffic phenomena better. Using an asymptotic approximation between the headway and density, we obtain a new macro continuum version of the car-following model with the DFE. The linear stability theory is applied to derive the neutral stability condition. The Korteweg—de Vries equation near the neutral stability line is given by nonlinear analysis and the corresponding solution for the traffic density wave is derived.

  13. Set theory and the continuum hypothesis

    CERN Document Server

    Cohen, Paul J

    2008-01-01

    This exploration of a notorious mathematical problem is the work of the man who discovered the solution. The independence of the continuum hypothesis is the focus of this study by Paul J. Cohen. It presents not only an accessible technical explanation of the author's landmark proof but also a fine introduction to mathematical logic. An emeritus professor of mathematics at Stanford University, Dr. Cohen won two of the most prestigious awards in mathematics: in 1964, he was awarded the American Mathematical Society's Bôcher Prize for analysis; and in 1966, he received the Fields Medal for Logic.

  14. Quasi-bound states in continuum

    International Nuclear Information System (INIS)

    Nakamura, Hiroaki; Hatano, Naomichi; Garmon, Sterling; Petrosky, Tomio

    2007-08-01

    We report the prediction of quasi-bound states (resonant states with very long lifetimes) that occur in the eigenvalue continuum of propagating states for a wide region of parameter space. These quasi-bound states are generated in a quantum wire with two channels and an adatom, when the energy bands of the two channels overlap. A would-be bound state that lays just below the upper energy band is slightly destabilized by the lower energy band and thereby becomes a resonant state with a very long lifetime (a second QBIC lays above the lower energy band). (author)

  15. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  16. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  17. Crystal Engineering

    Indian Academy of Sciences (India)

    Nangia (2002). “Today, research areas under the wide umbrella of crystal engineering include: supramolecular synthesis; nanotechnology; separation science and catalysis; supramolecular materials and devices; polymorphism; cocrystals, crystal structure prediction; drug design and ligand–protein binding.”

  18. Energy and system size dependence of Ξ- and anti Ξ+ production in relativistic heavy-ion collisions at the CERN SPS

    International Nuclear Information System (INIS)

    Mitrovski, M.K.

    2007-01-01

    The strong nuclear force is described by Quantum Chromodynamics (QCD), the parallel field theory to Quantum Electrodynamics (QED) that describes the electromagnetic force. It is propagated by gluons analogously to photons in the electromagnetic force, but unlike photons, which do not carry electric charge, gluons carry color, and they can self-interact. However, as individual quarks have never been observed in nature, it is postulated that the color charge itself is confined, and hence all baryons and mesons must be colorless objects. To study nuclear matter under extreme conditions, it is necessary to create hot and dense nuclear matter in the laboratory. In such conditions the confinement between quarks and gluons is cancelled (deconfinement). This state is characterized with a quasi-free behavior of quarks and gluons. The strange (s) and anti-strange (anti-s) quarks are not contained in the colliding nuclei, but are newly produced and show up in the strange hadrons in the final state. It was suggested that strange particle production is enhanced in the QGP with respect to that in a hadron gas. This enhancement is relative to a collision where a transition to a QGP phase does not take place, such as p+p collisions where the system size is very small. Therefore the energy- and system size dependence is studied to receive a picture about the initial state. In this thesis experimental results on the energy- and system size dependence of Xi hyperon production at the CERN SPS is shown. All measurements were performed with the NA49 detector at the CERN SPS. NA49 took central lead-lead collisions from 20 - 158 AGeV, minimus bias lead-lead collisions at 40 and 158 AGeV, and semi-central silicon-silicon collisions at 158 AGeV. The NA49 experiment features a large acceptance in the forward hemisphere allowing for measurements of Xi rapidity spectra. At the SPS accelerator at CERN Pb+Pb collisions are performed with beam energies to 158 AGeV. The analyzed data sets were

  19. Energy and system size dependence of {xi}{sup -} and anti {xi}{sup +} production in relativistic heavy-ion collisions at the CERN SPS

    Energy Technology Data Exchange (ETDEWEB)

    Mitrovski, M.K.

    2007-11-21

    The strong nuclear force is described by Quantum Chromodynamics (QCD), the parallel field theory to Quantum Electrodynamics (QED) that describes the electromagnetic force. It is propagated by gluons analogously to photons in the electromagnetic force, but unlike photons, which do not carry electric charge, gluons carry color, and they can self-interact. However, as individual quarks have never been observed in nature, it is postulated that the color charge itself is confined, and hence all baryons and mesons must be colorless objects. To study nuclear matter under extreme conditions, it is necessary to create hot and dense nuclear matter in the laboratory. In such conditions the confinement between quarks and gluons is cancelled (deconfinement). This state is characterized with a quasi-free behavior of quarks and gluons. The strange (s) and anti-strange (anti-s) quarks are not contained in the colliding nuclei, but are newly produced and show up in the strange hadrons in the final state. It was suggested that strange particle production is enhanced in the QGP with respect to that in a hadron gas. This enhancement is relative to a collision where a transition to a QGP phase does not take place, such as p+p collisions where the system size is very small. Therefore the energy- and system size dependence is studied to receive a picture about the initial state. In this thesis experimental results on the energy- and system size dependence of Xi hyperon production at the CERN SPS is shown. All measurements were performed with the NA49 detector at the CERN SPS. NA49 took central lead-lead collisions from 20 - 158 AGeV, minimus bias lead-lead collisions at 40 and 158 AGeV, and semi-central silicon-silicon collisions at 158 AGeV. The NA49 experiment features a large acceptance in the forward hemisphere allowing for measurements of Xi rapidity spectra. At the SPS accelerator at CERN Pb+Pb collisions are performed with beam energies to 158 AGeV. The analyzed data sets were

  20. Multiple Temperature Model for Near Continuum Flows

    International Nuclear Information System (INIS)

    XU, Kun; Liu, Hongwei; Jiang, Jianzheng

    2007-01-01

    In the near continuum flow regime, the flow may have different translational temperatures in different directions. It is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the Navier-Stokes equations, lose accuracy. These inaccuracies may be partially due to the single temperature assumption in the Navier-Stokes equations. Here, based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) equation, a multitranslational temperature model is proposed and used in the flow calculations. In order to fix all three translational temperatures, two constraints are additionally proposed to model the energy exchange in different directions. Based on the multiple temperature assumption, the Navier-Stokes relation between the stress and strain is replaced by the temperature relaxation term, and the Navier-Stokes assumption is recovered only in the limiting case when the flow is close to the equilibrium with the same temperature in different directions. In order to validate the current model, both the Couette and Poiseuille flows are studied in the transition flow regime

  1. Continuum deformation of multi-agent systems

    CERN Document Server

    Rastgoftar, Hossein

    2016-01-01

    This monograph presents new algorithms for formation control of multi-agent systems (MAS) based on principles of continuum mechanics. Beginning with an overview of traditional methods, the author then introduces an innovative new approach whereby agents of an MAS are considered as particles in a continuum evolving in ℝn whose desired configuration is required to satisfy an admissible deformation function. The necessary theory and its validation on a mobile-agent-based swarm test bed are considered for two primary tasks: homogeneous transformation of the MAS and deployment of a random distribution of agents on a desired configuration. The framework for this model is based on homogeneous transformations for the evolution of an MAS under no inter-agent communication, local inter-agent communication, and intelligent perception by agents. Different communication protocols for MAS evolution, the robustness of tracking of a desired motion by an MAS evolving in ℝn, and the effect of communication delays in an MAS...

  2. Non-coherent continuum scattering as a line polarization mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Del Pino Alemán, T.; Manso Sainz, R.; Trujillo Bueno, J., E-mail: tanausu@iac.es, E-mail: rsainz@iac.es, E-mail: jtb@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2014-03-20

    Line scattering polarization can be strongly affected by Rayleigh scattering at neutral hydrogen and Thomson scattering at free electrons. Often a depolarization of the continuum results, but the Doppler redistribution produced by the continuum scatterers, which are light (hence, fast), induces more complex interactions between the polarization in spectral lines and in the continuum. Here we formulate and solve the radiative transfer problem of scattering line polarization with non-coherent continuum scattering consistently. The problem is formulated within the spherical tensor representation of atomic and light polarization. The numerical method of solution is a generalization of the Accelerated Lambda Iteration that is applied to both the atomic system and the radiation field. We show that the redistribution of the spectral line radiation due to the non-coherence of the continuum scattering may modify the shape of the emergent fractional linear polarization patterns significantly, even yielding polarization signals above the continuum level in intrinsically unpolarizable lines.

  3. Renal tissue alterations were size-dependent with smaller ones induced more effects and related with time exposure of gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Jarrar Bashir M

    2011-09-01

    interfering with the antioxidant defense mechanism and leading to reactive oxygen species (ROS generation which in turn may induce stress in the renal cells to undergo atrophy and necrosis. The produced alterations were size-dependent with smaller ones induced more affects and related with time exposure of GNPs.

  4. The limits of flexoelectricity in liquid crystals

    OpenAIRE

    F. Castles; S. M. Morris; H. J. Coles

    2011-01-01

    The flexoelectric conversion of mechanical to electrical energy in nematic liquid crystals is investigated using continuum theory. Since the electrical energy produced cannot exceed the mechanical energy supplied, and vice-versa, upper bounds are imposed on the magnitudes of the flexoelectric coefficients in terms of the elastic and dielectric coefficients. For conventional values of the elastic and dielectric coefficients, it is shown that the flexoelectric coefficients may not be larger tha...

  5. Variational continuum multiphase poroelasticity theory and applications

    CERN Document Server

    Serpieri, Roberto

    2017-01-01

    This book collects the theoretical derivation of a recently presented general variational macroscopic continuum theory of multiphase poroelasticity (VMTPM), together with its applications to consolidation and stress partitioning problems of interest in several applicative engineering contexts, such as in geomechanics and biomechanics. The theory is derived based on a purely-variational deduction, rooted in the least-Action principle, by considering a minimal set of kinematic descriptors. The treatment herein considered keeps a specific focus on the derivation of most general medium-independent governing equations. It is shown that VMTPM recovers paradigms of consolidated use in multiphase poroelasticity such as Terzaghi's stress partitioning principle and Biot's equations for wave propagation. In particular, the variational treatment permits the derivation of a general medium-independent stress partitioning law, and the proposed variational theory predicts that the external stress, the fluid pressure, and the...

  6. Polymer quantum mechanics and its continuum limit

    International Nuclear Information System (INIS)

    Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.

    2007-01-01

    A rather nonstandard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation, has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle, and a simple cosmological model

  7. Continuum Mechanics of Beam and Plate Flexure

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    This text has been written and used during the spring of 1995 for a course on flexural mechanics of beams and plates at Aalborg University. The idea has been to concentrate on basic principles of the theories, which are of importance to the modern structural engineer. Today's structural engineer...... must be acquainted with the classic beam and plate theories, when reading manuals and using modern software tools such as the finite element method. Each chapter includes supplementary theory and derivations enabling consultation of the notes also at a later stage of study. A preliminary chapter...... introduces the modern notation used in textbooks and in research today. It further gives an introduction to three-dimensional continuum mechanics of elastic bodies and the related principles of virtual work. The ideas to give the students a basic understanding of the stresses and strains, the equilibrium...

  8. Embodiment design of soft continuum robots

    Directory of Open Access Journals (Sweden)

    Rongjie Kang

    2016-04-01

    Full Text Available This article presents the results of a multidisciplinary project where mechatronic engineers worked alongside biologists to develop a soft robotic arm that captures key features of octopus anatomy and neurophysiology. The concept of embodiment (the dynamic coupling between sensory-motor control, anatomy, materials and environment that allows for the animal to achieve adaptive behaviours is used as a starting point for the design process but tempered by current engineering technologies and approaches. In this article, the embodied design requirements are first discussed from a robotic viewpoint by taking into account real-life engineering limitations; then, the motor control schemes inspired by octopus nervous system are investigated. Finally, the mechanical and control design of a prototype is presented that appropriately blends bio-inspiration and engineering limitations. Simulated and experimental results show that the developed continuum robotic arm is able to reproduce octopus-like motions for bending, reaching and grasping.

  9. Continuum Reverberation Mapping of AGN Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Fausnaugh, Michael M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA (United States); Peterson, Bradley M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH (United States); Space Telescope Science Institute, Baltimore, MD (United States); Starkey, David A. [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Horne, Keith, E-mail: faus@mit.edu [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Collaboration: the AGN STORM Collaboration

    2017-12-05

    We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011), which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3–3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T ~ R{sup −3/4} expected for a standard thin disk. Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminosity AGN.

  10. A Threshold Continuum for Aeolian Sand Transport

    Science.gov (United States)

    Swann, C.; Ewing, R. C.; Sherman, D. J.

    2015-12-01

    The threshold of motion for aeolian sand transport marks the initial entrainment of sand particles by the force of the wind. This is typically defined and modeled as a singular wind speed for a given grain size and is based on field and laboratory experimental data. However, the definition of threshold varies significantly between these empirical models, largely because the definition is based on visual-observations of initial grain movement. For example, in his seminal experiments, Bagnold defined threshold of motion when he observed that 100% of the bed was in motion. Others have used 50% and lesser values. Differences in threshold models, in turn, result is large errors in predicting the fluxes associated with sand and dust transport. Here we use a wind tunnel and novel sediment trap to capture the fractions of sand in creep, reptation and saltation at Earth and Mars pressures and show that the threshold of motion for aeolian sand transport is best defined as a continuum in which grains progress through stages defined by the proportion of grains in creep and saltation. We propose the use of scale dependent thresholds modeled by distinct probability distribution functions that differentiate the threshold based on micro to macro scale applications. For example, a geologic timescale application corresponds to a threshold when 100% of the bed in motion whereas a sub-second application corresponds to a threshold when a single particle is set in motion. We provide quantitative measurements (number and mode of particle movement) corresponding to visual observations, percent of bed in motion and degrees of transport intermittency for Earth and Mars. Understanding transport as a continuum provides a basis for revaluating sand transport thresholds on Earth, Mars and Titan.

  11. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  12. Continuum Damage Mechanics A Continuum Mechanics Approach to the Analysis of Damage and Fracture

    CERN Document Server

    Murakami, Sumio

    2012-01-01

    Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry.  This, in turn, has caused more interest in continuum damage mechanics and its engineering applications.   This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook.   The book consists of two parts and an appendix.  Part I  is concerned with the foundation of continuum damage mechanics.  Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2.  In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application ...

  13. Points-Based Safe Path Planning of Continuum Robots

    Directory of Open Access Journals (Sweden)

    Khuram Shahzad

    2015-07-01

    Full Text Available Continuum robots exhibit great potential in a number of challenging applications where traditional rigid link robots pose certain limitations, e.g., working in unstructured environments. In order to enable the usage of continuum robots in safety-critical applications, such as surgery and nuclear decontamination, it is extremely important to ensure a safe path for the robot's movement. Existing algorithms for continuum robot path planning have certain limitations that need to be addressed. These include the fact that none of the algorithms provide safety assurance parameters and control for path planning. They are computationally expensive, applicable to a specific type of continuum robots, and mostly they do not incorporate design and kinematics constraints. In this paper, we propose a points-based path planning (PoPP algorithm for continuum robots that computes the path by imposing safety constraints and improves upon the limitations of existing approaches. In the algorithm, we exploit the constant curvature-bending property of continuum robots in their path planning process. The algorithm is computationally efficient and provides a good tradeoff between accuracy and efficiency that can be implemented to enable the safety-critical application of continuum robots. This algorithm also provides information regarding path volume and flexibility in movement. Simulation results confirm that the algorithm possesses promising potential for all types of continuum robots (following the constant curvature-bending property. We believe that this effectively balances the desired safety and efficiency requirements.

  14. The urban watershed continuum: evolving spatial and temporal dimensions

    Science.gov (United States)

    Sujay S. Kaushal; Kenneth T. Belt

    2012-01-01

    Urban ecosystems are constantly evolving, and they are expected to change in both space and time with active management or degradation. An urban watershed continuum framework recognizes a continuum of engineered and natural hydrologic flowpaths that expands hydrologic networks in ways that are seldom considered. It recognizes that the nature of hydrologic connectivity...

  15. Bursts and shocks in a continuum shell model

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Bohr, Tomas; Jensen, M.H.

    1998-01-01

    We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the right...

  16. Teaching Continuum Mechanics in a Mechanical Engineering Program

    Science.gov (United States)

    Liu, Yucheng

    2011-01-01

    This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…

  17. Shape Modeling of a Concentric-tube Continuum Robot

    DEFF Research Database (Denmark)

    Bai, Shaoping; Xing, Charles Chuhao

    2012-01-01

    Concentric-tube continuum robots feature with simple and compact structures and have a great potential in medical applications. The paper is concerned with the shape modeling of a type of concentric-tube continuum robot built with a collection of super-elastic NiTiNol tubes. The mechanics...

  18. Continuum Thinking and the Contexts of Personal Information Management

    Science.gov (United States)

    Huvila, Isto; Eriksen, Jon; Häusner, Eva-Maria; Jansson, Ina-Maria

    2014-01-01

    Introduction: Recent personal information management literature has underlined the significance of the contextuality of personal information and its use. The present article discusses the applicability of the records continuum model and its generalisation, continuum thinking, as a theoretical framework for explicating the overlap and evolution of…

  19. Continuum of Counseling Goals: A Framework for Differentiating Counseling Strategies.

    Science.gov (United States)

    Bruce, Paul

    1984-01-01

    Presents counseling goals in a developmental continuum similar in concept to Maslow's hierarchy of needs. Discusses ego development goals, socialization goals, developmental goals, self-esteem goals, and self-realization goals and describes characteristics and implications of the continuum. (JAC)

  20. Particle size dependence of oxygen evolution reaction on nanocrystalline RuO.sub.2./sub. and Ru.sub.0.8./sub.Co.sub.0.2./sub.O.sub.2-x./sub.

    Czech Academy of Sciences Publication Activity Database

    Jirkovský, Jakub; Makarova, Marina; Krtil, Petr

    2006-01-01

    Roč. 8, č. 9 (2006), s. 1417-1422 ISSN 1388-2481 R&D Projects: GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503 Keywords : Ruthenium dioxide * electroanalysis * size dependence * DEMS Subject RIV: CG - Electrochemistry Impact factor: 3.484, year: 2006

  1. Size dependence of silica nanospheres embedded in 385 nm ultraviolet light-emitting diodes on a far-field emission pattern.

