WorldWideScience

Sample records for siv vaccine regimens

  1. Mucosal vaccination with heterologous viral vectored vaccine targeting subdominant SIV accessory antigens strongly inhibits early viral replication

    DEFF Research Database (Denmark)

    Xu, Huanbin; Andersson, Anne-Marie Carola; Ragonnaud, Emeline

    2017-01-01

    Conventional HIV T cell vaccine strategies have not been successful in containing acute peak viremia, nor in providing long-term control. We immunized rhesus macaques intramuscularly and rectally using a heterologous adenovirus vectored SIV vaccine regimen encoding normally weakly immunogenic tat...

  2. Role of complement and antibodies in controlling infection with pathogenic simian immunodeficiency virus (SIV in macaques vaccinated with replication-deficient viral vectors

    Directory of Open Access Journals (Sweden)

    Strasak Alexander

    2009-06-01

    Full Text Available Abstract Background We investigated the interplay between complement and antibodies upon priming with single-cycle replicating viral vectors (SCIV encoding SIV antigens combined with Adeno5-SIV or SCIV pseudotyped with murine leukemia virus envelope boosting strategies. The vaccine was applied via spray-immunization to the tonsils of rhesus macaques and compared with systemic regimens. Results Independent of the application regimen or route, viral loads were significantly reduced after challenge with SIVmac239 (p Conclusion The heterologous prime-boost strategy with replication-deficient viral vectors administered exclusively via the tonsils did not induce any neutralizing antibodies before challenge. However, after challenge, comparable SIV-specific humoral immune responses were observed in all vaccinated animals. Immunization with single cycle immunodeficiency viruses mounts humoral immune responses comparable to live-attenuated immunodeficiency virus vaccines.

  3. Comparison of protection from homologous cell-free vs cell-associated SIV challenge afforded by inactivated whole SIV vaccines.

    NARCIS (Netherlands)

    J.L. Heeney (Jonathan); P. de Vries (Petra); R. Dubbes (Rob); W. Koornstra (Willem); H. Niphuis; P. ten Haaft (Peter); J. Boes (Jolande); M.E.M. Dings (Marlinda); B. Morein (Bror); A.D.M.E. Osterhaus (Albert)

    1992-01-01

    textabstractThis study attempted to determine if SIV vaccines could protect against challenge with peripheral blood mononuclear cells (PBMCs) from an SIV infected rhesus monkey. Mature Macaca mulatta were vaccinated four times with formalin inactivated SIVmac32H administered in MDP adjuvant (n = 8)

  4. Durable protection of rhesus macaques immunized with a replicating adenovirus-SIV multigene prime/protein boost vaccine regimen against a second SIVmac251 rectal challenge: role of SIV-specific CD8+ T cell responses.

    Science.gov (United States)

    Malkevitch, Nina V; Patterson, L Jean; Aldrich, M Kristine; Wu, Yichen; Venzon, David; Florese, Ruth H; Kalyanaraman, V S; Pal, Ranajit; Lee, Eun Mi; Zhao, Jun; Cristillo, Anthony; Robert-Guroff, Marjorie

    2006-09-15

    Previously, priming with replication-competent adenovirus-SIV multigenic vaccines and boosting with envelope subunits strongly protected 39% of rhesus macaques against rectal SIV(mac251) challenge. To evaluate protection durability, eleven of the protected and two SIV-infected unimmunized macaques that controlled viremia were re-challenged rectally with SIV(mac251). Strong protection was observed in 8/11 vaccinees, including two exhibiting protected macaques. Durable protection was associated with significantly increased SIV-specific ELISPOT responses and lymphoproliferative responses to p27 at re-challenge. After CD8 depletion, 2 of 8 re-challenged, protected vaccinees maintained protection against re-challenge.

  5. High-throughput profiling of anti-glycan humoral responses to SIV vaccination and challenge.

    Directory of Open Access Journals (Sweden)

    Christopher T Campbell

    Full Text Available Recent progress toward an HIV vaccine highlights both the potential of vaccines to end the AIDS pandemic and the need to boost efficacy by incorporating additional vaccine strategies. Although many aspects of the immune response can contribute to vaccine efficacy, the key factors have not been defined fully yet. A particular area that may yield new insights is anti-glycan immune responses, such as those against the glycan shield that HIV uses to evade the immune system. In this study, we used glycan microarray technology to evaluate anti-glycan antibody responses induced by SIV vaccination and infection in a non-human primate model of HIV infection. This comprehensive profiling of circulating anti-glycan antibodies found changes in anti-glycan antibody levels after both vaccination with the Ad5hr-SIV vaccine and SIV infection. Notably, SIV infection produced generalized declines in anti-glycan IgM antibodies in a number of animals. Additionally, some infected animals generated antibodies to the Tn antigen, which is a cryptic tumor-associated antigen exposed by premature termination of O-linked glycans; however, the Ad5hr-SIV vaccine did not induce anti-Tn IgG antibodies. Overall, this study demonstrates the potential contributions that glycan microarrays can make for HIV vaccine development.

  6. Antibodies with high avidity to the gp120 envelope protein in protection from simian immunodeficiency virus SIV(mac251) acquisition in an immunization regimen that mimics the RV-144 Thai trial.

    Science.gov (United States)

    Pegu, Poonam; Vaccari, Monica; Gordon, Shari; Keele, Brandon F; Doster, Melvin; Guan, Yongjun; Ferrari, Guido; Pal, Ranajit; Ferrari, Maria Grazia; Whitney, Stephen; Hudacik, Lauren; Billings, Erik; Rao, Mangala; Montefiori, David; Tomaras, Georgia; Alam, S Munir; Fenizia, Claudio; Lifson, Jeffrey D; Stablein, Donald; Tartaglia, Jim; Michael, Nelson; Kim, Jerome; Venzon, David; Franchini, Genoveffa

    2013-02-01

    The recombinant canarypox vector, ALVAC-HIV, together with human immunodeficiency virus (HIV) gp120 envelope glycoprotein, has protected 31.2% of Thai individuals from HIV acquisition in the RV144 HIV vaccine trial. This outcome was unexpected, given the limited ability of the vaccine components to induce CD8(+) T-cell responses or broadly neutralizing antibodies. We vaccinated macaques with an immunization regimen intended to mimic the RV144 trial and exposed them intrarectally to a dose of the simian immunodeficiency virus SIV(mac251) that transmits few virus variants, similar to HIV transmission to humans. Vaccination induced anti-envelope antibodies in all vaccinees and CD4(+) and CD8(+) T-cell responses. Three of the 11 macaques vaccinated with ALVAC-SIV/gp120 were protected from SIV(mac251) acquisition, but the result was not significant. The remaining vaccinees were infected and progressed to disease. The magnitudes of vaccine-induced SIV(mac251)-specific T-cell responses and binding antibodies were not significantly different between protected and infected animals. However, sera from protected animals had higher avidity antibodies to gp120, recognized the variable envelope regions V1/V2, and reduced SIV(mac251) infectivity in cells that express high levels of α(4)β(7) integrins, suggesting a functional role of antibodies to V2. The current results emphasize the utility of determining the titer of repeated mucosal challenge in the preclinical evaluation of HIV vaccines.

  7. Protection of macaques with diverse MHC genotypes against a heterologous SIV by vaccination with a deglycosylated live-attenuated SIV.

    Directory of Open Access Journals (Sweden)

    Chie Sugimoto

    Full Text Available HIV vaccine development has been hampered by issues such as undefined correlates of protection and extensive diversity of HIV. We addressed these issues using a previously established SIV-macaque model in which SIV mutants with deletions of multiple gp120 N-glycans function as potent live attenuated vaccines to induce near-sterile immunity against the parental pathogenic SIVmac239. In this study, we investigated the protective efficacy of these mutants against a highly pathogenic heterologous SIVsmE543-3 delivered intravenously to rhesus macaques with diverse MHC genotypes. All 11 vaccinated macaques contained the acute-phase infection with blood viral loads below the level of detection between 4 and 10 weeks postchallenge (pc, following a transient but marginal peak of viral replication at 2 weeks in only half of the challenged animals. In the chronic phase, seven vaccinees contained viral replication for over 80 weeks pc, while four did not. Neutralizing antibodies against challenge virus were not detected. Although overall levels of SIV specific T cell responses did not correlate with containment of acute and chronic viral replication, a critical role of cellular responses in the containment of viral replication was suggested. Emergence of viruses with altered fitness due to recombination between the vaccine and challenge viruses and increased gp120 glycosylation was linked to the failure to control SIV. These results demonstrate the induction of effective protective immune responses in a significant number of animals against heterologous virus by infection with deglycosylated attenuated SIV mutants in macaques with highly diverse MHC background. These findings suggest that broad HIV cross clade protection is possible, even in hosts with diverse genetic backgrounds. In summary, results of this study indicate that deglycosylated live-attenuated vaccines may provide a platform for the elucidation of correlates of protection needed for a

  8. Mucosal B Cells Are Associated with Delayed SIV Acquisition in Vaccinated Female but Not Male Rhesus Macaques Following SIVmac251 Rectal Challenge.

    Directory of Open Access Journals (Sweden)

    Iskra Tuero

    2015-08-01

    Full Text Available Many viral infections, including HIV, exhibit sex-based pathogenic differences. However, few studies have examined vaccine-related sex differences. We compared immunogenicity and protective efficacy of monomeric SIV gp120 with oligomeric SIV gp140 in a pre-clinical rhesus macaque study and explored a subsequent sex bias in vaccine outcome. Each immunization group (16 females, 8 males was primed twice mucosally with replication-competent Ad-recombinants encoding SIVsmH4env/rev, SIV239gag and SIV239nefΔ1-13 and boosted twice intramuscularly with SIVmac239 monomeric gp120 or oligomeric gp140 in MF59 adjuvant. Controls (7 females, 5 males received empty Ad and MF59. Up to 9 weekly intrarectal challenges with low-dose SIVmac251 were administered until macaques became infected. We assessed vaccine-induced binding, neutralizing, and non-neutralizing antibodies, Env-specific memory B cells and plasmablasts/plasma cells (PB/PC in bone marrow and rectal tissue, mucosal Env-specific antibodies, and Env-specific T-cells. Post-challenge, only one macaque (gp140-immunized remained uninfected. However, SIV acquisition was significantly delayed in vaccinated females but not males, correlated with Env-specific IgA in rectal secretions, rectal Env-specific memory B cells, and PC in rectal tissue. These results extend previous correlations of mucosal antibodies and memory B cells with protective efficacy. The gp140 regimen was more immunogenic, stimulating elevated gp140 and cyclic V2 binding antibodies, ADCC and ADCP activities, bone marrow Env-specific PB/PC, and rectal gp140-specific IgG. However, immunization with gp120, the form of envelope immunogen used in RV144, the only vaccine trial to show some efficacy, provided more significant acquisition delay. Further over 40 weeks of follow-up, no gp120 immunized macaques met euthanasia criteria in contrast to 7 gp140-immunized and 2 control animals. Although males had higher binding antibodies than females, ADCC

  9. Mucosal B Cells Are Associated with Delayed SIV Acquisition in Vaccinated Female but Not Male Rhesus Macaques Following SIVmac251 Rectal Challenge.

    Science.gov (United States)

    Tuero, Iskra; Mohanram, Venkatramanan; Musich, Thomas; Miller, Leia; Vargas-Inchaustegui, Diego A; Demberg, Thorsten; Venzon, David; Kalisz, Irene; Kalyanaraman, V S; Pal, Ranajit; Ferrari, Maria Grazia; LaBranche, Celia; Montefiori, David C; Rao, Mangala; Vaccari, Monica; Franchini, Genoveffa; Barnett, Susan W; Robert-Guroff, Marjorie

    2015-08-01

    Many viral infections, including HIV, exhibit sex-based pathogenic differences. However, few studies have examined vaccine-related sex differences. We compared immunogenicity and protective efficacy of monomeric SIV gp120 with oligomeric SIV gp140 in a pre-clinical rhesus macaque study and explored a subsequent sex bias in vaccine outcome. Each immunization group (16 females, 8 males) was primed twice mucosally with replication-competent Ad-recombinants encoding SIVsmH4env/rev, SIV239gag and SIV239nefΔ1-13 and boosted twice intramuscularly with SIVmac239 monomeric gp120 or oligomeric gp140 in MF59 adjuvant. Controls (7 females, 5 males) received empty Ad and MF59. Up to 9 weekly intrarectal challenges with low-dose SIVmac251 were administered until macaques became infected. We assessed vaccine-induced binding, neutralizing, and non-neutralizing antibodies, Env-specific memory B cells and plasmablasts/plasma cells (PB/PC) in bone marrow and rectal tissue, mucosal Env-specific antibodies, and Env-specific T-cells. Post-challenge, only one macaque (gp140-immunized) remained uninfected. However, SIV acquisition was significantly delayed in vaccinated females but not males, correlated with Env-specific IgA in rectal secretions, rectal Env-specific memory B cells, and PC in rectal tissue. These results extend previous correlations of mucosal antibodies and memory B cells with protective efficacy. The gp140 regimen was more immunogenic, stimulating elevated gp140 and cyclic V2 binding antibodies, ADCC and ADCP activities, bone marrow Env-specific PB/PC, and rectal gp140-specific IgG. However, immunization with gp120, the form of envelope immunogen used in RV144, the only vaccine trial to show some efficacy, provided more significant acquisition delay. Further over 40 weeks of follow-up, no gp120 immunized macaques met euthanasia criteria in contrast to 7 gp140-immunized and 2 control animals. Although males had higher binding antibodies than females, ADCC and ADCP

  10. Increased cellular immune responses and CD4+ T-cell proliferation correlate with reduced plasma viral load in SIV challenged recombinant simian varicella virus - simian immunodeficiency virus (rSVV-SIV vaccinated rhesus macaques

    Directory of Open Access Journals (Sweden)

    Pahar Bapi

    2012-08-01

    Full Text Available Abstract Background An effective AIDS vaccine remains one of the highest priorities in HIV-research. Our recent study showed that vaccination of rhesus macaques with recombinant simian varicella virus (rSVV vector – simian immunodeficiency virus (SIV envelope and gag genes, induced neutralizing antibodies and cellular immune responses to SIV and also significantly reduced plasma viral loads following intravenous pathogenic challenge with SIVMAC251/CX1. Findings The purpose of this study was to define cellular immunological correlates of protection in rSVV-SIV vaccinated and SIV challenged animals. Immunofluorescent staining and multifunctional assessment of SIV-specific T-cell responses were evaluated in both Experimental and Control vaccinated animal groups. Significant increases in the proliferating CD4+ T-cell population and polyfunctional T-cell responses were observed in all Experimental-vaccinated animals compared with the Control-vaccinated animals. Conclusions Increased CD4+ T-cell proliferation was significantly and inversely correlated with plasma viral load. Increased SIV-specific polyfunctional cytokine responses and increased proliferation of CD4+ T-cell may be crucial to control plasma viral loads in vaccinated and SIVMAC251/CX1 challenged macaques.

  11. Safety and tolerability of a live oral Salmonella typhimurium vaccine candidate in SIV-infected nonhuman primates.

    Science.gov (United States)

    Ault, Alida; Tennant, Sharon M; Gorres, J Patrick; Eckhaus, Michael; Sandler, Netanya G; Roque, Annelys; Livio, Sofie; Bao, Saran; Foulds, Kathryn E; Kao, Shing-Fen; Roederer, Mario; Schmidlein, Patrick; Boyd, Mary Adetinuke; Pasetti, Marcela F; Douek, Daniel C; Estes, Jacob D; Nabel, Gary J; Levine, Myron M; Rao, Srinivas S

    2013-12-02

    Nontyphoidal Salmonella (NTS) serovars are a common cause of acute food-borne gastroenteritis worldwide and can cause invasive systemic disease in young infants, the elderly, and immunocompromised hosts, accompanied by high case fatality. Vaccination against invasive NTS disease is warranted where the disease incidence and mortality are high and multidrug resistance is prevalent, as in sub-Saharan Africa. Live-attenuated vaccines that mimic natural infection constitute one strategy to elicit protection. However, they must particularly be shown to be adequately attenuated for consideration of immunocompromised subjects. Accordingly, we examined the safety and tolerability of an oral live attenuated Salmonella typhimurium vaccine candidate, CVD 1921, in an established chronic simian immunodeficiency virus (SIV)-infected rhesus macaque model. We evaluated clinical parameters, histopathology, and measured differences in mucosal permeability to wild-type and vaccine strains. Compared to the wild-type S. typhimurium strain I77 in both SIV-infected and SIV-uninfected nonhuman primate hosts, this live-attenuated vaccine shows reduced shedding and systemic spread, exhibits limited pathological disease manifestations in the digestive tract, and induces low levels of cellular infiltration in tissues. Furthermore, wild-type S. typhimurium induces increased intestinal epithelial damage and permeability, with infiltration of neutrophils and macrophages in both SIV-infected and SIV-uninfected nonhuman primates compared to the vaccine strain. Based on shedding, systemic spread, and histopathology, the live-attenuated S. typhimurium strain CVD 1921 appears to be safe and well-tolerated in the nonhuman primate model, including chronically SIV-infected rhesus macaques. Copyright © 2013. Published by Elsevier Ltd.

  12. Fragmentation of SIV-gag vaccine induces broader T cell responses.

    Directory of Open Access Journals (Sweden)

    Adel Benlahrech

    Full Text Available High mutation rates of human immunodeficiency virus (HIV allows escape from T cell recognition preventing development of effective T cell vaccines. Vaccines that induce diverse T cell immune responses would help overcome this problem. Using SIV gag as a model vaccine, we investigated two approaches to increase the breadth of the CD8 T cell response. Namely, fusion of vaccine genes to ubiquitin to target the proteasome and increase levels of MHC class I peptide complexes and gene fragmentation to overcome competition between epitopes for presentation and recognition.three vaccines were compared: full-length unmodified SIV-mac239 gag, full-length gag fused at the N-terminus to ubiquitin and 7 gag fragments of equal size spanning the whole of gag with ubiquitin-fused to the N-terminus of each fragment. Genes were cloned into a replication defective adenovirus vector and immunogenicity assessed in an in vitro human priming system. The breadth of the CD8 T cell response, defined by the number of distinct epitopes, was assessed by IFN-γ-ELISPOT and memory phenotype and cytokine production evaluated by flow cytometry. We observed an increase of two- to six-fold in the number of epitopes recognised in the ubiquitin-fused fragments compared to the ubiquitin-fused full-length gag. In contrast, although proteasomal targeting was achieved, there was a marked reduction in the number of epitopes recognised in the ubiquitin-fused full-length gag compared to the full-length unmodified gene, but there were no differences in the number of epitope responses induced by non-ubiquitinated full-length gag and the ubiquitin-fused mini genes. Fragmentation and ubiquitination did not affect T cell memory differentiation and polyfunctionality, though most responses were directed against the Ad5 vector.Fragmentation but not fusion with ubiquitin increases the breadth of the CD8 T vaccine response against SIV-mac239 gag. Thus gene fragmentation of HIV vaccines may maximise

  13. Enhanced cellular immune response against SIV Gag induced by immunization with DNA vaccines expressing assembly and release-defective SIV Gag proteins

    International Nuclear Information System (INIS)

    Bu Zhigao; Ye Ling; Compans, Richard W.; Yang Chinglai

    2003-01-01

    Codon-optimized genes were synthesized for the SIVmac239 Gag, a mutant Gag with mutations in the major homology region, and a chimeric Gag containing a protein destruction signal at the N-terminus of Gag. The mutant and chimeric Gag were expressed at levels comparable to that observed for the wild-type Gag protein but their stability and release into the medium were found to be significantly reduced. Immunization of mice with DNA vectors encoding the mutant or chimeric Gag induced fourfold higher levels of anti-SIV Gag CD4 T cell responses than the DNA vector encoding the wild-type SIV Gag. Moreover, anti-SIV Gag CD8 T cell responses induced by DNA vectors encoding the mutant or chimeric Gag were found to be 5- to 10-fold higher than those induced by the DNA construct for the wild-type Gag. These results indicate that mutations disrupting assembly and/or stability of the SIV Gag protein effectively enhance its immunogenicity when expressed from DNA vaccines

  14. Membrane-bound SIV envelope trimers are immunogenic in ferrets after intranasal vaccination with a replication-competent canine distemper virus vector.

    Science.gov (United States)

    Zhang, Xinsheng; Wallace, Olivia; Wright, Kevin J; Backer, Martin; Coleman, John W; Koehnke, Rebecca; Frenk, Esther; Domi, Arban; Chiuchiolo, Maria J; DeStefano, Joanne; Narpala, Sandeep; Powell, Rebecca; Morrow, Gavin; Boggiano, Cesar; Zamb, Timothy J; Richter King, C; Parks, Christopher L

    2013-11-01

    We are investigating canine distemper virus (CDV) as a vaccine vector for the delivery of HIV envelope (Env) that closely resembles the native trimeric spike. We selected CDV because it will promote vaccine delivery to lymphoid tissues, and because human exposure is infrequent, reducing potential effects of pre-existing immunity. Using SIV Env as a model, we tested a number of vector and gene insert designs. Vectors containing a gene inserted between the CDV H and L genes, which encoded Env lacking most of its cytoplasmic tail, propagated efficiently in Vero cells, expressed the immunogen on the cell surface, and incorporated the SIV glycoprotein into progeny virus particles. When ferrets were vaccinated intranasally, there were no signs of distress, vector replication was observed in the gut-associated lymphoid tissues, and the animals produced anti-SIV Env antibodies. These data show that live CDV-SIV Env vectors can safely induce anti-Env immune responses following intranasal vaccination. © 2013 Elsevier Inc. All rights reserved.

  15. Sequential priming with simian immunodeficiency virus (SIV) DNA vaccines, with or without encoded cytokines, and a replicating adenovirus-SIV recombinant followed by protein boosting does not control a pathogenic SIVmac251 mucosal challenge.

    Science.gov (United States)

    Demberg, Thorsten; Boyer, Jean D; Malkevich, Nina; Patterson, L Jean; Venzon, David; Summers, Ebonita L; Kalisz, Irene; Kalyanaraman, V S; Lee, Eun Mi; Weiner, David B; Robert-Guroff, Marjorie

    2008-11-01

    Previously, combination DNA/nonreplicating adenovirus (Ad)- or poxvirus-vectored vaccines have strongly protected against SHIV(89.6P), DNAs expressing cytokines have modulated immunity elicited by DNA vaccines, and replication-competent Ad-recombinant priming and protein boosting has strongly protected against simian immunodeficiency virus (SIV) challenge. Here we evaluated a vaccine strategy composed of these promising components. Seven rhesus macaques per group were primed twice with multigenic SIV plasmid DNA with or without interleukin-12 (IL-12) DNA or IL-15 DNA. After a multigenic replicating Ad-SIV immunization, all groups received two booster immunizations with SIV gp140 and SIV Nef protein. Four control macaques received control DNA plasmids, empty Ad vector, and adjuvant. All vaccine components were immunogenic, but the cytokine DNAs had little effect. Macaques that received IL-15-DNA exhibited higher peak anti-Nef titers, a more rapid anti-Nef anamnestic response postchallenge, and expanded CD8(CM) T cells 2 weeks postchallenge compared to the DNA-only group. Other immune responses were indistinguishable between groups. Overall, no protection against intrarectal challenge with SIV(mac251) was observed, although immunized non-Mamu-A*01 macaques as a group exhibited a statistically significant 1-log decline in acute viremia compared to non-Mamu-A*01 controls. Possible factors contributing to the poor outcome include administration of cytokine DNAs to sites different from the Ad recombinants (intramuscular and intratracheal, respectively), too few DNA priming immunizations, a suboptimal DNA delivery method, failure to ensure delivery of SIV and cytokine plasmids to the same cell, and instability and short half-life of the IL-15 component. Future experiments should address these issues to determine if this combination approach is able to control a virulent SIV challenge.

  16. HIV vaccine research and discovery in the nonhuman primates model: a unified theory in acquisition prevention and control of SIV infection.

    Science.gov (United States)

    Lynch, Rebecca M; Yamamoto, Takuya; McDermott, Adrian B

    2013-07-01

    Here we highlight the latest advances in HIV vaccine concepts that will expand our knowledge on how to elicit effective acquisition-prevention and/or control of simian immunodeficiency virus (SIV) replication in the nonhuman primate (NHP) model. In the context of the promising analyses from the RV144 Thai Trial and the effective control of SIV replication exerted by rhCMV-(SIV) elicited EM CD8 T cells, the HIV field has recently shifted toward vaccine concepts that combine protection from acquisition with effective control of SIV replication. Current studies in the NHP model have demonstrated the efficacy of HIV-neutralizing antibodies via passive transfer, the potential importance of the CD4 Tfh subset, the ability to effectively model the RV144 vaccine trial and the capacity of an Ad26 prime and modified vaccinia Ankara virus boost to elicit Env-specific antibody and cellular responses that both limit acquisition and control heterologous SIVmac251 challenge. The latest work in the NHP model suggests that the next generation HIV-1 vaccines should aim to provoke a comprehensive adaptive immune response for both prevention of SIV acquisition as well as control of replication in breakthrough infection.

  17. Natural and cross-inducible anti-SIV antibodies in Mauritian cynomolgus macaques.

    Directory of Open Access Journals (Sweden)

    Hongzhao Li

    Full Text Available Cynomolgus macaques are an increasingly important nonhuman primate model for HIV vaccine research. SIV-free animals without pre-existing anti-SIV immune responses are generally needed to evaluate the effect of vaccine-induced immune responses against the vaccine epitopes. Here, in order to select such animals for vaccine studies, we screened 108 naïve female Mauritian cynomolgus macaques for natural (baseline antibodies to SIV antigens using a Bio-Plex multiplex system. The antigens included twelve 20mer peptides overlapping the twelve SIV protease cleavage sites (-10/+10, respectively (PCS peptides, and three non-PCS Gag or Env peptides. Natural antibodies to SIV antigens were detected in subsets of monkeys. The antibody reactivity to SIV was further confirmed by Western blot using purified recombinant SIV Gag and Env proteins. As expected, the immunization of monkeys with PCS antigens elicited anti-PCS antibodies. However, unexpectedly, antibodies to non-PCS peptides were also induced, as shown by both Bio-Plex and Western blot analyses, while the non-PCS peptides do not share sequence homology with PCS peptides. The presence of natural and vaccine cross-inducible SIV antibodies in Mauritian cynomolgus macaques should be considered in animal selection, experimental design and result interpretation, for their best use in HIV vaccine research.

  18. Comparative evaluation of oral and intranasal priming with replication-competent adenovirus 5 host range mutant (Ad5hr)-simian immunodeficiency virus (SIV) recombinant vaccines on immunogenicity and protective efficacy against SIV(mac251).

    Science.gov (United States)

    Zhou, Qifeng; Hidajat, Rachmat; Peng, Bo; Venzon, David; Aldrich, M Kristine; Richardson, Ersell; Lee, Eun Mi; Kalyanaraman, V S; Grimes, George; Gómez-Román, V Raúl; Summers, L Ebonita; Malkevich, Nina; Robert-Guroff, Marjorie

    2007-11-19

    Oral, replication-competent Ad-HIV vaccines are advancing to human trials. Previous evaluation of protective efficacy in non-human primates has primarily followed upper respiratory tract administrations. Here we compared sequential oral (O/O) versus intranasal/oral (I/O) priming of rhesus macaques with Ad5 host range mutant-SIV recombinants expressing SIV env/rev, gag, and nef genes followed by boosting with SIV gp120 protein. Cellular immune responses in PBMC were stronger and more frequent after I/O administration. Both groups developed mucosal immunity, including memory cells in bronchial alveolar lavage, and gut-homing receptors on PBMC. Following intrarectal SIV(mac251) challenge, both groups exhibited equivalent, significant protection and robust post-challenge cellular immunity. Our results illustrate the promise of oral replication-competent Ad-recombinant vaccines. Pre-challenge PBMC ELISPOT and proliferative responses did not predict protection in the O/O group, highlighting the need for simple, non-invasive methods to reliably assess mucosal immunity.

  19. [Adverse effects of seasonal flu vaccine and new influenza A (H1N1) vaccine in health care workers].

    Science.gov (United States)

    Torruella, Joan Inglés; Soto, Rosa Gil; Valls, Rosa Carreras; Lozano, Judit Valverde; Carreras, Dolors Benito; Cunillera, Arnau Besora

    2013-01-01

    To assess and compare adverse effects of Seasonal Influenza Vaccine (SIV) and new Influenza A(H1N1) Vaccine (AIV) in health care workers. Multicenter cross-sectional study in health care workers from acute care hospitals, primary health care centers, social centers, mental health centers and a geriatric hospital participating in the 2009 vaccination campaign. Self-administered questionnaires were sent to all workers vaccinated with SIV and/or AIV. 527 valid questionnaires were collected out of 1123 sent to SIV vaccinated workers (46.9%), and 241 out of 461 sent to AIV vaccinated workers (52.%%). Participant workers include 527 vaccinated only with SIV, 117 first vaccinated with SIV and later with AIV (SIV+AIV), and 125 vaccinated only with AIV. Overall, 18.4% (95%CI 15.1-21.7) of workers vaccinated only with SIV reported adverse effects, as compared to 45.3% (95I 36.3-54.3) reporting adverse effects to AIV in the SIV+AIV group and 46.4% (95%CI 37.7-55.1) of workers vaccinated only with AIV. In all participants the most common adverseeffect was a local reaction. Women wre more reactive to both SIV and AIV than men. In all age groups SIV vaccination alone caused fewer reactions that either AIV only or the combination of SIV+AIV, with the exception of workers below 29 years of age. AIV was associated with more reactions than SIV, with no differences observed in relation to administration sequence. There were differences by sex and age, but reactions always occurred more commonly with AIV. Copyright belongs to the Societat Catalana de Seguretat i Medicina del Treball.

  20. Is an HIV vaccine possible?

    Directory of Open Access Journals (Sweden)

    Nancy A. Wilson

    Full Text Available The road to the discovery of a vaccine for HIV has been arduous and will continue to be difficult over the ensuing twenty years. Most vaccines are developed by inducing neutralizing antibodies against the target pathogen or by using attenuated strains of the particular pathogen to engender a variety of protective immune responses. Unfortunately, simple methods of generating anti-HIV antibodies have already failed in a phase III clinical trial. While attenuated SIV variants work well against homologous challenges in non-human primates, the potential for reversion to a more pathogenic virus and recombination with challenge viruses will preclude the use of attenuated HIV in the field. It has been exceedingly frustrating to vaccinate for HIV-specific neutralizing antibodies given the enormous diversity of the Envelope (Env glycoprotein and its well-developed glycan shield. However, there are several antibodies that will neutralize many different strains of HIV and inducing these types of antibodies in vaccinees remains the goal of a vigorous effort to develop a vaccine for HIV based on neutralizing antibodies. Given the difficulty in generating broadly reactive neutralizing antibodies, the HIV vaccine field has turned its attention to inducing T cell responses against the virus using a variety of vectors. Unfortunately, the results from Merck's phase IIb STEP trial proved to be disappointing. Vaccinees received Adenovirus type 5 (Ad5 expressing Gag, Pol, and Nef of HIV. This vaccine regimen failed to either prevent infection or reduce the level of HIV replication after challenge. These results mirrored those in non-human primate testing of Ad5 using rigorous SIV challenge models. This review will focus on recent developments in HIV vaccine development. We will deal largely with attempts to develop a T cell-based vaccine using the non-human primate SIV challenge model.

  1. Single-cycle immunodeficiency viruses provide strategies for uncoupling in vivo expression levels from viral replicative capacity and for mimicking live-attenuated SIV vaccines

    International Nuclear Information System (INIS)

    Kuate, Seraphin; Stahl-Hennig, Christiane; Haaft, Peter ten; Heeney, Jonathan; Ueberla, Klaus

    2003-01-01

    To reduce the risks associated with live-attenuated immunodeficiency virus vaccines, single-cycle immunodeficiency viruses (SCIVs) were developed by primer complementation and production of the vaccine in the absence of vif in a vif-independent cell line. After a single intravenous injection of SCIVs into rhesus monkeys, peak viral RNA levels of 10 3 to 10 4 copies/ml plasma were observed, indicating efficient expression of SCIV in the vaccinee. After booster immunizations with SCIVs, SIV-specific humoral and cellular immune responses were observed. Although the vaccine doses used in this pilot study could not protect vaccinees from subsequent intravenous challenge with pathogenic SIVmac239, our results demonstrate that the novel SCIV approach allows us to uncouple in vivo expression levels from the viral replicative capacity facilitating the analysis of the relationship between viral expression levels or viral genes and immune responses induced by SIV

  2. Vaccination-challenge studies with a Port Chalmers/73 (H3N2)-based swine influenza virus vaccine: Reflections on vaccine strain updates and on the vaccine potency test.

    Science.gov (United States)

    De Vleeschauwer, Annebel; Qiu, Yu; Van Reeth, Kristien

    2015-05-11

    The human A/Port Chalmers/1/73 (H3N2) influenza virus strain, the supposed ancestor of European H3N2 swine influenza viruses (SIVs), was used in most commercial SIV vaccines in Europe until recently. If manufacturers want to update vaccine strains, they have to perform laborious intratracheal (IT) challenge experiments and demonstrate reduced virus titres in the lungs of vaccinated pigs. We aimed to examine (a) the ability of a Port Chalmers/73-based commercial vaccine to induce cross-protection against a contemporary European H3N2 SIV and serologic cross-reaction against H3N2 SIVs from Europe and North America and (b) the validity of intranasal (IN) challenge and virus titrations of nasal swabs as alternatives for IT challenge and titrations of lung tissue in vaccine potency tests. Pigs were vaccinated with Suvaxyn Flu(®) and challenged by the IT or IN route with sw/Gent/172/08. Post-vaccination sera were examined in haemagglutination-inhibition assays against vaccine and challenge strains and additional H3N2 SIVs from Europe and North America, including an H3N2 variant virus. Tissues of the respiratory tract and nasal swabs were collected 3 days post challenge (DPCh) and from 0-7 DPCh, respectively, and examined by virus titration. Two vaccinations consistently induced cross-reactive antibodies against European H3N2 SIVs from 1998-2012, but minimal or undetectable antibody titres against North American viruses. Challenge virus titres in the lungs, trachea and nasal mucosa of the vaccinated pigs were significantly reduced after both IT and IN challenge. Yet the reduction of virus titres and nasal shedding was greater after IT challenge. The Port Chalmers/73-based vaccine still offered protection against a European H3N2 SIV isolated 35 years later and with only 86.9% amino acid homology in its HA1, but it is unlikely to protect against H3N2 SIVs that are endemic in North America. We use our data to reflect on vaccine strain updates and on the vaccine potency test

  3. Zagreb regimen, an abbreviated intramuscular schedule for rabies vaccination.

    Science.gov (United States)

    Ren, Jiangping; Yao, Linong; Sun, Jimin; Gong, Zhenyu

    2015-01-01

    The Zagreb regimen, an abbreviated intramuscular schedule for rabies vaccination, was developed by I. Vodopija and colleagues of the Zagreb Institute of Public Health in Croatia in the 1980s. It was recommended by WHO as one of the intramuscular (IM) schedules for rabies vaccination in 2010. We reviewed the literature on the immunogenicity, safety, economic burden, and compliance of the Zagreb 2-1-1 regimen. Compared to Essen, another IM schedule recommended by WHO, Zagreb has higher compliance, lower medical cost, and better immunogenicity at an early stage. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Control of SIV infection and subsequent induction of pandemic H1N1 immunity in rhesus macaques using an Ad5 [E1-, E2b-] vector platform.

    Science.gov (United States)

    Gabitzsch, Elizabeth S; Balint-Junior, Joseph P; Xu, Younong; Balcaitis, Stephanie; Sanders-Beer, Brigitte; Karl, Julie; Weinhold, Kent J; Paessler, Slobodan; Jones, Frank R

    2012-11-26

    Anti-vector immunity mitigates immune responses induced by recombinant adenovirus vector vaccines, limiting their prime-boost capabilities. We have developed a novel gene delivery and expression platform (Ad5 [E1-, E2b-]) that induces immune responses despite pre-existing and/or developed concomitant Ad5 immunity. In the present study, we evaluated if this new Ad5 platform could overcome the adverse condition of pre-existing Ad5 immunity to induce effective immune responses in prime-boost immunization regimens against two different infectious diseases in the same animal. Ad5 immune rhesus macaques (RM) were immunized multiple times with the Ad5 [E1-, E2b-] platform expressing antigens from simian immunodeficiency virus (SIV). Immunized RM developed cell-mediated immunity against SIV antigens Gag, Pol, Nef and Env as well as antibody against Env. Vaccinated and vector control RMs were challenged intra-rectally with homologous SIVmac239. During a 7-week follow-up, there was perturbation of SIV load in some immunized RM. At 7 weeks post-challenge, eight immunized animals (53%) did not have detectable SIV, compared to two RM controls (13%) (Pnow hyper immune to Ad5, were then vaccinated with the same Ad5 [E1-, E2b-] platform expressing H1N1 influenza hemagglutinin (HA). Thirty days post Ad5 [E1-, E2b-]-HA vaccination, significant levels of influenza neutralizing antibody were induced in all animals that increased after an Ad5 [E1-, E2b-]-HA homologous boost. These data demonstrate the versatility of this new vector platform to immunize against two separate disease targets in the same animal despite the presence of immunity against the delivery platform, permitting homologous repeat immunizations with an Ad5 gene delivery platform. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Swine influenza virus vaccines: to change or not to change-that's the question.

    Science.gov (United States)

    Van Reeth, Kristien; Ma, Wenjun

    2013-01-01

    Commercial vaccines currently available against swine influenza virus (SIV) are inactivated, adjuvanted, whole virus vaccines, based on H1N1 and/or H3N2 and/or H1N2 SIVs. In keeping with the antigenic and genetic differences between SIVs circulating in Europe and the US, the vaccines for each region are produced locally and contain different strains. Even within a continent, there is no standardization of vaccine strains, and the antigen mass and adjuvants can also differ between different commercial products. Recombinant protein vaccines against SIV, vector, and DNA vaccines, and vaccines attenuated by reverse genetics have been tested in experimental studies, but they have not yet reached the market. In this review, we aim to present a critical analysis of the performance of commercial inactivated and novel generation SIV vaccines in experimental vaccination challenge studies in pigs. We pay special attention to the differences between commercial SIV vaccines and vaccination attitudes in Europe and in North America, to the issue of vaccine strain selection and changes, and to the potential advantages of novel generation vaccines over the traditional killed SIV vaccines.

  6. Immunogenicity, safety and antibody persistence of a purified vero cell cultured rabies vaccine (Speeda) administered by the Zagreb regimen or Essen regimen in post-exposure subjects.

    Science.gov (United States)

    Shi, Nianmin; Zhang, Yibin; Zheng, Huizhen; Zhu, Zhenggang; Wang, Dingming; Li, Sihai; Li, Yuhua; Yang, Liqing; Zhang, Junnan; Bai, Yunhua; Lu, Qiang; Zhang, Zheng; Luo, Fengji; Yu, Chun; Li, Li

    2017-06-03

    To compare the safety, immunogenicity and long-term effect of a purified vero cell cultured rabies vaccine in post-exposure subjects following 2 intramuscular regimens, Zagreb or Essen regimen. Serum samples were collected before vaccination and on days 7, 14, 42, 180 and 365 post vaccination. Solicited adverse events were recorded for 7 d following each vaccine dose, and unsolicited adverse events throughout the entire study period. This study was registered with ClinicalTrials.gov (NCT01821911 and NCT01827917). No serious adverse events were reported. Although Zagreb regimen had a higher incidence of adverse reactions than Essen regimen at the first and second injection, the incidence was similar at the third and fourth injection between these 2 groups as well. At day 42, 100% subjects developed adequate rabies virus neutralizing antibody concentrations (≥ 0.5IU/ml) for both regimens. At days 180 and 365, the antibody level decreased dramatically, however, the percentage of subjects with adequate antibody concentrations still remained high (above 75% and 50% respectively). None of confirmed rabies virus exposured subjects had rabies one year later, and percentage of subjects with adequate antibody concentrations reached 100% at days 14 and 42. Rabies post-exposure prophylaxis vaccination with PVRV following a Zagreb regimen had a similar safety, immunogenicity and long-term effect to the Essen regimen in China.

  7. Vaccination of rhesus macaques with a vif-deleted simian immunodeficiency virus proviral DNA vaccine

    International Nuclear Information System (INIS)

    Sparger, Ellen E.; Dubie, Robert A.; Shacklett, Barbara L.; Cole, Kelly S.; Chang, W.L.; Luciw, Paul A.

    2008-01-01

    Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogenicity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-γ enzyme-linked immunospot responses of low magnitude were observed after immunization with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by twenty weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus

  8. Incorporation of chimeric HIV-SIV-Env and modified HIV-Env proteins into HIV pseudovirions

    International Nuclear Information System (INIS)

    Devitt, Gerard; Emerson, Vanessa; Holtkotte, Denise; Pfeiffer, Tanya; Pisch, Thorsten; Bosch, Valerie

    2007-01-01

    Low level incorporation of the viral glycoprotein (Env) into human immunodeficiency virus (HIV) particles is a major drawback for vaccine strategies against HIV/AIDS in which HIV particles are used as immunogen. Within this study, we have examined two strategies aimed at achieving higher levels of Env incorporation into non-infectious pseudovirions (PVs). First, we have generated chimeric HIV/SIV Env proteins containing the truncated C-terminal tail region of simian immunodeficiency virus (SIV)mac239-Env767 stop , which mediates strongly increased incorporation of SIV-Env into SIV particles. In a second strategy, we have employed a truncated HIV-Env protein (Env-Tr752 N750K ) which we have previously demonstrated to be incorporated into HIV virions, generated in infected T-cells, to a higher level than that of Wt-HIV-Env. Although the chimeric HIV/SIV Env proteins were expressed at the cell surface and induced increased levels of cell-cell fusion in comparison to Wt-HIV-Env, they did not exhibit increased incorporation into either HIV-PVs or SIV-PVs. Only Env-Tr752 N750K exhibited significantly higher (threefold) levels of incorporation into HIV-PVs, an improvement, which, although not dramatic, is worthwhile for the large-scale preparation of non-infectious PVs for vaccine studies aimed at inducing Env humoral responses

  9. A simplified 4-site economical intradermal post-exposure rabies vaccine regimen: a randomised controlled comparison with standard methods.

    Directory of Open Access Journals (Sweden)

    Mary J Warrell

    2008-04-01

    Full Text Available The need for economical rabies post-exposure prophylaxis (PEP is increasing in developing countries. Implementation of the two currently approved economical intradermal (ID vaccine regimens is restricted due to confusion over different vaccines, regimens and dosages, lack of confidence in intradermal technique, and pharmaceutical regulations. We therefore compared a simplified 4-site economical PEP regimen with standard methods.Two hundred and fifty-four volunteers were randomly allocated to a single blind controlled trial. Each received purified vero cell rabies vaccine by one of four PEP regimens: the currently accepted 2-site ID; the 8-site regimen using 0.05 ml per ID site; a new 4-site ID regimen (on day 0, approximately 0.1 ml at 4 ID sites, using the whole 0.5 ml ampoule of vaccine; on day 7, 0.1 ml ID at 2 sites and at one site on days 28 and 90; or the standard 5-dose intramuscular regimen. All ID regimens required the same total amount of vaccine, 60% less than the intramuscular method. Neutralising antibody responses were measured five times over a year in 229 people, for whom complete data were available.All ID regimens showed similar immunogenicity. The intramuscular regimen gave the lowest geometric mean antibody titres. Using the rapid fluorescent focus inhibition test, some sera had unexpectedly high antibody levels that were not attributable to previous vaccination. The results were confirmed using the fluorescent antibody virus neutralisation method.This 4-site PEP regimen proved as immunogenic as current regimens, and has the advantages of requiring fewer clinic visits, being more practicable, and having a wider margin of safety, especially in inexperienced hands, than the 2-site regimen. It is more convenient than the 8-site method, and can be used economically with vaccines formulated in 1.0 or 0.5 ml ampoules. The 4-site regimen now meets all requirements of immunogenicity for PEP and can be introduced without further

  10. A simplified 4-site economical intradermal post-exposure rabies vaccine regimen: a randomised controlled comparison with standard methods.

    Science.gov (United States)

    Warrell, Mary J; Riddell, Anna; Yu, Ly-Mee; Phipps, Judith; Diggle, Linda; Bourhy, Hervé; Deeks, Jonathan J; Fooks, Anthony R; Audry, Laurent; Brookes, Sharon M; Meslin, François-Xavier; Moxon, Richard; Pollard, Andrew J; Warrell, David A

    2008-04-23

    The need for economical rabies post-exposure prophylaxis (PEP) is increasing in developing countries. Implementation of the two currently approved economical intradermal (ID) vaccine regimens is restricted due to confusion over different vaccines, regimens and dosages, lack of confidence in intradermal technique, and pharmaceutical regulations. We therefore compared a simplified 4-site economical PEP regimen with standard methods. Two hundred and fifty-four volunteers were randomly allocated to a single blind controlled trial. Each received purified vero cell rabies vaccine by one of four PEP regimens: the currently accepted 2-site ID; the 8-site regimen using 0.05 ml per ID site; a new 4-site ID regimen (on day 0, approximately 0.1 ml at 4 ID sites, using the whole 0.5 ml ampoule of vaccine; on day 7, 0.1 ml ID at 2 sites and at one site on days 28 and 90); or the standard 5-dose intramuscular regimen. All ID regimens required the same total amount of vaccine, 60% less than the intramuscular method. Neutralising antibody responses were measured five times over a year in 229 people, for whom complete data were available. All ID regimens showed similar immunogenicity. The intramuscular regimen gave the lowest geometric mean antibody titres. Using the rapid fluorescent focus inhibition test, some sera had unexpectedly high antibody levels that were not attributable to previous vaccination. The results were confirmed using the fluorescent antibody virus neutralisation method. This 4-site PEP regimen proved as immunogenic as current regimens, and has the advantages of requiring fewer clinic visits, being more practicable, and having a wider margin of safety, especially in inexperienced hands, than the 2-site regimen. It is more convenient than the 8-site method, and can be used economically with vaccines formulated in 1.0 or 0.5 ml ampoules. The 4-site regimen now meets all requirements of immunogenicity for PEP and can be introduced without further studies. Controlled

  11. Co-expression of HIV-1 virus-like particles and granulocyte-macrophage colony stimulating factor by GEO-D03 DNA vaccine

    Science.gov (United States)

    Hellerstein, Michael; Xu, Yongxian; Marino, Tracie; Lu, Shan; Yi, Hong; Wright, Elizabeth R.; Robinson, Harriet L.

    2012-01-01

    Here, we report on GEO-D03, a DNA vaccine that co-expresses non-infectious HIV-1 virus-like particles (VLPs) and the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). The virus-like particles display the native gp160 form of the HIV-1 Envelope glycoprotein (Env) and are designed to elicit antibody against the natural form of Env on virus and virus-infected cells. The DNA-expressed HIV Gag, Pol and Env proteins also have the potential to elicit virus-specific CD4 and CD8 T cells. The purpose of the co-expressed GM-CSF is to target a cytokine that recruits, expands and differentiates macrophages and dendritic cells to the site of VLP expression. The GEO-D03 DNA vaccine is currently entered into human trials as a prime for a recombinant modified vaccinia Ankara (MVA) boost. In preclinical studies in macaques using an SIV prototype vaccine, this vaccination regimen elicited both anti-viral T cells and antibody, and provided 70% protection against acquisition during 12 weekly rectal exposures with a heterologous SIV. Higher avidity of the Env-specific Ab for the native form of the Env in the challenge virus correlated with lower likelihood of SIV infection. PMID:23111169

  12. Priming-boosting vaccination with recombinant Mycobacterium bovis bacillus Calmette-Guérin and a nonreplicating vaccinia virus recombinant leads to long-lasting and effective immunity.

    Science.gov (United States)

    Ami, Yasushi; Izumi, Yasuyuki; Matsuo, Kazuhiro; Someya, Kenji; Kanekiyo, Masaru; Horibata, Shigeo; Yoshino, Naoto; Sakai, Koji; Shinohara, Katsuaki; Matsumoto, Sohkichi; Yamada, Takeshi; Yamazaki, Shudo; Yamamoto, Naoki; Honda, Mitsuo

    2005-10-01

    Virus-specific T-cell responses can limit immunodeficiency virus type 1 (HIV-1) transmission and prevent disease progression and so could serve as the basis for an affordable, safe, and effective vaccine in humans. To assess their potential for a vaccine, we used Mycobacterium bovis bacillus Calmette-Guérin (BCG)-Tokyo and a replication-deficient vaccinia virus strain (DIs) as vectors to express full-length gag from simian immunodeficiency viruses (SIVs) (rBCG-SIVgag and rDIsSIVgag). Cynomolgus macaques were vaccinated with either rBCG-SIVgag dermally as a single modality or in combination with rDIsSIVgag intravenously. When cynomologus macaques were primed with rBCG-SIVgag and then boosted with rDIsSIVgag, high levels of gamma interferon (IFN-gamma) spot-forming cells specific for SIV Gag were induced. This combination regimen elicited effective protective immunity against mucosal challenge with pathogenic simian-human immunodeficiency virus for the 1 year the macaques were under observation. Antigen-specific intracellular IFN-gamma activity was similarly induced in each of the macaques with the priming-boosting regimen. Other groups receiving the opposite combination or the single-modality vaccines were not effectively protected. These results suggest that a recombinant M. bovis BCG-based vector may have potential as an HIV/AIDS vaccine when administered in combination with a replication-deficient vaccinia virus DIs vector in a priming-boosting strategy.

  13. Evaluation of recombinant influenza virus-simian immunodeficiency virus vaccines in macaques.

    Science.gov (United States)

    Sexton, Amy; De Rose, Robert; Reece, Jeanette C; Alcantara, Sheilajen; Loh, Liyen; Moffat, Jessica M; Laurie, Karen; Hurt, Aeron; Doherty, Peter C; Turner, Stephen J; Kent, Stephen J; Stambas, John

    2009-08-01

    There is an urgent need for human immunodeficiency virus (HIV) vaccines that induce robust mucosal immunity. Influenza A viruses (both H1N1 and H3N2) were engineered to express simian immunodeficiency virus (SIV) CD8 T-cell epitopes and evaluated following administration to the respiratory tracts of 11 pigtail macaques. Influenza virus was readily detected from respiratory tract secretions, although the infections were asymptomatic. Animals seroconverted to influenza virus and generated CD8 and CD4 T-cell responses to influenza virus proteins. SIV-specific CD8 T-cell responses bearing the mucosal homing marker beta7 integrin were induced by vaccination of naïve animals. Further, SIV-specific CD8 T-cell responses could be boosted by recombinant influenza virus-SIV vaccination of animals with already-established SIV infection. Sequential vaccination with influenza virus-SIV recombinants of different subtypes (H1N1 followed by H3N2 or vice versa) produced only a limited boost in immunity, probably reflecting T-cell immunity to conserved internal proteins of influenza A virus. SIV challenge of macaques vaccinated with an influenza virus expressing a single SIV CD8 T cell resulted in a large anamnestic recall CD8 T-cell response, but immune escape rapidly ensued and there was no impact on chronic SIV viremia. Although our results suggest that influenza virus-HIV vaccines hold promise for the induction of mucosal immunity to HIV, broader antigen cover will be needed to limit cytotoxic T-lymphocyte escape.

  14. Epithelium-innate immune cell axis in mucosal responses to SIV.

    Science.gov (United States)

    Shang, L; Duan, L; Perkey, K E; Wietgrefe, S; Zupancic, M; Smith, A J; Southern, P J; Johnson, R P; Haase, A T

    2017-03-01

    In the SIV (simian immunodeficiency virus)-rhesus macaque model of HIV-1 (human immunodeficiency virus type I) transmission to women, one hallmark of the mucosal response to exposure to high doses of SIV is CD4 T-cell recruitment that fuels local virus expansion in early infection. In this study, we systematically analyzed the cellular events and chemoattractant profiles in cervical tissues that precede CD4 T-cell recruitment. We show that vaginal exposure to the SIV inoculum rapidly induces chemokine expression in cervical epithelium including CCL3, CCL20, and CXCL8. The chemokine expression is associated with early recruitment of macrophages and plasmacytoid dendritic cells that are co-clustered underneath the cervical epithelium. Production of chemokines CCL3 and CXCL8 by these cells in turn generates a chemokine gradient that is spatially correlated with the recruitment of CD4 T cells. We further show that the protection of SIVmac239Δnef vaccination against vaginal challenge is correlated with the absence of this epithelium-innate immune cell-CD4 T-cell axis response in the cervical mucosa. Our results reveal a critical role for cervical epithelium in initiating early mucosal responses to vaginal infection, highlight an important role for macrophages in target cell recruitment, and provide further evidence of a paradoxical dampening effect of a protective vaccine on these early mucosal responses.

  15. Rectal HSV-2 Infection May Increase Rectal SIV Acquisition Even in the Context of SIVΔnef Vaccination.

    Directory of Open Access Journals (Sweden)

    Natalia Guerra-Pérez

    Full Text Available Prevalent HSV-2 infection increases the risk of HIV acquisition both in men and women even in asymptomatic subjects. Understanding the impact of HSV-2 on the mucosal microenvironment may help to identify determinants of susceptibility to HIV. Vaginal HSV-2 infection increases the frequency of cells highly susceptible to HIV in the vaginal tissue of women and macaques and this correlates with increased susceptibility to vaginal SHIV infection in macaques. However, the effect of rectal HSV-2 infection on HIV acquisition remains understudied. We developed a model of rectal HSV-2 infection in macaques in combination with rectal SIVmac239Δnef (SIVΔnef vaccination and our results suggest that rectal HSV-2 infection may increase the susceptibility of macaques to rectal SIVmac239 wild-type (wt infection even in SIVΔnef-infected animals. Rectal SIVΔnef infection/vaccination protected 7 out of 7 SIVΔnef-infected macaques from SIVmac239wt rectal infection (vs 12 out of 16 SIVΔnef-negative macaques, while 1 out of 3 animals co-infected with SIVΔnef and HSV-2 acquired SIVmac239wt infection. HSV-2/SIVmac239wt co-infected animals had increased concentrations of inflammatory factors in their plasma and rectal fluids and a tendency toward higher acute SIVmac239wt plasma viral load. However, they had higher blood CD4 counts and reduced depletion of CCR5+ CD4+ T cells compared to SIVmac239wt-only infected animals. Thus, rectal HSV-2 infection generates a pro-inflammatory environment that may increase susceptibility to rectal SIV infection and may impact immunological and virological parameters during acute SIV infection. Studies with larger number of animals are needed to confirm these findings.

  16. A randomized open-labeled study to demonstrate the non-inferiority of purified chick-embryo cell rabies vaccine administered in the Zagreb regimen (2-1-1) compared with the Essen regimen in Chinese adults.

    Science.gov (United States)

    Ma, Jingchen; Wang, Hongchang; Li, Jun; Chang, Likuan; Xie, Yun; Liu, Zhonglin; Zhao, Yuliang; Malerczyk, Claudius; Claudius, Malerczyk

    2014-01-01

    The Zagreb regimen has been used for 20 years in various countries. In China, until 2010, the Zagreb schedule was only approved for purified chick embryo cell vaccine (PCECV) and purified Vero cell rabies vaccines (PVRV). In this phase III clinical trial, we aimed to demonstrate the safety and immunogenic non-inferiority of the Zagreb regimen compared with the Essen regimen in healthy adult Chinese immunized with PCECV (Rabipur®). The study enrolled 825 subjects aged 18 to 50 years; serum samples were collected on Days 0, 7, 14, 42, and at 13 months to assess rabies virus neutralizing antibody (RVNA) concentrations. Solicited and unsolicited local and systemic reactions were recorded for 6 days following the day of vaccination, and collected throughout the entire study period (Day 1 until Month 13). The Zagreb regimen was non-inferior to the Essen regimen with regard to RVNA concentrations after 7, 14, and 42 days, and 13 months of immunization. The non-inferiority of seroconversion was established at Days 14 and 42. The incidence of local and systemic reactions was similar between groups, and mostly of mild or moderate severity. Vaccine-related adverse events occurred more frequently in the Essen group than in the Zagreb group. Vaccination with PCECV under a 2-1-1 regimen is as safe and immunogenic as under the traditional 5-dose Essen regimen for rabies post-exposure prophylaxis, and is a more cost-effective option, has a more practical vaccination schedule, and can potentially increase compliance.

  17. Vaccination with Gag, Vif, and Nef gene fragments affords partial control of viral replication after mucosal challenge with SIVmac239.

    Science.gov (United States)

    Martins, Mauricio A; Wilson, Nancy A; Piaskowski, Shari M; Weisgrau, Kim L; Furlott, Jessica R; Bonaldo, Myrna C; Veloso de Santana, Marlon G; Rudersdorf, Richard A; Rakasz, Eva G; Keating, Karen D; Chiuchiolo, Maria J; Piatak, Michael; Allison, David B; Parks, Christopher L; Galler, Ricardo; Lifson, Jeffrey D; Watkins, David I

    2014-07-01

    Broadly targeted cellular immune responses are thought to be important for controlling replication of human and simian immunodeficiency viruses (HIV and SIV). However, eliciting such responses by vaccination is complicated by immunodominance, the preferential targeting of only a few of the many possible epitopes of a given antigen. This phenomenon may be due to the coexpression of dominant and subdominant epitopes by the same antigen-presenting cell and may be overcome by distributing these sequences among several different vaccine constructs. Accordingly, we tested whether vaccinating rhesus macaques with "minigenes" encoding fragments of Gag, Vif, and Nef resulted in broadened cellular responses capable of controlling SIV replication. We delivered these minigenes through combinations of recombinant Mycobacterium bovis BCG (rBCG), electroporated recombinant DNA (rDNA) along with an interleukin-12 (IL-12)-expressing plasmid (EP rDNA plus pIL-12), yellow fever vaccine virus 17D (rYF17D), and recombinant adenovirus serotype 5 (rAd5). Although priming with EP rDNA plus pIL-12 increased the breadth of vaccine-induced T-cell responses, this effect was likely due to the improved antigen delivery afforded by electroporation rather than modulation of immunodominance. Indeed, Mamu-A*01(+) vaccinees mounted CD8(+) T cells directed against only one subdominant epitope, regardless of the vaccination regimen. After challenge with SIVmac239, vaccine efficacy was limited to a modest reduction in set point in some of the groups and did not correlate with standard T-cell measurements. These findings suggest that broad T-cell responses elicited by conventional vectors may not be sufficient to substantially contain AIDS virus replication. Immunodominance poses a major obstacle to the generation of broadly targeted, HIV-specific cellular responses by vaccination. Here we attempted to circumvent this phenomenon and thereby broaden the repertoire of SIV-specific cellular responses by

  18. Prime-boost vaccination with heterologous live vectors encoding SIV gag and multimeric HIV-1 gp160 protein: efficacy against repeated mucosal R5 clade C SHIV challenges.

    Science.gov (United States)

    Lakhashe, Samir K; Velu, Vijayakumar; Sciaranghella, Gaia; Siddappa, Nagadenahalli B; Dipasquale, Janet M; Hemashettar, Girish; Yoon, John K; Rasmussen, Robert A; Yang, Feng; Lee, Sandra J; Montefiori, David C; Novembre, Francis J; Villinger, François; Amara, Rama Rao; Kahn, Maria; Hu, Shiu-Lok; Li, Sufen; Li, Zhongxia; Frankel, Fred R; Robert-Guroff, Marjorie; Johnson, Welkin E; Lieberman, Judy; Ruprecht, Ruth M

    2011-08-05

    We sought to induce primate immunodeficiency virus-specific cellular and neutralizing antibody (nAb) responses in rhesus macaques (RM) through a bimodal vaccine approach. RM were immunized intragastrically (i.g.) with the live-attenuated Listeria monocytogenes (Lm) vector Lmdd-BdopSIVgag encoding SIVmac239 gag. SIV Gag-specific cellular responses were boosted by intranasal and intratracheal administration of replication-competent adenovirus (Ad5hr-SIVgag) encoding the same gag. To broaden antiviral immunity, the RM were immunized with multimeric HIV clade C (HIV-C) gp160 and HIV Tat. SIV Gag-specific cellular immune responses and HIV-1 nAb developed in some RM. The animals were challenged intrarectally with five low doses of R5 SHIV-1157ipEL-p, encoding a heterologous HIV-C Env (22.1% divergent to the Env immunogen). All five controls became viremic. One out of ten vaccinees was completely protected and another had low peak viremia. Sera from the completely and partially protected RM neutralized the challenge virus > 90%; these RM also had strong SIV Gag-specific proliferation of CD8⁺ T cells. Peak and area under the curve of plasma viremia (during acute phase) among vaccinees was lower than for controls, but did not attain significance. The completely protected RM showed persistently low numbers of the α4β7-expressing CD4⁺ T cells; the latter have been implicated as preferential virus targets in vivo. Thus, vaccine-induced immune responses and relatively lower numbers of potential target cells were associated with protection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Early Loss of Splenic Tfh Cells in SIV-Infected Rhesus Macaques.

    Directory of Open Access Journals (Sweden)

    Félicien Moukambi

    2015-12-01

    Full Text Available Follicular T helper cells (Tfh, a subset of CD4 T lymphocytes, provide crucial help to B cells in the production of antigen-specific antibodies. Although several studies have analyzed the dynamics of Tfh cells in peripheral blood and lymph nodes (LNs during Aids, none has yet addressed the impact of SIV infection on the dynamics of Tfh cells in the spleen, the primary organ of B cell activation. We show here a significant decrease in splenic Tfh cells in SIVmac251-infected rhesus macaques (RMs during the acute phase of infection, which persists thereafter. This profound loss is associated with lack of sustained expression of the Tfh-defining transcription factors, Bcl-6 and c-Maf but with higher expression of the repressors KLF2 and Foxo1. In this context of Tfh abortive differentiation and loss, we found decreased percentages of memory B cell subsets and lower titers of SIV-specific IgG. We further demonstrate a drastic remodeling of the lymphoid architecture of the spleen and LNs, which disrupts the crucial cell-cell interactions necessary to maintain memory B cells and Tfh cells. Finally, our data demonstrated the early infection of Tfh cells. Paradoxically, the frequencies of SIV DNA were higher in splenic Tfh cells of RMs progressing more slowly suggesting sanctuaries for SIV in the spleen. Our findings provide important information regarding the impact of HIV/SIV infection on Tfh cells, and provide new clues for future vaccine strategies.

  20. Heterologous Prime-Boost HIV-1 Vaccination Regimens in Pre-Clinical and Clinical Trials

    Directory of Open Access Journals (Sweden)

    Julia L. Hurwitz

    2010-02-01

    Full Text Available Currently, there are more than 30 million people infected with HIV-1 and thousands more are infected each day. Vaccination is the single most effective mechanism for prevention of viral disease, and after more than 25 years of research, one vaccine has shown somewhat encouraging results in an advanced clinical efficacy trial. A modified intent-to-treat analysis of trial results showed that infection was approximately 30% lower in the vaccine group compared to the placebo group. The vaccine was administered using a heterologous prime-boost regimen in which both target antigens and delivery vehicles were changed during the course of inoculations. Here we examine the complexity of heterologous prime-boost immunizations. We show that the use of different delivery vehicles in prime and boost inoculations can help to avert the inhibitory effects caused by vector-specific immune responses. We also show that the introduction of new antigens into boost inoculations can be advantageous, demonstrating that the effect of ‘original antigenic sin’ is not absolute. Pre-clinical and clinical studies are reviewed, including our own work with a three-vector vaccination regimen using recombinant DNA, virus (Sendai virus or vaccinia virus and protein. Promising preliminary results suggest that the heterologous prime-boost strategy may possibly provide a foundation for the future prevention of HIV-1 infections in humans.

  1. Phylogeny and History of the Lost SIV from Crab-Eating Macaques: SIVmfa.

    Directory of Open Access Journals (Sweden)

    Kevin R McCarthy

    Full Text Available In the 20th century, thirteen distinct human immunodeficiency viruses emerged following independent cross-species transmission events involving simian immunodeficiency viruses (SIV from African primates. In the late 1900s, pathogenic SIV strains also emerged in the United Sates among captive Asian macaque species following their unintentional infection with SIV from African sooty mangabeys (SIVsmm. Since their discovery in the 1980s, SIVs from rhesus macaques (SIVmac and pig-tailed macaques (SIVmne have become invaluable models for studying HIV pathogenesis, vaccine design and the emergence of viruses. SIV isolates from captive crab-eating macaques (SIVmfa were initially described but lost prior to any detailed molecular and genetic characterization. In order to infer the origins of the lost SIVmfa lineage, we located archived material and colony records, recovered its genomic sequence by PCR, and assessed its phylogenetic relationship to other SIV strains. We conclude that SIVmfa is the product of two cross-species transmission events. The first was the established transmission of SIVsmm to rhesus macaques, which occurred at the California National Primate Research Center in the late 1960s and the virus later emerged as SIVmac. In a second event, SIVmac was transmitted to crab-eating macaques, likely at the Laboratory for Experimental Medicine and Surgery in Primates in the early 1970s, and it was later spread to the New England Primate Research Center colony in 1973 and eventually isolated in 1986. Our analysis suggests that SIVmac had already emerged by the early 1970s and had begun to diverge into distinct lineages. Furthermore, our findings suggest that pathogenic SIV strains may have been more widely distributed than previously appreciated, raising the possibility that additional isolates may await discovery.

  2. Phylogeny and History of the Lost SIV from Crab-Eating Macaques: SIVmfa.

    Science.gov (United States)

    McCarthy, Kevin R; Johnson, Welkin E; Kirmaier, Andrea

    2016-01-01

    In the 20th century, thirteen distinct human immunodeficiency viruses emerged following independent cross-species transmission events involving simian immunodeficiency viruses (SIV) from African primates. In the late 1900s, pathogenic SIV strains also emerged in the United Sates among captive Asian macaque species following their unintentional infection with SIV from African sooty mangabeys (SIVsmm). Since their discovery in the 1980s, SIVs from rhesus macaques (SIVmac) and pig-tailed macaques (SIVmne) have become invaluable models for studying HIV pathogenesis, vaccine design and the emergence of viruses. SIV isolates from captive crab-eating macaques (SIVmfa) were initially described but lost prior to any detailed molecular and genetic characterization. In order to infer the origins of the lost SIVmfa lineage, we located archived material and colony records, recovered its genomic sequence by PCR, and assessed its phylogenetic relationship to other SIV strains. We conclude that SIVmfa is the product of two cross-species transmission events. The first was the established transmission of SIVsmm to rhesus macaques, which occurred at the California National Primate Research Center in the late 1960s and the virus later emerged as SIVmac. In a second event, SIVmac was transmitted to crab-eating macaques, likely at the Laboratory for Experimental Medicine and Surgery in Primates in the early 1970s, and it was later spread to the New England Primate Research Center colony in 1973 and eventually isolated in 1986. Our analysis suggests that SIVmac had already emerged by the early 1970s and had begun to diverge into distinct lineages. Furthermore, our findings suggest that pathogenic SIV strains may have been more widely distributed than previously appreciated, raising the possibility that additional isolates may await discovery.

  3. Persistent Low-Level Replication of SIVΔnef Drives Maturation of Antibody and CD8 T Cell Responses to Induce Protective Immunity against Vaginal SIV Infection.

    Science.gov (United States)

    Adnan, Sama; Reeves, R Keith; Gillis, Jacqueline; Wong, Fay E; Yu, Yi; Camp, Jeremy V; Li, Qingsheng; Connole, Michelle; Li, Yuan; Piatak, Michael; Lifson, Jeffrey D; Li, Wenjun; Keele, Brandon F; Kozlowski, Pamela A; Desrosiers, Ronald C; Haase, Ashley T; Johnson, R Paul

    2016-12-01

    Defining the correlates of immune protection conferred by SIVΔnef, the most effective vaccine against SIV challenge, could enable the design of a protective vaccine against HIV infection. Here we provide a comprehensive assessment of immune responses that protect against SIV infection through detailed analyses of cellular and humoral immune responses in the blood and tissues of rhesus macaques vaccinated with SIVΔnef and then vaginally challenged with wild-type SIV. Despite the presence of robust cellular immune responses, animals at 5 weeks after vaccination displayed only transient viral suppression of challenge virus, whereas all macaques challenged at weeks 20 and 40 post-SIVΔnef vaccination were protected, as defined by either apparent sterile protection or significant suppression of viremia in infected animals. Multiple parameters of CD8 T cell function temporally correlated with maturation of protection, including polyfunctionality, phenotypic differentiation, and redistribution to gut and lymphoid tissues. Importantly, we also demonstrate the induction of a tissue-resident memory population of SIV-specific CD8 T cells in the vaginal mucosa, which was dependent on ongoing low-level antigenic stimulation. Moreover, we show that vaginal and serum antibody titers inversely correlated with post-challenge peak viral load, and we correlate the accumulation and affinity maturation of the antibody response to the duration of the vaccination period as well as to the SIVΔnef antigenic load. In conclusion, maturation of SIVΔnef-induced CD8 T cell and antibody responses, both propelled by viral persistence in the gut mucosa and secondary lymphoid tissues, results in protective immune responses that are able to interrupt viral transmission at mucosal portals of entry as well as potential sites of viral dissemination.

  4. Persistent Low-Level Replication of SIVΔnef Drives Maturation of Antibody and CD8 T Cell Responses to Induce Protective Immunity against Vaginal SIV Infection.

    Directory of Open Access Journals (Sweden)

    Sama Adnan

    2016-12-01

    Full Text Available Defining the correlates of immune protection conferred by SIVΔnef, the most effective vaccine against SIV challenge, could enable the design of a protective vaccine against HIV infection. Here we provide a comprehensive assessment of immune responses that protect against SIV infection through detailed analyses of cellular and humoral immune responses in the blood and tissues of rhesus macaques vaccinated with SIVΔnef and then vaginally challenged with wild-type SIV. Despite the presence of robust cellular immune responses, animals at 5 weeks after vaccination displayed only transient viral suppression of challenge virus, whereas all macaques challenged at weeks 20 and 40 post-SIVΔnef vaccination were protected, as defined by either apparent sterile protection or significant suppression of viremia in infected animals. Multiple parameters of CD8 T cell function temporally correlated with maturation of protection, including polyfunctionality, phenotypic differentiation, and redistribution to gut and lymphoid tissues. Importantly, we also demonstrate the induction of a tissue-resident memory population of SIV-specific CD8 T cells in the vaginal mucosa, which was dependent on ongoing low-level antigenic stimulation. Moreover, we show that vaginal and serum antibody titers inversely correlated with post-challenge peak viral load, and we correlate the accumulation and affinity maturation of the antibody response to the duration of the vaccination period as well as to the SIVΔnef antigenic load. In conclusion, maturation of SIVΔnef-induced CD8 T cell and antibody responses, both propelled by viral persistence in the gut mucosa and secondary lymphoid tissues, results in protective immune responses that are able to interrupt viral transmission at mucosal portals of entry as well as potential sites of viral dissemination.

  5. A Multiplex Microsphere-Based Immunoassay Increases the Sensitivity of SIV-Specific Antibody Detection in Serum Samples and Mucosal Specimens Collected from Rhesus Macaques Infected with SIVmac239.

    Science.gov (United States)

    Powell, Rebecca L R; Ouellette, Ian; Lindsay, Ross W; Parks, Christopher L; King, C Richter; McDermott, Adrian B; Morrow, Gavin

    2013-06-01

    Results from recent HIV-1 vaccine studies have indicated that high serum antibody (Ab) titers may not be necessary for Ab-mediated protection, and that Abs localized to mucosal sites might be critical for preventing infection. Enzyme-linked immunosorbent assay (ELISA) has been used for decades as the gold standard for Ab measurement, though recently, highly sensitive microsphere-based assays have become available, with potential utility for improved detection of Abs. In this study, we assessed the Bio-Plex(®) Suspension Array System for the detection of simian immunodeficiency virus (SIV)-specific Abs in rhesus macaques (RMs) chronically infected with SIV, whose serum or mucosal SIV-specific Ab titers were negative by ELISA. We developed a SIVmac239-specific 4-plex bead array for the simultaneous detection of Abs binding to Env, Gag, Pol, and Nef. The 4-plex assay was used to quantify SIV-specific serum IgG and rectal swab IgA titers from control (SIV-naive) and SIVmac239-infected RMs. The Bio-Plex assay specifically detected anti-SIV Abs in specimens from SIV-infected animals for all four analytes when compared to SIV-naive control samples (p≤0.04). Furthermore, in 70% of Env and 79% of Gag ELISA-negative serum samples, specific Ab was detected using the Bio-Plex assay. Similarly, 71% of Env and 48% of Gag ELISA-negative rectal swab samples were identified as positive using the Bio-Plex assay. Importantly, assay specificity (i.e., probability of true positives) was comparable to ELISA (94%-100%). The results reported here indicate that microsphere-based methods provide a substantial improvement over ELISA for the detection of Ab responses, aid in detecting specific Abs when analyzing samples containing low levels of Abs, such as during the early stages of a vaccine trial, and may be valuable in attempts to link protective efficacy of vaccines with induced Ab responses.

  6. School-Based Influenza Vaccination: Health and Economic Impact of Maine's 2009 Influenza Vaccination Program.

    Science.gov (United States)

    Basurto-Dávila, Ricardo; Meltzer, Martin I; Mills, Dora A; Beeler Asay, Garrett R; Cho, Bo-Hyun; Graitcer, Samuel B; Dube, Nancy L; Thompson, Mark G; Patel, Suchita A; Peasah, Samuel K; Ferdinands, Jill M; Gargiullo, Paul; Messonnier, Mark; Shay, David K

    2017-12-01

    To estimate the societal economic and health impacts of Maine's school-based influenza vaccination (SIV) program during the 2009 A(H1N1) influenza pandemic. Primary and secondary data covering the 2008-09 and 2009-10 influenza seasons. We estimated weekly monovalent influenza vaccine uptake in Maine and 15 other states, using difference-in-difference-in-differences analysis to assess the program's impact on immunization among six age groups. We also developed a health and economic Markov microsimulation model and conducted Monte Carlo sensitivity analysis. We used national survey data to estimate the impact of the SIV program on vaccine coverage. We used primary data and published studies to develop the microsimulation model. The program was associated with higher immunization among children and lower immunization among adults aged 18-49 years and 65 and older. The program prevented 4,600 influenza infections and generated $4.9 million in net economic benefits. Cost savings from lower adult vaccination accounted for 54 percent of the economic gain. Economic benefits were positive in 98 percent of Monte Carlo simulations. SIV may be a cost-beneficial approach to increase immunization during pandemics, but programs should be designed to prevent lower immunization among nontargeted groups. © Health Research and Educational Trust.