    Science.gov (United States)

    Park, Young Jae; Han, Nam; Ryu, Beo Deul; Han, Min; Ko, Kang Bok; Cuong, Tran Viet; Cho, Jaehee; Suh, Eun-Kyung; Hong, Chang-Hee

    2014-10-20

    We demonstrate that the use of silica nanospheres (SNs) with sizes close to the emission wavelength of light-emitting diodes (LEDs) can enhance the light output power and manipulate the far-field emission pattern. Near-ultraviolet (NUV)-LEDs grown on a patterned sapphire substrate embedded with 300 nm SNs show a three times higher light output power than that without SNs, when measured through the top side. For far-field emission measurements, the LEDs embedded with 300 nm SNs show the significant increase of front emission due to the improved crystal quality of epitaxial films as well as the increase of Mie scattering effect of SNs. These experimental results indicate the important role of the size of embedded SNs in enhancing the light output power for NUV-LEDs.

  2. Crystal Data

    Science.gov (United States)

    SRD 3 NIST Crystal Data (PC database for purchase)   NIST Crystal Data contains chemical, physical, and crystallographic information useful to characterize more than 237,671 inorganic and organic crystalline materials. The data include the standard cell parameters, cell volume, space group number and symbol, calculated density, chemical formula, chemical name, and classification by chemical type.

  3. Buckling of graded coatings: A continuum model

    Science.gov (United States)

    Chiu, Tz-Cheng

    2000-12-01

    Requirements for the protection of hot section components in many high temperature applications such as earth-to-orbit winged planes and advanced turbine systems have led to the application of thermal barrier coatings (TBCs) that utilize ceramic coatings on metal substrates. An alternative concept to homogeneous ceramic coatings is the functionally graded materials (FGM) in which the composition of the coating is intentionally graded to improve the bonding strength and to reduce the magnitude of the residual and thermal stresses. A widely observed failure mode in such layered systems is known to be interface cracking that leads to spallation fracture. In most cases, the final stage of the failure process for a thin coating appears to be due to buckling instability under thermally or mechanically induced compressive stress. The objective of this study is to develop a solution to the buckling instability problem by using continuum elasticity rather than a structural mechanics approach. The emphasis in the solution will be on the investigation of the effect of material inhomogeneity in graded coatings on the instability load, the postbuckling behavior, and fracture mechanics parameters such as the stress intensity factors and strain energy release rate. In this analysis, a nonlinear continuum theory is employed to examine the interface crack problem. The analytical solution of the instability problem permits the study of the effect of material inhomogeneity upon the inception of buckling and establishes benchmark results for the numerical solutions of related problems. To study the postbuckling behavior and to calculate the stress intensity factors and strain energy release rate a geometrically nonlinear finite element procedure with enriched crack-tip element is developed. Both plane strain and axisymmetric interface crack problems in TBCs with either homogeneous or graded coating are then considered by using the finite element procedure. It is assumed that the

  4. Kinetics of barium sulphate reaction crystallization in crystallizers with internal circulation

    Directory of Open Access Journals (Sweden)

    J. Koralewska

    2008-06-01

    Full Text Available Kinetic calculation results describing the observed nucleation and growth rates of barium sulphate crystals precipitated in an integrated reaction-crystallization process in a barium sulphate-ammonium chloride-water system are presented and analyzed. The scope of experiments included two continuous model DTM-type crystallizers (Draft Tube Magma with internal circulation of the suspension forced by a liquid jet-pump device responsible for stable and intensive enough ascending/descending flow of BaSO4 crystal magma in a mixing chamber. For comparison purposes the experimental data corresponding to a continuous DT (Draft Tube crystallizer with propeller agitator are presented and discussed. The various types of laboratory crystallizers used were fed with concentrated water solution of barium chloride (of 10 or 24 mass % and - in a stoichiometric proportion - crystalline ammonium sulphate, assuming isothermal (348 K and hydrodynamic (average residence time of suspension in a crystallizer: 900 s process conditions. The observed nucleation and growth rates of barium sulphate crystals were estimated on the basis of crystal size distributions (CSDs using convenient calculation scheme derived for an MSMPR (Mixed Suspension Mixed Product Removal model approach. Considering the experimental population density distribution courses, a size-dependent growth (SDG phenomenon was taken into account in the kinetic calculations. Five SDG kinetic models recommended in the accessible literature were used for kinetic parameter values estimation. It was proved statistically, that Rojkowski’s two SDG models (hyperbolic and exponential best suit for our own experimental data description. The experimental data presented can be practically applied for improving the constructions of liquid jet-pump DTM crystallizers recommended for reaction crystallization of sparingly soluble inorganic salts (especially for high concentrations of reaction substrates in the modern

  5. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    Science.gov (United States)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  6. Optical continuum generation on a silicon chip

    Science.gov (United States)

    Jalali, Bahram; Boyraz, Ozdal; Koonath, Prakash; Raghunathan, Varun; Indukuri, Tejaswi; Dimitropoulos, Dimitri

    2005-08-01

    Although the Raman effect is nearly two orders of magnitude stronger than the electronic Kerr nonlinearity in silicon, under pulsed operation regime where the pulse width is shorter than the phonon response time, Raman effect is suppressed and Kerr nonlinearity dominates. Continuum generation, made possible by the non-resonant Kerr nonlinearity, offers a technologically and economically appealing path to WDM communication at the inter-chip or intra-chip levels. We have studied this phenomenon experimentally and theoretically. Experimentally, a 2 fold spectral broadening is obtained by launching ~4ps optical pulses with 2.2GW/cm2 peak power into a conventional silicon waveguide. Theoretical calculations, that include the effect of two-photon-absorption, free carrier absorption and refractive index change indicate that up to >30 times spectral broadening is achievable in an optimized device. The broadening is due to self phase modulation and saturates due to two photon absorption. Additionally, we find that free carrier dynamics also contributes to the spectral broadening and cause the overall spectrum to be asymmetric with respect to the pump wavelength.

  7. Multigrid treatment of implicit continuum diffusion

    Science.gov (United States)

    Francisquez, Manaure; Zhu, Ben; Rogers, Barrett

    2017-10-01

    Implicit treatment of diffusive terms of various differential orders common in continuum mechanics modeling, such as computational fluid dynamics, is investigated with spectral and multigrid algorithms in non-periodic 2D domains. In doubly periodic time dependent problems these terms can be efficiently and implicitly handled by spectral methods, but in non-periodic systems solved with distributed memory parallel computing and 2D domain decomposition, this efficiency is lost for large numbers of processors. We built and present here a multigrid algorithm for these types of problems which outperforms a spectral solution that employs the highly optimized FFTW library. This multigrid algorithm is not only suitable for high performance computing but may also be able to efficiently treat implicit diffusion of arbitrary order by introducing auxiliary equations of lower order. We test these solvers for fourth and sixth order diffusion with idealized harmonic test functions as well as a turbulent 2D magnetohydrodynamic simulation. It is also shown that an anisotropic operator without cross-terms can improve model accuracy and speed, and we examine the impact that the various diffusion operators have on the energy, the enstrophy, and the qualitative aspect of a simulation. This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).

  8. Mean colors of stellar flare continuum

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1976-01-01

    Shmeleva and Syrovatskii have shown that under certain circumstances the temperature structure in the hotter regions (T>2 x 10 4 K) of a solar flare is characterized by two universal functions: one for constant density conditions, the second for constant pressure conditions. Here we show that the U--B, B--V colors of optically thin thermal bremsstrahlung emitted by both of these temperature structures are consistent with the mean colors of stellar flares near maximum light and also with the observed evolution of flare light in the two-color diagram during flare cooling. We suggest that the transition which occurs in the character of stellar flare light from mostly continuum emission near flare maximum to mostly line emission later in the flare is related to the transition which must occur from the constant density regime to the constant pressure regime on a time scale of order 1--2 minutes. The two types of flares (spike flares and slow flares) identified by Moffett are ascribed to these two different regimes. The flare light-curve model described here resembles in some respects a model previously proposed by Andrews, but there are differences in detail

  9. Diagnostic Reasoning across the Medical Education Continuum

    Directory of Open Access Journals (Sweden)

    C. Scott Smith

    2014-07-01

    Full Text Available We aimed to study linguistic and non-linguistic elements of diagnostic reasoning across the continuum of medical education. We performed semi-structured interviews of premedical students, first year medical students, third year medical students, second year internal medicine residents, and experienced faculty (ten each as they diagnosed three common causes of dyspnea. A second observer recorded emotional tone. All interviews were digitally recorded and blinded transcripts were created. Propositional analysis and concept mapping were performed. Grounded theory was used to identify salient categories and transcripts were scored with these categories. Transcripts were then unblinded. Systematic differences in propositional structure, number of concept connections, distribution of grounded theory categories, episodic and semantic memories, and emotional tone were identified. Summary concept maps were created and grounded theory concepts were explored for each learning level. We identified three major findings: (1 The “apprentice effect” in novices (high stress and low narrative competence; (2 logistic concept growth in intermediates; and (3 a cognitive state transition (between analytical and intuitive approaches in experts. These findings warrant further study and comparison.

  10. Performance-based shape optimization of continuum structures

    International Nuclear Information System (INIS)

    Liang Qingquan

    2010-01-01

    This paper presents a performance-based optimization (PBO) method for optimal shape design of continuum structures with stiffness constraints. Performance-based design concepts are incorporated in the shape optimization theory to achieve optimal designs. In the PBO method, the traditional shape optimization problem of minimizing the weight of a continuum structure with displacement or mean compliance constraints is transformed to the problem of maximizing the performance of the structure. The optimal shape of a continuum structure is obtained by gradually eliminating inefficient finite elements from the structure until its performance is maximized. Performance indices are employed to monitor the performance of optimized shapes in an optimization process. Performance-based optimality criteria are incorporated in the PBO method to identify the optimum from the optimization process. The PBO method is used to produce optimal shapes of plane stress continuum structures and plates in bending. Benchmark numerical results are provided to demonstrate the effectiveness of the PBO method for generating the maximum stiffness shape design of continuum structures. It is shown that the PBO method developed overcomes the limitations of traditional shape optimization methods in optimal design of continuum structures. Performance-based optimality criteria presented can be incorporated in any shape and topology optimization methods to obtain optimal designs of continuum structures.

  11. Equivalent-Continuum Modeling With Application to Carbon Nanotubes

    Science.gov (United States)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2002-01-01

    A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.

  12. Experimental observation of optical bound states in the continuum.

    Science.gov (United States)

    Plotnik, Yonatan; Peleg, Or; Dreisow, Felix; Heinrich, Matthias; Nolte, Stefan; Szameit, Alexander; Segev, Mordechai

    2011-10-28

    We present the experimental observation of bound states in the continuum. Our experiments are carried out in an optical waveguide array structure, where the bound state (guided mode) is decoupled from the continuum by virtue of symmetry only. We demonstrate that breaking the symmetry of the system couples this special bound state to continuum states, leading to radiative losses. These experiments demonstrate ideas initially proposed by von Neumann and Wigner in 1929 and offer new possibilities for integrated optical elements and analogous realizations with cold atoms and optical trapping of particles.

  13. SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.

    1998-09-01

    This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.

  14. New Cable-Driven Continuum Robot with Only One Actuator

    OpenAIRE

    Jiang, Zhongning; Luo, Yuanxin; Jin, Yan

    2018-01-01

    This paper presents a new cable-driven continuum robot by using the time-based control method with only one actuator. The continuum robot consists of 3 sections, and each section has 2-DOFs. It is driven by a constant speed motor connected to a series of electromagnetic clutches. the clutches will be activated for providing the motion of the cables. A new time-based control method named 'Time Width Modulation' is proposed to control the continuum robot. Kinematics and workspace analyses are c...

  15. Elementary Continuum Mechanics for Everyone - And Some More

    DEFF Research Database (Denmark)

    Byskov, Esben

    Quite trivially, Continuum mechanics per se deals with the description of deformations of three-dimensional continua i.e. models whose properties are independent of scale in that the continuum does not possess a structure. Thus, continuum mechanics does not try to model the atomic structure...... of the involved materials- perhaps not even the crystalline or spongy, or lumpy structure- but offers a "smeared-out" version of the real world. Also, the desired description depends very much on the needs of the dicipline in question....

  16. Elementary Continuum Mechanics for Everyone - and Some More

    DEFF Research Database (Denmark)

    Byskov, Esben

    Quite trivially, Continuum mechanics per se deals with the description of deformations of three-dimensional continua i.e. models whose properties are independent of scale in that the continuum does not possess a structure. Thus, continuum mechanics does not try to model the atomic structure...... of the involved materials- perhaps not even the crystalline or spongy, or lumpy structure- but offers a "smeared-out" version of the real world. Also, the desired description depends very much on the needs of the discipline in question....

  17. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium.......We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  18. Excitons and continuum transitions of rubidium halides in the 10 - 26 eV photon energy range at low temperatures

    International Nuclear Information System (INIS)

    Zierau, W.; Skibowski, M.

    1975-04-01

    The reflection spectra of RbCl, RbBr and RbI single crystals were investigated for temperatures between 300 K and 8 K in order to study excitations from the Rb + 4p level (> approximately 16 eV) as well as the higher continuum transitions from the valence band (> approximately 10 eV). The measurements were performed by use of the synchrotron radiation of DESY. The sensitivity for detecting details of the fine structure was increased by simultaneously measuring the wavelength modulated spectra. The experimental procedure is briefly described. New spectral features have been resolved for the exciton multiplets from the Rb + 4p level. They are discussed in light of the predictions of a recent model for the Rb + 4p excitons based on ligand field theory. The continuum transitions associated with the valence band and the Rb + 4p level show characteristic structure which is compared with calculations of the joint density of states. (orig.) [de

  19. The Hurricane-Flood-Landslide Continuum

    Science.gov (United States)

    Negri, Andrew J.; Burkardt, Nina; Golden, Joseph H.; Halverson, Jeffrey B.; Huffman, George J.; Larsen, Matthew C.; McGinley, John A.; Updike, Randall G.; Verdin, James P.; Wieczorek, Gerald F.

    2005-01-01

    In August 2004, representatives from NOAA, NASA, the USGS, and other government agencies convened in San Juan, Puerto Rim for a workshop to discuss a proposed research project called the Hurricane-Flood-Landslide Continuum (HFLC). The essence of the HFLC is to develop and integrate tools across disciplines to enable the issuance of regional guidance products for floods and landslides associated with major tropical rain systems, with sufficient lead time that local emergency managers can protect vulnerable populations and infrastructure. All three lead agencies are independently developing precipitation-flood-debris flow forecasting technologies, and all have a history of work on natural hazards both domestically and overseas. NOM has the capability to provide tracking and prediction of storm rainfall, trajectory and landfall and is developing flood probability and magnTtude capabilities. The USGS has the capability to evaluate the ambient stability of natural and man-made landforms, to assess landslide susceptibilities for those landforms, and to establish probabilities for initiation of landslides and debris flows. Additionally, the USGS has well-developed operational capacity for real-time monitoring and reporting of streamflow across distributed networks of automated gaging stations (http://water.usgs.gov/waterwatch/). NASA has the capability to provide sophisticated algorithms for satellite remote sensing of precipitation, land use, and in the future, soil moisture. The Workshop sought to initiate discussion among three agencies regarding their specific and highly complimentary capabilities. The fundamental goal of the Workshop was to establish a framework that will leverage the strengths of each agency. Once a prototype system is developed for example, in relatively data-rich Puerto Rim, it could be adapted for use in data-poor, low-infrastructure regions such as the Dominican Republic or Haiti. This paper provides an overview of the Workshop s goals

  20. Unveiling the Lyman continuum morphology with HST

    Science.gov (United States)

    Vanzella, Eros

    2015-10-01

    One of the key questions in observational cosmology is the identification of the sources responsible for cosmic reionization and for keeping the IGM ionized at all times. The general consensus is that a population of faint low-mass galaxies must be responsible for the bulk of the ionizing photons. However, attempts at identifying the ionizing Lyman continuum radiation (LyC) leaking from the individual galaxies have so far been largely unsuccessful at any redshift. What controls the escape of ionizing radiation from star-forming galaxies? And at which level? We propose here to observe the LyC domain of the only two known galaxies, one at z=3.213 and the other at z=3.795, for which a leakage of ionizing radiation has already been detected, while other observed properties (UV and near-infrared spectra) are also consistent with a high LyC escape fraction. Goal of the observations is to determine where the ionizing radiation is escaping from the galaxies, i.e. the central regions or the periphery, and whether the emission is diffuse, patchy or unresolved. This will help identify the conditions that allow ionizing photons to leave the galaxies and to identify possible links with other properties of these galaxies. Only HST has the angular resolution to allow imaging of the LyC emission at the sub-kpc scales and characterize its spatial distribution relative to the non-ionizing UV emission (from existing GOODS+CANDELS images), as well as other wavelengths. This project is currently the unique concrete possibility to conduct a direct empirical investigation of the physical conditions regulating the escaping ionizing radiation.

  1. Fano resonance in anodic aluminum oxide based photonic crystals.

    Science.gov (United States)

    Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De

    2014-01-08

    Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.

  2. Evaluation the Effectiveness of the US Navy Leadership Continuum Curricula

    National Research Council Canada - National Science Library

    Duncan-White, Delores

    1997-01-01

    .... A Leadership Continuum Survey Questionnaire was developed to identified and analyze the student's attitudes concerning the effectiveness of the knowledge and skills taught in the course and how these...

  3. Links between annual, Milankovitch and continuum temperature variability.

    Science.gov (United States)

    Huybers, Peter; Curry, William

    2006-05-18

    Climate variability exists at all timescales-and climatic processes are intimately coupled, so that understanding variability at any one timescale requires some understanding of the whole. Records of the Earth's surface temperature illustrate this interdependence, having a continuum of variability following a power-law scaling. But although specific modes of interannual variability are relatively well understood, the general controls on continuum variability are uncertain and usually described as purely stochastic processes. Here we show that power-law relationships of surface temperature variability scale with annual and Milankovitch-period (23,000- and 41,000-year) cycles. The annual cycle corresponds to scaling at monthly to decadal periods, while millennial and longer periods are tied to the Milankovitch cycles. Thus the annual, Milankovitch and continuum temperature variability together represent the response to deterministic insolation forcing. The identification of a deterministic control on the continuum provides insight into the mechanisms governing interannual and longer-period climate variability.

  4. Asymmetric continuum extreme processes in solids and fluids

    CERN Document Server

    Teisseyre, Roman

    2014-01-01

    This book deals with a class of basic deformations in asymmetric continuum theory. It describes molecular deformations and transport velocities in fluids, strain deformations in solids as well as the molecular transport, important in fracture processes.

  5. Validation of a Perturbed-Continuum Model for Shear Localization

    National Research Council Canada - National Science Library

    Iyer, K; Schoenfeld, S; Casem, D; Wright, T

    2004-01-01

    .... Experiments and continuum analysis (Wright, 2002) have shown sudden stress collapse via shear localization may be related to velocity or strain rate perturbations in the vicinity of shear band initiation...