  7. Personal decision-making criteria related to seasonal and pandemic A(H1N1 influenza-vaccination acceptance among French healthcare workers.

    Directory of Open Access Journals (Sweden)

    Lila Bouadma

    Full Text Available BACKGROUND: Influenza-vaccination rates among healthcare workers (HCW remain low worldwide, even during the 2009 A(H1N1 pandemic. In France, this vaccination is free but administered on a voluntary basis. We investigated the factors influencing HCW influenza vaccination. METHODS: In June-July 2010, HCW from wards of five French hospitals completed a cross-sectional survey. A multifaceted campaign aimed at improving vaccination coverage in this hospital group was conducted before and during the 2009 pandemic. Using an anonymous self-administered questionnaire, we assessed the relationships between seasonal (SIV and pandemic (PIV influenza vaccinations, and sociodemographic and professional characteristics, previous and current vaccination statuses, and 33 statements investigating 10 sociocognitive domains. The sociocognitive domains describing HCWs' SIV and PIV profiles were analyzed using the classification-and-regression-tree method. RESULTS: Of the HCWs responding to our survey, 1480 were paramedical and 401 were medical with 2009 vaccination rates of 30% and 58% for SIV and 21% and 71% for PIV, respectively (p<0.0001 for both SIV and PIV vaccinations. Older age, prior SIV, working in emergency departments or intensive care units, being a medical HCW and the hospital they worked in were associated with both vaccinations; while work shift was associated only with PIV. Sociocognitive domains associated with both vaccinations were self-perception of benefits and health motivation for all HCW. For medical HCW, being a role model was an additional domain associated with SIV and PIV. CONCLUSIONS: Both vaccination rates remained low. Vaccination mainly depended on self-determined factors and for medical HCW, being a role model.

  8. Control of viremia and prevention of AIDS following immunotherapy of SIV-infected macaques with peptide-pulsed blood.

    Directory of Open Access Journals (Sweden)

    Robert De Rose

    2008-05-01

    Full Text Available Effective immunotherapies for HIV are needed. Drug therapies are life-long with significant toxicities. Dendritic-cell based immunotherapy approaches are promising but impractical for widespread use. A simple immunotherapy, reinfusing fresh autologous blood cells exposed to overlapping SIV peptides for 1 hour ex vivo, was assessed for the control of SIV(mac251 replication in 36 pigtail macaques. An initial set of four immunizations was administered under antiretroviral cover and a booster set of three immunizations administered 6 months later. Vaccinated animals were randomized to receive Gag peptides alone or peptides spanning all nine SIV proteins. High-level, SIV-specific CD4 and CD8 T-cell immunity was induced following immunization, both during antiretroviral cover and without. Virus levels were durably approximately 10-fold lower for 1 year in immunized animals compared to controls, and a significant delay in AIDS-related mortality resulted. Broader immunity resulted following immunizations with peptides spanning all nine SIV proteins, but the responses to Gag were weaker in comparison to animals only immunized with Gag. No difference in viral outcome occurred in animals immunized with all SIV proteins compared to animals immunized against Gag alone. Peptide-pulsed blood cells are an immunogenic and effective immunotherapy in SIV-infected macaques. Our results suggest Gag alone is an effective antigen for T-cell immunotherapy. Fresh blood cells pulsed with overlapping Gag peptides is proceeding into trials in HIV-infected humans.

  9. 'Omics investigations of HIV and SIV pathogenesis and innate immunity.

    Science.gov (United States)

    Palermo, Robert E; Fuller, Deborah H

    2013-01-01

    In the 30 years since the advent of the AIDS epidemic, the biomedical community has put forward a battery of molecular therapies that are based on the accumulated knowledge of a limited number of viral targets. Despite these accomplishments, the community still confronts unanswered foundational questions about HIV infection. What are the cellular or biomolecular processes behind HIV pathogenesis? Can we elucidate the characteristics that distinguish those individuals who are naturally resistant to either infection or disease progression? The discovery of simian immunodeficiency viruses (SIVs) and the ensuing development of in vivo, nonhuman primate (NHP) infection models was a tremendous advance, especially in abetting the exploration of vaccine strategies. And while there have been numerous NHP infection models and vaccine trials performed, fundamental questions remain regarding host-virus interactions and immune correlates of protection. These issues are, perhaps, most starkly illustrated with the appreciation that many species of African nonhuman primates are naturally infected with strains of SIV that do not cause any appreciable disease while replicating to viral loads that match or exceed those seen with pathogenic SIV infections in Asian species of nonhuman primates. The last decade has seen the establishment of high-throughput molecular profiling tools, such as microarrays for transcriptomics, SNP arrays for genome features, and LC-MS techniques for proteins or metabolites. These provide the capacity to interrogate a biological model at a comprehensive, systems level, in contrast to historical approaches that characterized a few genes or proteins in an experiment. These methods have already had revolutionary impacts in understanding human diseases originating within the host genome such as genetic disorders and cancer, and the methods are finding increasing application in the context of infectious disease. We will provide a review of the use of such 'omics

  10. Comparison of safety and immunogenicity of purified chick embryo cell vaccine using Zagreb and Essen regimens in patients with category II exposure in China.

    Science.gov (United States)

    Hu, Quan; Liu, Man-Qing; Zhu, Zheng-Gang; Zhu, Ze-Rong; Lu, Sha

    2014-01-01

    The aim was to compare the safety and immunogenicity of purified chick embryo cell vaccine (PCECV) with Zagreb 2-1-1 and Essen 1-1-1-1-1 regimens in patients with WHO category II exposure in China. Side effects including systemic and local symptoms were recorded for all patients during vaccination with purified chick embryo cell vaccine (PCECV) under Zagreb 2-1-1 or Essen 1-1-1-1-1 regimens, and the rabies neutralization antibody titers in patients' serum at days 0, 7, 14, 45, 365 post-immunization were measured to determine the immunogenicity. Fever and pain were the most common events for systemic and local symptoms respectively, and most side effects (86.78%, 105/121) occurred after the first dose of vaccination. Safety analysis showed differences in side effects inZagreb and Essen regimens, especially after the first dose of vaccination (P = 0.043). Immunogenicity analysis indicated that Zagreb can achieve higher neutralization antibody titers and a greater seroconversion rate in a shorter time but had less persistence than Essen. When compared with the Essen regimen, the Zagreb regimen had a different immunogenicity in all study subjects, and different safety profile in young children, and a further study with a larger population and longer surveillance is warranted.

  11. Non-clinical efficacy and safety of HyVac4:IC31 vaccine administered in a BCG prime-boost regimen.

    Science.gov (United States)

    Skeiky, Yasir A W; Dietrich, Jes; Lasco, Todd M; Stagliano, Katherine; Dheenadhayalan, Veerabadran; Goetz, Margaret Ann; Cantarero, Luis; Basaraba, Randall J; Bang, Peter; Kromann, Ingrid; McMclain, J Bruce; Sadoff, Jerald C; Andersen, Peter

    2010-01-22

    Despite the extensive success with the introduction of M. bovis Bacille Calmette-Guérin (BCG), tuberculosis (TB) remains a major global epidemic infecting between 8 and 9 million people annually with an estimated 1.7 million deaths each year. However, because of its demonstrated effectiveness against some of the most severe forms of childhood TB, it is now realized that BCG vaccination of newborns is unlikely to be replaced. Therefore, BCG or an improved BCG will continue to be used as a prime TB vaccine and there is a need to develop effective boost vaccines that would enhance and prolong the protective immunity induced by BCG prime immunization. We report on a heterologous booster approach using two highly immunogenic TB antigens comprising Ag85B and TB10.4 (HyVac4) delivered as a fusion molecule and formulated in the proprietary adjuvant IC31. This vaccine was found to be immunogenic and demonstrated greater protection in the more stringent guinea pig model of pulmonary tuberculosis than BCG alone when used in a prime/boost regimen. Significant difference in lung involvement was observed for all animals in the HyVac4 boosted group compared to BCG alone regardless of time to death or sacrifice. A vaccine toxicology study of the HyVac4:IC31 regimen was performed and it was judged safe to advance the vaccine into clinical trials. Therefore, all non-clinical data supports the suitability of HyVac4 as a safe, immunogenic, and effective vaccination in a prime-boost regimen with BCG.

  12. A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of Electroporated HIV DNA with or without Interleukin 12 in Prime-Boost Combinations with an Ad35 HIV Vaccine in Healthy HIV-Seronegative African Adults.

    Directory of Open Access Journals (Sweden)

    Juliet Mpendo

    Full Text Available Strategies to enhance the immunogenicity of DNA vaccines in humans include i co-administration of molecular adjuvants, ii intramuscular administration followed by in vivo electroporation (IM/EP and/or iii boosting with a different vaccine. Combining these strategies provided protection of macaques challenged with SIV; this clinical trial was designed to mimic the vaccine regimen in the SIV study.Seventy five healthy, HIV-seronegative adults were enrolled into a phase 1, randomized, double-blind, placebo-controlled trial. Multi-antigenic HIV (HIVMAG plasmid DNA (pDNA vaccine alone or co-administered with pDNA encoding human Interleukin 12 (IL-12 (GENEVAX IL-12 given by IM/EP using the TriGrid Delivery System was tested in different prime-boost regimens with recombinant Ad35 HIV vaccine given IM.All local reactions but one were mild or moderate. Systemic reactions and unsolicited adverse events including laboratory abnormalities did not differ between vaccine and placebo recipients. No serious adverse events (SAEs were reported. T cell and antibody response rates after HIVMAG (x3 prime-Ad35 (x1 boost were independent of IL-12, while the magnitude of interferon gamma (IFN-γ ELISPOT responses was highest after HIVMAG (x3 without IL-12. The quality and phenotype of T cell responses shown by intracellular cytokine staining (ICS were similar between groups. Inhibition of HIV replication by autologous T cells was demonstrated after HIVMAG (x3 prime and was boosted after Ad35. HIV specific antibodies were detected only after Ad35 boost, although there was a priming effect with 3 doses of HIVMAG with or without IL-12. No anti-IL-12 antibodies were detected.The vaccines were safe, well tolerated and moderately immunogenic. Repeated administration IM/EP was well accepted. An adjuvant effect of co-administered plasmid IL-12 was not detected.ClinicalTrials.gov NCT01496989.

  13. X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide

    International Nuclear Information System (INIS)

    Feng, Youjun; Qi, Jianxun; Zhang, Huimin; Wang, Jinzi; Liu, Jinhua; Jiang, Fan; Gao, Feng

    2005-01-01

    X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide. Simian immunodeficiency virus (SIV) in the rhesus macaque is regarded as a classic animal model, playing a crucial role in HIV vaccine strategies and therapeutics by characterizing various cytotoxic T-lymphocyte (CTL) responses in macaque monkeys. However, the availability of well documented structural reports focusing on rhesus macaque major histocompatibility complex class I (MHC I) molecules remains extremely limited. Here, a complex of the rhesus macaque MHC I molecule (Mamu-A*02) with human β 2 m and an immunodominant SIV-Gag nonapeptide, GESNLKSLY (GY9), has been crystallized. The crystal diffracts X-rays to 2.7 Å resolution and belongs to space group C2, with unit-cell parameters a = 124.11, b = 110.45, c = 100.06 Å, and contains two molecules in the asymmetric unit. The availability of the structure, which is being solved by molecular replacement, will provide new insights into rhesus macaque MHC I (Mamu-A*02) presenting pathogenic SIV peptides

  14. X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Youjun [Laboratory of Molecular Immunology and Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School, Chinese Academy of Sciences, Beijing (China); Qi, Jianxun [Graduate School, Chinese Academy of Sciences, Beijing (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Zhang, Huimin; Wang, Jinzi [Laboratory of Molecular Immunology and Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Liu, Jinhua [College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China); Jiang, Fan [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Gao, Feng, E-mail: gaofeng@im.ac.cn [Laboratory of Molecular Immunology and Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China)

    2006-01-01

    X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide. Simian immunodeficiency virus (SIV) in the rhesus macaque is regarded as a classic animal model, playing a crucial role in HIV vaccine strategies and therapeutics by characterizing various cytotoxic T-lymphocyte (CTL) responses in macaque monkeys. However, the availability of well documented structural reports focusing on rhesus macaque major histocompatibility complex class I (MHC I) molecules remains extremely limited. Here, a complex of the rhesus macaque MHC I molecule (Mamu-A*02) with human β{sub 2}m and an immunodominant SIV-Gag nonapeptide, GESNLKSLY (GY9), has been crystallized. The crystal diffracts X-rays to 2.7 Å resolution and belongs to space group C2, with unit-cell parameters a = 124.11, b = 110.45, c = 100.06 Å, and contains two molecules in the asymmetric unit. The availability of the structure, which is being solved by molecular replacement, will provide new insights into rhesus macaque MHC I (Mamu-A*02) presenting pathogenic SIV peptides.

  15. A heterologous prime-boost Ebola virus vaccine regimen induces durable neutralizing antibody response and prevents Ebola virus-like particle entry in mice.

    Science.gov (United States)

    Chen, Tan; Li, Dapeng; Song, Yufeng; Yang, Xi; Liu, Qingwei; Jin, Xia; Zhou, Dongming; Huang, Zhong

    2017-09-01

    Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Modified vaccinia virus ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses.

    Science.gov (United States)

    Hodge, James W; Poole, Diane J; Aarts, Wilhelmina M; Gómez Yafal, Alicia; Gritz, Linda; Schlom, Jeffrey

    2003-11-15

    Cancer vaccine regimens use various strategies to enhance immune responses to specific tumor-associated antigens (TAAs), including the increasing use of recombinant poxviruses [vaccinia (rV) and fowlpox (rF)] for delivery of the TAA to the immune system. However, the use of replication competent vectors with the potential of adverse reactions have made attenuation a priority for next-generation vaccine strategies. Modified vaccinia Ankara (MVA) is a replication defective form of vaccinia virus. Here, we investigated the use of MVA encoding a tumor antigen gene, carcinoembryonic antigen (CEA), in addition to multiple costimulatory molecules (B7-1, intercellular adhesion molecule-1, and lymphocyte function-associated antigen-3 designated TRICOM). Vaccination of mice with MVA-CEA/TRICOM induced potent CD4+ and CD8+ T-cell responses specific for CEA. MVA-CEA/TRICOM could be administered twice in vaccinia naïve mice and only a single time in vaccinia-immune mice before being inhibited by antivector-immune responses. The use of MVA-CEA/TRICOM in a diversified prime and boost vaccine regimen with rF-CEA/TRICOM, however, induced significantly greater levels of both CD4+ and CD8+ T-cell responses specific for CEA than that seen with rV-CEA/TRICOM prime and rF-CEA/TRICOM boost. In a self-antigen tumor model, the diversified MVA-CEA/TRICOM/rF-CEA/ TRICOM vaccination regimen resulted in a significant therapeutic antitumor response as measured by increased survival, when compared with the diversified prime and boost regimen, rV-CEA/TRICOM/rF-CEA/TRICOM. The studies reported here demonstrate that MVA, when used as a prime in a diversified vaccination, is clearly comparable with the regimen using the recombinant vaccinia in both the induction of cellular immune responses specific for the "self"-TAA transgene and in antitumor activity.

  17. Heterologous prime-boost regimens with a recombinant chimpanzee adenoviral vector and adjuvanted F4 protein elicit polyfunctional HIV-1-specific T-Cell responses in macaques.

    Science.gov (United States)

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN ('A'), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 ('P'), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides

  18. Immunogenicity of seven new recombinant yellow fever viruses 17D expressing fragments of SIVmac239 Gag, Nef, and Vif in Indian rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Mauricio A Martins

    Full Text Available An effective vaccine remains the best solution to stop the spread of human immunodeficiency virus (HIV. Cellular immune responses have been repeatedly associated with control of viral replication and thus may be an important element of the immune response that must be evoked by an efficacious vaccine. Recombinant viral vectors can induce potent T-cell responses. Although several viral vectors have been developed to deliver HIV genes, only a few have been advanced for clinical trials. The live-attenuated yellow fever vaccine virus 17D (YF17D has many properties that make it an attractive vector for AIDS vaccine regimens. YF17D is well tolerated in humans and vaccination induces robust T-cell responses that persist for years. Additionally, methods to manipulate the YF17D genome have been established, enabling the generation of recombinant (rYF17D vectors carrying genes from unrelated pathogens. Here, we report the generation of seven new rYF17D viruses expressing fragments of simian immunodeficiency virus (SIVmac239 Gag, Nef, and Vif. Studies in Indian rhesus macaques demonstrated that these live-attenuated vectors replicated in vivo, but only elicited low levels of SIV-specific cellular responses. Boosting with recombinant Adenovirus type-5 (rAd5 vectors resulted in robust expansion of SIV-specific CD8(+ T-cell responses, particularly those targeting Vif. Priming with rYF17D also increased the frequency of CD4(+ cellular responses in rYF17D/rAd5-immunized macaques compared to animals that received rAd5 only. The effect of the rYF17D prime on the breadth of SIV-specific T-cell responses was limited and we also found evidence that some rYF17D vectors were more effective than others at priming SIV-specific T-cell responses. Together, our data suggest that YF17D - a clinically relevant vaccine vector - can be used to prime AIDS virus-specific T-cell responses in heterologous prime boost regimens. However, it will be important to optimize rYF17D

  19. Inactivated H9N2 avian influenza virus vaccine with gel-primed and mineral oil-boosted regimen could produce improved immune response in broiler breeders.

    Science.gov (United States)

    Lee, D-H; Kwon, J-S; Lee, H-J; Lee, Y-N; Hur, W; Hong, Y-H; Lee, J-B; Park, S-Y; Choi, I-S; Song, C-S

    2011-05-01

    The frequent economic losses incurred with H9N2 low pathogenic avian influenza viruses (LPAI) infection have raised serious concerns for the poultry industry. A 1-dose regimen with inactivated H9N2 LPAI vaccine could not prevent vaccinated poultry from becoming infected and from shedding wild viruses. A study was conducted to determine whether a 2-dose regimen of inactivated H9N2 LPAI vaccine could enhance the immunologic response in chickens. Such gel-primed and mineral oil-boosted regimen has produced encouraging results associated with improved immune responses to an H9N2 LPAI. This strategy could be cost effective and helpful for preventing avian influenza virus in the poultry industry.

  20. The Earthquake‐Source Inversion Validation (SIV) Project

    KAUST Repository

    Mai, Paul Martin

    2016-04-27

    Finite-fault earthquake source inversions infer the (time-dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, multiple source models for the same earthquake, obtained by different research teams, often exhibit remarkable dissimilarities. To address the uncertainties in earthquake-source inversion methods and to understand strengths and weaknesses of the various approaches used, the Source Inversion Validation (SIV) project conducts a set of forward-modeling exercises and inversion benchmarks. In this article, we describe the SIV strategy, the initial benchmarks, and current SIV results. Furthermore, we apply statistical tools for quantitative waveform comparison and for investigating source-model (dis)similarities that enable us to rank the solutions, and to identify particularly promising source inversion approaches. All SIV exercises (with related data and descriptions) and statistical comparison tools are available via an online collaboration platform, and we encourage source modelers to use the SIV benchmarks for developing and testing new methods. We envision that the SIV efforts will lead to new developments for tackling the earthquake-source imaging problem.

  1. The Earthquake‐Source Inversion Validation (SIV) Project

    KAUST Repository

    Mai, Paul Martin; Schorlemmer, Danijel; Page, Morgan; Ampuero, Jean‐Paul; Asano, Kimiyuki; Causse, Mathieu; Custodio, Susana; Fan, Wenyuan; Festa, Gaetano; Galis, Martin; Gallovic, Frantisek; Imperatori, Walter; Kä ser, Martin; Malytskyy, Dmytro; Okuwaki, Ryo; Pollitz, Fred; Passone, Luca; Razafindrakoto, Hoby; Sekiguchi, Haruko; Song, Seok Goo; Somala, Surendra N.; Thingbaijam, Kiran Kumar; Twardzik, Cedric; van Driel, Martin; Vyas, Jagdish Chandra; Wang, Rongjiang; Yagi, Yuji; Zielke, Olaf

    2016-01-01

    Finite-fault earthquake source inversions infer the (time-dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, multiple source models for the same earthquake, obtained by different research teams, often exhibit remarkable dissimilarities. To address the uncertainties in earthquake-source inversion methods and to understand strengths and weaknesses of the various approaches used, the Source Inversion Validation (SIV) project conducts a set of forward-modeling exercises and inversion benchmarks. In this article, we describe the SIV strategy, the initial benchmarks, and current SIV results. Furthermore, we apply statistical tools for quantitative waveform comparison and for investigating source-model (dis)similarities that enable us to rank the solutions, and to identify particularly promising source inversion approaches. All SIV exercises (with related data and descriptions) and statistical comparison tools are available via an online collaboration platform, and we encourage source modelers to use the SIV benchmarks for developing and testing new methods. We envision that the SIV efforts will lead to new developments for tackling the earthquake-source imaging problem.

  2. The Earthquake‐Source Inversion Validation (SIV) Project

    Science.gov (United States)

    Mai, P. Martin; Schorlemmer, Danijel; Page, Morgan T.; Ampuero, Jean-Paul; Asano, Kimiyuki; Causse, Mathieu; Custodio, Susana; Fan, Wenyuan; Festa, Gaetano; Galis, Martin; Gallovic, Frantisek; Imperatori, Walter; Käser, Martin; Malytskyy, Dmytro; Okuwaki, Ryo; Pollitz, Fred; Passone, Luca; Razafindrakoto, Hoby N. T.; Sekiguchi, Haruko; Song, Seok Goo; Somala, Surendra N.; Thingbaijam, Kiran K. S.; Twardzik, Cedric; van Driel, Martin; Vyas, Jagdish C.; Wang, Rongjiang; Yagi, Yuji; Zielke, Olaf

    2016-01-01

    Finite‐fault earthquake source inversions infer the (time‐dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, multiple source models for the same earthquake, obtained by different research teams, often exhibit remarkable dissimilarities. To address the uncertainties in earthquake‐source inversion methods and to understand strengths and weaknesses of the various approaches used, the Source Inversion Validation (SIV) project conducts a set of forward‐modeling exercises and inversion benchmarks. In this article, we describe the SIV strategy, the initial benchmarks, and current SIV results. Furthermore, we apply statistical tools for quantitative waveform comparison and for investigating source‐model (dis)similarities that enable us to rank the solutions, and to identify particularly promising source inversion approaches. All SIV exercises (with related data and descriptions) and statistical comparison tools are available via an online collaboration platform, and we encourage source modelers to use the SIV benchmarks for developing and testing new methods. We envision that the SIV efforts will lead to new developments for tackling the earthquake‐source imaging problem.

  3. [Viral contamination of polio vaccines in context of antivaccination mythology].

    Science.gov (United States)

    Mats, A N; Kuz'mina, M N; Cheprasova, E V

    2010-01-01

    Analysis of publications about real and suggested contamination of polio vaccines produced in 1950s and 1960s with simian viruses--SV40 and SIV--is performed. Factual data are discussed and antivaccination fictions about calamitous consequences of really occurred contamination with SV40 and concocted contamination with SIV are refuted.

  4. A Phase 1 Human Immunodeficiency Virus Vaccine Trial for Cross-Profiling the Kinetics of Serum and Mucosal Antibody Responses to CN54gp140 Modulated by Two Homologous Prime-Boost Vaccine Regimens

    Directory of Open Access Journals (Sweden)

    Sven Kratochvil

    2017-05-01

    Full Text Available A key aspect to finding an efficacious human immunodeficiency virus (HIV vaccine is the optimization of vaccine schedules that can mediate the efficient maturation of protective immune responses. In the present study, we investigated the effect of alternate booster regimens on the immune responses to a candidate HIV-1 clade C CN54gp140 envelope protein, which was coadministered with the TLR4-agonist glucopyranosyl lipid A-aqueous formulation. Twelve study participants received a common three-dose intramuscular priming series followed by a final booster at either 6 or 12 months. The two homologous prime-boost regimens were well tolerated and induced CN54gp140-specific responses that were observed in both the systemic and mucosal compartments. Levels of vaccine-induced IgG-subclass antibodies correlated significantly with FcγR engagement, and both vaccine regimens were associated with strikingly similar patterns in antibody titer and FcγR-binding profiles. In both groups, identical changes in the antigen (Ag-specific IgG-subclass fingerprint, leading to a decrease in IgG1 and an increase in IgG4 levels, were modulated by booster injections. Here, the dissection of immune profiles further supports the notion that prime-boost strategies are essential for the induction of diverse Ag-specific HIV-1 responses. The results reported here clearly demonstrate that identical responses were effectively and safely induced by both vaccine regimens, indicating that an accelerated 6-month regimen could be employed for the rapid induction of immune responses against CN54gp140 with no apparent impact on the overall quality of the induced immune response. (This study has been registered at http://ClinicalTrials.gov under registration no. NCT01966900.

  5. Stability of the Gorilla Microbiome Despite SIV Infection

    OpenAIRE

    Moeller, Andrew H.; Peeters, Martine; Ayouba, Ahidjo; Ngole, Eitel Mpoudi; Esteban, Amadine; Hahn, Beatrice H.; Ochman, Howard

    2015-01-01

    Simian Immunodeficiency Viruses (SIVs) have been discovered in over 45 primate species; however, the pathogenic potential of most SIV strains remains unknown due to difficulties inherent in observing wild populations. Because those SIV infections that are pathogenic have been shown to induce changes in the host's gut microbiome, monitoring the microbiota present in fecal samples can provide a noninvasive means for studying the effects of SIV infection on the health of wild-living primates. He...

  6. A two-dose heterologous prime-boost vaccine regimen eliciting sustained immune responses to Ebola Zaire could support a preventive strategy for future outbreaks.

    Science.gov (United States)

    Shukarev, Georgi; Callendret, Benoit; Luhn, Kerstin; Douoguih, Macaya

    2017-02-01

    The consequences of the 2013-16 Ebola Zaire virus disease epidemic in West Africa were grave. The economies, healthcare systems and communities of Guinea, Sierra Leone and Liberia were devastated by over 18 months of active Ebola virus transmission, followed by sporadic resurgences potentially related to sexual transmission by survivors with viral persistence in body fluids following recovery. The need to develop and implement strategies to prevent and mitigate future outbreaks is now beyond dispute. The potential for unpredictable outbreaks of indeterminate duration, and control challenges posed by the possibility of sporadic re-emergence, mean that implementation of an effective vaccination program for outbreak containment necessitates a vaccine providing durable immunity. Heterologous prime-boost vaccine regimens deliver the same or similar antigens through different vaccine types, the first to prime and the second to boost the immune system. Ad26.ZEBOV/MVA-BN-Filo is an investigational Ebola Zaire vaccine regimen that uses this heterologous prime-boost approach. Preliminary Phase 1 data suggest that Ad26.ZEBOV/MVA-BN-Filo confers durable immunity for at least 240 d and is well-tolerated with a good safety profile. This regimen may therefore be suitable for prophylactic use in a regional or targeted population vaccination strategy, and could potentially aid prevention and control of future Ebola outbreaks.

  7. Biologically-directed modeling reflects cytolytic clearance of SIV-infected cells in vivo in macaques.

    Directory of Open Access Journals (Sweden)

    W David Wick

    Full Text Available The disappointing outcomes of cellular immune-based vaccines against HIV-1 despite strong evidence for the protective role of CD8⁺ T lymphocytes (CTLs has prompted revisiting the mechanisms of cellular immunity. Prior data from experiments examining the kinetics of Simian Immunodeficiency Virus (SIV clearance in infected macaques with or without in vivo CD8 depletion were interpreted as refuting the concept that CTLs suppress SIV/HIV by direct killing of infected cells. Here we briefly review the biological evidence for CTL cytolytic activity in viral infections, and utilize biologically-directed modeling to assess the possibility of a killing mechanism for the antiviral effect of CTLs, taking into account the generation, proliferation, and survival of activated CD4⁺ and CD8⁺ T lymphocytes, as well as the life cycle of the virus. Our analyses of the published macaque data using these models support a killing mechanism, when one considers T lymphocyte and HIV-1 lifecycles, and factors such as the eclipse period before release of virions by infected cells, an exponential pattern of virion production by infected cells, and a variable lifespan for acutely infected cells. We conclude that for SIV/HIV pathogenesis, CTLs deserve their reputation as being cytolytic.

  8. Low dose rectal inoculation of rhesus macaques by SIV smE660 or SIVmac251 recapitulates

    Energy Technology Data Exchange (ETDEWEB)

    Hraber, Peter [Los Alamos National Laboratory; Giorgi, Elena E [Los Alamos National Laboratory; Keele, Brandon [UNIV OF ALABAMA; Li, Hui [UNIV OF ALABAMA; Learn, Gerald [UNIV OF ALABAMA

    2008-01-01

    We recently developed a novel strategy to identify transmitted HIV-1 genomes in acutely infected humans using single-genome amplification and a model of random virus evolution. Here, we used this approach to determine the molecular features of simian immunodeficiency virus (SIV) transmission in 18 experimentally infected Indian rhesus macaques. Animals were inoculated intrarectally (i.r.) or intravenously (i.v.) with stocks of SIVmac251 or SIVsmE660 that exhibited sequence diversity typical of early-chronic HIV-1 infection. 987 full-length SIV env sequences (median of 48 per animal) were determined from plasma virion RNA 1--5 wk after infection. i.r. inoculation was followed by productive infection by one or a few viruses (median 1; range 1--5) that diversified randomly with near starlike phylogeny and a Poisson distribution of mutations. Consensus viral sequences from ramp-up and peak viremia were identical to viruses found in the inocula or differed from them by only one or a few nucleotides, providing direct evidence that early plasma viral sequences coalesce to transmitted/founder viruses. i.v. infection was >2,000-fold more efficient than i.r. infection, and viruses transmitted by either route represented the full genetic spectra of the inocula. These findings identify key similarities in mucosal transmission and early diversification between SIV and HIV-1, and thus validate the SIV-macaque mucosal infection model for HIV-1 vaccine and microbicide research.

  9. Lack of clinical AIDS in SIV-infected sooty mangabeys with significant CD4+ T cell loss is associated with double-negative T cells

    Science.gov (United States)

    Milush, Jeffrey M.; Mir, Kiran D.; Sundaravaradan, Vasudha; Gordon, Shari N.; Engram, Jessica; Cano, Christopher A.; Reeves, Jacqueline D.; Anton, Elizabeth; O’Neill, Eduardo; Butler, Eboneé; Hancock, Kathy; Cole, Kelly S.; Brenchley, Jason M.; Else, James G.; Silvestri, Guido; Sodora, Donald L.

    2011-01-01

    SIV infection of natural host species such as sooty mangabeys results in high viral replication without clinical signs of simian AIDS. Studying such infections is useful for identifying immunologic parameters that lead to AIDS in HIV-infected patients. Here we have demonstrated that acute, SIV-induced CD4+ T cell depletion in sooty mangabeys does not result in immune dysfunction and progression to simian AIDS and that a population of CD3+CD4–CD8– T cells (double-negative T cells) partially compensates for CD4+ T cell function in these animals. Passaging plasma from an SIV-infected sooty mangabey with very few CD4+ T cells to SIV-negative animals resulted in rapid loss of CD4+ T cells. Nonetheless, all sooty mangabeys generated SIV-specific antibody and T cell responses and maintained normal levels of plasma lipopolysaccharide. Moreover, all CD4-low sooty mangabeys elicited a de novo immune response following influenza vaccination. Such preserved immune responses as well as the low levels of immune activation observed in these animals were associated with the presence of double-negative T cells capable of producing Th1, Th2, and Th17 cytokines. These studies indicate that SIV-infected sooty mangabeys do not appear to rely entirely on CD4+ T cells to maintain immunity and identify double-negative T cells as a potential subset of cells capable of performing CD4+ T cell–like helper functions upon SIV-induced CD4+ T cell depletion in this species. PMID:21317533

  10. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques.

    Directory of Open Access Journals (Sweden)

    Emily R Roberts

    2016-12-01

    Full Text Available Poor maintenance of cytotoxic factor expression among HIV-specific CD8+ T cells, in part caused by dysregulated expression of the transcription factor T-bet, is associated with HIV disease progression. However, the precise evolution and context in which CD8+ T cell cytotoxic functions become dysregulated in HIV infection remain unclear. Using the rhesus macaque (RM SIV infection model, we evaluated the kinetics of SIV-specific CD8+ T cell cytolytic factor expression in peripheral blood, lymph node, spleen, and gut mucosa from early acute infection through chronic infection. We identified rapid acquisition of perforin and granzyme B expression in SIV-specific CD8+ T cells in blood, secondary lymphoid tissues and gut mucosa that collapsed rapidly during the transition to chronic infection. The evolution of this expression profile was linked to low expression of T-bet and occurred independent of epitope specificity, viral escape patterns and tissue origin. Importantly, during acute infection SIV-specific CD8+ T cells that maintained T-bet expression retained the ability to express granzyme B after stimulation, but this relationship was lost in chronic infection. Together, these data demonstrate the loss of cytolytic machinery in SIV-specific CD8+ T cells in blood and at tissue sites of viral reservoir and active replication during the transition from acute to chronic infection. This phenomenon occurs despite persistent high levels of viremia suggesting that an inability to maintain properly regulated cytotoxic T cell responses in all tissue sites enables HIV/SIV to avoid immune clearance, establish persistent viral reservoirs in lymphoid tissues and gut mucosa, and lead ultimately to immunopathogenesis and death.

  11. Optimization of inactivated H5N9 highly pathogenic avian influenza vaccine and inactivated Salmonella enterica serovar Typhimurium vaccine with antigen dose and prime-boost regimen in domestic ducks.

    Science.gov (United States)

    Yuk, Seong-Su; To, Eredene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Gwon, Gyeong-Bin; Song, Chang-Seon

    2017-09-01

    Owing to the increase in the number of diseases affecting ducks and the demand for food safety by consumers, vaccination has become one of the factors that influence duck meat productivity. The highly pathogenic avian influenza (HPAI) virus is one of the most prevalent and causes one of the most lethal diseases in domestic ducks, and Salmonella enterica serovar Typhimurium is a food-borne pathogen persistent in the domestic duck population. To better understand the optimal usage of HPAI and S. enterica serovar Typhimurium vaccines, we aimed to determine antigen dose, oil and gel adjuvant usage with prime-boost regimen, and vaccination age, inducing the best immune response in ducks, without an effect on body weight gain. In the case of the inactivated H5N9 vaccine, a single dose of vaccine was inadequate to induce proper antibody titer when administered to day-old ducks, which necessitates boost vaccination. Administration of the oil-adjuvanted H5N9 vaccine administration in day-old and 2-week-old ducks resulted in a lower body weight at the time of slaughtering, compared to that of gel-adjuvanted H5N9 vaccine. However, gel-adjuvanted H5N9 vaccine failed to induce proper immune response to an extent recommend by OIE-World Organization for Animal Health. In the case of the Salmonella enterica serovar Typhimurium vaccine, a moderate or low dose of vaccine was appropriate for day-old ducks receiving the gel prime-oil boost vaccination. Single vaccination with oil adjuvants affects the mean body weight of 7-week-old ducks, suggesting that the gel adjuvant is more suitable for meat production. We expect that the use of adjuvants in a prime-boost regimen and at antigen doses set in this study will be helpful to maximize body weight in the case of domestic duck production at the actual farm site. © 2017 Poultry Science Association Inc.

  12. Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics

    Directory of Open Access Journals (Sweden)

    Cecilia Noecker

    2015-03-01

    Full Text Available Upon infection of a new host, human immunodeficiency virus (HIV replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV. First, we found that the mode of virus production by infected cells (budding vs. bursting has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral

  13. Comparative study on the immunogenicity and safety of a purified chick embryo cell rabies vaccine (PCECV) administered according to two different simulated post exposure intramuscular regimens (Zagreb versus Essen).

    Science.gov (United States)

    Mahendra, B J; Narayana, Dh Ashwath; Agarkhedkar, Sharad; Ravish, H S; Harish, B R; Agarkhedkar, Shalaka; Madhusudana, S N; Belludi, Ashwin; Ahmed, Khaleel; Jonnalagedda, Rekha; Vakil, Hoshang; Bhusal, Chiranjiwi; Arora, Ashwani Kumar

    2015-01-01

    Despite availability of effective rabies vaccines, India has the highest global mortality rate for rabies. Low socio-economic communities are most affected due to lack of awareness of the disease and poor compliance to post-exposure prophylactic regimens. Currently, the only approved intramuscular regimen for post-exposure prophylaxis (PEP) against rabies in India is the Essen regimen, which consists of 5 injections administered over 5 separate days in a period of one month. The high number of doses and clinical visits, however, are major reasons for non-compliance, and thus a shorter regimen would be beneficial. In a simulated PEP trial in healthy, adult subjects, this study evaluated whether purified chick embryo cell vaccine (PCECV), administered according to the WHO-recommended 4-dose/3 visit Zagreb vaccination regimen is of equal immunogenicity and safety as the standard Essen regimen in Indian subjects. Two hundred and 50 healthy adults were enrolled and randomized into a Zagreb or Essen group, each receiving PCECV according to their respective regimen. Blood samples were collected on Days 0, 7, 14 and 42 and analyzed using the rapid fluorescent focus inhibition test (RFFIT). By Day 14, all subjects across both groups attained rabies virus neutralizing antibody (RVNA) concentrations of ≥ 0.5IU/ml. The Zagreb regimen was then demonstrated to be immunologically non-inferior to the Essen regimen by Day 14, which was the primary endpoint of the study. No safety issues were noted and the occurrence of adverse events was similar in both groups (17% and 15%, respectively). NCT01365494. CTRI No.: CTRI/2011/07/001857.

  14. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates.

    Science.gov (United States)

    Bolton, Diane L; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-09-07

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag immunization alone elicited robust measles-specific humoral and cellular responses, but failed to elicit transgene (Gag)-specific immune responses, following aerosol or intratracheal/intramuscular delivery. However, when administered as a priming vaccine to a heterologous boost with recombinant adenovirus serotype 5 expressing the same transgene, rMV-Gag significantly enhanced Gag-specific T lymphocyte responses following rAd5 immunization. Gag-specific humoral responses were not enhanced, however, which may be due to either the transgene or the vector. Cellular response priming by rMV against the transgene was highly effective even when using a suboptimal dose of rAd5 for the boost. These data demonstrate feasibility of using rMV as a priming component of heterologous prime-boost vaccine regimens for pathogens requiring strong cellular responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Is an HIV vaccine possible?

    OpenAIRE

    Wilson,Nancy A.; Watkins,David I.

    2009-01-01

    The road to the discovery of a vaccine for HIV has been arduous and will continue to be difficult over the ensuing twenty years. Most vaccines are developed by inducing neutralizing antibodies against the target pathogen or by using attenuated strains of the particular pathogen to engender a variety of protective immune responses. Unfortunately, simple methods of generating anti-HIV antibodies have already failed in a phase III clinical trial. While attenuated SIV variants work well against h...

  16. Stability of the Gorilla Microbiome Despite SIV Infection

    Science.gov (United States)

    Moeller, Andrew H.; Peeters, Martine; Ayouba, Ahidjo; Ngole, Eitel Mpoudi; Esteban, Amadine; Hahn, Beatrice H.; Ochman, Howard

    2015-01-01

    Simian Immunodeficiency Viruses (SIVs) have been discovered in over 45 primate species; however, the pathogenic potential of most SIV strains remains unknown due to difficulties inherent in observing wild populations. Because those SIV infections that are pathogenic have been shown to induce changes in the host's gut microbiome, monitoring the microbiota present in fecal samples can provide a noninvasive means for studying the effects of SIV infection on the health of wild-living primates. Here, we examine the effects of SIVgor, a close relative of SIVcpz of chimpanzees and HIV-1 of humans, on the gut bacterial communities residing within wild gorillas, revealing that gorilla gut microbiomes are exceptionally robust to SIV infection. In contrast to the microbiomes of HIV-1 infected humans and SIVcpz-infected chimpanzees, SIVgor-infected gorilla microbiomes exhibit neither rises in the frequencies of opportunistic pathogens nor elevated rates of microbial turnover within individual hosts. Regardless of SIV infection status, gorilla microbiomes assort into enterotypes, one of which is compositionally analogous to those identified in humans and chimpanzees. The other gorilla enterotype appears specialized for a leaf-based diet and is enriched in environmentally derived bacterial genera. We hypothesize that the acquisition of this gorilla-specific enterotype was enabled by lowered immune-system control over the composition of the microbiome. Our results indicate differences between the pathology of SIVgor and SIVcpz/HIV-1 infections, demonstrating the utility of investigating host microbial ecology as a means for studying disease in wild primates of high conservation priority. PMID:25545295

  17. Enhanced pneumonia and disease in pigs vaccinated with an inactivated human-like (δ-cluster) H1N2 vaccine and challenged with pandemic 2009 H1N1 influenza virus.

    Science.gov (United States)

    Gauger, Phillip C; Vincent, Amy L; Loving, Crystal L; Lager, Kelly M; Janke, Bruce H; Kehrli, Marcus E; Roth, James A

    2011-03-24

    Influenza is an economically important respiratory disease affecting swine world-wide with potential zoonotic implications. Genetic reassortment and drift has resulted in genetically and antigenically distinct swine influenza viruses (SIVs). Consequently, prevention of SIV infection is challenging due to the increased rate of genetic change and a potential lack of cross-protection between vaccine strains and circulating novel isolates. This report describes a vaccine-heterologous challenge model in which pigs were administered an inactivated H1N2 vaccine with a human-like (δ-cluster) H1 six and three weeks before challenge with H1 homosubtypic, heterologous 2009 pandemic H1N1. At necropsy, macroscopic and microscopic pneumonia scores were significantly higher in the vaccinated and challenged (Vx/Ch) group compared to non-vaccinated and challenged (NVx/Ch) pigs. The Vx/Ch group also demonstrated enhanced clinical disease and a significantly elevated pro-inflammatory cytokine profile in bronchoalveolar lavage fluid compared to the NVx/Ch group. In contrast, viral shedding and replication were significantly higher in NVx/Ch pigs although all challenged pigs, including Vx/Ch pigs, were shedding virus in nasal secretions. Hemagglutination inhibition (HI) and serum neutralizing (SN) antibodies were detected to the priming antigen in the Vx/Ch pigs but no measurable cross-reacting HI or SN antibodies were detected to pandemic H1N1 (pH1N1). Overall, these results suggest that inactivated SIV vaccines may potentiate clinical signs, inflammation and pneumonia following challenge with divergent homosubtypic viruses that do not share cross-reacting HI or SN antibodies. Published by Elsevier Ltd.

  18. Antibodies with High Avidity to the gp120 Envelope Protein in Protection from Simian Immunodeficiency Virus SIVmac251 Acquisition in an Immunization Regimen That Mimics the RV-144 Thai Trial

    Science.gov (United States)

    Pegu, Poonam; Vaccari, Monica; Gordon, Shari; Keele, Brandon F.; Doster, Melvin; Guan, Yongjun; Ferrari, Guido; Pal, Ranajit; Ferrari, Maria Grazia; Whitney, Stephen; Hudacik, Lauren; Billings, Erik; Rao, Mangala; Montefiori, David; Tomaras, Georgia; Alam, S. Munir; Fenizia, Claudio; Lifson, Jeffrey D.; Stablein, Donald; Tartaglia, Jim; Michael, Nelson; Kim, Jerome; Venzon, David

    2013-01-01

    The recombinant canarypox vector, ALVAC-HIV, together with human immunodeficiency virus (HIV) gp120 envelope glycoprotein, has protected 31.2% of Thai individuals from HIV acquisition in the RV144 HIV vaccine trial. This outcome was unexpected, given the limited ability of the vaccine components to induce CD8+ T-cell responses or broadly neutralizing antibodies. We vaccinated macaques with an immunization regimen intended to mimic the RV144 trial and exposed them intrarectally to a dose of the simian immunodeficiency virus SIVmac251 that transmits few virus variants, similar to HIV transmission to humans. Vaccination induced anti-envelope antibodies in all vaccinees and CD4+ and CD8+ T-cell responses. Three of the 11 macaques vaccinated with ALVAC-SIV/gp120 were protected from SIVmac251 acquisition, but the result was not significant. The remaining vaccinees were infected and progressed to disease. The magnitudes of vaccine-induced SIVmac251-specific T-cell responses and binding antibodies were not significantly different between protected and infected animals. However, sera from protected animals had higher avidity antibodies to gp120, recognized the variable envelope regions V1/V2, and reduced SIVmac251 infectivity in cells that express high levels of α4β7 integrins, suggesting a functional role of antibodies to V2. The current results emphasize the utility of determining the titer of repeated mucosal challenge in the preclinical evaluation of HIV vaccines. PMID:23175374

  19. HIV/SIV infection primes monocytes and dendritic cells for apoptosis.

    Directory of Open Access Journals (Sweden)

    Mireille Laforge

    2011-06-01

    Full Text Available Subversion or exacerbation of antigen-presenting cells (APC death modulates host/pathogen equilibrium. We demonstrated during in vitro differentiation of monocyte-derived macrophages and monocyte-derived dendritic cells (DCs that HIV sensitizes the cells to undergo apoptosis in response to TRAIL and FasL, respectively. In addition, we found that HIV-1 increased the levels of pro-apoptotic Bax and Bak molecules and decreased the levels of anti-apoptotic Mcl-1 and FLIP proteins. To assess the relevance of these observations in the context of an experimental model of HIV infection, we investigated the death of APC during pathogenic SIV-infection in rhesus macaques (RMs. We demonstrated increased apoptosis, during the acute phase, of both peripheral blood DCs and monocytes (CD14(+ from SIV(+RMs, associated with a dysregulation in the balance of pro- and anti-apoptotic molecules. Caspase-inhibitor and death receptors antagonists prevented apoptosis of APCs from SIV(+RMs. Furthermore, increased levels of FasL in the sera of pathogenic SIV(+RMs were detected, compared to non-pathogenic SIV infection of African green monkey. We suggest that inappropriate apoptosis of antigen-presenting cells may contribute to dysregulation of cellular immunity early in the process of HIV/SIV infection.

  20. An SIV/macaque model targeted to study HIV-associated neurocognitive disorders.

    Science.gov (United States)

    Beck, Sarah E; Queen, Suzanne E; Metcalf Pate, Kelly A; Mangus, Lisa M; Abreu, Celina M; Gama, Lucio; Witwer, Kenneth W; Adams, Robert J; Zink, M Christine; Clements, Janice E; Mankowski, Joseph L

    2018-04-01

    Simian immunodeficiency virus (SIV) infection of pigtailed macaques is a highly representative and well-characterized animal model for HIV neuropathogenesis studies that provides an excellent opportunity to study and develop prognostic markers of HIV-associated neurocognitive disorders (HAND) for HIV-infected individuals. SIV studies can be performed in a controlled setting that enhances reproducibility and offers high-translational value. Similar to observations in HIV-infected patients receiving antiretroviral therapy (ART), ongoing neurodegeneration and inflammation are present in SIV-infected pigtailed macaques treated with suppressive ART. By developing quantitative viral outgrowth assays that measure both CD4+ T cells and macrophages harboring replication competent SIV as well as a highly sensitive mouse-based viral outgrowth assay, we have positioned the SIV/pigtailed macaque model to advance our understanding of latent cellular reservoirs, including potential CNS reservoirs, to promote HIV cure. In addition to contributing to our understanding of the pathogenesis of HAND, the SIV/pigtailed macaque model also provides an excellent opportunity to test innovative approaches to eliminate the latent HIV reservoir in the brain.

  1. The Earthquake Source Inversion Validation (SIV) - Project: Summary, Status, Outlook

    Science.gov (United States)

    Mai, P. M.

    2017-12-01

    Finite-fault earthquake source inversions infer the (time-dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, this kinematic source inversion is ill-posed and returns non-unique solutions, as seen for instance in multiple source models for the same earthquake, obtained by different research teams, that often exhibit remarkable dissimilarities. To address the uncertainties in earthquake-source inversions and to understand strengths and weaknesses of various methods, the Source Inversion Validation (SIV) project developed a set of forward-modeling exercises and inversion benchmarks. Several research teams then use these validation exercises to test their codes and methods, but also to develop and benchmark new approaches. In this presentation I will summarize the SIV strategy, the existing benchmark exercises and corresponding results. Using various waveform-misfit criteria and newly developed statistical comparison tools to quantify source-model (dis)similarities, the SIV platforms is able to rank solutions and identify particularly promising source inversion approaches. Existing SIV exercises (with related data and descriptions) and all computational tools remain available via the open online collaboration platform; additional exercises and benchmark tests will be uploaded once they are fully developed. I encourage source modelers to use the SIV benchmarks for developing and testing new methods. The SIV efforts have already led to several promising new techniques for tackling the earthquake-source imaging problem. I expect that future SIV benchmarks will provide further innovations and insights into earthquake source kinematics that will ultimately help to better understand the dynamics of the rupture process.

  2. Simultaneous approach using systemic, mucosal and transcutaneous routes of immunization for development of protective HIV-1 vaccines.

    Science.gov (United States)

    Belyakov, I M; Ahlers, J D

    2011-01-01

    Mucosal tissues are major sites of HIV entry and initial infection. Induction of a local mucosal cytotoxic T lymphocyte response is considered an important goal in developing an effective HIV vaccine. In addition, activation and recruitment of memory CD4(+) and CD8(+) T cells in systemic lymphoid circulation to mucosal effector sites might provide the firewall needed to prevent virus spread. Therefore a vaccine that generates CD4(+) and CD8(+) responses in both mucosal and systemic tissues might be required for protection against HIV. However, optimal routes and number of vaccinations required for the generation of long lasting CD4(+) and CD8(+) CTL effector and memory responses are not well understood especially for mucosal T cells. A number of studies looking at protective immune responses against diverse mucosal pathogens have shown that mucosal vaccination is necessary to induce a compartmentalized immune response including maximum levels of mucosal high-avidity CD8(+) CTL, antigen specific mucosal antibodies titers (especially sIgA), as well as induction of innate anti-viral factors in mucosa tissue. Immune responses are detectable at mucosal sites after systemic delivery of vaccine, and prime boost regimens can amplify the magnitude of immune responses in mucosal sites and in systemic lymphoid tissues. We believe that the most optimal mucosal and systemic HIV/SIV specific protective immune responses and innate factors might best be achieved by simultaneous mucosal and systemic prime and boost vaccinations. Similar principals of vaccination may be applied for vaccine development against cancer and highly invasive pathogens that lead to chronic infection.

  3. Immunogenicity and safety of purified chick-embryo cell rabies vaccine under Zagreb 2-1-1 or 5-dose Essen regimen in Chinese children 6 to 17 years old and adults over 50 years: a randomized open-label study.

    Science.gov (United States)

    Li, RongCheng; Li, YanPing; Wen, ShuQing; Wen, HuiChun; Nong, Yi; Mo, Zhaojun; Xie, Fang; Pellegrini, Michele

    2015-01-01

    The aim of this Phase IIIb, open-label, randomized study was to demonstrate the non-inferiority of immune responses and to assess the safety of a purified chick-embryo cell rabies vaccine (PCECV) in healthy Chinese children (6 to 17 years) and older adults (≥51 years) following 2 alternative intramuscular (IM) simulated post-exposure prophylaxis (PEP) regimens: 4-dose Zagreb or 5-dose Essen regimen. Serum samples were collected prior to vaccination on Days 1 and 15 and on day 43 to assess immune response by rabies virus neutralizing antibody (RVNA) concentrations. Solicited adverse events (AEs) were recorded for up to 7 days following each vaccine dose, and unsolicited AEs throughout the entire study period. PCECV vaccination induced a strong immune response at Day 15, and the non-inferiority in immune response of the Zagreb vs. the Essen regimen was demonstrated in children and older adults. At Day 15,100% of children (N = 224), and 99% of subjects ≥51 years of age (N = 376) developed adequate RVNA concentrations (≥0.5 IU/mL); at Day 43 all subjects achieved RVNA concentrations ≥0.5 IU/mL, for both PEP regimens. The well-known tolerability and safety profile of the PCECV was again observed in this study following either Zagreb or Essen regimens. Rabies PEP vaccination with PCECV following a Zagreb regimen induced immune responses non-inferior to those of the Essen regimen, and had a similar safety and tolerability profile to the Essen regimen in Chinese children, adolescents, and adults over 51 years. ClinicalTrials.gov identifier: NCT01680016.

  4. Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques

    International Nuclear Information System (INIS)

    Ahsan, Muhammad H.; Gill, Amy F.; Alvarez, Xavier; Lackner, Andrew A.; Veazey, Ronald S.

    2013-01-01

    Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animals examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication. - Highlights: • Kupffer cells increase in the liver of SIV-infected macaques. • Increased proliferation and apoptosis of Kupffer cells occurs in SIV infection. • Productively infected cells are rarely detected in the liver. • The liver is not a major site for SIV replication

  5. Latent Membrane Protein 1 as a molecular adjuvant for single-cycle lentiviral vaccines

    Directory of Open Access Journals (Sweden)

    Rahmberg Andrew R

    2011-05-01

    Full Text Available Abstract Background Molecular adjuvants are a promising method to enhance virus-specific immune responses and protect against HIV-1 infection. Immune activation by ligands for receptors such as CD40 can induce dendritic cell activation and maturation. Here we explore the incorporation of two CD40 mimics, Epstein Barr Virus gene LMP1 or an LMP1-CD40 chimera, into a strain of SIV that was engineered to be limited to a single cycle of infection. Results Full length LMP1 or the chimeric protein LMP1-CD40 was cloned into the nef-locus of single-cycle SIV. Human and Macaque monocyte derived macrophages and DC were infected with these viruses. Infected cells were analyzed for activation surface markers by flow cytometry. Cells were also analyzed for secretion of pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-12p70 and TNF by cytometric bead array. Conclusions Overall, single-cycle SIV expressing LMP1 and LMP1-CD40 produced a broad and potent TH1-biased immune response in human as well as rhesus macaque macrophages and DC when compared with control virus. Single-cycle SIV-LMP1 also enhanced antigen presentation by lentiviral vector vaccines, suggesting that LMP1-mediated immune activation may enhance lentiviral vector vaccines against HIV-1.

  6. Efficacy of Antimicrobial Treatments and Vaccination Regimens for Control of Porcine Reproductive and Respiratory Syndrome Virus and Streptococcus suis Coinfection of Nursery Pigs

    Science.gov (United States)

    Halbur, P.; Thanawongnuwech, R.; Brown, G.; Kinyon, J.; Roth, J.; Thacker, E.; Thacker, B.

    2000-01-01

    Seventy-six, crossbred, porcine reproductive and respiratory syndrome virus (PRRSV)-free pigs were weaned at 12 days of age and randomly assigned to seven groups of 10 to 11 pigs each. Pigs in group 1 served as unchallenged controls. Pigs in groups 2 to 7 were challenged intranasally with 2 ml of high-virulence PRRSV isolate VR-2385 (104.47 50% tissue culture infective doses per 2 ml) on day 0 of the study (30 days of age). Seven days after PRRSV challenge, pigs in groups 2 to 7 were challenged intranasally with 2 ml of Streptococcus suis serotype 2 (108.30 CFU/2 ml). Group 2 pigs served as untreated positive controls. Antimicrobial treatments included daily intramuscular injection with 66,000 IU of procaine penicillin G per kg of body weight on days 8 to 10 (group 3), drinking water medication with 23.1 mg of tiamulin per kg during days 8 to 10 (group 4), and daily intramuscular injection of 5.0 mg of ceftiofur hydrochloride per kg on days 8 to 10 (group 5). Vaccination regimens included two intramuscular doses of an autogenous killed S. suis vaccine (group 6) prior to S. suis challenge or a single 2-ml intramuscular dose of an attenuated live PRRSV vaccine (group 7) 2 weeks prior to PRRSV challenge. Mortality was 0, 63, 45, 54, 9, 40, and 81% in groups 1 to 7, respectively. Ceftiofur treatment was the only regimen that significantly (P < 0.05) reduced mortality associated with PRRSV and S. suis coinfection. The other treatments and vaccinations were less effective. We conclude that ceftiofur administered by injection for three consecutive days following S. suis challenge was the most effective regimen for minimizing disease associated with PRRSV and S. suis coinfection. PMID:10699012

  7. Simian Immunodeficiency Virus (SIV-Specific Chimeric Antigen Receptor-T Cells Engineered to Target B Cell Follicles and Suppress SIV Replication

    Directory of Open Access Journals (Sweden)

    Kumudhini Preethi Haran

    2018-03-01

    Full Text Available There is a need to develop improved methods to treat and potentially cure HIV infection. During chronic HIV infection, replication is concentrated within T follicular helper cells (Tfh located within B cell follicles, where low levels of virus-specific CTL permit ongoing viral replication. We previously showed that elevated levels of simian immunodeficiency virus (SIV-specific CTL in B cell follicles are linked to both decreased levels of viral replication in follicles and decreased plasma viral loads. These findings provide the rationale to develop a strategy for targeting follicular viral-producing (Tfh cells using antiviral chimeric antigen receptor (CAR T cells co-expressing the follicular homing chemokine receptor CXCR5. We hypothesize that antiviral CAR/CXCR5-expressing T cells, when infused into an SIV-infected animal or an HIV-infected individual, will home to B cell follicles, suppress viral replication, and lead to long-term durable remission of SIV and HIV. To begin to test this hypothesis, we engineered gammaretroviral transduction vectors for co-expression of a bispecific anti-SIV CAR and rhesus macaque CXCR5. Viral suppression by CAR/CXCR5-transduced T cells was measured in vitro, and CXCR5-mediated migration was evaluated using both an in vitro transwell migration assay, as well as a novel ex vivo tissue migration assay. The functionality of the CAR/CXCR5 T cells was demonstrated through their potent suppression of SIVmac239 and SIVE660 replication in in vitro and migration to the ligand CXCL13 in vitro, and concentration in B cell follicles in tissues ex vivo. These novel antiviral immunotherapy products have the potential to provide long-term durable remission (functional cure of HIV and SIV infections.

  8. Utilizing a TLR5-Adjuvanted Cytomegalovirus as a Lentiviral Vaccine in the Nonhuman Primate Model for AIDS.

    Directory of Open Access Journals (Sweden)

    Jesse D Deere

    Full Text Available Despite tremendous progress in our understanding of human immunodeficiency virus (HIV natural history and advances in HIV treatment, there is neither an approved vaccine nor a cure for infection. Here, we describe the development and characterization of a novel replicating vaccine vector utilizing Cytomegalovirus (CMV and a TLR5 adjuvant. After partial truncation of the central, immunodominant hypervariable domain, flagellin (fliC from Salmonella was cloned downstream of a codon optimized gag gene from simian immunodeficiency virus (SIV and transiently expressed in telomerized rhesus fibroblast (TeloRF cells in culture. Lysates generated from these transfected cells induced the tumor necrosis factor alpha (TNF-α, in a mouse macrophage cell line, in a TLR5-dependent manner. The Gag/FliC expression construct was cloned into a bacterial artificial chromosome encoding the rhesus CMV (RhCMV genome, and infectious RhCMV was generated following transfection of TeloRF cells. This virus stably expressed an SIV Gag/FliC fusion protein through four serial passages. Lysates generated from infected cells induced TNF-α in a TLR5-dependent manner. Western blot analysis of infected cell lysates verified expression of a Gag/FliC fusion protein using a SIV p27 capsid monoclonal antibody. Lastly, rhesus macaques inoculated with this novel RhCMV virus demonstrated increased inflammatory responses at the site of inoculation seven days post-infection when compared to the parental RhCMV. These results demonstrate that an artificially constructed replicating RhCMV expressing an SIV Gag/FliC fusion protein is capable of activating TLR5 in a macrophage cell line in vitro and induction of an altered inflammatory response in vivo. Ongoing animals studies are aimed at determining vaccine efficacy, including subsequent challenge with pathogenic SIV.

  9. Loading the Saturn I S-IV Stage into Pregnant Guppy

    Science.gov (United States)

    1965-01-01

    The photograph shows the loading operation of the Saturn I S-IV stage (second stage) into the Pregnant Guppy at the Redstone Airfield, Huntsville, Alabama. The Pregnant Guppy was a Boeing B-377 Stratocruiser modified to transport various stages of Saturn launch vehicles. The modification project called for lengthening the fuselage to accommodate the S-IV stage. After the flight test of that modification, phase two called for the enlargement of the plane's cabin section to approximately double its normal volume. The fuselage separated just aft of the wing's trailing edge to load and unload the S-IV and other cargoes.

  10. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses.

    Science.gov (United States)

    Xu, Jiarong; Yang, Deji; Huang, Dongyan; Xu, Jiaping; Liu, Shichao; Lin, Huixing; Zhu, Haodan; Liu, Bao; Lu, Chengping

    2013-03-01

    Swine influenza (SI) is an acute respiratory infectious disease of swine caused by swine influenza virus (SIV). SIV is not only an important respiratory pathogen in pigs but also a potent threat to human health. Here, we report the construction of a recombinant swinepox virus (rSPV/H3-2A-H1) co-expressing hemagglutinin (HA1) of SIV subtypes H1N1 and H3N2. Immune responses and protection efficacy of the rSPV/H3-2A-H1 were evaluated in guinea pigs. Inoculation of rSPV/H3-2A-H1 yielded neutralizing antibodies against SIV H1N1 and H3N2. The IFN-γ and IL-4 concentrations in the supernatant of lymphocytes stimulated with purified SIV HA1 antigen were significantly higher (P guinea pigs against SIV H1N1 or H3N2 challenge was observed. No SIV shedding was detected from guinea pigs vaccinated with rSPV/H3-2A-H1 after challenge. Most importantly, the guinea pigs immunized with rSPV/H3-2A-H1 did not show gross and micrographic lung lesions. However, the control guinea pigs experienced distinct gross and micrographic lung lesions at 7 days post-challenge. Our data suggest that the recombinant swinepox virus encoding HA1 of SIV H1N1 and H3N2 might serve as a promising candidate vaccine for protection against SIV H1N1 and H3N2 infections.

  11. Immunogenicity and safety of purified chick-embryo cell rabies vaccine under Zagreb 2-1-1 or 5-dose Essen regimen in Chinese children 6 to 17 years old and adults over 50 years: A randomized open-label study

    Science.gov (United States)

    Li, RongCheng; Li, YanPing; Wen, ShuQing; Wen, HuiChun; Nong, Yi; Mo, Zhaojun; Xie, Fang; Pellegrini, Michele

    2015-01-01

    The aim of this Phase IIIb, open-label, randomized study was to demonstrate the non-inferiority of immune responses and to assess the safety of a purified chick-embryo cell rabies vaccine (PCECV) in healthy Chinese children (6 to 17 years) and older adults (≥51 years) following 2 alternative intramuscular (IM) simulated post-exposure prophylaxis (PEP) regimens: 4-dose Zagreb or 5-dose Essen regimen. Serum samples were collected prior to vaccination on Days 1 and 15 and on day 43 to assess immune response by rabies virus neutralizing antibody (RVNA) concentrations. Solicited adverse events (AEs) were recorded for up to 7 days following each vaccine dose, and unsolicited AEs throughout the entire study period. PCECV vaccination induced a strong immune response at Day 15, and the non-inferiority in immune response of the Zagreb vs. the Essen regimen was demonstrated in children and older adults. At Day 15,100% of children (N = 224), and 99% of subjects ≥51 years of age (N = 376) developed adequate RVNA concentrations (≥0.5 IU/mL); at Day 43 all subjects achieved RVNA concentrations ≥0.5 IU/mL, for both PEP regimens. The well-known tolerability and safety profile of the PCECV was again observed in this study following either Zagreb or Essen regimens. Rabies PEP vaccination with PCECV following a Zagreb regimen induced immune responses non-inferior to those of the Essen regimen, and had a similar safety and tolerability profile to the Essen regimen in Chinese children, adolescents, and adults over 51 years. ClinicalTrials.gov identifier: NCT01680016. PMID:25692350

  12. Longitudinal study to assess the safety and efficacy of a live-attenuated SHIV vaccine in long term immunized rhesus macaques

    International Nuclear Information System (INIS)

    Yankee, Thomas M.; Sheffer, Darlene; Liu Zhengian; Dhillon, Sukhbir; Jia Fenglan; Chebloune, Yahia; Stephens, Edward B.; Narayan, Opendra

    2009-01-01

    Live-attenuated viruses derived from SIV and SHIV have provided the most consistent protection against challenge with pathogenic viruses, but concerns regarding their long-term safety and efficacy have hampered their clinical usefulness. We report a longitudinal study in which we evaluated the long-term safety and efficacy of ΔvpuSHIV PPC , a live virus vaccine derived from SHIV PPC . Macaques were administered two inoculations of ΔvpuSHIV PPC , three years apart, and followed for eight years. None of the five vaccinated macaques developed an AIDS-like disease from the vaccine. At eight years, macaques were challenged with pathogenic SIV and SHIV. None of the four macaques with detectable cellular-mediated immunity prior to challenge had detectable viral RNA in the plasma. This study demonstrates that multiple inoculations of a live vaccine virus can be used safely and can significantly extend the efficacy of the vaccine, as compared to a single inoculation, which is efficacious for approximately three years

  13. Adipose Tissue: Sanctuary for HIV/SIV Persistence and Replication.

    Science.gov (United States)

    Pallikkuth, Suresh; Mohan, Mahesh

    2015-12-01

    This commentary highlights new findings from a recent study identifying adipose tissue as a potential HIV reservoir and a major site of inflammation during chronic human/simian immunodeficiency virus (HIV/SIV) infection. A concise discussion about upcoming challenges and new research avenues for reducing chronic adipose inflammation during HIV/SIV infection is presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Antibody titers in animal bite victims after post exposure vaccination with intradermally administered purified vero cell rabies vaccine using modified thai red cross regimen

    International Nuclear Information System (INIS)

    Hafeez, S.; Tahir, Z.

    2014-01-01

    To determine the seroconversion following rabies vaccination by intradermal route in cases of animal bite attending Anti rabies center, Lahore for post exposure prophylaxis. Study Design: Cross sectional descriptive study. Place and Duration: Antirabies center, Birdwood road Lahore, Microbiology laboratory, office of Bacteriologist, Government of Punjab, Lahore. Patients and Methods: Victims of all ages and both sexes having exposure with suspected rabid animal within 24 - 72 hours were included, fulfilling inclusion and exclusion criteria, over 3 months period from February to April 20. Patients of Category II and III wounds were included. Purified vero cell vaccine (PVR V) with antigenic content> 2.5 ml was used for intradermal vaccination according to modified Thai Red Cross regimen (2-2-2-0-2). Each victim received 0.1 ml intradermal dose on each deltoid on day 0, 3, 7 and 28th day of bite. Blood samples from victims were taken on day 0, 14 and 35. Antibody titers were estimated by ELISA kit. Results: Fifty cases were studied including 20 children. Male female ratio was 4:1. Optimum serocon version (> 0.5 IU/ml) was achieved in all cases by day 14. Antibody levels increased further (> 4 IV/ml) in 92% cases on day 35. Geometric mean titers were 3.2 IU/ml and 6.2 IU/ml on day 14 and 35 respectively. Conclusion: Intradermal route for cell culture rabies vaccine for postexposure prophylaxis in animal bite victims was efficacious and safe. The smaller dosage of vaccine was economically affordable by patients in referral centers. (author)

  15. Dietary Enterococcus faecium NCIMB 10415 and Zinc Oxide Stimulate Immune Reactions to Trivalent Influenza Vaccination in Pigs but Do Not Affect Virological Response upon Challenge Infection

    Science.gov (United States)

    Wang, Zhenya; Burwinkel, Michael; Chai, Weidong; Lange, Elke; Blohm, Ulrike; Breithaupt, Angele; Hoffmann, Bernd; Twardziok, Sven; Rieger, Juliane; Janczyk, Pawel; Pieper, Robert; Osterrieder, Nikolaus

    2014-01-01

    Swine influenza viruses (SIV) regularly cause significant disease in pigs worldwide. Since there is no causative treatment of SIV, we tested if probiotic Enterococcus (E.) faecium NCIMB 10415 or zinc (Zn) oxide as feed supplements provide beneficial effects upon SIV infection in piglets. Seventy-two weaned piglets were fed three different diets containing either E. faecium or different levels of Zn (2500 ppm, Znhigh; 50 ppm, Znlow). Half of the piglets were vaccinated intramuscularly (VAC) twice with an inactivated trivalent SIV vaccine, while all piglets were then infected intranasally with H3N2 SIV. Significantly higher weekly weight gains were observed in the E. faecium group before virus infection, and piglets in Znhigh and E. faecium groups gained weight after infection while those in the control group (Znlow) lost weight. Using ELISA, we found significantly higher H3N2-specific antibody levels in the E. faecium+VAC group 2 days before and at the day of challenge infection as well as at 4 and 6 days after challenge infection. Higher hemagglutination inhibition (HI) titers were also observed in the Znhigh+VAC and E. faecium+VAC groups at 0, 1 and 4 days after infection. However, there were no significant differences in virus shedding and lung lesions between the dietary groups. Using flow cytometry analysis significantly higher activated T helper cells and cytotoxic T lymphocyte percentages in the PBMCs were detected in the Znhigh and E. faecium groups at single time points after infection compared to the Znlow control group, but no prolonged effect was found. In the BAL cells no influence of dietary supplementation on immune cell percentages could be detected. Our results suggest that feeding high doses of zinc oxide and particularly E. faecium could beneficially influence humoral immune responses after vaccination and recovery from SIV infection, but not affect virus shedding and lung pathology. PMID:24489827

  16. Rational design of HIV vaccines and microbicides: report of the EUROPRISE annual conference 2011.

    Science.gov (United States)

    Ruffin, Nicolas; Borggren, Marie; Euler, Zelda; Fiorino, Fabio; Grupping, Katrijn; Hallengärd, David; Javed, Aneele; Mendonca, Kevin; Pollard, Charlotte; Reinhart, David; Saba, Elisa; Sheik-Khalil, Enas; Sköld, Annette; Ziglio, Serena; Scarlatti, Gabriella; Gotch, Frances; Wahren, Britta; Shattock, Robin J

    2012-07-11

    Europrise is a Network of Excellence supported by the European Commission within the 6th Framework programme from 2007 to 2012. The Network has involved over 50 institutions from 13 European countries together with 3 industrial partners and 6 African countries. The Network encompasses an integrated program of research, training, dissemination and advocacy within the field of HIV vaccines and microbicides. A central and timely theme of the Network is the development of the unique concept of co-usage of vaccines and microbicides. Training of PhD students has been a major task, and some of these post-graduate students have here summarized novel ideas emanating from presentations at the last annual Europrise meeting in Prague. The latest data and ideas concerning HIV vaccine and microbicide studies are included in this review; these studies are so recent that the majority have yet to be published. Data were presented and discussed concerning novel immunisation strategies; microbicides and PrEP (alone and in combination with vaccines); mucosal transmission of HIV/SIV; mucosal vaccination; novel adjuvants; neutralizing antibodies; innate immune responses; HIV/SIV pathogenesis and disease progression; new methods and reagents. These - necessarily overlapping topics - are comprehensively summarised by the Europrise students in the context of other recent exciting data.

  17. Rational design of HIV vaccines and microbicides: report of the EUROPRISE annual conference 2011

    Directory of Open Access Journals (Sweden)

    Ruffin Nicolas

    2012-07-01

    Full Text Available Abstract Europrise is a Network of Excellence supported by the European Commission within the 6th Framework programme from 2007 to 2012. The Network has involved over 50 institutions from 13 European countries together with 3 industrial partners and 6 African countries. The Network encompasses an integrated program of research, training, dissemination and advocacy within the field of HIV vaccines and microbicides. A central and timely theme of the Network is the development of the unique concept of co-usage of vaccines and microbicides. Training of PhD students has been a major task, and some of these post-graduate students have here summarized novel ideas emanating from presentations at the last annual Europrise meeting in Prague. The latest data and ideas concerning HIV vaccine and microbicide studies are included in this review; these studies are so recent that the majority have yet to be published. Data were presented and discussed concerning novel immunisation strategies; microbicides and PrEP (alone and in combination with vaccines; mucosal transmission of HIV/SIV; mucosal vaccination; novel adjuvants; neutralizing antibodies; innate immune responses; HIV/SIV pathogenesis and disease progression; new methods and reagents. These – necessarily overlapping topics - are comprehensively summarised by the Europrise students in the context of other recent exciting data.

  18. Mechanisms of CD8+ T cell-mediated suppression of HIV/SIV replication.

    Science.gov (United States)

    McBrien, Julia Bergild; Kumar, Nitasha A; Silvestri, Guido

    2018-02-10

    In this article, we summarize the role of CD8 + T cells during natural and antiretroviral therapy (ART)-treated HIV and SIV infections, discuss the mechanisms responsible for their suppressive activity, and review the rationale for CD8 + T cell-based HIV cure strategies. Evidence suggests that CD8 + T cells are involved in the control of virus replication during HIV and SIV infections. During early HIV infection, the cytolytic activity of CD8 + T cells is responsible for control of viremia. However, it has been proposed that CD8 + T cells also use non-cytolytic mechanisms to control SIV infection. More recently, CD8 + T cells were shown to be required to fully suppress virus production in ART-treated SIV-infected macaques, suggesting that CD8 + T cells are involved in the control of virus transcription in latently infected cells that persist under ART. A better understanding of the complex antiviral activities of CD8 + T cells during HIV/SIV infection will pave the way for immune interventions aimed at harnessing these functions to target the HIV reservoir. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sensitive method for the determination of different S(IV) species in cloud and fog water.

    Science.gov (United States)

    Lammel, G

    1996-08-01

    Suppressed ion chromatography has been applied to the determination of S(IV) species in cloud and fog water in the range 0.012-2.4 mg S(IV)-S/L. The samples have been preserved prior to storage and S(IV) species have been determined as hydroxy methanesulfonate (HMS) together with the low molecular weight carboxylic acid anions, formate and acetate. Samples have been divided and treated differently such that total S(IV) as well as the non-oxidizable fraction of S(IV) (as given by the reactivity with H(2)O(2), added in surplus) could be determined. The difference between the two corresponds to the S(IV) fraction subjected to oxididation, which is of paramount interest in cloud and fogwater chemistry.

  20. Development of a duplex real-time RT-qPCR assay to monitor genome replication, gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag.

    Science.gov (United States)

    Coleman, John W; Wright, Kevin J; Wallace, Olivia L; Sharma, Palka; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Zamb, Timothy P; Zhang, Xinsheng; Parks, Christopher L

    2015-03-01

    Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Dietary Enterococcus faecium NCIMB 10415 and zinc oxide stimulate immune reactions to trivalent influenza vaccination in pigs but do not affect virological response upon challenge infection.

    Science.gov (United States)

    Wang, Zhenya; Burwinkel, Michael; Chai, Weidong; Lange, Elke; Blohm, Ulrike; Breithaupt, Angele; Hoffmann, Bernd; Twardziok, Sven; Rieger, Juliane; Janczyk, Pawel; Pieper, Robert; Osterrieder, Nikolaus

    2014-01-01

    Swine influenza viruses (SIV) regularly cause significant disease in pigs worldwide. Since there is no causative treatment of SIV, we tested if probiotic Enterococcus (E.) faecium NCIMB 10415 or zinc (Zn) oxide as feed supplements provide beneficial effects upon SIV infection in piglets. Seventy-two weaned piglets were fed three different diets containing either E. faecium or different levels of Zn (2500 ppm, Zn(high); 50 ppm, Zn(low)). Half of the piglets were vaccinated intramuscularly (VAC) twice with an inactivated trivalent SIV vaccine, while all piglets were then infected intranasally with H3N2 SIV. Significantly higher weekly weight gains were observed in the E. faecium group before virus infection, and piglets in Zn(high) and E. faecium groups gained weight after infection while those in the control group (Zn(low)) lost weight. Using ELISA, we found significantly higher H3N2-specific antibody levels in the E. faecium+VAC group 2 days before and at the day of challenge infection as well as at 4 and 6 days after challenge infection. Higher hemagglutination inhibition (HI) titers were also observed in the Zn(high)+VAC and E. faecium+VAC groups at 0, 1 and 4 days after infection. However, there were no significant differences in virus shedding and lung lesions between the dietary groups. Using flow cytometry analysis significantly higher activated T helper cells and cytotoxic T lymphocyte percentages in the PBMCs were detected in the Zn(high) and E. faecium groups at single time points after infection compared to the Zn(low) control group, but no prolonged effect was found. In the BAL cells no influence of dietary supplementation on immune cell percentages could be detected. Our results suggest that feeding high doses of zinc oxide and particularly E. faecium could beneficially influence humoral immune responses after vaccination and recovery from SIV infection, but not affect virus shedding and lung pathology.

  2. Dietary Enterococcus faecium NCIMB 10415 and zinc oxide stimulate immune reactions to trivalent influenza vaccination in pigs but do not affect virological response upon challenge infection.

    Directory of Open Access Journals (Sweden)

    Zhenya Wang

    Full Text Available Swine influenza viruses (SIV regularly cause significant disease in pigs worldwide. Since there is no causative treatment of SIV, we tested if probiotic Enterococcus (E. faecium NCIMB 10415 or zinc (Zn oxide as feed supplements provide beneficial effects upon SIV infection in piglets. Seventy-two weaned piglets were fed three different diets containing either E. faecium or different levels of Zn (2500 ppm, Zn(high; 50 ppm, Zn(low. Half of the piglets were vaccinated intramuscularly (VAC twice with an inactivated trivalent SIV vaccine, while all piglets were then infected intranasally with H3N2 SIV. Significantly higher weekly weight gains were observed in the E. faecium group before virus infection, and piglets in Zn(high and E. faecium groups gained weight after infection while those in the control group (Zn(low lost weight. Using ELISA, we found significantly higher H3N2-specific antibody levels in the E. faecium+VAC group 2 days before and at the day of challenge infection as well as at 4 and 6 days after challenge infection. Higher hemagglutination inhibition (HI titers were also observed in the Zn(high+VAC and E. faecium+VAC groups at 0, 1 and 4 days after infection. However, there were no significant differences in virus shedding and lung lesions between the dietary groups. Using flow cytometry analysis significantly higher activated T helper cells and cytotoxic T lymphocyte percentages in the PBMCs were detected in the Zn(high and E. faecium groups at single time points after infection compared to the Zn(low control group, but no prolonged effect was found. In the BAL cells no influence of dietary supplementation on immune cell percentages could be detected. Our results suggest that feeding high doses of zinc oxide and particularly E. faecium could beneficially influence humoral immune responses after vaccination and recovery from SIV infection, but not affect virus shedding and lung pathology.

  3. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates

    OpenAIRE

    Bolton, Diane L.; Santra, Sampa; Swett, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Kozlowski, Pamela A.; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-01-01

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag...

  4. Optimization of heterologous DNA-prime, protein boost regimens and site of vaccination to enhance therapeutic immunity against human papillomavirus-associated disease.

    Science.gov (United States)

    Peng, Shiwen; Qiu, Jin; Yang, Andrew; Yang, Benjamin; Jeang, Jessica; Wang, Joshua W; Chang, Yung-Nien; Brayton, Cory; Roden, Richard B S; Hung, Chien-Fu; Wu, T-C

    2016-01-01

    Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer as well as subsets of anogenital and oropharyngeal cancers. The two HPV viral oncoproteins, E6 and E7, are uniquely and consistently expressed in all HPV infected cells and are therefore promising targets for therapeutic vaccination. Both recombinant naked DNA and protein-based HPV vaccines have been demonstrated to elicit HPV-specific CD8+ T cell responses that provide therapeutic effects against HPV-associated tumor models. Here we examine the immunogenicity in a preclinical model of priming with HPV DNA vaccine followed by boosting with filterable aggregates of HPV 16 L2E6E7 fusion protein (TA-CIN). We observed that priming twice with an HPV DNA vaccine followed by a single TA-CIN booster immunization generated the strongest antigen-specific CD8+ T cell response compared to other prime-boost combinations tested in C57BL/6 mice, whether naïve or bearing the HPV16 E6/E7 transformed syngeneic tumor model, TC-1. We showed that the magnitude of antigen-specific CD8+ T cell response generated by the DNA vaccine prime, TA-CIN protein vaccine boost combinatorial strategy is dependent on the dose of TA-CIN protein vaccine. In addition, we found that a single booster immunization comprising intradermal or intramuscular administration of TA-CIN after priming twice with an HPV DNA vaccine generated a comparable boost to E7-specific CD8+ T cell responses. We also demonstrated that the immune responses elicited by the DNA vaccine prime, TA-CIN protein vaccine boost strategy translate into potent prophylactic and therapeutic antitumor effects. Finally, as seen for repeat TA-CIN protein vaccination, we showed that the heterologous DNA prime and protein boost vaccination strategy is well tolerated by mice. Our results provide rationale for future clinical testing of HPV DNA vaccine prime, TA-CIN protein vaccine boost immunization regimen for the control of HPV-associated diseases.

  5. Immunogenicity in pig-tailed macaques of poliovirus replicons expressing HIV-1 and SIV antigens and protection against SHIV-89.6P disease

    International Nuclear Information System (INIS)

    Fultz, Patricia N.; Stallworth, Jackie; Porter, Donna; Novak, Miroslav; Anderson, Marie J.; Morrow, Casey D.

    2003-01-01

    In the search for an effective vaccine against the human immunodeficiency virus (HIV), novel ways to deliver viral antigens are being evaluated. One such approach is the use of nonreplicating viral vectors encoding HIV and/or SIV genes that are expressed after infection of host cells. Nonreplicating poliovirus vectors, termed replicons, that expressed HIV-1/HXB2 and SIVmac239 gag and various HIV-1 env genes from different clades were tested for immunogenicity and protective efficacy against intravenous challenge of pig-tailed macaques with SHIV-89.6P. To maximize both cellular and humoral immune responses, a prime-boost regimen was used. Initially, macaques were immunized four times over 35 weeks by either the intranasal and intrarectal or the intramuscular (im) route with mixtures of poliovirus replicons expressing HIV-1 gag and multiple env genes. Immunization with replicons alone induced both serum antibodies and lymphocyte proliferative responses. After boosting with purified Env protein, neutralizing antibodies to SHIV-89.6P were induced in four of five immunized animals. In a second experiment, four macaques were immunized im three times over 27 weeks with replicons expressing the SIVmac239 gag and HIV-1/HXB2 env genes. All immunized animals were then boosted twice with purified HIV-1-89.6 rgp140-Env and SIVmac239 p55-Gag proteins. Four control animals received only the two protein inoculations. Immunized and control animals were then challenged intravenously with the pathogenic SHIV-89.6P. After challenge the animals were monitored for virus isolation from peripheral blood mononuclear cells and plasma viremia and for changes in virus-specific antibody titers. Naieve pig-tailed macaques experienced rapid loss of CD4 + T cells and died between 38 and 62 weeks after infection. In contrast, macaques immunized with replicons and proteins rapidly cleared plasma virus and did not experience sustained loss of CD4 + lymphocytes. Furthermore, two of the four macaques

  6. Low dose rectal inoculation of rhesus macaques by SIV SME660 or SIV MAC251 recapitulates human mucosal infection by HIV-1

    Energy Technology Data Exchange (ETDEWEB)

    Koraber, Bette [Los Alamos National Laboratory; Perelson, Alan [Los Alamos National Laboratory; Hraber, Peter [Los Alamos National Laboratory; Giorgi, E [Los Alamos National Laboratory; Bhattacharya, T [Los Alamos National Laboratory

    2009-01-01

    Recently, we developed a novel approach to the identification of transmitted or early founder HIV -1 genomes in acutely infected humans based on single genome amplification and sequencing. Here we tested this approach in 18 acutely infected Indian rhesus macaques to determine the molecular features of SIV transmission. Animals were inoculated intrarectally (IR) or intravenously (IV) with stocks of SIVmac251 or SIVsmE660 that exhibited sequence diversity typical of early-chronic HIV -1 infection. 987 full-length SIV env sequences (median of 48 per animal) were determined from plasma virion RNA one to five weeks after infection. IR inoculation was followed by productive infection by one or few viruses (median 1; range 1-5) that diversified randomly with near star-like phylogeny and a Poisson distribution of mutations. Consensus viral sequences from ramp-up and peak viremia were identical to viruses found in the inocula or differed from them by only one or few nuc1eotides, providing direct evidence that early plasma viral sequences coalesce to transmitted/founder virus( es). IV infection was approximately 10,000-fold more efficient than IR infection, and viruses transmitted by either route represented the full genetic spectra of the inocula. These findings identify key similarities in mucosal transmission and early diversification between SIV and HIV -1.

  7. Improved survival in rhesus macaques immunized with modified vaccinia virus Ankara recombinants expressing simian immunodeficiency virus envelope correlates with reduction in memory CD4+ T-cell loss and higher titers of neutralizing antibody.

    Science.gov (United States)

    Ourmanov, Ilnour; Kuwata, Takeo; Goeken, Robert; Goldstein, Simoy; Iyengar, Ranjani; Buckler-White, Alicia; Lafont, Bernard; Hirsch, Vanessa M

    2009-06-01

    Previous studies demonstrated that immunization of macaques with simian immunodeficiency virus (SIV) Gag-Pol and Env recombinants of the attenuated poxvirus modified vaccinia virus Ankara (MVA) provided protection from high viremia and AIDS following challenge with a pathogenic strain of SIV. Although all animals became infected, plasma viremia was significantly reduced in animals that received the MVA-SIV recombinant vaccines compared with animals that received nonrecombinant MVA. Most importantly, the reduction in viremia resulted in a significant increase in median and cumulative survival. Continued analysis of these animals over the subsequent 9 years has shown that they maintain a survival advantage, although all but two of the macaques have progressed to AIDS. Importantly, improved survival correlated with preservation of memory CD4(+) T cells in the peripheral blood. The greatest survival advantage was observed in macaques immunized with regimens containing SIV Env, and the titer of neutralizing antibodies to the challenge virus prior to or shortly following challenge correlated with preservation of CD4(+) T cells. These data are consistent with a role for neutralizing antibodies in nonsterilizing protection from high viremia and associated memory CD4(+) T-cell loss.

  8. Prior DNA immunization enhances immune response to dominant and subdominant viral epitopes induced by a fowlpox-based SIVmac vaccine in long-term slow-progressor macaques infected with SIVmac251

    International Nuclear Information System (INIS)

    Radaelli, Antonia; Nacsa, Janos; Tsai, W.-P.; Edghill-Smith, Yvette; Zanotto, Carlo; Elli, Veronica; Venzon, David; Tryniszewska, Elzbieta; Markham, Phil; Mazzara, Gail P.; Panicali, Dennis; Morghen, Carlo De Giuli; Franchini, Genoveffa

    2003-01-01

    A therapeutic vaccine for individuals infected with HIV-1 and treated with antiretroviral therapy (ART) should be able to replenish virus-specific CD4+ T-cells and broaden the virus-specific CD8+ T-cell response in order to maintain CD8+ T-cell function and minimize viral immune escape after ART cessation. Because a combination of DNA and recombinant poxvirus vaccine modalities induces high levels of virus-specific CD4+ T-cell response and broadens the cytolytic activity in naive macaques, we investigated whether the same results could be obtained in SIVmac251-infected macaques. The macaques studied here were long-term nonprogressors that naturally contained viremia but were nevertheless treated with a combination of antiviral drugs to assess more carefully the effect of vaccination in the context of ART. The combination of a DNA expressing the gag and pol genes (DNA-SIV-gp) of SIVmac239 followed by a recombinant fowlpox expressing the same SIVmac genes (FP-SIV-gp) was significantly more immunogenic than two immunizations of FP-SIV-gp in SIVmac251-infected macaques treated with ART. The DNA/FP combination significantly expanded and broadened Gag-specific T-cell responses measured by tetramer staining, ELISPOT, and intracellular cytokine staining and measurement of ex vivo cytolytic function. Importantly, the combination of these vaccine modalities also induced a sizeable expansion in most macaques of Gag-specific CD8-(CD4+) T-cells able to produce TNF-α. Hopefully, this modality of vaccine combination may be useful in the clinical management of HIV-1-infected individuals

  9. Tissue-specific B-cell dysfunction and generalized memory B-cell loss during acute SIV infection.

    Directory of Open Access Journals (Sweden)

    Sandrine Peruchon

    Full Text Available BACKGROUND: Primary HIV-infected patients display severe and irreversible damage to different blood B-cell subsets which is not restored by highly efficient anti-retroviral therapy (HAART. Because longitudinal investigations of primary HIV-infection is limited by the availability of lymphoid organs, we studied the tissue-specific B-cell dysfunctions in acutely simian immunodeficiency virus (SIV mac251-infected Cynomolgus macaques. METHODS AND FINDINGS: Experiments were performed on three groups of macaques infected for 14, 21 or 28 days and on three groups of animals treated with HAART for two-weeks either initiated at 4 h, 7 or 14 days post-infection (p.i.. We have simultaneously compared changes in B-cell phenotypes and functions and tissue organization of B-cell areas in various lymphoid organs. We showed that SIV induced a steady decline in SIgG-expressing memory (SIgD(-CD27(+ B-cells in spleen and lymph nodes during the first 4 weeks of infection, concomitant to selective homing/sequestration of B-cells to the small intestine and spleen. SIV non-specific Ig production was transiently increased before D14p.i., whereas SIV-specific Ig production was only detectable after D14p.i., coinciding with the presence of CD8(+ T-cells and IgG-expressing plasma cells within germinal centres. Transient B-cell apoptosis on D14p.i. and commitment to terminal differentiation contributed to memory B-cell loss. HAART abrogated B-cell apoptosis, homing to the small intestine and SIV-specific Ig production but had minimal effect on early Ig production, increased B-cell proportions in spleen and loss of memory B-cells. Therefore, virus-B-cell interactions and SIV-induced inflammatory cytokines may differently contribute to early B-cell dysfunction and impaired SIV/HIV-specific antibody response. CONCLUSIONS: These data establish tissue-specific impairments in B-cell trafficking and functions and a generalized and steady memory B-cell loss in secondary lymphoid

  10. DMPD: Monocyte/macrophage traffic in HIV and SIV encephalitis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960230 Monocyte/macrophage traffic in HIV and SIV encephalitis. Kim WK, Corey S, ...Alvarez X, Williams K. J Leukoc Biol. 2003 Nov;74(5):650-6. Epub 2003 Aug 11. (.png) (.svg) (.html) (.csml) Show Monocyte/macrophage... traffic in HIV and SIV encephalitis. PubmedID 12960230 Title Monocyte/macrophage tr

  11. Approaches to Preventative and Therapeutic HIV vaccines

    Science.gov (United States)

    Gray, Glenda E.; Laher, Fatima; Lazarus, Erica; Ensoli, Barbara; Corey, Lawrence

    2016-01-01

    Novel strategies are being researched to discover vaccines to prevent and treat HIV-1. Nonefficacious preventative vaccine approaches include bivalent recombinant gp120 alone, HIV gene insertion into an Adenovirus 5 (Ad5) virus vector and the DNA prime/Ad5 boost vaccine regimen. However, the ALVAC-HIV prime/AIDSVAX® B/E gp120 boost regimen showed 31.2% efficacy at 3.5 years, and is being investigated as clade C constructs with an additional boost. Likewise, although multiple therapeutic vaccines have failed in the past, in a non-placebo controlled trial, a Tat vaccine demonstrated immune cell restoration, reduction of immune activation, and reduced HIV-1 DNA viral load. Monoclonal antibodies for passive immunization or treatment show promise, with VRC01 entering advanced clinical trials. PMID:26985884

  12. Viral and immunological factors associated with breast milk transmission of SIV in rhesus macaques

    Directory of Open Access Journals (Sweden)

    Fresh Lynn

    2004-07-01

    Full Text Available Abstract Background The viral and host factors involved in transmission of HIV through breastfeeding are largely unknown, and intervention strategies are urgently needed to protect at-risk populations. To evaluate the viral and immunological factors directly related to milk transmission of virus, we have evaluated the disease course of Simian Immunodeficiency Virus (SIV in lactating rhesus macaques (Macaca mulatta as a model of natural breast milk transmission of HIV. Results Fourteen lactating macaques were infected intravenously with SIV/DeltaB670, a pathogenic isolate of SIV and were pair-housed with their suckling infants throughout the disease course. Transmission was observed in 10 mother-infant pairs over a one-year period. Two mothers transmitted virus during the period of initial viremia 14–21 days post inoculation (p.i. and were classified as early transmitters. Peak viral loads in milk and plasma of early transmitters were similar to other animals, however the early transmitters subsequently displayed a rapid progressor phenotype and failed to control virus expression as well as other animals at 56 days p.i. Eight mothers were classified as late transmitters, with infant infection detected at time points in the chronic stage of the maternal SIV disease course (81 to 360 days. Plasma viral loads, CD4+ T cell counts and SIV-specific antibody titers were similar in late transmitters and non-transmitters. Late breast milk transmission, however, was correlated with higher average milk viral loads and more persistent viral expression in milk 12 to 46 weeks p.i. as compared to non-transmitters. Four mothers failed to transmit virus, despite disease progression and continuous lactation. Conclusion These studies validate the SIV-infected rhesus macaque as a model for breast milk transmission of HIV. As observed in studies of HIV-infected women, transmission occurred at time points throughout the period of lactation. Transmission during the

  13. A brief history of the discovery of natural simian immunodeficiency virus (SIV) infections in captive sooty mangabey monkeys.

    Science.gov (United States)

    Gormus, Bobby J; Martin, Louis N; Baskin, Gary B

    2004-01-01

    Experimental leprosy studies using Mycobacterium leprae inoculum isolated from a sooty mangabey monkey (SMM) resulted in the accidental discovery that SMM's asymptomatically carry simian immunodeficiency virus (SIV) that is pathogenic in macaques. We showed that the SMM virus, SIVDelta, was antigenically related to SIVmac, which had been identified in macaques, and to the human immunodeficiency virus (HIV). Similar asymptomatic natural SIV infections had been reported in African green monkeys (AGM). Our results together with observations of others led us to propose that both SIVmac and SIVDelta originated in SMM and that SIV emerged in humans as a result of early African nonhuman primate SIV trans-species infections in humans.

  14. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells.

    Science.gov (United States)

    Venkataswamy, Manjunatha M; Ng, Tony W; Kharkwal, Shalu S; Carreño, Leandro J; Johnson, Alison J; Kunnath-Velayudhan, Shajo; Liu, Zheng; Bittman, Robert; Jervis, Peter J; Cox, Liam R; Besra, Gurdyal S; Wen, Xiangshu; Yuan, Weiming; Tsuji, Moriya; Li, Xiangming; Ho, David D; Chan, John; Lee, Sunhee; Frothingham, Richard; Haynes, Barton F; Panas, Michael W; Gillard, Geoffrey O; Sixsmith, Jaimie D; Korioth-Schmitz, Birgit; Schmitz, Joern E; Larsen, Michelle H; Jacobs, William R; Porcelli, Steven A

    2014-01-01

    Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG) has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT) cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag). We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC) into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.

  15. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells.

    Directory of Open Access Journals (Sweden)

    Manjunatha M Venkataswamy

    Full Text Available Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag. We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.

  16. Influence of NO2 and metal ions on oxidation of aqueous-phase S(IV in atmospheric concentrations

    Directory of Open Access Journals (Sweden)

    Cláudia R. Martins

    2008-06-01

    Full Text Available An investigation was made of the influence of atmospheric concentrations (15 or 130 ppbv of NO2 on the aqueous-phase oxidation rate of S(IV in the presence and absence of Fe(III, Mn(II and Cr(VI metal ions under controlled experimental conditions (pH, T, concentration of reactants, etc.. The reaction rate in the presence of the NO2 flow was slower than the reaction rate using only clean air with an initial S(IV concentration of 10-4 mol/L. NO2 appears to react with S(IV, producing a kind of inhibitor that slows down the reaction. Conversely, tenfold lower concentrations of S(IV ([S(IV]º = 10-5 mol/L caused a faster reaction in the presence of NO2 than the reaction using purified air. Under these conditions, therefore, the equilibrium shifts to sulfate formation. With the addition of Fe(III, Mn(II or Cr(VI in the presence of a NO2 flow, the reaction occurred faster under all the conditions in which S(IV oxidation was investigated.A reação de oxidação de S(IV em fase aquosa foi estudada em laboratório em presença de NO2 dos íons metálicos Fe(III, Mn(II, e Cr(VI sob condições experimentais controladas (pH, T, concentração dos reagentes, etc.. Na presença de corrente de ar com NO2 (15 ou 130 ppbv a reação de oxidação de S(IV ocorreu mais lentamente do que na presença de ar purificado, para uma concentração inicial de S(IV de 10-4 mol/L. Ao contrário, para concentração inicial de S(IV dez vezes menor ([S(IV]° = 10-5 mol/L a reação ocorreu mais rapidamente na presença de NO2. A explicação está relacionada com o equilíbrio envolvendo a formação de espécies intermediárias de longa vida, que impedem o prosseguimento da reação, porém a depender das concentrações relativas de S(IV e NO2, essas espécies se decompõem deslocando o equilíbrio no sentido de formação de sulfato. A adição dos íons Fe(III, Mn(II ou Cr(VI em presença de corrente de ar com NO2 indicou atividade catalítica para esses íons, em todas

  17. Δ9-Tetrahydrocannabinol (Δ9-THC) Promotes Neuroimmune-Modulatory MicroRNA Profile in Striatum of Simian Immunodeficiency Virus (SIV)-Infected Macaques.

    Science.gov (United States)

    Simon, Liz; Song, Keijing; Vande Stouwe, Curtis; Hollenbach, Andrew; Amedee, Angela; Mohan, Mahesh; Winsauer, Peter; Molina, Patricia

    2016-03-01

    Cannabinoid administration before and after simian immunodeficiency virus (SIV)-inoculation ameliorated disease progression and decreased inflammation in male rhesus macaques. Δ9-tetrahydrocannabinol (Δ9-THC) did not increase viral load in brain tissue or produce additive neuropsychological impairment in SIV-infected macaques. To determine if the neuroimmunomodulation of Δ9-THC involved differential microRNA (miR) expression, miR expression in the striatum of uninfected macaques receiving vehicle (VEH) or Δ9-THC (THC) and SIV-infected macaques administered either vehicle (VEH/SIV) or Δ9-THC (THC/SIV) was profiled using next generation deep sequencing. Among the 24 miRs that were differentially expressed among the four groups, 16 miRs were modulated by THC in the presence of SIV. These 16 miRs were classified into four categories and the biological processes enriched by the target genes determined. Our results indicate that Δ9-THC modulates miRs that regulate mRNAs of proteins involved in 1) neurotrophin signaling, 2) MAPK signaling, and 3) cell cycle and immune response thus promoting an overall neuroprotective environment in the striatum of SIV-infected macaques. This is also reflected by increased Brain Derived Neurotrophic Factor (BDNF) and decreased proinflammatory cytokine expression compared to the VEH/SIV group. Whether Δ9-THC-mediated modulation of epigenetic mechanisms provides neuroprotection in other regions of the brain and during chronic SIV-infection remains to be determined.

  18. Adapting to the global shortage of cholera vaccines: targeted single dose cholera vaccine in response to an outbreak in South Sudan.

    Science.gov (United States)

    Parker, Lucy A; Rumunu, John; Jamet, Christine; Kenyi, Yona; Lino, Richard Laku; Wamala, Joseph F; Mpairwe, Allan M; Ciglenecki, Iza; Luquero, Francisco J; Azman, Andrew S; Cabrol, Jean-Clement

    2017-04-01

    Shortages of vaccines for epidemic diseases, such as cholera, meningitis, and yellow fever, have become common over the past decade, hampering efforts to control outbreaks through mass reactive vaccination campaigns. Additionally, various epidemiological, political, and logistical challenges, which are poorly documented in the literature, often lead to delays in reactive campaigns, ultimately reducing the effect of vaccination. In June 2015, a cholera outbreak occurred in Juba, South Sudan, and because of the global shortage of oral cholera vaccine, authorities were unable to secure sufficient doses to vaccinate the entire at-risk population-approximately 1 million people. In this Personal View, we document the first public health use of a reduced, single-dose regimen of oral cholera vaccine, and show the details of the decision-making process and timeline. We also make recommendations to help improve reactive vaccination campaigns against cholera, and discuss the importance of new and flexible context-specific dose regimens and vaccination strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. An "escape clock" for estimating the turnover of SIV DNA in resting CD4⁺ T cells.

    Directory of Open Access Journals (Sweden)

    Jeanette Reece

    Full Text Available Persistence of HIV DNA presents a major barrier to the complete control of HIV infection under current therapies. Most studies suggest that cells with latently integrated HIV decay very slowly under therapy. However, it is much more difficult to study the turnover and persistence of HIV DNA during active infection. We have developed an "escape clock" approach for measuring the turnover of HIV DNA in resting CD4+ T cells. This approach studies the replacement of wild-type (WT SIV DNA present in early infection by CTL escape mutant (EM strains during later infection. Using a strain-specific real time PCR assay, we quantified the relative amounts of WT and EM strains in plasma SIV RNA and cellular SIV DNA. Thus we can track the formation and turnover of SIV DNA in sorted resting CD4+ T cells. We studied serial plasma and PBMC samples from 20 SIV-infected Mane-A*10 positive pigtail macaques that have a signature Gag CTL escape mutation. In animals with low viral load, WT virus laid down early in infection is extremely stable, and the decay of this WT species is very slow, consistent with findings in subjects on anti-retroviral medications. However, during active, high level infection, most SIV DNA in resting cells was turning over rapidly, suggesting a large pool of short-lived DNA produced by recent infection events. Our results suggest that, in order to reduce the formation of a stable population of SIV DNA, it will be important either to intervene very early or intervene during active replication.

  20. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    Science.gov (United States)

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  1. Convergent evolution of SIV env after independent inoculation of rhesus macaques with infectious proviral DNA

    International Nuclear Information System (INIS)

    Buckley, Kathleen A.; Li Peilin; Khimani, Anis H.; Hofmann-Lehmann, Regina; Liska, Vladimir; Anderson, Daniel C.; McClure, Harold M.; Ruprecht, Ruth M.

    2003-01-01

    The env gene of three simian immunodeficiency virus (SIV) variants developed convergent mutations during disease progression in six rhesus macaques. The monkeys had been inoculated with supercoiled plasmids encoding infectious proviruses of SIVmac239 (a pathogenic, wild-type strain), SIVΔ3 (the live attenuated vaccine strain derived from SIVmac239), or SIVΔ3+ (a pathogenic progeny virus that had evolved from SIVΔ3). All six monkeys developed immunodeficiency and progressed to fatal disease. Although many divergent mutations arose in env among the different hosts, three regions consistently mutated in all monkeys studied; these similar mutations developed independently even though the animals had received only a single infectious molecular clone rather than standard viral inocula that contain viral quasispecies. Together, these data indicate that the env genes of SIVmac239, SIVΔ3, and SIVΔ3+, in the context of different proviral backbones, evolve similarly in different hosts during disease progression

  2. Association of TLR7 variants with AIDS-like disease and AIDS vaccine efficacy in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Roman A Siddiqui

    Full Text Available In HIV infection, TLR7-triggered IFN-α production exerts a direct antiviral effect through the inhibition of viral replication, but may also be involved in immune pathogenesis leading to AIDS. TLR7 could also be an important mediator of vaccine efficacy. In this study, we analyzed polymorphisms in the X-linked TLR7 gene in the rhesus macaque model of AIDS. Upon resequencing of the TLR7 gene in 36 rhesus macaques of Indian origin, 12 polymorphic sites were detected. Next, we identified three tightly linked single nucleotide polymorphisms (SNP as being associated with survival time. Genotyping of 119 untreated, simian immunodeficiency virus (SIV-infected male rhesus macaques, including an 'MHC adjusted' subset, revealed that the three TLR7 SNPs are also significantly associated with set-point viral load. Surprisingly, this effect was not observed in 72 immunized SIV-infected male monkeys. We hypothesize (i that SNP c.13G>A in the leader peptide is causative for the observed genotype-phenotype association and that (ii the underlying mechanism is related to RNA secondary structure formation. Therefore, we investigated a fourth SNP (c.-17C>T, located 17 bp upstream of the ATG translation initiation codon, that is also potentially capable of influencing RNA structure. In c.13A carriers, neither set-point viral load nor survival time were related to the c.-17C>T genotype. In c.13G carriers, by contrast, the c.-17C allele was significantly associated with prolonged survival. Again, no such association was detected among immunized SIV-infected macaques. Our results highlight the dual role of TLR7 in immunodeficiency virus infection and vaccination and imply that it may be important to control human AIDS vaccine trials, not only for MHC genotype, but also for TLR7 genotype.

  3. Evaluación de la estructura factorial del Cuestionario de Valores Interpersonales (SIV

    Directory of Open Access Journals (Sweden)

    César Merino Soto

    2013-09-01

    Full Text Available El artículo evalúa la estructura factorial bajo los efectos del método ipsativo de respuesta, estudiados en el nivel de las subescalas del Cuestionario de Valores Interpersonales de Gordon (SIV, y las relaciones entre ellas, en una muestra de adolescentes entre 15 y 17 años de ambos sexos y procedentes de un colegio privado y estatal, representativos de los niveles socioeconómicos medio y bajo. Aunque el SIV ha sido una herramienta extensamente utilizada, no se reportado previamente un análisis de su estructura factorial en muestras Latinoamericanas. Mediante el análisis de componentes principales y el análisis factorial con un enfoque confirmatorio, se han identificado relaciones bipolares entre Independencia y Benevolencia, y Soporte y Conformidad. Se obtuvo también la confirmación del modelo de valores interpersonales propuesto por L. V. Gordon. En el análisis se consideró un aspecto que artificialmente puede haber influido en el patrón de correlaciones entre los componentes, esto es el método ipsativo de las preguntas del SIV. Finalmente, se discute sobre las medidas ipsativas y sus consecuencias en la interpretación de sus resultados. The present study evaluates the factorial structure, in the level of the subscales, of the Survey of Interpersonal Values (SIV, and the relationships among them, in a sample of adolescents between 15 and 17 years old of both sexes and from a private and public school, representative of low and middle socioeconomic levels. Although the SIV has been a widely used tool, there is no report of an analysis of its factorial structure in Latin-American samples. By means of the principal components analysis and the factorial analysis with a confirmatory approach, bipolar relationships have been identified between Independence and Benevolence, and Support and Conformity. The confirmation of the pattern of interpersonal values proposed by L. V. Gordon was also accomplished. An aspect considered in the

  4. Multi-dose Romidepsin Reactivates Replication Competent SIV in Post-antiretroviral Rhesus Macaque Controllers.

    Directory of Open Access Journals (Sweden)

    Benjamin B Policicchio

    2016-09-01

    Full Text Available Viruses that persist despite seemingly effective antiretroviral treatment (ART and can reinitiate infection if treatment is stopped preclude definitive treatment of HIV-1 infected individuals, requiring lifelong ART. Among strategies proposed for targeting these viral reservoirs, the premise of the "shock and kill" strategy is to induce expression of latent proviruses [for example with histone deacetylase inhibitors (HDACis] resulting in elimination of the affected cells through viral cytolysis or immune clearance mechanisms. Yet, ex vivo studies reported that HDACis have variable efficacy for reactivating latent proviruses, and hinder immune functions. We developed a nonhuman primate model of post-treatment control of SIV through early and prolonged administration of ART and performed in vivo reactivation experiments in controller RMs, evaluating the ability of the HDACi romidepsin (RMD to reactivate SIV and the impact of RMD treatment on SIV-specific T cell responses. Ten RMs were IV-infected with a SIVsmmFTq transmitted-founder infectious molecular clone. Four RMs received conventional ART for >9 months, starting from 65 days post-infection. SIVsmmFTq plasma viremia was robustly controlled to <10 SIV RNA copies/mL with ART, without viral blips. At ART cessation, initial rebound viremia to ~106 copies/mL was followed by a decline to < 10 copies/mL, suggesting effective immune control. Three post-treatment controller RMs received three doses of RMD every 35-50 days, followed by in vivo experimental depletion of CD8+ cells using monoclonal antibody M-T807R1. RMD was well-tolerated and resulted in a rapid and massive surge in T cell activation, as well as significant virus rebounds (~104 copies/ml peaking at 5-12 days post-treatment. CD8+ cell depletion resulted in a more robust viral rebound (107 copies/ml that was controlled upon CD8+ T cell recovery. Our results show that RMD can reactivate SIV in vivo in the setting of post-ART viral control

  5. Analysis of the functional compatibility of SIV capsid sequences in the context of the FIV gag precursor.

    Directory of Open Access Journals (Sweden)

    César A Ovejero

    Full Text Available The formation of immature lentiviral particles is dependent on the multimerization of the Gag polyprotein at the plasma membrane of the infected cells. One key player in the virus assembly process is the capsid (CA domain of Gag, which establishes the protein-protein interactions that give rise to the hexagonal lattice of Gag molecules in the immature virion. To gain a better understanding of the functional equivalence between the CA proteins of simian and feline immunodeficiency viruses (SIV and FIV, respectively, we generated a series of chimeric FIV Gag proteins in which the CA-coding region was partially or totally replaced by its SIV counterpart. All the FIV Gag chimeras were found to be assembly-defective; however, all of them are able to interact with wild-type SIV Gag and be recruited into extracellular virus-like particles, regardless of the SIV CA sequences present in the chimeric FIV Gag. The results presented here markedly contrast with our previous findings showing that chimeric SIVs carrying FIV CA-derived sequences are assembly-competent. Overall, our data support the notion that although the SIV and FIV CA proteins share 51% amino acid sequence similarity and exhibit a similar organization, i.e., an N-terminal domain joined by a flexible linker to a C-terminal domain, their functional exchange between these different lentiviruses is strictly dependent on the context of the recipient Gag precursor.

  6. Reduction in Rotavirus-associated Acute Gastroenteritis Following Introduction of Rotavirus Vaccine Into Australia's National Childhood Vaccine Schedule

    NARCIS (Netherlands)

    Buttery, Jim P.; Lambert, Stephen B.; Grimwood, Keith; Nissen, Michael D.; Field, Emma J.; Macartney, Kristine K.; Akikusa, Jonathan D.; Kelly, Julian J.; Kirkwood, Carl D.

    Introduction: Rotavirus vaccines were introduced into the funded Australian National Immunization Program (NIP) in July 2007. Due to purchasing arrangements, individual states and territories chose either a 2-dose RV1 (Rotarix, GSK) regimen or 3-dose RV5 (Rotateq, Merck/CSL) regimen. This allowed

  7. Visualizing the Immune System: Providing Key Insights into HIV/SIV Infections

    Directory of Open Access Journals (Sweden)

    Jacob D. Estes

    2018-03-01

    Full Text Available Immunological inductive tissues, such as secondary lymphoid organs, are composed of distinct anatomical microenvironments for the generation of immune responses to pathogens and immunogens. These microenvironments are characterized by the compartmentalization of highly specialized immune and stromal cell populations, as well as the presence of a complex network of soluble factors and chemokines that direct the intra-tissue trafficking of naïve and effector cell populations. Imaging platforms have provided critical contextual information regarding the molecular and cellular interactions that orchestrate the spatial microanatomy of relevant cells and the development of immune responses against pathogens. Particularly in HIV/SIV disease, imaging technologies are of great importance in the investigation of the local interplay between the virus and host cells, with respect to understanding viral dynamics and persistence, immune responses (i.e., adaptive and innate inflammatory responses, tissue structure and pathologies, and changes to the surrounding milieu and function of immune cells. Merging imaging platforms with other cutting-edge technologies could lead to novel findings regarding the phenotype, function, and molecular signatures of particular immune cell targets, further promoting the development of new antiviral treatments and vaccination strategies.

  8. Subtype C gp140 Vaccine Boosts Immune Responses Primed by the South African AIDS Vaccine Initiative DNA-C2 and MVA-C HIV Vaccines after More than a 2-Year Gap.

    Science.gov (United States)

    Gray, Glenda E; Mayer, Kenneth H; Elizaga, Marnie L; Bekker, Linda-Gail; Allen, Mary; Morris, Lynn; Montefiori, David; De Rosa, Stephen C; Sato, Alicia; Gu, Niya; Tomaras, Georgia D; Tucker, Timothy; Barnett, Susan W; Mkhize, Nonhlanhla N; Shen, Xiaoying; Downing, Katrina; Williamson, Carolyn; Pensiero, Michael; Corey, Lawrence; Williamson, Anna-Lise

    2016-06-01

    A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 10(9) PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4(+) T-cell and CD8(+) T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4(+) T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4(+) T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.). Copyright © 2016 Gray et al.

  9. Role of Monocyte/Macrophages during HIV/SIV Infection in Adult and Pediatric Acquired Immune Deficiency Syndrome

    Directory of Open Access Journals (Sweden)

    Kristen M. Merino

    2017-12-01

    Full Text Available Monocytes/macrophages are a diverse group of cells that act as first responders in innate immunity and then as mediators for adaptive immunity to help clear infections. In performing these functions, however, the macrophage inflammatory responses can also contribute to pathogenesis. Various monocyte and tissue macrophage subsets have been associated with inflammatory disorders and tissue pathogeneses such as occur during HIV infection. Non-human primate research of simian immunodeficiency virus (SIV has been invaluable in better understanding the pathogenesis of HIV infection. The question of HIV/SIV-infected macrophages serving as a viral reservoir has become significant for achieving a cure. In the rhesus macaque model, SIV-infected macrophages have been shown to promote pathogenesis in several tissues resulting in cardiovascular, metabolic, and neurological diseases. Results from human studies illustrated that alveolar macrophages could be an important HIV reservoir and humanized myeloid-only mice supported productive HIV infection and viral persistence in macrophages during ART treatment. Depletion of CD4+ T cells is considered the primary cause for terminal progression, but it was reported that increasing monocyte turnover was a significantly better predictor in SIV-infected adult macaques. Notably, pediatric cases of HIV/SIV exhibit faster and more severe disease progression than adults, yet neonates have fewer target T cells and generally lack the hallmark CD4+ T cell depletion typical of adult infections. Current data show that the baseline blood monocyte turnover rate was significantly higher in neonatal macaques compared to adults and this remained high with disease progression. In this review, we discuss recent data exploring the contribution of monocytes and macrophages to HIV/SIV infection and progression. Furthermore, we highlight the need to further investigate their role in pediatric cases of infection.

  10. HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo.

    Directory of Open Access Journals (Sweden)

    Kar Muthumani

    Full Text Available An effective HIV vaccine will most likely require the induction of strong T-cell responses, broadly neutralizing antibodies (bNAbs, and the elicitation of antibody-dependent cellular cytotoxicity (ADCC. Previously, we demonstrated the induction of strong HIV/SIV cellular immune responses in macaques and humans using synthetic consensus DNA immunogens delivered via adaptive electroporation (EP. However, the ability of this improved DNA approach to prime for relevant antibody responses has not been previously studied. Here, we investigate the immunogenicity of consensus DNA constructs encoding gp140 sequences from HIV-1 subtypes A, B, C and D in a DNA prime-protein boost vaccine regimen. Mice and guinea pigs were primed with single- and multi-clade DNA via EP and boosted with recombinant gp120 protein. Sera were analyzed for gp120 binding and induction of neutralizing antibody activity. Immunization with recombinant Env protein alone induced low-titer binding antibodies with limited neutralization breath. In contrast, the synthetic DNA prime-protein boost protocol induced significantly higher antibody binding titers. Furthermore, sera from DNA prime-protein boost groups were able to neutralize a broader range of viruses in a panel of tier 1 clade B viruses as well as multiple tier 1 clade A and clade C viruses. Further investigation of synthetic DNA prime plus adaptive EP plus protein boost appears warranted.

  11. Development of the PANVAC-VF vaccine for pancreatic cancer.

    Science.gov (United States)

    Petrulio, Christian A; Kaufman, Howard L

    2006-02-01

    PANVAC-VF is a vaccine regimen composed of a priming dose of recombinant vaccinia virus and booster doses of recombinant fowlpox virus expressing carcinoembryonic antigen, mucin-1 and a triad of costimulatory molecules (TRICOM), which include B7.1, intercellular adhesion molecule-1 and leukocyte function-associated antigen-3. Vaccination is administered by subcutaneous injection followed by 4 days of local recombinant adjuvant granulocyte-macrophage colony-stimulating factor at the vaccination site. The vaccine has been developed for patients with advanced pancreatic cancer and has now entered a randomized Phase III clinical trial. This review will describe the background of recombinant poxvirus technology for tumor vaccine development, detail the key preclinical studies supporting the regimen, review the clinical trials supporting the current Phase III study, and highlight the key challenges and future obstacles to successful implementation of PANVAC-VF for pancreatic cancer.

  12. Plasmon resonance enhanced temperature-dependent photoluminescence of Si-V centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shaoheng [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Song, Jie; Wang, Qiliang; Liu, Junsong; Li, Hongdong, E-mail: hdli@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Zhang, Baolin [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2015-11-23

    Temperature dependent optical property of diamond has been considered as a very important factor for realizing high performance diamond-based optoelectronic devices. The photoluminescence feature of the zero phonon line of silicon-vacancy (Si-V) centers in Si-doped chemical vapor deposited single crystal diamond (SCD) with localized surface plasmon resonance (LSPR) induced by gold nanoparticles has been studied at temperatures ranging from liquid nitrogen temperature to 473 K, as compared with that of the SCD counterpart in absence of the LSPR. It is found that with LSPR the emission intensities of Si-V centers are significantly enhanced by factors of tens and the magnitudes of the redshift (width) of the emissions become smaller (narrower), in comparison with those of normal emissions without plasmon resonance. More interestingly, these strong Si-V emissions appear remarkably at temperatures up to 473 K, while the spectral feature was not reported in previous studies on the intrinsic Si-doped diamonds when temperatures are higher than room temperature. These findings would lead to reaching high performance diamond-based devices, such as single photon emitter, quantum cryptography, biomarker, and so forth, working under high temperature conditions.

  13. Safety and Immunogenicity of Coadministering a Combined Meningococcal Serogroup C and Haemophilus influenzae Type b Conjugate Vaccine with 7-Valent Pneumococcal Conjugate Vaccine and Measles, Mumps, and Rubella Vaccine at 12 Months of Age ▿

    OpenAIRE

    Miller, Elizabeth; Andrews, Nick; Waight, Pauline; Findlow, Helen; Ashton, Lindsey; England, Anna; Stanford, Elaine; Matheson, Mary; Southern, Joanna; Sheasby, Elizabeth; Goldblatt, David; Borrow, Ray

    2010-01-01

    The coadministration of the combined meningococcal serogroup C conjugate (MCC)/Haemophilus influenzae type b (Hib) vaccine with pneumococcal conjugate vaccine (PCV7) and measles, mumps, and rubella (MMR) vaccine at 12 months of age was investigated to assess the safety and immunogenicity of this regimen compared with separate administration of the conjugate vaccines. Children were randomized to receive MCC/Hib vaccine alone followed 1 month later by PCV7 with MMR vaccine or to receive all thr...

  14. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition.

    Science.gov (United States)

    Vaccari, Monica; Gordon, Shari N; Fourati, Slim; Schifanella, Luca; Liyanage, Namal P M; Cameron, Mark; Keele, Brandon F; Shen, Xiaoying; Tomaras, Georgia D; Billings, Erik; Rao, Mangala; Chung, Amy W; Dowell, Karen G; Bailey-Kellogg, Chris; Brown, Eric P; Ackerman, Margaret E; Vargas-Inchaustegui, Diego A; Whitney, Stephen; Doster, Melvin N; Binello, Nicolo; Pegu, Poonam; Montefiori, David C; Foulds, Kathryn; Quinn, David S; Donaldson, Mitzi; Liang, Frank; Loré, Karin; Roederer, Mario; Koup, Richard A; McDermott, Adrian; Ma, Zhong-Min; Miller, Christopher J; Phan, Tran B; Forthal, Donald N; Blackburn, Matthew; Caccuri, Francesca; Bissa, Massimiliano; Ferrari, Guido; Kalyanaraman, Vaniambadi; Ferrari, Maria G; Thompson, DeVon; Robert-Guroff, Marjorie; Ratto-Kim, Silvia; Kim, Jerome H; Michael, Nelson L; Phogat, Sanjay; Barnett, Susan W; Tartaglia, Jim; Venzon, David; Stablein, Donald M; Alter, Galit; Sekaly, Rafick-Pierre; Franchini, Genoveffa

    2016-07-01

    A recombinant vaccine containing Aventis Pasteur's canarypox vector (ALVAC)-HIV and gp120 alum decreased the risk of HIV acquisition in the RV144 vaccine trial. The substitution of alum with the more immunogenic MF59 adjuvant is under consideration for the next efficacy human trial. We found here that an ALVAC-simian immunodeficiency virus (SIV) and gp120 alum (ALVAC-SIV + gp120) equivalent vaccine, but not an ALVAC-SIV + gp120 MF59 vaccine, was efficacious in delaying the onset of SIVmac251 in rhesus macaques, despite the higher immunogenicity of the latter adjuvant. Vaccine efficacy was associated with alum-induced, but not with MF59-induced, envelope (Env)-dependent mucosal innate lymphoid cells (ILCs) that produce interleukin (IL)-17, as well as with mucosal IgG to the gp120 variable region 2 (V2) and the expression of 12 genes, ten of which are part of the RAS pathway. The association between RAS activation and vaccine efficacy was also observed in an independent efficacious SIV-vaccine approach. Whether RAS activation, mucosal ILCs and antibodies to V2 are also important hallmarks of HIV-vaccine efficacy in humans will require further studies.

  15. Immunological alterations and associated diseases in mandrills (Mandrillus sphinx) naturally co-infected with SIV and STLV.

    Science.gov (United States)

    Souquière, Sandrine; Makuwa, Maria; Sallé, Bettina; Lepelletier, Yves; Mortreux, Franck; Hermine, Olivier; Kazanji, Mirdad

    2014-04-01

    Mandrills are naturally infected with simian T-cell leukaemia virus type 1 (STLV-1) and simian immunodeficiency virus (SIV)mnd. In humans, dual infection with human immunodeficiency virus (HIV) and human T-cell lymphotropic virus type 1 (HTLV-1) may worsen their clinical outcome. We evaluated the effect of co-infection in mandrills on viral burden, changes in T-cell subsets and clinical outcome. The SIV viral load was higher in SIV-infected mandrills than in co-infected animals, whereas the STLV-1 proviral load was higher in co-infected than in mono-infected groups. Dually infected mandrills had a statistically significantly lower CD4+ T-cell count, a lower proportion of naive CD8+ T cells and a higher proportion of central memory cells. CD4(+) and CD8(+) T cells from SIV-infected animals had a lower percentage of Ki67 than those from the other groups. Co-infected monkeys had higher percentages of activated CD4(+) and CD8(+) T cells. Two co-infected mandrills with high immune activation and clonal integration of STLV provirus showed pathological manifestations (infective dermatitis and generalised scabies) rarely encountered in nonhuman primates. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2.

    Directory of Open Access Journals (Sweden)

    Bin Jia

    2009-05-01

    Full Text Available Tetherin, also known as BST2, CD317 or HM1.24, was recently identified as an interferon-inducible host-cell factor that interferes with the detachment of virus particles from infected cells. HIV-1 overcomes this restriction by expressing an accessory protein, Vpu, which counteracts tetherin. Since lentiviruses of the SIV(smm/mac/HIV-2 lineage do not have a vpu gene, this activity has likely been assumed by other viral gene products. We found that deletion of the SIV(mac239 nef gene significantly impaired virus release in cells expressing rhesus macaque tetherin. Virus release could be restored by expressing Nef in trans. However, Nef was unable to facilitate virus release in the presence of human tetherin. Conversely, Vpu enhanced virus release in the presence of human tetherin, but not in the presence of rhesus tetherin. In accordance with the species-specificity of Nef in mediating virus release, SIV Nef downregulated cell-surface expression of rhesus tetherin, but did not downregulate human tetherin. The specificity of SIV Nef for rhesus tetherin mapped to four amino acids in the cytoplasmic domain of the molecule that are missing from human tetherin, whereas the specificity of Vpu for human tetherin mapped to amino acid differences in the transmembrane domain. Nef alleles of SIV(smm, HIV-2 and HIV-1 were also able to rescue virus release in the presence of both rhesus macaque and sooty mangabey tetherin, but were generally ineffective against human tetherin. Thus, the ability of Nef to antagonize tetherin from these Old World primates appears to be conserved among the primate lentiviruses. These results identify Nef as the viral gene product of SIV that opposes restriction by tetherin in rhesus macaques and sooty mangabeys, and reveal species-specificity in the activities of both Nef and Vpu in overcoming tetherin in their respective hosts.

  17. Optimizing HIV-1-specific CD8+ T-cell induction by recombinant BCG in prime-boost regimens with heterologous viral vectors.

    Science.gov (United States)

    Hopkins, Richard; Bridgeman, Anne; Bourne, Charles; Mbewe-Mvula, Alice; Sadoff, Jerald C; Both, Gerald W; Joseph, Joan; Fulkerson, John; Hanke, Tomáš

    2011-12-01

    The desire to induce HIV-1-specific responses soon after birth to prevent breast milk transmission of HIV-1 led us to propose a vaccine regimen which primes HIV-1-specific T cells using a recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vaccine. Because attenuated live bacterial vaccines are typically not sufficiently immunogenic as stand-alone vaccines, rBCG-primed T cells will likely require boost immunization(s). Here, we compared modified Danish (AERAS-401) and Pasteur lysine auxotroph (222) strains of BCG expressing the immunogen HIVA for their potency to prime HIV-1-specific responses in adult BALB/c mice and examined four heterologous boosting HIVA vaccines for their immunogenic synergy. We found that both BCG.HIVA(401) and BCG.HIVA(222) primed HIV-1-specific CD8(+) T-cell-mediated responses. The strongest boosts were delivered by human adenovirus-vectored HAdV5.HIVA and sheep atadenovirus-vectored OAdV7.HIVA vaccines, followed by poxvirus MVA.HIVA; the weakest was plasmid pTH.HIVA DNA. The prime-boost regimens induced T cells capable of efficient in vivo killing of sensitized target cells. We also observed that the BCG.HIVA(401) and BCG.HIVA(222) vaccines have broadly similar immunologic properties, but display a number of differences mainly detected through distinct profiles of soluble intercellular signaling molecules produced by immune splenocytes in response to both HIV-1- and BCG-specific stimuli. These results encourage further development of the rBCG prime-boost regimen. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Experimental Oral Herpes Simplex Virus-1 (HSV-1 Co-infection in Simian Immunodeficiency Virus (SIV-Infected Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Meropi Aravantinou

    2017-12-01

    Full Text Available Herpes simplex virus 1 and 2 (HSV-1/2 similarly initiate infection in mucosal epithelia and establish lifelong neuronal latency. Anogenital HSV-2 infection augments the risk for sexual human immunodeficiency virus (HIV transmission and is associated with higher HIV viral loads. However, whether oral HSV-1 infection contributes to oral HIV susceptibility, viremia, or oral complications of HIV infection is unknown. Appropriate non-human primate (NHP models would facilitate this investigation, yet there are no published studies of HSV-1/SIV co-infection in NHPs. Thus, we performed a pilot study for an oral HSV-1 infection model in SIV-infected rhesus macaques to describe the feasibility of the modeling and resultant immunological changes. Three SIV-infected, clinically healthy macaques became HSV-1-infected by inoculation with 4 × 108 pfu HSV-1 McKrae on buccal, tongue, gingiva, and tonsils after gentle abrasion. HSV-1 DNA was shed in oral swabs for up to 21 days, and shedding recurred in association with intra-oral lesions after periods of no shedding during 56 days of follow up. HSV-1 DNA was detected in explant cultures of trigeminal ganglia collected at euthanasia on day 56. In the macaque with lowest baseline SIV viremia, SIV plasma RNA increased following HSV-1 infection. One macaque exhibited an acute pro-inflammatory response, and all three animals experienced T cell activation and mobilization in blood. However, T cell and antibody responses to HSV-1 were low and atypical. Through rigorous assessesments, this study finds that the virulent HSV-1 strain McKrae resulted in a low level HSV-1 infection that elicited modest immune responses and transiently modulated SIV infection.

  19. A field study on chemistry, S(IV) oxidation rates and vertical transport during fog conditions

    Science.gov (United States)

    Joos, F.; Baltensperger, U.

    An extensive fog study was carried out in the central plateu of Switzerland. Ninety-seven fog samples were collected along with aerosol filter and cascade impactor samples, and measurements of O 3, SO 2, NO, NO x, PAN, temperature, and wind speed and direction. Maximum levels in fogwater were 4.3, 4.4., 0.033, 1.7, 0.5, 0.024 and 9.2 mmol ℓ -1 for Cl -, NO 3-, NO 2-, SO 42-, S(IV), oxalate and NH 4+, respectively. pH varied between 2.9 and 7.1. Sixteen additional elements were determined in the fog samples by ICP. The sum of the concentrations of SO 42- and S(IV) agreed very with the total sulfur concentration as determined by ICP. A substantial excess of S(IV) (up to 0.2 mmol ℓ -1) compared to Henry and acid-base equilibrium calculations was found, which can probably be attributed to complex formations with aldehydes. S(IV) oxidation rates of up to 650 nmol ℓ -1 s -1 with ozone and of up to 100 nmol ℓ -1 s -1 with NO 2 were calculated. S(IV) oxidation due to PAN, NO 2- and Fe(III) was of minor importance. A substantial fraction of the major ions was present in the intersitial aerosol (aerosol particles < 4 μm) even during fog conditions. High correlations were found for NH 4+, NO 32-. From their ratios in the fog water and the aerosol (< 4 μm) it could be concluded that at least 40% of NO 3- and 20% of NH 4+ in fog water was due to gas phase scavenging. Increasing concentrations in fog water were found during fog dissipation. Concentrations decreased with increasing height. A vertical transport model including turbulent diffusion and droplet sedimentation is introduced, which matches the experimental data of this vertical profile.

  20. Neighborhood-targeted and case-triggered use of a single dose of oral cholera vaccine in an urban setting: Feasibility and vaccine coverage.

    Science.gov (United States)

    Parker, Lucy A; Rumunu, John; Jamet, Christine; Kenyi, Yona; Lino, Richard Laku; Wamala, Joseph F; Mpairwe, Allan M; Muller, Vincent; Llosa, Augusto E; Uzzeni, Florent; Luquero, Francisco J; Ciglenecki, Iza; Azman, Andrew S

    2017-06-01

    In June 2015, a cholera outbreak was declared in Juba, South Sudan. In addition to standard outbreak control measures, oral cholera vaccine (OCV) was proposed. As sufficient doses to cover the at-risk population were unavailable, a campaign using half the standard dosing regimen (one-dose) targeted high-risk neighborhoods and groups including neighbors of suspected cases. Here we report the operational details of this first public health use of a single-dose regimen of OCV and illustrate the feasibility of conducting highly targeted vaccination campaigns in an urban area. Neighborhoods of the city were prioritized for vaccination based on cumulative attack rates, active transmission and local knowledge of known cholera risk factors. OCV was offered to all persons older than 12 months at 20 fixed sites and to select groups, including neighbors of cholera cases after the main campaign ('case-triggered' interventions), through mobile teams. Vaccination coverage was estimated by multi-stage surveys using spatial sampling techniques. 162,377 individuals received a single-dose of OCV in the targeted neighborhoods. In these neighborhoods vaccine coverage was 68.8% (95% Confidence Interval (CI), 64.0-73.7) and was highest among children ages 5-14 years (90.0%, 95% CI 85.7-94.3), with adult men being less likely to be vaccinated than adult women (Relative Risk 0.81, 95% CI: 0.68-0.96). In the case-triggered interventions, each lasting 1-2 days, coverage varied (range: 30-87%) with an average of 51.0% (95% CI 41.7-60.3). Vaccine supply constraints and the complex realities where cholera outbreaks occur may warrant the use of flexible alternative vaccination strategies, including highly-targeted vaccination campaigns and single-dose regimens. We showed that such campaigns are feasible. Additional work is needed to understand how and when to use different strategies to best protect populations against epidemic cholera.

  1. Novel vaccines to human rabies.

    Directory of Open Access Journals (Sweden)

    Hildegund C J Ertl

    Full Text Available Rabies, the most fatal of all infectious diseases, remains a major public health problem in developing countries, claiming the lives of an estimated 55,000 people each year. Most fatal rabies cases, with more than half of them in children, result from dog bites and occur among low-income families in Southeast Asia and Africa. Safe and efficacious vaccines are available to prevent rabies. However, they have to be given repeatedly, three times for pre-exposure vaccination and four to five times for post-exposure prophylaxis (PEP. In cases of severe exposure, a regimen of vaccine combined with a rabies immunoglobulin (RIG preparation is required. The high incidence of fatal rabies is linked to a lack of knowledge on the appropriate treatment of bite wounds, lack of access to costly PEP, and failure to follow up with repeat immunizations. New, more immunogenic but less costly rabies virus vaccines are needed to reduce the toll of rabies on human lives. A preventative vaccine used for the immunization of children, especially those in high incidence countries, would be expected to lower fatality rates. Such a vaccine would have to be inexpensive, safe, and provide sustained protection, preferably after a single dose. Novel regimens are also needed for PEP to reduce the need for the already scarce and costly RIG and to reduce the number of vaccine doses to one or two. In this review, the pipeline of new rabies vaccines that are in pre-clinical testing is provided and an opinion on those that might be best suited as potential replacements for the currently used vaccines is offered.

  2. Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO2/Ti Electrode as Catalyst

    Science.gov (United States)

    Gong, Jianying; Zhang, Xingwang; Wang, Xiaoping; Lei, Lecheng

    2013-12-01

    Oxidation of S(IV) to S(VI) in the effluent of a flue gas desulfurization(FGD) system is very critical for industrial applications of seawater FGD. This paper reports a pulsed corona discharge oxidation process combined with a TiO2 photocatalyst to convert S(IV) to S(VI) in artificial seawater. Experimental results show that the oxidation of S(IV) in artificial seawater is enhanced in the pulsed discharge plasma process through the application of TiO2 coating electrodes. The oxidation rate of S(IV) using Ti metal as a ground electrode is about 2.0×10-4 mol · L-1 · min-1, the oxidation rate using TiO2/Ti electrode prepared by annealing at 500°C in air is 4.5×10-4 mol · L-1 · min-1, an increase with a factor 2.25. The annealing temperature for preparing TiO2/Ti electrode has a strong effect on the oxidation of S(IV) in artificial seawater. The results of in-situ emission spectroscopic analysis show that chemically active species (i.e. hydroxyl radicals and oxygen radicals) are produced in the pulsed discharge plasma process. Compared with the traditional air oxidation process and the sole plasma-induced oxidation process, the combined application of TiO2 photocatalysts and a pulsed high-voltage electrical discharge process is useful in enhancing the energy and conversion efficiency of S(IV) for the seawater FGD system.

  3. Innate Lymphoid Cells in HIV/SIV Infections.

    Science.gov (United States)

    Shah, Spandan V; Manickam, Cordelia; Ram, Daniel R; Reeves, R Keith

    2017-01-01

    Over the past several years, new populations of innate lymphocytes have been described in mice and primates that are critical for mucosal homeostasis, microbial regulation, and immune defense. Generally conserved from mice to humans, innate lymphoid cells (ILC) have been divided primarily into three subpopulations based on phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 have overlapping functions with TH2 cells; and ILC3 that share many functions with TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly one of the earliest responders during viral infections besides being involved in the homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial barrier integrity. Burgeoning evidence also suggests that there is an early and sustained abrogation of ILC function and numbers during HIV and pathogenic SIV infections, most notably ILC3 in the gastrointestinal tract, which leads to disruption of the mucosal barrier and dysregulation of the local immune system. A better understanding of the direct or indirect mechanisms of loss and dysfunction will be critical to immunotherapeutics aimed at restoring these cells. Herein, we review the current literature on ILC with a particular emphasis on ILC3 and their role(s) in mucosal immunology and the significance of disrupting the ILC niche during HIV and SIV infections.

  4. Innate Lymphoid Cells in HIV/SIV Infections

    Directory of Open Access Journals (Sweden)

    Spandan V. Shah

    2017-12-01

    Full Text Available Over the past several years, new populations of innate lymphocytes have been described in mice and primates that are critical for mucosal homeostasis, microbial regulation, and immune defense. Generally conserved from mice to humans, innate lymphoid cells (ILC have been divided primarily into three subpopulations based on phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 have overlapping functions with TH2 cells; and ILC3 that share many functions with TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly one of the earliest responders during viral infections besides being involved in the homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial barrier integrity. Burgeoning evidence also suggests that there is an early and sustained abrogation of ILC function and numbers during HIV and pathogenic SIV infections, most notably ILC3 in the gastrointestinal tract, which leads to disruption of the mucosal barrier and dysregulation of the local immune system. A better understanding of the direct or indirect mechanisms of loss and dysfunction will be critical to immunotherapeutics aimed at restoring these cells. Herein, we review the current literature on ILC with a particular emphasis on ILC3 and their role(s in mucosal immunology and the significance of disrupting the ILC niche during HIV and SIV infections.

  5. Semen CD4+ T Cells and Macrophages Are Productively Infected at All Stages of SIV infection in Macaques

    Science.gov (United States)

    Bernard-Stoecklin, Sibylle; Gommet, Céline; Corneau, Aurélien B.; Guenounou, Sabrina; Torres, Claire; Dejucq-Rainsford, Nathalie; Cosma, Antonio; Dereuddre-Bosquet, Nathalie; Le Grand, Roger

    2013-01-01

    The mucosal events of HIV transmission have been extensively studied, but the role of infected cells present in the genital and rectal secretions, and in the semen, in particular, remains a matter of debate. As a prerequisite to a thorough in vivo investigation of the early transmission events through infected cells, we characterized in detail by multi-parameter flow cytometry the changes in macaque seminal leukocytes during SIVmac251 infection, focusing on T cells, macrophages and dendritic cells. Using immunocytofluorescence targeting SIV proteins and real-time quantitative PCR targeting SIV DNA, we investigated the nature of the infected cells on sorted semen leukocytes from macaques at different stages of infection. Finally, we cocultured semen CD4+ T cells and macrophages with a cell line permissive to SIV infection to assess their infectivity in vitro. We found that primary infection induced strong local inflammation, which was associated with an increase in the number of leukocytes in semen, both factors having the potential to favor cell-associated virus transmission. Semen CD4+ T cells and macrophages were productively infected at all stages of infection and were infectious in vitro. Lymphocytes had a mucosal phenotype and expressed activation (CD69 & HLA-DR) and migration (CCR5, CXCR4, LFA-1) markers. CD69 expression was increased in semen T cells by SIV infection, at all stages of infection. Macrophages predominated at all stages and expressed CD4, CCR5, MAC-1 and LFA-1. Altogether, we demonstrated that semen contains the two major SIV-target cells (CD4+ T cells and macrophages). Both cell types can be productively infected at all stages of SIV infection and are endowed with markers that may facilitate transmission of infection during sexual exposure. PMID:24348253

  6. Successful Treatment of Disseminated Bacillus Calmette-Guérin Disease in an HIV-Infected Child with a Linezolid-Containing Regimen

    Directory of Open Access Journals (Sweden)

    Srđan Roglić

    2016-01-01

    Full Text Available Upon HIV infection diagnosis, an 8-month-old boy was transferred for evaluation of worsening respiratory distress requiring mechanical ventilation. Pneumocystis jirovecii pneumonia (PCP was diagnosed; the boy also had a nonhealing ulcer at the site of vaccination with Statens Serum Institut (Danish strain Bacillus Calmette-Guérin (BCG vaccine and associated axillary lymphadenopathy. PCP treatment resulted in weaning from mechanical ventilation. Antimycobacterial treatment was immediately attempted but was discontinued because of hepatotoxicity. Over several months, he developed splenic lesions and then disseminated skin and cystic bone lesions. M. bovis was repeatedly cultured from both skin and bone lesions despite various multidrug antimycobacterial regimens which included linezolid. Eventually, treatment with a regimen of rifabutin, isoniazid, ethambutol, and linezolid led to definitive cure. Clinicians should consider a linezolid-containing regimen for treatment of severe disseminated BCG infection, especially if other drug regimens have failed. Although drug toxicity is a particular concern for young children, this patient received linezolid for 13 months without serious toxicity. This case also highlights the need for universal screening among pregnant women to prevent vertical transmission of HIV. Finally, routine immunization with BCG vaccine at birth should be questioned in countries with low and declining burden of tuberculosis.

  7. Protection of human influenza vaccines against a reassortant swine influenza virus of pandemic H1N1 origin using a pig model.

    Science.gov (United States)

    Arunorat, Jirapat; Charoenvisal, Nataya; Woonwong, Yonlayong; Kedkovid, Roongtham; Jittimanee, Supattra; Sitthicharoenchai, Panchan; Kesdangsakonwut, Sawang; Poolperm, Pariwat; Thanawongnuwech, Roongroje

    2017-10-01

    Since the pandemic H1N1 emergence in 2009 (pdmH1N1), many reassortant pdmH1N1 viruses emerged and found circulating in the pig population worldwide. Currently, commercial human subunit vaccines are used commonly to prevent the influenza symptom based on the WHO recommendation. In case of current reassortant swine influenza viruses transmitting from pigs to humans, the efficacy of current human influenza vaccines is of interest. In this study, influenza A negative pigs were vaccinated with selected commercial human subunit vaccines and challenged with rH3N2. All sera were tested with both HI and SN assays using four representative viruses from the surveillance data in 2012 (enH1N1, pdmH1N1, rH1N2 and rH3N2). The results showed no significant differences in clinical signs and macroscopic and microscopic findings among groups. However, all pig sera from vaccinated groups had protective HI titers to the enH1N1, pdmH1N1 and rH1N2 at 21DPV onward and had protective SN titers only to pdmH1N1and rH1N2 at 21DPV onward. SN test results appeared more specific than those of HI tests. All tested sera had no cross-reactivity against the rH3N2. Both studied human subunit vaccines failed to protect and to stop viral shedding with no evidence of serological reaction against rH3N2. SIV surveillance is essential for monitoring a novel SIV emergence potentially for zoonosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. First-in-Human Evaluation of the Safety and Immunogenicity of an Intranasally Administered Replication-Competent Sendai Virus–Vectored HIV Type 1 Gag Vaccine: Induction of Potent T-Cell or Antibody Responses in Prime-Boost Regimens

    Science.gov (United States)

    Nyombayire, Julien; Anzala, Omu; Gazzard, Brian; Karita, Etienne; Bergin, Philip; Hayes, Peter; Kopycinski, Jakub; Omosa-Manyonyi, Gloria; Jackson, Akil; Bizimana, Jean; Farah, Bashir; Sayeed, Eddy; Parks, Christopher L.; Inoue, Makoto; Hironaka, Takashi; Hara, Hiroto; Shu, Tsugumine; Matano, Tetsuro; Dally, Len; Barin, Burc; Park, Harriet; Gilmour, Jill; Lombardo, Angela; Excler, Jean-Louis; Fast, Patricia; Laufer, Dagna S.; Cox, Josephine H.

    2017-01-01

    Background. We report the first-in-human safety and immunogenicity assessment of a prototype intranasally administered, replication-competent Sendai virus (SeV)–vectored, human immunodeficiency virus type 1 (HIV-1) vaccine. Methods. Sixty-five HIV-1–uninfected adults in Kenya, Rwanda, and the United Kingdom were assigned to receive 1 of 4 prime-boost regimens (administered at 0 and 4 months, respectively; ratio of vaccine to placebo recipients, 12:4): priming with a lower-dose SeV-Gag given intranasally, followed by boosting with an adenovirus 35–vectored vaccine encoding HIV-1 Gag, reverse transcriptase, integrase, and Nef (Ad35-GRIN) given intramuscularly (SLA); priming with a higher-dose SeV-Gag given intranasally, followed by boosting with Ad35-GRIN given intramuscularly (SHA); priming with Ad35-GRIN given intramuscularly, followed by boosting with a higher-dose SeV-Gag given intranasally (ASH); and priming and boosting with a higher-dose SeV-Gag given intranasally (SHSH). Results. All vaccine regimens were well tolerated. Gag-specific IFN-γ enzyme-linked immunospot–determined response rates and geometric mean responses were higher (96% and 248 spot-forming units, respectively) in groups primed with SeV-Gag and boosted with Ad35-GRIN (SLA and SHA) than those after a single dose of Ad35-GRIN (56% and 54 spot-forming units, respectively) or SeV-Gag (55% and 59 spot-forming units, respectively); responses persisted for ≥8 months after completion of the prime-boost regimen. Functional CD8+ T-cell responses with greater breadth, magnitude, and frequency in a viral inhibition assay were also seen in the SLA and SHA groups after Ad35-GRIN boost, compared with those who received either vaccine alone. SeV-Gag did not boost T-cell counts in the ASH group. In contrast, the highest Gag-specific antibody titers were seen in the ASH group. Mucosal antibody responses were sporadic. Conclusions. SeV-Gag primed functional, durable HIV-specific T

  9. Central nervous system-specific consequences of simian immunodeficiency virus Gag escape from major histocompatability complex class I-mediated control

    Science.gov (United States)

    Beck, Sarah E.; Queen, Suzanne E.; Viscidi, Raphael; Johnson, Darius; Kent, Stephen J.; Adams, Robert J.; Tarwater, Patrick M.; Mankowski, Joseph L.

    2016-01-01

    In the fourth decade of the HIV epidemic, the relationship between host immunity and HIV central nervous system (CNS) disease remains incompletely understood. Using a simian immunodeficiency virus (SIV)/macaque model, we examined CNS outcomes in pigtailed macaques expressing the MHC class I allele Mane-A1*084:01 which confers resistance to SIV-induced CNS disease and induces the prototypic viral escape mutation Gag K165R. Insertion of gag K165R into the neurovirulent clone SIV/17E-Fr reduced viral replication in vitro compared to SIV/17E-Fr. We also found lower CSF, but not plasma, viral loads in macaques inoculated with SIV/17E-Fr K165R versus those inoculated with wildtype. Although escape mutation K165R was genotypically stable in plasma, it rapidly reverted to wildtype Gag KP9 in both CSF and in microglia cultures. We induced robust Gag KP9-specific CTL tetramer responses by vaccinating Mane-A*084:01-positive pigtailed macaques with a Gag KP9 virus-like particle (VLP) vaccine. Upon SIV/17E-Fr challenge, vaccinated animals had lower SIV RNA in CSF compared to unvaccinated controls, but showed no difference in plasma viral loads. These data clearly demonstrate that viral fitness in the CNS is distinct from the periphery and underscores the necessity of understanding the consequences of viral escape in CNS disease with the advent of new therapeutic vaccination strategies. PMID:26727909

  10. Optimization of the doxycycline-dependent simian immunodeficiency virus through in vitro evolution

    Directory of Open Access Journals (Sweden)

    Piatak Mike

    2008-06-01

    Full Text Available Abstract Background Vaccination of macaques with live attenuated simian immunodeficiency virus (SIV provides significant protection against the wild-type virus. The use of a live attenuated human immunodeficiency virus (HIV as AIDS vaccine in humans is however considered unsafe because of the risk that the attenuated virus may accumulate genetic changes during persistence and evolve to a pathogenic variant. We earlier presented a conditionally live HIV-1 variant that replicates exclusively in the presence of doxycycline (dox. Replication of this vaccine strain can be limited to the time that is needed to provide full protection through transient dox administration. Since the effectiveness and safety of such a conditionally live virus vaccine should be tested in macaques, we constructed a similar dox-dependent SIV variant. The Tat-TAR transcription control mechanism in this virus was inactivated through mutation and functionally replaced by the dox-inducible Tet-On regulatory system. This SIV-rtTA variant replicated in a dox-dependent manner in T cell lines, but not as efficiently as the parental SIVmac239 strain. Since macaque studies will likely require an efficiently replicating variant, we set out to optimize SIV-rtTA through in vitro viral evolution. Results Upon long-term culturing of SIV-rtTA, additional nucleotide substitutions were observed in TAR that affect the structure of this RNA element but that do not restore Tat binding. We demonstrate that the bulge and loop mutations that we had introduced in the TAR element of SIV-rtTA to inactivate the Tat-TAR mechanism, shifted the equilibrium between two alternative conformations of TAR. The additional TAR mutations observed in the evolved variants partially or completely restored this equilibrium, which suggests that the balance between the two TAR conformations is important for efficient viral replication. Moreover, SIV-rtTA acquired mutations in the U3 promoter region. We demonstrate

  11. Revisiting a quarter of a century of simian immunodeficiency virus (SIV-associated cardiovascular diseases at the German Primate Center

    Directory of Open Access Journals (Sweden)

    M. Mietsch

    2017-06-01

    Full Text Available Human immunodeficiency virus (HIV comorbidities have become clinically more important due to antiretroviral therapy. Although therapy increases life expectancy, it does not completely suppress immune activation and its associated complications. The simian immunodeficiency virus (SIV-infected rhesus macaque (Macaca mulatta represents a valuable model for the investigation of SIV-associated diseases. Although cardiovascular (CV changes are common in HIV-infected patients, there are only a few reports on the incidence of CV findings in SIV-infected animals. In addition, potential associations between pathohistological findings and hematological parameters are still unclear. We therefore conducted a retrospective analysis of 195 SIV-infected rhesus macaques that were euthanized with AIDS-related symptoms at the German Primate Center, Goettingen, over a 25-year period. Pathological findings were correlated with hematological data. The main findings included myocarditis (12.8 %, endocarditis (9.7 %, and arteriopathy (10.3 % in various organs. Thrombocytopenia occurred more frequently in macaques with endocarditis or arteriopathy than in macaques without CV disease (80 % in animals with endocarditis, 60 % in animals with arteriopathy, p < 0. 0001 and p = 0. 0016, respectively. Further investigations of the interaction between coagulation markers, proinflammatory cytokines, and biomarkers associated with endothelial dysfunction (e.g., D-dimers and histological data (vascular wall structure may unravel the mechanisms underlying HIV/SIV-associated CV comorbidities.