  6. Experiences along the HIV care continuum: perspectives of Kenyan ...

    African Journals Online (AJOL)

    Experiences along the HIV care continuum: perspectives of Kenyan adolescents and caregivers. Winnie K Luseno, Bonita Iritani, Susannah Zietz, Suzanne Maman, Isabella I Mbai, Florence Otieno, Barrack Ongili, Denise Dion Hallfors ...

  7. A continuum mechanics analysis of shear characterisation methods

    NARCIS (Netherlands)

    Akkerman, Remko

    2018-01-01

    The shear response of fabrics and fabric reinforced materials is primarily characterised by means of Picture Frame and Bias Extension experiments. Normalisation methods have been proposed earlier to enable comparison between different measurement results. Here, a continuum mechanics based analysis

  8. IUTAM-Symposium on The Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications

    CERN Document Server

    1968-01-01

    5 The symposium was held in Freudenstadt from 28\\h to 31 \\ ofAugust st nd 1967 and in Stuttgart from 1 to 2 of September 1967. The proposal to hold this symposium originated with the German Society of Applied Mathematics and Mechanics (GAMM) late in 1964 and was examined by a committee of IUTAM especially appointed for this purpose. The basis of this examination was a report in which the present situation in the field and the possible aims of the symposium were surveyed. Briefly, the aims of the symposium were stated to be 1. the unification of the various approaches developed in recent years with the aim of penetrating into the microscopic world of matter by means of continuum theories; 2. the bridging of the gap between microscopic (or atomic) research on mechanics on one hand, and the phenomenological (or continuum mechanical) approach on the other hand; 3. the physical interpretation and the relation to actual material behaviour of the quantities and laws introduced into the new theories, together with ap...

  9. Large-Nc continuum reduction and the thermodynamics of QCD.

    Science.gov (United States)

    Cohen, Thomas D

    2004-11-12

    It is noted that if large-N(c) continuum reduction applies to an observable, then that observable is independent of temperature for all temperatures below some critical value. This fact, plus the fact that mesons and glueballs are weakly interacting at large N(c), is used as the basis for a derivation of large-N(c) continuum reduction for the chiral condensate. The structure of this derivation is quite general and can be extended to a wide class of observables.

  10. Renormalization group and continuum limit of quantum cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Zimboras, Zoltan [Quantum Information Theory Group, ISI, Torino (Italy)

    2012-07-01

    We develop a renormalization group formalism for quantum cellular automata (reminiscent of the algebraic renormalization group of Buchholz and Verch). Using this formalism, we can define the continuum limit for certain automata. As a particular example, we show that the continuum limit of the so-called ''Glider Clifford cellular automaton'' is the 1+1 dimensional relativistic QFT of free Majorana fermions.

  11. Continuum strong QCD: Confinement and dynamical chiral symmetry breaking

    International Nuclear Information System (INIS)

    Continuum strong QCD is the application of models and continuum quantum field theory to the study of phenomena in hadronic physics, which includes; e.g., the spectrum of QCD bound states and their interactions. Herein the author provides a Dyson-Schwinger equation perspective, focusing on qualitative aspects of confinement and dynamical chiral symmetry breaking in cold, sparse QCD, and also elucidating consequences of the axial-vector Ward-Takahashi identity and features of the heavy-quark limit

  12. Identification of a transcriptional signature for the wound healing continuum

    OpenAIRE

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Mi...

  13. Design Gradient Descent Optimal Sliding Mode Control of Continuum Robots

    Directory of Open Access Journals (Sweden)

    Farzin Piltan

    2012-08-01

    Full Text Available In this research, a new approach for gradient descent optimal sliding mode controller for continuum robots is proposed. Based on the new dynamic models developed, a novel technique for nonlinear control of continuum manipulators to be employed in various situations has also been proposed and developed. A section of a continuum arm is modeled using lumped model elements (masses, springs and dampers and control by nonlinear methodology (sliding mode method and optimization the sliding surface slope by gradient descent method. It is shown that this type of control methodology, although used to a certain model, can be used to conveniently control the dynamics of the arm with suitable tradeoff in accuracy of modeling. This relatively controller is more plausible to implement in an actual real-time when compared to other techniques of nonlinear controller methodology of continuum arms. Principles of sliding mode methodology is based on derive the sliding surface slope and nonlinear dynamic model and applied in the system. Based on the gradient descent optimization method, the sliding surface slope and gain updating factor has been developed in certain and partly uncertain continuum robots. This methodology is represented in certain and uncertain area whose only optimization for certain area and test this optimization for uncertainty. The new techniques proposed and methodologies adopted in this paper supported by MATLAB/SIMULINK results represent a significant contribution to the field of design an optimized nonlinear sliding mode controller for continuum robots.

  14. Continuum mechanical and computational aspects of phase field elasticity as applied to phase transitions and fracture. Final report: DE-FG02-97ER25318, June 1, 1997 - May 31, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Fried, Eliot; Gurtin, Morton E.

    2001-04-20

    The central focus of the research carried out under this grant is the application of continuum mechanics to materials science, specifically to the macroscopic characterization of material behavior at small length scales. Specifically, research was carried out in the following general areas: dislocations in solids; point defects in liquid crystals; dynamic fracture; diffusional phase transitions in deformable solids; incoherent phase interfaces; phase field simulations of twinning and coarsening in solids; crystal plasticity; microforce theories for diffusion and recrystallization; granular flow.

  15. Nucleation and crystal growth in batch crystallizers

    NARCIS (Netherlands)

    Janse, A.H.

    1977-01-01

    The aim of the present work is to gain knowledge of the mechanism of formation of the crystal size distribution in batch crystallizers in order to give directives for design and operation of batch crystallizers. The crystal size distribution is important for the separation of crystals and mother

  16. Helium crystals

    International Nuclear Information System (INIS)

    Lipson, S.G.

    1987-01-01

    Hexagonal close-packed helium crystals in equilibrium with superfluid have been found to be one of the few systems in which an anisotropic solid comes into true thermodynamic equilibrium with its melt. The discovery of roughening transitions at the liquid-solid interface have shown this system to be ideal for the study of the statistical mechanics of interface structures. We describe the effect of roughening on the shape and growth of macroscopic crystals from both the theoretical and experimental points of view. (author)

  17. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    Science.gov (United States)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning

  18. Crystal structure mediates mode of cell death in TiO{sub 2} nanotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Braydich-Stolle, Laura K.; Schaeublin, Nicole M.; Murdock, Richard C. [Wright-Patterson AFB, Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory (United States); Jiang, Jingkun; Biswas, Pratim [Washington University in St. Louis, Department of Energy, Environmental, and Chemical Engineering (United States); Schlager, John J.; Hussain, Saber M., E-mail: Saber.Hussain@wpafb.af.mi [Wright-Patterson AFB, Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory (United States)

    2009-08-15

    Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO{sub 2} have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO{sub 2} toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO{sub 2} nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO{sub 2} nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO{sub 2} nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

  19. Crystal structure mediates mode of cell death in TiO2 nanotoxicity

    International Nuclear Information System (INIS)

    Braydich-Stolle, Laura K.; Schaeublin, Nicole M.; Murdock, Richard C.; Jiang, Jingkun; Biswas, Pratim; Schlager, John J.; Hussain, Saber M.

    2009-01-01

    Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO 2 have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO 2 toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO 2 nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO 2 nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO 2 nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

  20. ALMA BAND 8 CONTINUUM EMISSION FROM ORION SOURCE I

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Tomoya; Matsumoto, Naoko [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka-shi, Tokyo 181-8588 (Japan); Machida, Masahiro N.; Matsushita, Yuko [Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395 (Japan); Motogi, Kazuhito; Honma, Mareki [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Hoshigaoka2-12, Mizusawa-ku, Oshu-shi, Iwate 023-0861 (Japan); Kim, Mi Kyoung [Korea Astronomy and Space Science Institute, Hwaam-dong 61-1, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Burns, Ross A., E-mail: tomoya.hirota@nao.ac.jp [Joint Institute for VLBI in Europe, Postbus 2, 7990 AA, Dwingeloo (Netherlands)

    2016-12-20

    We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest–southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperature is evaluated to be 700–800 K. It is much lower than that in the case of proton–electron or H{sup −} free–free radiations. Our data are consistent with the latest ALMA results by Plambeck and Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.

  1. Reducing Actuator Requirements in Continuum Robots Through Optimized Cable Routing.

    Science.gov (United States)

    Case, Jennifer C; White, Edward L; SunSpiral, Vytas; Kramer-Bottiglio, Rebecca

    2018-02-01

    Continuum manipulators offer many advantages compared to their rigid-linked counterparts, such as increased degrees of freedom and workspace volume. Inspired by biological systems, such as elephant trunks and octopus tentacles, many continuum manipulators are made of multiple segments that allow large-scale deformations to be distributed throughout the body. Most continuum manipulators currently control each segment individually. For example, a planar cable-driven system is typically controlled by a pair of cables for each segment, which implies two actuators per segment. In this article, we demonstrate how highly coupled crossing cable configurations can reduce both actuator count and actuator torque requirements in a planar continuum manipulator, while maintaining workspace reachability and manipulability. We achieve highly coupled actuation by allowing cables to cross through the manipulator to create new cable configurations. We further derive an analytical model to predict the underactuated manipulator workspace and experimentally verify the model accuracy with a physical system. We use this model to compare crossing cable configurations to the traditional cable configuration using workspace performance metrics. Our work here focuses on a simplified planar robot, both in simulation and in hardware, with the goal of extending this to spiraling-cable configurations on full 3D continuum robots in future work.

  2. Therapeutic Crystals

    Science.gov (United States)

    Bond, Charles S.

    2014-01-01

    Some readers might not fully know what the difference is between crystallography, and the "new age" practice of dangling crystals around the body to capitalise on their healing energy. The latter is often considered to be superstition, while ironically, the former has actually resulted in real rationally-based healing of human diseases…

  3. Ribbon Crystals

    DEFF Research Database (Denmark)

    Bohr, Jakob; Markvorsen, Steen

    2013-01-01

    A repetitive crystal-like pattern is spontaneously formed upon the twisting of straight ribbons. The pattern is akin to a tessellation with isosceles triangles, and it can easily be demonstrated with ribbons cut from an overhead transparency. We give a general description of developable ribbons...

  4. Crystallization of silicon nanoclusters with inert gas temperature control

    Science.gov (United States)

    Zhao, Junlei; Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Cassidy, Cathal; Aranishi, Kengo; Sowwan, Mukhles; Nordlund, Kai; Djurabekova, Flyura

    2015-01-01

    We analyze the fundamental process of crystallization of silicon nanoclusters by means of molecular dynamics simulations, complemented by magnetron-sputter inert gas condensation, which was used to synthesize polycrystalline silicon nanoclusters with good size control. We utilize two well-established Si interatomic potentials: the Stillinger-Weber and the Tersoff III. Both the simulations and experiments show that upon cooling down by an Ar gas thermal bath, initially liquid, free-standing Si nanocluster can grow multiple crystal nuclei, which drive their transition into polycrystalline solid nanoclusters. The simulations allow detailed analysis of the mechanism, and show that the crystallization temperature is size-dependent and that the probability of crystalline phase nucleation depends on the highest temperature the cluster reaches during the initial condensation and the cooling rate after it.

  5. Continuum mechanics using Mathematica fundamentals, methods, and applications

    CERN Document Server

    Romano, Antonio

    2014-01-01

    This textbook's methodological approach familiarizes readers with the mathematical tools required to correctly define and solve problems in continuum mechanics. Covering essential principles and fundamental applications, this second edition of Continuum Mechanics using Mathematica® provides a solid basis for a deeper study of more challenging and specialized problems related to nonlinear elasticity, polar continua, mixtures, piezoelectricity, ferroelectricity, magneto-fluid mechanics, and state changes (see A. Romano, A. Marasco, Continuum Mechanics: Advanced Topics and Research Trends, Springer (Birkhäuser), 2010, ISBN 978-0-8176-4869-5). Key topics and features: * Concise presentation strikes a balance between fundamentals and applications * Requisite mathematical background carefully collected in two introductory chapters and one appendix * Recent developments highlighted through coverage of more significant applications to areas such as wave propagation, fluid mechanics, porous media, linear elasticity....

  6. Lattice fluid dynamics from perfect discretizations of continuum flows

    International Nuclear Information System (INIS)

    Katz, E.; Wiese, U.

    1998-01-01

    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. copyright 1998 The American Physical Society

  7. Network structure embracing mutualism-antagonism continuums increases community robustness.

    Science.gov (United States)

    Montesinos-Navarro, Alicia; Hiraldo, Fernando; Tella, José L; Blanco, Guillermo

    2017-11-01

    Theory predicts that contrasting properties of mutualistic and antagonistic networks differentially promote community resilience to species loss. However, the outcome of most ecological interactions falls within a continuum between mutualism and antagonism, and we ignore the extent to which this interactions' continuum might influence community stability. Using a large data set of interactions, we compared co-extinction cascades that either consider or ignore the mix of beneficial and detrimental actions that parrots exert on plants. When the antagonism-mutualism continuum was considered, a combination of the properties that separately enhance community stability in ecological networks emerged. This combination of properties led to an overall increase of the parrot community robustness to face plant species loss. Our results highlight that the conditional outcomes of interactions can influence the structure of ecological networks, thus affecting our predictions of community stability against eventual changes.

  8. An advanced kinetic theory for morphing continuum with inner structures

    Science.gov (United States)

    Chen, James

    2017-12-01

    Advanced kinetic theory with the Boltzmann-Curtiss equation provides a promising tool for polyatomic gas flows, especially for fluid flows containing inner structures, such as turbulence, polyatomic gas flows and others. Although a Hamiltonian-based distribution function was proposed for diatomic gas flow, a general distribution function for the generalized Boltzmann-Curtiss equations and polyatomic gas flow is still out of reach. With assistance from Boltzmann's entropy principle, a generalized Boltzmann-Curtiss distribution for polyatomic gas flow is introduced. The corresponding governing equations at equilibrium state are derived and compared with Eringen's morphing (micropolar) continuum theory derived under the framework of rational continuum thermomechanics. Although rational continuum thermomechanics has the advantages of mathematical rigor and simplicity, the presented statistical kinetic theory approach provides a clear physical picture for what the governing equations represent.

  9. Resonance and continuum Gamow shell model with realistic nuclear forces

    Science.gov (United States)

    Sun, Z. H.; Wu, Q.; Zhao, Z. H.; Hu, B. S.; Dai, S. J.; Xu, F. R.

    2017-06-01

    Starting from realistic nuclear forces, we have developed a core Gamow shell model which can describe resonance and continuum properties of loosely-bound or unbound nuclear systems. To describe properly resonance and continuum, the Berggren representation has been employed, which treats bound, resonant and continuum states on equal footing in a complex-momentum (complex-k) plane. To derive the model-space effective interaction based on realistic forces, the full Q ˆ -box folded-diagram renormalization has been, for the first time, extended to the nondegenerate complex-k space. The CD-Bonn potential is softened by using the Vlow-k method. Choosing 16O as the inert core, we have calculated sd-shell neutron-rich oxygen isotopes, giving good descriptions of both bound and resonant states. The isotopes 25,26O are calculated to be resonant even in their ground states.

  10. Continuum coupling and single-nucleon overlap integrals

    International Nuclear Information System (INIS)

    Michel, N.; Nazarewicz, W.; Ploszajczak, M.

    2007-01-01

    The presence of a particle continuum, both of a resonant and non-resonant character, can significantly impact spectroscopic properties of weakly bound nuclei and excited nuclear states close to, and above, the particle emission threshold. In the framework of the continuum shell model in the complex momentum-plane, the so-called Gamow shell model, we discuss salient effects of the continuum coupling on the one-neutron overlap integrals and the associated spectroscopic factors in neutron-rich helium and oxygen nuclei. In particular, we demonstrate a characteristic near-threshold energy dependence of the spectroscopic factors for different l-waves. We show also that the realistic radial overlap functions, which are needed for the description of transfer reactions, can be generated by single-particle wave functions of the appropriately chosen complex potential

  11. On frame indifferent Lagrangians of micropolar thermoelastic continuum

    Directory of Open Access Journals (Sweden)

    Vladimir A. Kovalev

    2015-06-01

    Full Text Available A non-linear mathematical model of type-II thermoelastic continuum with fine microstructure is developed. The model is described in terms of 4-covariant field theoretical formalism attributed to field theories of continuum mechanics. Fine microstructure is introduced by d-vectors and tensors playing role of extra field variables. A Lagrangian density for type-II thermoelastic continuum with fine microstructure is proposed and the least action principle is formulated. Virtual microstructural inertia is added to the considered action density. It is also valid for the thermal inertia. Corresponding 4-covariant field equations of type-II thermoelasticity are obtained. Constitutive equations of type-II microstructural thermoelasticity are discussed. Following the usual procedure for type-II micropolar thermoelastic Lagrangians functionally independent rotationally invariant arguments are obtained. Those are proved to form a complete set. Objective forms of the Lagrangians satisfying the frame indifference principle are given. Those are derived by using extrastrain vectors and tensors.

  12. Sacrifice Along the Energy Continuum: A Call for Energy Justice.

    Science.gov (United States)

    Hernández, Diana

    2015-08-18

    The confluence of energy supply- and demand-side dynamics links vulnerable communities along the spectrum of energy production and consumption. The disproportionate burden borne by vulnerable communities along the energy continuum are seldom examined simultaneously. Yet, from a justice perspective there are important parallels that merit further exploration in the United States and beyond. A first step is to understand links to vulnerability and justice along the energy continuum by way of theoretical constructs and practical applications. The present article posits energy as a social and environmental justice issue and advances our current understanding of the links between energy and vulnerability, particularly in the U.S. Drawing on several emerging concepts including, "energy sacrifice zones," "energy insecurity" and "energy justice," this article lays a foundation for examining critical sacrifices along the energy continuum. To conclude, four basic rights are proposed as a starting point to achieve recognition and equity for vulnerable populations in the realm of energy.