  12. Changes in Circulating B Cell Subsets Associated with Aging and Acute SIV Infection in Rhesus Macaques.

    Science.gov (United States)

    Chang, W L William; Gonzalez, Denise F; Kieu, Hung T; Castillo, Luis D; Messaoudi, Ilhem; Shen, Xiaoying; Tomaras, Georgia D; Shacklett, Barbara L; Barry, Peter A; Sparger, Ellen E

    2017-01-01

    Aging and certain viral infections can negatively impact humoral responses in humans. To further develop the nonhuman primate (NHP) model for investigating B cell dynamics in human aging and infectious disease, a flow cytometric panel was developed to characterize circulating rhesus B cell subsets. Significant differences between human and macaque B cells included the proportions of cells within IgD+ and switched memory populations and a prominent CD21-CD27+ unswitched memory population detected only in macaques. We then utilized the expanded panel to analyze B cell alterations associated with aging and acute simian immunodeficiency virus (SIV) infection in the NHP model. In the aging study, distinct patterns of B cell subset frequencies were observed for macaques aged one to five years compared to those between ages 5 and 30 years. In the SIV infection study, B cell frequencies and absolute number were dramatically reduced following acute infection, but recovered within four weeks of infection. Thereafter, the frequencies of activated memory B cells progressively increased; these were significantly correlated with the magnitude of SIV-specific IgG responses, and coincided with impaired maturation of anti-SIV antibody avidity, as previously reported for HIV-1 infection. These observations further validate the NHP model for investigation of mechanisms responsible for B cells alterations associated with immunosenescence and infectious disease.

  13. Altered immune responses in rhesus macaques co-infected with SIV and Plasmodium cynomolgi: an animal model for coincident AIDS and relapsing malaria.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    2009-09-01

    Full Text Available Dual epidemics of the malaria parasite Plasmodium and HIV-1 in sub-Saharan Africa and Asia present a significant risk for co-infection in these overlapping endemic regions. Recent studies of HIV/Plasmodium falciparum co-infection have reported significant interactions of these pathogens, including more rapid CD4+ T cell loss, increased viral load, increased immunosuppression, and increased episodes of clinical malaria. Here, we describe a novel rhesus macaque model for co-infection that supports and expands upon findings in human co-infection studies and can be used to identify interactions between these two pathogens.Five rhesus macaques were infected with P. cynomolgi and, following three parasite relapses, with SIV. Compared to macaques infected with SIV alone, co-infected animals had, as a group, decreased survival time and more rapid declines in markers for SIV progression, including peripheral CD4+ T cells and CD4+/CD8+ T cell ratios. The naïve CD4+ T cell pool of the co-infected animals was depleted more rapidly than animals infected with SIV alone. The co-infected animals also failed to generate proliferative responses to parasitemia by CD4+ and CD8+ T cells as well as B cells while also having a less robust anti-parasite and altered anti-SIV antibody response.These data suggest that infection with both SIV and Plasmodium enhances SIV-induced disease progression and impairs the anti-Plasmodium immune response. These data support findings in HIV/Plasmodium co-infection studies. This animal model can be used to further define impacts of lentivirus and Plasmodium co-infection and guide public health and therapeutic interventions.

  14. Progress in Brucella vaccine development

    Science.gov (United States)

    YANG, Xinghong; SKYBERG, Jerod A.; CAO, Ling; CLAPP, Beata; THORNBURG, Theresa; PASCUAL, David W.

    2012-01-01

    Brucella spp. are zoonotic, facultative intracellular pathogens, which cause animal and human disease. Animal disease results in abortion of fetuses; in humans, it manifests flu-like symptoms with an undulant fever, with osteoarthritis as a common complication of infection. Antibiotic regimens for human brucellosis patients may last several months and are not always completely effective. While there are no vaccines for humans, several licensed live Brucella vaccines are available for use in livestock. The performance of these animal vaccines is dependent upon the host species, dose, and route of immunization. Newly engineered live vaccines, lacking well-defined virulence factors, retain low residual virulence, are highly protective, and may someday replace currently used animal vaccines. These also have possible human applications. Moreover, due to their enhanced safety and efficacy in animal models, subunit vaccines for brucellosis show great promise for their application in livestock and humans. This review summarizes the progress of brucellosis vaccine development and presents an overview of candidate vaccines. PMID:23730309

  15. Particle-based vaccines for HIV-1 infection.

    Science.gov (United States)

    Young, Kelly R; Ross, Ted M

    2003-06-01

    The use of live-attenuated viruses as vaccines has been successful for the control of viral infections. However, the development of an effective vaccine against the human immunodeficiency virus (HIV) has proven to be a challenge. HIV infects cells of the immune system and results in a severe immunodeficiency. In addition, the ability of the virus to adapt to immune pressure and the ability to reside in an integrated form in host cells present hurdles for vaccinologists to overcome. A particle-based vaccine strategy has promise for eliciting high titer, long-lived, immune responses to a diverse number of viral epitopes from different HIV antigens. Live-attenuated viruses are effective at generating both cellular and humoral immunity, however, a live-attenuated vaccine for HIV is problematic. The possibility of a live-attenuated vaccine to revert to a pathogenic form or recombine with a wild-type or defective virus in an infected individual is a drawback to this approach. Therefore, these vaccines are currently only being tested in non-human primate models. Live-attenuated vaccines are effective in stimulating immunity, however challenged animals rarely clear viral infection and the degree of attenuation directly correlates with the protection of animals from disease. Another particle-based vaccine approach for HIV involves the use of virus-like particles (VLPs). VLPs mimic the viral particle without causing an immunodeficiency disease. HIV-like particles (HIV-LP) are defined as self-assembling, non-replicating, nonpathogenic, genomeless particles that are similar in size and conformation to intact virions. A variety of VLPs for both HIV and SIV are currently in pre-clinical and clinical trials. This review focuses on the current knowledge regarding the immunogenicity and safety of particle-based vaccine strategies for HIV-1.

  16. Hypercytotoxicity and rapid loss of NKp44+ innate lymphoid cells during acute SIV infection.

    Directory of Open Access Journals (Sweden)

    Haiying Li

    2014-12-01

    Full Text Available HIV/SIV infections break down the integrity of the gastrointestinal mucosa and lead to chronic immune activation and associated disease progression. Innate lymphoid cells (ILCs, distinguishable by high expression of NKp44 and RORγt, play key roles in mucosal defense and homeostasis, but are depleted from gastrointestinal (GI tract large bowel during chronic SIV infection. However, less is known about the kinetics of ILC loss, or if it occurs systemically. In acute SIV infection, we found a massive, up to 8-fold, loss of NKp44+ILCs in all mucosae as early as day 6 post-infection, which was sustained through chronic disease. Interestingly, no loss of ILCs was observed in mucosa-draining lymph nodes. In contrast, classical NK cells were not depleted either from gut or draining lymph nodes. Both ILCs and NK cells exhibited significantly increased levels of apoptosis as measured by increased Annexin-V expression, but while classical NK cells also showed increased proliferation, ILCs did not. Interestingly, ILCs, which are normally noncytolytic, dramatically upregulated cytotoxic functions in acute and chronic infection and acquired a polyfunctional phenotype secreting IFN-γ, MIP1-β, and TNF-α, but decreased production of the prototypical cytokine, IL-17. Classical NK cells had less dramatic functional change, but upregulated perforin expression and increased cytotoxic potential. Finally, we show that numerical and functional loss of ILCs was due to increased apoptosis and ROR γt suppression induced by inflammatory cytokines in the gut milieu. Herein we demonstrate the first evidence for acute, systemic, and permanent loss of mucosal ILCs during SIV infection associated with reduction of IL-17. The massive reduction of ILCs involves apoptosis without compensatory de novo development/proliferation, but the full mechanism of depletion and the impact of functional change so early in infection remain unclear.

  17. First-in-Human Evaluation of the Safety and Immunogenicity of an Intranasally Administered Replication-Competent Sendai Virus-Vectored HIV Type 1 Gag Vaccine: Induction of Potent T-Cell or Antibody Responses in Prime-Boost Regimens.

    Science.gov (United States)

    Nyombayire, Julien; Anzala, Omu; Gazzard, Brian; Karita, Etienne; Bergin, Philip; Hayes, Peter; Kopycinski, Jakub; Omosa-Manyonyi, Gloria; Jackson, Akil; Bizimana, Jean; Farah, Bashir; Sayeed, Eddy; Parks, Christopher L; Inoue, Makoto; Hironaka, Takashi; Hara, Hiroto; Shu, Tsugumine; Matano, Tetsuro; Dally, Len; Barin, Burc; Park, Harriet; Gilmour, Jill; Lombardo, Angela; Excler, Jean-Louis; Fast, Patricia; Laufer, Dagna S; Cox, Josephine H

    2017-01-01

     We report the first-in-human safety and immunogenicity assessment of a prototype intranasally administered, replication-competent Sendai virus (SeV)-vectored, human immunodeficiency virus type 1 (HIV-1) vaccine.  Sixty-five HIV-1-uninfected adults in Kenya, Rwanda, and the United Kingdom were assigned to receive 1 of 4 prime-boost regimens (administered at 0 and 4 months, respectively; ratio of vaccine to placebo recipients, 12:4): priming with a lower-dose SeV-Gag given intranasally, followed by boosting with an adenovirus 35-vectored vaccine encoding HIV-1 Gag, reverse transcriptase, integrase, and Nef (Ad35-GRIN) given intramuscularly (S L A); priming with a higher-dose SeV-Gag given intranasally, followed by boosting with Ad35-GRIN given intramuscularly (S H A); priming with Ad35-GRIN given intramuscularly, followed by boosting with a higher-dose SeV-Gag given intranasally (AS H ); and priming and boosting with a higher-dose SeV-Gag given intranasally (S H S H ).  All vaccine regimens were well tolerated. Gag-specific IFN-γ enzyme-linked immunospot-determined response rates and geometric mean responses were higher (96% and 248 spot-forming units, respectively) in groups primed with SeV-Gag and boosted with Ad35-GRIN (S L A and S H A) than those after a single dose of Ad35-GRIN (56% and 54 spot-forming units, respectively) or SeV-Gag (55% and 59 spot-forming units, respectively); responses persisted for ≥8 months after completion of the prime-boost regimen. Functional CD8 + T-cell responses with greater breadth, magnitude, and frequency in a viral inhibition assay were also seen in the S L A and S H A groups after Ad35-GRIN boost, compared with those who received either vaccine alone. SeV-Gag did not boost T-cell counts in the AS H group. In contrast, the highest Gag-specific antibody titers were seen in the AS H group. Mucosal antibody responses were sporadic.  SeV-Gag primed functional, durable HIV-specific T-cell responses and boosted antibody

  18. The future of human DNA vaccines.

    Science.gov (United States)

    Li, Lei; Saade, Fadi; Petrovsky, Nikolai

    2012-12-31

    DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Occurrence and severity of lung lesions in slaughter pigs vaccinated against Mycoplasma hyopneumoniae with different strategies.

    Science.gov (United States)

    Hillen, Sonja; von Berg, Stephan; Köhler, Kernt; Reinacher, Manfred; Willems, Hermann; Reiner, Gerald

    2014-03-01

    Different vaccination strategies against Mycoplasma hyopneumoniae have been adopted worldwide. Reports from the field indicate varying levels of protection among currently available vaccines. The goal of the present study was to compare the efficacies of three widespread commercial vaccination strategies against M. hyopneumoniae under field conditions. 20 farms were included. 14 farms used different single dose vaccines (vaccine 1 [V1], 8 herds; vaccine 2 [V2], 6 herds); another 6 farms (V3) used a two dose vaccination strategy. Gross lesions of 854 lungs and histopathology from 140 lungs were quantified, and a quantitative PCR was applied to detect M. hyopneumoniae and porcine circovirus 2 (PCV2) DNA in lung tissue (n=140). In addition, porcine reproductive and respiratory disease virus (PRRSV), swine influenza virus (SIV), Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida were tested by qualitative PCR. 53% of lungs were positive for M. hyopneumoniae. 55.9% of lungs showed macroscopic enzootic pneumonia (EP)-like lesions. Lung lesion scores (Phyopneumoniae-loads (Phyopneumoniae indicating that the applied diagnostic tools are valuable in confirming the prevalence and severity of M. hyopneumoniae infections. Comparing different vaccination strategies against M. hyopneumoniae indicates varying levels of protection. M. hyopneumoniae is still a major problem despite the widely applied vaccination. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The dog that did not bark: malaria vaccines without antibodies.

    NARCIS (Netherlands)

    Heppner, D.G.; Schwenk, R.J.; Arnot, D.; Sauerwein, R.W.; Luty, A.J.F.

    2007-01-01

    To date, the only pre-blood stage vaccine to confer protection against malaria in field trials elicits both antigen-specific antibody and T-cell responses. Recent clinical trials of new heterologous prime-boost malaria vaccine regimens using DNA, fowlpox or MVA, have chiefly elicited T-cell

  1. Nonprogressing HIV-infected children share fundamental immunological features of nonpathogenic SIV infection

    DEFF Research Database (Denmark)

    Muenchhoff, Maximilian; Adland, Emily; Karimanzira, Owen

    2016-01-01

    nonprogressors. These children therefore express two cardinal immunological features of nonpathogenic SIV infection in sooty mangabeys-low immune activation despite high viremia and low CCR5 expression on long-lived central memory CD4 T cells-suggesting closer similarities with nonpathogenetic mechanisms evolved...

  2. Safety and immunogenicity of coadministering a combined meningococcal serogroup C and Haemophilus influenzae type b conjugate vaccine with 7-valent pneumococcal conjugate vaccine and measles, mumps, and rubella vaccine at 12 months of age.

    Science.gov (United States)

    Miller, Elizabeth; Andrews, Nick; Waight, Pauline; Findlow, Helen; Ashton, Lindsey; England, Anna; Stanford, Elaine; Matheson, Mary; Southern, Joanna; Sheasby, Elizabeth; Goldblatt, David; Borrow, Ray

    2011-03-01

    The coadministration of the combined meningococcal serogroup C conjugate (MCC)/Haemophilus influenzae type b (Hib) vaccine with pneumococcal conjugate vaccine (PCV7) and measles, mumps, and rubella (MMR) vaccine at 12 months of age was investigated to assess the safety and immunogenicity of this regimen compared with separate administration of the conjugate vaccines. Children were randomized to receive MCC/Hib vaccine alone followed 1 month later by PCV7 with MMR vaccine or to receive all three vaccines concomitantly. Immunogenicity endpoints were MCC serum bactericidal antibody (SBA) titers of ≥8, Hib-polyribosylribitol phosphate (PRP) IgG antibody concentrations of ≥0.15 μg/ml, PCV serotype-specific IgG concentrations of ≥0.35 μg/ml, measles and mumps IgG concentrations of >120 arbitrary units (AU)/ml, and rubella IgG concentrations of ≥11 AU/ml. For safety assessment, the proportions of children with erythema, swelling, or tenderness at site of injection or fever or other systemic symptoms for 7 days after immunization were compared between regimens. No adverse consequences for either safety or immunogenicity were demonstrated when MCC/Hib vaccine was given concomitantly with PCV and MMR vaccine at 12 months of age or separately at 12 and 13 months of age. Any small differences in immunogenicity were largely in the direction of a higher response when all three vaccines were given concomitantly. For systemic symptoms, there was no evidence of an additive effect; rather, any differences between schedules showed benefit from the concomitant administration of all three vaccines, such as lower overall proportions with postvaccination fevers. The United Kingdom infant immunization schedule now recommends that these three vaccines may be offered at one visit at between 12 and 13 months of age.

  3. Intradermal immunization with inactivated swine influenza virus and adjuvant polydi(sodium carboxylatoethylphenoxy)phosphazene (PCEP) induced humoral and cell-mediated immunity and reduced lung viral titres in pigs.

    Science.gov (United States)

    Magiri, Royford; Lai, Ken; Chaffey, Alyssa; Zhou, Yan; Pyo, Hyun-Mi; Gerdts, Volker; Wilson, Heather L; Mutwiri, George

    2018-03-14

    Swine influenza virus is endemic worldwide and it is responsible for significant economic losses to the swine industry. A vaccine that stimulates a rapid and long-lasting protective immune response to prevent this infection is highly sought. Poly[di(sodium carboxylatoethylphenoxy)-phosphazene (PCEP) has demonstrated adjuvant activity when formulated as part of multiple vaccines in mice and pigs. In this study we examined the magnitude and type of immune response induced in pigs vaccinated via the intramuscular or intradermal routes with inactivated swine influenza virus (SIV) H1N1 vaccine formulated with PCEP. Intradermal administration of PCEP-adjuvanted inactivated SIV vaccine stimulated significant anti-SIV antibody titres, increased neutralizing antibodies, and significantly reduced lung virus load with limited reduction of gross lung lesions after challenge with virulent H1N1 relative to control animals. These results indicate that PCEP may be effective as a vaccine adjuvant against swine influenza viruses in pigs and should be considered a potential candidate adjuvant for future swine intradermal influenza vaccines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Distinct phenotype, longitudinal changes of numbers and cell-associated virus in blood dendritic cells in SIV-infected CD8-lymphocyte depleted macaques.

    Directory of Open Access Journals (Sweden)

    Caroline Soulas

    Full Text Available Loss of circulating CD123+ plasmacytoid dendritic cells (pDCs during HIV infection is well established. However, changes of myeloid DCs (mDCs are ambiguous since they are studied as a homogeneous CD11c+ population despite phenotypic and functional heterogeneity. Heterogeneity of CD11c+ mDCs in primates is poorly described in HIV and SIV infection. Using multiparametric flow cytometry, we monitored longitudinally cell number and cell-associated virus of CD123+ pDCs and non-overlapping subsets of CD1c+ and CD16+ mDCs in SIV-infected CD8-depleted rhesus macaques. The numbers of all three DC subsets were significantly decreased by 8 days post-infection. Whereas CD123+ pDCs were persistently depleted, numbers of CD1c+ and CD16+ mDCs rebounded. Numbers of CD1c+ mDCs significantly increased by 3 weeks post-infection while numbers of CD16+ mDCs remained closer to pre-infection levels. We found similar changes in the numbers of all three DC subsets in CD8 depleted animals as we found in animals that were SIV infected animals that were not CD8 lymphocyte depleted. CD16+ mDCs and CD123+ pDCs but not CD1c+ mDCs were significantly decreased terminally with AIDS. All DC subsets harbored SIV RNA as early as 8 days and then throughout infection. However, SIV DNA was only detected in CD123+ pDCs and only at 40 days post-infection consistent with SIV RNA, at least in mDCs, being surface-bound. Altogether our data demonstrate that SIV infection differently affects CD1c+ and CD16+ mDCs where CD16+ but not CD1c+ mDCs are depleted and might be differentially regulated in terminal AIDS. Finally, our data underline the importance of studying CD1c+ and CD16+ mDCs as discrete populations, and not as total CD11c+ mDCs.

  5. Development of replication-deficient adenovirus malaria vaccines.

    Science.gov (United States)

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  6. Natural host genetic resistance to lentiviral CNS disease: a neuroprotective MHC class I allele in SIV-infected macaques.

    Directory of Open Access Journals (Sweden)

    Joseph L Mankowski

    Full Text Available Human immunodeficiency virus (HIV infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS disease using a well-characterized simian immunodeficiency (SIV/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5. Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001. Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease.

  7. Safety of specific immunotherapy using an ultra-rush induction regimen in bee and wasp allergy.

    Science.gov (United States)

    Bożek, Andrzej; Kołodziejczyk, Krzysztof

    2018-02-01

    Specific allergen immunotherapy to Hymenoptera venom (VIT) is a basic treatment for patients allergic to Hymenoptera venom. The aim of the study was to evaluate the safety of an ultra-rush regimen compared with the rush and conventional protocols. In 31 patients with an allergy to bee venom and 82 with an allergy to wasp venom, the allergic adverse reactions during VIT were monitored. Patients were selected based on the criteria established by EAACI (European Academy of Allergy and Clinical Immunology) recommendations. Adverse reactions during the ultra-rush immunotherapy were measured, documented and classified according to the criteria of Mueller. Ultra-rush, rush or conventional protocols of the initial phase VIT using the Venomenhal vaccine (Hal Allergy, Leiden, Netherlands) were conducted. Six (13.7%) patients on the ultra-rush regimen, 5 (14.3%) patients on the rush regimen and 9 (26.5%) on conventional VIT experienced an allergic reaction. There were no associations between the adverse allergic reactions and the following factors: gender, total IgE and allergen-specific IgE to wasp or bee venom before the VIT and cardiological drugs that were used. We found that the ultra-rush protocol (similar to the rush protocol) using the Venomenhal vaccine is safer than the conventional protocol.

  8. Spatially Controlled Fabrication of Brightly Fluorescent Nanodiamond-Array with Enhanced Far-Red Si-V Luminescence

    Science.gov (United States)

    Singh, Sonal; Thomas, Vinoy; Martyshkin, Dmitry; Kozlovskaya, Veronika; Kharlampieva, Eugenia

    2014-01-01

    We demonstrate a novel approach to precise pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by scanning probe “Dip-Pen” nanolithography technique using electrostatically-driven transfer of nanodiamonds from “inked” cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond-dots in the far-red is achieved by incorporating Si-V defect centers in subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink, mechanism of ink transport, and effect of humidity, dwell time on nanodiamond patterning are investigated. The precision-patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm, 61 nm ± 3 nm, respectively and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm, 245 nm ± 23 nm, respectively using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (~738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of the next generation fluorescent based devices and applications. PMID:24394286

  9. Sterile protection against Plasmodium knowlesi in rhesus monkeys from a malaria vaccine: comparison of heterologous prime boost strategies.

    Directory of Open Access Journals (Sweden)

    George Jiang

    Full Text Available Using newer vaccine platforms which have been effective against malaria in rodent models, we tested five immunization regimens against Plasmodium knowlesi in rhesus monkeys. All vaccines included the same four P. knowlesi antigens: the pre-erythrocytic antigens CSP, SSP2, and erythrocytic antigens AMA1, MSP1. We used four vaccine platforms for prime or boost vaccinations: plasmids (DNA, alphavirus replicons (VRP, attenuated adenovirus serotype 5 (Ad, or attenuated poxvirus (Pox. These four platforms combined to produce five different prime/boost vaccine regimens: Pox alone, VRP/Pox, VRP/Ad, Ad/Pox, and DNA/Pox. Five rhesus monkeys were immunized with each regimen, and five Control monkeys received a mock vaccination. The time to complete vaccinations was 420 days. All monkeys were challenged twice with 100 P. knowlesi sporozoites given IV. The first challenge was given 12 days after the last vaccination, and the monkeys receiving the DNA/Pox vaccine were the best protected, with 3/5 monkeys sterilely protected and 1/5 monkeys that self-cured its parasitemia. There was no protection in monkeys that received Pox malaria vaccine alone without previous priming. The second sporozoite challenge was given 4 months after the first. All 4 monkeys that were protected in the first challenge developed malaria in the second challenge. DNA, VRP and Ad5 vaccines all primed monkeys for strong immune responses after the Pox boost. We discuss the high level but short duration of protection in this experiment and the possible benefits of the long interval between prime and boost.

  10. Gene expression of Lactobacillus plantarum and the commensal microbiota in the ileum of healthy and early SIV-infected rhesus macaques

    Science.gov (United States)

    Golomb, Benjamin L.; Hirao, Lauren A.; Dandekar, Satya; Marco, Maria L.

    2016-01-01

    Chronic HIV infection results in impairment of gut-associated lymphoid tissue leading to systemic immune activation. We previously showed that in early SIV-infected rhesus macaques intestinal dysfunction is initiated with the induction of the IL-1β pathway in the small intestine and reversed by treatment with an exogenous Lactobacillus plantarum strain. Here, we provide evidence that the transcriptomes of L. plantarum and ileal microbiota are not altered shortly after SIV infection. L. plantarum adapts to the small intestine by expressing genes required for tolerating oxidative stress, modifying cell surface composition, and consumption of host glycans. The ileal microbiota of L. plantarum-containing healthy and SIV+ rhesus macaques also transcribed genes for host glycan metabolism as well as for cobalamin biosynthesis. Expression of these pathways by bacteria were proposed but not previously demonstrated in the mammalian small intestine. PMID:27102350

  11. Stochastic inequalities and applications to dynamics analysis of a novel SIVS epidemic model with jumps

    Directory of Open Access Journals (Sweden)

    Xiaona Leng

    2017-06-01

    Full Text Available Abstract This paper proposes a new nonlinear stochastic SIVS epidemic model with double epidemic hypothesis and Lévy jumps. The main purpose of this paper is to investigate the threshold dynamics of the stochastic SIVS epidemic model. By using the technique of a series of stochastic inequalities, we obtain sufficient conditions for the persistence in mean and extinction of the stochastic system and the threshold which governs the extinction and the spread of the epidemic diseases. Finally, this paper describes the results of numerical simulations investigating the dynamical effects of stochastic disturbance. Our results significantly improve and generalize the corresponding results in recent literatures. The developed theoretical methods and stochastic inequalities technique can be used to investigate the high-dimensional nonlinear stochastic differential systems.

  12. Prevention of SIV rectal transmission and priming of T cell responses in macaques after local pre-exposure application of tenofovir gel.

    Directory of Open Access Journals (Sweden)

    Martin Cranage

    2008-08-01

    Full Text Available The rectum is particularly vulnerable to HIV transmission having only a single protective layer of columnar epithelium overlying tissue rich in activated lymphoid cells; thus, unprotected anal intercourse in both women and men carries a higher risk of infection than other sexual routes. In the absence of effective prophylactic vaccines, increasing attention is being given to the use of microbicides and preventative antiretroviral (ARV drugs. To prevent mucosal transmission of HIV, a microbicide/ARV should ideally act locally at and near the virus portal of entry. As part of an integrated rectal microbicide development programme, we have evaluated rectal application of the nucleotide reverse transcriptase (RT inhibitor tenofovir (PMPA, 9-[(R-2-(phosphonomethoxy propyl] adenine monohydrate, a drug licensed for therapeutic use, for protective efficacy against rectal challenge with simian immunodeficiency virus (SIV in a well-established and standardised macaque model.A total of 20 purpose-bred Indian rhesus macaques were used to evaluate the protective efficacy of topical tenofovir. Nine animals received 1% tenofovir gel per rectum up to 2 h prior to virus challenge, four macaques received placebo gel, and four macaques remained untreated. In addition, three macaques were given tenofovir gel 2 h after virus challenge. Following intrarectal instillation of 20 median rectal infectious doses (MID50 of a noncloned, virulent stock of SIVmac251/32H, all animals were analysed for virus infection, by virus isolation from peripheral blood mononuclear cells (PBMC, quantitative proviral DNA load in PBMC, plasma viral RNA (vRNA load by sensitive quantitative competitive (qc RT-PCR, and presence of SIV-specific serum antibodies by ELISA. We report here a significant protective effect (p = 0.003; Fisher exact probability test wherein eight of nine macaques given tenofovir per rectum up to 2 h prior to virus challenge were protected from infection (n = 6 or had

  13. Re-designing the Mozambique vaccine supply chain to improve access to vaccines.

    Science.gov (United States)

    Lee, Bruce Y; Haidari, Leila A; Prosser, Wendy; Connor, Diana L; Bechtel, Ruth; Dipuve, Amelia; Kassim, Hidayat; Khanlawia, Balbina; Brown, Shawn T

    2016-09-22

    Populations and routine childhood vaccine regimens have changed substantially since supply chains were designed in the 1980s, and introducing new vaccines during the "Decade of Vaccine" may exacerbate existing bottlenecks, further inhibiting the flow of all vaccines. Working with the Mozambique Ministry of Health, our team implemented a new process that integrated HERMES computational simulation modeling and on-the-ground implementers to evaluate and improve the Mozambique vaccine supply chain using a system-re-design that integrated new supply chain structures, information technology, equipment, personnel, and policies. The alternative system design raised vaccine availability (from 66% to 93% in Gaza; from 76% to 84% in Cabo Delgado) and reduced the logistics cost per dose administered (from $0.53 to $0.32 in Gaza; from $0.38 to $0.24 in Cabo Delgado) as compared to the multi-tiered system under the current EPI. The alternative system also produced higher availability at lower costs after new vaccine introductions. Since reviewing scenarios modeling deliveries every two months in the north of Gaza, the provincial directorate has decided to pilot this approach diverging from decades of policies dictating monthly deliveries. Re-design improved not only supply chain efficacy but also efficiency, important since resources to deliver vaccines are limited. The Mozambique experience and process can serve as a model for other countries during the Decade of Vaccines. For the Decade of Vaccines, getting vaccines at affordable prices to the market is not enough. Vaccines must reach the population to be successful. Copyright © 2016. Published by Elsevier Ltd.

  14. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver [Robert Koch-Institut, Berlin (Germany); Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D. [Paul-Ehrlich-Institut, Langen (Germany); Bannert, Norbert; Kurth, Reinhard [Robert Koch-Institut, Berlin (Germany); Norley, Stephen, E-mail: NorleyS@rki.de [Robert Koch-Institut, Berlin (Germany)

    2016-02-15

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.

  15. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge

    International Nuclear Information System (INIS)

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver; Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D.; Bannert, Norbert; Kurth, Reinhard; Norley, Stephen

    2016-01-01

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.

  16. Decreased number of CD4+ and CD8+ T cells that express the interleukin-7 receptor in blood and tissues of SIV-infected macaques

    International Nuclear Information System (INIS)

    Moniuszko, Marcin; Edghill-Smith, Yvette; Venzon, David; Stevceva, Liljana; Nacsa, Janos; Tryniszewska, Elzbieta; Tsai, Wen-Po; Franchini, Genoveffa

    2006-01-01

    Acute HIV/SIV (human/simian immunodeficiency virus) infection results in severe CD4 + T cell depletion in lymphoid compartments. During the chronic phase of infection, CD4 + T cell numbers rebound in blood but remain low in the gut-associated lymphoid tissue (GALT), even when viral replication is suppressed by antiretroviral therapy (ART). Thus, strategies to repopulate lymphoid compartments may ameliorate the clinical outcome of HIV/SIV infection. Interleukin (IL)-7 is a key cytokine for the maintenance of homeostatic proliferation of T cells. In HIV/SIV infection, IL-7 expression is increased, likely to compensate for T cell loss, suggesting that supraphysiological administration of IL-7 could provide additional benefit. However, the ability of T cells to respond to IL-7 is dependent on the level of expression of the IL-7 receptor (IL-7R) in T cells in various body compartments. In here, we investigated the proportion of IL-7R + T cells in blood, spleen, gut, and genitourinary tract of healthy and SIV-infected macaques with various degrees of CD4 + T cell depletion. We found that the percentage of T cells expressing IL-7R was significantly lower in both CD4 + and CD8 + T cell subsets in SIV-infected macaques than in healthy animals and this decrease directly correlated with the CD4 + T cell number. Importantly, the proportion of CD4 + and CD8 + T cells expressing IL-7R in blood paralleled that found in tissues. IL-7R + T cells within the SIV-specific CD8 + T cells varied and were lowest in most tissues of viremic macaques, likely reflecting continuous antigen stimulation of effector cells

  17. ACVP-02: Plasma SIV/SHIV RNA Viral Load Measurements through the AIDS and Cancer Virus Program Quantitative Molecular Diagnostics Core | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The SIV plasma viral load assay performed by the Quantitative Molecular Diagnostics Core (QMDC) utilizes reagents specifically designed to detect and accurately quantify the full range of SIV/SHIV viral variants and clones in common usage in the rese

  18. Optimised electroporation mediated DNA vaccination for treatment of prostate cancer.

    LENUS (Irish Health Repository)

    Ahmad, Sarfraz

    2010-01-01

    ABSTRACT: BACKGROUND: Immunological therapies enhance the ability of the immune system to recognise and destroy cancer cells via selective killing mechanisms. DNA vaccines have potential to activate the immune system against specific antigens, with accompanying potent immunological adjuvant effects from unmethylated CpG motifs as on prokaryotic DNA. We investigated an electroporation driven plasmid DNA vaccination strategy in animal models for treatment of prostate cancer. METHODS: Plasmid expressing human PSA gene (phPSA) was delivered in vivo by intra-muscular electroporation, to induce effective anti-tumour immune responses against prostate antigen expressing tumours. Groups of male C57 BL\\/6 mice received intra-muscular injections of phPSA plasmid. For phPSA delivery, quadriceps muscle was injected with 50 mug plasmid. After 80 seconds, square-wave pulses were administered in sequence using a custom designed pulse generator and acustom-designed applicator with 2 needles placed through the skin central to the muscle. To determine an optimum treatment regimen, three different vaccination schedules were investigated. In a separate experiment, the immune potential of the phPSA vaccine was further enhanced with co- administration of synthetic CpG rich oligonucleotides. One week after last vaccination, the mice were challenged subcutaneously with TRAMPC1\\/hPSA (prostate cancer cell line stably expressing human PSA) and tumour growth was monitored. Serum from animals was examined by ELISA for anti-hPSA antibodies and for IFNgamma. Histological assessment of the tumours was also carried out. In vivo and in vitro cytotoxicity assays were performed with splenocytes from treated mice. RESULTS: The phPSA vaccine therapy significantly delayed the appearance of tumours and resulted in prolonged survival of the animals. Four-dose vaccination regimen provided optimal immunological effects. Co - administration of the synthetic CpG with phPSA increased anti-tumour responses

  19. Evolution of an Eurasian avian-like influenza virus in naïve and vaccinated pigs.

    Directory of Open Access Journals (Sweden)

    Pablo R Murcia

    Full Text Available Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although segment reassortment has commonly been associated with influenza emergence, an expanded host-range is also likely to be associated with the accumulation of specific beneficial point mutations. To better understand the mechanisms that shape the genetic diversity of avian-like viruses in pigs, we studied the evolutionary dynamics of an Eurasian Avian-like swine influenza virus (EA-SIV in naïve and vaccinated pigs linked by natural transmission. We analyzed multiple clones of the hemagglutinin 1 (HA1 gene derived from consecutive daily viral populations. Strikingly, we observed both transient and fixed changes in the consensus sequence along the transmission chain. Hence, the mutational spectrum of intra-host EA-SIV populations is highly dynamic and allele fixation can occur with extreme rapidity. In addition, mutations that could potentially alter host-range and antigenicity were transmitted between animals and mixed infections were commonplace, even in vaccinated pigs. Finally, we repeatedly detected distinct stop codons in virus samples from co-housed pigs, suggesting that they persisted within hosts and were transmitted among them. This implies that mutations that reduce viral fitness in one host, but which could lead to fitness benefits in a novel host, can circulate at low frequencies.

  20. Spatially controlled fabrication of a bright fluorescent nanodiamond-array with enhanced far-red Si-V luminescence.

    Science.gov (United States)

    Singh, Sonal; Thomas, Vinoy; Martyshkin, Dmitry; Kozlovskaya, Veronika; Kharlampieva, Eugenia; Catledge, Shane A

    2014-01-31

    We demonstrate a novel approach to precisely pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by a scanning probe 'dip-pen' nanolithography technique using electrostatically driven transfer of nanodiamonds from 'inked' cantilevers to a UV-treated hydrophilic SiO2 substrate. The enhanced emission from nanodiamond dots in the far-red is achieved by incorporating Si-V defect centers in a subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink and mechanism of ink transport, and the effect of humidity and dwell time on nanodiamond patterning are investigated. The precision patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm and 61 nm ± 3 nm, respectively, and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm and, 245 nm ± 23 nm, respectively, using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (~738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of next generation fluorescence-based devices and applications.

  1. Safety profile of the 9-valent HPV vaccine

    DEFF Research Database (Denmark)

    Moreira, Edson D; Block, Stan L; Ferris, Daron G

    2016-01-01

    OBJECTIVES: The overall safety profile of the 9-valent human papillomavirus (9vHPV) vaccine was evaluated across 7 Phase III studies, conducted in males and females (nonpregnant at entry), 9 to 26 years of age. METHODS: Vaccination was administered as a 3-dose regimen at day 1, and months 2 and 6....... More than 15 000 subjects received ≥1 dose of 9vHPV vaccine. In 2 of the studies, >7000 control subjects received ≥1 dose of quadrivalent HPV (qHPV) vaccine. Serious and nonserious adverse events (AEs) and new medical conditions were recorded throughout the study. Subjects testing positive...... for pregnancy at day 1 were not vaccinated; those who became pregnant after day 1 were discontinued from further vaccination until resolution of the pregnancy. Pregnancies detected after study start (n = 2950) were followed to outcome. RESULTS: The most common AEs (≥5%) experienced by 9vHPV vaccine recipients...

  2. RNA Vaccine: novel approach for cancer treatment

    OpenAIRE

    L K Dwivedi; Prateeksha Goswami; Kanika Bhalla

    2011-01-01

    Cancer is still an unsolved puzzle and a major cause of mortality and morbidity in the world. Today, about one in every thousand people is dying due to cancer. No effective agent has yet been found which can cure cancer in its metastatic stage. However, attempts in the shape of chemotherapy, immunotherapy and vaccines are made worldwide to find a remedy through a proper regimen. In continuation, tumor specific mRNA has been introduced as part of vaccines in recent days. It is mostly used in t...

  3. Immunological Effect of aGV Rabies Vaccine Administered Using the Essen and Zagreb Regimens: A Double-Blind, Randomized Clinical Trial.

    Science.gov (United States)

    Miao, Li; Shi, Liwei; Yang, Yi; Yan, Kunming; Sun, Hongliang; Mo, Zhaojun; Li, Li

    2018-04-01

    This study evaluated the immunological effect of an aGV rabies virus strain using the Essen and Zagreb immunization programs. A total of 1,944 subjects were enrolled and divided into three groups: the Essen test group, Essen control group, and Zagreb test group. Neutralizing antibody levels and antibody seroconversion rates were determined at 7 and 14 days after the initial inoculations and then 14 days after the final inoculation in all of the subjects. The seroconversion rates for the Essen test group, Essen control group, and Zagreb test group, which were assessed 7 days after the first dosing in a susceptible population, were 35.74%, 26.92%, and 45.49%, respectively, and at 14 days, the seroconversion rates in this population were 100%, 100%, and 99.63%, respectively. At 14 days after the final dosing, the seroconversion rates were 100% in all three of the groups. The neutralizing serum antibody levels of the Essen test group, Essen control group, and Zagreb test group at 7 days after the first dosing in the susceptible population were 0.37, 0.26, and 0.56 IU/mL, respectively, and at 14 days after the initial dosing, these levels were 16.71, 13.85, and 16.80 IU/mL. At 14 days after the final dosing, the neutralizing antibody levels were 22.9, 16.3, and 18.62 IU/mL, respectively. The results of this study suggested that the aGV rabies vaccine using the Essen program resulted in a good serum immune response, and the seroconversion rates and the neutralizing antibody levels generated with the Zagreb regimen were higher than those with the Essen regimen when measured 7 days after the first dose.

  4. Vesicular stomatitis virus-based vaccines protect nonhuman primates against Bundibugyo ebolavirus.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available Ebola virus (EBOV causes severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs. Currently, there are no licensed vaccines or therapeutics for human use. Recombinant vesicular stomatitis virus (rVSV-based vaccine vectors, which encode an EBOV glycoprotein in place of the VSV glycoprotein, have shown 100% efficacy against homologous Sudan ebolavirus (SEBOV or Zaire ebolavirus (ZEBOV challenge in NHPs. In addition, a single injection of a blend of three rVSV vectors completely protected NHPs against challenge with SEBOV, ZEBOV, the former Côte d'Ivoire ebolavirus, and Marburg virus. However, recent studies suggest that complete protection against the newly discovered Bundibugyo ebolavirus (BEBOV using several different heterologous filovirus vaccines is more difficult and presents a new challenge. As BEBOV caused nearly 50% mortality in a recent outbreak any filovirus vaccine advanced for human use must be able to protect against this new species. Here, we evaluated several different strategies against BEBOV using rVSV-based vaccines. Groups of cynomolgus macaques were vaccinated with a single injection of a homologous BEBOV vaccine, a single injection of a blended heterologous vaccine (SEBOV/ZEBOV, or a prime-boost using heterologous SEBOV and ZEBOV vectors. Animals were challenged with BEBOV 29-36 days after initial vaccination. Macaques vaccinated with the homologous BEBOV vaccine or the prime-boost showed no overt signs of illness and survived challenge. In contrast, animals vaccinated with the heterologous blended vaccine and unvaccinated control animals developed severe clinical symptoms consistent with BEBOV infection with 2 of 3 animals in each group succumbing. These data show that complete protection against BEBOV will likely require incorporation of BEBOV glycoprotein into the vaccine or employment of a prime-boost regimen. Fortunately, our results demonstrate that heterologous rVSV-based filovirus vaccine

  5. Determining the Structure of an Unliganded and Fully Glycosylated SIV gp120 Envelope Glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bing; Vogan, Erik M.; Gong, Haiyun; Skehel, John J.; Wiley, Don C.; Harrison, Stephen C. (Harvard-Med); (NIMR)

    2010-07-13

    HIV/SIV envelope glycoproteins mediate the first steps in viral infection. They are trimers of a membrane-anchored polypeptide chain, cleaved into two fragments known as gp120 and gp41. The structure of HIV gp120 bound with receptor (CD4) has been known for some time. We have now determined the structure of a fully glycosylated SIV gp120 envelope glycoprotein in an unliganded conformation by X-ray crystallography at 4.0 {angstrom} resolution. We describe here our experimental and computational approaches, which may be relevant to other resolution-limited crystallographic problems. Key issues were attention to details of beam geometry mandated by small, weakly diffracting crystals, and choice of strategies for phase improvement, starting with two isomorphous derivatives and including multicrystal averaging. We validated the structure by analyzing composite omit maps, averaged among three distinct crystal lattices, and by calculating model-based, SeMet anomalous difference maps. There are at least four ordered sugars on many of the thirteen oligosaccharides.

  6. A prime-boost vaccination strategy using attenuated Salmonella typhimurium and a replication-deficient recombinant adenovirus vector elicits protective immunity against human respiratory syncytial virus.

    Science.gov (United States)

    Fu, Yuan-Hui; He, Jin-Sheng; Wang, Xiao-Bo; Zheng, Xian-Xian; Wu, Qiang; Xie, Can; Zhang, Mei; Wei, Wei; Tang, Qian; Song, Jing-Dong; Qu, Jian-Guo; Hong, Tao

    2010-04-23

    Human respiratory syncytial virus (RSV), for which no clinically approved vaccine is available yet, is globally a serious pediatric pathogen of the lower respiratory tract. Several approaches have been used to develop vaccines against RSV, but none of these have been approved for use in humans. An efficient vaccine-enhancing strategy for RSV is still urgently needed. We found previously that oral SL7207/pcDNA3.1/F and intranasal FGAd/F were able to induce an effective protective immune response against RSV. The heterologous prime-boost immunization regime has been reported recently to be an efficient vaccine-enhancing strategy. Therefore, we investigated the ability of an oral SL7207/pcDNA3.1/F prime and intranasal (i.n.) FGAd/F boost regimen to generate immune responses to RSV. The SL7207/pcDNA3.1/F prime-FGAd/F boost regimen generated stronger RSV-specific humoral and mucosal immune responses in BALB/c mice than the oral SL7207/pcDNA3.1/F regimen alone, and stronger specific cellular immune responses than the i.n. FGAd/F regimen alone. Histopathological analysis showed an increased efficacy against RSV challenge by the heterologous prime-boost regimen. These results suggest that such a heterologous prime-boost strategy can enhance the efficacy of either the SL7207 or the FGAd vector regimen in generating immune responses in BALB/c mice. 2010 Elsevier Inc. All rights reserved.

  7. Evolving T-cell vaccine strategies for HIV, the virus with a thousand faces

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory

    2009-01-01

    HIV's rapid global spread and the human suffering it has left in its wake have made AIDS a global heath priority for the 25 years since its discovery. Yet its capacity to rapidly evolve has made combating this virus a tremendous challenge. The obstacles to creating an effective HIV vaccine are formidable, but there are advances in the field on many fronts, in terms of novel vectors, adjuvants, and antigen design strategies. SIV live attenuated vaccine models are able to confer protection against heterologous challenge, and this continues to provide opportunities to explore the biological underpinnings of a protective effect (9). More indirect, but equally important, is new understanding regarding the biology of acute infection (43), the role of immune response in long-term non-progression (6,62, 81), and defining characteristics of broadly neutralizing antibodies (4). In this review we will focus on summarizing strategies directed towards a single issue, that of contending with HIV variation in terms of designing aT-cell vaccine. The strategies that prove most effective in this area can ultimately be combined with the best strategies under development in other areas, with the hope of ultimately converging on a viable vaccine candidate. Only two large HIV vaccine efficacy trials have been completed and both have failed to prevent infection or confer a benefit to infected individual (23,34), but there is ample reason to continue our efforts. A historic breakthrough came in 1996, when it was realized that although the virus could escape from a single antiretroviral (ARV) therapy, it could be thwarted by a combination of medications that simultaneously targeted different parts of the virus (HAART) (38). This revelation came after 15 years of research, thought, and clinical testing; to enable that vital progress the research and clinical communities had to first define and understand, then develop a strategy to counter, the remarkable evolutionary potential of the

  8. DNA priming for seasonal influenza vaccine: a phase 1b double-blind randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Julie E Ledgerwood

    Full Text Available The efficacy of current influenza vaccines is limited in vulnerable populations. DNA vaccines can be produced rapidly, and may offer a potential strategy to improve vaccine immunogenicity, indicated by studies with H5 influenza DNA vaccine prime followed by inactivated vaccine boost.Four sites enrolled healthy adults, randomized to receive 2011/12 seasonal influenza DNA vaccine prime (n=65 or phosphate buffered saline (PBS (n=66 administered intramuscularly with Biojector. All subjects received the 2012/13 seasonal inactivated influenza vaccine, trivalent (IIV3 36 weeks after the priming injection. Vaccine safety and tolerability was the primary objective and measurement of antibody response by hemagglutination inhibition (HAI was the secondary objective.The DNA vaccine prime-IIV3 boost regimen was safe and well tolerated. Significant differences in HAI responses between the DNA vaccine prime and the PBS prime groups were not detected in this study.While DNA priming significantly improved the response to a conventional monovalent H5 vaccine in a previous study, it was not effective in adults using seasonal influenza strains, possibly due to pre-existing immunity to the prime, unmatched prime and boost antigens, or the lengthy 36 week boost interval. Careful optimization of the DNA prime-IIV3 boost regimen as related to antigen matching, interval between vaccinations, and pre-existing immune responses to influenza is likely to be needed in further evaluations of this vaccine strategy. In particular, testing this concept in younger age groups with less prior exposure to seasonal influenza strains may be informative.ClinicalTrials.gov NCT01498718.

  9. Heterogeneity of Rabies Vaccination Recommendations across Asia

    Directory of Open Access Journals (Sweden)

    Philippe Buchy

    2017-07-01

    Full Text Available Asian countries bear the greatest burden of the disease, with a majority (59% of rabies-related deaths occurring in Asia. In order to promote best practices, we summarized national human vaccination guidelines across this region, to highlight differences and similarities and to discuss the aspects that would benefit from updates. National management guidelines for rabies were retrieved from various sources to extract information on rabies pre- and post-exposure prophylaxis (PrEP, and PEP, booster vaccination, and route of administration. Rabies guidelines recommendations for wound management and PrEP across Asia are broadly aligned to the World Health Organization (WHO guidelines. For PEP, the 5-dose Essen, and the 4-dose Zagreb are the regimens of choice for intramuscular (IM, and the Thai Red Cross regimen for intradermal (ID, administration. Several national guidelines have yet to endorse ID vaccine administration. Most guidelines recommend rabies immunoglobulin in category III exposures. Booster recommendations are not included in all guidelines, with limited clarity on booster requirement across the spectrum of risk of rabies exposure. In conclusion, national recommendations across Asian countries differ and while some guidelines are closely aligned to the WHO recommendations, resource-saving ID administration and use of rational abbreviated schedules have yet to be endorsed.

  10. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    International Nuclear Information System (INIS)

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi; Mathews, Lydia; Lucas, William T.; Murphy, Cynthia G.; Felber, Barbara K.; Pavlakis, George N.; Deluca, Neal A.; Knipe, David M.

    2007-01-01

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV gene products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli β-galactosidase induced durable β-gal-specific IgG and CD8 + T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes

  11. Şemseddin Sivȃsȋ’nin Tasavvufȋ Tecrübesinde Rizȃ-yı Bȃrȋ Düşüncesi

    Directory of Open Access Journals (Sweden)

    Kadir Özköse

    2015-12-01

    Full Text Available Halvetiyyenin dört ana kolundan biri olan Şemsiyyenin pȋri konumundaki Şemseddin Sivȃsȋ’nin eserlerinden hareketle hazırladığımız bu makale Şemseddin Sivȃsȋ’nin sȗfȋ tecrübesini okumaya dönük bir çalışmadır. Mensur ve manzum eserlerinin herbirinde Şemseddin Sivȃsȋ ana tema olarak Allah’ın rızasını merkeze almıştır. İlahi rızanın her zaman gündemde olmasını, kulluğun ilahi rıza ekseninde gerçekleşmesini istemiştir. Lutfun da hoş kahrın da hoş anlayışına bağlı olan Şemseddin Sivȃsȋ ilahi takdire boyun eğmiş, ne varlığa sevinmeyi ne de yokluktan yerinmeyi öngörmüştür. Rıza halinin kemalini o, mücahede eğitimne, sabır ve sebat gayretine, tevazu duygusuna, ihlas hassasiyetine ve zikir diriliğine bağlamıştır. Makalemizde Şemseddin Sivȃsȋ’nin rızanın ehemmiyetine ve rıza makamına ulaşmayı sağlayan teel ölçütlere dikkat çekmeye çalıştık.

  12. Vector choice determines immunogenicity and potency of genetic vaccines against Angola Marburg virus in nonhuman primates

    NARCIS (Netherlands)

    Geisbert, Thomas W.; Bailey, Michael; Geisbert, Joan B.; Asiedu, Clement; Roederer, Mario; Grazia-Pau, Maria; Custers, Jerome; Jahrling, Peter; Goudsmit, Jaap; Koup, Richard; Sullivan, Nancy J.

    2010-01-01

    The immunogenicity and durability of genetic vaccines are influenced by the composition of gene inserts and choice of delivery vector. DNA vectors are a promising vaccine approach showing efficacy when combined in prime-boost regimens with recombinant protein or viral vectors, but they have shown

  13. Ability of herpes simplex virus vectors to boost immune responses to DNA vectors and to protect against challenge by simian immunodeficiency virus

    International Nuclear Information System (INIS)

    Kaur, Amitinder; Sanford, Hannah B.; Garry, Deirdre; Lang, Sabine; Klumpp, Sherry A.; Watanabe, Daisuke; Bronson, Roderick T.; Lifson, Jeffrey D.; Rosati, Margherita; Pavlakis, George N.; Felber, Barbara K.; Knipe, David M.; Desrosiers, Ronald C.

    2007-01-01

    The immunogenicity and protective capacity of replication-defective herpes simplex virus (HSV) vector-based vaccines were examined in rhesus macaques. Three macaques were inoculated with recombinant HSV vectors expressing Gag, Env, and a Tat-Rev-Nef fusion protein of simian immunodeficiency virus (SIV). Three other macaques were primed with recombinant DNA vectors expressing Gag, Env, and a Pol-Tat-Nef-Vif fusion protein prior to boosting with the HSV vectors. Robust anti-Gag and anti-Env cellular responses were detected in all six macaques. Following intravenous challenge with wild-type, cloned SIV239, peak and 12-week plasma viremia levels were significantly lower in vaccinated compared to control macaques. Plasma SIV RNA in vaccinated macaques was inversely correlated with anti-Rev ELISPOT responses on the day of challenge (P value < 0.05), anti-Tat ELISPOT responses at 2 weeks post challenge (P value < 0.05) and peak neutralizing antibody titers pre-challenge (P value 0.06). These findings support continued study of recombinant herpesviruses as a vaccine approach for AIDS

  14. Helicobacter pylori vaccine: from past to future.

    Science.gov (United States)

    Agarwal, Kanishtha; Agarwal, Shvetank

    2008-02-01

    Helicobacter pylori infection is highly prevalent worldwide and is an important cause of gastritis, peptic ulcer disease, gastric mucosa-associated lymphoid tissue lymphoma (MALToma), and gastric adenocarcinoma. Infection is usually acquired during childhood and tends to persist unless treated. Because eradication requires treatment with multidrug regimens, prevention of initial infection by a suitable vaccine is attractive. Although immunization with H pylori protein subunits has been encouraging in animals, similar vaccine trials in humans have shown adjuvant-related adverse effects and only moderate effectiveness. Newer immunization approaches (use of DNA, live vectors, bacterial ghosts, and microspheres) are being developed. Several questions about when and whom to vaccinate will need to be appropriately answered, and a cost-effective vaccine production and delivery strategy will have to be useful for developing countries. For this review, we searched MEDLINE using the Medical Subject Heading (MeSH) terms Helicobacter pylori and vaccines for articles in English from 1990 to 2007.

  15. Spatially controlled fabrication of a bright fluorescent nanodiamond-array with enhanced far-red Si-V luminescence

    International Nuclear Information System (INIS)

    Singh, Sonal; Thomas, Vinoy; Kharlampieva, Eugenia; Catledge, Shane A; Martyshkin, Dmitry; Kozlovskaya, Veronika

    2014-01-01

    We demonstrate a novel approach to precisely pattern fluorescent nanodiamond-arrays with enhanced far-red intense photostable luminescence from silicon-vacancy (Si-V) defect centers. The precision-patterned pre-growth seeding of nanodiamonds is achieved by a scanning probe ‘dip-pen’ nanolithography technique using electrostatically driven transfer of nanodiamonds from ‘inked’ cantilevers to a UV-treated hydrophilic SiO 2 substrate. The enhanced emission from nanodiamond dots in the far-red is achieved by incorporating Si-V defect centers in a subsequent chemical vapor deposition treatment. The development of a suitable nanodiamond ink and mechanism of ink transport, and the effect of humidity and dwell time on nanodiamond patterning are investigated. The precision patterning of as-printed (pre-CVD) arrays with dot diameter and dot height as small as 735 nm ± 27 nm and 61 nm ± 3 nm, respectively, and CVD-treated fluorescent ND-arrays with consistently patterned dots having diameter and height as small as 820 nm ± 20 nm and, 245 nm ± 23 nm, respectively, using 1 s dwell time and 30% RH is successfully achieved. We anticipate that the far-red intense photostable luminescence (∼738 nm) observed from Si-V defect centers integrated in spatially arranged nanodiamonds could be beneficial for the development of next generation fluorescence-based devices and applications. (paper)

  16. Design and statistical considerations for studies evaluating the efficacy of a single dose of the human papillomavirus (HPV) vaccine.

    Science.gov (United States)

    Sampson, Joshua N; Hildesheim, Allan; Herrero, Rolando; Gonzalez, Paula; Kreimer, Aimee R; Gail, Mitchell H

    2018-05-01

    Cervical cancer is a leading cause of cancer mortality in women worldwide. Human papillomavirus (HPV) types 16 and 18 cause about 70% of all cervical cancers. Clinical trials have demonstrated that three doses of either commercially available HPV vaccine, Cervarix ® or Gardasil ®, prevent most new HPV 16/18 infections and associated precancerous lesions. Based on evidence of immunological non-inferiority, 2-dose regimens have been licensed for adolescents in the United States, European Union, and elsewhere. However, if a single dose were effective, vaccine costs would be reduced substantially and the logistics of vaccination would be greatly simplified, enabling vaccination programs in developing countries. The National Cancer Institute (NCI) and the Agencia Costarricense de Investigaciones Biomédicas (ACIB) are conducting, with support from the Bill & Melinda Gates Foundation and the International Agency for Research on Cancer (IARC), a large 24,000 girl study to evaluate the efficacy of a 1-dose regimen. The first component of the study is a four-year non-inferiority trial comparing 1- to 2-dose regimens of the two licensed vaccines. The second component is an observational study that estimates the vaccine efficacy (VE) of each regimen by comparing the HPV infection rates in the trial arms to those in a contemporaneous survey group of unvaccinated girls. In this paper, we describe the design and statistical analysis for this study. We explain the advantage of defining non-inferiority on the absolute risk scale when the expected event rate is near 0 and, given this definition, suggest an approach to account for missing clinic visits. We then describe the problem of estimating VE in the absence of a randomized placebo arm and offer our solution. Copyright © 2018. Published by Elsevier Inc.

  17. Non-Replicating Adenovirus-Vectored Anthrax Vaccine

    International Nuclear Information System (INIS)

    Van Kampen, K. R.; Zhang, J.; Jex, E.; Tang, D. C.

    2007-01-01

    As bioterrorism is emerging as a national threat, it is urgent to develop a new generation of anthrax vaccines that can be rapidly produced and mass administered in an emergency setting. We have demonstrated that protective immunity against anthrax spores could be elicited in mice by intranasal administration of a non-replicating human adenovirus serotype 5 (Ad5)-derived vector encoding Bacillus anthracis protective antigen (PA) in a single-dose regimen. The potency of an Ad5 vector encoding PA was remarkably enhanced by codon optimization of the PA gene to match the tRNA pool found in human cells. This nasal vaccine can be mass-administered by non-medical personnel during a bioterrorist attack. In addition, replication-competent adenovirus (RCA)-free Ad5-vectored anthrax vaccines can be mass produced in PER.C6 cells in serum-free wave bioreactors and purified by column chromatography to meet a surge in demand. The non-replicating nature of this new generation of anthrax vaccine ensures an excellent safety profile for vaccines and the environment.(author)

  18. Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection

    Directory of Open Access Journals (Sweden)

    Leo Swadling

    2016-08-01

    Full Text Available An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV infection, as an adjunct to newly developed directly-acting antivirals (DAA, or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3 vector and a modified vaccinia Ankara (MVA, encoding the non-structural proteins of HCV (NSmut, used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy, determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T

  19. HIV-1 Subtype C Mosaic Gag Expressed by BCG and MVA Elicits Persistent Effector T Cell Responses in a Prime-Boost Regimen in Mice.

    Directory of Open Access Journals (Sweden)

    Tsungai Ivai Jongwe

    Full Text Available Over 90% of HIV/AIDS positive individuals in sub-Saharan Africa are infected with highly heterogeneous HIV-1 subtype C (HIV-1C viruses. One of the best ways to reduce the burden of this disease is the development of an affordable and effective prophylactic vaccine. Mosaic immunogens are computationally designed to overcome the hurdle of HIV diversity by maximizing the expression of potential T cell epitopes. Mycobacterium bovis BCG ΔpanCD auxotroph and modified vaccinia Ankara (MVA vaccines expressing HIV-1C mosaic Gag (GagM were tested in a prime-boost regimen to demonstrate immunogenicity in a mouse study. The BCG-GagM vaccine was stable and persisted 11.5 weeks post vaccination in BALB/c mice. Priming with BCG-GagM and boosting with MVA-GagM elicited higher Gag-specific IFN-γ ELISPOT responses than the BCG-GagM only and MVA-GagM only homologous vaccination regimens. The heterologous vaccination also generated a more balanced and persistent CD4+ and CD8+ T cell Gag-specific IFN-γ ELISPOT response with a predominant effector memory phenotype. A Th1 bias was induced by the vaccines as determined by the predominant secretion of IFN-γ, TNF-α, and IL-2. This study shows that a low dose of MVA (104 pfu can effectively boost a BCG prime expressing the same mosaic immunogen, generating strong, cellular immune responses against Gag in mice. Our data warrants further evaluation in non-human primates. A low dose vaccine would be an advantage in the resource limited countries of sub-Saharan Africa and India (where the predominating virus is HIV-1 subtype C.

  20. Co-administration of a meningococcal glycoconjugate ACWY vaccine with travel vaccines: a randomized, open-label, multi-center study.

    Science.gov (United States)

    Alberer, Martin; Burchard, Gerd; Jelinek, Tomas; Reisinger, Emil; Beran, Jiri; Meyer, Seetha; Forleo-Neto, Eduardo; Gniel, Dieter; Dagnew, Alemnew F; Arora, Ashwani Kumar

    2014-01-01

    Potential interactions between vaccines may compromise the immunogenicity and/or safety of individual vaccines so must be assessed before concomitant administration is recommended. In this study, the immunogenicity and safety of travel vaccines against Japanese encephalitis (JEV) and rabies (PCECV) administered together with or without a quadrivalent meningococcal glycoconjugate ACWY-CRM vaccine were evaluated (NCT01466387). Healthy adults aged 18 to ≤60 years were randomized to one of four vaccine regimens: JEV + PCECV + MenACWY-CRM, JEV + PCECV, PCECV or MenACWY-CRM. Immunogenicity at baseline and 28 days post-complete vaccination was assessed by serum bactericidal assay using human complement or neutralization tests. Adverse events (AEs) were collected throughout the study period. JEV + PCECV + MenACWY-CRM was non-inferior to JEV + PCECV. Post-vaccination seroprotective neutralizing titers or concentrations were achieved in 98-99% (JE) and 100% (rabies) of subjects across the vaccine groups. Antibody responses to vaccine meningococcal serogroups were in the same range for MenACWY-CRM and JEV + PCECV + MenACWY-CRM. Rates of reporting of AEs were similar for JEV + PCECV and JEV + PCECV + MenACWY-CRM. MenACWY-CRM was administered with an inactivated adjuvanted JE and a purified chick embryo cell-culture rabies vaccine without compromising immunogenicity or safety of the individual vaccines. These data provide evidence that MenACWY-CRM could be effectively incorporated into travel vaccination programs. NCT01466387. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. DNA/MVA Vaccines for HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Smita S. Iyer

    2014-02-01

    Full Text Available Since the initial proof-of-concept studies examining the ability of antigen-encoded plasmid DNA to serve as an immunogen, DNA vaccines have evolved as a clinically safe and effective platform for priming HIV-specific cellular and humoral responses in heterologous “prime-boost” vaccination regimens. Direct injection of plasmid DNA into the muscle induces T- and B-cell responses against foreign antigens. However, the insufficient magnitude of this response has led to the development of approaches for enhancing the immunogenicity of DNA vaccines. The last two decades have seen significant progress in the DNA-based vaccine platform with optimized plasmid constructs, improved delivery methods, such as electroporation, the use of molecular adjuvants and novel strategies combining DNA with viral vectors and subunit proteins. These innovations are paving the way for the clinical application of DNA-based HIV vaccines. Here, we review preclinical studies on the DNA-prime/modified vaccinia Ankara (MVA-boost vaccine modality for HIV. There is a great deal of interest in enhancing the immunogenicity of DNA by engineering DNA vaccines to co-express immune modulatory adjuvants. Some of these adjuvants have demonstrated encouraging results in preclinical and clinical studies, and these data will be examined, as well.

  2. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model.

    Science.gov (United States)

    Limbach, Keith; Stefaniak, Maureen; Chen, Ping; Patterson, Noelle B; Liao, Grant; Weng, Shaojie; Krepkiy, Svetlana; Ekberg, Greg; Torano, Holly; Ettyreddy, Damodar; Gowda, Kalpana; Sonawane, Sharvari; Belmonte, Arnel; Abot, Esteban; Sedegah, Martha; Hollingdale, Michael R; Moormann, Ann; Vulule, John; Villasante, Eileen; Richie, Thomas L; Brough, Douglas E; Bruder, Joseph T

    2017-07-03

    A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.

  3. Priming B cell-mediated anti-HIV envelope responses by vaccination allows for the long-term control of infection in macaques exposed to a R5-tropic SHIV

    International Nuclear Information System (INIS)

    Buckner, Clarisa; Gines, Leoned G.; Saunders, Cheryl J.; Vojtech, Lucia; Srivastava, Indresh; Gettie, Agegnehu; Bohm, Rudolph; Blanchard, James; Barnett, Susan W.; Safrit, Jeffrey T.; Stamatatos, Leonidas

    2004-01-01

    The potential of vaccine-elicited anti-HIV envelope antibodies to control HIV-infection was evaluated by immunizing macaques with the HIV envelope protein and transiently depleting them of their CD8+ cells before intravenous challenge with the pathogenic CCR5-tropic SIV/HIV chimeric virus, SHIV SF162P4 . Although sterilizing immunity was not achieved, all vaccinated animals effectively controlled infection and remained free of disease for the duration of observation (over 3 years). In contrast, during the same period, the control animals progressed to disease. Both the vaccinees and the controls developed robust cell-mediated antiviral and neutralizing antibody responses following infection. A comparative analysis of these responses suggests that the more effective long-term control of infection by the vaccinated animals is due to the more rapid development of anti-HIV envelope antibodies. These studies suggest that priming by vaccination of B cell anti-HIV envelope responses maybe crucial for the long-term control of HIV infection

  4. Altered regional homogeneity of brain spontaneous signals in SIV infected rhesus macaque model.

    Science.gov (United States)

    Zhao, Jing; Jing, Bin; Chen, Feng; Liu, Jiaojiao; Wang, Yuanyuan; Li, Hongjun

    2017-04-01

    Regional homogeneity (ReHo), a measurement from resting-state functional magnetic imaging (rs-fMRI) to reflect local synchronization of brain activities, has been widely explored in previous studies of neurological diseases. SIV infected model for detecting the neurological changes with progression was studied. In the study, six rhesus macaques infected by simian immunodeficiency virus (SIV) were scanned by resting-state fMRI at the following time points: before SIV inoculation (baseline), 12weeks and 24weeks post inoculation (12wpi, 24wpi). Meanwhile, the immunological parameters including serum percentage of CD4+ T cell, CD4/CD8 ratio and absolute CD4+ T cell number were measured and analyzed. In comparison of baseline, significant decreased ReHo was found in the left superior frontal gyrus, left superior temporal gyrus, left hippocampus, right precuneus, left angular gyrus, and bilateral occipital gyrus; in contrast increased ReHo in putamen at 12wpi. Moreover, at the time of 24wpi, decreased ReHo was observed in the right postcentral gyrus, left precentral gyrus, posterior cingulated gyrus and thalamus, while ReHo was increased in the left putamen, hippocampus, left anterior cingulated cortex and precentral cortex. The correlation analysis revealed that ReHo in the superior frontal gyrus showed negative association with CD4/CD8 ratio and positive with absolute CD4+ T cell number. The correlation analysis showed that percentage of CD4+ was correlated with the ReHo values in right middle frontal gyrus, bilateral thalamus and amygdala positively; negative relationship with left putamen, left superior frontal gyrus, left superior and middle temporal gyrus. The study first indicates that hippocampus, putamen, frontal and occipital lobe were impaired by using rs-fMRI and correlated with immunological parameters. Thus, ReHo value can be utilized as a noninvasive biomarker of spontaneous brain activity changes caused by the progression of neurological impairments

  5. Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry.

    Directory of Open Access Journals (Sweden)

    Rachid Sougrat

    2007-05-01

    Full Text Available The envelope glycoproteins of primate lentiviruses, including human and simian immunodeficiency viruses (HIV and SIV, are heterodimers of a transmembrane glycoprotein (usually gp41, and a surface glycoprotein (gp120, which binds CD4 on target cells to initiate viral entry. We have used electron tomography to determine the three-dimensional architectures of purified SIV virions in isolation and in contact with CD4+ target cells. The trimeric viral envelope glycoprotein surface spikes are heterogeneous in appearance and typically approximately 120 A long and approximately 120 A wide at the distal end. Docking of SIV or HIV-1 on the T cell surface occurs via a neck-shaped contact region that is approximately 400 A wide and consistently consists of a closely spaced cluster of five to seven rod-shaped features, each approximately 100 A long and approximately 100 A wide. This distinctive structure is not observed when viruses are incubated with T lymphocytes in the presence of anti-CD4 antibodies, the CCR5 antagonist TAK779, or the peptide entry inhibitor SIVmac251 C34. For virions bound to cells, few trimers were observed away from this cluster at the virion-cell interface, even in cases where virus preparations showing as many as 70 envelope glycoprotein trimers per virus particle were used. This contact zone, which we term the "entry claw", provides a spatial context to understand the molecular mechanisms of viral entry. Determination of the molecular composition and structure of the entry claw may facilitate the identification of improved drugs for the inhibition of HIV-1 entry.

  6. Heterologous prime-boost vaccination with DNA and MVA vaccines, expressing HIV-1 subtype C mosaic Gag virus-like particles, is highly immunogenic in mice.

    Directory of Open Access Journals (Sweden)

    Ros Chapman

    Full Text Available In an effort to make affordable vaccines suitable for the regions most affected by HIV-1, we have constructed stable vaccines that express an HIV-1 subtype C mosaic Gag immunogen (BCG-GagM, MVA-GagM and DNA-GagM. Mosaic immunogens have been designed to address the tremendous diversity of this virus. Here we have shown that GagM buds from cells infected and transfected with MVA-GagM and DNA-GagM respectively and forms virus-like particles. Previously we showed that a BCG-GagM prime MVA-GagM boost generated strong cellular immune responses in mice. In this study immune responses to the DNA-GagM and MVA-GagM vaccines were evaluated in homologous and heterologous prime-boost vaccinations. The DNA homologous prime boost vaccination elicited predominantly CD8+ T cells while the homologous MVA vaccination induced predominantly CD4+ T cells. A heterologous DNA-GagM prime MVA-GagM boost induced strong, more balanced Gag CD8+ and CD4+ T cell responses and that were predominantly of an effector memory phenotype. The immunogenicity of the mosaic Gag (GagM was compared to a naturally occurring subtype C Gag (GagN using a DNA homologous vaccination regimen. DNA-GagN expresses a natural Gag with a sequence that was closest to the consensus sequence of subtype C viruses sampled in South Africa. DNA-GagM homologous vaccination induced cumulative HIV-1 Gag-specific IFN-γ ELISPOT responses that were 6.5-fold higher than those induced by the DNA-GagN vaccination. Similarly, DNA-GagM vaccination generated 7-fold higher levels of cytokine-positive CD8+ T cells than DNA-GagN, indicating that this subtype C mosaic Gag elicits far more potent immune responses than a consensus-type Gag. Cells transfected and infected with DNA-GagM and MVA-GagM respectively, expressed high levels of GagM and produced budding virus-like particles. Our data indicates that a heterologous prime boost regimen using DNA and MVA vaccines expressing HIV-1 subtype C mosaic Gag is highly

  7. Comparison of 2 commercial single-dose Mycoplasma hyopneumoniae vaccines and porcine reproductive and respiratory syndrome virus (PRRSV) vaccines on pigs dually infected with M. hyopneumoniae and PRRSV.

    Science.gov (United States)

    Park, Changhoon; Kang, Ikjae; Seo, Hwi Won; Jeong, Jiwoon; Choi, Kyuhyung; Chae, Chanhee

    2016-04-01

    The objective of this study was to compare the efficacy of 2 different commercial Mycoplasma hyopneumoniae vaccines and porcine reproductive and respiratory syndrome virus (PRRSV) vaccines in regard to growth performance, microbiological and immunological analyses, and pathological observation from wean to finish (175 d of age). Pigs were administered M. hyopneumoniae and PRRSV vaccines at 7 and 21 d of age, respectively, or both at 21 d old and then challenged with both M. hyopneumoniae and PRRSV at 49 d old. Significant (P hyopneumoniae, M. hyopneumoniae-specific interferon-γ secreting cells, and macroscopic and microscopic lung lesions. Induction of interleukin-10 following PRRSV vaccination does not interfere with the immune responses induced by M. hyopneumoniae vaccine. The present study demonstrated that the single-dose vaccination regimen for M. hyopneumoniae and PRRSV vaccine is efficacious for controlling coinfection with M. hyopneumoniae and PRRSV based on clinical, microbiological, immunological, and pathological evaluation.

  8. Viral CTL escape mutants are generated in lymph nodes and subsequently become fixed in plasma and rectal mucosa during acute SIV infection of macaques.

    Directory of Open Access Journals (Sweden)

    Thomas H Vanderford

    2011-05-01

    Full Text Available SIV(mac239 infection of rhesus macaques (RMs results in AIDS despite the generation of a strong antiviral cytotoxic T lymphocyte (CTL response, possibly due to the emergence of viral escape mutants that prevent recognition of infected cells by CTLs. To determine the anatomic origin of these SIV mutants, we longitudinally assessed the presence of CTL escape variants in two MamuA*01-restricted immunodominant epitopes (Tat-SL8 and Gag-CM9 in the plasma, PBMCs, lymph nodes (LN, and rectal biopsies (RB of fifteen SIV(mac239-infected RMs. As expected, Gag-CM9 did not exhibit signs of escape before day 84 post infection. In contrast, Tat-SL8 escape mutants were apparent in all tissues by day 14 post infection. Interestingly LNs and plasma exhibited the highest level of escape at day 14 and day 28 post infection, respectively, with the rate of escape in the RB remaining lower throughout the acute infection. The possibility that CTL escape occurs in LNs before RBs is confirmed by the observation that the specific mutants found at high frequency in LNs at day 14 post infection became dominant at day 28 post infection in plasma, PBMC, and RB. Finally, the frequency of escape mutants in plasma at day 28 post infection correlated strongly with the level Tat-SL8-specific CD8 T cells in the LN and PBMC at day 14 post infection. These results indicate that LNs represent the primary source of CTL escape mutants during the acute phase of SIV(mac239 infection, suggesting that LNs are the main anatomic sites of virus replication and/or the tissues in which CTL pressure is most effective in selecting SIV escape variants.

  9. Intranasal administration of a proteosome-influenza vaccine is well-tolerated and induces serum and nasal secretion influenza antibodies in healthy human subjects.

    Science.gov (United States)

    Treanor, John; Nolan, Carrie; O'Brien, Diane; Burt, David; Lowell, George; Linden, Janine; Fries, Louis

    2006-01-16

    Two randomized, blinded, active comparator-controlled trials of a prototype monovalent A/Beijing/262/95 (H1N1) - proteosome vaccine delivered by intranasal spray were performed in healthy adults. Overall, the intranasal proteosome-adjuvanted vaccine was well-tolerated with only mild stuffy nose and rhinorrhea seen more frequently in recipients of vaccine than in recipients of intranasal saline, and there were no serious adverse events. The intranasal proteosome-adjuvanted vaccine induced serum hemagglutination inhibiting (HAI) and nasal secretory IgA (sIgA) responses specific for the influenza antigen. Serum HAI responses were most influenced by the dosage level, whereas mucosal sIgA responses, although demonstrable with both single-dose and two-dose vaccine regimens, appeared to be greater in response to two-dose regimens (regardless of dose level). Further evaluation of mucosal influenza immunization using the proteosome adjuvant/delivery system is clearly warranted.

  10. A multi-antigenic MVA vaccine increases efficacy of combination chemotherapy against Mycobacterium tuberculosis.

    Science.gov (United States)

    Leung-Theung-Long, Stéphane; Coupet, Charles-Antoine; Gouanvic, Marie; Schmitt, Doris; Ray, Aurélie; Hoffmann, Chantal; Schultz, Huguette; Tyagi, Sandeep; Soni, Heena; Converse, Paul J; Arias, Lilibeth; Kleinpeter, Patricia; Sansas, Benoît; Mdluli, Khisimuzi; Vilaplana, Cristina; Cardona, Pere-Joan; Nuermberger, Eric; Marchand, Jean-Baptiste; Silvestre, Nathalie; Inchauspé, Geneviève

    2018-01-01

    Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG) vaccine, infection by Mycobacterium tuberculosis (Mtb) remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance. Immunotherapy constitutes a promising approach to improving current antibiotic treatments through engagement of the host's immune system. We designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara (MVA) virus, denoted MVATG18598, which expresses ten antigens classically described as representative of each of different phases of Mtb infection. In vitro analysis coupled with multiple-passage evaluation demonstrated that this vaccine is genetically stable, i.e. fit for manufacturing. Using different mouse strains, we show that MVATG18598 vaccination results in both Th1-associated T-cell responses and cytolytic activity, targeting all 10 vaccine-expressed Mtb antigens. In chronic post-exposure mouse models, MVATG18598 vaccination in combination with an antibiotic regimen decreases the bacterial burden in the lungs of infected mice, compared with chemotherapy alone, and is associated with long-lasting antigen-specific Th1-type T cell and antibody responses. In one model, co-treatment with MVATG18598 prevented relapse of the disease after treatment completion, an important clinical goal. Overall, results demonstrate the capacity of the therapeutic MVATG18598 vaccine to improve efficacy of chemotherapy against TB. These data support further development of this novel immunotherapeutic in the treatment of Mtb infections.

  11. Mamu-A*01/Kb transgenic and MHC Class I knockout mice as a tool for HIV vaccine development

    International Nuclear Information System (INIS)

    Li Jinliang; Srivastava, Tumul; Rawal, Ravindra; Manuel, Edwin; Isbell, Donna; Tsark, Walter; La Rosa, Corinna; Wang Zhongde; Li Zhongqi; Barry, Peter A.; Hagen, Katharine D.; Longmate, Jeffrey; Diamond, Don J.

    2009-01-01

    We have developed a murine model expressing the rhesus macaque (RM) Mamu-A*01 MHC allele to characterize immune responses and vaccines based on antigens of importance to human disease processes. Towards that goal, transgenic (Tg) mice expressing chimeric RM (α1 and α2 Mamu-A*01 domains) and murine (α3, transmembrane, and cytoplasmic H-2K b domains) MHC Class I molecules were derived by transgenesis of the H-2K b D b double MHC Class I knockout strain. After immunization of Mamu-A*01/K b Tg mice with rVV-SIVGag-Pol, the mice generated CD8 + T-cell IFN-γ responses to several known Mamu-A*01 restricted epitopes from the SIV Gag and Pol antigen sequence. Fusion peptides of highly recognized CTL epitopes from SIV Pol and Gag and a strong T-help epitope were shown to be immunogenic and capable of limiting an rVV-SIVGag-Pol challenge. Mamu-A*01/K b Tg mice provide a model system to study the Mamu-A*01 restricted T-cell response for various infectious diseases which are applicable to a study in RM.

  12. Immunogenicity of HPV prophylactic vaccines: Serology assays and their use in HPV vaccine evaluation and development.

    Science.gov (United States)

    Pinto, Ligia A; Dillner, Joakim; Beddows, Simon; Unger, Elizabeth R

    2018-01-17

    When administered as standard three-dose schedules, the licensed HPV prophylactic vaccines have demonstrated extraordinary immunogenicity and efficacy. We summarize the immunogenicity of these licensed vaccines and the most commonly used serology assays, with a focus on key considerations for one-dose vaccine schedules. Although immune correlates of protection against infection are not entirely clear, both preclinical and clinical evidence point to neutralizing antibodies as the principal mechanism of protection. Thus, immunogenicity assessments in vaccine trials have focused on measurements of antibody responses to the vaccine. Non-inferiority of antibody responses after two doses of HPV vaccines separated by 6 months has been demonstrated and this evidence supported the recent WHO recommendations for two-dose vaccination schedules in both boys and girls 9-14 years of age. There is also some evidence suggesting that one dose of HPV vaccines may provide protection similar to the currently recommended two-dose regimens but robust data on efficacy and immunogenicity of one-dose vaccine schedules are lacking. In addition, immunogenicity has been assessed and reported using different methods, precluding direct comparison of results between different studies and vaccines. New head-to-head vaccine trials evaluating one-dose immunogenicity and efficacy have been initiated and an increase in the number of trials relying on immunobridging is anticipated. Therefore, standardized measurement and reporting of immunogenicity for the up to nine HPV types targeted by the current vaccines is now critical. Building on previous HPV serology assay standardization and harmonization efforts initiated by the WHO HPV LabNet in 2006, new secondary standards, critical reference reagents and testing guidelines will be generated as part of a new partnership to facilitate harmonization of the immunogenicity testing in new HPV vaccine trials. Copyright © 2018 Elsevier Ltd. All rights

  13. Attenuation of Pathogenic Immune Responses during Infection with Human and Simian Immunodeficiency Virus (HIV/SIV) by the Tetracycline Derivative Minocycline

    Science.gov (United States)

    Drewes, Julia L.; Szeto, Gregory L.; Engle, Elizabeth L.; Liao, Zhaohao; Shearer, Gene M.; Zink, M. Christine; Graham, David R.

    2014-01-01

    HIV immune pathogenesis is postulated to involve two major mechanisms: 1) chronic innate immune responses that drive T cell activation and apoptosis and 2) induction of immune regulators that suppress T cell function and proliferation. Both arms are elevated chronically in lymphoid tissues of non-natural hosts, which ultimately develop AIDS. However, these mechanisms are not elevated chronically in natural hosts of SIV infection that avert immune pathogenesis despite similarly high viral loads. In this study we investigated whether minocycline could modulate these pathogenic antiviral responses in non-natural hosts of HIV and SIV. We found that minocycline attenuated in vitro induction of type I interferon (IFN) and the IFN-stimulated genes indoleamine 2,3-dioxygenase (IDO1) and TNF-related apoptosis inducing ligand (TRAIL) in human plasmacytoid dendritic cells and PBMCs exposed to aldrithiol-2 inactivated HIV or infectious influenza virus. Activation-induced TRAIL and expression of cytotoxic T-lymphocyte antigen 4 (CTLA-4) in isolated CD4+ T cells were also reduced by minocycline. Translation of these in vitro findings to in vivo effects, however, were mixed as minocycline significantly reduced markers of activation and activation-induced cell death (CD25, Fas, caspase-3) but did not affect expression of IFNβ or the IFN-stimulated genes IDO1, FasL, or Mx in the spleens of chronically SIV-infected pigtailed macaques. TRAIL expression, reflecting the mixed effects of minocycline on activation and type I IFN stimuli, was reduced by half, but this change was not significant. These results show that minocycline administered after infection may protect against aspects of activation-induced cell death during HIV/SIV immune disease, but that in vitro effects of minocycline on type I IFN responses are not recapitulated in a rapid progressor model in vivo. PMID:24732038

  14. The Source Inversion Validation (SIV) Initiative: A Collaborative Study on Uncertainty Quantification in Earthquake Source Inversions

    Science.gov (United States)

    Mai, P. M.; Schorlemmer, D.; Page, M.

    2012-04-01

    Earthquake source inversions image the spatio-temporal rupture evolution on one or more fault planes using seismic and/or geodetic data. Such studies are critically important for earthquake seismology in general, and for advancing seismic hazard analysis in particular, as they reveal earthquake source complexity and help (i) to investigate earthquake mechanics; (ii) to develop spontaneous dynamic rupture models; (iii) to build models for generating rupture realizations for ground-motion simulations. In applications (i - iii), the underlying finite-fault source models are regarded as "data" (input information), but their uncertainties are essentially unknown. After all, source models are obtained from solving an inherently ill-posed inverse problem to which many a priori assumptions and uncertain observations are applied. The Source Inversion Validation (SIV) project is a collaborative effort to better understand the variability between rupture models for a single earthquake (as manifested in the finite-source rupture model database) and to develop robust uncertainty quantification for earthquake source inversions. The SIV project highlights the need to develop a long-standing and rigorous testing platform to examine the current state-of-the-art in earthquake source inversion, and to develop and test novel source inversion approaches. We will review the current status of the SIV project, and report the findings and conclusions of the recent workshops. We will briefly discuss several source-inversion methods, how they treat uncertainties in data, and assess the posterior model uncertainty. Case studies include initial forward-modeling tests on Green's function calculations, and inversion results for synthetic data from spontaneous dynamic crack-like strike-slip earthquake on steeply dipping fault, embedded in a layered crustal velocity-density structure.

  15. Dose-Related Differences in Effectiveness of Human Papillomavirus Vaccination Against Genital Warts

    DEFF Research Database (Denmark)

    Blomberg, Maria; Dehlendorff, Christian; Sand, Carsten

    2015-01-01

    BACKGROUND: Reducing the number of doses in the human papillomavirus (HPV) vaccination regimen from 3 to 2 could increase coverage rates. In this cohort study, we assessed the risk of genital warts (GWs) according to timing and number of doses of quadrivalent HPV vaccine. METHODS: From population......-based registries, we identified all girls in Denmark born during 1985-1999, for whom information on HPV vaccinations was retrieved. The cohort was followed for GW occurrence during 2006-2012. Incidence rate ratios (IRRs) were calculated by Poisson regression to determine differences in GW rates by number...... of vaccine doses. RESULTS: Of the 550,690 girls in the cohort, 361 734 had been vaccinated. Of these, 25.9% had been vaccinated twice and 58.8% 3 times. The risk of GWs decreased significantly with each additional dose of vaccine. For girls who received 2 doses, extension of the interval between doses...

  16. Pros, cons, and ethics of HPV vaccine in teens-Why such controversy?

    Science.gov (United States)

    White, Mark Donald

    2014-12-01

    Human papillomavirus (HPV) infection remains one of the most commonly sexually transmitted infections in both females and males. HPV viruses are associated with several manifestations including genital warts, but more importantly for urology practitioners, cervical and penile carcinomas and recurrent genital condylomata in both sexes. The incidence of HPV-related carcinomas has increased in cervical, oropharyngeal, vulvar, penile, and anal cancers. Effective vaccines have been available for almost a decade, but widespread adoption of vaccine administration has been problematic for multiple reasons. Many countries (over 100) have adopted vaccine programs for females and an increasing number of countries are extending the indications to include males between the ages of 9-26. There still seems to be controversy surrounding these universal vaccination programs as well as some ethical and practical concerns regarding the administration of a vaccine for diseases that are associated with sexual contact in both sexes, especially during the early adolescent years. The objective was to provide a review of the available literature so pediatric and adult urologists may be more aware of the issues related to HPV vaccination in order to more effectively counsel patients and parents regarding the risks, benefits, and public health issues regarding HPV vaccination. This topic is especially relevant to pediatric urologists who see patients in the target age group for the HPV vaccine. There has been an explosion of literature regarding HPV vaccination programs and the relative difficulty in adopting the vaccine series with a completion rate of under 50% of patients in the recommended age ranges for vaccination. Articles were obtained from an extensive Medline literature search (1998-present) to evaluate the current HPV vaccination regimens for teenagers with special emphasis on the urologically focused disease burden. The adoption of universal HPV vaccination has been difficult

  17. Combining biomedical preventions for HIV: Vaccines with pre-exposure prophylaxis, microbicides or other HIV preventions.

    Science.gov (United States)

    McNicholl, Janet M

    2016-12-01

    Biomedical preventions for HIV, such as vaccines, microbicides or pre-exposure prophylaxis (PrEP) with antiretroviral drugs, can each only partially prevent HIV-1 infection in most human trials. Oral PrEP is now FDA approved for HIV-prevention in high risk groups, but partial adherence reduces efficacy. If combined as biomedical preventions (CBP) an HIV vaccine could provide protection when PrEP adherence is low and PrEP could prevent vaccine breakthroughs. Other types of PrEP or microbicides may also be partially protective. When licensed, first generation HIV vaccines are likely to be partially effective. Individuals at risk for HIV may receive an HIV vaccine combined with other biomedical preventions, in series or in parallel, in clinical trials or as part of standard of care, with the goal of maximally increasing HIV prevention. In human studies, it is challenging to determine which preventions are best combined, how they interact and how effective they are. Animal models can determine CBP efficacy, whether additive or synergistic, the efficacy of different products and combinations, dose, timing and mechanisms. CBP studies in macaques have shown that partially or minimally effective candidate HIV vaccines combined with partially effective oral PrEP, vaginal PrEP or microbicide generally provided greater protection than either prevention alone against SIV or SHIV challenges. Since human CBP trials will be complex, animal models can guide their design, sample size, endpoints, correlates and surrogates of protection. This review focuses on animal studies and human models of CBP and discusses implications for HIV prevention.

  18. Randomized trial to compare the safety and immunogenicity of CSL Limited's 2009 trivalent inactivated influenza vaccine to an established vaccine in United States children.

    Science.gov (United States)

    Brady, Rebecca C; Hu, Wilson; Houchin, Vonda G; Eder, Frank S; Jackson, Kenneth C; Hartel, Gunter F; Sawlwin, Daphne C; Albano, Frank R; Greenberg, Michael

    2014-12-12

    A trivalent inactivated influenza vaccine (CSL's TIV, CSL Limited) was licensed under USA accelerated approval regulations for use in persons≥18 years. We performed a randomized, observer-blind study to assess the safety and immunogenicity of CSL's TIV versus an established US-licensed vaccine in a population≥6 months to vaccination history determined the dosing regimen (one or two vaccinations). Subjects received CSL's TIV (n=739) or the established vaccine (n=735) in the autumn of 2009. Serum hemagglutination-inhibition titers were determined pre-vaccination and 30 days after the last vaccination. No febrile seizures or other vaccine-related SAEs were reported. After the first vaccination for Cohorts A and B, respectively, the relative risks of fever were 2.73 and 2.32 times higher for CSL's TIV compared to the established vaccine. Irritability and loss of appetite (for Cohort A) and malaise (for Cohort B) were also significantly higher for CSL's TIV compared to the established vaccine. Post-vaccination geometric mean titers (GMTs) for CSL's TIV versus the established vaccine were 385.49 vs. 382.45 for H1N1; 669.13 vs. 705.61 for H3N2; and 100.65 vs. 93.72 for B. CSL's TIV demonstrated immunological non-inferiority to the established vaccine in all cohorts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A Randomized Controlled Trial to Evaluate a Potential Hepatitis B Booster Vaccination Strategy Using Combined Hepatitis A and B Vaccine.

    Science.gov (United States)

    Li, Fangjun; Hu, Yuansheng; Zhou, Youming; Chen, Lixin; Xia, Wei; Song, Yufei; Tan, Zhengliang; Gao, Lidong; Yang, Zhong; Zeng, Gang; Han, Xing; Li, Junhua; Li, Jing

    2017-05-01

    Booster doses could play a major role in no responders or low responders to primary hepatitis B (HB) vaccine. Planed time point for hepatitis A vaccination in China provides a good opportunity to carry out HB booster dose by using combined hepatitis A and B vaccine. A randomized, double-blinded clinical trial was conducted to compare the immunogenicity and safety of toddlers 18-24 months of age receiving 3 different vaccination regimens: 2 doses of inactivated hepatitis A vaccine (group 1), 1 dose of inactivated hepatitis A vaccine plus 1 dose of combined hepatitis A and B vaccine (group 2) or 2 doses of combined hepatitis A and B vaccine (group 3). All 3 groups showed 100% seroprotection for antihepatitis A virus antibody after vaccination. Seroprotection rate for anti-HB antibody before vaccination ranged from 79.5% to 92.9% in the 3 groups. After second inoculation, anti-HBs seroprotection increased from 92.9% to 100% in group 2 with postvaccination geometric mean concentration (GMC) of 2258.3 mIU/mL and from 79.5% to 98.9% in group 3 with postvaccination GMC of 2055.3 mIU/mL. The adverse events were not statistically different among groups (P = 0.345). Combined hepatitis A and B vaccine could stimulate high level of both antihepatitis A virus and anti-HBs antibodies and not increase adverse events, providing a new choice for HB booster.

  20. Immune targeting of PD-1hi expressing cells during and after antiretroviral therapy in SIV-infected rhesus macaques

    International Nuclear Information System (INIS)

    Vargas-Inchaustegui, Diego A.; Xiao, Peng; Hogg, Alison E.; Demberg, Thorsten; McKinnon, Katherine; Venzon, David; Brocca-Cofano, Egidio; DiPasquale, Janet; Lee, Eun M.; Hudacik, Lauren; Pal, Ranajit; Sui, Yongjun; Berzofsky, Jay A.; Liu, Linda; Langermann, Solomon; Robert-Guroff, Marjorie

    2013-01-01

    High-level T cell expression of PD-1 during SIV infection is correlated with impaired proliferation and function. We evaluated the phenotype and distribution of T cells and Tregs during antiretroviral therapy plus PD-1 modulation (using a B7-DC-Ig fusion protein) and post-ART. Chronically SIV-infected rhesus macaques received: 11 weeks of ART (Group A); 11 weeks of ART plus B7-DC-Ig (Group B); 11 weeks of ART plus B7-DC-Ig, then 12 weeks of B7-DC-Ig alone (Group C). Continuous B7-DC-Ig treatment (Group C) decreased rebound viremia post-ART compared to pre-ART levels, associated with decreased PD-1 hi expressing T cells and Tregs in PBMCs, and PD-1 hi Tregs in lymph nodes. It transiently decreased expression of Ki67 and α 4 β 7 in PBMC CD4 + and CD8 + Tregs for up to 8 weeks post-ART and maintained Ag-specific T-cell responses at low levels. Continued immune modulation targeting PD-1 hi cells during and post-ART helps maintain lower viremia, keeps a favorable T cell/Treg repertoire and modulates antigen-specific responses. - Highlights: • B7-DC-Ig modulates PD-1 hi cells in SIV-infected rhesus macaques during and post-ART. • Continued PD-1 modulation post-ART maintains PD-1 hi cells at low levels. • Continued PD-1 modulation post-ART maintains a favorable T cell and Treg repertoire

  1. Immunogenicity of heterologous recombinant adenovirus prime-boost vaccine regimens is enhanced by circumventing vector cross-reactivity

    NARCIS (Netherlands)

    Thorner, Anna R.; Lemckert, Angelique A. C.; Goudsmit, Jaap; Lynch, Diana M.; Ewald, Bonnie A.; Denholtz, Matthew; Havenga, Menzo J. E.; Barouch, Dan H.

    2006-01-01

    The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations has led to the development of recombinant adenovirus (rAd) vectors derived from rare Ad serotypes as vaccine candidates for human immunodeficiency virus type 1 and other pathogens. Vaccine vectors have

  2. The Secretion of IL-22 from Mucosal NKp44+ NK Cells Is Associated with Microbial Translocation and Virus Infection in SIV/SHIV-Infected Chinese Macaques

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Microbial translocation (MT causes systemic immune activation in chronic human immunodeficiency virus (HIV infection. The role of a novel subtype of innate lymphoid cells, the NKp44+ NK cells, in HIV/simian immunodeficiency virus- (SIV- induced MT remains unknown. In this study, 12 simian-human immunodeficiency virus- (SHIV- infected macaques were chosen and split into two groups based on the MT level. Blood and Peripheral lymphoid tissue were sampled for flow cytometric analysis, viral load detection, and interleukin testing. Then, six naive Chinese macaques were used to determine the dynamics of cytokine secretion from mucosal NKp44+ NK cells in different phases of SIV infection. As a result, the degranulation capacity and IL-22 production of mucosal NKp44+ NK cells were associated with the MT level in the SHIV-infected macaques. And the number of mucosal NKp44+ NK cells and IL-22 secretion by these cells were lower in the chronic phase than in the early acute phase of SIV infection. The number of mucosal NKp44+ NK cells and interleukin-22 (IL-22 secretion by these cells increased before MT occurred. Therefore, we conclude that a decline in IL-22 production from mucosal NKp44+ NK cells induced by virus infection may be one of the causes of microbial translocation in HIV/SIV infection.

  3. Immunogenicity and safety of purified vero cell rabies vaccine (PVRV) produced by Liaoning Cheng Da Co. under Zagreb 2-1-1 or 5-dose Essen regimen in Chinese adults aged 50 and above.

    Science.gov (United States)

    Wang, Jing; Luo, FengJi; Feng, ZiJian; Li, Li; Bai, YunHua; Ai, Xing; Ma, JianXin; Zhang, Zheng; Shi, NianMin

    2017-01-02

    Two kinds of regimens (2-1-1 and 1-1-1-1-1) can be selected after Zagreb regimen(2-1-1)of PVRV was officially approved in Beijing in January 2015. Up to now, the subjects for most studies about the comparison between Zagreb and Essen regimen are under 50 y old, rarely at and above. Aging of the immune system may result in decreasing efficacy of vaccination, especially for adults aged above 65-70 y. This study compared the safety and immunogenicity of the Zagreb and Essen regimen in Chinese adults aged 50 and above with the goal to provide a supplemental data for this age group. A total of 114 cases were divided into 2 groups randomly, received PVRV under the Zagreb and Essen regimens respectively. Serum samples were collected at D0, D7, D14, D42, D180 and D365 to determine the rabies serum neutralizing antibody by rapid fluorescent focus inhibition test (RFFIT). Safety analyses were made by comparing the AEs in day-3, day-7, and day-(7 + 21) in Zagreb or day-(7 + 28) in Essen by gender and age cohorts. 617 blood samples were obtained. Two groups showed similar immunogenicity, the neutralizing antibody titer of all subjects at D14 and D42 showed >0.5 IU/ml. Under the same regimen, Subjects ≥65 y had lower GMC than those who Zagreb group, and on D180 in Essen group (t = 2.38, p = 0.02; t = 3.78, p Zagreb group and on D180 in Essen group (χ 2 = 20.66, p Zagreb group (χ 2 = 9.69, p = 0.002). The most common local AE was pain, the incidences (8.8%) in Zagreb group was higher than Essen group (8.4%, χ 2 = 5.12, p = 0.02). All AEs for Zagreb group and 52.3% of AEs for Essen group occurred during the first 72 hours. During the first 72 hours, subjects aged Zagreb group (16.26%) had higher incidences of AEs than Essen group (8.57%, χ 2 = 4.54, p = 0.03), males in Zagreb group (16.05%) had higher incidence of AEs than Essen group (5.71%, χ 2 = 5.34, p = 0.02). The incidences of AEs close in during the first 7 d. The Zagreb and Essen regimens demonstrated the

  4. Heterologous Two-Dose Vaccination with Simian Adenovirus and Poxvirus Vectors Elicits Long-Lasting Cellular Immunity to Influenza Virus A in Healthy Adults

    Directory of Open Access Journals (Sweden)

    L. Coughlan

    2018-03-01

    Full Text Available Background: T-cell responses against highly conserved influenza antigens have been previously associated with protection. However, these immune responses are poorly maintained following recovery from influenza infection and are not boosted by inactivated influenza vaccines. We have previously demonstrated the safety and immunogenicity of two viral vectored vaccines, modified vaccinia virus Ankara (MVA and the chimpanzee adenovirus ChAdOx1 expressing conserved influenza virus antigens, nucleoprotein (NP and matrix protein-1 (M1. We now report on the safety and long-term immunogenicity of multiple combination regimes of these vaccines in young and older adults. Methods: We conducted a Phase I open-label, randomized, multi-center study in 49 subjects aged 18–46 years and 24 subjects aged 50 years or over. Following vaccination, adverse events were recorded and the kinetics of the T cell response determined at multiple time points for up to 18 months. Findings: Both vaccines were well tolerated. A two dose heterologous vaccination regimen significantly increased the magnitude of pre-existing T-cell responses to NP and M1 after both doses in young and older adults. The fold-increase and peak immune responses after a single MVA-NP + M1 vaccination was significantly higher compared to ChAdOx1 NP + M1. In a mixed regression model, T-cell responses over 18 months were significantly higher following the two dose vaccination regimen of MVA/ChAdOx1 NP + M1. Interpretation: A two dose heterologous vaccination regimen of MVA/ChAdOx1 NP + M1 was safe and immunogenic in young and older adults, offering a promising vaccination strategy for inducing long-term broadly cross-reactive protection against influenza A. Funding Source: Medical Research Council UK, NIHR BMRC Oxford. Keywords: Influenza, T-cell responses, Influenza vaccines, Viral vectors, Adults, Older adults

  5. A multi-antigenic MVA vaccine increases efficacy of combination chemotherapy against Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stéphane Leung-Theung-Long

    Full Text Available Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG vaccine, infection by Mycobacterium tuberculosis (Mtb remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance. Immunotherapy constitutes a promising approach to improving current antibiotic treatments through engagement of the host's immune system. We designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara (MVA virus, denoted MVATG18598, which expresses ten antigens classically described as representative of each of different phases of Mtb infection. In vitro analysis coupled with multiple-passage evaluation demonstrated that this vaccine is genetically stable, i.e. fit for manufacturing. Using different mouse strains, we show that MVATG18598 vaccination results in both Th1-associated T-cell responses and cytolytic activity, targeting all 10 vaccine-expressed Mtb antigens. In chronic post-exposure mouse models, MVATG18598 vaccination in combination with an antibiotic regimen decreases the bacterial burden in the lungs of infected mice, compared with chemotherapy alone, and is associated with long-lasting antigen-specific Th1-type T cell and antibody responses. In one model, co-treatment with MVATG18598 prevented relapse of the disease after treatment completion, an important clinical goal. Overall, results demonstrate the capacity of the therapeutic MVATG18598 vaccine to improve efficacy of chemotherapy against TB. These data support further development of this novel immunotherapeutic in the treatment of Mtb infections.

  6. Classifying insulin regimens

    DEFF Research Database (Denmark)

    Neu, A; Lange, K; Barrett, T

    2015-01-01

    Modern insulin regimens for the treatment of type 1 diabetes are highly individualized. The concept of an individually tailored medicine accounts for a broad variety of different insulin regimens applied. Despite clear recommendations for insulin management in children and adolescents with type 1...

  7. Kunstimuuseumi Kumu püsiväljapanek = Permanent exhibition at the Kumu Art Museum of Estonia

    Index Scriptorium Estoniae

    2007-01-01

    siväljapanekute "Eesti kunsti klassika 18. sajandi algusest kuni 1944. aastani" (kujundus Liina Siib) ja "Eesti kunst 1945-1991" (kujundus Terje Kallast ja Urmas Luure) näitusekujundusest, kujundajatest, nende tähtsamad tööd näituse kujundajatena. 8 värv. vaadet, fotod L. Siibist ja T. Kallastist

  8. Minocycline Inhibition of Monocyte Activation Correlates with Neuronal Protection in SIV NeuroAIDS

    Science.gov (United States)

    Campbell, Jennifer H.; Burdo, Tricia H.; Autissier, Patrick; Bombardier, Jeffrey P.; Westmoreland, Susan V.; Soulas, Caroline; González, R. Gilberto; Ratai, Eva-Maria; Williams, Kenneth C.

    2011-01-01

    Background Minocycline is a tetracycline antibiotic that has been proposed as a potential conjunctive therapy for HIV-1 associated cognitive disorders. Precise mechanism(s) of minocycline's functions are not well defined. Methods Fourteen rhesus macaques were SIV infected and neuronal metabolites measured by proton magnetic resonance spectroscopy (1H MRS). Seven received minocycline (4 mg/kg) daily starting at day 28 post-infection (pi). Monocyte expansion and activation were assessed by flow cytometry, cell traffic to lymph nodes, CD16 regulation, viral replication, and cytokine production were studied. Results Minocycline treatment decreased plasma virus and pro-inflammatory CD14+CD16+ and CD14loCD16+ monocytes, and reduced their expression of CD11b, CD163, CD64, CCR2 and HLA-DR. There was reduced recruitment of monocyte/macrophages and productively infected cells in axillary lymph nodes. There was an inverse correlation between brain NAA/Cr (neuronal injury) and circulating CD14+CD16+ and CD14loCD16+ monocytes. Minocycline treatment in vitro reduced SIV replication CD16 expression on activated CD14+CD16+ monocytes, and IL-6 production by monocytes following LPS stimulation. Conclusion Neuroprotective effects of minocycline are due in part to reduction of activated monocytes, monocyte traffic. Mechanisms for these effects include CD16 regulation, reduced viral replication, and inhibited immune activation. PMID:21494695

  9. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Akira Yano

    2015-01-01

    Full Text Available The reduction of brain amyloid beta (Aβ peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer’s disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ40, and Aβ42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies.

  10. Immunogenicity of DNA vaccines encoding simian immunodeficiency virus antigen targeted to dendritic cells in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Matthias Tenbusch

    Full Text Available BACKGROUND: Targeting antigens encoded by DNA vaccines to dendritic cells (DCs in the presence of adjuvants enhances their immunogenicity and efficacy in mice. METHODOLOGY/PRINCIPAL FINDINGS: To explore the immunogenicity of this approach in non-human primates, we generated a single chain antibody to the antigen uptake receptor DEC-205 expressed on rhesus macaque DCs. DNA vaccines encoding this single chain antibody fused to the SIV capsid protein were delivered to six monkeys each by either intramuscular electroporation or conventional intramuscular injection co-injected or not with poly ICLC, a stabilized poly I: C analogue, as adjuvant. Antibodies to capsid were induced by the DC-targeting and non-targeting control DNA delivered by electroporation while conventional DNA immunization at a 10-fold higher dose of DNA failed to induce detectable humoral immune responses. Substantial cellular immune responses were also observed after DNA electroporation of both DNAs, but stronger responses were induced by the non-targeting vaccine. Conventional immunization with the DC-targeting DNA at a 10-fold higher dose did not give rise to substantial cellular immune responses, neither when co-injected with poly ICLC. CONCLUSIONS/SIGNIFICANCE: The study confirms the potent immunogenicity of DNA vaccines delivered by electroporation. Targeting the DNA via a single chain antibody to DEC-205 expressed by DCs, however, does not improve the immunogenicity of the antigens in non-human primates.

  11. Immunogenicity and safety of a quadrivalent meningococcal polysaccharide CRM conjugate vaccine in infants and toddlers.

    Science.gov (United States)

    Tregnaghi, Miguel; Lopez, Pio; Stamboulian, Daniel; Graña, Gabriela; Odrljin, Tatjana; Bedell, Lisa; Dull, Peter M

    2014-09-01

    This phase III study assessed the safety and immunogenicity of MenACWY-CRM, a quadrivalent meningococcal conjugate vaccine, administered with routine vaccines starting at 2 months of age. Healthy infants received MenACWY-CRM in a two- or three-dose primary infant series plus a single toddler dose. In addition, a two-dose toddler catch-up series was evaluated. Immune responses to MenACWY-CRM were assessed for serum bactericidal activity with human complement (hSBA). Reactogenicity and safety results were collected systematically. After a full infant/toddler series or two-dose toddler catch-up series, MenACWY-CRM elicited immune responses against the four serogroups in 94-100% of subjects. Noninferiority of the two- versus three-dose MenACWY-CRM infant dosing regimen was established for geometric mean titers for all serogroups. Following the three-dose infant primary series, 89-98% of subjects achieved an hSBA ≥ 8 across all serogroups. Immune responses to concomitant routine vaccines given with MenACWY-CRM were noninferior to responses to routine vaccines alone, except for pertactin after the two-dose infant series. Noninferiority criteria were met for all concomitant antigens after the three-dose infant series. MenACWY-CRM vaccination regimens in infants and toddlers were immunogenic and well tolerated. No clinically meaningful effects of concomitant administration with routine infant and toddler vaccines were observed. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. A booster vaccine expressing a latency-associated antigen augments BCG induced immunity and confers enhanced protection against tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bappaditya Dey

    Full Text Available BACKGROUND: In spite of a consistent protection against tuberculosis (TB in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB. METHODS/PRINCIPAL FINDINGS: In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin--a key latency antigen of M. tuberculosis to boost the BCG induced immunity. 'BCG prime-DNA boost' regimen (B/D confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log(10 and 1.96 log(10 fewer bacilli in lungs and spleen, respectively; p<0.01. In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3(+ simultaneously producing interferon (IFNγ, tumor necrosis factor (TNFα and interleukin (IL2. CONCLUSIONS/SIGNIFICANCE: These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3(+ Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection.

  13. Trial watch: Naked and vectored DNA-based anticancer vaccines.

    Science.gov (United States)

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-05-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.

  14. A New Adjuvant Combined with Inactivated Influenza Enhances Specific CD8 T Cell Response in Mice and Decreases Symptoms in Swine Upon Challenge.

    Science.gov (United States)

    Bouguyon, Edwige; Goncalves, Elodie; Shevtsov, Alexander; Maisonnasse, Pauline; Remyga, Stepan; Goryushev, Oleg; Deville, Sebastien; Bertho, Nicolas; Ben Arous, Juliette

    2015-11-01

    Vaccination is the most effective way to control swine influenza virus (SIV) in the field. Classical vaccines are based on inactivated antigens formulated with an oil emulsion or a polymeric adjuvant. Standard adjuvants enhance the humoral response and orient the immune response toward a Th2 response. An important issue is that current vaccines do not protect against new strains. One approach to improve cross-protection is to enhance Th1 and cytotoxic responses. The development of adjuvants orienting the immune response of inactivated vaccines toward Th1/Cytotoxic responses would be highly beneficial. This study shows that the water in oil in water emulsion adjuvant Montanide™ ISA 201 VG allows the induction of anti-influenza CD8 T cell in mice and induces homologous protection against an H1N1 challenge in swine. Such adjuvants that induce both humoral and cell-mediated immunity could improve the protection conferred by SIV vaccines in the field.

  15. Immunogenicity and safety of a CRM-conjugated meningococcal ACWY vaccine administered concomitantly with routine vaccines starting at 2 months of age.

    Science.gov (United States)

    Nolan, Terry M; Nissen, Michael D; Naz, Aftab; Shepard, Julie; Bedell, Lisa; Hohenboken, Matthew; Odrljin, Tatjana; Dull, Peter M

    2014-01-01

    Infants are at the highest risk for meningococcal disease and a broadly protective and safe vaccine is an unmet need in this youngest population. We evaluated the immunogenicity and safety of a 4-dose infant/toddler regimen of MenACWY-CRM given at 2, 4, 6, and 12 months of age concomitantly with pentavalent diphtheria-tetanus-acellular pertussis-Hemophilus influenzae type b-inactivated poliovirus-combination vaccine (DTaP-IPV/Hib), hepatitis B vaccine (HBV), 7- or 13-valent conjugate pneumococcal vaccine (PCV), and measles, mumps, and rubella vaccine (MMR). Four doses of MenACWY-CRM induced hSBA titers ≥8 in 89%, 95%, 97%, and 96% of participants against serogroups A, C, W-135, and Y, respectively. hSBA titers ≥8 were present in 76-98% of participants after the first 3 doses. A categorical linear analysis incorporating vaccine group and study center showed responses to routine vaccines administered with MenACWY-CRM were non-inferior to routine vaccines alone, except for seroresponse to the pertussis antigen fimbriae. The reactogenicity profile was not affected when MenACWY-CRM was administered concomitantly with routine vaccines. MenACWY-CRM administered with routine concomitant vaccinations in young infants was well tolerated and induced highly immunogenic responses against each of the serogroups without significant interference with the immune responses to routine infant vaccinations. Healthy 2 month old infants were randomized to receive MenACWY-CRM with routine vaccines (n = 258) or routine vaccines alone (n = 271). Immunogenicity was assessed by serum bactericidal assay using human complement (hSBA). Medically attended adverse events (AEs), serious AEs (SAEs) and AEs leading to study withdrawal were collected throughout the study period.

  16. Biocompatible anionic polymeric microspheres as priming delivery system for effetive HIV/AIDS Tat-based vaccines.

    Directory of Open Access Journals (Sweden)

    Fausto Titti

    Full Text Available Here we describe a prime-boost regimen of vaccination in Macaca fascicularis that combines priming with novel anionic microspheres designed to deliver the biologically active HIV-1 Tat protein and boosting with Tat in Alum. This regimen of immunization modulated the IgG subclass profile and elicited a balanced Th1-Th2 type of humoral and cellular responses. Remarkably, following intravenous challenge with SHIV89.6Pcy243, vaccinees significantly blunted acute viremia, as compared to control monkeys, and this control was associated with significantly lower CD4+ T cell depletion rate during the acute phase of infection and higher ability to resume the CD4+ T cell counts in the post-acute and chronic phases of infection. The long lasting control of viremia was associated with the persistence of high titers anti-Tat antibodies whose profile clearly distinguished vaccinees in controllers and viremics. Controllers, as opposed to vaccinated and viremic cynos, exhibited significantly higher pre-challenge antibody responses to peptides spanning the glutamine-rich and the RGD-integrin-binding regions of Tat. Finally, among vaccinees, titers of anti-Tat IgG1, IgG3 and IgG4 subclasses had a significant association with control of viremia in the acute and post-acute phases of infection. Altogether these findings indicate that the Tat/H1D/Alum regimen of immunization holds promise for next generation vaccines with Tat protein or other proteins for which maintenance of the native conformation and activity are critical for optimal immunogenicity. Our results also provide novel information on the role of anti-Tat responses in the prevention of HIV pathogenesis and for the design of new vaccine candidates.

  17. Identification of SIV Nef CD8(+) T cell epitopes restricted by a MHC class I haplotype associated with lower viral loads in a macaque AIDS model.

    Science.gov (United States)

    Nomura, Takushi; Yamamoto, Hiroyuki; Takahashi, Naofumi; Naruse, Taeko K; Kimura, Akinori; Matano, Tetsuro

    2014-07-25

    Virus-specific CD8(+) T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206-216 and Gag241-249 epitope-specific CD8(+) T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8(+) T-cell responses induced in all the 90-120-Ia(+) macaques on SIV replication remains unknown. Here, we identified three CD8(+) T-cell epitopes, Nef9-19, Nef89-97, and Nef193-203, associated with 90-120-Ia. Nef9-19 and Nef193-203 epitope-specific CD8(+) T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8(+) T cells, indicating that these CD8(+) T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV receptor-binding domain as an antigen.

    Directory of Open Access Journals (Sweden)

    Jiaming Lan

    Full Text Available The development of an effective vaccine is critical for prevention of a Middle East respiratory syndrome coronavirus (MERS-CoV pandemic. Some studies have indicated the receptor-binding domain (RBD protein of MERS-CoV spike (S is a good candidate antigen for a MERS-CoV subunit vaccine. However, highly purified proteins are typically not inherently immunogenic. We hypothesised that humoral and cell-mediated immunity would be improved with a modification of the vaccination regimen. Therefore, the immunogenicity of a novel MERS-CoV RBD-based subunit vaccine was tested in mice using different adjuvant formulations and delivery routes. Different vaccination regimens were compared in BALB/c mice immunized 3 times intramuscularly (i.m. with a vaccine containing 10 µg of recombinant MERS-CoV RBD in combination with either aluminium hydroxide (alum alone, alum and polyriboinosinic acid (poly I:C or alum and cysteine-phosphate-guanine (CpG oligodeoxynucleotides (ODN. The immune responses of mice vaccinated with RBD, incomplete Freund's adjuvant (IFA and CpG ODN by a subcutaneous (s.c. route were also investigated. We evaluated the induction of RBD-specific humoral immunity (total IgG and neutralizing antibodies and cellular immunity (ELISpot assay for IFN-γ spot-forming cells and splenocyte cytokine production. Our findings indicated that the combination of alum and CpG ODN optimized the development of RBD-specific humoral and cellular immunity following subunit vaccination. Interestingly, robust RBD-specific antibody and T-cell responses were induced in mice immunized with the rRBD protein in combination with IFA and CpG ODN, but low level of neutralizing antibodies were elicited. Our data suggest that murine immunity following subunit vaccination can be tailored using adjuvant combinations and delivery routes. The vaccination regimen used in this study is promising and could improve the protection offered by the MERS-CoV subunit vaccine by eliciting

  19. Immunogenicity and safety of the 9-valent HPV vaccine in men

    DEFF Research Database (Denmark)

    Castellsagué, X; Giuliano, A R; Goldstone, S

    2015-01-01

    OBJECTIVES: This study was designed to evaluate the immunogenicity and tolerability of a prophylactic 9-valent HPV (types 6/11/16/18/31/33/45/52/58) VLP (9vHPV) vaccine in young men 16-26 years of age in comparison to young women 16-26 years of age (the population that was used to establish 9v......HPV vaccine efficacy). Safety and immunogenicity data from this study will be used to bridge 9vHPV vaccine efficacy findings in 16-26 year old women to 16-26 year old men. METHODS: This study enrolled 1106 heterosexual men (HM) and 1101 women who had not yet received HPV vaccination. In addition, 313 men...... having sex with men (MSM) were enrolled and were evaluated separately for immunogenicity because previous results showed that antibody responses to quadrivalent HPV (types 6/11/16/18) VLP (qHPV) vaccine were lower in MSM than in HM. All subjects were administered a 3-dose regimen (Day 1, Month 2, Month 6...

  20. A cost-effectiveness analysis of typhoid fever vaccines in US military personnel.

    Science.gov (United States)

    Warren, T A; Finder, S F; Brier, K L; Ries, A J; Weber, M P; Miller, M R; Potyk, R P; Reeves, C S; Moran, E L; Tornow, J J

    1996-11-01

    Typhoid fever has been a problem for military personnel throughout history. A cost-effectiveness analysis of typhoid fever vaccines from the perspective of the US military was performed. Currently 3 vaccine preparations are available in the US: an oral live Type 21A whole cell vaccine; a single-dose parenteral, cell subunit vaccine; and a 2-dose parenteral heat-phenol killed, whole cell vaccine. This analysis assumed all vaccinees were US military personnel. Two pharmacoeconomic models were developed, one for personnel who have not yet been deployed, and the other for personnel who are deployed to an area endemic for typhoid fever. Drug acquisition, administration, adverse effect and lost work costs, as well as the costs associated with typhoid fever, were included in this analysis. Unique military issues, typhoid fever attack rates, vaccine efficacy, and compliance with each vaccine's dosage regimen were included in this analysis. A sensitivity analysis was performed to test the robustness of the models. Typhoid fever immunisation is not cost-effective for US military personnel unless they are considered imminently deployable or are deployed. The most cost-effective vaccine for US military personnel is the single-dose, cell subunit parenteral vaccine.

  1. Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets

    KAUST Repository

    Najera, Julia A.

    2016-04-23

    Background Methamphetamine (Meth) abuse is a major health problem linked to the aggravation of HIV- associated complications, especially within the Central Nervous System (CNS). Within the CNS, Meth has the ability to modify the activity/function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model of neuroAIDS, and exposed to Meth. We aimed to identify molecular patterns triggered by Meth that could explain the detection of higher brain viral loads and the development of a pro-inflammatory CNS environment in the brain of infected drug abusers. Results We found that Meth alone has a strong effect on the transcription of genes associated with immune pathways, particularly inflammation and chemotaxis. Systems analysis led to a strong correlation between Meth exposure and enhancement of molecules associated with chemokines and chemokine receptors, especially CXCR4 and CCR5, which function as co-receptors for viral entry. The increase in CCR5 expression was confirmed in the brain in correlation with increased brain viral load. Conclusions Meth enhances the availability of CCR5-expressing cells for SIV in the brain, in correlation with increased viral load. This suggests that Meth is an important factor in the susceptibility to the infection and to the aggravated CNS inflammatory pathology associated with SIV in macaques and HIV in humans.

  2. Immune targeting of PD-1{sup hi} expressing cells during and after antiretroviral therapy in SIV-infected rhesus macaques

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Inchaustegui, Diego A.; Xiao, Peng; Hogg, Alison E.; Demberg, Thorsten; McKinnon, Katherine [Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Venzon, David [Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Brocca-Cofano, Egidio; DiPasquale, Janet [Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Lee, Eun M.; Hudacik, Lauren; Pal, Ranajit [Advanced Bioscience Laboratories Inc., Rockville, MD 20850 (United States); Sui, Yongjun; Berzofsky, Jay A. [Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Liu, Linda; Langermann, Solomon [Amplimmune Inc., Gaithersburg, MD 20878 (United States); Robert-Guroff, Marjorie, E-mail: guroffm@mail.nih.gov [Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-12-15

    High-level T cell expression of PD-1 during SIV infection is correlated with impaired proliferation and function. We evaluated the phenotype and distribution of T cells and Tregs during antiretroviral therapy plus PD-1 modulation (using a B7-DC-Ig fusion protein) and post-ART. Chronically SIV-infected rhesus macaques received: 11 weeks of ART (Group A); 11 weeks of ART plus B7-DC-Ig (Group B); 11 weeks of ART plus B7-DC-Ig, then 12 weeks of B7-DC-Ig alone (Group C). Continuous B7-DC-Ig treatment (Group C) decreased rebound viremia post-ART compared to pre-ART levels, associated with decreased PD-1{sup hi} expressing T cells and Tregs in PBMCs, and PD-1{sup hi} Tregs in lymph nodes. It transiently decreased expression of Ki67 and α{sub 4}β{sub 7} in PBMC CD4{sup +} and CD8{sup +} Tregs for up to 8 weeks post-ART and maintained Ag-specific T-cell responses at low levels. Continued immune modulation targeting PD-1{sup hi} cells during and post-ART helps maintain lower viremia, keeps a favorable T cell/Treg repertoire and modulates antigen-specific responses. - Highlights: • B7-DC-Ig modulates PD-1{sup hi} cells in SIV-infected rhesus macaques during and post-ART. • Continued PD-1 modulation post-ART maintains PD-1{sup hi} cells at low levels. • Continued PD-1 modulation post-ART maintains a favorable T cell and Treg repertoire.

  3. Primary and booster vaccination with DTPw-HB/Hib pentavalent vaccine in Costa Rican children who had received a birth dose of hepatitis B vaccine

    Directory of Open Access Journals (Sweden)

    Idis Faingezicht

    2002-10-01

    protective/seropositive titers for Hib, HB, and tetanus and about 50% for diphtheria and Bordetella pertussis. At 15 months of age, virtually all the toddlers responded with a strong boost response to all the vaccine antigens, whether they received the DTPw-HB/Hib pentavalent vaccine or the DTPw/Hib vaccine as a booster. Both booster regimens were equally well tolerated, indicating that up to five doses of the HB vaccine can be given without impact on safety. Conclusions. Our study confirms that the DTPw-HB/Hib pentavalent vaccine is highly immunogenic as a primary vaccination in children who received an HB vaccine at birth, with the pentavalent combination inducing both persisting immunity and boostable memory. The pentavalent vaccine was safe both for primary and booster vaccinations. Thus, this study in Costa Rican infants supports the routine use of the pentavalent DTPw-HB/Hib vaccine as part of childhood vaccination programs in Latin America and the Caribbean.

  4. Induction of immunity to human immunodeficiency virus type-1 by vaccination.

    Science.gov (United States)

    McElrath, M Juliana; Haynes, Barton F

    2010-10-29

    Recent findings have brought optimism that development of a successful human immunodeficiency virus type-1 (HIV-1) vaccine lies within reach. Studies of early events in HIV-1 infection have revealed when and where HIV-1 is potentially vulnerable to vaccine-targeted immune responses. With technical advances in human antibody production, clues about how antibodies recognize HIV-1 envelope proteins have uncovered new targets for immunogen design. A recent vaccine regimen has shown modest efficacy against HIV-1 acquisition. However, inducing long-term T and B cell memory and coping with HIV-1 diversity remain high priorities. Mediators of innate immunity may play pivotal roles in blocking infection and shaping immunity; vaccine strategies to capture these activities are under investigation. Challenges remain in integrating basic, preclinical and clinical research to improve predictions of types of immunity associated with vaccine efficacy, to apply these insights to immunogen design, and to accelerate evaluation of vaccine efficacy in persons at-risk for infection. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Increase in DNA vaccine efficacy by virosome delivery and co-expression of a cytolytic protein.

    Science.gov (United States)

    Gargett, Tessa; Grubor-Bauk, Branka; Miller, Darren; Garrod, Tamsin; Yu, Stanley; Wesselingh, Steve; Suhrbier, Andreas; Gowans, Eric J

    2014-06-01

    The potential of DNA vaccines has not been realised due to suboptimal delivery, poor antigen expression and the lack of localised inflammation, essential for antigen presentation and an effective immune response to the immunogen. Initially, we examined the delivery of a DNA vaccine encoding a model antigen, luciferase (LUC), to the respiratory tract of mice by encapsulation in a virosome. Virosomes that incorporated influenza virus haemagglutinin effectively delivered DNA to cells in the mouse respiratory tract and resulted in antigen expression and systemic and mucosal immune responses to the immunogen after an intranasal (IN) prime/intradermal (ID) boost regimen, whereas a multidose ID regimen only generated systemic immunity. We also examined systemic immune responses to LUC after ID vaccination with a DNA vaccine, which also encoded one of the several cytolytic or toxic proteins. Although the herpes simplex virus thymidine kinase, in the presence of the prodrug, ganciclovir, resulted in cell death, this failed to increase the humoral or cell-mediated immune responses. In contrast, the co-expression of LUC with the rotavirus non-structural protein 4 (NSP4) protein or a mutant form of mouse perforin, proteins which are directly cytolytic, resulted in increased LUC-specific humoral and cell-mediated immunity. On the other hand, co-expression of LUC with diphtheria toxin subunit A or overexpression of perforin or NSP4 resulted in a lower level of immunity. In summary, the efficacy of DNA vaccines can be improved by targeted IN delivery of DNA or by the induction of cell death in vaccine-targeted cells after ID delivery.

  6. Intradermal vaccination against hepatitis B in a group of medical ...

    African Journals Online (AJOL)

    A prospective study of a low-dose (one-tenth) intradermal regimen using recombinant hepatitis B vaccine was undertaken during two consecutive years in 4th-year medical students. Eighty one per cent of the vaccinees (123/152) seroconverted with anti-HBs levels of > 10 lU/l. The lower titre of hepatitis B surface antibodies ...

  7. Intradermal vaccination against hepatitis B in a group of medical ...

    African Journals Online (AJOL)

    A prospective study of a low-dose (one-tenth) intradermal regimen using recombinant hepatitis B vaccine was under- taken during two consecutive years in 4th-year medical stu- dents. Eightj;one per cent of the vaccinees (123/152) sero- converted with anti.HBs levels of> 10 lUll. The lower titre of hepatitis B surface ...

  8. Alzheimer's disease: is a vaccine possible?

    International Nuclear Information System (INIS)

    Alves, R.P.S.; Yang, M.J.; Batista, M.T.; Ferreira, L.C.S.

    2014-01-01

    The cause of Alzheimer's disease is still unknown, but the disease is distinctively characterized by the accumulation of β-amyloid plaques and neurofibrillary tangles in the brain. These features have become the primary focus of much of the research looking for new treatments for the disease, including immunotherapy and vaccines targeting β-amyloid in the brain. Adverse effects observed in a clinical trial based on the β-amyloid protein were attributed to the presence of the target antigen and emphasized the relevance of finding safer antigen candidates for active immunization. For this kind of approach, different vaccine formulations using DNA, peptide, and heterologous prime-boost immunization regimens have been proposed. Promising results are expected from different vaccine candidates encompassing B-cell epitopes of the β-amyloid protein. In addition, recent results indicate that targeting another protein involved in the etiology of the disease has opened new perspectives for the effective prevention of the illness. Collectively, the evidence indicates that the idea of finding an effective vaccine for the control of Alzheimer's disease, although not without challenges, is a possibility

  9. Alzheimer's disease: is a vaccine possible?

    Energy Technology Data Exchange (ETDEWEB)

    Alves, R.P.S. [Universidade de São Paulo, Instituto de Ciências Biomédicas II, Departamento de Microbiologia, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil, Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP (Brazil); Yang, M.J. [Instituto Butantan, Laboratório de Genética, São Paulo, SP, Brasil, Laboratório de Genética, Instituto Butantan, São Paulo, SP (Brazil); Batista, M.T.; Ferreira, L.C.S. [Universidade de São Paulo, Instituto de Ciências Biomédicas II, Departamento de Microbiologia, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil, Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-05-09

    The cause of Alzheimer's disease is still unknown, but the disease is distinctively characterized by the accumulation of β-amyloid plaques and neurofibrillary tangles in the brain. These features have become the primary focus of much of the research looking for new treatments for the disease, including immunotherapy and vaccines targeting β-amyloid in the brain. Adverse effects observed in a clinical trial based on the β-amyloid protein were attributed to the presence of the target antigen and emphasized the relevance of finding safer antigen candidates for active immunization. For this kind of approach, different vaccine formulations using DNA, peptide, and heterologous prime-boost immunization regimens have been proposed. Promising results are expected from different vaccine candidates encompassing B-cell epitopes of the β-amyloid protein. In addition, recent results indicate that targeting another protein involved in the etiology of the disease has opened new perspectives for the effective prevention of the illness. Collectively, the evidence indicates that the idea of finding an effective vaccine for the control of Alzheimer's disease, although not without challenges, is a possibility.

  10. Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets

    KAUST Repository

    Najera, Julia A.; Bustamante, Eduardo A.; Bortell, Nikki; Morsey, Brenda; Fox, Howard S.; Ravasi, Timothy; Marcondes, Maria Cecilia Garibaldi

    2016-01-01

    /function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model

  11. Rhesus macaque and chimpanzee DC-SIGN act as HIV/SIV gp120 trans-receptors, similar to human DC-SIGN

    NARCIS (Netherlands)

    Geijtenbeek, T. B.; Koopman, G.; van Duijnhoven, G. C.; van Vliet, S. J.; van Schijndel, A. C.; Engering, A.; Heeney, J. L.; van Kooyk, Y.

    2001-01-01

    Dendritic cells (DC) have been implicated in the pathogenesis of both human and simian immunodeficiency viruses (HIV and SIV, respectively). The DC-specific HIV-1 trans-receptor DC-SIGN is thought to be essential for viral dissemination by DC. Abundant expression in lymphoid tissues also implies a

  12. Development and evaluation of a replicon particle vaccine expressing the E2 glycoprotein of bovine viral diarrhea virus (BVDV in cattle

    Directory of Open Access Journals (Sweden)

    Loy John Dustin

    2013-01-01

    Full Text Available Abstract Background Bovine viral diarrhea virus is one of the most significant and costly viral pathogens of cattle worldwide. Alphavirus-derived replicon particles have been shown to be safe and highly effective vaccine vectors against a variety of human and veterinary pathogens. Replicon particles are non-propagating, DIVA compatible, and can induce both humoral and cell mediated immune responses. This is the first experiment to demonstrate that Alphavirus-based replicon particles can be utilized in a standard prime/boost vaccination strategy in calves against a commercially significant bovine pathogen. Findings Replicon particles that express bovine viral diarrhea virus sub-genotype 1b E2 glycoprotein were generated and expression was confirmed in vitro using polyclonal and monoclonal antibodies specific to E2. Vaccine made from particles was generated in Vero cells and administered to BVDV free calves in a prime/boost regimen at two dosage levels. Vaccination resulted in neutralizing antibody titers that cross-neutralized both type 1 and type 2 BVD genotypes following booster vaccination. Additionally, high dose vaccine administration demonstrated some protection from clinical disease and significantly reduced the degree of leukopenia caused by viral infection. Conclusions Replicon particle vaccines administered in a prime/boost regimen expressing BVDV E2 glycoprotein can induce cross-neutralizing titers, reduce leukopenia post challenge, and mitigate clinical disease in calves. This strategy holds promise for a safe and effective vaccine to BVDV.

  13. Vaccine development against Leishmania donovani

    Directory of Open Access Journals (Sweden)

    Amrita eDas

    2012-05-01

    Full Text Available Visceral leishmaniasis (VL caused by Leishmania donovani and Leishmania infantum/ chagasi represents the second most challenging infectious disease worldwide, affecting nearly 500,000 people and 60,000 deaths annually. Zoonotic VL (ZVL caused by L. infantum is re-emergent canid zoonoses which represents a complex epidemiological cycle in New world where domestic dogs serve as reservoir host responsible for potentially fatal human infection where dog culling is the only control measure for eliminating reservoir host. Lifelong immunity in human against reinfection has motivated several attempts in developing prophylactic vaccines against the disease but very few have progressed beyond experimental stage. Absence of any licensed vaccine along with high toxicity and increasing resistance to the current chemotherapeutic drugs has further complicated the situation in endemic regions of the world. Advances in vaccinology, including recombinant proteins, novel antigen-delivery systems/adjuvants, heterologous prime-boost regimens and strategies for intracellular antigen presentation, have contributed to recent advances in vaccine development against VL. Attempts to develop an effective vaccine for use in domestic dogs in areas of canine VL should be pursued for preventing human infection. Studies in animal models and human patients have revealed the pathogenic mechanisms of disease progression and features of protective immunity. This review will summarize the accumulated knowledge about pathogenesis, immune response and prerequisites for protective immunity against human VL. Authors will discuss promising vaccine targets, their developmental status and future prospects in a quest for rational vaccine development against VL. In addition, several challenges such as safety issues, a renewed and coordinated commitment to basic research, preclinical studies and trial design will be addressed to overcome the problems faced in developing effective vaccines

  14. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection.

    Science.gov (United States)

    Wagemakers, A; Mason, L M K; Oei, A; de Wever, B; van der Poll, T; Bins, A D; Hovius, J W R

    2014-12-01

    Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method that can be applied in a rapid vaccination schedule. We vaccinated C3H/HeN mice with B. afzelii strain PKo OspC (outer-surface protein C) using a codon-optimized DNA vaccine tattoo and compared this with recombinant protein vaccination in a 0-2-4 week vaccination schedule. We also assessed protection by DNA tattoo in a 0-3-6 day schedule. DNA tattoo and recombinant OspC vaccination induced comparable total IgG responses, with a lower IgG1/IgG2a ratio after DNA tattoo. Two weeks after syringe-challenge with 5 × 10(5) B. afzelii spirochetes most vaccinated mice had negative B. afzelii tissue DNA loads and all were culture negative. Furthermore, DNA tattoo vaccination in a 0-3-6 day regimen also resulted in negative Borrelia loads and cultures after challenge. To conclude, DNA vaccination by tattoo was fully protective against B. afzelii challenge in mice in a rapid vaccination protocol, and induces a favorable humoral immunity compared to recombinant protein vaccination. Rapid DNA tattoo is a promising vaccination strategy against spirochetes.

  15. Effects of treatment with suppressive combination antiretroviral drug therapy and the histone deacetylase inhibitor suberoylanilide hydroxamic acid; (SAHA on SIV-infected Chinese rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Binhua Ling

    Full Text Available Viral reservoirs-persistent residual virus despite combination antiretroviral therapy (cART-remain an obstacle to cure of HIV-1 infection. Difficulty studying reservoirs in patients underscores the need for animal models that mimics HIV infected humans on cART. We studied SIV-infected Chinese-origin rhesus macaques (Ch-RM treated with intensive combination antiretroviral therapy (cART and 3 weeks of treatment with the histone deacetyalse inhibitor, suberoylanilide hydroxamic acid (SAHA.SIVmac251 infected Ch-RM received reverse transcriptase inhibitors PMPA and FTC and integrase inhibitor L-870812 beginning 7 weeks post infection. Integrase inhibitor L-900564 and boosted protease inhibitor treatment with Darunavir and Ritonavir were added later. cART was continued for 45 weeks, with daily SAHA administered for the last 3 weeks, followed by euthanasia/necropsy. Plasma viral RNA and cell/tissue-associated SIV gag RNA and DNA were quantified by qRT-PCR/qPCR, with flow cytometry monitoring changes in immune cell populations.Upon cART initiation, plasma viremia declined, remaining <30 SIV RNA copy Eq/ml during cART, with occasional blips. Decreased viral replication was associated with decreased immune activation and partial restoration of intestinal CD4+ T cells. SAHA was well tolerated but did not result in demonstrable treatment-associated changes in plasma or cell associated viral parameters.The ability to achieve and sustain virological suppression makes cART-suppressed, SIV-infected Ch-RM a potentially useful model to evaluate interventions targeting residual virus. However, despite intensive cART over one year, persistent viral DNA and RNA remained in tissues of all three animals. While well tolerated, three weeks of SAHA treatment did not demonstrably impact viral RNA levels in plasma or tissues; perhaps reflecting dosing, sampling and assay limitations.

  16. Safety and immunogenicity of typhoid fever and yellow fever vaccines when administered concomitantly with quadrivalent meningococcal ACWY glycoconjugate vaccine in healthy adults.

    Science.gov (United States)

    Alberer, Martin; Burchard, Gerd; Jelinek, Tomas; Reisinger, Emil; Beran, Jiri; Hlavata, Lucie Cerna; Forleo-Neto, Eduardo; Dagnew, Alemnew F; Arora, Ashwani K

    2015-01-01

    Compact and short pre-travel immunization schedules, which include several vaccinations in a single visit, are desirable for many travelers. However, concomitant vaccination could potentially compromise immunogenicity and/or safety of the individual vaccines and, therefore, possible vaccine interferences should be carefully assessed. This article discusses the immunogenicity and safety of travel vaccines for typhoid fever (TF) and yellow fever (YF), when administered with or without a quadrivalent meningococcal glycoconjugate ACWY-CRM vaccine (MenACWY-CRM). Healthy adults (18-≤60 years) were randomized to one of three vaccine regimens: TF + YF + MenACWY-CRM (group I; n = 100), TF + YF (group II; n = 101), or MenACWY-CRM (group III; n = 100). Immunogenicity at baseline and 4 weeks post-vaccination (day 29) was assessed by serum bactericidal assay using human complement (hSBA), enzyme-linked immunosorbent assay (ELISA), or a neutralization test. Adverse events (AEs) and serious adverse events (SAEs) were collected throughout the study period. Non-inferiority of post-vaccination geometric mean concentrations (GMCs) and geometric mean titers (GMTs) was established for TF and YF vaccines, respectively, when given concomitantly with MenACWY-CRM vaccine versus when given alone. The percentages of subjects with seroprotective neutralizing titers against YF on day 29 were similar in groups I and II. The antibody responses to meningococcal serogroups A, C, W-135, and Y were within the same range when MenACWY-CRM was given separately or together with TF and YF vaccines. The percentage of subjects reporting AEs was the same for TF and YF vaccines with or without MenACWY-CRM vaccine. There were no reports of SAEs or AEs leading to study withdrawals. These data provide evidence that MenACWY-CRM can be administered with typhoid Vi polysaccharide vaccine and live attenuated YF vaccine without compromising antibody responses stimulated by the

  17. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers.

    Science.gov (United States)

    Fukazawa, Yoshinori; Lum, Richard; Okoye, Afam A; Park, Haesun; Matsuda, Kenta; Bae, Jin Young; Hagen, Shoko I; Shoemaker, Rebecca; Deleage, Claire; Lucero, Carissa; Morcock, David; Swanson, Tonya; Legasse, Alfred W; Axthelm, Michael K; Hesselgesser, Joseph; Geleziunas, Romas; Hirsch, Vanessa M; Edlefsen, Paul T; Piatak, Michael; Estes, Jacob D; Lifson, Jeffrey D; Picker, Louis J

    2015-02-01

    Chronic-phase HIV and simian immunodeficiency virus (SIV) replication is reduced by as much as 10,000-fold in elite controllers (ECs) compared with typical progressors (TPs), but sufficient viral replication persists in EC tissues to allow viral sequence evolution and induce excess immune activation. Here we show that productive SIV infection in rhesus monkey ECs, but not TPs, is markedly restricted to CD4(+) follicular helper T (TFH) cells, suggesting that these EC monkeys' highly effective SIV-specific CD8(+) T cells can effectively clear productive SIV infection from extrafollicular sites, but their relative exclusion from B cell follicles prevents their elimination of productively infected TFH cells. CD8(+) lymphocyte depletion in EC monkeys resulted in a dramatic re-distribution of productive SIV infection to non-TFH cells, with restriction of productive infection to TFH cells resuming upon CD8(+) T cell recovery. Thus, B cell follicles constitute 'sanctuaries' for persistent SIV replication in the presence of potent anti-viral CD8(+) T cell responses, potentially complicating efforts to cure HIV infection with therapeutic vaccination or T cell immunotherapy.

  18. Factors associated with the success of rabies vaccination of dogs in Sweden

    Directory of Open Access Journals (Sweden)

    Rivera Esteban

    2011-03-01

    Full Text Available Abstract Background United Kingdom, Ireland, Malta and Sweden maintain their national provisions for a transitional period regarding rules concerning rabies vaccination and individual serological test for rabies neutralizing antibodies. The purpose of vaccinating dogs against rabies is to establish pre-exposure immunity and protect individual animals from contracting rabies. The aim of the study was to investigate factors associated with reaching the internationally accepted threshold antibody titre of 0.5 IU/mL after rabies vaccination of dogs. Methods The study was a prospective single cohort study including 6,789 samples from Swedish dogs vaccinated with commercially available vaccines in Sweden, and the dog's antibody responses were determined by the OIE approved FAVN test. Information on potential risk factors; breed, age, gender, date of vaccination, vaccine label and the number of vaccinations, was collected for each dog. Associations between the dependent variable, serological response ≥ 0.5 IU/mL or Results Of 6,789 vaccinated dogs, 6,241 (91.9% had an approved test result of ≥ 0.5 IU/mL. The results of the multivariable logistic regression analysis showed that vaccinating with vaccine B reduced the risk of having antibody titres of 5 years of age to have antibody titres of Conclusions The probability of success of rabies vaccinations of dogs depends on type of vaccine used, number of rabies vaccinations, the breed size of the dog, age at vaccination, and number of days after vaccination when the antibody titres are tested. The need for a booster vaccination regimen is recommended for larger breeds of dog.

  19. Partial protection of SIV-infected rhesus monkeys against superinfection with a heterologous SIV isolate

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory

    2009-01-01

    Although there is increasing evidence that individuals already infected with human immunodeficiency virus type 1 (HIV-1) can be infected with a heterologous strain of the virus, the extent of protection against superinfection conferred by the first infection and the biologic consequences of superinfection are not well understood. We explored these questions in the simian immunodeficiency virus (SIV)/rhesus monkey model of HIV-1/AIDS. We infected cohorts of rhesus monkeys with either SIVmac251 or SIVsmE660 and then exposed animals to the reciprocal virus through intrarectal inoculations. Employing a quantitative real-time PCR assay, we determined the replication kinetics of the two strains of virus for 20 weeks. We found that primary infection with a replication-competent virus did not protect against acquisition of infection by a heterologous virus but did confer relative control of the superinfecting virus. In animals that became superinfected, there was a reduction in peak replication and rapid control of the second virus. The relative susceptibility to superinfection was not correlated with CD4(+) T-cell count, CD4(+) memory T-cell subsets, cytokine production by virus-specific CD8(+) or CD4(+) cells, or neutralizing antibodies at the time of exposure to the second virus. Although there were transient increases in viral loads of the primary virus and a modest decline in CD4(+) T-cell counts after superinfection, there was no evidence of disease acceleration. These findings indicate that an immunodeficiency virus infection confers partial protection against a second immunodeficiency virus infection, but this protection may be mediated by mechanisms other than classical adaptive immune responses.

  20. Lactococcus lactis carrying a DNA vaccine coding for the ESAT-6 antigen increases IL-17 cytokine secretion and boosts the BCG vaccine immune response.

    Science.gov (United States)

    Pereira, V B; da Cunha, V P; Preisser, T M; Souza, B M; Turk, M Z; De Castro, C P; Azevedo, M S P; Miyoshi, A

    2017-06-01

    A regimen utilizing Bacille Calmette-Guerin (BCG) and another vaccine system as a booster may represent a promising strategy for the development of an efficient tuberculosis vaccine for adults. In a previous work, we confirmed the ability of Lactococcus lactis fibronectin-binding protein A (FnBPA+) (pValac:ESAT-6), a live mucosal DNA vaccine, to produce a specific immune response in mice after oral immunization. In this study, we examined the immunogenicity of this strain as a booster for the BCG vaccine in mice. After immunization, cytokine and immunoglobulin profiles were measured. The BCG prime L. lactis FnBPA+ (pValac:ESAT-6) boost group was the most responsive group, with a significant increase in splenic pro-inflammatory cytokines IL-17, IFN-γ, IL-6 and TNF-α compared with the negative control. Based on the results obtained here, we demonstrated that L. lactis FnBPA+ (pValac:ESAT-6) was able to increase the BCG vaccine general immune response. This work is of great scientific and social importance because it represents the first step towards the development of a booster to the BCG vaccine using L. lactis as a DNA delivery system. © 2017 The Society for Applied Microbiology.

  1. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals.

    Science.gov (United States)

    Fuchs, Jonathan D; Bart, Pierre-Alexandre; Frahm, Nicole; Morgan, Cecilia; Gilbert, Peter B; Kochar, Nidhi; DeRosa, Stephen C; Tomaras, Georgia D; Wagner, Theresa M; Baden, Lindsey R; Koblin, Beryl A; Rouphael, Nadine G; Kalams, Spyros A; Keefer, Michael C; Goepfert, Paul A; Sobieszczyk, Magdalena E; Mayer, Kenneth H; Swann, Edith; Liao, Hua-Xin; Haynes, Barton F; Graham, Barney S; McElrath, M Juliana

    2015-05-01

    Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.

  2. New strategies to improve the efficacy of colorectal cancer vaccines: from bench to bedside.

    Science.gov (United States)

    Mocellin, Simone

    2006-12-01

    By exploiting a naturally occurring defense system, anticancer vaccination embodies an ideal non-toxic treatment capable of evoking tumor-specific immune responses that can ultimately recognize and kill colorectal cancer (CRC) cells. Despite the enormous theoretical potential of active specific immunotherapy, no vaccination regimen has achieved sufficient therapeutic efficacy necessary for clinical implementation. Nevertheless, several immunological advances have opened new avenues of research to decipher the biological code governing tumor immune responsiveness, and this is leading to the design of potentially more effective immunotherapeutic protocols. This review briefly summarizes the principles behind anti-CRC vaccination and describes the most promising immunological strategies that have been developed, which are expected to renew interest in this molecularly targeted anticancer approach.

  3. A single dose of a DNA vaccine encoding apa coencapsulated with 6,6'-trehalose dimycolate in microspheres confers long-term protection against tuberculosis in Mycobacterium bovis BCG-primed mice.

    Science.gov (United States)

    Carlétti, Dyego; Morais da Fonseca, Denise; Gembre, Ana Flávia; Masson, Ana Paula; Weijenborg Campos, Lívia; Leite, Luciana C C; Rodrigues Pires, Andréa; Lannes-Vieira, Joseli; Lopes Silva, Célio; Bonato, Vânia Luiza Deperon; Horn, Cynthia

    2013-08-01

    Mycobacterium bovis BCG prime DNA (Mycobacterium tuberculosis genes)-booster vaccinations have been shown to induce greater protection against tuberculosis (TB) than BCG alone. This heterologous prime-boost strategy is perhaps the most realistic vaccination for the future of TB infection control, especially in countries where TB is endemic. Moreover, a prime-boost regimen using biodegradable microspheres seems to be a promising immunization to stimulate a long-lasting immune response. The alanine proline antigen (Apa) is a highly immunogenic glycoprotein secreted by M. tuberculosis. This study investigated the immune protection of Apa DNA vaccine against intratracheal M. tuberculosis challenge in mice on the basis of a heterologous prime-boost regimen. BALB/c mice were subcutaneously primed with BCG and intramuscularly boosted with a single dose of plasmid carrying apa and 6,6'-trehalose dimycolate (TDM) adjuvant, coencapsulated in microspheres (BCG-APA), and were evaluated 30 and 70 days after challenge. This prime-boost strategy (BCG-APA) resulted in a significant reduction in the bacterial load in the lungs, thus leading to better preservation of the lung parenchyma, 70 days postinfection compared to BCG vaccinated mice. The profound effect of this heterologous prime-boost regimen in the experimental model supports its development as a feasible strategy for prevention of TB.

  4. Evidence for single-dose protection by the bivalent HPV vaccine-Review of the Costa Rica HPV vaccine trial and future research studies.

    Science.gov (United States)

    Kreimer, Aimée R; Herrero, Rolando; Sampson, Joshua N; Porras, Carolina; Lowy, Douglas R; Schiller, John T; Schiffman, Mark; Rodriguez, Ana Cecilia; Chanock, Stephen; Jimenez, Silvia; Schussler, John; Gail, Mitchell H; Safaeian, Mahboobeh; Kemp, Troy J; Cortes, Bernal; Pinto, Ligia A; Hildesheim, Allan; Gonzalez, Paula

    2018-01-20

    The Costa Rica Vaccine Trial (CVT), a phase III randomized clinical trial, provided the initial data that one dose of the HPV vaccine could provide durable protection against HPV infection. Although the study design was to administer all participants three doses of HPV or control vaccine, 20% of women did not receive the three-dose regimens, mostly due to involuntary reasons unrelated to vaccination. In 2011, we reported that a single dose of the bivalent HPV vaccine could be as efficacious as three doses of the vaccine using the endpoint of persistent HPV infection accumulated over the first four years of the trial; findings independently confirmed in the GSK-sponsored PATRICIA trial. Antibody levels after one dose, although lower than levels elicited by three doses, were 9-times higher than levels elicited by natural infection. Importantly, levels remained essentially constant over at least seven years, suggesting that the observed protection provided by a single dose might be durable. Much work has been done to assure these non-randomized findings are valid. Yet, the group of recipients who received one dose of the bivalent HPV vaccine in the CVT and PATRICIA trials was small and not randomly selected nor blinded to the number of doses received. The next phase of research is to conduct a formal randomized, controlled trial to evaluate the protection afforded by a single dose of HPV vaccine. Complementary studies are in progress to bridge our findings to other populations, and to further document the long-term durability of antibody response following a single dose. Published by Elsevier Ltd.