  13. HIV continuum of care in Europe and Central Asia.

    Science.gov (United States)

    Drew, R S; Rice, B; Rüütel, K; Delpech, V; Attawell, K A; Hales, D K; Velasco, C; Amato-Gauci, A J; Pharris, A; Tavoschi, L; Noori, T

    2017-08-01

    The European Centre for Disease Prevention and Control (ECDC) supports countries to monitor progress in their response to the HIV epidemic. In line with these monitoring responsibilities, we assess how, and to what extent, the continuum of care is being measured across countries. The ECDC sent out questionnaires to 55 countries in Europe and Central Asia in 2014. Nominated country representatives were questioned on how they defined and measured six elements of the continuum. We present our results using three previously described frameworks [breakpoints; Joint United Nations Programme on HIV/AIDS (UNAIDS) 90-90-90 targets; diagnosis and treatment quadrant]. Forty countries provided data for at least one element of the continuum. Countries reported most frequently on the number of people diagnosed with HIV infection (37; 93%), and on the number in receipt of antiretroviral therapy (ART) (35; 88%). There was little consensus across countries in their approach to defining linkage to, and retention in, care. The most common breakpoint (>19% reduction between two adjacent elements) related to the estimated number of people living with HIV who were diagnosed (18 of 23; 78%). We present continuum data from multiple countries that provide both a snapshot of care provision and a baseline against which changes over time in care provision across Europe and Central Asia may be measured. To better inform HIV testing and treatment programmes, standard data collection approaches and definitions across the HIV continuum of care are needed. If countries wish to ensure an unbroken HIV continuum of care, people living with HIV need to be diagnosed promptly, and ART needs to be offered to all those diagnosed. © 2017 The Authors. HIV Medicine published by John Wiley & Sons Ltd on behalf of British HIV Association.

  14. A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations

    KAUST Repository

    Neumann, Philipp

    2012-06-01

    We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm as well as parallel execution of the hybrid simulation. We describe the implementational concept of the tool and its parallel extensions. We particularly focus on the parallel execution of particle insertions into dense molecular systems and propose a respective parallel algorithm. Our implementations are validated for serial and parallel setups in two and three dimensions. © 2012 IEEE.

  15. A damping boundary condition for atomistic-continuum coupling

    International Nuclear Information System (INIS)

    Zhang Jie; Tieu, Kiet; Michal, Guillaume; Zhu Hongtao; Zhang Liang; Su Lihong; Deng Guanyu; Wang Hui

    2017-01-01

    The minimization of spurious wave reflection is a challenge in multiscale coupling due to the difference of spatial resolution between atomistic and continuum regions. In this study, a new damping condition is presented for eliminating spurious wave reflection at the interface between atomistic and continuum regions. This damping method starts by a coarse–fine decomposition of the atomic velocity based on the bridging scale method. The fine scale velocity of the atoms in the damping region is reduced by applying nonlinear damping coefficients. The effectiveness of this damping method is verified by one- and two- dimensional simulations. (paper)

  16. Fractional Quantum Field Theory: From Lattice to Continuum

    Directory of Open Access Journals (Sweden)

    Vasily E. Tarasov

    2014-01-01

    Full Text Available An approach to formulate fractional field theories on unbounded lattice space-time is suggested. A fractional-order analog of the lattice quantum field theories is considered. Lattice analogs of the fractional-order 4-dimensional differential operators are proposed. We prove that continuum limit of the suggested lattice field theory gives a fractional field theory for the continuum 4-dimensional space-time. The fractional field equations, which are derived from equations for lattice space-time with long-range properties of power-law type, contain the Riesz type derivatives on noninteger orders with respect to space-time coordinates.

  17. The limits of flexoelectricity in liquid crystals

    Directory of Open Access Journals (Sweden)

    F. Castles

    2011-09-01

    Full Text Available The flexoelectric conversion of mechanical to electrical energy in nematic liquid crystals is investigated using continuum theory. Since the electrical energy produced cannot exceed the mechanical energy supplied, and vice-versa, upper bounds are imposed on the magnitudes of the flexoelectric coefficients in terms of the elastic and dielectric coefficients. For conventional values of the elastic and dielectric coefficients, it is shown that the flexoelectric coefficients may not be larger than a few tens of pC/m. This has important consequences for the future use of such flexoelectric materials in devices and the related energetics of distorted equilibrium structures.

  18. The limits of flexoelectricity in liquid crystals

    Science.gov (United States)

    Castles, F.; Morris, S. M.; Coles, H. J.

    2011-09-01

    The flexoelectric conversion of mechanical to electrical energy in nematic liquid crystals is investigated using continuum theory. Since the electrical energy produced cannot exceed the mechanical energy supplied, and vice-versa, upper bounds are imposed on the magnitudes of the flexoelectric coefficients in terms of the elastic and dielectric coefficients. For conventional values of the elastic and dielectric coefficients, it is shown that the flexoelectric coefficients may not be larger than a few tens of pC/m. This has important consequences for the future use of such flexoelectric materials in devices and the related energetics of distorted equilibrium structures.

  19. Size dependent effects of antifungal phytogenic silver nanoparticles on germination, growth and biochemical parameters of rice (Oryza sativaL), maize (Zea maysL) and peanut (Arachis hypogaeaL).

    Science.gov (United States)

    Prasad, Tollamadugu N V K V; Adam, Shaik; Visweswara Rao, Pasupuleti; Ravindra Reddy, Balam; Giridhara Krishna, Thimmavajjula

    2017-04-01

    Advancement in materials synthesis largely depends up on their diverse applications and commercialisation. Antifungal effects of phytogenic silver nanoparticles (AgNPs) were evident, but the reports on the effects of the same on agricultural crops are scant. Herein, we report for the first time, size dependent effects of phytogenic AgNPs (synthesised using Stevia rebaudiana leaf extract) on the germination, growth and biochemical parameters of three important agricultural crops viz., rice ( Oryza sativa L), maize ( Zea mays L) and peanut ( Arachis hypogaea L). AgNPs with varied sizes were prepared by changing the concentration and quantity of the Stevia rebaudiana leaf extract. As prepared AgNPs were characterized using the techniques, such as high-resolution transmission electron microscopy, particle size and zeta potential analyser. The measured (dynamic light scattering technique) average sizes of particles are ranging from 68.5 to 116 nm. Fourier transform infrared studies confirmed the participation of alcohols, aldehydes and amides in the reduction and stabilisation of the AgNPs. Application of these AgNPs to three agricultural crop seeds (rice, maize and peanut) resulted in size dependent effects on their germination, growth and biochemical parameters such as, chlorophyll content, carotenoid and protein content. Further, antifungal activity of AgNPs also evaluated against fungi, Aspergillus niger .

  20. Continuum modeling of twinning, amorphization, and fracture: theory and numerical simulations

    Science.gov (United States)

    Clayton, J. D.; Knap, J.

    2017-12-01

    A continuum mechanical theory is used to model physical mechanisms of twinning, solid-solid phase transformations, and failure by cavitation and shear fracture. Such a sequence of mechanisms has been observed in atomic simulations and/or experiments on the ceramic boron carbide. In the present modeling approach, geometric quantities such as the metric tensor and connection coefficients can depend on one or more director vectors, also called internal state vectors. After development of the general nonlinear theory, a first problem class considers simple shear deformation of a single crystal of this material. For homogeneous fields or stress-free states, algebraic systems or ordinary differential equations are obtained that can be solved by numerical iteration. Results are in general agreement with atomic simulation, without introduction of fitted parameters. The second class of problems addresses the more complex mechanics of heterogeneous deformation and stress states involved in deformation and failure of polycrystals. Finite element calculations, in which individual grains in a three-dimensional polycrystal are fully resolved, invoke a partially linearized version of the theory. Results provide new insight into effects of crystal morphology, activity or inactivity of different inelasticity mechanisms, and imposed deformation histories on strength and failure of the aggregate under compression and shear. The importance of incorporation of inelastic shear deformation in realistic models of amorphization of boron carbide is noted, as is a greater reduction in overall strength of polycrystals containing one or a few dominant flaws rather than many diffusely distributed microcracks.

  1. Continuum modeling of twinning, amorphization, and fracture: theory and numerical simulations

    Science.gov (United States)

    Clayton, J. D.; Knap, J.

    2018-03-01

    A continuum mechanical theory is used to model physical mechanisms of twinning, solid-solid phase transformations, and failure by cavitation and shear fracture. Such a sequence of mechanisms has been observed in atomic simulations and/or experiments on the ceramic boron carbide. In the present modeling approach, geometric quantities such as the metric tensor and connection coefficients can depend on one or more director vectors, also called internal state vectors. After development of the general nonlinear theory, a first problem class considers simple shear deformation of a single crystal of this material. For homogeneous fields or stress-free states, algebraic systems or ordinary differential equations are obtained that can be solved by numerical iteration. Results are in general agreement with atomic simulation, without introduction of fitted parameters. The second class of problems addresses the more complex mechanics of heterogeneous deformation and stress states involved in deformation and failure of polycrystals. Finite element calculations, in which individual grains in a three-dimensional polycrystal are fully resolved, invoke a partially linearized version of the theory. Results provide new insight into effects of crystal morphology, activity or inactivity of different inelasticity mechanisms, and imposed deformation histories on strength and failure of the aggregate under compression and shear. The importance of incorporation of inelastic shear deformation in realistic models of amorphization of boron carbide is noted, as is a greater reduction in overall strength of polycrystals containing one or a few dominant flaws rather than many diffusely distributed microcracks.

  2. Chaos and the continuum limit in charged particle beams

    Directory of Open Access Journals (Sweden)

    Henry E. Kandrup

    2004-01-01

    Full Text Available We investigate the validity of the Vlasov-Poisson equations for calculating properties of systems of N charged particles governed by time-independent Hamiltonians. Through numerical experiments we verify that there is a smooth convergence toward a continuum limit as N→∞ and the particle charge q→0 such that the system charge Q=qN remains fixed. However, in real systems N and q are always finite, and the assumption of the continuum limit must be questioned. We demonstrate that Langevin simulations can be used to assess the importance of discreteness effects, i.e., granularity, in systems for which the physical particle number N is too large to enable orbit integrations based on direct summation of interparticle forces. We then consider a beam bunch in thermal equilibrium and apply Langevin techniques to assess whether the continuum limit can be safely applied to this system. In the process we show, especially for systems supporting a sizable population of chaotic orbits that roam globally through phase space, that for the continuum limit to be valid, N must sometimes be surprisingly large. Otherwise the influence of granularity on particle orbits cannot be ignored.

  3. Predicting Eating Disorder Continuum Groups: Hardiness and College Adjustment.

    Science.gov (United States)

    Simon-Boyd, Gail D.; Bieschke, Kathleen J.

    This study examined relationships between hardiness, college adjustment (academic adjustment, social adjustment, personal-emotional adjustment, institutional attachment) and eating disorder (ED) continuum categories in 122 female and 20 male college students. Students who exhibited a higher level of personal-emotional adjustment (PEA) to college…

  4. Scaling relation for determining the critical threshold for continuum ...

    Indian Academy of Sciences (India)

    We study continuum percolation of overlapping circular discs of two sizes. We propose a phenomenological scaling equation for the increase in the effective size of the larger discs due to the presence of the smaller discs. The critical percolation threshold as a function of the ratio of sizes of discs, for different values of the ...

  5. Relativistic continuum random phase approximation in spherical nuclei

    International Nuclear Information System (INIS)

    Daoutidis, Ioannis

    2009-01-01

    Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

  6. Relativistic continuum random phase approximation in spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Daoutidis, Ioannis

    2009-10-01

    Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

  7. Cellular Automata in Topology Optimization of Continuum Structures ...

    African Journals Online (AJOL)

    In this paper, an optimization algorithm based on cellular automata (CA) is developed for topology optimization of continuum structures with shear and flexural behavior. The design domain is divided into small triangle elements and each cell is considered as a finite element. The stress analysis is performed by the Constant ...

  8. Proposed higher order continuum-based models for an elastic ...

    African Journals Online (AJOL)

    Three new variants of continuum-based models for an elastic subgrade are proposed. The subgrade is idealized as a homogenous, isotropic elastic layer of thickness H overlying a firm stratum. All components of the stress tensor in the subgrade are taken into account. Reasonable assumptions are made regarding the ...

  9. The continuum shell-model neutron states of Pb

    Indian Academy of Sciences (India)

    model states with the collective vibrational states from giant resonances. The particle-vibration coupling model can be applied to understand the spreading pattern of the shell-model states lying in continuum region. The single-particle states are ...

  10. Nuclear structure investigations with inclusion of continuum states

    International Nuclear Information System (INIS)

    Rotter, I.

    1983-09-01

    The influence of the continuum on the properties of discrete nuclear states is reviewed. It is described on the basis of a continuum shell model. The coupling of the discrete states to the continuum results in an additional term to the Hamiltonian, commonly used in the study of nuclear structure, and an additional term to the wavefunction of the discrete state. These additional terms characterise finite nuclei in contrast to nuclear matter. They result in some symmetry violation of the residual nuclear interaction such as charge symmetry violation, and describe the nuclear surface, respectively. The energies and widths of resonance states result from the complex eigenvalues of the Hamiltonian. The partial widths are shown to be factorisable into a spectroscopic factor and into a penetration factor if the spectroscopic factor is large. An expression for the S-matrix is derived in which instead of the so-called resonance parameters, functions appear which are calculated in the framework of the model. The line shape of resonances is also influenced by these functions. As an extreme case, a resonance may have the appearance of a cusp. The conclusions drawn are supported by the results of numerical calculations performed in the continuum shell model for light nuclei with realistic shell model wavefunctions. (author)

  11. Existence of phase transition for heavy-tailed continuum percolation

    NARCIS (Netherlands)

    A. Sapozhnikov (Artem)

    2007-01-01

    textabstractWe consider a continuum percolation model in $R^d$, where $d >= 2$. It is given by a homogeneous Poisson process of intensity $\\labda$ and independent radii random variables of common distribution of a positive random variable $r$. Let $\\labda_c$ be the critical intensity for the

  12. Topology Optimization of Continuum Structures with Local Stress Constraints

    DEFF Research Database (Denmark)

    Duysinx, Pierre; Bendsøe, Martin P

    1998-01-01

    We introduce an extension of current technologies for topology optimization of continuum structures which allows for treating local stress criteria. We first consider relevant stress criteria for porous composite materials, initially by studying the stress states of the so-called rank 2 layered...

  13. The Eating Disorders Continuum, Self-Esteem, and Perfectionism

    Science.gov (United States)

    Peck, Lisa D.; Lightsey, Owen Richard

    2008-01-01

    Among 261 undergraduate women, increased severity of eating disorders along a continuum was associated with decreased self-esteem, increased perfectionism, and increased scores on 7 subscales of the Eating Disorders Inventory-2. Women with eating disorders differed from both symptomatic women and asymptomatic women on all variables, whereas…

  14. Shouldering the blame for impingement: the rotator cuff continuum ...

    African Journals Online (AJOL)

    The aim of this article was to summarise recent research on shoulder impingement and rotator cuff pathology. A continuum model of rotator cuff pathology is described, and the challenges of accurate clinical diagnosis, imaging and best management discussed. Keywords: shoulder impingement syndrome, subacromial ...

  15. Ratings of Attention Problems in ADHD: A Continuum

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-12-01

    Full Text Available To determine whether ADHD should be classified in three distinct DSM-IV diagnostic subtypes or a continuum of attention problems, maternal ratings of attention on the Child Behavior Check List (CBCL, in Durch boys at age 7, 10, and 12 years, were fitted to class models, assuming either subtype or severity differences.

  16. Seyfert Galaxies: Radio Continuum Emission Properties and the ...

    Indian Academy of Sciences (India)

    Seyfert Galaxies: Radio Continuum Emission Properties and the Unification Scheme. Veeresh Singh1,∗. , Prajval Shastri1 & Ramana Athreya2,3. 1Indian Institute of Astrophysics, Bangalore 560 034, India. 2National Center for Radio Astrophysics, Pune 411 007, India. 3Indian Institute of Science Education and Research, ...

  17. Continuum limit of discrete Sommerfeld problems on square lattice

    Indian Academy of Sciences (India)

    BASANT LAL SHARMA

    Sommerfeld half-plane; crack; rigid ribbon; continuum limit; Wiener–Hopf; Toeplitz operator. 1. .... Z denote the set of all non-negative integers and Zہ denote ... the positive x axis. Following the tradition in scattering theory, the harmonic time dependence of the form eہixt has been ignored, and the incident wave is defined by.

  18. Continuum limit and improved action in lattice theories. Pt. 1

    International Nuclear Information System (INIS)

    Symanzik, K.

    1983-03-01

    Corrections to continuum theory results stemming from finite lattice-spacing can be diminished systematically by use of lattice actions that include also suitable irrelevant terms. We describe in detail the principles of such constructions at the example of PHI 4 theory. (orig.)

  19. Scaling relation for determining the critical threshold for continuum ...

    Indian Academy of Sciences (India)

    Abstract. We study continuum percolation of overlapping circular discs of two sizes. We propose a phenomenological scaling equation for the increase in the effective size of the larger discs due to the presence of the smaller discs. The critical percolation threshold as a function of the ratio of sizes of discs, for different values ...

  20. The continuum of spreading depolarizations in acute cortical lesion development

    DEFF Research Database (Denmark)

    Hartings, Jed A; Shuttleworth, C William; Kirov, Sergei A

    2017-01-01

    A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum ...

  1. Scaling relation for determining the critical threshold for continuum ...

    Indian Academy of Sciences (India)

    We study continuum percolation of overlapping circular discs of two sizes. We propose a phenomenological scaling equation for the increase in the effective size of the larger discs due to the presence of the smaller ... We start by summarizing the qualitative arguments of [6]. Let us assume, without any loss of generality, that ...

  2. Photon pairs: Quantum chromodynamics continuum and the Higgs ...

    Indian Academy of Sciences (India)

    is the largest. Results are compared with data from the Fermilab Tevatron and predictions are made for the large hadron collider. The QCD continuum is shown to have a softer spectrum than the Higgs boson signal at the LHC. Keywords. Higgs; photon pairs; quantum chromodynamics. PACS Nos 12.15.Ji; 12.38.Cy; 13.85.

  3. Photon pairs: Quantum chromodynamics continuum and the Higgs ...

    Indian Academy of Sciences (India)

    Resummation is needed to obtain reliable predictions in the range of transverse momentum where the cross-section is the largest. Results are compared with data from the Fermilab Tevatron and predictions are made for the large hadron collider. The QCD continuum is shown to have a softer spectrum than the Higgs boson ...

  4. Autism genes: the continuum that connects us all

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 95; Issue 3. Autism genes: the continuum that connects us all. RASHMI PARIHAR SUBRAMANIAM GANESH. RESEARCH COMMENTARY Volume 95 Issue 3 September 2016 pp 481-483. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Ultrafine Cohesive Powders: From Interparticle Contacts to Continuum Behaviour.