  5. Impact of pre-existing MSP142-allele specific immunity on potency of an erythrocytic Plasmodium falciparum vaccine

    Directory of Open Access Journals (Sweden)

    Bergmann-Leitner Elke S

    2012-09-01

    Full Text Available Abstract Background MSP1 is the major surface protein on merozoites and a prime candidate for a blood stage malaria vaccine. Preclinical and seroepidemiological studies have implicated antibodies to MSP1 in protection against blood stage parasitaemia and/or reduced parasite densities, respectively. Malaria endemic areas have multiple strains of Plasmodium falciparum circulating at any given time, giving rise to complex immune responses, an issue which is generally not addressed in clinical trials conducted in non-endemic areas. A lack of understanding of the effect of pre-existing immunity to heterologous parasite strains may significantly contribute to vaccine failure in the field. The purpose of this study was to model the effect of pre-existing immunity to MSP142 on the immunogenicity of blood-stage malaria vaccines based on alternative MSP1 alleles. Methods Inbred and outbred mice were immunized with various recombinant P. falciparum MSP142 proteins that represent the two major alleles of MSP142, MAD20 (3D7 and Wellcome (K1, FVO. Humoral immune responses were analysed by ELISA and LuminexTM, and functional activity of induced MSP142-specific antibodies was assessed by growth inhibition assays. T-cell responses were characterized using ex vivo ELISpot assays. Results Analysis of the immune responses induced by various immunization regimens demonstrated a strong allele-specific response at the T cell level in both inbred and outbred mice. The success of heterologous regimens depended on the degree of homology of the N-terminal p33 portion of the MSP142, likely due to the fact that most T cell epitopes reside in this part of the molecule. Analysis of humoral immune responses revealed a marked cross-reactivity between the alleles. Functional analyses showed that some of the heterologous regimens induced antibodies with improved growth inhibitory activities. Conclusion The development of a more broadly efficacious MSP1 based vaccine may be

  6. Vaccine Platforms to Control Arenaviral Hemorrhagic Fevers.

    Science.gov (United States)

    Carrion, Ricardo; Bredenbeek, Peter; Jiang, Xiaohong; Tretyakova, Irina; Pushko, Peter; Lukashevich, Igor S

    2012-11-20

    Arenaviruses are rodent-borne emerging human pathogens. Diseases caused by these viruses, e.g., Lassa fever (LF) in West Africa and South American hemorrhagic fevers (HFs), are serious public health problems in endemic areas. We have employed replication-competent and replication-deficient strategies to design vaccine candidates potentially targeting different groups "at risk". Our leader LF vaccine candidate, the live reassortant vaccine ML29, is safe and efficacious in all tested animal models including non-human primates. In this study we showed that treatment of fatally infected animals with ML29 two days after Lassa virus (LASV) challenge protected 80% of the treated animals. In endemic areas, where most of the target population is poor and many live far from health care facilities, a single-dose vaccination with ML29 would be ideal solution. Once there is an outbreak, a fast-acting vaccine or post-exposure prophylaxis would be best. The 2(nd) vaccine technology is based on Yellow Fever (YF) 17D vaccine. We designed YF17D-based recombinant viruses expressing LASV glycoproteins (GP) and showed protective efficacy of these recombinants. In the current study we developed a novel technology to clone LASV nucleocapsid within YF17D C gene. Low immunogenicity and stability of foreign inserts must be addressed to design successful LASV/YFV bivalent vaccines to control LF and YF in overlapping endemic areas of West Africa. The 3(rd) platform is based on the new generation of alphavirus replicon virus-like-particle vectors (VLPV). Using this technology we designed VLPV expressing LASV GP with enhanced immunogenicity and bivalent VLPV expressing cross-reactive GP of Junin virus (JUNV) and Machupo virus (MACV), causative agents of Argentinian and Bolivian HF, respectively. A prime-boost regimen required for VLPV immunization might be practical for medical providers, military, lab personnel, and visitors in endemic areas.

  7. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    Directory of Open Access Journals (Sweden)

    Jairo Andres Fonseca

    Full Text Available A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity

  8. The anti-vaccination movement and resistance to allergen-immunotherapy: a guide for clinical allergists

    Directory of Open Access Journals (Sweden)

    Behrmann Jason

    2010-09-01

    Full Text Available Abstract Despite over a century of clinical use and a well-documented record of efficacy and safety, a growing minority in society questions the validity of vaccination and fear that this common public health intervention is the root-cause of severe health problems. This article questions whether growing public anti-vaccine sentiments might have the potential to spill-over into other therapies distinct from vaccination, namely allergen-immunotherapy. Allergen-immunotherapy shares certain medical vernacular with vaccination (e.g., allergy shots, allergy vaccines, and thus may become "guilty by association" due to these similarities. Indeed, this article demonstrates that anti-vaccine websites have begun unduly discrediting this allergy treatment regimen. Following an explanation of the anti-vaccine movement, the article aims to provide guidance on how clinicians can respond to patient fears towards allergen-immunotherapy in the clinical setting. This guide focuses on the provision of reliable information to patients in order to dispel misconceived associations between vaccination and allergen-immunotherapy, and the discussion of the risks and benefits of both therapies in order to assist patients in making autonomous decisions about their choice of allergy treatment.

  9. Immunogenicity and safety of tetravalent dengue vaccine in 2-11 year-olds previously vaccinated against yellow fever: randomized, controlled, phase II study in Piura, Peru.

    Science.gov (United States)

    Lanata, Claudio F; Andrade, Teresa; Gil, Ana I; Terrones, Cynthia; Valladolid, Omar; Zambrano, Betzana; Saville, Melanie; Crevat, Denis

    2012-09-07

    In a randomized, placebo-controlled, monocenter, observer blinded study conducted in an area where dengue is endemic, we assessed the safety and immunogenicity of a recombinant, live, attenuated, tetravalent dengue vaccine candidate (CYD-TDV) in 2-11 year-olds with varying levels of pre-existing yellow-fever immunity due to vaccination 1-7 years previously. 199 children received 3 injections of CYD-TDV (months 0, 6 and 12) and 99 received placebo (months 0 and 6) or pneumococcal polysaccharide vaccine (month 12). One month after the third dengue vaccination, serotype specific neutralizing antibody GMTs were in the range of 178-190 (1/dil) (versus 16.7-38.1 in the control group), a 10-20 fold-increase from baseline, and 94% of vaccines were seropositive to all four serotypes (versus 39% in the control group). There were no vaccine-related SAEs. The observed reactogenicity profile was consistent with phase I studies, with severity grade 1-2 injection site pain, headache, malaise and fever most frequently reported and no increase after subsequent vaccinations. Virologically confirmed dengue cases were seen after completion of the 3 doses: 1 in the CYD-TDV group (N=199), and 3 in the control group (N=99). A 3-dose regimen of CYD-TDV had a good safety profile in 2-11 year olds with a history of YF vaccination and elicited robust antibody responses that were balanced against the four serotypes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Preventative Vaccines for Zika Virus Outbreak: Preliminary Evaluation

    Directory of Open Access Journals (Sweden)

    Eun Kim

    2016-11-01

    Full Text Available Since it emerged in Brazil in May 2015, the mosquito-borne Zika virus (ZIKV has raised global concern due to its association with a significant rise in the number of infants born with microcephaly and neurological disorders such as Guillain-Barré syndrome. We developed prototype subunit and adenoviral-based Zika vaccines encoding the extracellular portion of the ZIKV envelope gene (E fused to the T4 fibritin foldon trimerization domain (Efl. The subunit vaccine was delivered intradermally through carboxymethyl cellulose microneedle array (MNA. The immunogenicity of these two vaccines, named Ad5.ZIKV-Efl and ZIKV-rEfl, was tested in C57BL/6 mice. Prime/boost immunization regimen was associated with induction of a ZIKV-specific antibody response, which provided neutralizing immunity. Moreover, protection was evaluated in seven-day-old pups after virulent ZIKV intraperitoneal challenge. Pups born to mice immunized with Ad5.ZIKV-Efl were all protected against lethal challenge infection without weight loss or neurological signs, while pups born to dams immunized with MNA-ZIKV-rEfl were partially protected (50%. No protection was seen in pups born to phosphate buffered saline-immunized mice. This study illustrates the preliminary efficacy of the E ZIKV antigen vaccination in controlling ZIKV infectivity, providing a promising candidate vaccine and antigen format for the prevention of Zika virus disease.

  11. Supplementary Material for: Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets

    KAUST Repository

    Najera, Julia

    2016-01-01

    Abstract Background Methamphetamine (Meth) abuse is a major health problem linked to the aggravation of HIV- associated complications, especially within the Central Nervous System (CNS). Within the CNS, Meth has the ability to modify the activity/function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model of neuroAIDS, and exposed to Meth. We aimed to identify molecular patterns triggered by Meth that could explain the detection of higher brain viral loads and the development of a pro-inflammatory CNS environment in the brain of infected drug abusers. Results We found that Meth alone has a strong effect on the transcription of genes associated with immune pathways, particularly inflammation and chemotaxis. Systems analysis led to a strong correlation between Meth exposure and enhancement of molecules associated with chemokines and chemokine receptors, especially CXCR4 and CCR5, which function as co-receptors for viral entry. The increase in CCR5 expression was confirmed in the brain in correlation with increased brain viral load. Conclusions Meth enhances the availability of CCR5-expressing cells for SIV in the brain, in correlation with increased viral load. This suggests that Meth is an important factor in the susceptibility to the infection and to the aggravated CNS inflammatory pathology associated with SIV in macaques and HIV in humans.

  12. Immunogenicity and efficacy of immunodeficiency virus-like particles pseudotyped with the G protein of vesicular stomatitis virus

    International Nuclear Information System (INIS)

    Kuate, Seraphin; Stahl-Hennig, Christiane; Stoiber, Heribert; Nchinda, Godwin; Floto, Anja; Franz, Monika; Sauermann, Ulrike; Bredl, Simon; Deml, Ludwig; Ignatius, Ralf; Norley, Steve; Racz, Paul; Tenner-Racz, Klara; Steinman, Ralph M.; Wagner, Ralf; Uberla, Klaus

    2006-01-01

    Vaccination with exogenous antigens such as recombinant viral proteins, immunodeficiency virus-derived whole inactivated virus particles, or virus-like particles (VLP) has generally failed to provide sufficient protection in animal models for AIDS. Pseudotyping VLPs with the vesicular stomatitis virus G protein (VSV-G), which is known to mediate entry into dendritic cells, might allow more efficient stimulation of immune responses. Therefore, we pseudotyped noninfectious immunodeficiency virus-like particles with VSV-G and carried out a preliminary screen of their immunogenicity and vaccination efficacy. Incorporation of VSV-G into HIV-1 VLPs led to hundred-fold higher antibody titers to HIV-1 Gag and enhancement of T cell responses in mice. Repeated vaccination of rhesus monkeys for 65 weeks with VSV-G pseudotyped simian immunodeficiency virus (SIV)-like particles (VLP[G]) provided initial evidence for efficient suppression of viral load after mucosal challenge with the SIVmac239 virus. Challenge of monkeys after a 28 week vaccination regimen with VLP[G] led to a reduction in peak viremia, but persistent suppression of viral load was not achieved. Due to limitations in the number of animals available for this study, improved efficacy of VSV-G pseudotyped VLPs in nonhuman primates could not be demonstrated. However, mouse experiments revealed that pseudotyping of VLPs with fusion-competent VSV-G clearly improves their immunogenicity. Additional strategies, particularly adjuvants, should be considered to provide greater protection against a challenge with pathogenic immunodeficiency virus

  13. Induction of Mucosal Homing Virus-Specific CD8+ T Lymphocytes by Attenuated Simian Immunodeficiency Virus

    OpenAIRE

    Cromwell, Mandy A.; Veazey, Ronald S.; Altman, John D.; Mansfield, Keith G.; Glickman, Rhona; Allen, Todd M.; Watkins, David I.; Lackner, Andrew A.; Johnson, R. Paul

    2000-01-01

    Induction of virus-specific T-cell responses in mucosal as well as systemic compartments of the immune system is likely to be a critical feature of an effective AIDS vaccine. We investigated whether virus-specific CD8+ lymphocytes induced in rhesus macaques by immunization with attenuated simian immunodeficiency virus (SIV), an approach that is highly effective in eliciting protection against mucosal challenge, express the mucosa-homing receptor α4β7 and traffic to the intestinal mucosa. SIV-...

  14. A cross-sectional sero-survey on preoperative HBV vaccination policy in Poland.

    Science.gov (United States)

    Ganczak, Maria; Korzen, Marcin; Jurewicz, Alina; Szych, Zbigniew

    2017-07-25

    A two-dose preoperative vaccination schedule against HBV has been the widely accepted policy in Poland. However, its effectiveness has not yet been assessed. To evaluate a two-dose preoperative HBV vaccination policy by an assessment of the proportion of patients who don't present a protective level of anti-HBs (HBV with a two-dose regimen, were asked to complete an anonymous questionnaire. Serum samples were assayed for anti-HBs with the use of third-generation testing methods. To compare sensitivity versus specificity across a range of values for the ability to predict a dichotomous outcome (a protection against HBV infection) a Receiver operating characteristic (ROC) curve was determined. There were 193 patients, 58.5% women, median age 52 years. Almost a half (46.0%) of the patients were operated on within 0-60 days of taking the second vaccine dose, 16.2% - 61-180 days after, 37.8% >180 days after. Anti-HBs titer was below a protective level in 49.2% of participants (0.0 mIU/ml in 17.8%, 0.1-9.9 mIU/ml in 31.4%); none of them were aware of this fact. Age ≤ 52 years (OR = 1.89) and having surgery more than 37.5 days after HBV vaccination (OR = 2.70) were associated with greater odds of being protected against HBV infection through vaccination. For the time frame between the second dose implementation and surgery 23 days, a sensitivity of 84% and specificity of 22% for obtaining protection against HBV infection was found, for the time frame >37.5 days - sensitivity remained high (80%), while specificity increased (41%); there was an apparent peek on the ROC curve between 38 and 60 day. In the group vaccinated 0-37.5 days before surgery, less patients had the protective level of anti-HBs titer than in vaccinated 38-60 days before surgery (32.3% vs 60.0%; p = 0.03). The success rate in achieving adequate immune protection with two dose HBV vaccination schedule in preoperatively vaccinated patients is relatively low, especially among those

  15. Organic contaminants degradation from the S(IV) autoxidation process catalyzed by ferrous-manganous ions: A noticeable Mn(III) oxidation process.

    Science.gov (United States)

    Zhang, Jiaming; Ma, Jun; Song, Haoran; Sun, Shaofang; Zhang, Zhongxiang; Yang, Tao

    2018-04-15

    Remarkable atrazine degradation in the S(IV) autoxidation process catalyzed by Fe 2+ -Mn 2+ (Fe 2+ /Mn 2+ /sulfite) was demonstrated in this study. Competitive kinetic experiments, alcohol inhibiting methods and electron spin resonance (ESR) experiments proved that sulfur radicals were not the major oxidation species. Mn(III) was demonstrated to be the primary active species in the Fe 2+ /Mn 2+ /sulfite process based on the comparison of oxidation selectivity. Moreover, the inhibiting effect of the Mn(III) hydrolysis and the S(IV) autoxidation in the presence of organic contaminants indicated the existence of three Mn(III) consumption routes in the Fe 2+ /Mn 2+ /sulfite process. The absence of hydroxyl radical and sulfate radical was interpreted by the competitive dynamics method. The oxidation capacity of the Fe 2+ /Mn 2+ /sulfite was independent of the initial pH (4.0-6.0) because the fast decay of S(IV) decreased initial pH below 4.0 rapidly. The rate of ATZ degradation was independent of the dissolved oxygen (DO) because that the major DO consumption process was not the rate determining step during the production of SO 5 •- . Phosphate and bicarbonate were confirmed to have greater inhibitory effects than other environmental factors because of their strong pH buffering capacity and complexing capacity for Fe 3+ . The proposed acetylation degradation pathway of ATZ showed the application of the Fe 2+ /Mn 2+ /sulfite process in the research of contaminants degradation pathways. This work investigated the characteristics of the Fe 2+ /Mn 2+ /sulfite process in the presence of organic contaminants, which might promote the development of Mn(III) oxidation technology. Copyright © 2018. Published by Elsevier Ltd.

  16. Supplementary Material for: Methamphetamine abuse affects gene expression in brain-derived microglia of SIV-infected macaques to enhance inflammation and promote virus targets

    KAUST Repository

    Najera, Julia; Bustamante, Eduardo; Bortell, Nikki; Morsey, Brenda; Fox, Howard; Ravasi, Timothy; Marcondes, Maria

    2016-01-01

    /function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model

  17. Fowlpoxvirus recombinants coding for the CIITA gene increase the expression of endogenous MHC-II and Fowlpox Gag/Pro and Env SIV transgenes.

    Science.gov (United States)

    Bissa, Massimiliano; Forlani, Greta; Zanotto, Carlo; Tosi, Giovanna; De Giuli Morghen, Carlo; Accolla, Roberto S; Radaelli, Antonia

    2018-01-01

    A complete eradication of an HIV infection has never been achieved by vaccination and the search for new immunogens that can induce long-lasting protective responses is ongoing. Avipoxvirus recombinants are host-restricted for replication to avian species and they do not have the undesired side effects induced by vaccinia recombinants. In particular, Fowlpox (FP) recombinants can express transgenes over long periods and can induce protective immunity in mammals, mainly due to CD4-dependent CD8+ T cells. In this context, the class II transactivator (CIITA) has a pivotal role in triggering the adaptive immune response through induction of the expression of class-II major histocompatibility complex molecule (MHC-II), that can present antigens to CD4+ T helper cells. Here, we report on construction of novel FPgp and FPenv recombinants that express the highly immunogenic SIV Gag-pro and Env structural antigens. Several FP-based recombinants, with single or dual genes, were also developed that express CIITA, driven from H6 or SP promoters. These recombinants were used to infect CEF and Vero cells in vitro and determine transgene expression, which was evaluated by real-time PCR and Western blotting. Subcellular localisation of the different proteins was evaluated by confocal microscopy, whereas HLA-DR or MHC-II expression was measured by flow cytometry. Fowlpox recombinants were also used to infect syngeneic T/SA tumour cells, then injected into Balb/c mice to elicit MHC-II immune response and define the presentation of the SIV transgene products in the presence or absence of FPCIITA. Antibodies to Env were measured by ELISA. Our data show that the H6 promoter was more efficient than SP to drive CIITA expression and that CIITA can enhance the levels of the gag/pro and env gene products only when infection is performed by FP single recombinants. Also, CIITA expression is higher when carried by FP single recombinants than when combined with FPgp or FPenv constructs and can

  18. Photoluminescence excitation spectroscopy of SiV- and GeV- color center in diamond

    Science.gov (United States)

    Häußler, Stefan; Thiering, Gergő; Dietrich, Andreas; Waasem, Niklas; Teraji, Tokuyuki; Isoya, Junichi; Iwasaki, Takayuki; Hatano, Mutsuko; Jelezko, Fedor; Gali, Adam; Kubanek, Alexander

    2017-06-01

    Color centers in diamond are important quantum emitters for a broad range of applications ranging from quantum sensing to quantum optics. Understanding the internal energy level structure is of fundamental importance for future applications. We experimentally investigate the level structure of an ensemble of few negatively charged silicon-vacancy (SiV-) and germanium-vacancy (GeV-) centers in bulk diamond at room temperature by photoluminescence (PL) and excitation (PLE) spectroscopy over a broad wavelength range from 460 to 650 {nm} and perform power-dependent saturation measurements. For SiV- our experimental results confirm the presence of a higher energy transition at ˜ 2.31 {eV}. By comparison with detailed theoretical simulations of the imaginary dielectric function we interpret the transition as a dipole-allowed transition from {}2{E}g-state to {}2{A}2u-state where the corresponding a 2u -level lies deeply inside the diamond valence band. Therefore, the transition is broadened by the diamond band. At higher excitation power of 10 {mW} we indicate signs of a parity-conserving transition at ˜ 2.03 {eV} supported by saturation measurements. For GeV- we demonstrate that the PLE spectrum is in good agreement with the mirror image of the PL spectrum of the zero-phonon line. Experimentally we do not observe a higher lying energy level up to a transition wavelength of 460 {nm}. The observed PL spectra are identical, independent of excitation wavelength, suggesting a rapid decay to {}2{E}u excited state and followed by optical transition to {}2{E}g ground state. Our investigations convey important insights for future quantum optics and quantum sensing experiments based on SiV--center and GeV--center in diamond.

  19. The Impact of a One-Dose versus Two-Dose Oral Cholera Vaccine Regimen in Outbreak Settings: A Modeling Study

    Science.gov (United States)

    Azman, Andrew S.; Luquero, Francisco J.; Ciglenecki, Iza; Grais, Rebecca F.; Sack, David A.; Lessler, Justin

    2015-01-01

    Background In 2013, a stockpile of oral cholera vaccine (OCV) was created for use in outbreak response, but vaccine availability remains severely limited. Innovative strategies are needed to maximize the health impact and minimize the logistical barriers to using available vaccine. Here we ask under what conditions the use of one dose rather than the internationally licensed two-dose protocol may do both. Methods and Findings Using mathematical models we determined the minimum relative single-dose efficacy (MRSE) at which single-dose reactive campaigns are expected to be as or more effective than two-dose campaigns with the same amount of vaccine. Average one- and two-dose OCV effectiveness was estimated from published literature and compared to the MRSE. Results were applied to recent outbreaks in Haiti, Zimbabwe, and Guinea using stochastic simulations to illustrate the potential impact of one- and two-dose campaigns. At the start of an epidemic, a single dose must be 35%–56% as efficacious as two doses to avert the same number of cases with a fixed amount of vaccine (i.e., MRSE between 35% and 56%). This threshold decreases as vaccination is delayed. Short-term OCV effectiveness is estimated to be 77% (95% CI 57%–88%) for two doses and 44% (95% CI −27% to 76%) for one dose. This results in a one-dose relative efficacy estimate of 57% (interquartile range 13%–88%), which is above conservative MRSE estimates. Using our best estimates of one- and two-dose efficacy, we projected that a single-dose reactive campaign could have prevented 70,584 (95% prediction interval [PI] 55,943–86,205) cases in Zimbabwe, 78,317 (95% PI 57,435–100,150) in Port-au-Prince, Haiti, and 2,826 (95% PI 2,490–3,170) cases in Conakry, Guinea: 1.1 to 1.2 times as many as a two-dose campaign. While extensive sensitivity analyses were performed, our projections of cases averted in past epidemics are based on severely limited single-dose efficacy data and may not fully capture

  20. The Impact of a One-Dose versus Two-Dose Oral Cholera Vaccine Regimen in Outbreak Settings: A Modeling Study.

    Directory of Open Access Journals (Sweden)

    Andrew S Azman

    2015-08-01

    Full Text Available In 2013, a stockpile of oral cholera vaccine (OCV was created for use in outbreak response, but vaccine availability remains severely limited. Innovative strategies are needed to maximize the health impact and minimize the logistical barriers to using available vaccine. Here we ask under what conditions the use of one dose rather than the internationally licensed two-dose protocol may do both.Using mathematical models we determined the minimum relative single-dose efficacy (MRSE at which single-dose reactive campaigns are expected to be as or more effective than two-dose campaigns with the same amount of vaccine. Average one- and two-dose OCV effectiveness was estimated from published literature and compared to the MRSE. Results were applied to recent outbreaks in Haiti, Zimbabwe, and Guinea using stochastic simulations to illustrate the potential impact of one- and two-dose campaigns. At the start of an epidemic, a single dose must be 35%-56% as efficacious as two doses to avert the same number of cases with a fixed amount of vaccine (i.e., MRSE between 35% and 56%. This threshold decreases as vaccination is delayed. Short-term OCV effectiveness is estimated to be 77% (95% CI 57%-88% for two doses and 44% (95% CI -27% to 76% for one dose. This results in a one-dose relative efficacy estimate of 57% (interquartile range 13%-88%, which is above conservative MRSE estimates. Using our best estimates of one- and two-dose efficacy, we projected that a single-dose reactive campaign could have prevented 70,584 (95% prediction interval [PI] 55,943-86,205 cases in Zimbabwe, 78,317 (95% PI 57,435-100,150 in Port-au-Prince, Haiti, and 2,826 (95% PI 2,490-3,170 cases in Conakry, Guinea: 1.1 to 1.2 times as many as a two-dose campaign. While extensive sensitivity analyses were performed, our projections of cases averted in past epidemics are based on severely limited single-dose efficacy data and may not fully capture uncertainty due to imperfect

  1. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity.

    Science.gov (United States)

    Martins, Karen A O; Cooper, Christopher L; Stronsky, Sabrina M; Norris, Sarah L W; Kwilas, Steven A; Steffens, Jesse T; Benko, Jacqueline G; van Tongeren, Sean A; Bavari, Sina

    2016-01-01

    Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP) as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol), MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh) cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development.

  2. Yellow fever vaccination during treatment with infliximab in a patient with ulcerative colitis: A case report.

    Science.gov (United States)

    Rüddel, J; Schleenvoigt, B T; Schüler, E; Schmidt, C; Pletz, M W; Stallmach, A

    2016-09-01

    We report the case of a 59-year-old patient who accidentally underwent live vaccination against yellow fever during continuous treatment with the TNF-α-antibody (AB) infliximab for ulcerative colitis. The clinical course showed fever of short duration and elevation of liver enzymes without further clinical complications. Yellow fever viremia was not detectable and protective antibodies were developed. A primary vaccination against yellow fever under infliximab has not been reported in the literature before, although vaccination is an important topic in IBD. Live vaccinations, like Stamaril(®) against yellow fever, are contraindicated during TNF-α-AB treatment. Treatment regimens containing TNF-α-AB are of growing importance, not only in gastroenterology, but also in rheumatology and dermatology. We discuss this topic by presenting our case and reviewing the current literature. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Preventative Vaccines for Zika Virus Outbreak: Preliminary Evaluation.

    Science.gov (United States)

    Kim, Eun; Erdos, Geza; Huang, Shaohua; Kenniston, Thomas; Falo, Louis D; Gambotto, Andrea

    2016-11-01

    Since it emerged in Brazil in May 2015, the mosquito-borne Zika virus (ZIKV) has raised global concern due to its association with a significant rise in the number of infants born with microcephaly and neurological disorders such as Guillain-Barré syndrome. We developed prototype subunit and adenoviral-based Zika vaccines encoding the extracellular portion of the ZIKV envelope gene (E) fused to the T4 fibritin foldon trimerization domain (Efl). The subunit vaccine was delivered intradermally through carboxymethyl cellulose microneedle array (MNA). The immunogenicity of these two vaccines, named Ad5.ZIKV-Efl and ZIKV-rEfl, was tested in C57BL/6 mice. Prime/boost immunization regimen was associated with induction of a ZIKV-specific antibody response, which provided neutralizing immunity. Moreover, protection was evaluated in seven-day-old pups after virulent ZIKV intraperitoneal challenge. Pups born to mice immunized with Ad5.ZIKV-Efl were all protected against lethal challenge infection without weight loss or neurological signs, while pups born to dams immunized with MNA-ZIKV-rEfl were partially protected (50%). No protection was seen in pups born to phosphate buffered saline-immunized mice. This study illustrates the preliminary efficacy of the E ZIKV antigen vaccination in controlling ZIKV infectivity, providing a promising candidate vaccine and antigen format for the prevention of Zika virus disease. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Recombinant protective antigen 102 (rPA102): profile of a second-generation anthrax vaccine.

    Science.gov (United States)

    Keitel, Wendy A

    2006-08-01

    Recent terrorist attacks involving the use of Bacillus anthracis spores have stimulated interest in the development of new vaccines for anthrax prevention. Studies of the pathogenesis of anthrax and of the immune responses following infection and immunization underscore the pivotal role that antibodies to the protective antigen play in protection. The most promising vaccine candidates contain purified recombinant protective antigen. Clinical trials of one of these, recombinant protective antigen (rPA)102, are underway. Initial results suggest that rPA102 is well tolerated and immunogenic. Additional trials are necessary to identify optimal formulations and immunization regimens for pre- and postexposure prophylaxis. Future licensure of these and other candidate vaccines will depend on their safety and immunogenicity profiles in humans, and their ability to confer protection in animal models of inhalational anthrax.

  5. Humoral response to 2 inactivated bluetongue virus serotype-8 vaccines in South American camelids.

    Science.gov (United States)

    Zanolari, P; Bruckner, L; Fricker, R; Kaufmann, C; Mudry, M; Griot, C; Meylan, M

    2010-01-01

    Bluetongue virus serotype 8 (BTV-8) has caused disease in domestic ruminants in several countries of northern Europe since 2006. In 2008 a mass-vaccination program was launched in most affected countries using whole virus inactivated vaccines. To evaluate 2 inactivated vaccines (Bovilis BTV 8; BTVPUR AlSap8) for immunogenicity and safety against BTV-8 in South American camelids (SAC) in a field trial. Forty-two SAC (25 Alpacas, 17 Llamas) aged between 1 and 16 years. The animals were vaccinated twice at intervals of 21 days. They were observed clinically for adverse local, systemic, or both reactions throughout the trial. Blood samples collected on days 0, 14, 21, 43, and 156 after vaccination were tested for the presence of BTV-8 virus by real time-polymerase chain reaction and of specific antibodies by competitive ELISA and a serum neutralization test. All vaccinated animals developed antibodies to BTV-8 after the 2nd administration of the vaccine. No adverse effects were observed except for moderate local swellings at the injection site, which disappeared within 21 days. Slightly increased body temperatures were only observed in the first 2 days after vaccination. The BTV was not detected in any of the samples analyzed. The administration of the 2 inactivated commercial vaccines was safe and induced seroconversion against BTV-8 in all vaccinated animals. The results of this study suggest that 2 doses injected 3 weeks apart is a suitable vaccination regimen for SAC.

  6. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model.

    Science.gov (United States)

    Cervantes-Villagrana, Alberto R; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2013-01-11

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0-89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Phase 1 clinical study of cyclophilin B peptide vaccine for patients with lung cancer.

    Science.gov (United States)

    Gohara, Rumi; Imai, Nobue; Rikimaru, Toru; Yamada, Akira; Hida, Naoya; Ichiki, Masao; Kawamoto, Mayumi; Matsunaga, Kazuko; Ashihara, Junko; Yano, Sayoko; Tamura, Mayumi; Ohkouchi, Shinya; Yamana, Hideaki; Oizumi, Kotaro; Itoh, Kyogo

    2002-01-01

    Cyclophilin B (CypB) possesses two antigenic epitopes (CypB(84-92) and CypB(91-99) ) recognized by HLA-A24-restricted and tumor-specific cytotoxic T lymphocytes (CTLs). To determine the safety of CypB-derived peptides and its ability to generate antitumor immune responses, patients with advanced lung cancer received subcutaneous vaccinations of these peptides or their modified peptides. All 16 patients were vaccinated with CypB(91-99) or its modified peptide, whereas only two patients were vaccinated with the modified CypB(84-92), as immediate-type hypersensitivity to CypB(84-92) or its modified peptide was observed in the remaining patients. No severe adverse events were associated with the vaccination. No significant increase in cellular responses to either peptides or tumor cells was observed in the postvaccination PBMCs by the conventional CTL assays in any patients tested. These results suggest that the vaccination of CypB(91-99) peptide was safe, but failed to induce objective immune responses at this regimen.

  8. Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis.

    Science.gov (United States)

    Joseph, S K; Ramaswamy, K

    2013-07-18

    The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and protein or protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-protein) and 48% (BmHAT protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis

    Science.gov (United States)

    Joseph, SK; Ramaswamy, K

    2013-01-01

    The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and Protein or Protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-Protein) and 48% (BmHAT Protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis. PMID:23735679

  10. Costs of diarrheal disease and the cost-effectiveness of a rotavirus vaccination program in kyrgyzstan.

    Science.gov (United States)

    Flem, Elmira T; Latipov, Renat; Nurmatov, Zuridin S; Xue, Yiting; Kasymbekova, Kaliya T; Rheingans, Richard D

    2009-11-01

    We examined the cost-effectiveness of a rotavirus immunization program in Kyrgyzstan, a country eligible for vaccine funding from the GAVI Alliance. We estimated the burden of rotavirus disease and its economic consequences by using national and international data. A cost-effectiveness analysis was conducted from government and societal perspectives, along with a range of 1-way sensitivity analyses. Rotavirus-related hospitalizations and outpatient visits cost US$580,864 annually, of which $421,658 (73%) is direct medical costs and $159,206 (27%) is nonmedical and indirect costs. With 95% coverage, vaccination could prevent 75% of rotavirus-related hospitalizations and deaths and 56% of outpatient visits and could avert $386,193 (66%) in total costs annually. The medical break-even price at which averted direct medical costs equal vaccination costs is $0.65/dose; the societal break-even price is $1.14/dose for a 2-dose regimen. At the current GAVI Alliance-subsidized vaccine price of $0.60/course, rotavirus vaccination is cost-saving for the government. Vaccination is cost-effective at a vaccine price $9.41/dose, according to the cost-effectiveness standard set by the 2002 World Health Report. Addition of rotavirus vaccines to childhood immunization in Kyrgyzstan could substantially reduce disease burden and associated costs. Vaccination would be cost-effective from the national perspective at a vaccine price $9.41 per dose.

  11. The role of vaccination in risk mitigation and control of Newcastle disease in poultry.

    Science.gov (United States)

    Mayers, Jo; Mansfield, Karen L; Brown, Ian H

    2017-10-20

    Newcastle disease is regarded as one of the most important avian diseases throughout the world and continues to be a threat and economic burden to the poultry industry. With no effective treatment, poultry producers rely primarily on stringent biosecurity and vaccination regimens to control the spread of this devastating disease. This concise review provides an historical perspective of Newcastle disease vaccination and how fundamental research has paved the way for the development of instrumental techniques which are still in use today. Although vaccination programmes have reduced the impact of clinical disease, they have historically been ineffective in controlling the spread of virulent viruses and therefore do not always offer an adequate solution to the world's food security problems. However, the continued development of novel vaccine technology and improved biosecurity measures through education may offer a solution to help reduce the global threat of Newcastle disease on the poultry industry. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults.

    Science.gov (United States)

    Sokal, Etienne M; Hoppenbrouwers, Karel; Vandermeulen, Corinne; Moutschen, Michel; Léonard, Philippe; Moreels, Andre; Haumont, Michèle; Bollen, Alex; Smets, Françoise; Denis, Martine

    2007-12-15

    To date, there is no commercially available vaccine to prevent infectious mononucleosis, a disease frequently induced by Epstein-Barr virus (EBV) infection in adolescents or adults devoid of preexisting immunity to the virus. A total of 181 EBV-seronegative, healthy, young adult volunteers were randomized in a double-blind fashion to receive either placebo or a recombinant EBV subunit glycoprotein 350 (gp350)/aluminum hydroxide and 3-O-desacyl-4'-monophosphoryl lipid A (AS04) candidate vaccine in a 3-dose regimen. The vaccine had demonstrable efficacy (mean efficacy rate, 78.0% [95% confidence interval {CI}, 1.0%-96.0%]) in preventing the development of infectious mononucleosis induced by EBV infection, but it had no efficacy in preventing asymptomatic EBV infection. One month after receipt of the final dose of gp350 vaccine, 98.7% of subjects showed seroconversion to anti-gp350 antibodies (95% CI, 85.5%-97.9%), and they remained anti-gp350 antibody positive for >18 months. Furthermore, there were no concerns regarding the safety or reactogenicity of the gp350/AS04 vaccine. These data support the clinical feasibility of using an EBV vaccine to prevent infectious mononucleosis. ClinicalTrials.gov identifier: NCT00430534.

  13. Cancer vaccines: the challenge of developing an ideal tumor killing system.

    Science.gov (United States)

    Mocellin, Simone

    2005-09-01

    Despite the evidence that the immune system plays a significant role in controlling tumor growth in natural conditions and in response to therapeutic vaccination, cancer cells can survive their attack as the disease progresses and no vaccination regimen should be currently proposed to patients outside experimental clinical trials. Clinical results show that the immune system can be actively polarized against malignant cells by means of a variety of vaccination strategies, and that in some cases this is associated with tumor regression. This implies that under some unique circumstances, the naturally "dormant" immune effectors can actually be put at work and used as endogenous weapons against malignant cells. Consequently, the main challenge of tumor immunologists appears to lie on the ability of reproducing those conditions in a larger set of patients. The complexity of the immune network and the still enigmatic host-tumor interactions make these tasks at the same time challenging and fascinating. Recent tumor immunology findings are giving new impetus to the development of more effective vaccination strategies and might revolutionize the way of designing the next generation of cancer vaccines. In the near future, the implementation of these insights in the clinical setting and the completion/conduction of comparative randomized phase III trials will allow oncologists to define the actual role of cancer vaccines in the fight against malignancy.

  14. An inactivated cell-culture vaccine against yellow fever.

    Science.gov (United States)

    Monath, Thomas P; Fowler, Elizabeth; Johnson, Casey T; Balser, John; Morin, Merribeth J; Sisti, Maggie; Trent, Dennis W

    2011-04-07

    Yellow fever is a lethal viral hemorrhagic fever occurring in Africa and South America. A highly effective live vaccine (17D) is widely used for travelers to and residents of areas in which yellow fever is endemic, but the vaccine can cause serious adverse events, including viscerotropic disease, which is associated with a high rate of death. A safer, nonreplicating vaccine is needed. In a double-blind, placebo-controlled, dose-escalation, phase 1 study of 60 healthy subjects between 18 and 49 years of age, we investigated the safety and immunogenicity of XRX-001 purified whole-virus, β-propiolactone-inactivated yellow fever vaccine produced in Vero cell cultures and adsorbed to aluminum hydroxide (alum) adjuvant. On two visits 21 days apart, subjects received intramuscular injections of vaccine that contained 0.48 μg or 4.8 μg of antigen. Levels of neutralizing antibodies were measured at baseline and on days 21, 31, and 42. The vaccine induced the development of neutralizing antibodies in 100% of subjects receiving 4.8 μg of antigen in each injection and in 88% of subjects receiving 0.48 μg of antigen in each injection. Antibody levels increased by day 10 after the second injection, at which time levels were significantly higher with the 4.8-μg formulation than with the 0.48-μg formulation (geometric mean titer, 146 vs. 39; Pvaccine groups than in the placebo group: mild pain, tenderness, and (much less frequently) itching at the injection site. One case of urticaria was observed on day 3 after the second dose of 4.8 μg of vaccine. A two-dose regimen of the XRX-001 vaccine, containing inactivated yellow fever antigen with an alum adjuvant, induced neutralizing antibodies in a high percentage of subjects. XRX-001 has the potential to be a safer alternative to live attenuated 17D vaccine. (Funded by Xcellerex; ClinicalTrials.gov number, NCT00995865.).

  15. "Eesti taluarhitektuur. Püsiv ja muutuv : Eesti Vabaõhumuuseumi näitus = Estonian farm architecture. Enduring and changing : an Estonian Open Air Museum exhibition / Heiki Pärdi

    Index Scriptorium Estoniae

    Pärdi, Heiki, 1951-

    2015-01-01

    Eesti Vabaõhumuuseumi näitus "Eesti taluarhitektuur. Püsiv ja muutuv". Näituse autor Heiki Pärdi, kuraator Elo Lutsepp, kujundaja Jan Skolimowski (KAMP Arhitektid). 2014. aasta Kultuurkapitali Arhitektuuripreemia kandidaat

  16. Dynamic changes in cellular infiltrates with repeated cutaneous vaccination: a histologic and immunophenotypic analysis

    Directory of Open Access Journals (Sweden)

    Schaefer Jochen T

    2010-08-01

    Full Text Available Abstract Background Melanoma vaccines have not been optimized. Adjuvants are added to activate dendritic cells (DCs and to induce a favourable immunologic milieu, however, little is known about their cellular and molecular effects in human skin. We hypothesized that a vaccine in incomplete Freund's adjuvant (IFA would increase dermal Th1 and Tc1-lymphocytes and mature DCs, but that repeated vaccination may increase regulatory cells. Methods During and after 6 weekly immunizations with a multipeptide vaccine, immunization sites were biopsied at weeks 0, 1, 3, 7, or 12. In 36 participants, we enumerated DCs and lymphocyte subsets by immunohistochemistry and characterized their location within skin compartments. Results Mature DCs aggregated with lymphocytes around superficial vessels, however, immature DCs were randomly distributed. Over time, there was no change in mature DCs. Increases in T and B-cells were noted. Th2 cells outnumbered Th1 lymphocytes after 1 vaccine 6.6:1. Eosinophils and FoxP3+ cells accumulated, especially after 3 vaccinations, the former cell population most abundantly in deeper layers. Conclusions A multipeptide/IFA vaccine may induce a Th2-dominant microenvironment, which is reversed with repeat vaccination. However, repeat vaccination may increase FoxP3+T-cells and eosinophils. These data suggest multiple opportunities to optimize vaccine regimens and potential endpoints for monitoring the effects of new adjuvants. Trail Registration ClinicalTrials.gov Identifier: NCT00705640

  17. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity

    Directory of Open Access Journals (Sweden)

    Karen A.O. Martins

    2016-01-01

    Full Text Available Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol, MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development.

  18. Clinical Development of a Cytomegalovirus DNA Vaccine: From Product Concept to Pivotal Phase 3 Trial.

    Science.gov (United States)

    Smith, Larry R; Wloch, Mary K; Chaplin, Jennifer A; Gerber, Michele; Rolland, Alain P

    2013-09-25

    2013 marks a milestone year for plasmid DNA vaccine development as a first-in-class cytomegalovirus (CMV) DNA vaccine enters pivotal phase 3 testing. This vaccine consists of two plasmids expressing CMV antigens glycoprotein B (gB) and phosphoprotein 65 (pp65) formulated with a CRL1005 poloxamer and benzalkonium chloride (BAK) delivery system designed to enhance plasmid expression. The vaccine's planned initial indication under investigation is for prevention of CMV reactivation in CMV-seropositive (CMV⁺) recipients of an allogeneic hematopoietic stem cell transplant (HCT). A randomized, double-blind placebo-controlled phase 2 proof-of-concept study provided initial evidence of the safety of this product in CMV⁺ HCT recipients who underwent immune ablation conditioning regimens. This study revealed a significant reduction in viral load endpoints and increased frequencies of pp65-specific interferon-γ-producing T cells in vaccine recipients compared to placebo recipients. The results of this endpoint-defining trial provided the basis for defining the primary and secondary endpoints of a global phase 3 trial in HCT recipients. A case study is presented here describing the development history of this vaccine from product concept to initiation of the phase 3 trial.

  19. Increased infectivity in human cells and resistance to antibody-mediated neutralization by truncation of the SIV gp41 cytoplasmic tail

    Directory of Open Access Journals (Sweden)

    Takeo eKuwata

    2013-05-01

    Full Text Available The role of antibodies in protecting the host from human immunodeficiency virus type 1 (HIV-1 infection is of considerable interest, particularly because the RV144 trial results suggest that antibodies contribute to protection. Although infection of nonhuman primates with simian immunodeficiency virus (SIV is commonly used as an animal model of HIV-1 infection, the viral epitopes that elicit potent and broad neutralizing antibodies to SIV have not been identified. We isolated a monoclonal antibody (MAb B404 that potently and broadly neutralizes various SIV strains. B404 targets a conformational epitope comprising the V3 and V4 loops of Env that intensely exposed when Env binds CD4. B404-resistant variants were obtained by passaging viruses in the presence of increasing concentration of B404 in PM1/CCR5 cells. Genetic analysis revealed that the Q733stop mutation, which truncates the cytoplasmic tail of gp41, was the first major substitution in Env during passage. The maximal inhibition by B404 and other MAbs were significantly decreased against a recombinant virus with a gp41 truncation compared with the parental SIVmac316. This indicates that the gp41 truncation was associated with resistance to antibody-mediated neutralization. The infectivities of the recombinant virus with the gp41 truncation were 7900-fold, 1000-fold, and 140-fold higher than those of SIVmac316 in PM1, PM1/CCR5, and TZM-bl cells, respectively. Immunoblotting analysis revealed that the gp41 truncation enhanced the incorporation of Env into virions. The effect of the gp41 truncation on infectivity was not obvious in the HSC-F macaque cell line, although the resistance of viruses harboring the gp41 truncation to neutralization was maintained. These results suggest that viruses with a truncated gp41 cytoplasmic tail were selected by increased infectivity in human cells and by acquiring resistance to neutralizing antibody.

  20. DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity.

    Directory of Open Access Journals (Sweden)

    Ilin Chuang

    Full Text Available BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad. The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP and apical membrane antigen-1 (AMA1. The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea, possibly related to immunization, was severe (Grade 3, preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27% were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102 and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270 and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019. Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%. Protection

  1. On the scavenging of SO2 by large and small rain drops. 5. A wind tunnel and theoretical study of the desorption of SO2 from water drops containing S(IV)

    International Nuclear Information System (INIS)

    Mitra, S.K.; Hannemann, A.U.

    1993-01-01

    An experimental and theoretical study has been carried out to investigate the fate of desorption of SO 2 from water drops falling at terminal velocity in air. The experiments were carried out in the Mainz vertical wind tunnel in which water drops of various sizes containing S(IV) in various concentrations were freely suspended in the vertical airstream of the tunnel. The results were compared with the predictions of theoretical models, and with the experiments of Walcek et al. This comparison shows that the predictions of the diffusion model of Kronig and Brink in the formulation given by Walcek and Pruppacher agree well with the experimental results. In contrast, the predictions of the diffusion model which assumes complete internal mixing inside a drop agrees with the experimental results only if the concentration of S(IV) inside the drop is less than that equivalent of an equilibrium SO 2 concentration of 15 ppbv. At larger concentrations, the theoretical predictions of the model for complete internal mixing progressively deviate from the experimental results. It is further shown that Barrie's double film model can be used to interpret the resistance to diffusion inside a drop in terms of a diffusion boundary layer inside the drop which increases in thickness with decreasing concentration of S(IV). Applying our results to the desorption of SO 2 from small and large rain drops falling below an assumed cloud base, shows that for typical contents of S(IV) inside the drops substantial amounts of SO 2 will desorb from these drops unless H 2 O 2 is present in the surrounding air

  2. Phase 1 study of pandemic H1 DNA vaccine in healthy adults.

    Directory of Open Access Journals (Sweden)

    Michelle C Crank

    Full Text Available A novel, swine-origin influenza A (H1N1 virus was detected worldwide in April 2009, and the World Health Organization (WHO declared a global pandemic that June. DNA vaccine priming improves responses to inactivated influenza vaccines. We describe the rapid production and clinical evaluation of a DNA vaccine encoding the hemagglutinin protein of the 2009 pandemic A/California/04/2009(H1N1 influenza virus, accomplished nearly two months faster than production of A/California/07/2009(H1N1 licensed monovalent inactivated vaccine (MIV.20 subjects received three H1 DNA vaccinations (4 mg intramuscularly with Biojector at 4-week intervals. Eighteen subjects received an optional boost when the licensed H1N1 MIV became available. The interval between the third H1 DNA injection and MIV boost was 3-17 weeks. Vaccine safety was assessed by clinical observation, laboratory parameters, and 7-day solicited reactogenicity. Antibody responses were assessed by ELISA, HAI and neutralization assays, and T cell responses by ELISpot and flow cytometry.Vaccinations were safe and well-tolerated. As evaluated by HAI, 6/20 developed positive responses at 4 weeks after third DNA injection and 13/18 at 4 weeks after MIV boost. Similar results were detected in neutralization assays. T cell responses were detected after DNA and MIV. The antibody responses were significantly amplified by the MIV boost, however, the boost did not increased T cell responses induced by DNA vaccine.H1 DNA vaccine was produced quickly, was well-tolerated, and had modest immunogenicity as a single agent. Other HA DNA prime-MIV boost regimens utilizing one DNA prime vaccination and longer boost intervals have shown significant immunogenicity. Rapid and large-scale production of HA DNA vaccines has the potential to contribute to an efficient response against future influenza pandemics.Clinicaltrials.gov NCT00973895.

  3. Impact of baseline covariates on the immunogenicity of the 9-valent HPV vaccine - A combined analysis of five phase III clinical trials

    DEFF Research Database (Denmark)

    Petersen, Lone K; Restrepo, Jaime; Moreira, Edson D

    2017-01-01

    BACKGROUND: The immunogenicity profile of the 9-valent HPV (9vHPV) vaccine was evaluated across five phase III clinical studies conducted in girls and boys 9-15 years of age and young women 16-26 years of age. The effect of baseline characteristics of subjects on vaccine-induced HPV antibody...... responses was assessed. METHODS: Immunogenicity data from 11,304 subjects who received ≥1 dose of 9vHPV vaccine in five Phase III studies were analyzed. Vaccine was administered as a 3-dose regimen. HPV antibody titers were assessed 1 month after dose 3 using a competitive Luminex immunoassay and summarized...... as geometric mean titers (GMTs). Covariates examined were age, gender, race, region of residence, and HPV serostatus and PCR status at day 1. RESULTS: GMTs to all 9 vaccine HPV types decreased with age at vaccination initiation, and were otherwise generally similar among the demographic subgroups defined...

  4. A prophylactic multivalent vaccine against different filovirus species is immunogenic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates.

    Directory of Open Access Journals (Sweden)

    Benoit Callendret

    Full Text Available The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP from Ebola virus (EBOV, Sudan virus (SUDV, Taï Forest virus (TAFV and Marburg virus (MARV. Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35 and modified Vaccinia virus Ankara (MVA vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection and EBOV (range 50% to 100% challenge, and partial protection (75% against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004 were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320. These results demonstrate that it is feasible to

  5. A prophylactic multivalent vaccine against different filovirus species is immunogenic and provides protection from lethal infections with Ebolavirus and Marburgvirus species in non-human primates.

    Science.gov (United States)

    Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Rodriguez, Ariane; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D; Patterson, Jean L; Mire, Chad E; Geisbert, Thomas W; Hooper, Jay W; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke; Zahn, Roland

    2018-01-01

    The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a

  6. Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge

    International Nuclear Information System (INIS)

    Park, Ki Seok; Lee, Jiyeung; Ahn, So Shin; Byun, Young-Ho; Seong, Baik Lin; Baek, Yun Hee; Song, Min-Suk; Choi, Young Ki; Na, Yun Jeong; Hwang, Inhwan; Sung, Young Chul; Lee, Chang Geun

    2009-01-01

    Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasal prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8 + T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains.

  7. Cost-effectiveness of alternate strategies for childhood immunization against meningococcal disease with monovalent and quadrivalent conjugate vaccines in Canada.

    Directory of Open Access Journals (Sweden)

    Thomas E Delea

    Full Text Available Public health programs to prevent invasive meningococcal disease (IMD with monovalent serogroup C meningococcal conjugate vaccine (MCV-C and quadrivalent meningococcal conjugate vaccines (MCV-4 in infancy and adolescence vary across Canadian provinces. This study evaluated the cost-effectiveness of various vaccination strategies against IMD using current and anticipated future pricing and recent epidemiology.A cohort model was developed to estimate the clinical burden and costs (CAN$2014 of IMD in the Canadian population over a 100-year time horizon for three strategies: (1 MCV-C in infants and adolescents (MCV-C/C; (2 MCV-C in infants and MCV-4 in adolescents (MCV-C/4; and (3 MCV-4 in infants (2 doses and adolescents (MCV-4/4. The source for IMD incidence was Canadian surveillance data. The effectiveness of MCV-C was based on published literature. The effectiveness of MCV-4 against all vaccination regimens was assumed to be the same as for MCV-C regimens against serogroup C. Herd effects were estimated by calibration to estimates reported in prior analyses. Costs were from published sources. Vaccines prices were projected to decline over time reflecting historical procurement trends.Over the modeling horizon there are a projected 11,438 IMD cases and 1,195 IMD deaths with MCV-C/C; expected total costs are $597.5 million. MCV-C/4 is projected to reduce cases of IMD by 1,826 (16% and IMD deaths by 161 (13%. Vaccination costs are increased by $32 million but direct and indirect IMD costs are projected to be reduced by $46 million. MCV-C/4 is therefore dominant vs. MCV-C/C in the base case. Cost-effectiveness of MCV-4/4 was $111,286 per QALY gained versus MCV-C/4 (2575/206 IMD cases/deaths prevented; incremental costs $68 million.If historical trends in Canadian vaccines prices continue, use of MCV-4 instead of MCV-C in adolescents may be cost-effective. From an economic perspective, switching to MCV-4 as the adolescent booster should be considered.

  8. Cost-effectiveness of alternate strategies for childhood immunization against meningococcal disease with monovalent and quadrivalent conjugate vaccines in Canada.

    Science.gov (United States)

    Delea, Thomas E; Weycker, Derek; Atwood, Mark; Neame, Dion; Alvarez, Fabián P; Forget, Evelyn; Langley, Joanne M; Chit, Ayman

    2017-01-01

    Public health programs to prevent invasive meningococcal disease (IMD) with monovalent serogroup C meningococcal conjugate vaccine (MCV-C) and quadrivalent meningococcal conjugate vaccines (MCV-4) in infancy and adolescence vary across Canadian provinces. This study evaluated the cost-effectiveness of various vaccination strategies against IMD using current and anticipated future pricing and recent epidemiology. A cohort model was developed to estimate the clinical burden and costs (CAN$2014) of IMD in the Canadian population over a 100-year time horizon for three strategies: (1) MCV-C in infants and adolescents (MCV-C/C); (2) MCV-C in infants and MCV-4 in adolescents (MCV-C/4); and (3) MCV-4 in infants (2 doses) and adolescents (MCV-4/4). The source for IMD incidence was Canadian surveillance data. The effectiveness of MCV-C was based on published literature. The effectiveness of MCV-4 against all vaccination regimens was assumed to be the same as for MCV-C regimens against serogroup C. Herd effects were estimated by calibration to estimates reported in prior analyses. Costs were from published sources. Vaccines prices were projected to decline over time reflecting historical procurement trends. Over the modeling horizon there are a projected 11,438 IMD cases and 1,195 IMD deaths with MCV-C/C; expected total costs are $597.5 million. MCV-C/4 is projected to reduce cases of IMD by 1,826 (16%) and IMD deaths by 161 (13%). Vaccination costs are increased by $32 million but direct and indirect IMD costs are projected to be reduced by $46 million. MCV-C/4 is therefore dominant vs. MCV-C/C in the base case. Cost-effectiveness of MCV-4/4 was $111,286 per QALY gained versus MCV-C/4 (2575/206 IMD cases/deaths prevented; incremental costs $68 million). If historical trends in Canadian vaccines prices continue, use of MCV-4 instead of MCV-C in adolescents may be cost-effective. From an economic perspective, switching to MCV-4 as the adolescent booster should be considered.

  9. Viral RNA levels and env variants in semen and tissues of mature male rhesus macaques infected with SIV by penile inoculation.

    Directory of Open Access Journals (Sweden)

    Francis Fieni

    Full Text Available HIV is shed in semen but the anatomic site of virus entry into the genital secretions is unknown. We determined viral RNA (vRNA levels and the envelope gene sequence in the SIVmac 251 viral populations in the genital tract and semen of 5 adult male rhesus monkeys (Macaca mulatta that were infected after experimental penile SIV infection. Paired blood and semen samples were collected from 1-9 weeks after infection and the monkeys were necropsied eleven weeks after infection. The axillary lymph nodes, testes, epididymis, prostate, and seminal vesicles were collected and vRNA levels and single-genome analysis of the SIVmac251 env variants was performed. At the time of semen collection, blood vRNA levels were between 3.09 and 7.85 log10 vRNA copies/ml plasma. SIV RNA was found in the axillary lymph nodes of all five monkeys and in 3 of 5 monkeys, all tissues examined were vRNA positive. In these 3 monkeys, vRNA levels (log10 SIVgag copies/ug of total tissue RNA in the axillary lymph node (6.48 ± 0.50 were significantly higher than in the genital tract tissues: testis (3.67 ± 2.16; p<0.05, epididymis (3.08 ± 1.19; p<0.0001, prostate (3.36 ± 1.30; p<0.01, and seminal vesicle (2.67 ± 1.50; p<0.0001. Comparison of the SIVmac251 env viral populations in blood plasma, systemic lymph node, and genital tract tissues was performed in two of the macaques. Visual inspection of the Neighbor-Joining phylograms revealed that in both animals, all the sequences were generally distributed evenly among all tissue compartments. Importantly, viral populations in the genital tissues were not distinct from those in the systemic tissues. Our findings demonstrate striking similarity in the viral populations in the blood and male genital tract tissues within 3 months of penile SIV transmission.

  10. A paradigm for peptide vaccine delivery using viral epitopes encapsulated in degradable polymer hydrogel capsules.

    Science.gov (United States)

    Chong, Siow-Feng; Sexton, Amy; De Rose, Robert; Kent, Stephen J; Zelikin, Alexander N; Caruso, Frank

    2009-10-01

    We report on the use of degradable polymer capsules as carriers for the delivery of oligopeptide antigens to professional antigen presenting cells (APCs). To achieve encapsulation, oligopeptide sequences were covalently linked to a negatively charged carrier polymer via biodegradable linkages and the resulting conjugate was then adsorbed onto amine-functionalized silica particles. These peptide-coated particles were then used as templates for the layer-by-layer (LbL) deposition of thiolated poly(methacrylic acid) (PMA(SH)) and poly(vinylpyrrolidone) (PVPON) multilayers. Removal of the silica core and disruption of the hydrogen bonding between PMA(SH) and PVPON by altering the solution pH yielded disulfide-stabilized PMA capsules that retain the encapsulated cargo in an oxidative environment. In the presence of a natural reducing agent, glutathione, cleavage of the disulfide bonds causes release of the peptide from the capsules. The developed strategy provides control over peptide loading into polymer capsules and yields colloidally stable micron- and submicron-sized carriers with uniform size and peptide loading. The conjugation and encapsulation procedures were proven to be non-degrading to the peptide vaccines. The peptide-loaded capsules were successfully used to deliver their cargo to APCs and activate CD8 T lymphocytes in a non-human primate model of SIV infection ex vivo. The reported approach represents a novel paradigm in the delivery of peptide vaccines and other therapeutic agents.

  11. A 12-Year Follow-up on the Long-Term Effectiveness of the Quadrivalent Human Papillomavirus Vaccine in 4 Nordic Countries

    DEFF Research Database (Denmark)

    Kjaer, Susanne K; Nygård, Mari; Dillner, Joakim

    2018-01-01

    Background: The long-term effectiveness of the quadrivalent human papillomavirus (qHPV) vaccine was assessed by monitoring the combined incidence of cervical intraepithelial neoplasia (CIN2, CIN3), adenocarcinoma in situ (AIS), and cervical cancer related to HPV16 or HPV18. Methods: Women from...... Nordic countries of Denmark, Iceland, Norway, and Sweden who received a 3-dose regimen of the qHPV vaccine in the beginning of FUTURE II (Females United to Unilaterally Reduce Endo/Ectocervical Disease; V501-015, base study NCT00092534) are followed through different national registries. Effectiveness...

  12. Induction of HIV neutralizing antibodies against the MPER of the HIV envelope protein by HA/gp41 chimeric protein-based DNA and VLP vaccines.

    Directory of Open Access Journals (Sweden)

    Ling Ye

    Full Text Available Several conserved neutralizing epitopes have been identified in the HIV Env protein and among these, the MPER of gp41 has received great attention and is widely recognized as a promising target. However, little success has been achieved in eliciting MPER-specific HIV neutralizing antibodies by a number of different vaccine strategies. We investigated the ability of HA/gp41 chimeric protein-based vaccines, which were designed to enhance the exposure of the MPER in its native conformation, to induce MPER-specific HIV neutralizing antibodies. In characterization of the HA/gp41 chimeric protein, we found that by mutating an unpaired Cys residue (Cys-14 in its HA1 subunit to a Ser residue, the modified chimeric protein HA-C14S/gp41 showed increased reactivity to a conformation-sensitive monoclonal antibody against HA and formed more stable trimers in VLPs. On the other hand, HA-C14S/gp41 and HA/gp41 chimeric proteins expressed on the cell surfaces exhibited similar reactivity to monoclonal antibodies 2F5 and 4E10. Immunization of guinea pigs using the HA-C14S/gp41 DNA or VLP vaccines induced antibodies against the HIV gp41 as well as to a peptide corresponding to a segment of MPER at higher levels than immunization by standard HIV VLPs. Further, sera from vaccinated guinea pigs were found to exhibit HIV neutralizing activities. Moreover, sera from guinea pigs vaccinated by HA-C14S/gp41 DNA and VLP vaccines but not the standard HIV VLPs, were found to neutralize HIV pseudovirions containing a SIV-4E10 chimeric Env protein. The virus neutralization could be blocked by a MPER-specific peptide, thus demonstrating induction of MPER-specific HIV neutralizing antibodies by this novel vaccine strategy. These results show that induction of MPER-specific HIV neutralizing antibodies can be achieved through a rationally designed vaccine strategy.

  13. Clinical Development of a Cytomegalovirus DNA Vaccine: From Product Concept to Pivotal Phase 3 Trial

    Directory of Open Access Journals (Sweden)

    Michele Gerber

    2013-09-01

    Full Text Available 2013 marks a milestone year for plasmid DNA vaccine development as a first-in-class cytomegalovirus (CMV DNA vaccine enters pivotal phase 3 testing. This vaccine consists of two plasmids expressing CMV antigens glycoprotein B (gB and phosphoprotein 65 (pp65 formulated with a CRL1005 poloxamer and benzalkonium chloride (BAK delivery system designed to enhance plasmid expression. The vaccine’s planned initial indication under investigation is for prevention of CMV reactivation in CMV-seropositive (CMV+ recipients of an allogeneic hematopoietic stem cell transplant (HCT. A randomized, double-blind placebo-controlled phase 2 proof-of-concept study provided initial evidence of the safety of this product in CMV+ HCT recipients who underwent immune ablation conditioning regimens. This study revealed a significant reduction in viral load endpoints and increased frequencies of pp65-specific interferon-γ-producing T cells in vaccine recipients compared to placebo recipients. The results of this endpoint-defining trial provided the basis for defining the primary and secondary endpoints of a global phase 3 trial in HCT recipients. A case study is presented here describing the development history of this vaccine from product concept to initiation of the phase 3 trial.

  14. A new DTPw-HB/Hib combination vaccine for primary and booster vaccination of infants in Latin America Nueva vacuna combinada DTPw-HB/Hib para la vacunación primaria y de refuerzo de menores de un año en América Latina

    Directory of Open Access Journals (Sweden)

    Miguel Tregnaghi

    2006-03-01

    Full Text Available OBJECTIVES: In 1998 the World Health Organization (WHO recommended the inclusion of Haemophilus influenza type B (Hib conjugate vaccines in infant immunization programs, whenever in accordance with national priorities. GlaxoSmithKline Biologicals has developed a new pentavalent combined diphtheria-tetanus-whole cell pertussis-hepatitis B/Hib (DTPwHB/Hib vaccine containing 5 µg of polyribosylribitol phosphate (PRP, and we assessed the immunogenicity and reactogenicity of primary and booster vaccination of healthy children with this new vaccine compared with a reference regimen consisting of the licensed DTPomega-HB (Tritanrix and Hib (Hiberix vaccines given as simultaneous concomitant injections. METHODS: We performed a randomized, double-blind study from September 1998 to August 1999 to establish the immunogenicity and reactogenicity of primary and booster vaccination of healthy children with the new pentavalent combined DTPomega-HB/Hib vaccine given as a single injection, compared with the reference regimen. RESULTS: Both vaccination regimens elicited excellent immune responses, with all subjects in both groups achieving seroprotective anti-PRP antibody concentrations of > 0.15 µg/mL one month after primary vaccination. The combined DTPomega-HB/Hib vaccine was non-inferior to the licensed vaccines in terms of seroprotection/seropositivity/vaccine response rates for all antigen components. Persistence of antibodies against all study vaccine antigens up to the time of booster vaccination was comparable between groups, and a marked increase of all antibody concentrations was observed after the booster dose. Both vaccine regimens were similar in terms of their overall reactogenicity profiles. CONCLUSIONS: Our results indicate that the new DTPomega-HB/Hib pentavalent combination vaccine provides an efficient and reliable way of implementing WHO recommendations for controlling hepatitis B and Hib infections on a worldwide basis.OBJETIVOS: En 1998

  15. Immunogenicity and safety of the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) co-administered with DTPa vaccine in Japanese children: A randomized, controlled study.

    Science.gov (United States)

    Iwata, Satoshi; Kawamura, Naohisa; Kuroki, Haruo; Tokoeda, Yasunobu; Miyazu, Mitsunobu; Iwai, Asayuki; Oishi, Tomohiro; Sato, Tomohide; Suyama, Akari; François, Nancy; Shafi, Fakrudeen; Ruiz-Guiñazú, Javier; Borys, Dorota

    2015-01-01

    This phase III, randomized, open-label, multicenter study (NCT01027845) conducted in Japan assessed the immunogenicity, safety, and reactogenicity of 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV, given intramuscularly) co-administered with diphtheria-tetanus-acellular pertussis vaccine (DTPa, given subcutaneously). Infants (N=360 ) were randomized (2:1) to receive either PHiD-CV and DTPa (PHiD-CV group) or DTPa alone (control group) as 3-dose primary vaccination (3-4-5 months of age) and booster vaccination (17-19 months of age). Immune responses were measured before and one month after primary/booster vaccination and adverse events (AEs) were recorded. Post-primary immune responses were non-inferior to those in pivotal/efficacy European or Latin American pneumococcal protein D-conjugate vaccine studies. For each PHiD-CV serotype, at least 92.6% of infants post-primary vaccination and at least 97.7% of children post-booster had pneumococcal antibody concentrations ≥0.2 μg/ml, and at least 95.4% post-primary and at least 98.1% post-booster had opsonophagocytic activity (OPA) titers ≥8 . Geometric mean antibody concentrations and OPA titers (except OPA titer for 6B) were higher post-booster than post-priming for each serotype. All PHiD-CV-vaccinated children had anti-protein D antibody concentrations ≥100 EL.U/ml one month post-primary/booster vaccination and all were seroprotected/seropositive against each DTPa antigen. Redness and irritability were the most common solicited AEs in both groups. Incidences of unsolicited AEs were comparable between groups. Serious AEs were reported for 47 children (28 in PHiD-CV group); none were assessed as vaccine-related. In conclusion, PHiD-CV induced robust immune responses and was well tolerated when co-administered with DTPa in a 3-dose priming plus booster regimen to Japanese children.

  16. Once-daily dose regimen of ribavirin is interchangeable with a twice-daily dose regimen: randomized open clinical trial

    Directory of Open Access Journals (Sweden)

    Balk JM

    2015-08-01

    Full Text Available Jiska M Balk,1 Guido RMM Haenen,1 Özgür M Koc,2 Ron Peters,3 Aalt Bast,1 Wim JF van der Vijgh,1 Ger H Koek,4 1Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, 2Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, 3DSM Resolve, Geleen, 4Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands Background: The combination of ribavirin (RBV and pegylated interferon (PEG-IFN is effective in the treatment of chronic hepatitis C infection. Reducing the frequency of RBV intake from twice to once a day will improve compliance and opens up the opportunity to combine RBV with new and more specific direct-acting agents in one pill. Therefore, the purpose of this study was to evaluate the pharmacokinetic profile of RBV in a once-daily to twice-daily regimen. The secondary aim was to determine tolerability as well as the severity and differences in side effects of both treatment regimens. Methods: In this randomized open-label crossover study, twelve patients with chronic type 1 hepatitis C infection and weighing more than 75 kg were treated with 180 µg of PEG-IFN weekly and 1,200 mg RBV daily for 24 weeks. The patients received RBV dosed as 1,200 mg once-daily for 12 weeks followed by RBV dosed as 600 mg twice-daily for 12 weeks, or vice versa. In addition to the pharmacokinetic profile, the hematological profile and side effects were recorded. The RBV concentrations in plasma were determined using liquid chromatography-tandem mass spectrometry. Results: Eight of twelve patients completed the study. Neither the time taken for RBV to reach peak plasma concentration nor the AUC0-last (adjusted for difference in dose was significantly different between the two groups (P>0.05. Furthermore, the once-daily regimen did not give more side effects than the twice-daily regimen (P>0

  17. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria.

    Science.gov (United States)

    Hoffman, Stephen L; Billingsley, Peter F; James, Eric; Richman, Adam; Loyevsky, Mark; Li, Tao; Chakravarty, Sumana; Gunasekera, Anusha; Chattopadhyay, Rana; Li, Minglin; Stafford, Richard; Ahumada, Adriana; Epstein, Judith E; Sedegah, Martha; Reyes, Sharina; Richie, Thomas L; Lyke, Kirsten E; Edelman, Robert; Laurens, Matthew B; Plowe, Christopher V; Sim, B Kim Lee

    2010-01-01

    Immunization of volunteers by the bite of mosquitoes carrying radiation-attenuated Plasmodium falciparum sporozoites protects greater than 90% of such volunteers against malaria, if adequate numbers of immunizing biting sessions and sporozoite-infected mosquitoes are used. Nonetheless, until recently it was considered impossible to develop, license and commercialize a live, whole parasite P. falciparum sporozoite (PfSPZ) vaccine. In 2003 Sanaria scientists reappraised the potential impact of a metabolically active, non-replicating PfSPZ vaccine, and outlined the challenges to producing such a vaccine. Six years later, significant progress has been made in overcoming these challenges. This progress has enabled the manufacture and release of multiple clinical lots of a 1(st) generation metabolically active, non-replicating PfSPZ vaccine, the Sanaria PfSPZ Vaccine, submission of a successful Investigational New Drug application to the US Food and Drug Administration, and initiation of safety, immunogenicity and protective efficacy studies in volunteers in MD, US. Efforts are now focused on how best to achieve submission of a successful Biologics License Application and introduce the vaccine to the primary target population of African children in the shortest possible period of time. This will require implementation of a systematic, efficient clinical development plan. Short term challenges include optimizing the (1) efficiency and scale up of the manufacturing process and quality control assays, (2) dosage regimen and method of administration, (3) potency of the vaccine, and (4) logistics of delivering the vaccine to those who need it most, and finalizing the methods for vaccine stabilization and attenuation. A medium term goal is to design and build a facility for manufacturing highly potent and stable vaccine for pivotal Phase 3 studies and commercial launch.

  18. A novel protective MHC-I haplotype not associated with dominant Gag-specific CD8+ T-cell responses in SIVmac239 infection of Burmese rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Naofumi Takahashi

    Full Text Available Several major histocompatibility complex class I (MHC-I alleles are associated with lower viral loads and slower disease progression in human immunodeficiency virus (HIV and simian immunodeficiency virus (SIV infections. Immune-correlates analyses in these MHC-I-related HIV/SIV controllers would lead to elucidation of the mechanism for viral control. Viral control associated with some protective MHC-I alleles is attributed to CD8+ T-cell responses targeting Gag epitopes. We have been trying to know the mechanism of SIV control in multiple groups of Burmese rhesus macaques sharing MHC-I genotypes at the haplotype level. Here, we found a protective MHC-I haplotype, 90-010-Id (D, which is not associated with dominant Gag-specific CD8+ T-cell responses. Viral loads in five D+ animals became significantly lower than those in our previous cohorts after 6 months. Most D+ animals showed predominant Nef-specific but not Gag-specific CD8+ T-cell responses after SIV challenge. Further analyses suggested two Nef-epitope-specific CD8+ T-cell responses exerting strong suppressive pressure on SIV replication. Another set of five D+ animals that received a prophylactic vaccine using a Gag-expressing Sendai virus vector showed significantly reduced viral loads compared to unvaccinated D+ animals at 3 months, suggesting rapid SIV control by Gag-specific CD8+ T-cell responses in addition to Nef-specific ones. These results present a pattern of SIV control with involvement of non-Gag antigen-specific CD8+ T-cell responses.

  19. Safety issues from a Phase 3 clinical trial of a live-attenuated chimeric yellow fever tetravalent dengue vaccine.

    Science.gov (United States)

    Halstead, Scott B

    2018-02-26

    A tetravalent live-attenuated 3-dose vaccine composed of chimeras of yellow fever 17D and the four dengue viruses (CYD, also called Dengvaxia) completed phase 3 clinical testing in over 35,000 children leading to a recommendation that vaccine be administered to >/ = 9 year-olds residing in highly dengue- endemic countries. When clinical trial results were assessed 2 years after the first dose, vaccine efficacy among seropositives was high, but among seronegatives efficacy was marginal. Breakthrough dengue hospitalizations of vaccinated children occurred continuously over a period of 4-5 years post 3rd dose in an age distribution suggesting these children had been vaccinated when seronegative. This surmise was validated recently when the manufacturer reported that dengue NS1 IgG antibodies were absent in sera from hospitalized vaccinated children, an observation consistent with their having received Dengvaxia when seronegative. Based upon published efficacy data and in compliance with initial published recommendations by the manufacturer and WHO the Philippine government undertook to vaccinate 800,000-plus 9 year-olds starting in April 2016. Eighteen months later, dengue hospitalizations and a deaths were reported among vaccinated children. The benefits of administering Dengvaxia predicted by the manufacturer, WHO and others derive from scoring dengue hospitalizations of vaccinated children as vaccine failures rather than as vaccine enhanced dengue disease. Recommended regimens for administration of Dengvaxia should have been structured to warn of and avoid serious adverse events.

  20. Aggressive regimens for multidrug-resistant tuberculosis decrease all-cause mortality.

    Directory of Open Access Journals (Sweden)

    Carole D Mitnick

    Full Text Available A better understanding of the composition of optimal treatment regimens for multidrug-resistant tuberculosis (MDR-TB is essential for expanding universal access to effective treatment and for developing new therapies for MDR-TB. Analysis of observational data may inform the definition of an optimized regimen.This study assessed the impact of an aggressive regimen-one containing at least five likely effective drugs, including a fluoroquinolone and injectable-on treatment outcomes in a large MDR-TB patient cohort.This was a retrospective cohort study of patients treated in a national outpatient program in Peru between 1999 and 2002. We examined the association between receiving an aggressive regimen and the rate of death.In total, 669 patients were treated with individualized regimens for laboratory-confirmed MDR-TB. Isolates were resistant to a mean of 5.4 (SD 1.7 drugs. Cure or completion was achieved in 66.1% (442 of patients; death occurred in 20.8% (139. Patients who received an aggressive regimen were less likely to die (crude hazard ratio [HR]: 0.62; 95% CI: 0.44,0.89, compared to those who did not receive such a regimen. This association held in analyses adjusted for comorbidities and indicators of severity (adjusted HR: 0.63; 95% CI: 0.43,0.93.The aggressive regimen is a robust predictor of MDR-TB treatment outcome. TB policy makers and program directors should consider this standard as they design and implement regimens for patients with drug-resistant disease. Furthermore, the aggressive regimen should be considered the standard background regimen when designing randomized trials of treatment for drug-resistant TB.

  1. Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Seo Kang

    2007-11-01

    Full Text Available Abstract Purpose An open-label Phase 1 study of recombinant prime-boost poxviruses targeting CEA and MUC-1 in patients with advanced pancreatic cancer was conducted to determine safety, tolerability and obtain preliminary data on immune response and survival. Patients and methods Ten patients with advanced pancreatic cancer were treated on a Phase I clinical trial. The vaccination regimen consisted of vaccinia virus expressing tumor antigens carcinoembryonic antigen (CEA and mucin-1 (MUC-1 with three costimulatory molecules B7.1, ICAM-1 and LFA-3 (TRICOM (PANVAC-V and fowlpox virus expressing the same antigens and costimulatory molecules (PANVAC-F. Patients were primed with PANVAC-V followed by three booster vaccinations using PANVAC-F. Granulocyte-macrophage colony-stimulating factor (GM-CSF was used as a local adjuvant after each vaccination and for 3 consecutive days thereafter. Monthly booster vaccinations for up to 12 months were provided for patients without progressive disease. Peripheral blood was collected before, during and after vaccinations for immune analysis. Results The most common treatment-related adverse events were mild injection-site reactions. Antibody responses against vaccinia virus was observed in all 10 patients and antigen-specific T cell responses were observed in 5 out of 8 evaluable patients (62.5%. Median overall survival was 6.3 months and a significant increase in overall survival was noted in patients who generated anti CEA- and/or MUC-1-specific immune responses compared with those who did not (15.1 vs 3.9 months, respectively; P = .002. Conclusion Poxvirus vaccination is safe, well tolerated, and capable of generating antigen-specific immune responses in patients with advanced pancreatic cancer.

  2. Harnessing Novel Imaging Approaches to Guide HIV Prevention and Cure Discoveries-A National Institutes of Health and Global HIV Vaccine Enterprise 2017 Meeting Report.

    Science.gov (United States)

    Sanders-Beer, Brigitte E; Voronin, Yegor; McDonald, David; Singh, Anjali

    2018-01-01

    Advances in imaging technologies have greatly increased our understanding of cellular and molecular interactions in humans and their corresponding animal models of infectious diseases. In the HIV/SIV field, imaging has provided key insights into mucosal viral transmission, local and systemic virus spread, host-virus dynamics, and chronic inflammation/immune activation and the resultant immunopathology. Recent developments in imaging applications are yielding physical, spatial, and temporal measurements to enhance insight into biological functions and disease processes, while retaining important cellular, microenvironmental, organ, and intact organism contextual details. Taking advantage of the latest advancements in imaging technologies may help answer important questions in the HIV field. The Global HIV Vaccine Enterprise in collaboration with the National Institutes of Health (NIH) sponsored a meeting on May 8 and 9, 2017 to provide a platform to review state-of-the-art imaging technologies and to foster multidisciplinary collaborations in HIV/AIDS research. The meeting covered applications of imaging in studies of early events and pathogenesis, reservoirs, and cure, as well as in vaccine development. In addition, presentations and discussions of imaging applications from non-HIV biomedical research areas were included. This report summarizes the presentations and discussions at the meeting.

  3. Comparison of commercial and experimental porcine circovirus type 2 (PCV2) vaccines using a triple challenge with PCV2, porcine reproductive and respiratory syndrome virus (PRRSV), and porcine parvovirus (PPV).

    Science.gov (United States)

    Shen, H G; Beach, N M; Huang, Y W; Halbur, P G; Meng, X J; Opriessnig, T

    2010-08-23

    The efficacies of commercial porcine circovirus type 2 (PCV2) vaccines and a live PCV1-2a chimeric vaccine were compared in conventional, PCV2-positive piglets using a PCV2-porcine reproductive and respiratory syndrome virus (PRRSV)-porcine parvovirus (PPV) coinfection challenge model. Seventy-three, 2-week-old pigs were randomized into seven groups including five vaccinated and two control groups. Pigs in the vaccinated groups were vaccinated at 3 weeks (one dose) or at 3 and 6 weeks (two dose) of age. All vaccine regimens tested were effective in reducing naturally occurring PCV2 viremia at 16 weeks of age and after PCV2 challenge, demonstrating the capability of the products to induce a lasting protective immunity despite the presence of PCV2 viremia at the time of vaccination. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Complex assembly, crystallization and preliminary X-ray crystallographic studies of rhesus macaque MHC Mamu-A*01 complexed with an immunodominant SIV-Gag nonapeptide

    International Nuclear Information System (INIS)

    Chu, Fuliang; Lou, Zhiyong; Gao, Bin; Bell, John I.; Rao, Zihe; Gao, George F.

    2005-01-01

    Crystallization of the first rhesus macaque MHC class I complex. Simian immunodeficiency virus (SIV) infection in rhesus macaques has been used as the best model for the study of human immunodeficiency virus (HIV) infection in humans, especially in the cytotoxic T-lymphocyte (CTL) response. However, the structure of rhesus macaque (or any other monkey model) major histocompatibility complex class I (MHC I) presenting a specific peptide (the ligand for CTL) has not yet been elucidated. Here, using in vitro refolding, the preparation of the complex of the rhesus macaque MHC I allele (Mamu-A*01) with human β 2 m and an immunodominant peptide, CTPYDINQM (Gag-CM9), derived from SIV Gag protein is reported. The complex (45 kDa) was crystallized; the crystal belongs to space group I422, with unit-cell parameters a = b = 183.8, c = 155.2 Å. The crystal contains two molecules in the asymmetric unit and diffracts X-rays to 2.8 Å resolution. The structure is being solved by molecular replacement and this is the first attempt to determined the crystal structure of a peptide–nonhuman primate MHC complex

  5. Perspectives on Advances in Tuberculosis Diagnostics, Drugs, and Vaccines.

    Science.gov (United States)

    Schito, Marco; Migliori, Giovanni Battista; Fletcher, Helen A; McNerney, Ruth; Centis, Rosella; D'Ambrosio, Lia; Bates, Matthew; Kibiki, Gibson; Kapata, Nathan; Corrah, Tumena; Bomanji, Jamshed; Vilaplana, Cris; Johnson, Daniel; Mwaba, Peter; Maeurer, Markus; Zumla, Alimuddin

    2015-10-15

    Despite concerted efforts over the past 2 decades at developing new diagnostics, drugs, and vaccines with expanding pipelines, tuberculosis remains a global emergency. Several novel diagnostic technologies show promise of better point-of-care rapid tests for tuberculosis including nucleic acid-based amplification tests, imaging, and breath analysis of volatile organic compounds. Advances in new and repurposed drugs for use in multidrug-resistant (MDR) or extensively drug-resistant (XDR) tuberculosis have focused on development of several new drug regimens and their evaluation in clinical trials and now influence World Health Organization guidelines. Since the failure of the MVA85A vaccine 2 years ago, there have been no new tuberculosis vaccine candidates entering clinical testing. The current status quo of the lengthy treatment duration and poor treatment outcomes associated with MDR/XDR tuberculosis and with comorbidity of tuberculosis with human immunodeficiency virus and noncommunicable diseases is unacceptable. New innovations and political and funder commitment for early rapid diagnosis, shortening duration of therapy, improving treatment outcomes, and prevention are urgently required. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Current status of syphilis vaccine development: need, challenges, prospects.

    Science.gov (United States)

    Cameron, Caroline E; Lukehart, Sheila A

    2014-03-20

    Syphilis is a multistage disease caused by the invasive spirochete Treponema pallidum subsp. pallidum. Despite inexpensive and effective antibiotic therapy, syphilis remains a prevalent disease in developing countries and has re-emerged as a public health threat in developed nations. In addition to the medical burden imparted by infectious syphilis, congenital syphilis is considered the most significant infectious disease affecting fetuses and newborns worldwide, and individuals afflicted with syphilis have an enhanced risk for HIV transmission and acquisition. The global disease burden of syphilis and failure of decades of public health efforts to stem the incidence of disease highlight the need for an effective syphilis vaccine. Although challenges associated with T. pallidum research have impeded understanding of this pathogen, the existence of a relevant animal model has enabled insight into the correlates of disease protection. Complete protection against infection has been achieved in the animal model using an extended immunization regimen of γ-irradiated T. pallidum, demonstrating the importance of treponemal surface components in generation of protective immunity and the feasibility of syphilis vaccine development. Syphilis is a prime candidate for development of a successful vaccine due to the (1) research community's accumulated knowledge of immune correlates of protection; (2) existence of a relevant animal model that enables effective pre-clinical analyses; (3) universal penicillin susceptibility of T. pallidum which enhances the attractiveness of clinical vaccine trials; and (4) significant public health benefit a vaccine would have on reduction of infectious/congenital syphilis and HIV rates. Critical personnel, research and market gaps need to be addressed before the goal of a syphilis vaccine can be realized, including recruitment of additional researchers to the T. pallidum research field with a proportional increase in research funding

  7. Systemically administered DNA and fowlpox recombinants expressing four vaccinia virus genes although immunogenic do not protect mice against the highly pathogenic IHD-J vaccinia strain.

    Science.gov (United States)

    Bissa, Massimiliano; Pacchioni, Sole Maria; Zanotto, Carlo; De Giuli Morghen, Carlo; Illiano, Elena; Granucci, Francesca; Zanoni, Ivan; Broggi, Achille; Radaelli, Antonia

    2013-12-26

    The first-generation smallpox vaccine was based on live vaccinia virus (VV) and it successfully eradicated the disease worldwide. Therefore, it was not administered any more after 1980, as smallpox no longer existed as a natural infection. However, emerging threats by terrorist organisations has prompted new programmes for second-generation vaccine development based on attenuated VV strains, which have been shown to cause rare but serious adverse events in immunocompromised patients. Considering the closely related animal poxviruses that might also be used as bioweapons, and the increasing number of unvaccinated young people and AIDS-affected immunocompromised subjects, a safer and more effective smallpox vaccine is still required. New avipoxvirus-based vectors should improve the safety of conventional vaccines, and protect from newly emerging zoonotic orthopoxvirus diseases and from the threat of deliberate release of variola or monkeypox virus in a bioterrorist attack. In this study, DNA and fowlpox recombinants expressing the L1R, A27L, A33R and B5R genes were constructed and evaluated in a pre-clinical trial in mouse, following six prime/boost immunisation regimens, to compare their immunogenicity and protective efficacy against a challenge with the lethal VV IHD-J strain. Although higher numbers of VV-specific IFNγ-producing T lymphocytes were observed in the protected mice, the cytotoxic T-lymphocyte response and the presence of neutralising antibodies did not always correlate with protection. In spite of previous successful results in mice, rabbits and monkeys, where SIV/HIV transgenes were expressed by the fowlpox vector, the immune response elicited by these recombinants was low, and most of the mice were not protected. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine.

    Science.gov (United States)

    Muyanja, Enoch; Ssemaganda, Aloysius; Ngauv, Pearline; Cubas, Rafael; Perrin, Helene; Srinivasan, Divya; Canderan, Glenda; Lawson, Benton; Kopycinski, Jakub; Graham, Amanda S; Rowe, Dawne K; Smith, Michaela J; Isern, Sharon; Michael, Scott; Silvestri, Guido; Vanderford, Thomas H; Castro, Erika; Pantaleo, Giuseppe; Singer, Joel; Gillmour, Jill; Kiwanuka, Noah; Nanvubya, Annet; Schmidt, Claudia; Birungi, Josephine; Cox, Josephine; Haddad, Elias K; Kaleebu, Pontiano; Fast, Patricia; Sekaly, Rafick-Pierre; Trautmann, Lydie; Gaucher, Denis

    2014-07-01

    Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. We showed that YF-17D-induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D-neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Registration is not required for observational studies. This study was funded by Canada's Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases

  9. Prevalence of non-responsiveness to an indigenous recombinant hepatitis B vaccine: A study among South Indian health care workers in a tertiary hospital

    Directory of Open Access Journals (Sweden)

    R J Thomas

    2015-01-01

    Full Text Available Background and Aim: Health care workers (HCW are at higher risk of contracting HBV infection. Non-response to HBV vaccine is one of the major impediments to prevent healthcare associated HBV infection (HAHI. We estimated the prevalence of non-responsiveness to initial 3-dose regimen of an indigenous recombinant HBV vaccine (GeneVac-B among South Indian HCWs and typed the HLA in non-responders. Study Design and Method: Of the 778 subjects screened over 1 year, 454 completed all three doses of the hepatitis B vaccination. Anti-HBs titers were estimated by microparticle enzyme immunoassay AxSYM AUSAB, (Abbott, Germany. HLA typing was done using SSP-PCR assay AllSet+™ Gold SSP (Invitrogen, USA. Results: The overall seroconversion rate (anti-HBs > 10 mIU/mL was 98.89% wherein 90.8% had titers >1000mIU/mL, 7.6% had titers 100-1000mIU/mL, 0.43% had titers < 100 mIU/mL and 1.1% were non-responsive (<10 mIU/mL to the initial 3-dose regimen. Antibody titers <1000 mIU/mL were significantly associated with the highest quartile of body mass index (BMI (P < 0.001. We found no significant difference in seroprotection rate between gender (P = 0.088. There was no difference in seroprotection rates among various ethnic groups (P = 0.62. Subjects who were non-responsive in our study had at least one HLA allele earlier known to be associated with non-responsiveness to the vaccine. Conclusion: Our findings suggest that non-response to HBV vaccine is not a major impediment to prevent HAHI. Robust seroprotection rates can be achieved using this indigenous HBV vaccine. However, gender and BMI might influence the level of anti-HBs titers. We recommend the use of this cost effective HBV vaccine as well as postvaccination anti-HBs testing to prevent HAHI among HCWs.

  10. Saccharomyces cerevisiae-derived virus-like particle parvovirus B19 vaccine elicits binding and neutralizing antibodies in a mouse model for sickle cell disease.

    Science.gov (United States)

    Penkert, Rhiannon R; Young, Neal S; Surman, Sherri L; Sealy, Robert E; Rosch, Jason; Dormitzer, Philip R; Settembre, Ethan C; Chandramouli, Sumana; Wong, Susan; Hankins, Jane S; Hurwitz, Julia L

    2017-06-22

    Parvovirus B19 infections are typically mild in healthy individuals, but can be life threatening in individuals with sickle cell disease (SCD). A Saccharomyces cerevisiae-derived B19 VLP vaccine, now in pre-clinical development, is immunogenic in wild type mice when administered with the adjuvant MF59. Because SCD alters the immune response, we evaluated the efficacy of this vaccine in a mouse model for SCD. Vaccinated mice with SCD demonstrated similar binding and neutralizing antibody responses to those of heterozygous littermate controls following a prime-boost-boost regimen. Due to the lack of a mouse parvovirus B19 challenge model, we employed a natural mouse pathogen, Sendai virus, to evaluate SCD respiratory tract responses to infection. Normal mucosal and systemic antibody responses were observed in these mice. Results demonstrate that mice with SCD can respond to a VLP vaccine and to a respiratory virus challenge, encouraging rapid development of the B19 vaccine for patients with SCD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Boosting BCG-primed responses with a subunit Apa vaccine during the waning phase improves immunity and imparts protection against Mycobacterium tuberculosis.

    Science.gov (United States)

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Amara, Rama Rao; Plikaytis, Bonnie B; Posey, James E; Sable, Suraj B

    2016-05-13

    Heterologous prime-boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32-52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime-Apa-subunit-boost strategy compared to Apa-subunit-prime-BCG-boost approach. However, parenteral BCG-prime-Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime-boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime-boost regimens against tuberculosis in humans.

  12. Introducción de la vacuna conjugada contra Hib en Chile y Uruguay Introducing Hib conjugate vaccine in Chile and Uruguay

    Directory of Open Access Journals (Sweden)

    Mauricio Landaverde

    1999-03-01

    Full Text Available In some countries, the invasive disease caused by Haemophilus influenzae type b (Hib has been practically eliminated thanks to vaccination. However, in much of the developing world, meningitides and pneumonias caused by these bacteria continue to be a major cause of childhood morbidity and mortality, as well as high hospitalization costs. Because safe and effective conjugate vaccines are now available, the Special Program for Vaccines and Immunization of the Pan American Health Organization has recommended introducing them into the regular vaccination regimen of as many countries as possible. This has been done in Chile and Uruguay, where the Hib vaccine now forms part of the regular vaccination routine. When the vaccine was being introduced, both countries had difficulties they could have avoided if they had known of the experiences of other nations. Therefore, these two countries now offer the lessons they learned to other nations considering introducing the vaccine into their immunization programs. The most important lessons were to: strengthen the epidemiological surveillance system sufficiently in advance of introducing the vaccine; with th support of sicentific societies, present the technical information that justifies introducing the vaccine; seek community backing and acceptance; precisely establish in advance the presentation and dosage of the vaccine that is most appropriate for the country; and be certain to have the political and legal decisions needed to ensure the continuity of Hib vaccination in the future.

  13. Green revolution vaccines, edible vaccines

    African Journals Online (AJOL)

    Admin

    of development. Food vaccines may also help to suppress autoimmunity disorders such as Type-1. Diabetes. Key words: Edible vaccines, oral vaccines, antigen expression, food vaccines. INTRODUCTION. Vaccination involves the stimulation of the immune system to prepare it for the event of an invasion from a particular ...

  14. Vacinas contra varicela e vacina quádrupla viral Varicella vaccines and measles, mumps, rubella, and varicella vaccine

    Directory of Open Access Journals (Sweden)

    Lucia Ferro Bricks

    2006-07-01

    Full Text Available OBJETIVOS: Apresentar uma revisão atualizada sobre os estudos de eficácia, eventos adversos e esquema vacinal da vacina contra varicela e a nova apresentação combinada com a vacina contra sarampo, caxumba e rubéola. FONTES DOS DADOS: Revisão bibliográfica utilizando a base de dados MEDLINE e LILACS no período de 1999 a 2006. SÍNTESE DOS DADOS: A vacina contra varicela tem uma eficácia entre 70 a 90% contra a infecção e 95 a 98% de proteção contra as formas graves. É uma vacina bem tolerada e pouco reatogênica. Após o seu licenciamento, foram comprovados apenas três casos de transmissão do vírus vacinal de pessoas previamente saudáveis para contatos domiciliares, que desenvolveram doença leve. Apesar das evidências de que a proteção conferida pela vacina pode diminuir com o passar dos anos, ainda não é possível afirmar que seja necessário, no momento, a aplicação de uma segunda dose, tendo em vista a exposição ao vírus selvagem. Após a vacinação universal, as chances de estímulo natural deverão diminuir, e muito provavelmente será necessário a aplicação de doses de reforço. Recentemente foi licenciada a vacina quádrupla viral, um produto combinado com a vacina contra sarampo, caxumba, rubéola e varicela com elevadas taxas de soroconversão. CONCLUSÃO:A vacina contra varicela é recomendada pela Sociedade Brasileira de Pediatria (SBP para as crianças a partir de 1 ano de idade. Esperamos que, em breve, a vacina quádrupla viral esteja disponível no Brasil, pois o uso de vacinas combinadas possibilita uma maior cobertura vacinal.OBJECTIVES: To present an up-to-date review of studies investigating the efficacy, adverse events and vaccination regimens of the varicella vaccine and the new presentation combined with the vaccine for measles, mumps and rubella. SOURCES OF DATA: Bibliographic review of the MEDLINE and LILACS databases covering the period 1999 to 2006 SUMMARY OF THE FINDINGS: The varicella

  15. Variation in training regimens in professional showjumping yards

    NARCIS (Netherlands)

    Lönnell, A C; Bröjer, J; Nostell, K; Hernlund, E; Roepstorff, L; Tranquille, C A; Murray, R C; Oomen, A; van Weeren, René; Bitschnau, C; Montavon, S; Weishaupt, M A; Egenvall, A

    2014-01-01

    REASONS FOR PERFORMING STUDY: Training regimens of showjumping horses under field conditions are largely undocumented. OBJECTIVES: The aims of this study were to quantify and compare training regimens used in professional-level showjumping yards, with respect to time exercised and type of activity.

  16. A chimeric measles virus with a lentiviral envelope replicates exclusively in CD4+/CCR5+ cells

    International Nuclear Information System (INIS)

    Mourez, Thomas; Mesel-Lemoine, Mariana; Combredet, Chantal; Najburg, Valerie; Cayet, Nadege; Tangy, Frederic

    2011-01-01

    We generated a replicating chimeric measles virus in which the hemagglutinin and fusion surface glycoproteins were replaced with the gp160 envelope glycoprotein of simian immunodeficiency virus (SIVmac239). Based on a previously cloned live-attenuated Schwarz vaccine strain of measles virus (MV), this chimera was rescued at high titers using reverse genetics in CD4+ target cells. Cytopathic effect consisted in the presence of large cell aggregates evolving to form syncytia, as observed during SIV infection. The morphology of the chimeric virus was identical to that of the parent MV particles. The presence of SIV gp160 as the only envelope protein on chimeric particles surface altered the cell tropism of the new virus from CD46+ to CD4+ cells. Used as an HIV candidate vaccine, this MV/SIVenv chimeric virus would mimic transient HIV-like infection, benefiting both from HIV-like tropism and the capacity of MV to replicate in dendritic cells, macrophages and lymphocytes.

  17. Randomized controlled study of a novel triple nitazoxanide (NTZ)-containing therapeutic regimen versus the traditional regimen for eradication of Helicobacter pylori infection.

    Science.gov (United States)

    Shehata, Mona Ah; Talaat, Raghda; Soliman, Samah; Elmesseri, Huda; Soliman, Shaimaa; Abd-Elsalam, Sherief

    2017-10-01

    Helicobacter pylori infection has become more and more resistant to conventional first-line treatment regimens. So, there is a considerable interest in evaluating new antibiotic combinations and regimens. Nitazoxanide is an anti-infective drug with demonstrated activity against protozoa and anaerobic bacteria including H. pylori. This work is designed to evaluate the efficacy and safety of a unique triple nitazoxanide-containing regimen as a treatment regimen in Egyptian patients with H. pylori infection. Two hundred and 24 patients with upper gastrointestinal tract (GIT) dyspeptic symptoms in whom H. pylori -induced GIT disease was confirmed were included in the study. They have been randomized to receive either nitazoxanide 500 mg b.i.d., clarithromycin 500 mg b.i.d., and omeprazole 40 mg twice daily for 14 days or metronidazole 500 mg b.i.d., clarithromycin 500 mg b.i.d., and omeprazole 40  mg twice daily for 14 days. Laboratory evaluation for H. pylori antigen within the stool was performed 6 weeks after cessation of H. pylori treatment regimens to assess the response. The response to treatment was significantly higher in group 1 of nitazoxanide treatment regimen than group 2 of traditional treatment regimen. One hundred and six cases (94.6%) of 112 patients who completed the study in group 1 showed complete cure, while only 63 cases (60.6%) of 104 patients who completed the study in group 2 showed the same response according to per-protocol (PP) analysis (Ppylori. (ClinicalTrials.gov Identifier: NCT02422706). © 2017 John Wiley & Sons Ltd.

  18. Hypofractionation Regimens for Stereotactic Radiotherapy for Large Brain Tumors

    International Nuclear Information System (INIS)

    Yuan Jiankui; Wang, Jian Z.; Lo, Simon; Grecula, John C.; Ammirati, Mario; Montebello, Joseph F.; Zhang Hualin; Gupta, Nilendu; Yuh, William T.C.; Mayr, Nina A.

    2008-01-01

    Purpose: To investigate equivalent regimens for hypofractionated stereotactic radiotherapy (HSRT) for brain tumor treatment and to provide dose-escalation guidance to maximize the tumor control within the normal brain tolerance. Methods and Materials: The linear-quadratic model, including the effect of nonuniform dose distributions, was used to evaluate the HSRT regimens. The α/β ratio was estimated using the Gammaknife stereotactic radiosurgery (GKSRS) and whole-brain radiotherapy experience for large brain tumors. The HSRT regimens were derived using two methods: (1) an equivalent tumor control approach, which matches the whole-brain radiotherapy experience for many fractions and merges it with the GKSRS data for few fractions; and (2) a normal-tissue tolerance approach, which takes advantages of the dose conformity and fractionation of HSRT to approach the maximal dose tolerance of the normal brain. Results: A plausible α/β ratio of 12 Gy for brain tumor and a volume parameter n of 0.23 for normal brain were derived from the GKSRS and whole-brain radiotherapy data. The HSRT prescription regimens for the isoeffect of tumor irradiation were calculated. The normal-brain equivalent uniform dose decreased as the number of fractions increased, because of the advantage of fractionation. The regimens for potential dose escalation of HSRT within the limits of normal-brain tolerance were derived. Conclusions: The designed hypofractionated regimens could be used as a preliminary guide for HSRT dose prescription for large brain tumors to mimic the GKSRS experience and for dose escalation trials. Clinical studies are necessary to further tune the model parameters and validate these regimens

  19. Inappropriate Tuberculosis Treatment Regimens in Chinese Tuberculosis Hospitals

    NARCIS (Netherlands)

    Xue He, Guang; van den Hof, Susan; van der Werf, Marieke J.; Guo, Hui; Hu, Yuan Lian; Fan, Ji Huan; Zhang, Wei Min; Tostado, Christopher P.; Borgdorff, Martien W.

    2011-01-01

    This investigation of tuberculosis (TB) treatment regimens in 6 TB hospitals in China showed that only 18% of patients with new cases and 9% of patients with retreatment cases were prescribed standard TB treatment regimens. Adherence to treatment guidelines needs to be improved in TB hospitals to

  20. Elevated Basal Pre-infection CXCL10 in Plasma and in the Small Intestine after Infection Are Associated with More Rapid HIV/SIV Disease Onset.

    Directory of Open Access Journals (Sweden)

    Mickaël J Ploquin

    2016-08-01

    Full Text Available Elevated blood CXCL10/IP-10 levels during primary HIV-1 infection (PHI were described as an independent marker of rapid disease onset, more robust than peak viremia or CD4 cell nadir. IP-10 enhances the recruitment of CXCR3+ cells, which include major HIV-target cells, raising the question if it promotes the establishment of viral reservoirs. We analyzed data from four cohorts of HIV+ patients, allowing us to study IP-10 levels before infection (Amsterdam cohort, as well as during controlled and uncontrolled viremia (ANRS cohorts. We also addressed IP-10 expression levels with regards to lymphoid tissues (LT and blood viral reservoirs in patients and non-human primates. Pre-existing elevated IP-10 levels but not sCD63 associated with rapid CD4 T-cell loss upon HIV-1 infection. During PHI, IP-10 levels and to a lesser level IL-18 correlated with cell-associated HIV DNA, while 26 other inflammatory soluble markers did not. IP-10 levels tended to differ between HIV controllers with detectable and undetectable viremia. IP-10 was increased in SIV-exposed aviremic macaques with detectable SIV DNA in tissues. IP-10 mRNA was produced at higher levels in the small intestine than in colon or rectum. Jejunal IP-10+ cells corresponded to numerous small and round CD68neg cells as well as to macrophages. Blood IP-10 response negatively correlated with RORC (Th17 marker gene expression in the small intestine. CXCR3 expression was higher on memory CD4+ T cells than any other immune cells. CD4 T cells from chronically infected animals expressed extremely high levels of intra-cellular CXCR3 suggesting internalization after ligand recognition. Elevated systemic IP-10 levels before infection associated with rapid disease progression. Systemic IP-10 during PHI correlated with HIV DNA. IP-10 production was regionalized in the intestine during early SIV infection and CD68+ and CD68neg haematopoietic cells in the small intestine appeared to be the major source of IP-10.

  1. Prophylactic antibiotic regimens in tumour surgery (PARITY)

    DEFF Research Database (Denmark)

    Petersen, Michael Mørk; Hettwer, Werner H; Grum-Schwensen, Tomas

    2015-01-01

    -day regimen of post-operative antibiotics, in comparison to a 24-hour regimen, decreases surgical site infections in patients undergoing endoprosthetic reconstruction for lower extremity primary bone tumours. METHODS: We performed a pilot international multi-centre RCT. We used central randomisation...... to conceal treatment allocation and sham antibiotics to blind participants, surgeons, and data collectors. We determined feasibility by measuring patient enrolment, completeness of follow-up, and protocol deviations for the antibiotic regimens. RESULTS: We screened 96 patients and enrolled 60 participants......% at one year (the remainder with partial data or pending queries). In total, 18 participants missed at least one dose of antibiotics or placebo post-operatively, but 93% of all post-operative doses were administered per protocol. CONCLUSIONS: It is feasible to conduct a definitive multi-centre RCT of post...

  2. Cost-effectiveness of HPV vaccination in the context of high cervical cancer incidence and low screening coverage.

    Science.gov (United States)

    Võrno, Triin; Lutsar, Katrin; Uusküla, Anneli; Padrik, Lee; Raud, Terje; Reile, Rainer; Nahkur, Oliver; Kiivet, Raul-Allan

    2017-11-01

    Estonia has high cervical cancer incidence and low screening coverage. We modelled the impact of population-based bivalent, quadrivalent or nonavalent HPV vaccination alongside cervical cancer screening. A Markov cohort model of the natural history of HPV infection was used to assess the cost-effectiveness of vaccinating a cohort of 12-year-old girls with bivalent, quadrivalent or nonavalent vaccine in two doses in a national, school-based vaccination programme. The model followed the natural progression of HPV infection into subsequent genital warts (GW); premalignant lesions (CIN1-3); cervical, oropharyngeal, vulvar, vaginal and anal cancer. Vaccine coverage was assumed to be 70%. A time horizon of 88years (up to 100years of age) was used to capture all lifetime vaccination costs and benefits. Costs and utilities were discounted using an annual discount rate of 5%. Vaccination of 12-year-old girls alongside screening compared to screening alone had an incremental cost-effectiveness ratio (ICER) of €14,007 (bivalent), €14,067 (quadrivalent) and €11,633 (nonavalent) per quality-adjusted life-year (QALY) in the base-case scenario and ranged between €5367-21,711, €5142-21,800 and €4563-18,142, respectively, in sensitivity analysis. The results were most sensitive to changes in discount rate, vaccination regimen, vaccine prices and cervical cancer screening coverage. Vaccination of 12-year-old girls alongside current cervical cancer screening can be considered a cost-effective intervention in Estonia. Adding HPV vaccination to the national immunisation schedule is expected to prevent a considerable number of HPV infections, genital warts, premalignant lesions, HPV related cancers and deaths. Although in our model ICERs varied slightly depending on the vaccine used, they generally fell within the same range. Cost-effectiveness of HPV vaccination was found to be most dependent on vaccine cost and duration of vaccine immunity, but not on the type of vaccine

  3. Assessment of non-standard HIV antiretroviral therapy regimens at ...

    African Journals Online (AJOL)

    2016-03-06

    Mar 6, 2016 ... Most patients were transitioned to standard regimens, ... In cases of first-line regimen treatment failure, ..... tute; National Heart, Lung, and Blood Institute; National. Institute of Dental & Craniofacial Research; National Insti-.

  4. Comprehensive sieve analysis of breakthrough HIV-1 sequences in the RV144 vaccine efficacy trial.

    Science.gov (United States)

    Edlefsen, Paul T; Rolland, Morgane; Hertz, Tomer; Tovanabutra, Sodsai; Gartland, Andrew J; deCamp, Allan C; Magaret, Craig A; Ahmed, Hasan; Gottardo, Raphael; Juraska, Michal; McCoy, Connor; Larsen, Brendan B; Sanders-Buell, Eric; Carrico, Chris; Menis, Sergey; Kijak, Gustavo H; Bose, Meera; Arroyo, Miguel A; O'Connell, Robert J; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Rerks-Ngarm, Supachai; Robb, Merlin L; Kirys, Tatsiana; Georgiev, Ivelin S; Kwong, Peter D; Scheffler, Konrad; Pond, Sergei L Kosakovsky; Carlson, Jonathan M; Michael, Nelson L; Schief, William R; Mullins, James I; Kim, Jerome H; Gilbert, Peter B

    2015-02-01

    The RV144 clinical trial showed the partial efficacy of a vaccine regimen with an estimated vaccine efficacy (VE) of 31% for protecting low-risk Thai volunteers against acquisition of HIV-1. The impact of vaccine-induced immune responses can be investigated through sieve analysis of HIV-1 breakthrough infections (infected vaccine and placebo recipients). A V1/V2-targeted comparison of the genomes of HIV-1 breakthrough viruses identified two V2 amino acid sites that differed between the vaccine and placebo groups. Here we extended the V1/V2 analysis to the entire HIV-1 genome using an array of methods based on individual sites, k-mers and genes/proteins. We identified 56 amino acid sites or "signatures" and 119 k-mers that differed between the vaccine and placebo groups. Of those, 19 sites and 38 k-mers were located in the regions comprising the RV144 vaccine (Env-gp120, Gag, and Pro). The nine signature sites in Env-gp120 were significantly enriched for known antibody-associated sites (p = 0.0021). In particular, site 317 in the third variable loop (V3) overlapped with a hotspot of antibody recognition, and sites 369 and 424 were linked to CD4 binding site neutralization. The identified signature sites significantly covaried with other sites across the genome (mean = 32.1) more than did non-signature sites (mean = 0.9) (p analysis of the breakthrough infections in the RV144 trial, this work describes a set of statistical methods and tools applicable to analysis of breakthrough infection genomes in general vaccine efficacy trials for diverse pathogens.

  5. 4-Valent Human Papillomavirus (4vHPV) Vaccine in Preadolescents and Adolescents After 10 Years.

    Science.gov (United States)

    Ferris, Daron G; Samakoses, Rudiwilai; Block, Stanley L; Lazcano-Ponce, Eduardo; Restrepo, Jaime Alberto; Mehlsen, Jesper; Chatterjee, Archana; Iversen, Ole-Erik; Joshi, Amita; Chu, Jian-Li; Krick, Andrea Likos; Saah, Alfred; Das, Rituparna

    2017-12-01

    We describe the final 10-year data for the long-term follow-up study of the 4-valent human papillomavirus (4vHPV) vaccine in preadolescents and adolescents. In the base study (V501-018), 1661 sexually inactive boys and girls received the 4vHPV vaccine (early vaccination group [EVG], managed for 9.9 years) or a placebo at day 1, month 2, and month 6. Thereafter, at month 30, the placebo group (catch-up vaccination group [CVG], managed for 7.4 years) received the 4vHPV vaccine by using the same dosing schedule. Long-term anti-HPV type 6, 11, 16, and 18 immune responses were assessed. Effectiveness was estimated by calculating the incidence rate of the primary endpoints (HPV types 6, 11, 16, and 18-related disease or persistent infection). For HPV types 6, 11, and 16, 89% to 96% of subjects remained seropositive through 10-years postvaccination. The preadolescents had 38% to 65% higher geometric mean titers at month 7, which remained 16% to 42% higher at 10 years compared with adolescents. No cases of HPV type 6, 11, 16, and 18-related diseases were observed. Ten subjects had a persistent infection of ≥6 months duration with vaccine-type HPV and 2 subjects had persistent infection for ≥12 months. No new serious adverse events were reported through 10 years. A 3-dose regimen of the 4vHPV vaccine was immunogenic, clinically effective, and generally well tolerated in preadolescents and adolescents during 10 years of follow-up. These long-term findings support efforts to vaccinate this population against HPV before exposure. Copyright © 2017 by the American Academy of Pediatrics.

  6. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    Directory of Open Access Journals (Sweden)

    Kornbluth Richard S

    2009-08-01

    Full Text Available Abstract Background Targeting of protein antigens to dendritic cells (DC via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR and CD40 ligands (CD40L as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C.

  7. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis.

    Science.gov (United States)

    Santosuosso, Michael; McCormick, Sarah; Zhang, Xizhong; Zganiacz, Anna; Xing, Zhou

    2006-08-01

    Parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. We examined a heterologous prime-boost regimen utilizing BCG as a prime vaccine and our recently described adenoviral vector expressing Ag85A (AdAg85A) as a boost vaccine. Since we recently demonstrated that a single intranasal but not intramuscular immunization with AdAg85A was able to induce potent protection from pulmonary Mycobacterium tuberculosis challenge in a mouse model, we compared the protective effects of parenteral and mucosal booster immunizations following subcutaneous BCG priming. Protection by BCG prime immunization was not effectively boosted by subcutaneous BCG or intramuscular AdAg85A. In contrast, protection by BCG priming was remarkably boosted by intranasal AdAg85A. Such enhanced protection by intranasal AdAg85A was correlated to the numbers of gamma interferon-positive CD4 and CD8 T cells residing in the airway lumen of the lung. Our study demonstrates that intranasal administration of AdAg85A represents an effective way to boost immune protection by parenteral BCG vaccination.

  8. Immunotherapy with mutated onchocystatin fails to enhance the efficacy of a sub-lethal oxytetracycline regimen against Onchocerca ochengi.

    Science.gov (United States)

    Bah, Germanus S; Tanya, Vincent N; Makepeace, Benjamin L

    2015-08-15

    Human onchocerciasis (river blindness), caused by the filarial nematode Onchocerca volvulus, has been successfully controlled by a single drug, ivermectin, for over 25 years. Ivermectin prevents the disease symptoms of severe itching and visual impairment by killing the microfilarial stage, but does not eliminate the adult parasites, necessitating repeated annual treatments. Mass drug administration with ivermectin does not always break transmission in forest zones and is contraindicated in individuals heavily co-infected with Loa loa, while reports of reduced drug efficacy in Ghana and Cameroon may signal the development of resistance. An alternative treatment for onchocerciasis involves targeting the essential Wolbachia symbiont with tetracycline or its derivatives, which are adulticidal. However, implementation of antibiotic therapy has not occurred on a wide scale due to the prolonged treatment regimen required (several weeks). In the bovine Onchocerca ochengi system, it has been shown previously that prolonged oxytetracycline therapy increases eosinophil counts in intradermal nodules, which kill the adult worms by degranulating on their surface. Here, in an "immunochemotherapeutic" approach, we sought to enhance the efficacy of a short, sub-lethal antibiotic regimen against O. ochengi by prior immunotherapy targeting onchocystatin, an immunomodulatory protein located in the adult female worm cuticle. A key asparagine residue in onchocystatin was mutated to ablate immunomodulatory activity, which has been demonstrated previously to markedly improve the protective efficacy of this vaccine candidate when used as an immunoprophylactic. The immunochemotherapeutic regimen was compared with sub-lethal oxytetracycline therapy alone; onchocystatin immunotherapy alone; a gold-standard prolonged, intermittent oxytetracycline regimen; and no treatment (negative control) in naturally infected Cameroonian cattle. Readouts were collected over one year and comprised adult

  9. HIV-1 and SIV Predominantly Use CCR5 Expressed on a Precursor Population to Establish Infection in T Follicular Helper Cells

    Directory of Open Access Journals (Sweden)

    John Zaunders

    2017-04-01

    Full Text Available BackgroundT follicular helper (Tfh cells are increasingly recognized as a major reservoir of HIV infection that will likely need to be addressed in approaches to curing HIV. However, Tfh express minimal CCR5, the major coreceptor for HIV-1, and the mechanism by which they are infected is unclear. We have previously shown that macaque Tfh lack CCR5, but are infected in vivo with CCR5-using SIV at levels comparable to other memory CD4+ T cells. Similarly, human splenic Tfh cells are highly infected with HIV-1 DNA. Therefore, we set out to examine the mechanism of infection of Tfh cells.MethodologyTfh and other CD4+ T cell subsets from macaque lymph nodes and spleens, splenic Tfh from HIV+ subjects, and tonsillar Tfh from HIV-uninfected subjects were isolated by cell sorting prior to cell surface and molecular characterization. HIV proviral gp120 sequences were submitted to genotypic and phenotypic tropism assays. Entry of CCR5- and CXCR4-using viruses into Tfh from uninfected tonsillar tissue was measured using a fusion assay.ResultsPhylogenetic analysis, genotypic, and phenotypic analysis showed that splenic Tfh cells from chronic HIV+ subjects were predominantly infected with CCR5-using viruses. In macaques, purified CCR5+PD-1intermediate(int+ memory CD4+ T cells were shown to include pre-Tfh cells capable of differentiating in vitro to Tfh by upregulation of PD-1 and Bcl6, confirmed by qRT-PCR and single-cell multiplex PCR. Infected PD-1int cells survive, carry SIV provirus, and differentiate into PD-1hi Tfh after T cell receptor stimulation, suggesting a pathway for SIV infection of Tfh. In addition, a small subset of macaque and human PD-1hi Tfh can express low levels of CCR5, which makes them susceptible to infection. Fusion assays demonstrated CCR5-using HIV-1 entry into CCR5+ Tfh and pre-Tfh cells from human tonsils.ConclusionThe major route of infection of Tfh in macaques and humans appears to be via a CCR5-expressing pre-Tfh population

  10. Therapeutics targeting tumor immune escape: towards the development of new generation anticancer vaccines.

    Science.gov (United States)

    Mocellin, Simone; Nitti, Donato

    2008-05-01

    Despite the evidence that immune effectors can play a significant role in controlling tumor growth under natural conditions or in response to therapeutic manipulation, it is clear that malignant cells evade immune surveillance in most cases. Considering that anticancer vaccination has reached a plateau of results and currently no vaccination regimen is indicated as a standard anticancer therapy, the dissection of the molecular events underlying tumor immune escape is the necessary condition to make anticancer vaccines a therapeutic weapon effective enough to be implemented in the routine clinical setting. Recent years have witnessed significant advances in our understanding of the molecular mechanisms underlying tumor immune escape. These mechanistic insights are fostering the development of rationally designed therapeutics aimed at reverting the immunosuppressive circuits that undermine an effective antitumor immune response. In this review, the best characterized mechanisms that allow cancer cells to evade immune surveillance are overviewed and the most debated controversies constellating this complex field are highlighted. In addition, the latest therapeutic strategies devised to overcome tumor immune escape are described, with special regard to those entering clinical phase investigation. Copyright (c) 2007 Wiley-Periodicals, Inc.

  11. Vaccine decision-making begins in pregnancy: Correlation between vaccine concerns, intentions and maternal vaccination with subsequent childhood vaccine uptake.

    Science.gov (United States)

    Danchin, M H; Costa-Pinto, J; Attwell, K; Willaby, H; Wiley, K; Hoq, M; Leask, J; Perrett, K P; O'Keefe, Jacinta; Giles, M L; Marshall, H

    2017-08-12

    Maternal and childhood vaccine decision-making begins prenatally. Amongst pregnant Australian women we aimed to ascertain vaccine information received, maternal immunisation uptake and attitudes and concerns regarding childhood vaccination. We also aimed to determine any correlation between a) intentions and concerns regarding childhood vaccination, (b) concerns about pregnancy vaccination, (c) socioeconomic status (SES) and (d) uptake of influenza and pertussis vaccines during pregnancy and routine vaccines during childhood. Women attending public antenatal clinics were recruited in three Australian states. Surveys were completed on iPads. Follow-up phone surveys were done three to six months post delivery, and infant vaccination status obtained via the Australian Childhood Immunisation Register (ACIR). Between October 2015 and March 2016, 975 (82%) of 1184 mothers consented and 406 (42%) agreed to a follow up survey, post delivery. First-time mothers (445; 49%) had significantly more vaccine concerns in pregnancy and only 73% had made a decision about childhood vaccination compared to 89% of mothers with existing children (p-valuepost delivery survey, 46% and 82% of mothers reported receiving pregnancy influenza and pertussis vaccines respectively. The mother's degree of vaccine hesitancy and two attitudinal factors were correlated with vaccine uptake post delivery. There was no association between reported maternal vaccine uptake or SES and childhood vaccine uptake. First time mothers are more vaccine hesitant and undecided about childhood vaccination, and only two thirds of all mothers believed they received enough information during pregnancy. New interventions to improve both education and communication on childhood and maternal vaccines, delivered by midwives and obstetricians in the Australian public hospital system, may reduce vaccine hesitancy for all mothers in pregnancy and post delivery, particularly first-time mothers. Copyright © 2017 Elsevier Ltd

  12. Comparison of 3 vaccination strategies against porcine reproductive and respiratory syndrome virus, Mycoplasma hyopneumoniae, and porcine circovirus type 2 on a 3 pathogen challenge model.

    Science.gov (United States)

    Jeong, Jiwoon; Kang, Ikjae; Kim, Seeun; Park, Kee Hwan; Park, Changhoon; Chae, Chanhee

    2018-01-01

    The objective of this study was to compare clinical, microbiologic, immunologic, and pathologic parameters in pigs each concurrently administered porcine reproductive and respiratory syndrome virus (PRRSV), Mycoplasma hyopneumoniae, and porcine circovirus type 2 (PCV2) vaccine from 1 of 2 commercial sources at 21 days of age and challenged with field strains of each of the 3 pathogens. Pigs were challenged with PRRSV and M. hyopneumoniae at 42 days of age (-14 days post-challenge, dpc) followed by a challenge with PCV2 at 56 days of age (0 dpc). Significant differences were observed between vaccinated challenged and unvaccinated challenged groups in clinical (average daily gain and clinical signs), microbiologic (viremia and nasal shedding), immunologic (antibodies and interferon-γ secreting cells), and pathologic (lesions) outcomes. Significant differences were observed among the 3 vaccinated challenged groups in microbiologic (nasal shedding of M. hyopneumoniae and viremia of PCV2) and immunologic ( M. hyopneumoniae - and PCV2-specific interferon-γ secreting cells) outcomes. The vaccination regimen for PRRSV vaccine, M. hyopneumoniae vaccine, and PCV2 vaccine is efficacious for controlling triple challenge with PRRSV, M. hyopneumoniae, and PCV2 from weaning to finishing period.

  13. Cost-effectiveness of introducing a rotavirus vaccine in developing countries: The case of Mexico

    Science.gov (United States)

    Valencia-Mendoza, Atanacio; Bertozzi, Stefano M; Gutierrez, Juan-Pablo; Itzler, Robbin

    2008-01-01

    Background In developing countries rotavirus is the leading cause of severe diarrhoea and diarrhoeal deaths in children under 5. Vaccination could greatly alleviate that burden, but in Mexico as in most low- and middle-income countries the decision to add rotavirus vaccine to the national immunisation program will depend heavily on its cost-effectiveness and affordability. The objective of this study was to assess the cost-effectiveness of including the pentavalent rotavirus vaccine in Mexico's national immunisation program. Methods A cost-effectiveness model was developed from the perspective of the health system, modelling the vaccination of a hypothetical birth cohort of 2 million children monitored from birth through 60 months of age. It compares the cost and disease burden of rotavirus in an unvaccinated cohort of children with one vaccinated as recommended at 2, 4, and 6 months. Results Including the pentavalent vaccine in the national immunisation program could prevent 71,464 medical visits (59%), 5,040 hospital admissions (66%), and 612 deaths from rotavirus gastroenteritis (70%). At US$10 per dose and a cost of administration of US$13.70 per 3-dose regimen, vaccination would cost US$122,058 per death prevented, US$4,383 per discounted life-year saved, at a total net cost of US$74.7 million dollars to the health care system. Key variables influencing the results were, in order of importance, case fatality, vaccine price, vaccine efficacy, serotype prevalence, and annual loss of efficacy. The results are also very sensitive to the discount rate assumed when calculated per life-year saved. Conclusion At prices below US $15 per dose, the cost per life-year saved is estimated to be lower than one GNP per capita and hence highly cost effective by the WHO Commission on Macroeconomics and Health criteria. The cost-effectiveness estimates are highly dependent upon the mortality in the absence of the vaccine, which suggests that the vaccine is likely to be

  14. Cost-effectiveness of introducing a rotavirus vaccine in developing countries: The case of Mexico

    Directory of Open Access Journals (Sweden)

    Gutierrez Juan-Pablo

    2008-07-01

    Full Text Available Abstract Background In developing countries rotavirus is the leading cause of severe diarrhoea and diarrhoeal deaths in children under 5. Vaccination could greatly alleviate that burden, but in Mexico as in most low- and middle-income countries the decision to add rotavirus vaccine to the national immunisation program will depend heavily on its cost-effectiveness and affordability. The objective of this study was to assess the cost-effectiveness of including the pentavalent rotavirus vaccine in Mexico's national immunisation program. Methods A cost-effectiveness model was developed from the perspective of the health system, modelling the vaccination of a hypothetical birth cohort of 2 million children monitored from birth through 60 months of age. It compares the cost and disease burden of rotavirus in an unvaccinated cohort of children with one vaccinated as recommended at 2, 4, and 6 months. Results Including the pentavalent vaccine in the national immunisation program could prevent 71,464 medical visits (59%, 5,040 hospital admissions (66%, and 612 deaths from rotavirus gastroenteritis (70%. At US$10 per dose and a cost of administration of US$13.70 per 3-dose regimen, vaccination would cost US$122,058 per death prevented, US$4,383 per discounted life-year saved, at a total net cost of US$74.7 million dollars to the health care system. Key variables influencing the results were, in order of importance, case fatality, vaccine price, vaccine efficacy, serotype prevalence, and annual loss of efficacy. The results are also very sensitive to the discount rate assumed when calculated per life-year saved. Conclusion At prices below US $15 per dose, the cost per life-year saved is estimated to be lower than one GNP per capita and hence highly cost effective by the WHO Commission on Macroeconomics and Health criteria. The cost-effectiveness estimates are highly dependent upon the mortality in the absence of the vaccine, which suggests that the vaccine

  15. Characterization of guinea pig T cell responses elicited after EP-assisted delivery of DNA vaccines to the skin.

    Science.gov (United States)

    Schultheis, Katherine; Schaefer, Hubert; Yung, Bryan S; Oh, Janet; Muthumani, Karuppiah; Humeau, Laurent; Broderick, Kate E; Smith, Trevor R F

    2017-01-03

    The skin is an ideal target tissue for vaccine delivery for a number of reasons. It is highly accessible, and most importantly, enriched in professional antigen presenting cells. Possessing strong similarities to human skin physiology and displaying a defined epidermis, the guinea pig is an appropriate model to study epidermal delivery of vaccine. However, whilst we have characterized the humoral responses in the guinea pig associated with skin vaccine protocols we have yet to investigate the T cell responses. In response to this inadequacy, we developed an IFN-γ ELISpot assay to characterize the cellular immune response in the peripheral blood of guinea pigs. Using a nucleoprotein (NP) influenza pDNA vaccination regimen, we characterized host T cell responses. After delivery of the DNA vaccine to the guinea pig epidermis we detected robust and rapid T cell responses. The levels of IFN-γ spot-forming units averaged approximately 5000 per million cells after two immunizations. These responses were broad in that multiple regions across the NP antigen elicited a T cell response. Interestingly, we identified a number of NP immunodominant T cell epitopes to be conserved across an outbred guinea pig population, a phenomenon which was also observed after immunization with a RSV DNA vaccine. We believe this data enhances our understanding of the cellular immune response elicited to a vaccine in guinea pigs, and globally, will advance the use of this model for vaccine development, especially those targeting skin as a delivery site. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    Directory of Open Access Journals (Sweden)

    Adriana S Azevedo

    Full Text Available The dengue envelope glycoprotein (E is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2 and a chimeric yellow fever/dengue 2 virus (YF17D-D2. The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  17. Development of antibiotic regimens using graph based evolutionary algorithms.

    Science.gov (United States)

    Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M

    2013-12-01

    This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Vaccines today, vaccines tomorrow: a perspective.

    Science.gov (United States)

    Loucq, Christian

    2013-01-01

    Vaccines are considered as one of the major contributions of the 20th century and one of the most cost effective public health interventions. The International Vaccine Institute has as a mission to discover, develop and deliver new and improved vaccines against infectious diseases that affects developing nations. If Louis Pasteur is known across the globe, vaccinologists like Maurice Hilleman, Jonas Salk and Charles Mérieux are known among experts only despite their contribution to global health. Thanks to a vaccine, smallpox has been eradicated, polio has nearly disappeared, Haemophilus influenzae B, measles and more recently meningitis A are controlled in many countries. While a malaria vaccine is undergoing phase 3, International Vaccine Institute, in collaboration with an Indian manufacturer has brought an oral inactivated cholera vaccine to pre-qualification. The field of vaccinology has undergone major changes thanks to philanthropists such as Bill and Melinda Gates, initiatives like the Decade of Vaccines and public private partnerships. Current researches on vaccines have more challenging targets like the dengue viruses, malaria, human immunodeficiency virus, the respiratory syncytial virus and nosocomial diseases. Exciting research is taking place on new adjuvants, nanoparticles, virus like particles and new route of administration. An overcrowded infant immunization program, anti-vaccine groups, immunizing a growing number of elderlies and delivering vaccines to difficult places are among challenges faced by vaccinologists and global health experts.

  19. A recombinant anchorless respiratory syncytial virus (RSV) fusion (F) protein/monophosphoryl lipid A (MPL) vaccine protects against RSV-induced replication and lung pathology.

    Science.gov (United States)

    Blanco, Jorge C G; Boukhvalova, Marina S; Pletneva, Lioubov M; Shirey, Kari Ann; Vogel, Stefanie N

    2014-03-14

    We previously demonstrated that the severe cytokine storm and pathology associated with RSV infection following intramuscular vaccination of cotton rats with FI-RSV Lot 100 could be completely abolished by formulating the vaccine with the mild TLR4 agonist and adjuvant, monophosphoryl lipid A (MPL). Despite this significant improvement, the vaccine failed to blunt viral replication in the lungs. Since MPL is a weak TLR4 agonist, we hypothesized that its adjuvant activity was mediated by modulating the innate immune response of respiratory tract resident macrophages. Therefore, we developed a new vaccine preparation with purified, baculovirus expressed, partially purified, anchorless RSV F protein formulated with synthetic MPL that was administered to cotton rats intranasally, followed by an intradermal boost. This novel formulation and heterologous "prime/boost" route of administration resulted in decreased viral titers compared to that seen in animals vaccinated with F protein alone. Furthermore, animals vaccinated by this route showed no evidence of enhanced lung pathology upon RSV infection. This indicates that MPL acts as an immune modulator that protects the host from vaccine-enhanced pathology, and reduces RSV replication in the lower respiratory tract when administered by a heterologous prime/boost immunization regimen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    Directory of Open Access Journals (Sweden)

    Narcís Saubi

    2011-01-01

    Full Text Available We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old and adult (7 weeks old BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine.

  1. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    Science.gov (United States)

    Saubi, Narcís; Im, Eung-Jun; Fernández-Lloris, Raquel; Gil, Olga; Cardona, Pere-Joan; Gatell, Josep Maria; Hanke, Tomáš; Joseph, Joan

    2011-01-01

    We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old) and adult (7 weeks old) BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine. PMID:21603216

  2. Comprehensive sieve analysis of breakthrough HIV-1 sequences in the RV144 vaccine efficacy trial.

    Directory of Open Access Journals (Sweden)

    Paul T Edlefsen

    2015-02-01

    Full Text Available The RV144 clinical trial showed the partial efficacy of a vaccine regimen with an estimated vaccine efficacy (VE of 31% for protecting low-risk Thai volunteers against acquisition of HIV-1. The impact of vaccine-induced immune responses can be investigated through sieve analysis of HIV-1 breakthrough infections (infected vaccine and placebo recipients. A V1/V2-targeted comparison of the genomes of HIV-1 breakthrough viruses identified two V2 amino acid sites that differed between the vaccine and placebo groups. Here we extended the V1/V2 analysis to the entire HIV-1 genome using an array of methods based on individual sites, k-mers and genes/proteins. We identified 56 amino acid sites or "signatures" and 119 k-mers that differed between the vaccine and placebo groups. Of those, 19 sites and 38 k-mers were located in the regions comprising the RV144 vaccine (Env-gp120, Gag, and Pro. The nine signature sites in Env-gp120 were significantly enriched for known antibody-associated sites (p = 0.0021. In particular, site 317 in the third variable loop (V3 overlapped with a hotspot of antibody recognition, and sites 369 and 424 were linked to CD4 binding site neutralization. The identified signature sites significantly covaried with other sites across the genome (mean = 32.1 more than did non-signature sites (mean = 0.9 (p < 0.0001, suggesting functional and/or structural relevance of the signature sites. Since signature sites were not preferentially restricted to the vaccine immunogens and because most of the associations were insignificant following correction for multiple testing, we predict that few of the genetic differences are strongly linked to the RV144 vaccine-induced immune pressure. In addition to presenting results of the first complete-genome analysis of the breakthrough infections in the RV144 trial, this work describes a set of statistical methods and tools applicable to analysis of breakthrough infection genomes in general vaccine

  3. Characteristics of HIV antiretroviral regimen and treatment adherence

    Directory of Open Access Journals (Sweden)

    Vera Lúcia da Silveira

    Full Text Available The relationship between characteristics of HIV antiretroviral regimens and treatment adherence was studied in adolescent and adult patients who underwent antiretroviral therapy from January 1998 to September 2000, at the Service for Specialized Assistance in Pelotas. The patients were interviewed on two occasions, and the use of antiretrovirals during the previous 48 hours was investigated by a self-report. Adherence was defined as use of 95% or more of the prescribed medication. Social-demographic variables were collected through direct questionnaires. The antiretroviral regimen and clinical data were copied from the patients' records. Associations between the independent variables and adherence were analyzed by means of logistic regression. The multivariate analysis included characteristics of the antiretroviral regimens, social-demographic variables, as well as perception of negative effects, negative physiological states, and adverse effects of the treatment. Among the 224 selected patients, 194 participated in our study. Their ages varied from 17 to 67 years; most patients were men, with few years of schooling and a low family income. Only 49% adhered to the treatment. Adherence to treatment regimens was reduced when more daily doses were indicated: three to four doses (odds ratio of adherence to treatment (OR=0.47, 95% confidence interval (CI 0.22-1.01 and five to six (OR=0.24, 95% CI 0.09-0.62; two or more doses taken in a fasting state (OR=0.59, 95% CI 0.11-0.68, and for patients who reported adverse effects to the treatment (OR=0.39, 95% CI 0.19-0.77. Most of the regimens with more than two daily doses of medication included at least one dose apart from mealtimes. The results suggest that, if possible, regimens with a reduced number of doses should be chosen, with no compulsory fasting, and with few adverse effects. Strategies to minimize these effects should be discussed with the patients.

  4. Reducing Cost of Rabies Post Exposure Prophylaxis: Experience of a Tertiary Care Hospital in Pakistan.

    Directory of Open Access Journals (Sweden)

    Naseem Salahuddin

    2016-02-01

    Full Text Available Rabies is a uniformly fatal disease, but preventable by timely and correct use of post exposure prophylaxis (PEP. Unfortunately, many health care facilities in Pakistan do not carry modern life-saving vaccines and rabies immunoglobulin (RIG, assuming them to be prohibitively expensive and unsafe. Consequently, Emergency Department (ED health care professionals remain untrained in its application and refer patients out to other hospitals. The conventional Essen regimen requires five vials of cell culture vaccine (CCV per patient, whereas Thai Red Cross intradermal (TRC-id regimen requires only one vial per patient, and gives equal seroconversion as compared with Essen regimen.This study documents the cost savings in using the Thai Red Cross intradermal regimen with cell culture vaccine instead of the customary 5-dose Essen intramuscular regimen for eligible bite victims. All patients presenting to the Indus Hospital ED between July 2013 to June 2014 with animal bites received WHO recommended PEP. WHO Category 2 bites received intradermal vaccine alone, while Category 3 victims received vaccine plus wound infiltration with Equine RIG. Patients were counseled, and subsequent doses of the vaccine administered on days 3, 7 and 28. Throughput of cases, consumption utilization of vaccine and ERIG and the cost per patient were recorded.Government hospitals in Pakistan are generally underfinanced and cannot afford treatment of the enormous burden of dog bite victims. Hence, patients are either not treated at all, or asked to purchase their own vaccine, which most cannot afford, resulting in neglect and high incidence of rabies deaths. TRC-id regimen reduced the cost of vaccine to 1/5th of Essen regimen and is strongly recommended for institutions with large throughput. Training ED staff would save lives through a safe, effective and affordable technique.

  5. An Intranasal Proteosome-Adjuvanted Trivalent Influenza Vaccine Is Safe, Immunogenic & Efficacious in the Human Viral Influenza Challenge Model. Serum IgG & Mucosal IgA Are Important Correlates of Protection against Illness Associated with Infection.

    Directory of Open Access Journals (Sweden)

    Rob Lambkin-Williams

    Full Text Available A Proteosome-adjuvanted trivalent inactivated influenza vaccine (P-TIV administered intra-nasally was shown to be safe, well tolerated and immunogenic in both systemic and mucosal compartments, and effective at preventing illness associated with evidence of influenza infection.In two separate studies using the human viral challenge model, subjects were selected to be immunologically naive to A/Panama/2007/1999 (H3N2 virus and then dosed via nasal spray with one of three regimens of P-TIV or placebo. One or two doses, 15 μg or 30 μg, were given either once only or twice 14 days apart (1 x 30 μg, 2 x 30 μg, 2 x 15 μg and subjects were challenged with A/Panama/2007/1999 (H3N2 virus. Immune responses to the vaccine antigens were measured by haemagglutination inhibition assay (HAI and nasal wash secretory IgA (sIgA antibodies.Vaccine reactogenicity was mild, predictable and generally consistent with earlier Phase I studies with this vaccine. Seroconversion to A/Panama/2007/1999 (H3N2, following vaccination but prior to challenge, occurred in 57% to 77% of subjects in active dosing groups and 2% of placebo subjects. The greatest relative rise in sIgA, following vaccination but prior to challenge, was observed in groups that received 2 doses.Intranasal vaccination significantly protected against influenza (as defined by influenza symptoms combined with A/Panama seroconversion following challenge with A/Panama/2007/1999 (H3N2. When data were pooled from both studies, efficacy ranged from 58% to 82% in active dosing groups for any influenza symptoms with seroconversion, 67% to 85% for systemic or lower respiratory illness and seroconversion, and 65% to 100% for febrile illness and seroconversion. The two dose regimen was found to be superior to the single dose regimen. In this study, protection against illness associated with evidence of influenza infection (evidence determined by seroconversion following challenge with virus, significantly

  6. Priority-Setting for Novel Drug Regimens to Treat Tuberculosis: An Epidemiologic Model.

    Directory of Open Access Journals (Sweden)

    Emily A Kendall

    2017-01-01

    Full Text Available Novel drug regimens are needed for tuberculosis (TB treatment. New regimens aim to improve on characteristics such as duration, efficacy, and safety profile, but no single regimen is likely to be ideal in all respects. By linking these regimen characteristics to a novel regimen's ability to reduce TB incidence and mortality, we sought to prioritize regimen characteristics from a population-level perspective.We developed a dynamic transmission model of multi-strain TB epidemics in hypothetical populations reflective of the epidemiological situations in India (primary analysis, South Africa, the Philippines, and Brazil. We modeled the introduction of various novel rifampicin-susceptible (RS or rifampicin-resistant (RR TB regimens that differed on six characteristics, identified in consultation with a team of global experts: (1 efficacy, (2 duration, (3 ease of adherence, (4 medical contraindications, (5 barrier to resistance, and (6 baseline prevalence of resistance to the novel regimen. We compared scale-up of these regimens to a baseline reflective of continued standard of care. For our primary analysis situated in India, our model generated baseline TB incidence and mortality of 157 (95% uncertainty range [UR]: 113-187 and 16 (95% UR: 9-23 per 100,000 per year at the time of novel regimen introduction and RR TB incidence and mortality of 6 (95% UR: 4-10 and 0.6 (95% UR: 0.3-1.1 per 100,000 per year. An optimal RS TB regimen was projected to reduce 10-y TB incidence and mortality in the India-like scenario by 12% (95% UR: 6%-20% and 11% (95% UR: 6%-20%, respectively, compared to current-care projections. An optimal RR TB regimen reduced RR TB incidence by an estimated 32% (95% UR: 18%-46% and RR TB mortality by 30% (95% UR: 18%-44%. Efficacy was the greatest determinant of impact; compared to a novel regimen meeting all minimal targets only, increasing RS TB treatment efficacy from 94% to 99% reduced TB mortality by 6% (95% UR: 1%-13%, half the

  7. Classifying insulin regimens--difficulties and proposal for comprehensive new definitions.

    Science.gov (United States)

    Neu, A; Lange, K; Barrett, T; Cameron, F; Dorchy, H; Hoey, H; Jarosz-Chobot, P; Mortensen, H B; Robert, J-J; Robertson, K; de Beaufort, C

    2015-09-01

    Modern insulin regimens for the treatment of type 1 diabetes are highly individualized. The concept of an individually tailored medicine accounts for a broad variety of different insulin regimens applied. Despite clear recommendations for insulin management in children and adolescents with type 1 diabetes there is little distinctiveness about concepts and the nomenclature is confusing. Even among experts similar terms are used for different strategies. The aim of our review--based on the experiences of the Hvidoere Study Group (HSG)--is to propose comprehensive definitions for current insulin regimens reflecting current diabetes management in childhood and adolescence. The HSG--founded in 1994--is an international group representing 24 highly experienced pediatric diabetes centers, from Europe, Japan, North America and Australia. Different benchmarking studies of the HSG revealed a broad variety of insulin regimens applied in each center, respectively. Furthermore, the understanding of insulin regimens has been persistently different between the centers since more than 20 yr. Not even the terms 'conventional' and 'intensified therapy' were used consistently among all members. Besides the concepts 'conventional' and 'intensified', several other terms for the characterization of insulin regimens are in use: Basal Bolus Concept (BBC), multiple daily injections (MDI), and flexible insulin therapy (FIT) are most frequently used, although none of these expressions is clearly or consistently defined. The proposed new classification for insulin management will be comprehensive, simple, and catchy. Currently available terms were included. This classification may offer the opportunity to compare therapeutic strategies without the currently existing confusion on the insulin regimen. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. The effectiveness of preventative mass vaccination regimes against the incidence of highly pathogenic avian influenza on Java Island, Indonesia.

    Science.gov (United States)

    Bett, B; McLaws, M; Jost, C; Schoonman, L; Unger, F; Poole, J; Lapar, M L; Siregar, E S; Azhar, M; Hidayat, M M; Dunkle, S E; Mariner, J

    2015-04-01

    We conducted an operational research study involving backyard and semicommercial farms on Java Island, Indonesia, between April 2008 and September 2009 to evaluate the effectiveness of two preventive mass vaccination strategies against highly pathogenic avian influenza (HPAI). One regimen used Legok 2003 H5N1 vaccine, while the other used both Legok 2003 H5N1 and HB1 Newcastle disease (ND) vaccine. A total of 16 districts were involved in the study. The sample size was estimated using a formal power calculation technique that assumed a detectable effect of treatment as a 50% reduction in the baseline number of HPAI-compatible outbreaks. Within each district, candidate treatment blocks with village poultry populations ranging from 80 000 to 120 000 were created along subdistrict boundary lines. Subsequently, four of these blocks were randomly selected and assigned one treatment from a list that comprised control, vaccination against HPAI, vaccination against HPAI + ND. Four rounds of vaccination were administered at quarterly intervals beginning in July 2008. A vaccination campaign involved vaccinating 100 000 birds in a treatment block, followed by another 100 000 vaccinations 3 weeks later as a booster dose. Data on disease incidence and vaccination coverage were also collected at quarterly intervals using participatory epidemiological techniques. Compared with the unvaccinated (control) group, the incidence of HPAI-compatible events declined by 32% (P = 0.24) in the HPAI-vaccinated group and by 73% (P = 0.00) in the HPAI- and ND-vaccinated group. The effect of treatment did not vary with time or district. Similarly, an analysis of secondary data from the participatory disease and response (PDSR) database revealed that the incidence of HPAI declined by 12% in the HPAI-vaccinated group and by 24% in the HPAI + ND-vaccinated group. The results suggest that the HPAI + ND vaccination significantly reduced the incidence of HPAI-compatible events in mixed populations of

  9. Genital lesions: An indication for changing ART regimen.

    Science.gov (United States)

    Kumar, S Arun; Kumar, N; Kumarasamy, N

    2011-01-01

    Genital lesions are common in HIV positive patients and aetiology for these are mainly due to HSV, HPV or bacterial. They usually respond to HAART, antiviral or antimicrobials. We are presenting a young patient on HAART with non-healing genital ulcer lesions for sixteen months. He responded well to a change in ART regimen within a period of 15 days. This happened after a change to a more potent ART regimen.

  10. Mathematical modeling of ultradeep sequencing data reveals that acute CD8+ T-lymphocyte responses exert strong selective pressure in simian immunodeficiency virus-infected macaques but still fail to clear founder epitope sequences.

    Science.gov (United States)

    Love, Tanzy M T; Thurston, Sally W; Keefer, Michael C; Dewhurst, Stephen; Lee, Ha Youn

    2010-06-01

    The prominent role of antiviral cytotoxic CD8(+) T-lymphocytes (CD8-TL) in containing the acute viremia of human and simian immunodeficiency viruses (HIV-1 and SIV) has rationalized the development of T-cell-based vaccines. However, the presence of escape mutations in the acute stage of infection has raised a concern that accelerated escape from vaccine-induced CD8-TL responses might undermine vaccine efficacy. We reanalyzed previously published data of 101,822 viral genomes of three CD8-TL epitopes, Nef(103-111)RM9 (RM9), Tat(28-35)SL8 (SL8), and Gag(181-189)CM9 (CM9), sampled by ultradeep pyrosequencing from eight macaques. Multiple epitope variants appeared during the resolution of acute viremia, followed by the predominance of a single mutant epitope. By fitting a mathematical model, we estimated the first acute escape rate as 0.36 day(-1) within escape-prone epitopes, RM9 and SL8, and the chronic escape rate as 0.014 day(-1) within the CM9 epitope. Our estimate of SIV acute escape rates was found to be comparable to very early HIV-1 escape rates. The timing of the first escape was more highly correlated with the timing of the peak CD8-TL response than with the magnitude of the CD8-TL response. The transmitted epitope decayed more than 400 times faster during the acute viral decline stage than predicted by a neutral evolution model. However, the founder epitope persisted as a minor population even at the viral set point; in contrast, the majority of acute escape epitopes were completely cleared. Our results suggest that a reservoir of SIV infection is preferentially formed by virus with the transmitted epitope.

  11. How influenza vaccination policy may affect vaccine logistics.

    Science.gov (United States)

    Assi, Tina-Marie; Rookkapan, Korngamon; Rajgopal, Jayant; Sornsrivichai, Vorasith; Brown, Shawn T; Welling, Joel S; Norman, Bryan A; Connor, Diana L; Chen, Sheng-I; Slayton, Rachel B; Laosiritaworn, Yongjua; Wateska, Angela R; Wisniewski, Stephen R; Lee, Bruce Y

    2012-06-22

    When policymakers make decision about the target populations and timing of influenza vaccination, they may not consider the impact on the vaccine supply chains, which may in turn affect vaccine availability. Our goal is to explore the effects on the Thailand vaccine supply chain of introducing influenza vaccines and varying the target populations and immunization time-frames. We Utilized our custom-designed software HERMES (Highly Extensible Resource for Modeling Supply Chains), we developed a detailed, computational discrete-event simulation model of the Thailand's National Immunization Program (NIP) supply chain in Trang Province, Thailand. A suite of experiments simulated introducing influenza vaccines for different target populations and over different time-frames prior to and during the annual influenza season. Introducing influenza vaccines creates bottlenecks that reduce the availability of both influenza vaccines as well as the other NIP vaccines, with provincial to district transport capacity being the primary constraint. Even covering only 25% of the Advisory Committee on Immunization Practice-recommended population while administering the vaccine over six months hinders overall vaccine availability so that only 62% of arriving patients can receive vaccines. Increasing the target population from 25% to 100% progressively worsens these bottlenecks, while increasing influenza vaccination time-frame from 1 to 6 months decreases these bottlenecks. Since the choice of target populations for influenza vaccination and the time-frame to deliver this vaccine can substantially affect the flow of all vaccines, policy-makers may want to consider supply chain effects when choosing target populations for a vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Immune responses to rAAV6: The influence of canine parvovirus vaccination and neonatal administration of viral vector

    Directory of Open Access Journals (Sweden)

    Andrea L H Arnett

    2011-11-01

    Full Text Available Recombinant adeno-associated viral (rAAV vectors promote long-term gene transfer in many animal species. Significant effort has focused on the evaluation of rAAV delivery and the immune response in both murine and canine models of neuromuscular disease. However, canines provided for research purposes are routinely vaccinated against canine parvovirus (CPV. rAAV and CPV possess significant homology and are both parvoviruses. Thus, any immune response generated to CPV vaccination has the potential to cross-react with rAAV vectors. In this study, we investigated the immune response to rAAV6 delivery in a cohort of CPV-vaccinated canines and evaluated multiple vaccination regimens in a mouse model of CPV-vaccination. We show that CPV-vaccination stimulates production of neutralizing antibodies with minimal cross-reactivity to rAAV6. In addition, no significant differences were observed in the magnitude of the rAAV6-directed immune response between CPV-vaccinated animals and controls. Moreover, CPV-vaccination did not inhibit rAAV6-mediated transduction. We also evaluated the immune response to early rAAV6-vaccination in neonatal mice. The influence of maternal hormones and cytokines leads to a relatively permissive state in the neonate. We hypothesized that immaturity of the immune system would permit induction of tolerance to rAAV6 when delivered during the neonatal period. Mice were vaccinated with rAAV6 at 1 or 5 days of age, and subsequently challenged with rAAV6 exposure during adulthood via two sequential IM injections, one month apart. All vaccinated animals generated a significant neutralizing antibody response to rAAV6-vaccination that was enhanced following IM injection in adulthood. Taken together, these data demonstrate that the immune response raised against rAAV6 is distinct from that which is elicited by the standard parvoviral vaccines and is sufficient to prevent stable tolerization in neonatal mice.

  13. Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection.