    NARCIS (Netherlands)

    Tykhoniuk, Rostyslav; Tomas, Jürgen; Luding, Stefan; Kappl, Michael; Heim, Lars; Butt, Hans-Jürgen

    2007-01-01

    Continuum mechanical models and appropriate measuring methods to determine the material parameters are available to describe the flow behaviour of cohesive powders. These methods are successfully applied to design process equipment as silos. In addition, “microscopic” studies on the particle

  6. Absorption of continuum radiation in a resonant expanding gaseous sphere

    International Nuclear Information System (INIS)

    Shaparev, N Y

    2014-01-01

    The paper deals with absorption of external continuum radiation in a self-similarly expanding gaseous sphere. Frequency probability and integral probability of radiation absorption in the resonance frequency range are determined depending on the expansion velocity gradient and thickness of the optical medium. It is shown that expansion results in a reduced optical thickness of the medium and enhanced integral absorption. (paper)

  7. Finite particle size drives defect-mediated domain structures in strongly confined colloidal liquid crystals.

    Science.gov (United States)

    Gârlea, Ioana C; Mulder, Pieter; Alvarado, José; Dammone, Oliver; Aarts, Dirk G A L; Lettinga, M Pavlik; Koenderink, Gijsje H; Mulder, Bela M

    2016-06-29

    When liquid crystals are confined to finite volumes, the competition between the surface anchoring imposed by the boundaries and the intrinsic orientational symmetry-breaking of these materials gives rise to a host of intriguing phenomena involving topological defect structures. For synthetic molecular mesogens, like the ones used in liquid-crystal displays, these defect structures are independent of the size of the molecules and well described by continuum theories. In contrast, colloidal systems such as carbon nanotubes and biopolymers have micron-sized lengths, so continuum descriptions are expected to break down under strong confinement conditions. Here, we show, by a combination of computer simulations and experiments with virus particles in tailor-made disk- and annulus-shaped microchambers, that strong confinement of colloidal liquid crystals leads to novel defect-stabilized symmetrical domain structures. These finite-size effects point to a potential for designing optically active microstructures, exploiting the as yet unexplored regime of highly confined liquid crystals.

  8. Size dependent optical characteristics of chemically deposited ...

    Indian Academy of Sciences (India)

    Keywords. Thin film; ZnS; CBD method; optical properties. Abstract. ZnS thin films of different thicknesses were prepared by chemical bath deposition using thiourea and zinc acetate as S2- and Zn2+ source. The effect of film thickness on the optical and structural properties was studied. The optical absorption studies in the ...

  9. Impact Craters: Size-Dependent Degration Rates

    Science.gov (United States)

    Ravi, S.; Mahanti, P.; Meyer, H. M.; Robinson, M. S.

    2017-12-01

    From superposition relations, Shoemaker and Hackman (1) devised the lunar geologic timescale with Copernican and Eratosthenian as the most recent periods. Classifying craters into the two periods is key to understanding impactor flux and regolith maturation rates over the last 3 Ga. Both Copernican and Eratosthenian craters exhibit crisp morphologies (sharp rims, steep slopes), however, only the former exhibit high reflectance rays and ejecta (1). Based on the Optical Maturity Parameter (OMAT; 2), Grier et al. (3) classified 50 fresh craters (D >20 km) into 3 categories - young (OMAT >0.22), intermediate, and old (OMAT 10) were identified (4) from a catalogue of 11,875 craters (5). In this work; we compare two size ranges (D: 5 km - 10 km and 10 km to 15 km) of 177 Copernican craters based on the average OMAT, measured near the crater rim (3). OMAT is measured at the crater rim (as opposed to further away from the crater) to minimize the influence of spatial variation of OMAT (6) in our investigation. We found that OMAT values are typically lower for smaller craters (5km age, craters with higher d/D value (morphologically fresher) should have higher OMAT, but this is not the case. We propose that quicker loss of OMAT (over time) for smaller craters compared to decrease in d/D with crater ageing, is responsible for the observed decreased OMAT for smaller craters. (1) Shoemaker and Hackman, 1962 (2) Lucey et al., 2000 (3) Grier et al., 2001 (4) Ravi et al., 2016 (5) Reinhold et al., 2015 (6) Mahanti et al., 2016

  10. Size-dependent mortality rate profiles.

    Science.gov (United States)

    Roa-Ureta, Ruben H

    2016-08-07

    Knowledge of mortality rates is crucial to the understanding of population dynamics in populations of free-living fish and invertebrates in marine and freshwater environments, and consequently to sustainable resource management. There is a well developed theory of population dynamics based on age distributions that allow direct estimation of mortality rates. However, for most cases the aging of individuals is difficult or age distributions are not available for other reasons. The body size distribution is a widely available alternative although the theory underlying the formation of its shape is more complicated than in the case of age distributions. A solid theory of the time evolution of a population structured by any physiological variable has been developed in 1960s and 1970s by adapting the Hamilton-Jacobi formulation of classical mechanics, and equations to estimate the body size-distributed mortality profile have been derived for simple cases. Here I extend those results with regards to the size-distributed mortality profile to complex cases of non-stationary populations, individuals growing according to a generalised growth model and seasonally patterned recruitment pulses. I apply resulting methods to two cases in the marine environment, a benthic crustacean population that was growing during the period of observation and whose individuals grow with negative acceleration, and a sea urchin coastal population that is undergoing a stable cycle of two equilibrium points in population size whose individuals grow with varying acceleration that switches sign along the size range. The extension is very general and substantially widens the applicability of the theory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Size-dependent variation in plant form.

    Science.gov (United States)

    Niklas, Karl J; Cobb, Edward D

    2017-09-11

    The study of organic form has a long and distinguished history going at least as far back as Aristotle's Historia Anima¯lium, wherein he identified five basic biological processes that define the forms of animals (metabolism, temperature regulation, information processing, embryo development, and inheritance). Unfortunately, all of Aristotle's writings about plant forms are lost. We know of them only indirectly from his student Theophrastus's companion books, collectively called Historia Plantarum, wherein plant forms are categorized into annual herbs, herbaceous perennials, shrubs, and trees. The study of plant forms did not truly begin until the romantic poet and naturalist Goethe proposed the concept of a hypothetical 'Plant Archetype', declared "Alles ist Blatt", and first coined the word morphologie, which inspired the French anatomist Cuvier (who established the field of comparative morphology), the English naturalist Darwin (who saw his theory of evolution reinforced by it), and the Scottish mathematician D'Arcy Thompson (who attempted to quantify it). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Size dependent optical characteristics of chemically deposited ...

    Indian Academy of Sciences (India)

    TECS

    source. The effect of film thickness on the optical and structural properties was studied. The optical absorption studies in the wavelength range 250–750 nm show that band gap energy of. ZnS increases from 3⋅68–4⋅10 eV as thickness varied from 332–76 nm. The structural estimation shows varia- tion in grain size from ...

  13. Size dependent optical characteristics of chemically deposited ...

    Indian Academy of Sciences (India)

    TECS

    another beaker containing glass substrates. The solution was kept at 303 K. Substrate cleaning plays an important role in the deposition of thin films. Commercially avai- lable glass microslides of dimensions 26 × 76 × 2 mm were boiled in chromic acid for 2 h and kept in it for. 12 h washed with detergent, and finally rinsed in ...

  14. Crystals: animal, vegetable or mineral?

    Science.gov (United States)

    Hyde, Stephen T

    2015-08-06

    The morphologies of biological materials, from body shapes to membranes within cells, are typically curvaceous and flexible, in contrast to the angular, facetted shapes of inorganic matter. An alternative dichotomy has it that biomolecules typically assemble into aperiodic structures in vivo, in contrast to inorganic crystals. This paper explores the evolution of our understanding of structures across the spectrum of materials, from living to inanimate, driven by those naive beliefs, with particular focus on the development of crystallography in materials science and biology. The idea that there is a clear distinction between these two classes of matter has waxed and waned in popularity through past centuries. Our current understanding, driven largely by detailed exploration of biomolecular structures at the sub-cellular level initiated by Bernal and Astbury in the 1930s, and more recent explorations of sterile soft matter, makes it clear that this is a false dichotomy. For example, liquid crystals and other soft materials are common to both living and inanimate materials. The older picture of disjoint universes of forms is better understood as a continuum of forms, with significant overlap and common features unifying biological and inorganic matter. In addition to the philosophical relevance of this perspective, there are important ramifications for science. For example, the debates surrounding extra-terrestrial life, the oldest terrestrial fossils and consequent dating of the emergence of life on the Earth rests to some degree on prejudices inferred from the supposed dichotomy between life-forms and the rest.

  15. Robust identification of binding hot spots using continuum electrostatics: application to hen egg-white lysozyme.

    Science.gov (United States)

    Hall, David H; Grove, Laurie E; Yueh, Christine; Ngan, Chi Ho; Kozakov, Dima; Vajda, Sandor

    2011-12-28

    Binding hot spots, protein regions with high binding affinity, can be identified by using X-ray crystallography or NMR spectroscopy to screen libraries of small organic molecules that tend to cluster at such hot spots. FTMap, a direct computational analogue of the experimental screening approaches, uses 16 different probe molecules for global sampling of the surface of a target protein on a dense grid and evaluates the energy of interaction using an empirical energy function that includes a continuum electrostatic term. Energy evaluation is based on the fast Fourier transform correlation approach, which allows for the sampling of billions of probe positions. The grid sampling is followed by off-grid minimization that uses a more detailed energy expression with a continuum electrostatics term. FTMap identifies the hot spots as consensus clusters formed by overlapping clusters of several probes. The hot spots are ranked on the basis of the number of probe clusters, which predicts their binding propensity. We applied FTMap to nine structures of hen egg-white lysozyme (HEWL), whose hot spots have been extensively studied by both experimental and computational methods. FTMap found the primary hot spot in site C of all nine structures, in spite of conformational differences. In addition, secondary hot spots in sites B and D that are known to be important for the binding of polysaccharide substrates were found. The predicted probe-protein interactions agree well with those seen in the complexes of HEWL with various ligands and also agree with an NMR-based study of HEWL in aqueous solutions of eight organic solvents. We argue that FTMap provides more complete information on the HEWL binding site than previous computational methods and yields fewer false-positive binding locations than the X-ray structures of HEWL from crystals soaked in organic solvents. © 2011 American Chemical Society

  16. Photonic time crystals.

    Science.gov (United States)

    Zeng, Lunwu; Xu, Jin; Wang, Chengen; Zhang, Jianhua; Zhao, Yuting; Zeng, Jing; Song, Runxia

    2017-12-07

    When space (time) translation symmetry is spontaneously broken, the space crystal (time crystal) forms; when permittivity and permeability periodically vary with space (time), the photonic crystal (photonic time crystal) forms. We proposed the concept of photonic time crystal and rewritten the Maxwell's equations. Utilizing Finite Difference Time Domain (FDTD) method, we simulated electromagnetic wave propagation in photonic time crystal and photonic space-time crystal, the simulation results show that more intensive scatter fields can obtained in photonic time crystal and photonic space-time crystal.

  17. On Mathematical Aspects of Dual Variables in Continuum Mechanics. Part 1 : Mathematical Principles

    NARCIS (Netherlands)

    Giessen, E. van der; Kollmann, F.G.

    1996-01-01

    In this paper consisting of two parts we consider mathematical aspects of dual variables appearing in continuum mechanics. Tensor calculus on manifolds as introduced into continuum mechanics is used as a point of departure. This mathematical formalism leads to additional structure of continuum

  18. Continuum-mediated dark matter–baryon scattering

    CERN Document Server

    Katz, Andrey; Sajjad, Aqil

    2016-01-01

    Many models of dark matter scattering with baryons may be treated either as a simple contact interaction or as the exchange of a light mediator particle. We study an alternative, in which a continuum of light mediator states may be exchanged. This could arise, for instance, from coupling to a sector which is approximately conformal at the relevant momentum transfer scale. In the non-relativistic effective theory of dark matter-baryon scattering, which is useful for parametrizing direct detection signals, the effect of such continuum mediators is to multiply the amplitude by a function of the momentum transfer q, which in the simplest case is just a power law. We develop the basic framework and study two examples: the case where the mediator is a scalar operator coupling to the Higgs portal (which turns out to be highly constrained) and the case of an antisymmetric tensor operator ${\\cal O}_{\\mu \

  19. Invariant Gait Continuum Based on the Duty-Factor

    DEFF Research Database (Denmark)

    Fihl, Preben; Moeslund, Thomas B.

    2008-01-01

    In this paper we present a method to describe the continuum of human gait in an invariant manner. The gait description is based on the duty-factor which is adopted from the biomechanics literature. We generate a database of artificial silhouettes representing the three main types of gait, i...... contexts and tangent orientations. Input silhouettes are matched to the database using the Hungarian method. We define a classifier based on the dissimilarity between the input silhouettes and the gait actions of the database. This classification achieves an overall recognition rate of 87.1% on a diverse...... test set, which is better than that achieved by other approaches applied to similar data. We extend this classification and results show that our representation of the gait continuum preserves the main features of the duty-factor....

  20. PCE: web tools to compute protein continuum electrostatics

    Science.gov (United States)

    Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.

    2005-01-01

    PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492

  1. Derivation of Electromagnetism from the Elastodynamics of the Spacetime Continuum

    Directory of Open Access Journals (Sweden)

    Millette P. A.

    2013-04-01

    Full Text Available We derive Electromagnetism from the Elastodynamics of the Spacetime Continuum based on the identification of the theory’s antisymmetric rotation tensor with the elec- tromagnetic field-strength tensor. The theory provides a physical explanation of the electromagnetic potential, which arises from transverse ( shearing displacements of the spacetime continuum, in contrast to mass which arises from longitudinal (dilatational displacements. In addition, the theory provides a physical explanation of the current density four-vector, as the 4-gradient of the volume dilatation of the spacetime con- tinuum. The Lorentz condition is obtained directly from the theory. In addition, we obtain a generalization of Electromagnetism for the situation where a volume force is present, in the general non-macroscopic case. Maxwell’s equations are found to remain unchanged, but the current density has an additional term proportional to the volume force.

  2. Continuum effects in the scattering of exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Druet, T. [Universite Libre de Bruxelles (ULB), Physique Quantique, C.P. 165/82, Brussels (Belgium); Universite Libre de Bruxelles (ULB), Physique Nucleaire Theorique et Physique Mathematique, Brussels (Belgium); Descouvemont, P. [Universite Libre de Bruxelles (ULB), Physique Nucleaire Theorique et Physique Mathematique, Brussels (Belgium)

    2012-10-15

    We discuss continuum effects in the scattering of exotic nuclei, and more specifically on the {sup 11}Be + {sup 64}Zn scattering. {sup 11}Be is a typical example of an exotic nucleus, with a low binding energy. Elastic, inelastic and breakup cross-sections of the {sup 11}Be + {sup 64}Zn system are computed in the Continuum Discretized Coupled Channel formalism, at energies near the Coulomb barrier. We show that converged cross-sections need high angular momenta as well as as large excitation energies in the wave functions of the projectile. Extensions to other systems are simulated by different collision energies, and by varying the binding energy of {sup 11}Be. (orig.)

  3. Non compact continuum limit of two coupled Potts models

    International Nuclear Information System (INIS)

    Vernier, Éric; Jacobsen, Jesper Lykke; Saleur, Hubert

    2014-01-01

    We study two Q-state Potts models coupled by the product of their energy operators, in the regime 2  3 (2) vertex model. It corresponds to a selfdual system of two antiferromagnetic Potts models, coupled ferromagnetically. We derive the Bethe ansatz equations and study them numerically for two arbitrary twist angles. The continuum limit is shown to involve two compact bosons and one non compact boson, with discrete states emerging from the continuum at appropriate twists. The non compact boson entails strong logarithmic corrections to the finite-size behaviour of the scaling levels, an understanding of which allows us to correct an earlier proposal for some of the critical exponents. In particular, we infer the full set of magnetic scaling dimensions (watermelon operators) of the Potts model. (paper)

  4. Unfolding of spectra with continuum and discrete components

    International Nuclear Information System (INIS)

    Sperling, M.; Reed, J.; Shreve, D.

    1979-01-01

    Purpose of unfolding is to determine the existence of discrete spectral components, their energies and intensities, as well as the shape and intensity of the spectral continuum. Codes implementing these and related ancillary processes share needs for vector algebra and scalar, vector, and matrix input-output, storage, and graphic display and possess an interrelated descriptive vocabulary. DELPHI ia an interactive English-language command system that maintains basis data structures and alters them by activating sequences of basic utilities. MAZNAI is a gamma-ray spectral unfolding code for NaI data with discrete and continuum components with extremely powerful peak recognition and resolution enhancement capabilities. MAZAS is a high-speed line-strength estimation code for NaI data with predetermined line energies. 7 figures

  5. Photonic Crystal Fibers

    National Research Council Canada - National Science Library

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  6. Liquid Crystal Devices.

    Science.gov (United States)

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  7. Liquid Crystal Inquiries.

    Science.gov (United States)

    Marroum, Renata-Maria

    1996-01-01

    Discusses the properties and classification of liquid crystals. Presents a simple experiment that illustrates the structure of liquid crystals and the differences between the various phases liquid crystals can assume. (JRH)

  8. Topology Optimization of Continuum Structures with Local Stress Constraints

    DEFF Research Database (Denmark)

    Duysinx, Pierre; Bendsøe, Martin P

    1997-01-01

    We introduce an extension of current technologies for topology optimization of continuum structures which allows for treating local stress criteria. We first consider relevant stress criteria for porous composite materials, initially by studying the stress states of the so-called rank~2 layered m...... of the stress constraints is used. We describe the mathematical programming approach that is used to solve the numerical optimization problems, and show results for a number of example applications....

  9. Haro 11: Where is the Lyman Continuum Source?

    Energy Technology Data Exchange (ETDEWEB)

    Keenan, Ryan P.; Oey, M. S. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Jaskot, Anne E. [Department of Astronomy, Smith College, Northampton, MA 01063 (United States); James, Bethan L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2017-10-10

    Identifying the mechanism by which high-energy Lyman continuum (LyC) photons escaped from early galaxies is one of the most pressing questions in cosmic evolution. Haro 11 is the best known local LyC-leaking galaxy, providing an important opportunity to test our understanding of LyC escape. The observed LyC emission in this galaxy presumably originates from one of the three bright, photoionizing knots known as A, B, and C. It is known that Knot C has strong Ly α emission, and Knot B hosts an unusually bright ultraluminous X-ray source, which may be a low-luminosity active galactic nucleus. To clarify the LyC source, we carry out ionization-parameter mapping (IPM) by obtaining narrow-band imaging from the Hubble Space Telescope WFC3 and ACS cameras to construct spatially resolved ratio maps of [O iii]/[O ii] emission from the galaxy. IPM traces the ionization structure of the interstellar medium and allows us to identify optically thin regions. To optimize the continuum subtraction, we introduce a new method for determining the best continuum scale factor derived from the mode of the continuum-subtracted, image flux distribution. We find no conclusive evidence of LyC escape from Knots B or C, but instead we identify a high-ionization region extending over at least 1 kpc from Knot A. This knot shows evidence of an extremely young age (≲1 Myr), perhaps containing very massive stars (>100 M {sub ⊙}). It is weak in Ly α , so if it is confirmed as the LyC source, our results imply that LyC emission may be independent of Ly α emission.

  10. Perturbative matching of continuum and lattice quasi-distributions

    Directory of Open Access Journals (Sweden)

    Ishikawa Tomomi

    2018-01-01

    Full Text Available Matching of the quasi parton distribution functions between continuum and lattice is addressed using lattice perturbation theory specifically withWilson-type fermions. The matching is done for nonlocal quark bilinear operators with a straightWilson line in a spatial direction. We also investigate operator mixing in the renormalization and possible O(a operators for the nonlocal operators based on a symmetry argument on lattice.

  11. Advanced methods of continuum mechanics for materials and structures

    CERN Document Server

    Aßmus, Marcus

    2016-01-01

    This volume presents a collection of contributions on advanced approaches of continuum mechanics, which were written to celebrate the 60th birthday of Prof. Holm Altenbach. The contributions are on topics related to the theoretical foundations for the analysis of rods, shells and three-dimensional solids, formulation of constitutive models for advanced materials, as well as development of new approaches to the modeling of damage and fractures.

  12. From discrete particles to continuum fields near a boundary

    OpenAIRE

    Weinhart, Thomas; Thornton, Anthony Richard; Luding, Stefan; Bokhove, Onno

    2012-01-01

    An expression for the stress tensor near an external boundary of a discrete mechanical system is derived explicitly in terms of the constituents’ degrees of freedom and interaction forces. Starting point is the exact and general coarse graining formulation presented by Goldhirsch in [I.Goldhirsch, Gran.Mat., 12(3):239-252, 2010], which is consistent with the continuum equations everywhere but does not account for boundaries. Our extension accounts for the boundary interaction forces in a self...

  13. Continuum-limit scaling of overlap fermions as valence quarks

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Herdoiza, Gregorio; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2009-10-15

    We present the results of a mixed action approach, employing dynamical twisted mass fermions in the sea sector and overlap valence fermions, with the aim of testing the continuum limit scaling behaviour of physical quantities, taking the pion decay constant as an example. To render the computations practical, we impose for this purpose a fixed finite volume with lattice size L{approx}1.3 fm. We also briefly review the techniques we have used to deal with overlap fermions. (orig.)

  14. Properties of warm nuclei in the quasi-continuum

    Directory of Open Access Journals (Sweden)

    Voinov A.

    2010-03-01

    Full Text Available Nuclear thermodynamic quantities are extracted from nuclear level densities measured with the CACTUS detector array at the Oslo Cyclotron Laboratory. The experiments are performed with light-particle inelastic or transfer reactions. A simple combinatorial model is used to describe the underlying mechanisms responsible for the exponential increasing level density as function of excitation energy. The calculated number of broken Cooper pairs and the parity distribution in continuum are discussed.

  15. A Geometry Deformation Model for Braided Continuum Manipulators

    Directory of Open Access Journals (Sweden)

    S. M. Hadi Sadati

    2017-06-01

    Full Text Available Continuum manipulators have gained significant attention in the robotic community due to their high dexterity, deformability, and reachability. Modeling of such manipulators has been shown to be very complex and challenging. Despite many research attempts, a general and comprehensive modeling method is yet to be established. In this paper, for the first time, we introduce the bending effect in the model of a braided extensile pneumatic actuator with both stiff and bendable threads. Then, the effect of the manipulator cross-section deformation on the constant curvature and variable curvature models is investigated using simple analytical results from a novel geometry deformation method and is compared to experimental results. We achieve 38% mean reference error simulation accuracy using our constant curvature model for a braided continuum manipulator in presence of body load and 10% using our variable curvature model in presence of extensive external loads. With proper model assumptions and taking to account the cross-section deformation, a 7–13% increase in the simulation mean error accuracy is achieved compared to a fixed cross-section model. The presented models can be used for the exact modeling and design optimization of compound continuum manipulators by providing an analytical tool for the sensitivity analysis of the manipulator performance. Our main aim is the application in minimal invasive manipulation with limited workspaces and manipulators with regional tunable stiffness in their cross section.

  16. Resilience among patients across the cancer continuum: diverse perspectives.

    Science.gov (United States)

    Molina, Yamile; Yi, Jean C; Martinez-Gutierrez, Javiera; Reding, Kerryn W; Yi-Frazier, Joyce P; Rosenberg, Abby R

    2014-02-01

    Each phase of the cancer experience profoundly affects patients' lives. Much of the literature has focused on negative consequences of cancer; however, the study of resilience may enable providers to promote more positive psychosocial outcomes before, during, and after the cancer experience. The current review describes the ways in which elements of resilience have been defined and studied at each phase of the cancer continuum. Extensive literature searches were conducted to find studies assessing resilience during one or more stages of the adult cancer continuum. For all phases of the cancer continuum, resilience descriptions included preexisting or baseline characteristics, such as demographics and personal attributes (e.g., optimism, social support), mechanisms of adaptation, such as coping and medical experiences (e.g., positive provider communication), as well as psychosocial outcomes, such as growth and quality of life. Promoting resilience is a critical element of patient psychosocial care. Nurses may enable resilience by recognizing and promoting certain baseline characteristics and optimizing mechanisms of adaptation.

  17. A quantum informed continuum model for ferroelectric and flexoelectric materials

    Science.gov (United States)

    Oates, William S.

    2013-04-01

    Correlations between quantum mechanics and continuum mechanics are investigated by exploring relations based on the electron density and electrostatic forces within an atomic lattice in ferroelectric materials. Theoretically, it is shown that anisotropic stress is dependent upon electrostatic forces that originate from the quadrupole density. This relation is directly determined if the nuclear charge and electron density are known. The result is an extension of the Hellmann-Feynman theory used to quantify stresses based on electrostatics. Further, flexoelectricity is found to be proportional to the next two higher order poles. These relations are obtained by correlating a nucleus-nucleus potential and nucleus-electron potential with the deformation gradient and second order gradient. An example is given for barium titanate by solving the electron density using density function theory (DFT) calculations. Changes in energy and stress under different lattice geometric constraints are modeled and compared to nonlinear continuum mechanics to understand differences in formulating a model directly from DFT calculations versus a nonlinear continuum model that uses polarization versus the quadrupole density as the order parameter.

  18. Identification of a transcriptional signature for the wound healing continuum.

    Science.gov (United States)

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. © 2014 The Authors. Wound Repair and Regeneration published by Wiley Periodicals, Inc. on behalf of Wound Healing Society.

  19. Binary colloidal crystals

    NARCIS (Netherlands)

    Christova-Zdravkova, C.G.

    2005-01-01

    Binary crystals are crystals composed of two types of particles having different properties like size, mass density, charge etc. In this thesis several new approaches to make binary crystals of colloidal particles that differ in size, material and charge are reported We found a variety of crystal

  20. Bacterial Biogeography across the Amazon River-Ocean Continuum

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann; Coles, Victoria J.; Fortunato, Caroline S.; Krusche, Alex V.; Medeiros, Patricia M.; Payet, Jérôme P.; Richey, Jeffrey E.; Satinsky, Brandon M.; Sawakuchi, Henrique O.; Ward, Nicholas D.; Crump, Byron C.

    2017-05-23

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ~675 km of the lower Amazon River mainstem, in the Tapajos River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity nearshore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and

  1. HIV Continuum of Care for Youth in the United States.

    Science.gov (United States)

    Lally, Michelle A; van den Berg, Jacob J; Westfall, Andrew O; Rudy, Bret J; Hosek, Sybil G; Fortenberry, J Dennis; Monte, Dina; Tanney, Mary R; McFarland, Elizabeth J; Xu, Jiahong; Kapogiannis, Bill G; Wilson, Craig M

    2018-01-01

    Beneficial HIV treatment outcomes require success at multiple steps along the HIV Continuum of Care. Youth living with HIV are a key population, and sites in the Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN) are known for modeling optimum HIV adolescent care. A longitudinal cohort study conducted at 14 network sites across the United States assessed how the later steps of the Continuum of Care were achieved among the youth: engagement, treatment, and viral load (VL) suppression. Youth aged 13-24 who were behaviorally infected with HIV and linked to care at an ATN-affiliated site were eligible to participate. A total of 467 youth were enrolled and had 1 year of available data. Most were aged 22-24 (57%), male (79%), and black/non-Hispanic (71%). Most used alcohol (81%) and marijuana (61%) in the 3 months before enrollment, and 40% had a history of incarceration. Among this cohort of youth, 86% met criteria for care engagement; among these, 98% were prescribed antiretroviral therapy and 89% achieved VL suppression. Sustained VL suppression at all measured time points was found among 59% with initial suppression. Site characteristics were notable for the prevalence of adherence counseling (100%), case management (100%), clinic-based mental health (93%), and substance use (64%) treatment. Youth living with HIV in the United States can be successfully treated at health care sites with experience, excellence, and important resources and services. Sustained VL suppression may be an important step to add to the Continuum of Care for youth.

  2. Identifying anterior segment crystals.

    OpenAIRE

    Hurley, I W; Brooks, A M; Reinehr, D P; Grant, G B; Gillies, W E

    1991-01-01

    A series of 22 patients with crystals in the anterior segment of the eye was examined by specular microscopy. Of 10 patients with hypermature cataract and hyperrefringent bodies in the anterior chamber cholesterol crystals were identified in four patients and in six of the 10 in whom aspirate was obtained cholesterol crystals were demonstrated in three, two of these having shown crystals on specular microscopy. In 10 patients with intracorneal crystalline deposits, cholesterol crystals were f...

  3. Pressure cryocooling protein crystals

    Science.gov (United States)

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  4. Z Camelopardalis - Outburst P Cygni profiles and quiescent continuum

    Science.gov (United States)

    Szkody, P.; Mateo, M.

    1986-01-01

    The first orbital study of the C IV P Cygni profile in the dwarf nova Z Cam, a system of intermediate inclination. A modulation of the absorption equivalent width is apparent, with phases suggesting an effect from the mass-transfer stream. Over the outburst cycle, the strength of the P Cygni absorption and emission components is greater after outburst than during the standstill configuration, while the terminal velocities and central absorption wavelengths are similar. The continuum flux distributions during the decline from outburst and during quiescence are discussed.

  5. Nursing competency assessment across the continuum of care.

    Science.gov (United States)

    Arcand, Lori L; Neumann, Julie A

    2005-01-01

    Establishing a thorough and effective competency assessment program is essential to meeting standards of regulatory bodies and providing quality care. Nursing education specialists continue to strive to provide a competency assessment process that is meaningful and uncomplicated. This article describes the implementation of a nursing competency assessment program in a large midwestern medical center that spans the continuum of care and incorporates all nursing roles that require nursing licensure, including advanced practice nurses, into one centralized nursing competency program. Competency program infrastructure, topic identification, documentation to support the evaluation and validation process, and continuous improvement opportunities are described.

  6. Internet platforms for lifelong learning: a continuum of opportunity.

    Science.gov (United States)

    Sedory Holzer, Susan E; Kokemueller, Phillip

    2007-12-01

    Access to knowledge through the Internet has spawned a world of online learning, stimulating a new passion for lifelong learning in academia, professional environments, the workplace, and at home. This article takes a fresh look at the wide spectrum of opportunities for online medical education for physicians. We first explore a continuum of "e-learning" models and then look at the range of platforms used to support these systems. We will also look forward to the options likely to change e-learning in the near future and improve physician performance and patient outcomes.

  7. Elementary continuum mechanics for everyone with applications to structural mechanics

    CERN Document Server

    Byskov, Esben

    2013-01-01

    The book opens with a derivation of kinematically nonlinear 3-D continuum mechanics for solids. Then the principle of virtual work is utilized to derive the simpler, kinematically linear 3-D theory and to provide the foundation for developing consistent theories of kinematic nonlinearity and linearity for specialized continua, such as beams and plates, and finite element methods for these structures. A formulation in terms of the versatile Budiansky-Hutchinson notation is used as basis for the theories for these structures and structural elements, as well as for an in-depth treatment of structural instability.

  8. Continuum mechanics methods in the theory of phase transformations

    Science.gov (United States)

    Grinfel'D, Mikhail A.

    A theory for phase transformations in solids is developed on the basis of the variational principles of thermodynamics. The discussion focuses on the fundamental concepts of the theory, detailed classification of phase transformations at the phenomenological level, and statement of essentially new boundary value problems for continuum mechanics equations. General solutions are illustrated by the equilibrium and stability analysis of specific two-phase systems and solution of problems of practical importance. The methods and results discussed here are relevant to various problems in rigid body mechanics, hydrodynamics, materials science, geomechanics, and other fields.

  9. Computed bound and continuum electronic states of the nitrogen molecule

    Directory of Open Access Journals (Sweden)

    Tennyson Jonathan

    2015-01-01

    Full Text Available The dissociative recombination (DR of N2+ is important for processes occurring in our atmosphere. However, it is not particularly well characterised, experimentally for the vibrational ground state and, theoretically for the v ≥ 4. We use the R-matrix method to compute potential energy curves for both the bound Rydberg states of nitrogen and for quasi-bound states lying in the continuum. Use of a fine mesh of internuclear separations allows the details of avoided crossings to be determined. The prospects for using the curves as the input for DR calculations is discussed.

  10. Predicted continuum spectra of type II supernovae - LTE results

    Science.gov (United States)

    Shaviv, G.; Wehrse, R.; Wagoner, R. V.

    1985-01-01

    The continuum spectral energy distribution of the flux emerging from type II supernovae is calculated from quasi-static radiative transfer through a power-law density gradient, assuming radiative equilibrium and LTE. It is found that the Balmer jump disappears at high effective temperatures and low densities, while the spectrum resembles that of a dilute blackbody but is flatter with a sharper cutoff at the short-wavelength end. A significant UV excess is found in all models calculated. The calculation should be considered exploratory because of significant effects which are anticipated to arise from departure from LTE.

  11. Continuum effects in electron-helium total cross sections

    International Nuclear Information System (INIS)

    McCarthy, I.E.; Ratnavelu, K.; Weigold, A.M.

    1988-06-01

    It is shown that total cross sections for the excitation of target states with large spectroscopic factors may be calculated accurately by representing the states by their leading independent-particle configurations. With this approximation coupled channels calculations agree only qualitatively with experimental total cross sections for the first five states of helium. R-matrix calculations using configuration interaction show better qualitative agreement. The complex polarisation potential for continuum excitations is described for two-electron atoms. When this is included in a coupled-channels optical calculation quantitative agreement with experiment is obtained for most states at 30, 50 and 100eV

  12. From cells to tissue: A continuum model of epithelial mechanics

    Science.gov (United States)

    Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru

    2017-08-01

    A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.

  13. Hybrid molecular–continuum methods: From prototypes to coupling software

    KAUST Repository

    Neumann, Philipp

    2014-02-01

    In this contribution, we review software requirements in hybrid molecular-continuum simulations. For this purpose, we analyze a prototype implementation which combines two frameworks-the Molecular Dynamics framework MarDyn and the framework Peano for spatially adaptive mesh-based simulations-and point out particular challenges of a general coupling software. Based on this analysis, we discuss the software design of our recently published coupling tool. We explain details on its overall structure and show how the challenges that arise in respective couplings are resolved by the software. © 2013 Elsevier Ltd. All rights reserved.

  14. Tamm–Hubbard surface states in the continuum

    International Nuclear Information System (INIS)

    Longhi, S; Della Valle, G

    2013-01-01

    In the framework of the Bose–Hubbard model, we show that two-particle surface bound states embedded in the continuum (BIC) can be sustained at the edge of a semi-infinite one-dimensional tight-binding lattice for any infinitesimally-small impurity potential V at the lattice boundary. Such thresholdless surface states, which can be referred to as Tamm–Hubbard BIC states, exist provided that the impurity potential V is attractive (repulsive) and the particle–particle Hubbard interaction U is repulsive (attractive), i.e. for UV < 0. (paper)

  15. Perturbative approach to continuum generation in a fiber Bragg grating.

    Science.gov (United States)

    Westbrook, P S; Nicholson, J W

    2006-08-21

    We derive a perturbative solution to the nonlinear Schrödinger equation to include the effect of a fiber Bragg grating whose bandgap is much smaller than the pulse bandwidth. The grating generates a slow dispersive wave which may be computed from an integral over the unperturbed solution if nonlinear interaction between the grating and unperturbed waves is negligible. Our approach allows rapid estimation of large grating continuum enhancement peaks from a single nonlinear simulation of the waveguide without grating. We apply our method to uniform and sampled gratings, finding good agreement with full nonlinear simulations, and qualitatively reproducing experimental results.

  16. Continuum kinetic modeling of the tokamak plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M. A.; Dorr, M. R.; Hittinger, J. A.; Rognlien, T. D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Cohen, R. H. [CompX, P.O. Box 2672, Del Mar, California 92014 (United States)

    2016-05-15

    The first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code, which is distinguished by fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasma transport and the complex X-point divertor geometry with high accuracy. The calculations take into account the effects of fully nonlinear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxation in the presence of anomalous radial transport.

  17. Continuum modeling and numerical simulation of cell motility.

    Science.gov (United States)

    Hodge, Neil; Papadopoulos, Panayiotis

    2012-06-01

    This work proposes a continuum-mechanical model of cell motility which accounts for the dynamics of motility-relevant protein species. For the special case of fish epidermal keratocytes, the stress and cell-substrate traction responses are postulated to depend on selected protein densities in accordance with the structural features of the cells. A one-dimensional version of the model is implemented using Arbitrary Lagrangian-Eulerian finite elements in conjunction with Lagrange multipliers for the treatment of kinematic constraints related to surface growth. Representative numerical tests demonstrate the capacity of the proposed model to simulate stationary and steady crawling states.

  18. Growth limit of carbon onions – A continuum mechanical study

    DEFF Research Database (Denmark)

    Todt, Melanie; Bitsche, Robert; Hartmann, Markus A.

    2014-01-01

    The growth of carbon onions is simulated using continuum mechanical shell models. With this models it is shown that, if a carbon onion has grown to a critical size, the formation of an additional layer leads to the occurrence of a structural instability. This instability inhibits further growth o...... model gives insight into mechanisms which are assumed to limit the size of carbon onions and can serve as basis for further investigations, e.g., of the formation of nanodiamonds in the center of carbon onions. © 2013 Elsevier Ltd. All rights reserved....

  19. NREL Leads Energy Systems Integration, Continuum Magazine: Issue 4 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-04-01

    Continuum Magazine showcases NREL's latest and most impactful clean energy innovations. This issue, 'NREL Leads Energy Systems Integration' explores the discipline of energy systems integration, in particular the role of the laboratory's new, one-of-a-kind Energy System Integration Facility. NREL scientists, engineers, and analysts deeply understand the fundamental science and technologies underpinning major energy producing and consuming systems, as well as the transmission infrastructure and communications and data networks required to integrate energy systems at all scales.

  20. Scattering of x-ray from crystal surfaces

    International Nuclear Information System (INIS)

    Andrews, S.R.; Cowley, R.A.

    1985-01-01

    X-ray measurements performed on a variety of materials demonstrate that it is possible to observe diffuse scattering that originates in the abrupt change of density at a crystal surface. Such a discontinuity gives rise, in general, to rods of scattering in reciprocal space which are most intense close to the Bragg peaks tau and are well defined for sufficiently smooth surfaces. For wave-vector transfer Q=tau+q the q-dependence of the intensity of scattering gives information on the topographic structure of the crystal surface. Experimental results on crystals of GaAs and KTaO 3 , with surfaces prepared in various ways, were obtained using conventional x-ray techniques with a rotating anode source and can be described by a continuum model of the surface. There are discrepancies between the predictions of the models and the experimental results and the suggest that further experiments are needed to achieve a more complete understanding. (author)

  1. Coupling-reducing k-points for photonic crystal fibre calculations

    DEFF Research Database (Denmark)

    Albertsen, Maja; Lægsgaard, Jesper; Barkou Libori, Stig Eigil

    2003-01-01

    When describing localized electromagnetic modes in dielectric waveguides by the planewave method, a supercell geometry must necessarily be adopted. We demonstrate in the present work that the convergence of the calculations with respect to supercell size depends strongly on the choice of the tran......When describing localized electromagnetic modes in dielectric waveguides by the planewave method, a supercell geometry must necessarily be adopted. We demonstrate in the present work that the convergence of the calculations with respect to supercell size depends strongly on the choice...... of the transverse Bloch wave vector, k. We describe a method to derive k-points that minimize the coupling between repeated images of the guided modes in real space. Calculations have been done for a quadratic and a triangular photonic crystal fiber structure. With the new coupling reducing (CR) k...

  2. Shape Optimization of Unconstrained Viscoelastic Layers Using Continuum Finite Elements

    Science.gov (United States)

    Lumsdaine, A.; Scott, R. A.

    1998-09-01

    Of the many methods available for achieving effective vibration damping, adding viscoelastic lamina is a significant technique for vibration and reduction. Recently, the desire to apportion this material in a way that will take the greatest advantage of its dissipative characteristics has led to studies in optimization. Optimal design for viscoelastically damped laminated beams and plates undergoing harmonic excitation has been examined in the literature, both for constrained and unconstrained damping layers. However to the authors' knowledge, previous optimization studies have not used continuum based finite elements to model the structure, as is done here. The problem examined is the shape optimization of an unconstrained damping layer on an elastic structure, assuming a constant volume of damping material as a design constraint. The objective is to minimize the peak displacement. Several boundary conditions are examined for beam and plate type structures. The peak displacement and the loss factor of the optimized structure are compared with the uniform layer structure. Also, results obtained using realistic (frequency dependent) and constant viscoelastic material data are compared. The structures are modelled using continuum based elements in the ABAQUS Finite Element Code. The optimization code uses a Sequential Quadratic Programming algorithm. For most of the structures examined, order of magnitude improvement is seen as a result of optimizing the shape of the damping layer. Peak displacements are reduced by up to 98%. These results are quite robust, with the optimized damping layer achieving significantly better damping performance for a wide variety of cases examined.

  3. State stability analysis for the fermionic projector in the continuum

    Energy Technology Data Exchange (ETDEWEB)

    Hoch, Stefan Ludwig

    2008-07-01

    The principle of the fermionic projector in the continuum gives an indication that there might be a deeper reason why elementary particles only appear with a few definite masses. In this thesis the existence of approximately state-stable configurations is shown. In order to achieve that, we make use of a variational principle for the fermionic projector in the continuum which contains certain contributions supported on the light cone. In a certain sense, these extra terms contain the structure of the underlying discrete spacetime. Lorentz invariant distributions and their convolutions are studied. Some of these are well-defined because the convolution integrals have compactly supported integrands. Other convolutions can be regularized such that the property of being ill-defined only plays a role on the light cone. These results are used to analyze the variational principle and to give criteria for state stability, which can be numerically analyzed. Some plots are presented to allow a decision about state stability and to show how possible configurations could look like. (orig.)

  4. Vibrational quasi-continuum in unimolecular multiphoton dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Fernandez, P.; Gonzalez-Diaz, P.F.

    1987-04-01

    The vibrational quasi-continuum of the boron trifluoride molecule has been qualitatively studied and the formalism extended to treat N-normal-mode molecules. The anharmonic potential curves for the BF/sub 3/ normal modes have been calculated, and the computed anharmonicity constants have been tested against the fundamental frequencies. The potential curve of the wagging mode has been simulated by an internal rotation of one of the fluoride atoms. The vibrational-energy levels and wave functions have been calculated applying second-order perturbation theory. The quasi-continuum energy levels of BF/sub 3/ have been obtained by means of a method based in forming adequate linear combinations of wave functions belonging to the N-1 modes resulting from removing the i.r.-active mode;the associated energies have been minimized using a constrained minimization procedure. It has been found that the energy pattern of the N-1 vibrational modes possesses an energy density high enough for constituting a vibrational heat bath and, finally, it has been verified that the ''fictitious'' pattern of the active mode is included in the pattern of the N-1 modes.

  5. Morphing continuum theory for turbulence: Theory, computation, and visualization

    Science.gov (United States)

    Chen, James

    2017-10-01

    A high order morphing continuum theory (MCT) is introduced to model highly compressible turbulence. The theory is formulated under the rigorous framework of rational continuum mechanics. A set of linear constitutive equations and balance laws are deduced and presented from the Coleman-Noll procedure and Onsager's reciprocal relations. The governing equations are then arranged in conservation form and solved through the finite volume method with a second-order Lax-Friedrichs scheme for shock preservation. A numerical example of transonic flow over a three-dimensional bump is presented using MCT and the finite volume method. The comparison shows that MCT-based direct numerical simulation (DNS) provides a better prediction than Navier-Stokes (NS)-based DNS with less than 10% of the mesh number when compared with experiments. A MCT-based and frame-indifferent Q criterion is also derived to show the coherent eddy structure of the downstream turbulence in the numerical example. It should be emphasized that unlike the NS-based Q criterion, the MCT-based Q criterion is objective without the limitation of Galilean invariance.

  6. Fractal continuum model for tracer transport in a porous medium.

    Science.gov (United States)

    Herrera-Hernández, E C; Coronado, M; Hernández-Coronado, H

    2013-12-01

    A model based on the fractal continuum approach is proposed to describe tracer transport in fractal porous media. The original approach has been extended to treat tracer transport and to include systems with radial and uniform flow, which are cases of interest in geoscience. The models involve advection due to the fluid motion in the fractal continuum and dispersion whose mathematical expression is taken from percolation theory. The resulting advective-dispersive equations are numerically solved for continuous and for pulse tracer injection. The tracer profile and the tracer breakthrough curve are evaluated and analyzed in terms of the fractal parameters. It has been found in this work that anomalous transport frequently appears, and a condition on the fractal parameter values to predict when sub- or superdiffusion might be expected has been obtained. The fingerprints of fractality on the tracer breakthrough curve in the explored parameter window consist of an early tracer breakthrough and long tail curves for the spherical and uniform flow cases, and symmetric short tailed curves for the radial flow case.

  7. Tobacco-Related Health Disparities Across the Cancer Care Continuum.

    Science.gov (United States)

    Simmons, Vani Nath; Pineiro, Barbara; Hooper, Monica Webb; Gray, Jhanelle E; Brandon, Thomas H

    2016-10-01

    Use of tobacco is the leading preventable cause of death in the United States. Racial/ethnic minorities and individuals of low socioeconomic status disproportionately experience tobacco-related disease and illness. Unique challenges and circumstances exist at each point in the cancer care continuum that may contribute to the greater cancer burden experienced by these groups. We reviewed tobacco-related disparities from cancer prevention to cancer survivorship. We also describe research that seeks to reduce tobacco-related disparities. Racial/ethnic minorities and low-income individuals experience unique social and environmental contextual challenges such as greater environmental cues to smoke and greater levels of perceived stress and social discrimination. Clinical practice guidelines support the effectiveness of pharmacotherapy and behavioral counseling for racial and ethnic minorities, yet smoking cessation rates are lower in this group when compared with non-Hispanic whites. Superior efficacy for culturally adapted interventions has not yet been established. To reduce health disparities in this population, a comprehensive strategy is needed with efforts directed at each point along the cancer care continuum. Strategies are needed to reduce the impact of contextual factors such as targeted tobacco marketing and social discrimination on smoking initiation and maintenance. Future efforts should focus on increasing the use of evidence-based cessation treatment methods and studying its effectiveness in these populations. Attention must also be focused on improving treatment outcomes by reducing smoking in diverse racial and ethnic patient populations.

  8. State stability analysis for the fermionic projector in the continuum

    International Nuclear Information System (INIS)

    Hoch, Stefan Ludwig

    2008-01-01

    The principle of the fermionic projector in the continuum gives an indication that there might be a deeper reason why elementary particles only appear with a few definite masses. In this thesis the existence of approximately state-stable configurations is shown. In order to achieve that, we make use of a variational principle for the fermionic projector in the continuum which contains certain contributions supported on the light cone. In a certain sense, these extra terms contain the structure of the underlying discrete spacetime. Lorentz invariant distributions and their convolutions are studied. Some of these are well-defined because the convolution integrals have compactly supported integrands. Other convolutions can be regularized such that the property of being ill-defined only plays a role on the light cone. These results are used to analyze the variational principle and to give criteria for state stability, which can be numerically analyzed. Some plots are presented to allow a decision about state stability and to show how possible configurations could look like. (orig.)

  9. Nebular Continuum and Line Emission in Stellar Population Synthesis Models

    Science.gov (United States)

    Byler, Nell; Dalcanton, Julianne J.; Conroy, Charlie; Johnson, Benjamin D.

    2017-05-01

    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on Hα, and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H II regions and star-forming galaxies. Our models show improved agreement with the observed H II regions in the Ne III/O II plane and show satisfactory agreement with He II emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.

  10. Coupling of nonlocal and local continuum models by the Arlequinapproach

    KAUST Repository

    Han, Fei

    2011-08-09

    The objective of this work is to develop and apply the Arlequin framework to couple nonlocal and local continuum mechanical models. A mechanically-based model of nonlocal elasticity, which involves both contact and long-range forces, is used for the \\'fine scale\\' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can be neglected. Both models overlap in a coupling subdomain called the \\'gluing area\\' in which the total energy is separated into nonlocal and local contributions by complementary weight functions. A weak compatibility is ensured between kinematics of both models using Lagrange multipliers over the gluing area. The discrete formulation of this specific Arlequin coupling framework is derived and fully described. The validity and limits of the technique are demonstrated through two-dimensional numerical applications and results are compared against those of the fully nonlocal elasticity method. © 2011 John Wiley & Sons, Ltd.

  11. Parallel algorithm for multiscale atomistic/continuum simulations using LAMMPS

    Science.gov (United States)

    Pavia, F.; Curtin, W. A.

    2015-07-01

    Deformation and fracture processes in engineering materials often require simultaneous descriptions over a range of length and time scales, with each scale using a different computational technique. Here we present a high-performance parallel 3D computing framework for executing large multiscale studies that couple an atomic domain, modeled using molecular dynamics and a continuum domain, modeled using explicit finite elements. We use the robust Coupled Atomistic/Discrete-Dislocation (CADD) displacement-coupling method, but without the transfer of dislocations between atoms and continuum. The main purpose of the work is to provide a multiscale implementation within an existing large-scale parallel molecular dynamics code (LAMMPS) that enables use of all the tools associated with this popular open-source code, while extending CADD-type coupling to 3D. Validation of the implementation includes the demonstration of (i) stability in finite-temperature dynamics using Langevin dynamics, (ii) elimination of wave reflections due to large dynamic events occurring in the MD region and (iii) the absence of spurious forces acting on dislocations due to the MD/FE coupling, for dislocations further than 10 Å from the coupling boundary. A first non-trivial example application of dislocation glide and bowing around obstacles is shown, for dislocation lengths of ∼50 nm using fewer than 1 000 000 atoms but reproducing results of extremely large atomistic simulations at much lower computational cost.

  12. Asteroid-comet continuum objects in the solar system.

    Science.gov (United States)

    Hsieh, Henry H

    2017-07-13

    In this review presented at the Royal Society meeting, 'Cometary science after Rosetta', I present an overview of studies of small solar system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). Sometimes referred to as 'transition objects', these bodies are perhaps more appropriately described as 'continuum objects', to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of small solar system bodies that happen to exhibit a continuous range of observational, physical and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g. relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the solar system that would otherwise be inaccessible), while allowing us to study regions of the solar system that are not sampled by classical comets.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  13. Computational aspects of the continuum quaternionic wave functions for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Morais, J., E-mail: joao.pedro.morais@ua.pt

    2014-10-15

    Over the past few years considerable attention has been given to the role played by the Hydrogen Continuum Wave Functions (HCWFs) in quantum theory. The HCWFs arise via the method of separation of variables for the time-independent Schrödinger equation in spherical coordinates. The HCWFs are composed of products of a radial part involving associated Laguerre polynomials multiplied by exponential factors and an angular part that is the spherical harmonics. In the present paper we introduce the continuum wave functions for hydrogen within quaternionic analysis ((R)QHCWFs), a result which is not available in the existing literature. In particular, the underlying functions are of three real variables and take on either values in the reduced and full quaternions (identified, respectively, with R{sup 3} and R{sup 4}). We prove that the (R)QHCWFs are orthonormal to one another. The representation of these functions in terms of the HCWFs are explicitly given, from which several recurrence formulae for fast computer implementations can be derived. A summary of fundamental properties and further computation of the hydrogen-like atom transforms of the (R)QHCWFs are also discussed. We address all the above and explore some basic facts of the arising quaternionic function theory. As an application, we provide the reader with plot simulations that demonstrate the effectiveness of our approach. (R)QHCWFs are new in the literature and have some consequences that are now under investigation.

  14. THE PHILOSOPHY - TOOL CONTINUUM: PROVIDING STRUCTURE TO INDUSTRIAL ENGINEERING CONCEPTS

    Directory of Open Access Journals (Sweden)

    L. Van Dyk

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Industrial Engineering concepts are often referred to as either a tool, technique, method, approach or philosophy. These terminologies can be positioned on a continuum according to their meaning as defined by the Oxford English dictionary (tools B techniques Bmethods B approaches B philosophies. The philosophy of Total Quality Management is used as example to show how the appropriate naming of Industrial Engineering concepts can enhance the understanding and application thereof. This continuum is used to show that although the philosophies of TQM and Scientific Management may differ, the same pool of tools and techniques are used by both of these philosophies.

    AFRIKAANSE OPSOMMING: Bedryfsingenieurs verwys dikwels na filosofiee, benaderings, metodes, tegnieke en gereedskap. Hierdie terminologiee kan kan op 'n kontinuum geposisioneer word na aanleiding van hulle woordeboekbetekenis (gereedskap f-t tegniek f-t metode f-t benadering f-t filosofie. Die filosofie .van Totale Kwaliteitsbeheer (TQM word as voorbeeld gebruik om te wys dat die gepaste benaming van Bedryfsingenieurskonsepte die begrip en toepassing daarvan verhoog . Hierdie kontinuum word gebruik om te wys dat, alhoewel die filosofie van TQM en Wetenskaplike Bestuur ("Scientific Management" verskil, dieselfde versameling vail gereedskap en tegnieke deur beide gebruik word.

  15. [Continuum, the continuing education platform based on a competency matrix].

    Science.gov (United States)

    Ochoa Sangrador, C; Villaizán Pérez, C; González de Dios, J; Hijano Bandera, F; Málaga Guerrero, S

    2016-04-01

    Competency-Based Education is a learning method that has changed the traditional teaching-based focus to a learning-based one. Students are the centre of the process, in which they must learn to learn, solve problems, and adapt to changes in their environment. The goal is to provide learning based on knowledge, skills (know-how), attitude and behaviour. These sets of knowledge are called competencies. It is essential to have a reference of the required competencies in order to identify the need for them. Their acquisition is approached through teaching modules, in which one or more skills can be acquired. This teaching strategy has been adopted by Continuum, the distance learning platform of the Spanish Paediatric Association, which has developed a competency matrix based on the Global Paediatric Education Consortium training program. In this article, a review will be presented on the basics of Competency-Based Education and how it is applied in Continuum. Copyright © 2015 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  16. Evolving Human Alteration of the Carbon Cycle: the Watershed Continuum

    Science.gov (United States)

    Kaushal, S.; Delaney Newcomb, K.; Newcomer Johnson, T.; Pennino, M. J.; Smith, R. M.; Beaulieu, J. J.; Belt, K.; Grese, M.; Blomquist, J.; Duan, S.; Findlay, S.; Likens, G.; Mayer, P. M.; Murthy, S.; Utz, R.; Yepsen, M.

    2014-12-01

    Watersheds experiencing land development are constantly evolving, and their biogeochemical signatures are expected to evolve across both space and time in drainage waters. We investigate how land development influences spatial and temporal evolution of the carbon cycle from small streams to major rivers in the Eastern U.S. Along the watershed continuum, we show that there is spatial evolution in: (1) the amount, chemical form, and bioavailability of carbon; (2) carbon retention/release at the reach scale; and (3) ecosystem metabolism of carbon from headwaters to coastal waters. Over shorter time scales, the interaction between land use and climate variability alters magnitude and frequency of carbon "pulses" in watersheds. Amounts and forms of carbon pulses in agricultural and urban watersheds respond similarly to climate variability due to headwater alteration and loss of ecosystem services to buffer runoff and temperature changes. Over longer time scales, land use change has altered organic carbon concentrations in tidal waters of Chesapeake Bay, and there have been increased bicarbonate alkalinity concentrations in rivers throughout the Eastern U.S. due to human activities. In summary, our analyses indicates that the form and reactivity of carbon have evolved over space and time along the watershed continuum with major implications for downstream ecosystem metabolism, biological oxygen demand, carbon dioxide production, and river alkalinization.

  17. Missing links in the root-soil organic matter continuum

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Sarah L. [Argonne National Laboratory (ANL); Iversen, Colleen M [ORNL

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors. The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models. Although leaf litter has often been considered to be the main source of organic inputs to soil, Ann Russell synthesized a convincing body of work demonstrating that roots, rather than surface residues, control the accumulation of SOM in a variety of ecosystems. Living roots, which are chemically diverse and highly dynamic, also influence a

  18. Size-dependent microstructure and europium site preference influence fluorescent properties of Eu{sup 3+}-doped Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} nanocrystal

    Energy Technology Data Exchange (ETDEWEB)

    Long Mei [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Hong Fashui [Department of Biology, College of Life Sciences, Suzhou University, Suzhou 215006 (China); Li Wei; Li Fuchun; Zhao Haiyan; Lv Yuanqi; Li Huixin; Hu Feng [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Sun Lingdong; Yan Chunhua [State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871 (China); Wei Zhenggui [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)], E-mail: zgwei@njau.edu.cn

    2008-03-15

    In this study, Eu{sup 3+}-doped nanocrystalline Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} (Ca{sub 10-x}Eu{sub x}(PO{sub 4}){sub 6}(OH){sub 2}) with different particle sizes have been prepared by the thermal decomposition of precursors. Size-dependent microstructure could be observed in nanocrystalline Ca{sub 10-x}Eu{sub x}(PO{sub 4}){sub 6}(OH){sub 2}. The lattices of Ca{sub 10-x}Eu{sub x}(PO{sub 4}){sub 6}(OH){sub 2} nanocrystals were more distorted in comparison with the bulk, and the smaller the particle size, the more distorted the lattices. Room temperature photoluminescence showed europium site preference was also size-dependent, with the majority of Eu{sup 3+} ions occupying Ca(II) sites in the bulk, but more and more Eu{sup 3+} ions occupying Ca(I) sites in Ca{sub 10-x}Eu{sub x}(PO{sub 4}){sub 6}(OH){sub 2} with decreasing particle size. Fluorescent properties of Ca{sub 10-x}Eu{sub x}(PO{sub 4}){sub 6}(OH){sub 2} were considered to be influenced by both microstructure and site preference of Eu{sup 3+} ions. An abnormal strong intensity of {sup 5}D{sub 0}-{sup 7}F{sub 0} transition was observed in bulk and larger Ca{sub 10-x}Eu{sub x}(PO{sub 4}){sub 6}(OH){sub 2} nanocrystals, but the relative intensities of {sup 5}D{sub 0}-{sup 7}F{sub 0} transition to {sup 5}D{sub 0}-{sup 7}F{sub 1,2,3,4} transition of Eu{sup 3+} became weaker as the particle sizes decreased. As the particle sizes became smaller, the ratios of the red emission transition ({sup 5}D{sub 0}-{sup 7}F{sub 2}) to the orange emission transition ({sup 5}D{sub 0}-{sup 7}F{sub 1}) (R/O values) first increased by comparing the bulk sample with 96 nm sample, and then decreased by comparing 96 nm sample to 57 nm sample. The quenching concentrations of Ca{sub 10-x}Eu{sub x}(PO{sub 4}){sub 6}(OH){sub 2} samples increased with decreasing particle size. Possible mechanisms responsible for these phenomena were proposed. Since nanosized Ca{sub 10-x}Eu{sub x}(PO{sub 4}){sub 6}(OH){sub 2} showed higher

  19. Size-dependent δ18O and δ13C variations in a planktic foraminiferal Neogloboquadrina pachyderma (sinistral) record from Chukchi Plateau: implications for (sub)surface water conditions in the western Arctic Ocean over the past 50 ka

    Science.gov (United States)

    Wang, R.; Xiao, W.; Mei, J.; Polyak, L.

    2017-12-01

    Oxygen and carbon stable isotopes in planktic foraminifera Neogloboquadrina pachyderma (sinistral) (Nps) have a promising potential for reconstructing (sub)surface water conditions in the Arctic Ocean. Size-dependent (63-154 µm, 154-250 µm, and >250 µm) Nps δ18O and δ13C were measured along with Ice Rafted Debris (IRD) and scanned XRF Ca and Mn contents in sediment core ARC3-P31 from the Chukchi Plateau (434 m water depth) representing paleoceanographic conditions during the last 50 ka (Marine Isotope Stages 1-3). While the interval corresponding to the Last Glacial Maximum is represented by a hiatus, the following deglaciation is clearly marked by a strong depletion in both δ18O and δ13C in all Nps size fractions along with a peak in detrital carbonate IRD indicative of the Canadian Arctic Archipelago provenance. This pronounced feature presumably indicates a collapse event of the northwestern Laurentide Ice Sheet, potentially linked to the rising sea level. In the overall record under study, average values of Nps δ18O and δ13C fluctuate in the range of 1.2-2.1‰ and 0.3-0.9 ‰, respectively. Mid-size Nps δ18O values (154-250 µm) are in average lighter by 0.2-0.5 ‰ than those of small (63-154 µm) and large (>250 µm) Nps tests. This offset may indicate a different water-depth dwelling, possibly affected by a relatively warm subsurface Atlantic water.

  20. A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation.

    Science.gov (United States)

    Yu, Xiqian; Pan, Huilin; Wan, Wang; Ma, Chao; Bai, Jianming; Meng, Qingping; Ehrlich, Steven N; Hu, Yong-Sheng; Yang, Xiao-Qing

    2013-10-09

    A novel characterization technique using the combination of chemical sodiation and synchrotron based in situ X-ray diffraction (XRD) has been detailed illustrated. The power of this novel technique was demonstrated in elucidating the structure evolution of Li4Ti5O12 upon sodium insertion. The sodium insertion behavior into Li4Ti5O12 is strongly size dependent. A solid solution reaction behavior in a wide range has been revealed during sodium insertion into the nanosized Li4Ti5O12 (~44 nm), which is quite different from the well-known two-phase reaction of Li4Ti5O12/Li7Ti5O12 system during lithium insertion, and also has not been fully addressed in the literature so far. On the basis of this in situ experiment, the apparent Na(+) ion diffusion coefficient (DNa+) of Li4Ti5O12 was estimated in the magnitude of 10(-16) cm(2) s(-1), close to the values estimated by electrochemical method, but 5 order of magnitudes smaller than the Li(+) ion diffusion coefficient (D(Li+) ~10(-11) cm(2) s(-1)), indicating a sluggish Na(+) ion diffusion kinetics in Li4Ti5O12 comparing with that of Li(+) ion. Nanosizing the Li4Ti5O12 will be critical to make it a suitable anode material for sodium-ion batteries. The application of this novel in situ chemical sodiation method reported in this work provides a facile way and a new opportunity for in situ structure investigations of various sodium-ion battery materials and other systems.

  1. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans

    DEFF Research Database (Denmark)

    Massicotte, Philippe; Asmala, Eero; Stedmon, Colin

    2017-01-01

    continuum. To support this hypothesis, we used the DOC-specific UV absorbance (SUVA) to characterize the reactivity of the DOM pool which decreased from 4.9 to 1.7 m2 × gC −1 along the aquatic continuum. Across the continuum, a piecewise linear regression showed that the observed decrease of SUVA...

  2. Crystallization In Multicomponent Glasses

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.

    2009-01-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  3. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  4. Thin film modeling of crystal dissolution and growth in confinement

    Science.gov (United States)

    Gagliardi, Luca; Pierre-Louis, Olivier

    2018-01-01

    We present a continuum model describing dissolution and growth of a crystal contact confined against a substrate. Diffusion and hydrodynamics in the liquid film separating the crystal and the substrate are modeled within the lubrication approximation. The model also accounts for the disjoining pressure and surface tension. Within this framework, we obtain evolution equations which govern the nonequilibrium dynamics of the crystal interface. Based on this model, we explore the problem of dissolution under an external load, known as pressure solution. We find that in steady state, diverging (power-law) crystal-surface repulsions lead to flat contacts with a monotonic increase of the dissolution rate as a function of the load. Forces induced by viscous dissipation then surpass those due to disjoining pressure at large enough loads. In contrast, finite repulsions (exponential) lead to sharp pointy contacts with a dissolution rate independent of the load and the liquid viscosity. Ultimately, in steady state, the crystal never touches the substrate when pressed against it. This result is independent from the nature of the crystal-surface interaction due to the combined effects of viscosity and surface tension.

  5. Deflection of GeV particle beams by channeling in bent crystal planes of constant curvature

    International Nuclear Information System (INIS)

    Forster, J.S.; Hatton, H.; Toone, R.J.

    1989-01-01

    The deflection of charged particle beams moving within the (110) planes of a 43 mm long silicon crystal has been observed for momenta from 60 to 200 GeV/c. The crystal was bent by a 10.8 μm thick coating of ZnO along the central 26 mm of the crystal. Measurements were made with the crystal at room temperature, where a total deflection of 32.5 mrad was observed, and with the crystal cooled to -145 o C, where a 30.9 mrad deflection was observed. The ratio of the number of particles that dechannel upon entering the bend to the number of initially channeled particles compares well with calculations based on the continuum model. (author)

  6. Exploring the HIV continuum of care among young black MSM.

    Directory of Open Access Journals (Sweden)

    Lisa Hightow-Weidman

    Full Text Available HIV disproportionately impacts young, black men who have sex with men (YBMSM who experience disparities across the HIV care continuum. A more nuanced understanding of facilitators and barriers to engagement in care, missed visits, antiretroviral uptake, adherence and viral suppression could improve care and intervention design.A randomized controlled trial of an online intervention, healthMpowerment, enrolled 465 YBMSM (18-30 years; 193 identified as HIV-positive. Bivariable and multivariable analyses of baseline data explored predictors of: engagement in care, missed visits, antiretroviral uptake, self-reported adherence, and viral suppression.Mean age was 24.9 years; most identified as gay (71.0% and were receiving HIV care (89.1%. Among those in care, 52.1% reported no missed visits in the past 12 months, 41 (24.6% reported one missed visit, and 39 (23.4% reported two or more. Having insurance (prevalence odds ratio [POR] 4.5; 95% CI: 1.3, 15.8 and provider self-efficacy (POR 20.1; 95% CI: 6.1, 64.1 were associated with being in care. Those with a college degree (POR 9.1; 95% CI: 1.9, 45.2 and no recent marijuana (POR 2.6; 95% CI: 1.2, 5.6 or methamphetamine use (POR 5.4; 95% CI: 1.0, 28.5 were less likely to miss visits. Most (n = 153, 84.1% had been prescribed antiretroviral therapy. A majority of participants (70.8% reported ≥90% adherence; those with depressive symptoms had 4.7 times the odds of reporting adherence <90% (95% CI: 1.65, 13.37. Of participants who reported viral load testing in the past six months, 65% (n = 102 reported an undetectable viral load. Disclosure to sex partners was associated with viral suppression (POR 6.0; 95% CI: 1.6, 22.4.Multi-level facilitators and barriers to engagement across the continuum of care were identified in this sample of YBMSM. Understanding the distinct needs of YBMSM at each stage of the continuum and addressing them through tailored approaches is critical for long term success in care.

  7. Bacterial Biogeography across the Amazon River-Ocean Continuum

    Directory of Open Access Journals (Sweden)

    Mary Doherty

    2017-05-01

    Full Text Available Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and >2.0 μm. River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May and low (December discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in

  8. Bacterial Biogeography across the Amazon River-Ocean Continuum.

    Science.gov (United States)

    Doherty, Mary; Yager, Patricia L; Moran, Mary Ann; Coles, Victoria J; Fortunato, Caroline S; Krusche, Alex V; Medeiros, Patricia M; Payet, Jérôme P; Richey, Jeffrey E; Satinsky, Brandon M; Sawakuchi, Henrique O; Ward, Nicholas D; Crump, Byron C

    2017-01-01

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and

  9. Photonic Crystal Nanocavity Arrays

    National Research Council Canada - National Science Library

    Altug, Hatice; Vuckovic, Jelena

    2006-01-01

    We recently proposed two-dimensional coupled photonic crystal nanocavity arrays as a route to achieve a slow-group velocity of light in all crystal directions, thereby enabling numerous applications...

  10. Growth of dopamine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  11. Crystal structure and prediction.

    Science.gov (United States)

    Thakur, Tejender S; Dubey, Ritesh; Desiraju, Gautam R

    2015-04-01

    The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.

  12. Photonic crystal pioneer

    Science.gov (United States)

    Anscombe, Nadya

    2011-08-01

    Over the past ten years, Crystal Fiber, now part of NKT Photonics, has been busy commercializing photonic crystal fibre. Nadya Anscombe finds out about the evolution of the technology and its applications.

  13. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  14. Lesbian Continuum As An Alternative Strategy In Negotiating Heteronormativity In Sarah Water’s Fingersmith

    Directory of Open Access Journals (Sweden)

    Mega Hayuningtyas Erwanti

    2015-12-01

    Full Text Available This study is conducted to examine the portrayal of a lesbian continuum in Sarah Waters’ Fingersmith. To conduct the analysis, there are two research questions: first, how is the construction of lesbian continuum portrayed in the relationship between Susan Trinder and Maud Lilly and how does lesbian continuum become a strategy to negotiate compulsory heterosexuality. In doing the analysis, the theory of lesbian continuum which is proposed by Adrienne Rich will be used to elaborate the novel. This study is a qualitative research where the data are taken from the novel Fingersmith, library research, journals, and other relevant sources. To gain the comprehensive analysis, this study uses some methods which are: close reading, postulation the statements of the problems, data classification, and analysis using the lesbian continuum theory, supporting analysis through library research, books, and academic journals. This study finds that the characters of Susan Trinder and Maud Lilly can be identified as having a double life which constructs the lesbian continuum. Moreover, the lesbian continuum becomes a strategy to negotiate compulsory heterosexuality with denial and negotiation of women’s oppression. Abstrak: Artikel ini mengkaji representasi lesbian continuum dalam novel Sarah Waters yang berjudul Fingersmith. Dua pertanyaan utama penelitian ini adalah (1 bagaimana konstruksi lesbian continuum direpresentasikan dalam hubungan antara tokoh Susan Trinder dan Maud Lily dalam novel Fingersmith dan (2 bagaimana lesbian continuum menjadi strategi untuk menghadapi compulsory heterosexuality dalam novel Fingersmith. Teori lesbian continuum oleh Adrienne Rich akan menjadi teori utama untuk menjawab pertanyaan penelitian. Menggunakan teknik pembacaan novel dan analisis pustaka yang bersumber dari jurnal dan sumber lain yang mendukung. Untuk mendapatkan data yang komprehensip, metode yang dipakai adalah close reading, menjabarkan pertanyaan, klasifikasi

  15. Distributions of self-trapped hole continuums in silica glass

    International Nuclear Information System (INIS)

    Wang, R. P.; Saito, K.; Ikushima, A. J.

    2006-01-01

    Photobleaching of self-trapped holes (STH) in low temperature UV-irradiated silica glass has been investigated by the electron spin resonance method. The bleaching time dependence of the decay of two kinds of STH, STH 1 , and STH 2 , could be well fitted by the stretched exponential function, and STH 2 has a quicker decay than STH 1 . On the other hand, the decay becomes significant large when the photon energy increases from 1.5 to 2.0 eV, and then keeps constant with a further increase of photon energy. The distributions of the STH continuums are estimated at the positions on top of the valence band, being 1.66±0.27 eV for STH 1 and 1.63±0.33 eV for STH 2 . A possible recombination mechanism is proposed to explain the decay of STH signals

  16. Traveling waves in a continuum model of 1D schools

    Science.gov (United States)

    Oza, Anand; Kanso, Eva; Shelley, Michael

    2017-11-01

    We construct and analyze a continuum model of a 1D school of flapping swimmers. Our starting point is a delay differential equation that models the interaction between a swimmer and its upstream neighbors' wakes, which is motivated by recent experiments in the Applied Math Lab at NYU. We coarse-grain the evolution equations and derive PDEs for the swimmer density and variables describing the upstream wake. We study the equations both analytically and numerically, and find that a uniform density of swimmers destabilizes into a traveling wave. Our model makes a number of predictions about the properties of such traveling waves, and sheds light on the role of hydrodynamics in mediating the structure of swimming schools.

  17. Two-phase continuum theory for windblown sand

    Science.gov (United States)

    Jenkins, James T.; Valance, Alexandre

    2018-03-01

    We outline the derivation of a two-phase continuum theory for grains, jumping above a bed of sand, while accelerated by a turbulent shearing flow, colliding with the bed, rebounding, and, perhaps, generating other grains. Relations between the shear and normal stresses and vertical derivatives of components of the average particle velocity are determined by averaging the dynamical equations for the particle trajectories. This provides the closure for the system of differential equations that govern the behavior of the wind and particles above the bed. Boundary conditions are obtained by averaging the results of experiments on rebound and ejection of particles from a particle bed. We solve the resulting system of equations subject to the derived boundary conditions for steady, uniform flows over both particle and rigid beds, and obtain unsteady, uniform solutions and steady, nonuniform solutions that provide information regarding saturation times and lengths, respectively.

  18. Recent developments in evolutionary structural optimization (ESO) for continuum structures

    Science.gov (United States)

    Xie, Yi Min; Huang, Xiaodong

    2010-06-01

    Evolutionary Structural Optimization (ESO) and its later version bi-directional ESO (BESO) have gained widespread popularity among researchers in structural optimization and practitioners in engineering and architecture. However, there have also been many critical comments on various aspects of ESO/BESO. To address those criticisms, we have carried out extensive work to improve the original ESO/BESO algorithms in recent years. This paper summarizes some of the latest developments in the BESO method for topology optimization of continuum structures. Numerical results show that the ESO/BESO solutions agree well with those of other well-established topology optimization methods. It indicates that the current BESO method has great potential to become a robust and efficient design tool for practical applications in engineering and architecture.

  19. Recent developments in evolutionary structural optimization (ESO) for continuum structures

    International Nuclear Information System (INIS)

    Xie Yimin; Huang Xiaodong

    2010-01-01

    Evolutionary Structural Optimization (ESO) and its later version bi-directional ESO (BESO) have gained widespread popularity among researchers in structural optimization and practitioners in engineering and architecture. However, there have also been many critical comments on various aspects of ESO/BESO. To address those criticisms, we have carried out extensive work to improve the original ESO/BESO algorithms in recent years. This paper summarizes some of the latest developments in the BESO method for topology optimization of continuum structures. Numerical results show that the ESO/BESO solutions agree well with those of other well-established topology optimization methods. It indicates that the current BESO method has great potential to become a robust and efficient design tool for practical applications in engineering and architecture.

  20. Prostate Cancer Disparities throughout the Cancer Control Continuum

    Directory of Open Access Journals (Sweden)

    Kyle J. Dalton

    2013-11-01

    Full Text Available Prostate cancer (PCa is the most commonly diagnosed malignancy and the second leading cause of cancer deaths among men in the United States. The American Cancer Society estimates that 238,590 U.S. men will develop PCa and 29,720 men will die from the disease in 2013. PCa exhibits the most profound racial disparities of all cancers with African American men having a 70% higher incidence rate and more than two times higher mortality rate than Caucasian men. Published research on PCa disparities focuses on singular outcomes such as incidence, mortality or quality of life. The objective of this paper is to provide a comprehensive summary of the racial disparities found at each stage of the PCa Care Continuum which includes prevention, detection, treatments, and outcomes and survival. It focuses primarily on disparities among Caucasian (white and African American men.