    Directory of Open Access Journals (Sweden)

    Abderaouf Damouche

    2015-09-01

    Full Text Available Two of the crucial aspects of human immunodeficiency virus (HIV infection are (i viral persistence in reservoirs (precluding viral eradication and (ii chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART-controlled HIV-infected patients. The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF; the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV. The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART. Data on the impact of HIV on the SVF (especially in individuals not receiving ART are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low

  14. The sequence of the CA-SP1 junction accounts for the differential sensitivity of HIV-1 and SIV to the small molecule maturation inhibitor 3-O-{3',3'-dimethylsuccinyl}-betulinic acid

    Directory of Open Access Journals (Sweden)

    Aiken Christopher

    2004-06-01

    Full Text Available Abstract Background Despite the effectiveness of currently available antiretroviral therapies in the treatment of HIV-1 infection, a continuing need exists for novel compounds that can be used in combination with existing drugs to slow the emergence of drug-resistant viruses. We previously reported that the small molecule 3-O-{3',3'-dimethylsuccinyl}-betulinic acid (DSB specifically inhibits HIV-1 replication by delaying the processing of the CA-SP1 junction in Pr55Gag. By contrast, SIVmac239 replicates efficiently in the presence of high concentrations of DSB. To determine whether sequence differences in the CA-SP1 junction can fully account for the differential sensitivity of HIV-1 and SIV to DSB, we engineered mutations in this region of two viruses and tested their sensitivity to DSB in replication assays using activated human primary CD4+ T cells. Results Substitution of the P2 and P1 residues of HIV-1 by the corresponding amino acids of SIV resulted in strong resistance to DSB, but the mutant virus replicated with reduced efficiency. Conversely, replication of an SIV mutant containing three amino acid substitutions in the CA-SP1 cleavage site was highly sensitive to DSB, and the mutations resulted in delayed cleavage of the CA-SP1 junction in the presence of the drug. Conclusions These results demonstrate that the CA-SP1 junction in Pr55Gag represents the primary viral target of DSB. They further suggest that the therapeutic application of DSB will be accompanied by emergence of mutant viruses that are highly resistant to the drug but which exhibit reduced fitness relative to wild type HIV-1.

  15. Aggressive Regimens for Multidrug-Resistant Tuberculosis Reduce Recurrence

    Science.gov (United States)

    Franke, Molly F.; Appleton, Sasha C.; Mitnick, Carole D.; Furin, Jennifer J.; Bayona, Jaime; Chalco, Katiuska; Shin, Sonya; Murray, Megan; Becerra, Mercedes C.

    2013-01-01

    Background. Recurrent tuberculosis disease occurs within 2 years in as few as 1% and as many as 29% of individuals successfully treated for multidrug-resistant (MDR) tuberculosis. A better understanding of treatment-related factors associated with an elevated risk of recurrent tuberculosis after cure is urgently needed to optimize MDR tuberculosis therapy. Methods. We conducted a retrospective cohort study among adults successfully treated for MDR tuberculosis in Peru. We used multivariable Cox proportional hazards regression analysis to examine whether receipt of an aggressive MDR tuberculosis regimen for ≥18 months following sputum conversion from positive to negative was associated with a reduced rate of recurrent tuberculosis. Results. Among 402 patients, the median duration of follow-up was 40.5 months (interquartile range, 21.2–53.4). Receipt of an aggressive MDR tuberculosis regimen for ≥18 months following sputum conversion was associated with a lower risk of recurrent tuberculosis (hazard ratio, 0.40 [95% confidence interval, 0.17–0.96]; P = .04). A baseline diagnosis of diabetes mellitus also predicted recurrent tuberculosis (hazard ratio, 10.47 [95% confidence interval, 2.17–50.60]; P = .004). Conclusions. Individuals who received an aggressive MDR tuberculosis regimen for ≥18 months following sputum conversion experienced a lower rate of recurrence after cure. Efforts to ensure that an aggressive regimen is accessible to all patients with MDR tuberculosis, such as minimization of sequential ineffective regimens, expanded drug access, and development of new MDR tuberculosis compounds, are critical to reducing tuberculosis recurrence in this population. Patients with diabetes mellitus should be carefully managed during initial treatment and followed closely for recurrent disease. PMID:23223591

  16. Fluid regimens for colostomy irrigation: a systematic review.

    Science.gov (United States)

    Lizarondo, Lucylynn; Aye Gyi, Aye; Schultz, Tim

    2008-09-01

    Background  Various techniques for managing faecal evacuation have been proposed; however, colostomy irrigation is favoured as it leads to better patient outcomes. Alternative fluid regimens for colostomy irrigation have been suggested to achieve effective evacuation. Aim  The objective of this review was to summarise the best available evidence on the most effective fluid regimen for colostomy irrigation. Search strategy  Trials were identified by electronic searches of CINAHL, PubMed, MEDLINE, Current Contents, the Cochrane Library and EMBASE. Unpublished articles and references lists from included studies were also searched. Selection criteria  Randomised controlled trials and before-and-after studies investigating any fluid regimen for colostomy irrigation were eligible for inclusion. Outcomes measured included fluid inflow time, total wash-out time, haemodynamic changes during irrigation, cramps, leakage episodes, quality of life and level of satisfaction. Data collection and analysis  Trial selection, quality appraisal and data extraction were carried out independently by two reviewers. Differences in opinion were resolved by discussion. Main results  The systematic literature search strategy identified two cross-over trials that compared water with another fluid regimen. Owing to the differences in irrigating solutions used, the results were not pooled for analysis. Both the polyethylene glycol electrolyte solution and glyceryl trinitrate performed significantly better than water. Conclusion  There is some evidence to support the effectiveness of fluid regimens other than water, such as polyethylene glycol electrolyte and glyceryl trinitrate, for colostomy irrigation. Further well-designed clinical trials are required to establish solid evidence on the effectiveness of other irrigating solutions that might enhance colonic irrigation. © 2008 The Authors. Journal Compilation © Blackwell Publishing Asia Pty Ltd.

  17. Vaccines.gov

    Science.gov (United States)

    ... Vaccine Safety Vaccines Work Vaccine Types Vaccine Ingredients Vaccines by Disease Chickenpox ... Typhoid Fever Whooping Cough (Pertussis) Yellow Fever Who and When Infants, Children, and Teens ...

  18. Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies.

    Science.gov (United States)

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A

    2006-07-01

    The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector.

  19. Population-based evaluation of the effectiveness of two regimens for emergency contraception.

    Science.gov (United States)

    Leung, Vivian W Y; Soon, Judith A; Lynd, Larry D; Marra, Carlo A; Levine, Marc

    2016-06-01

    To estimate and compare the effectiveness of the levonorgestrel and Yuzpe regimens for hormonal emergency contraception in routine clinical practice. A retrospective population-based study included women who accessed emergency contraceptives for immediate use prescribed by community pharmacists in British Columbia, Canada, between December 2000 and December 2002. Linked administrative healthcare data were used to discern the timings of menses, unprotected intercourse, and any pregnancy-related health services. A panel of experts evaluated the compatibility of observed pregnancies with the timing of events. The two regimens were compared with statistical adjustments for potential confounding. Among 7493 women in the cohort, 4470 (59.7%) received levonorgestrel and 3023 (40.3%) the Yuzpe regimen. There were 99 (2.2%) compatible pregnancies in the levonorgestrel group and 94 (3.1%) in the Yuzpe group (P=0.017). The estimated odds ratio for levonorgestrel compared with the Yuzpe regimen after adjusting for potential confounders was 0.64 (95% confidence interval 0.47-0.87). Against an expected pregnancy rate of approximately 5%, the relative and absolute risk reductions were 56.0% and 2.8%, respectively, for levonorgestrel and 36.7% and 1.8% for the Yuzpe regimen. The levonorgestrel regimen is more effective than the Yuzpe regimen in routine use. The data suggest that both regimens are less effective than has been observed in randomized trials. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  20. A brief history of vaccines & vaccination in India

    Directory of Open Access Journals (Sweden)

    Chandrakant Lahariya

    2014-01-01

    Full Text Available The challenges faced in delivering lifesaving vaccines to the targeted beneficiaries need to be addressed from the existing knowledge and learning from the past. This review documents the history of vaccines and vaccination in India with an objective to derive lessons for policy direction to expand the benefits of vaccination in the country. A brief historical perspective on smallpox disease and preventive efforts since antiquity is followed by an overview of 19 th century efforts to replace variolation by vaccination, setting up of a few vaccine institutes, cholera vaccine trial and the discovery of plague vaccine. The early twentieth century witnessed the challenges in expansion of smallpox vaccination, typhoid vaccine trial in Indian army personnel, and setting up of vaccine institutes in almost each of the then Indian States. In the post-independence period, the BCG vaccine laboratory and other national institutes were established; a number of private vaccine manufacturers came up, besides the continuation of smallpox eradication effort till the country became smallpox free in 1977. The Expanded Programme of Immunization (EPI (1978 and then Universal Immunization Programme (UIP (1985 were launched in India. The intervening events since UIP till India being declared non-endemic for poliomyelitis in 2012 have been described. Though the preventive efforts from diseases were practiced in India, the reluctance, opposition and a slow acceptance of vaccination have been the characteristic of vaccination history in the country. The operational challenges keep the coverage inequitable in the country. The lessons from the past events have been analysed and interpreted to guide immunization efforts.

  1. A brief history of vaccines & vaccination in India.

    Science.gov (United States)

    Lahariya, Chandrakant

    2014-04-01

    The challenges faced in delivering lifesaving vaccines to the targeted beneficiaries need to be addressed from the existing knowledge and learning from the past. This review documents the history of vaccines and vaccination in India with an objective to derive lessons for policy direction to expand the benefits of vaccination in the country. A brief historical perspective on smallpox disease and preventive efforts since antiquity is followed by an overview of 19 th century efforts to replace variolation by vaccination, setting up of a few vaccine institutes, cholera vaccine trial and the discovery of plague vaccine. The early twentieth century witnessed the challenges in expansion of smallpox vaccination, typhoid vaccine trial in Indian army personnel, and setting up of vaccine institutes in almost each of the then Indian States. In the post-independence period, the BCG vaccine laboratory and other national institutes were established; a number of private vaccine manufacturers came up, besides the continuation of smallpox eradication effort till the country became smallpox free in 1977. The Expanded Programme of Immunization (EPI) (1978) and then Universal Immunization Programme (UIP) (1985) were launched in India. The intervening events since UIP till India being declared non-endemic for poliomyelitis in 2012 have been described. Though the preventive efforts from diseases were practiced in India, the reluctance, opposition and a slow acceptance of vaccination have been the characteristic of vaccination history in the country. The operational challenges keep the coverage inequitable in the country. The lessons from the past events have been analysed and interpreted to guide immunization efforts.

  2. Ethical and legal challenges of vaccines and vaccination: Reflections.

    Science.gov (United States)

    Jesani, Amar; Johari, Veena

    2017-01-01

    Vaccines and vaccination have emerged as key medical scientific tools for prevention of certain diseases. Documentation of the history of vaccination shows that the initial popular resistance to universal vaccination was based on false assumptions and eventually gave way to acceptance of vaccines and trust in their ability to save lives. The successes of the global eradication of smallpox, and now of polio, have only strengthened the premier position occupied by vaccines in disease prevention. However, the success of vaccines and public trust in their ability to eradicate disease are now under challenge, as increasing numbers of people refuse vaccination, questioning the effectiveness of vaccines and the need to vaccinate.

  3. Vaccine Hesitancy.

    Science.gov (United States)

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  4. Shikonin enhances efficacy of a gene-based cancer vaccine via induction of RANTES

    Directory of Open Access Journals (Sweden)

    Chen Hui-Ming

    2012-04-01

    Full Text Available Abstract Background Shikonin, a phytochemical purified from Lithospermum erythrorhizon, has been shown to confer diverse pharmacological activities, including accelerating granuloma formation, wound healing, anti-inflammation and others, and is explored for immune-modifier activities for vaccination in this study. Transdermal gene-based vaccine is an attractive approach for delivery of DNA transgenes encoding specific tumor antigens to host skin tissues. Skin dendritic cells (DCs, a potent antigen-presenting cell type, is known to play a critical role in transmitting and orchestrating tumor antigen-specific immunities against cancers. The present study hence employs these various components for experimentation. Method The mRNA and protein expression of RANTES were detected by RT-PCR and ELISA, respectively. The regional expression of RANTES and tissue damage in test skin were evaluated via immunohistochemistry assay. Fluorescein isothiocyanate sensitization assay was performed to trace the trafficking of DCs from the skin vaccination site to draining lymph nodes. Adjuvantic effect of shikonin on gene gun-delivered human gp100 (hgp100 DNA cancer vaccine was studied in a human gp100-transfected B16 (B16/hgp100 tumor model. Results Among various phytochemicals tested, shikonin induced the highest level of expression of RANTES in normal skin tissues. In comparison, mouse RANTES cDNA gene transfection induced a higher level of mRANTES expression for a longer period, but caused more extensive skin damage. Topical application of shikonin onto the immunization site before gene gun-mediated vaccination augmented the population of skin DCs migrating into the draining lymph nodes. A hgp100 cDNA gene vaccination regimen with shikonin pretreatment as an adjuvant in a B16/hgp100 tumor model increased cytotoxic T lymphocyte activities in splenocytes and lymph node cells on target tumor cells. Conclusion Together, our findings suggest that shikonin can

  5. Bioinformatics analysis of Brucella vaccines and vaccine targets using VIOLIN.

    Science.gov (United States)

    He, Yongqun; Xiang, Zuoshuang

    2010-09-27

    Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis, one of the commonest zoonotic diseases found worldwide in humans and a variety of animal species. While several animal vaccines are available, there is no effective and safe vaccine for prevention of brucellosis in humans. VIOLIN (http://www.violinet.org) is a web-based vaccine database and analysis system that curates, stores, and analyzes published data of commercialized vaccines, and vaccines in clinical trials or in research. VIOLIN contains information for 454 vaccines or vaccine candidates for 73 pathogens. VIOLIN also contains many bioinformatics tools for vaccine data analysis, data integration, and vaccine target prediction. To demonstrate the applicability of VIOLIN for vaccine research, VIOLIN was used for bioinformatics analysis of existing Brucella vaccines and prediction of new Brucella vaccine targets. VIOLIN contains many literature mining programs (e.g., Vaxmesh) that provide in-depth analysis of Brucella vaccine literature. As a result of manual literature curation, VIOLIN contains information for 38 Brucella vaccines or vaccine candidates, 14 protective Brucella antigens, and 68 host response studies to Brucella vaccines from 97 peer-reviewed articles. These Brucella vaccines are classified in the Vaccine Ontology (VO) system and used for different ontological applications. The web-based VIOLIN vaccine target prediction program Vaxign was used to predict new Brucella vaccine targets. Vaxign identified 14 outer membrane proteins that are conserved in six virulent strains from B. abortus, B. melitensis, and B. suis that are pathogenic in humans. Of the 14 membrane proteins, two proteins (Omp2b and Omp31-1) are not present in B. ovis, a Brucella species that is not pathogenic in humans. Brucella vaccine data stored in VIOLIN were compared and analyzed using the VIOLIN query system. Bioinformatics curation and ontological representation of Brucella vaccines

  6. Green revolution vaccines, edible vaccines | Tripurani | African ...

    African Journals Online (AJOL)

    Edible vaccines are sub-unit vaccines where the selected genes are introduced into the plants and the transgenic plant is then induced to manufacture the encoded protein. Edible vaccines are mucosal-targeted vaccines where stimulation of both systematic and mucosal immune network takes place. Foods under study ...

  7. Enhanced vaccine-induced CD8+ T cell responses to malaria antigen ME-TRAP by fusion to MHC class ii invariant chain.

    Directory of Open Access Journals (Sweden)

    Alexandra J Spencer

    Full Text Available The orthodox role of the invariant chain (CD74; Ii is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA, higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required.

  8. Vaccination Confidence and Parental Refusal/Delay of Early Childhood Vaccines.

    Directory of Open Access Journals (Sweden)

    Melissa B Gilkey

    Full Text Available To support efforts to address parental hesitancy towards early childhood vaccination, we sought to validate the Vaccination Confidence Scale using data from a large, population-based sample of U.S. parents.We used weighted data from 9,354 parents who completed the 2011 National Immunization Survey. Parents reported on the immunization history of a 19- to 35-month-old child in their households. Healthcare providers then verified children's vaccination status for vaccines including measles, mumps, and rubella (MMR, varicella, and seasonal flu. We used separate multivariable logistic regression models to assess associations between parents' mean scores on the 8-item Vaccination Confidence Scale and vaccine refusal, vaccine delay, and vaccination status.A substantial minority of parents reported a history of vaccine refusal (15% or delay (27%. Vaccination confidence was negatively associated with refusal of any vaccine (odds ratio [OR] = 0.58, 95% confidence interval [CI], 0.54-0.63 as well as refusal of MMR, varicella, and flu vaccines specifically. Negative associations between vaccination confidence and measures of vaccine delay were more moderate, including delay of any vaccine (OR = 0.81, 95% CI, 0.76-0.86. Vaccination confidence was positively associated with having received vaccines, including MMR (OR = 1.53, 95% CI, 1.40-1.68, varicella (OR = 1.54, 95% CI, 1.42-1.66, and flu vaccines (OR = 1.32, 95% CI, 1.23-1.42.Vaccination confidence was consistently associated with early childhood vaccination behavior across multiple vaccine types. Our findings support expanding the application of the Vaccination Confidence Scale to measure vaccination beliefs among parents of young children.

  9. Protecting health workers from nosocomial Hepatitis B infections: A review of strategies and challenges for implementation of Hepatitis B vaccination among health workers in Sub-Saharan Africa.

    Science.gov (United States)

    Malewezi, Bridget; Omer, Saad B; Mwagomba, Beatrice; Araru, Trish

    2016-12-01

    The Sub-Saharan region has the highest Hepatitis B virus (HBV) rates, and health workers are at an increased risk of contracting nosocomial HBV infection. Vaccination of health workers plays a critical role in protecting them from sequelae of HBV; however, health-worker vaccination remains a challenge for many countries. This study was conducted to review practices/measures and challenges in the Sub-Saharan region relating to vaccination of health workers against HBV. We performed a literature review of articles addressing any aspect of HBV vaccination of health workers in the Sub-Saharan region sourced from PubMed, Embase, and Web of Science, including a case study of Malawi policies and strategies in training institutions and facilities. Our findings indicated that HBV awareness and vaccination were relatively high, but vaccination rates were lower, with 4.6-64.4% of those "ever vaccinated" completing the vaccination regimen. There was also great variation in the proportion of health workers exhibiting natural immunity from previous exposure (positive for anti-Hepatitis B core antibodies; 41-92%). Commonly cited reasons for non-uptake of vaccine included cost, lack of awareness of vaccine availability, and inadequate information concerning the vaccine. Countries in this region will require locally relevant data to develop cost-effective strategies that maximize the benefit to their health workers due to the great diversity of HBV epidemiology in the region. Copyright © 2016 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  10. Dietary regimens of athletes competing at the Delhi 2010 Commonwealth Games.

    Science.gov (United States)

    Pelly, Fiona E; Burkhart, Sarah J

    2014-02-01

    The aim of this study was to investigate the dietary regimens reported by athletes competing at a major international competition and report whether these were based on nutrient composition, religious beliefs, cultural eating style, food intolerance or avoidance of certain ingredients. A questionnaire was randomly distributed to 351 athletes in the main dining hall of the athletes' village over the three main meal periods during the Delhi 2010 Commonwealth Games (23rd Sept-14th Oct, 2010). The majority (n = 218, 62%) of athletes reported following one or more dietary regimens, with 50% (n = 174) following a diet based on the nutrient composition of the food. Significantly more athletes from weight category and aesthetic sports (28%, p = .005) and from power/sprint sports (41%, p = .004) followed low fat and high protein regimens respectively. Other specialized dietary regimens were followed by 33% of participants, with avoidance of red meat (13%), vegetarian (7%), Halal (6%), and low lactose regimens (5%) reported most frequently. Significantly more athletes from non-Western regions followed a vegetarian diet (p food items are available at similar events.

  11. Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER 2/neu in a murine mammary carcinoma model

    International Nuclear Information System (INIS)

    Eralp, Yesim; Wang, Xiaoyan; Wang, Jian-Ping; Maughan, Maureen F; Polo, John M; Lachman, Lawrence B

    2004-01-01

    The purpose of the present study was to determine whether cytotoxic chemotherapeutic agents administered prior to immunotherapy with gene vaccines could augment the efficacy of the vaccines. Mice were injected in the mammary fat pad with an aggressive breast tumor cell line that expresses HER2/neu. The mice were treated 3 days later with a noncurative dose of either doxorubicin or paclitaxel, and the following day with a gene vaccine to HER2/neu. Two more doses of vaccine were given 14 days apart. Two types of gene vaccines were tested: a plasmid vaccine encoding a self-replicating RNA (replicon) of Sindbis virus (SINCP), in which the viral structural proteins were replaced by the gene for neu; and a viral replicon particle derived from an attenuated strain of Venezuelan equine encephalitis virus, containing a replicon RNA in which the Venezuelan equine encephalitis virus structural proteins were replaced by the gene for neu. Neither vaccination alone nor chemotherapy alone significantly reduced the growth of the mammary carcinoma. In contrast, chemotherapy followed by vaccination reduced tumor growth by a small, but significant amount. Antigen-specific CD8 + T lymphocytes were induced by the combined treatment, indicating that the control of tumor growth was most probably due to an immunological mechanism. The results demonstrated that doxorubicin and paclitaxel, commonly used chemotherapeutic agents for the treatment of breast cancer, when used at immunomodulating doses augmented the antitumor efficacy of gene vaccines directed against HER2/neu. The combination of chemotherapeutic agents plus vaccine immunotherapy may induce a tumor-specific immune response that could be beneficial for the adjuvant treatment of patients with minimal residual disease. The regimen warrants further evaluation in a clinical setting

  12. Efficacy and safety of weight-based insulin glargine dose titration regimen compared with glucose level- and current dose-based regimens in hospitalized patients with type 2 diabetes: a randomized, controlled study.

    Science.gov (United States)

    Li, Xiaowei; Du, Tao; Li, Wangen; Zhang, Tong; Liu, Haiyan; Xiong, Yifeng

    2014-09-01

    Insulin glargine is widely used as basal insulin. However, published dose titration regimens for insulin glargine are complex. This study aimed to compare the efficacy and safety profile of a user-friendly, weight-based insulin glargine dose titration regimen with 2 published regimens. A total of 160 hospitalized patients with hyperglycemia in 3 medical centers were screened. Our inclusion criteria included age 18 to 80 years and being conscious. Exclusion criteria included pregnancy or breast-feeding and hepatic or renal dysfunction. A total of 149 patients were randomly assigned to receive weight-based, glucose level-based, or dose-based insulin glargine dose titration regimen between January 2011 and February 2013. The initial dose of insulin glargine was 0.2 U/kg. In the weight-based regimen (n = 49), the dose was titrated by increments of 0.1 U/kg daily. In the glucose level-based regimen (n = 51), the dose was titrated by 2, 4, 6, or 8 U daily when fasting blood glucose (FBG) was, respectively, between 7.0 and 7.9, 8.0 and 8.9, 9.0 and 9.9, or ≥10 mmol/L. In the current dose-based regimen (n = 49), titration was by daily increments of 20% of the current dose. The target FBG in all groups was ≤7.0 mmol/L. The incidence of hypoglycemia was recorded. One-way ANOVA and χ(2) test were used to compare data between the 3 groups. All but 1 patient who required additional oral antidiabetic medication completed the study. The mean (SD) time to achieve target FBG was 3.2 (1.2) days with the weight-based regimen and 3.7 (1.5) days with the glucose level-based regimen (P = 0.266). These times were both shorter than that achieved with the current dose-based regimen (4.8 [2.8] days; P = 0.0001 and P = 0.005, respectively). The daily doses of insulin glargine at the study end point were 0.43 (0.13) U/kg with the weight-based regimen, 0.50 (0.20) U/kg with the glucose level-based regimen, and 0.47 (0.23) U/kg with the current dose-based regimen (P = 0.184). The incidence

  13. The Sex Res Non Naturales and the Regimen of Health

    DEFF Research Database (Denmark)

    Agerholm, Frank Juul

    The paper discusses the ethical and social soundness of the classical idea of diaita/regimen vis-à-vis the contemporary focus on healthy lifestyle......The paper discusses the ethical and social soundness of the classical idea of diaita/regimen vis-à-vis the contemporary focus on healthy lifestyle...

  14. Relationship between person's health beliefs and diabetes self-care management regimen.

    Science.gov (United States)

    Albargawi, Moudi; Snethen, Julia; Al Gannass, Abdulaziz; Kelber, Sheryl

    2017-12-01

    To examine the relationship between the health beliefs of Saudi adults with type 2 diabetes mellitus (T2DM) and their adherence to daily diabetes self-care management regimen. A secondary aim was to examine the health beliefs of adults with a diabetic foot ulcer (DFU) and participants without a DFU. Descriptive correlational design with a convenience sample of 30 participants. Participants were recruited for this pilot study from an outpatient clinic at King Abdulaziz Medical City in Riyadh. The participants completed self-reported questionnaires about their health beliefs, daily diabetes self-care management regimen, and demographic characteristics. Hierarchical multiple regression analysis was used to test the interaction effects. Participants who reported having a high internal health locus of control (IHLoC) and a high level of self-efficacy (SE) adhered well to their foot care regimen (P = .038). The more the participants believed that God controls their health, and the higher their SE, the greater the participant's adherence to their medication regimen (P = .035). The stronger the participant's belief that following their diabetes treatment regimen will lead to good outcomes, the greater the participant's adherence to their dietary regimen for those with a low IHLoC (P = .015). Participants with a high SE and reported that their doctor is able to help them control their diabetes were more likely to follow their dietary regimen (P = .048). Participants with a DFU reported having additional health conditions besides T2DM (P = .018) and had less than a college education (P = .015). Although participants with a DFU reported that they were responsible for their diabetes (P = .21), they stated that God manages their diabetes (P = .29), and the disease can be controlled based on luck (P = .10). Participants' beliefs were found to influence their daily self-care management regimen. Further studies are needed using a larger sample. Copyright © 2017

  15. A genetically engineered prime-boost vaccination strategy for oculonasal delivery with poly(D,L-lactic-co-glycolic acid) microparticles against infection of turkeys with avian Metapneumovirus.

    Science.gov (United States)

    Liman, Martin; Peiser, Lieselotte; Zimmer, Gert; Pröpsting, Marcus; Naim, Hassan Y; Rautenschlein, Silke

    2007-11-14

    In this study we demonstrated the use of an oculonasally delivered poly(D,L-lactic-co-glycolic acid) microparticle (PLGA-MP)-based and genetically engineered vaccination strategy in the avian system. An avian Metapneumovirus (aMPV) fusion (F) protein-encoding plasmid vaccine and the corresponding recombinant protein vaccine were produced and bound to or encapsulated by PLGA-MP, respectively. The PLGA-MP as the controlled release system was shown in vitro to not induce any cytopathic effects and to efficiently deliver the F protein-based aMPV-vaccines to avian cells for further processing. Vaccination of turkeys was carried out by priming with an MP-bound F protein-encoding plasmid vaccine and a booster-vaccination with an MP-encapsulated recombinant F protein. Besides the prime-boost F-specific vaccinated birds, negative control birds inoculated with a mock-MP prime-boost regimen as well as non-vaccinated birds and live vaccinated positive control birds were included in the study. The MP-based immunization of turkeys via the oculonasal route induced systemic humoral immune reactions as well as local and systemic cellular immune reactions, and had no adverse effects on the upper respiratory tract. The F protein-specific prime-boost strategy induced partial protection. After challenge the F protein-specific MP-vaccinated birds showed less clinical signs and histopathological lesions than control birds of mock MP-vaccinated and non-vaccinated groups did. The vaccination improved viral clearance and induced accumulation of local and systemic CD4+ T cells when compared to the mock MP-vaccination. It also induced systemic aMPV-neutralizing antibodies. The comparison of mock- and F protein-specific MP-vaccinated birds to non-vaccinated control birds suggests that aMPV-specific effects as well as adjuvant effects mediated by MP may have contributed to the overall protective effect.

  16. The Latest in Vaccine Policies: Selected Issues in School Vaccinations, Healthcare Worker Vaccinations, and Pharmacist Vaccination Authority Laws.

    Science.gov (United States)

    Barraza, Leila; Schmit, Cason; Hoss, Aila

    2017-03-01

    This paper discusses recent changes to state legal frameworks for mandatory vaccination in the context of school and healthcare worker vaccination. It then discusses state laws that allow pharmacists the authority to vaccinate.

  17. Rotavirus vaccines

    Directory of Open Access Journals (Sweden)

    Kang G

    2006-01-01

    Full Text Available Rotavirus, the most common cause of severe diarrhea and a leading cause of mortality in children, has been a priority target for vaccine development for the past several years. The first rotavirus vaccine licensed in the United States was withdrawn because of an association of the vaccine with intussusception. However, the need for a vaccine is greatest in the developing world, because the benefits of preventing deaths due to rotavirus disease are substantially greater than the risk of intussusception. Early vaccines were based on animal strains. More recently developed and licenced vaccines are either animal-human reassortants or are based on human strains. In India, two candidate vaccines are in the development process, but have not yet reached efficacy trials. Many challenges regarding vaccine efficacy and safety remain. In addition to completing clinical evaluations of vaccines in development in settings with the highest disease burden and virus diversity, there is also a need to consider alternative vaccine development strategies.

  18. Using Mobile Health (mHealth) and geospatial mapping technology in a mass campaign for reactive oral cholera vaccination in rural Haiti.

    Science.gov (United States)

    Teng, Jessica E; Thomson, Dana R; Lascher, Jonathan S; Raymond, Max; Ivers, Louise C

    2014-01-01

    In mass vaccination campaigns, large volumes of data must be managed efficiently and accurately. In a reactive oral cholera vaccination (OCV) campaign in rural Haiti during an ongoing epidemic, we used a mobile health (mHealth) system to manage data on 50,000 participants in two isolated communities. Data were collected using 7-inch tablets. Teams pre-registered and distributed vaccine cards with unique barcodes to vaccine-eligible residents during a census in February 2012. First stored on devices, data were uploaded nightly via Wi-fi to a web-hosted database. During the vaccination campaign between April and June 2012, residents presented their cards at vaccination posts and their barcodes were scanned. Vaccinee data from the census were pre-loaded on tablets to autopopulate the electronic form. Nightly analysis of the day's community coverage informed the following day's vaccination strategy. We generated case-finding reports allowing us to identify those who had not yet been vaccinated. During 40 days of vaccination, we collected approximately 1.9 million pieces of data. A total of 45,417 people received at least one OCV dose; of those, 90.8% were documented to have received 2 doses. Though mHealth required up-front financial investment and training, it reduced the need for paper registries and manual data entry, which would have been costly, time-consuming, and is known to increase error. Using Global Positioning System coordinates, we mapped vaccine posts, population size, and vaccine coverage to understand the reach of the campaign. The hardware and software were usable by high school-educated staff. The use of mHealth technology in an OCV campaign in rural Haiti allowed timely creation of an electronic registry with population-level census data, and a targeted vaccination strategy in a dispersed rural population receiving a two-dose vaccine regimen. The use of mHealth should be strongly considered in mass vaccination campaigns in future initiatives.

  19. Informing vaccine decision-making: A strategic multi-attribute ranking tool for vaccines-SMART Vaccines 2.0.

    Science.gov (United States)

    Knobler, Stacey; Bok, Karin; Gellin, Bruce

    2017-01-20

    SMART Vaccines 2.0 software is being developed to support decision-making among multiple stakeholders in the process of prioritizing investments to optimize the outcomes of vaccine development and deployment. Vaccines and associated vaccination programs are one of the most successful and effective public health interventions to prevent communicable diseases and vaccine researchers are continually working towards expanding targets for communicable and non-communicable diseases through preventive and therapeutic modes. A growing body of evidence on emerging vaccine technologies, trends in disease burden, costs associated with vaccine development and deployment, and benefits derived from disease prevention through vaccination and a range of other factors can inform decision-making and investment in new and improved vaccines and targeted utilization of already existing vaccines. Recognizing that an array of inputs influences these decisions, the strategic multi-attribute ranking method for vaccines (SMART Vaccines 2.0) is in development as a web-based tool-modified from a U.S. Institute of Medicine Committee effort (IOM, 2015)-to highlight data needs and create transparency to facilitate dialogue and information-sharing among decision-makers and to optimize the investment of resources leading to improved health outcomes. Current development efforts of the SMART Vaccines 2.0 framework seek to generate a weighted recommendation on vaccine development or vaccination priorities based on population, disease, economic, and vaccine-specific data in combination with individual preference and weights of user-selected attributes incorporating valuations of health, economics, demographics, public concern, scientific and business, programmatic, and political considerations. Further development of the design and utility of the tool is being carried out by the National Vaccine Program Office of the Department of Health and Human Services and the Fogarty International Center of the

  20. Hand hygiene regimens for the reduction of risk in food service environments.

    Science.gov (United States)

    Edmonds, Sarah L; McCormack, Robert R; Zhou, Sifang Steve; Macinga, David R; Fricker, Christopher M

    2012-07-01

    Pathogenic strains of Escherichia coli and human norovirus are the main etiologic agents of foodborne illness resulting from inadequate hand hygiene practices by food service workers. This study was conducted to evaluate the antibacterial and antiviral efficacy of various hand hygiene product regimens under different soil conditions representative of those in food service settings and assess the impact of product formulation on this efficacy. On hands contaminated with chicken broth containing E. coli, representing a moderate soil load, a regimen combining an antimicrobial hand washing product with a 70% ethanol advanced formula (EtOH AF) gel achieved a 5.22-log reduction, whereas a nonantimicrobial hand washing product alone achieved a 3.10log reduction. When hands were heavily soiled from handling ground beef containing E. coli, a wash-sanitize regimen with a 0.5% chloroxylenol antimicrobial hand washing product and the 70% EtOH AF gel achieved a 4.60-log reduction, whereas a wash-sanitize regimen with a 62% EtOH foam achieved a 4.11-log reduction. Sanitizing with the 70% EtOH AF gel alone was more effective than hand washing with a nonantimicrobial product for reducing murine norovirus (MNV), a surrogate for human norovirus, with 2.60- and 1.79-log reductions, respectively. When combined with hand washing, the 70% EtOH AF gel produced a 3.19-log reduction against MNV. A regimen using the SaniTwice protocol with the 70% EtOH AF gel produced a 4.04-log reduction against MNV. These data suggest that although the process of hand washing helped to remove pathogens from the hands, use of a wash-sanitize regimen was even more effective for reducing organisms. Use of a high-efficacy sanitizer as part of a wash-sanitize regimen further increased the efficacy of the regimen. The use of a well-formulated alcohol-based hand rub as part of a wash-sanitize regimen should be considered as a means to reduce risk of infection transmission in food service facilities.

  1. Effectiveness of the live attenuated rotavirus vaccine produced by a domestic manufacturer in China studied using a population-based case-control design.

    Science.gov (United States)

    Zhen, Shan-Shan; Li, Yue; Wang, Song-Mei; Zhang, Xin-Jiang; Hao, Zhi-Yong; Chen, Ying; Wang, Dan; Zhang, Yan-Hong; Zhang, Zhi-Yong; Ma, Jing-Chen; Zhou, Peng; Zhang, Zhen; Jiang, Zhi-Wei; Zhao, Yu-Liang; Wang, Xuan-Yi

    2015-10-01

    A universal rotavirus (RV) immunization program is a potentially cost-effective measure for preventing RV infection in China. However, the efficacy of the only licensed RV vaccine (Lanzhou lamb rotavirus vaccine, LLR), which is made by a domestic manufacturer, has not been proven by a properly designed clinical trial. In October 2011 to March 2012, to measure the potential protection provided by LLR, a case-control study nested in a population-based active diarrhea surveillance study of children control study comparing non-RV viral diarrheal cases with non-diarrheal controls in the same population found that the RV vaccine offered no protection against non-RV diarrhea. Even under a less ideal immunization schedule, the oral LLR conferred a certain level of protection against RV gastroenteritis. However, further studies are needed to understand the full characteristics of the LLR, including its efficacy when administered following the optimal regimen, the potential risk of inducing intussusception, and the direct and indirect protective effects of LLR.

  2. The impact of making vaccines thermostable in Niger's vaccine supply chain.

    Science.gov (United States)

    Lee, Bruce Y; Cakouros, Brigid E; Assi, Tina-Marie; Connor, Diana L; Welling, Joel; Kone, Souleymane; Djibo, Ali; Wateska, Angela R; Pierre, Lionel; Brown, Shawn T

    2012-08-17

    Determine the effects on the vaccine cold chain of making different types of World Health Organization (WHO) Expanded Program on Immunizations (EPI) vaccines thermostable. Utilizing a detailed computational, discrete-event simulation model of the Niger vaccine supply chain, we simulated the impact of making different combinations of the six current EPI vaccines thermostable. Making any EPI vaccine thermostable relieved existing supply chain bottlenecks (especially at the lowest levels), increased vaccine availability of all EPI vaccines, and decreased cold storage and transport capacity utilization. By far, the most substantial impact came from making the pentavalent vaccine thermostable, increasing its own vaccine availability from 87% to 97% and the vaccine availabilities of all other remaining non-thermostable EPI vaccines to over 93%. By contrast, making each of the other vaccines thermostable had considerably less effect on the remaining vaccines, failing to increase the vaccine availabilities of other vaccines to more than 89%. Making tetanus toxoid vaccine along with the pentavalent thermostable further increased the vaccine availability of all EPI vaccines by at least 1-2%. Our study shows the potential benefits of making any of Niger's EPI vaccines thermostable and therefore supports further development of thermostable vaccines. Eliminating the need for refrigerators and freezers should not necessarily be the only benefit and goal of vaccine thermostability. Rather, making even a single vaccine (or some subset of the vaccines) thermostable could free up significant cold storage space for other vaccines, and thereby help alleviate supply chain bottlenecks that occur throughout the world. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Vaccines (immunizations) - overview

    Science.gov (United States)

    Vaccinations; Immunizations; Immunize; Vaccine shots; Prevention - vaccine ... of the vaccine. VACCINE SCHEDULE The recommended vaccination (immunization) schedule is updated every 12 months by the ...

  4. Radiation as an inducer of in-situ autologous vaccine in the treatment of solid tumors

    International Nuclear Information System (INIS)

    Ahmed, Mansoor M.

    2013-01-01

    Radiation therapy (RT) is conventionally used for local tumor control. Although local control of the primary tumor can prevent the development of subsequent systemic metastases, tumor irradiation is not effective in controlling pre-existing systemic disease. The concept of radiation-enhanced antigen presentation and immunomodulation allows the harnessing of tumor cell death induced by radiation as a potential source of tumor antigens for immunotherapy. Immunomodulation using RT is a novel strategy of in situ tumor vaccination where primary tumor irradiation can contribute to the control of pre-existing systemic metastatic disease. The absence of systemic immunosuppression (often associated with chemotherapy) and the generally lower toxicity makes radiation a desirable adjuvant regimen for immunotherapy and tumor vaccination strategies. Increased understanding of tumor immunology and the biology of radiation-mediated immune modulation should enhance the efficacy of combining these therapeutic modalities. Here we aim to provide an overview of the biology of radiation-induced immune modulation. (author)

  5. Eruptive furunculosis following the soak and smear regimen.

    Science.gov (United States)

    Martires, Kathryn; Sukhdeo, Kumar; Meinhardt, Eric

    2015-02-18

    The 'soak and smear' regimen is a highly effective method for localised topical therapy employed by dermatologists for widespread inflammatory skin conditions. The regimen involves application of topical medication under occlusion after soaking in water. Complications from this treatment method are rare. We present a case of multiple, generalised methicillin-resistant Staphylococcus aureus (MRSA)-positive furuncles arising in a patient as an unexpected consequence of therapy. The case highlights an unanticipated risk of a commonly employed treatment amid an epidemic of MRSA in the community. 2015 BMJ Publishing Group Ltd.

  6. Induction of MAGE-A3 and HPV-16 immunity by Trojan vaccines in patients with head and neck carcinoma.

    Science.gov (United States)

    Voskens, Caroline J; Sewell, Duane; Hertzano, Ronna; DeSanto, Jennifer; Rollins, Sandra; Lee, Myounghee; Taylor, Rodney; Wolf, Jeffrey; Suntharalingam, Mohan; Gastman, Brian; Papadimitriou, John C; Lu, Changwan; Tan, Ming; Morales, Robert; Cullen, Kevin; Celis, Esteban; Mann, Dean; Strome, Scott E

    2012-12-01

    We performed a pilot study using Trojan vaccines in patients with advanced squamous cell carcinoma of the head and neck (SCCHN). These vaccines are composed of HLA-I and HLA-II restricted melanoma antigen E (MAGE)-A3 or human papillomavirus (HPV)-16 derived peptides, joined by furin-cleavable linkers, and linked to a "penetrin" peptide sequence derived from HIV-TAT. Thirty-one patients with SCCHN were screened for the trial and 5 were enrolled. Enrolled patients were treated with 300 μg of Trojan peptide supplemented with Montanide and granulocyte-macrophage colony-stimulating factor (GM-CSF) at 4-week intervals for up to 4 injections. Following vaccination, peripheral blood mononuclear cells (PBMCs) from 4 of 5 patients recognized both the full Trojan constructs and constituent HLA-II peptides, whereas responses to HLA-I restricted peptides were less pronounced. This treatment regimen seems to have acceptable toxicity and elicits measurable systemic immune responses against HLA-II restricted epitopes in a subset of patients with advanced SCCHN. Copyright © 2012 Wiley Periodicals, Inc.

  7. Extended high dose letrozole regimen versus short low dose letrozole regimen as an adjuvant to gonadotropin releasing hormone antagonist protocol in poor responders undergoing IVF-ET.

    Science.gov (United States)

    Fouda, Usama M; Sayed, Ahmed M

    2011-12-01

    To compare the efficacy and cost-effectiveness of extended high dose letrozole regimen/HPuFSH-gonadotropin releasing hormone antagonist (GnRHant) protocol with short low dose letrozole regimen/HPuFSH-GnRHant protocol in poor responders undergoing IVF-ET. In this randomized controlled trial, 136 women who responded poorly to GnRH agonist long protocol in their first IVF cycle were randomized into two equal groups using computer generated list and were treated in the second IVF cycle by either extended letrozole regimen (5 mg/day during the first 5 days of cycle and 2.5 mg/day during the subsequent 3 days) combined with HPuFSH-GnRHant protocol or short letrozole regimen (2.5 mg/day from cycle day 3-7) combined with HPuFSH-GnRHant protocol. There were no significant differences between both groups with regard to number of oocytes retrieved and clinical pregnancy rate (5.39 ± 2.08 vs. 5.20 ± 1.88 and 22.06% vs. 16.18%, respectively).The total gonadotropins dose and medications cost per cycle were significantly lower in extended letrozole group (44.87 ± 9.16 vs. 59.97 ± 14.91 ampoules and 616.52 ± 94.97 vs. 746.84 ± 149.21 US Dollars ($), respectively).The cost-effectiveness ratio was 2794 $ in extended letrozole group and 4616 $ in short letrozole group. Extended letrozole regimen/HPuFSH-GnRHant protocol was more cost-effective than short letrozole regimen/HPuFSH-GnRHant protocol in poor responders undergoing IVF-ET.

  8. Rotavirus vaccines

    Science.gov (United States)

    Yen, Catherine; Tate, Jacqueline E; Hyde, Terri B; Cortese, Margaret M; Lopman, Benjamin A; Jiang, Baoming; Glass, Roger I; Parashar, Umesh D

    2014-01-01

    Rotavirus is the leading cause of severe diarrhea among children rotavirus vaccines have been efficacious and effective, with many countries reporting substantial declines in diarrheal and rotavirus-specific morbidity and mortality. However, the full public health impact of these vaccines has not been realized. Most countries, including those with the highest disease burden, have not yet introduced rotavirus vaccines into their national immunization programs. Research activities that may help inform vaccine introduction decisions include (1) establishing effectiveness, impact, and safety for rotavirus vaccines in low-income settings; (2) identifying potential strategies to improve performance of oral rotavirus vaccines in developing countries, such as zinc supplementation; and (3) pursuing alternate approaches to oral vaccines, such as parenteral immunization. Policy- and program-level barriers, such as financial implications of new vaccine introductions, should be addressed to ensure that countries are able to make informed decisions regarding rotavirus vaccine introduction. PMID:24755452

  9. Safety and immunogenicity of adenovirus-vectored near-consensus HIV type 1 clade B gag vaccines in healthy adults.

    Science.gov (United States)

    Harro, Clayton D; Robertson, Michael N; Lally, Michelle A; O'Neill, Lori D; Edupuganti, Srilatha; Goepfert, Paul A; Mulligan, Mark J; Priddy, Frances H; Dubey, Sheri A; Kierstead, Lisa S; Sun, Xiao; Casimiro, Danilo R; DiNubile, Mark J; Shiver, John W; Leavitt, Randi Y; Mehrotra, Devan V

    2009-01-01

    Vaccines inducing pathogen-specific cell-mediated immunity are being developed using attenuated adenoviral (Ad) vectors. We report the results of two independent Phase I trials of similar replication-deficient Ad5 vaccines containing a near-consensus HIV-1 clade B gag transgene. Healthy HIV-uninfected adults were enrolled in two separate, multicenter, dose-escalating, blinded, placebo-controlled studies to assess the safety and immunogenicity of a three-dose homologous regimen of Ad5 and MRKAd5 HIV-1 gag vaccines given on day 1, week 4, and week 26. Adverse events were collected for 29 days following each intradeltoid injection. The primary immunogenicity endpoint was the proportion of subjects with a positive unfractionated Gag-specific IFN-gamma ELISPOT response measured 4 weeks after the last dose (week 30). Analyses were performed after combining data for each dose group from both protocols, stratifying by baseline Ad5 titers. Overall, 252 subjects were randomized to receive either vaccine or placebo, including 229 subjects (91%) who completed the study through week 30. Tolerability and immunogenicity did not appear to differ between the Ad5 and MRKAd5 vaccines. The frequency of injection-site reactions was dose dependent. Systemic adverse events were also dose dependent and more frequent in subjects with baseline Ad5 titers or =200, especially after the first dose. The percent of ELISPOT responders and the ELISPOT geometric means overall were significantly higher for all four vaccine doses studied compared to placebo, and were generally higher in vaccine recipients with baseline Ad5 titers or = 200. Ad5 titers increased after vaccination in a dose-dependent fashion. Both Ad5-vectored HIV-1 vaccines were generally well tolerated and induced cell-mediated immune responses against HIV Gag-peptides in the majority of healthy adults with baseline Ad5 titers vaccine-induced immunity to the Ad5 vector may dampen the CMI response to HIV Gag.

  10. Hepatitis Vaccines

    Directory of Open Access Journals (Sweden)

    Sina Ogholikhan

    2016-03-01

    Full Text Available Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver.

  11. Hepatitis Vaccines

    Science.gov (United States)

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  12. HIV As Trojan Exosome: Immunological Paradox Explained?

    Science.gov (United States)

    Hildreth, James E K

    2017-01-01

    The HIV pandemic is still a major global challenge, despite the widespread availability of antiretroviral drugs. An effective vaccine would be the ideal approach to bringing the pandemic to an end. However, developing an effective HIV vaccine has proven to be an elusive goal. Three major human HIV vaccine trials revealed a strong trend toward greater risk of infection among vaccine recipients versus controls. A similar observation was made in a macaque SIV vaccine study. The mechanism explaining this phenomenon is not known. Here, a model is presented that may explain the troubling results of vaccine studies and an immunological paradox of HIV pathogenesis: preferential infection of HIV-specific T cells. The central hypothesis of this perspective is that as "Trojan exosomes" HIV particles can directly activate HIV-specific T cells enhancing their susceptibility to infection. Understanding the biology of HIV as an exosome may provide insights that enable novel approaches to vaccine development.

  13. Imperfect Vaccine Aggravates the Long-Standing Dilemma of Voluntary Vaccination

    Science.gov (United States)

    Wu, Bin; Fu, Feng; Wang, Long

    2011-01-01

    Achieving widespread population immunity by voluntary vaccination poses a major challenge for public health administration and practice. The situation is complicated even more by imperfect vaccines. How the vaccine efficacy affects individuals' vaccination behavior has yet to be fully answered. To address this issue, we combine a simple yet effective game theoretic model of vaccination behavior with an epidemiological process. Our analysis shows that, in a population of self-interested individuals, there exists an overshooting of vaccine uptake levels as the effectiveness of vaccination increases. Moreover, when the basic reproductive number, , exceeds a certain threshold, all individuals opt for vaccination for an intermediate region of vaccine efficacy. We further show that increasing effectiveness of vaccination always increases the number of effectively vaccinated individuals and therefore attenuates the epidemic strain. The results suggest that ‘number is traded for efficiency’: although increases in vaccination effectiveness lead to uptake drops due to free-riding effects, the impact of the epidemic can be better mitigated. PMID:21687680

  14. Imperfect vaccine aggravates the long-standing dilemma of voluntary vaccination.

    Directory of Open Access Journals (Sweden)

    Bin Wu

    Full Text Available Achieving widespread population immunity by voluntary vaccination poses a major challenge for public health administration and practice. The situation is complicated even more by imperfect vaccines. How the vaccine efficacy affects individuals' vaccination behavior has yet to be fully answered. To address this issue, we combine a simple yet effective game theoretic model of vaccination behavior with an epidemiological process. Our analysis shows that, in a population of self-interested individuals, there exists an overshooting of vaccine uptake levels as the effectiveness of vaccination increases. Moreover, when the basic reproductive number, R0, exceeds a certain threshold, all individuals opt for vaccination for an intermediate region of vaccine efficacy. We further show that increasing effectiveness of vaccination always increases the number of effectively vaccinated individuals and therefore attenuates the epidemic strain. The results suggest that 'number is traded for efficiency': although increases in vaccination effectiveness lead to uptake drops due to free-riding effects, the impact of the epidemic can be better mitigated.

  15. A Small Molecule, Which Competes with MAdCAM-1, Activates Integrin α4β7 and Fails to Prevent Mucosal Transmission of SHIV-SF162P3.

    Directory of Open Access Journals (Sweden)

    Géraldine Arrode-Brusés

    2016-06-01

    Full Text Available Mucosal HIV-1 transmission is inefficient. However, certain viral and host characteristics may play a role in facilitating HIV acquisition and systemic expansion. Cells expressing high levels of integrin α4β7 have been implicated in favoring the transmission process and the infusion of an anti-α4β7 mAb (RM-Act-1 prior to, and during a repeated low-dose vaginal challenge (RLDC regimen with SIVmac251 reduced SIV acquisition and protected the gut-associated lymphoid tissues (GALT in the macaques that acquired SIV. α4β7 expression is required for lymphocyte trafficking to the gut lamina propria and gut inductive sites. Several therapeutic strategies that target α4β7 have been shown to be effective in treating inflammatory conditions of the intestine, such as inflammatory bowel disease (IBD. To determine if blocking α4β7 with ELN, an orally available anti-α4 small molecule, would inhibit SHIV-SF162P3 acquisition, we tested its ability to block MAdCAM-1 (α4β7 natural ligand and HIV-gp120 binding in vitro. We studied the pharmacokinetic profile of ELN after oral and vaginal delivery in macaques. Twenty-six macaques were divided into 3 groups: 9 animals were treated with ELN orally, 9 orally and vaginally and 8 were used as controls. All animals were challenged intra-vaginally with SHIV-SF162P3 using the RLDC regimen. We found that ELN did not protect macaques from SHIV acquisition although it reduced the SHIV-induced inflammatory status during the acute phase of infection. Notably, integrins can exist in different activation states and, comparing the effect of ELN and the anti-α4β7 mAb RM-Act-1 that reduced susceptibility to SIV infection, we determined that ELN induces the active conformation of α4β7, while RM-Act-1 inhibits its activation through an allosteric mechanism. These results suggest that inhibition of α4β7 activation may be necessary to reduce susceptibility to SIV/SHIV infection and highlight the complexity of anti

  16. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Pneumococcal vaccine and flu vaccine. 410.57 Section 410.57 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its...

  17. Vaccination Perceptions of College Students: With and without Vaccination Waiver.

    Science.gov (United States)

    Jadhav, Emmanuel D; Winkler, Danielle L; Anderson, Billie S

    2018-01-01

    The resurgence of vaccine preventable diseases occurs more often among intentionally unvaccinated individuals, placing at direct risk young adults not caught up on vaccinations. The objectives of this study were to characterize the sociodemographic characteristics of young adults with and without vaccination waivers and identify their perceived benefits, barriers, and influencers of vaccination. Young adults ( n  = 964) from a Midwestern rural university responded to a survey (fall 2015-spring 2016) designed to identify their perception toward vaccination. Instrument consistency was measured using the Cronbach α-scores. The Chi-square test was used to test any sociodemographic differences and Mann-Whitney U -tests results for differences between exempt and non-exempt students. Analysis occurred in spring 2017. A little over one-third of young adults with a vaccination waiver were not up to date on their vaccinations, and think that vaccinations can cause autism. The biggest identifiable benefit was effective control against disease. The surveyed young adults ranked the out of pocket cost associated with vaccination as the most important barrier and safe and easy to use vaccines as the most important influencer of vaccination. Young adults who have had a vaccination waiver appear to not be up to date on their vaccinations. Vaccine administration programs, such as university campus clinics, would benefit from addressing perceptions unique to young adults with and without a vaccine waiver. This would subsequently better provide young adults a second shot for getting appropriately caught up on vaccinations.

  18. Immune Consequences of Decreasing Tumor Vasculature with Antiangiogenic Tyrosine Kinase Inhibitors in Combination with Therapeutic Vaccines

    Science.gov (United States)

    Farsaci, Benedetto; Donahue, Renee N.; Coplin, Michael A.; Grenga, Italia; Lepone, Lauren M.; Molinolo, Alfredo A.; Hodge, James W.

    2014-01-01

    This study investigated the effects on the tumor microenvironment of combining antiangiogenic tyrosine kinase inhibitors (TKI) with therapeutic vaccines, and in particular, how vascular changes affect tumor-infiltrating immune cells. We conducted studies using a TKI (sunitinib or sorafenib) in combination with recombinant vaccines in 2 murine tumor models: colon carcinoma (MC38-CEA) and breast cancer (4T1). Tumor vasculature was measured by immunohistochemistry using 3 endothelial cell markers: CD31 (mature), CD105 (immature/proliferating), and CD11b (monocytic). We assessed oxygenation, tight junctions, compactness, and pressure within tumors, along with the frequency and phenotype of tumor-infiltrating T lymphocytes (TIL), myeloid-derived suppressor cells (MDSC), and tumor-associated macrophages (TAM) following treatment with antiangiogenic TKIs alone, vaccine alone, or the combination of a TKI with vaccine. The combined regimen decreased tumor vasculature, compactness, tight junctions, and pressure, leading to vascular normalization and increased tumor oxygenation. This combination therapy also increased TILs, including tumor antigen-specific CD8 T cells, and elevated the expression of activation markers FAS-L, CXCL-9, CD31, and CD105 in MDSCs and TAMs, leading to reduced tumor volumes and an increase in the number of tumor-free animals. The improved antitumor activity induced by combining antiangiogenic TKIs with vaccine may be the result of activated lymphoid and myeloid cells in the tumor microenvironment, resulting from vascular normalization, decreased tumor-cell density, and the consequent improvement in vascular perfusion and oxygenation. Therapies that alter tumor architecture can thus have a dramatic impact on the effectiveness of cancer immunotherapy. PMID:25092771

  19. Pulmonary leukocytic responses are linked to the acquired immunity of mice vaccinated with irradiated cercariae of Schistosoma mansoni

    International Nuclear Information System (INIS)

    Aitken, R.; Coulson, P.S.; Wilson, R.A.

    1988-01-01

    Pulmonary cellular responses in C57BL/6 mice exposed to Schistosoma mansoni have been investigated by sampling cells from the respiratory airways with bronchoalveolar lavage. Mice exposed to cercariae attenuated with 20 krad gamma-radiation developed stronger and more persistent pulmonary leukocytic responses than animals exposed to equal numbers of normal parasites. Although vaccination with irradiated cercariae also stimulated T cell responses of greater magnitude and duration than normal infection, the lymphocytic infiltrate elicited by each regimen did not differ substantially in its composition, 5 wk after exposure. Studies with cercariae attenuated by different treatments established that a link exists between the recruitment of leukocytes to the lungs of vaccinated mice and resistance to reinfection. There was a strong association between pulmonary leukocytic responses and the elimination of challenge infections by vaccinated mice. Animals exposed to irradiated cercariae of S. mansoni were resistant to homologous challenge infection but were not protected against Schistosoma margrebowiei. Homologous challenge of vaccinated mice stimulated anamnestic leukocytic and T lymphocytic responses in the lungs, 2 wk postinfection, but exposure of immunized animals to the heterologous species failed to trigger an expansion in these populations of cells. Our studies indicate that pulmonary leukocytes and T lymphocytes are intimately involved in the mechanism of vaccine-induced resistance to S. mansoni. It remains unclear whether these populations of cells initiate protective inflammatory reactions against challenge parasites in the lungs, or accumulate in response to the activation of the protective mechanism by other means

  20. [From new vaccine to new target: revisiting influenza vaccination].

    Science.gov (United States)

    Gérard, M

    2011-09-01

    Annual vaccination is since many years the corner stone of Influenza control strategy. Because conventional vaccine are needle-based, are less immunogenic in old people and induce only systemic IgG production, intranasal and intradermal vaccines that are recently or will be soon available in Belgium will offer distinct advantages. Intradermal vaccination is on the Belgian market since 2010. A stronger immune response that allows an antigen sparing strategy is elicited because antigens are delivered near the dermal dendritic cells. Local side effects are more pronounced than after intramuscular injection. The needle-free intranasal vaccine that has been approved for use in people less than 18 years old by the EMEA in October 2010 induces also a mucosal IgA response. Improved clinical results than with intramuscular vaccine has been documented in several studies in children. Several conditions are contraindication to nasal vaccination because of patterns of side effects and because the vaccine is an live-attenuated vaccine. Pregnant women has become a top priority for Influenza vaccination in the recommendations of the High Council of Health in Belgium since the 2009 H1N1 pandemic. Several studies has since then documented the increased risk for Influenza-related morbidity in pregnant women especially during the third trimester and independently of the presence of other comorbidities. Reduced incidence of documented Influenza and of Influenza-related hospitalizations are observed in the new born of vaccinated women until 6 months of age. Availability of new vaccines for Influenza and better knowledge of the benefit of vaccination in target populations are important tools to optimize vaccine coverage of the population.

  1. The effects of anti-vaccine conspiracy theories on vaccination intentions.

    Directory of Open Access Journals (Sweden)

    Daniel Jolley

    Full Text Available The current studies investigated the potential impact of anti-vaccine conspiracy beliefs, and exposure to anti-vaccine conspiracy theories, on vaccination intentions. In Study 1, British parents completed a questionnaire measuring beliefs in anti-vaccine conspiracy theories and the likelihood that they would have a fictitious child vaccinated. Results revealed a significant negative relationship between anti-vaccine conspiracy beliefs and vaccination intentions. This effect was mediated by the perceived dangers of vaccines, and feelings of powerlessness, disillusionment and mistrust in authorities. In Study 2, participants were exposed to information that either supported or refuted anti-vaccine conspiracy theories, or a control condition. Results revealed that participants who had been exposed to material supporting anti-vaccine conspiracy theories showed less intention to vaccinate than those in the anti-conspiracy condition or controls. This effect was mediated by the same variables as in Study 1. These findings point to the potentially detrimental consequences of anti-vaccine conspiracy theories, and highlight their potential role in shaping health-related behaviors.

  2. Dealing with large-scale supply lines when introducing new regimens.

    Science.gov (United States)

    Malati, Christine; Rosenfeld, Joshua; Mowafy, Sherif; Rittmiller, Trevor; Kuritsky, Joel; Crowley, John

    2017-07-01

    As programs plan the introduction of a new antiretroviral as part of a regimen for HIV treatment, supply chain considerations need to be taken into account. The key to success is balancing the introduction of a new regimen with the phasing out of an old regimen in a manner that does not result in either a shortage or an excess supply of either product while ensuring that patients continue receiving their medications. This necessitates that country programs, donors, and procurement entities possess an appreciation of the global antiretroviral market and understand the dynamics that the manufacturing of new antiretrovirals will have on the transition. Supply, demand, and financial considerations affect the capacity of the supply chain to facilitate a successful antiretroviral transition. Although this commentary draws on United States Agency for International Development experiences under the President's Emergency Plan for AIDS Relief from earlier antiretroviral treatment shifts, the approaches are applicable to other institutions and to future transitions. Three approaches were employed: ensuring the engagement of all key stakeholders in transition planning and execution, including clinicians, advocacy groups, supply chain professionals, ministry, and donors; conducting and updating regularly the national quantification and supply plans for all regimens; and introducing antiretroviral products into programs from regional warehouses based on firm orders. Extensive planning and accounting for supply chain factors is essential to ensuring a smooth transition to a new regimen and to enable the global antiretroviral market to respond adequately.

  3. [VACCINES].

    Science.gov (United States)

    Bellver Capella, Vincente

    2015-10-01

    Vaccines are an extraordinary instrument of immunization of the population against infectious diseases. Around them there are many ethical issues. One of the most debated is what to do with certain groups opposition to vaccination of their children. States have managed in different ways the conflict between the duty of vaccination and the refusal to use vaccines: some impose the vaccination and others simply promote it. In this article we deal with which of these two approaches is the most suitable from an ethical and legal point of view. We stand up for the second option, which is the current one in Spain, and we propose some measures which should be kept in mind to improve immunization programs.

  4. Vaccination in Fish

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar

    vaccines have reduced the need for usage of antibiotics with more than 99 % since the 1980s. Fish can be vaccinated by three different administration routes: injection, immersion and oral vaccination. Injection vaccination (intraperitoneal injection of vaccine) is the most time consuming and labor...... intensive method, which however, provides the best protection of the fish. Immersion vaccination is used for immunization of a high number of small fish is cost-efficient and fast (30 sec immersion into vaccine). Oral vaccination (vaccine in feed) is the least efficient. As in higher vertebrates fish...... respond to vaccination by increasing the specific antibody titer and by activating the cellular responses. My talk will cover vaccination methods in fish, immune responses and some adverse effect of oil-adjuvanted vaccines in fish with reference to our work in rainbow trout, Oncorhynchus mykiss....

  5. Vaccination Perceptions of College Students: With and without Vaccination Waiver

    Directory of Open Access Journals (Sweden)

    Emmanuel D. Jadhav

    2018-02-01

    Full Text Available IntroductionThe resurgence of vaccine preventable diseases occurs more often among intentionally unvaccinated individuals, placing at direct risk young adults not caught up on vaccinations. The objectives of this study were to characterize the sociodemographic characteristics of young adults with and without vaccination waivers and identify their perceived benefits, barriers, and influencers of vaccination.MethodsYoung adults (n = 964 from a Midwestern rural university responded to a survey (fall 2015—spring 2016 designed to identify their perception toward vaccination. Instrument consistency was measured using the Cronbach α-scores. The Chi-square test was used to test any sociodemographic differences and Mann–Whitney U-tests results for differences between exempt and non-exempt students. Analysis occurred in spring 2017.ResultsA little over one-third of young adults with a vaccination waiver were not up to date on their vaccinations, and think that vaccinations can cause autism. The biggest identifiable benefit was effective control against disease. The surveyed young adults ranked the out of pocket cost associated with vaccination as the most important barrier and safe and easy to use vaccines as the most important influencer of vaccination.ConclusionYoung adults who have had a vaccination waiver appear to not be up to date on their vaccinations. Vaccine administration programs, such as university campus clinics, would benefit from addressing perceptions unique to young adults with and without a vaccine waiver. This would subsequently better provide young adults a second shot for getting appropriately caught up on vaccinations.

  6. Imaging lymphoid tissues in nonhuman primates to understand SIV pathogenesis and persistence.

    Science.gov (United States)

    Deleage, Claire; Turkbey, Baris; Estes, Jacob D

    2016-08-01

    CD4+ T cells are the primary HIV-1 target cell, with the vast majority of these cells residing within lymphoid tissue compartments throughout the body. Predictably, HIV-1 infection, replication, localization, reservoir establishment and persistence, as well as associated host immune and inflammatory responses and disease pathology principally take place within the tissues of the immune system. By virture of the fact that the virus-host struggle is played out within lymphoid and additional tissues compartments in HIV-1 infected individuals it is critical to understand HIV-1 infection and disease within these relevant tissue sites; however, there are obvious limitations to studying these dynamic processes in humans. Nonhuman primate (NHP) research has provided a vital bridge between basic and preclinical research and clinical studies, with experimental SIV infection of NHP models offering unique opportunities to understand key processes of HIV-1 infection and disease that are either not practically feasible or ethical in HIV-1 infected humans. In this review we will discuss current approaches to studying the tissue based immunopathogenesis of AIDS virus infection in NHPs, including both analyses of tissues obtained at biopsy or necropsy and complementary non-invasive imaging approaches that may have practical utility in monitoring HIV-1 disease in the clinical setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A novel CD4-conjugated ultraviolet light-activated photocatalyst inactivates HIV-1 and SIV efficiently.

    Science.gov (United States)

    Yamaguchi, Koushi; Sugiyama, Takahiro; Kato, Shinji; Kondo, Yoichi; Ageyama, Naohide; Kanekiyo, Masaru; Iwata, Misao; Koyanagi, Yoshio; Yamamoto, Naoki; Honda, Mitsuo

    2008-08-01

    In this study, we found that the electric potential derived from the redox reaction of ultraviolet (UV)-illuminated CD4-conjugated titanium dioxide (TiO2) inactivated a wide range of high-titered primary HIV-1 isolates, regardless of virus co-receptor usage or genetic clade. In vitro incubation of HIV-1 isolates with CD4-conjugated TiO2 (CD4-TiO2) followed by UV illumination led to inhibition of viral infectivity in both H9 cells and peripheral blood mononuclear cells as well as to the complete inactivation of plasma virions from HIV-1-infected individuals. Treatment with a newly established extra-corporeal circulation system with the photocatalyst in rhesus macaques completely inactivated plasma virus in the system and effectively reduced the infectious plasma viral load. Furthermore, plasma viremia and infectious viral loads were controlled following a second therapeutic photocatalyst treatment during primary SIV(mac239) infection of macaques. Our findings suggest that this therapeutic immunophysical strategy may help control human immunodeficiency viral infection in vivo.

  8. Reasons for non-vaccination: Parental vaccine hesitancy and the childhood influenza vaccination school pilot programme in England.

    Science.gov (United States)

    Paterson, Pauline; Chantler, Tracey; Larson, Heidi J

    2017-08-14

    In 2013, the annual influenza immunisation programme in England was extended to children to reduce the burden of influenza, but uptake was sub-optimal at 53.2%. To explore the reasons some parents decided not to vaccinate their child against influenza as part of the pilot programme offered in schools. Cross-sectional qualitative study conducted between February and July 2015. 913 parents whose children were not vaccinated against influenza in the school pilots in West Yorkshire and Greater Manchester, England, were asked to comment on their reasons for non-vaccination and invited to take part in a semi-structured interview. 138 parents returned response forms, of which 38 were eligible and interested in participating and 25 were interviewed. Interview transcripts were coded by theme in NVivo. A third of parents who returned response forms had either vaccinated their child elsewhere, intended to have them vaccinated, or had not vaccinated them due to medical reasons (valid or perceived). Most interviewees were not convinced of the need to vaccinate their child against influenza. Parents expressed concerns about influenza vaccine effectiveness and vaccine side effects. Several parents interviewed declined the vaccine for faith reasons due to the presence of porcine gelatine in the vaccine. To significantly decrease the burden of influenza in England, influenza vaccination coverage in children needs to be >60%. Hence, it is important to understand the reasons why parents are not vaccinating their children, and to tailor the communication and immunisation programme accordingly. Our finding that a third of parents, who did not consent to their child being vaccinated as part of the school programme, had actually vaccinated their child elsewhere, intended to have their child vaccinated, or had not vaccinated them due to medical reasons, illustrates the importance of including additional questions or data sources when investigating under-vaccination. Copyright © 2017 The

  9. Effect of a short-term HAART on SIV load in macaque tissues is dependent on time of initiation and antiviral diffusion

    Directory of Open Access Journals (Sweden)

    Durand-Gasselin Lucie

    2010-09-01

    Full Text Available Abstract Background HIV reservoirs are rapidly established after infection, and the effect of HAART initiated very early during acute infection on HIV reservoirs remains poorly documented, particularly in tissue known to actively replicate the virus. In this context, we used the model of experimental infection of macaques with pathogenic SIV to assess in different tissues: (i the effect of a short term HAART initiated at different stages during acute infection on viral dissemination and replication, and (ii the local concentration of antiviral drugs. Results Here, we show that early treatment with AZT/3TC/IDV initiated either within 4 hours after intravenous infection of macaques with SIVmac251 (as a post exposure prophylaxis or before viremia peak (7 days post-infection [pi], had a strong impact on SIV production and dissemination in all tissues but did not prevent infection. When treatment was initiated after the viremia peak (14 days pi or during early chronic infection (150 days pi, significant viral replication persists in the peripheral lymph nodes and the spleen of treated macaques despite a strong effect of treatment on viremia and gut associated lymphoid tissues. In these animals, the level of virus persistence in tissues was inversely correlated with local concentrations of 3TC: high concentrations of 3TC were measured in the gut whereas low concentrations were observed in the secondary lymphoid tissues. IDV, like 3TC, showed much higher concentration in the colon than in the spleen. AZT concentration was below the quantification threshold in all tissues studied. Conclusions Our results suggest that limited antiviral drug diffusion in secondary lymphoid tissues may allow persistent viral replication in these tissues and could represent an obstacle to HIV prevention and eradication.

  10. A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of an Adjuvanted HIV-1 Gag-Pol-Nef Fusion Protein and Adenovirus 35 Gag-RT-Int-Nef Vaccine in Healthy HIV-Uninfected African Adults.

    Directory of Open Access Journals (Sweden)

    Gloria Omosa-Manyonyi

    Full Text Available Sequential prime-boost or co-administration of HIV vaccine candidates based on an adjuvanted clade B p24, RT, Nef, p17 fusion protein (F4/AS01 plus a non-replicating adenovirus 35 expressing clade A Gag, RT, Int and Nef (Ad35-GRIN may lead to a unique immune profile, inducing both strong T-cell and antibody responses.In a phase 1, double-blind, placebo-controlled trial, 146 healthy adult volunteers were randomized to one of four regimens: heterologous prime-boost with two doses of F4/AS01E or F4/AS01B followed by Ad35-GRIN; Ad35-GRIN followed by two doses of F4/AS01B; or three co-administrations of Ad35-GRIN and F4/AS01B. T cell and antibody responses were measured.The vaccines were generally well-tolerated, and did not cause serious adverse events. The response rate, by IFN-γ ELISPOT, was greater when Ad35-GRIN was the priming vaccine and in the co-administration groups. F4/AS01 induced CD4+ T-cells expressing primarily CD40L and IL2 +/- TNF-α, while Ad35-GRIN induced predominantly CD8+ T-cells expressing IFN-γ +/- IL2 or TNF-α. Viral inhibition was induced after Ad35-GRIN vaccination, regardless of the regimen. Strong F4-specific antibody responses were induced. Immune responses persisted at least a year after the last vaccination. The complementary response profiles, characteristic of each vaccine, were both expressed after co-administration.Co-administration of an adjuvanted protein and an adenovirus vector showed an acceptable safety and reactogenicity profile and resulted in strong, multifunctional and complementary HIV-specific immune responses.ClinicalTrials.gov NCT01264445.

  11. Cleansing the colon in gallium-67 scintigraphy: a prospective comparison of regimens

    International Nuclear Information System (INIS)

    Novetsky, G.J.; Turner, D.A.; Ali, A.; Raynor, W.J.; Fordham, E.W.

    1981-01-01

    Colonic accumulation of gallium-67 frequently complicates the interpretation of gallium-67 scintigrams. Although various modes of cleansing the colon prior to scintigraphy have been suggested, there is controversy over their efficacy and none have been tested prospectively. Three hundred nine patients undergoing gallium-67 scintigraphy were randomly assigned to one of four cleansing regimens: (1) a high fiber diet (78 patients); (2) castor oil (76); (3) milk of magnesia and cascara (76); and (4) no preparation (79). Patient compliance rates for the four regimens were 17%, 32%, 36%, and 46%, respectively. After noncompliant patients were excluded, gallium-67 scintigrams were graded for colonic activity on a scale of 0-3 by three independent, experienced observers. Gallium-67 activity in the colon was significantly less after adminstration of castor oil than after no prepartion (p = 0.083). Regimen 3 did not produce significantly better results than regimen 4 (p = 0.42). A major impediment to the success of any cleansing regimen seems to be poor compliance of patients

  12. Validation of HAV biomarker 2A for differential diagnostic of hepatitis A infected and vaccinated individuals using multiplex serology.

    Science.gov (United States)

    Bohm, Katrin; Filomena, Angela; Schneiderhan-Marra, Nicole; Krause, Gérard; Sievers, Claudia

    2017-10-13

    Worldwide about 1.5 million clinical cases of hepatitis A virus (HAV) infections occur every year and increasingly countries are introducing HAV vaccination into the childhood immunization schedule with a single dose instead of the originally licenced two dose regimen. Diagnosis of acute HAV infection is determined serologically by anti-HAV-IgM detection using ELISA. Additionally anti-HAV-IgG can become positive during the early phase of symptoms, but remains detectable after infection and also after vaccination against HAV. Currently no serological marker allows the differentiation of HAV vaccinated individuals and those with a past infection with HAV. Such differentiation would greatly improve evaluation of vaccination campaigns and risk assessment of HAV outbreaks. Here we tested the HAV non-structural protein 2A, important for the capsid assembly, as a biomarker for the differentiation of the immune status in previously infected and vaccinated individuals. HAV antigens were recombinantly expressed as glutathione-S-transferase (GST) fusion proteins. Using glutathione tagged, magnetic fluorescent beads (Luminex®), the proteins were affinity purified and used in a multiplex serological assay. The multiplex HAV assay was validated using 381 reference sera in which the immune status HAV negative, vaccinated or infected was established using the Abbott ARCHITECT® HAVAb-IgM or IgG, the commercial HAV ELISA from Abnova and documentation in vaccination cards. HAV multiplex serology showed a sensitivity of 99% and specificity of 95% to detect anti-HAV IgG/IgM positive individuals. HAV biomarker 2A allowed the differentiation between previously infected and vaccinated individuals. HAV vaccinated individuals and previously infected individuals could be identified with 92% accuracy. HAV biomarker 2A can be used to differentiate between previously HAV-vaccinated and naturally infected individuals. Within a multiplex serological approach this assay can provide valuable

  13. The Impact of Making Vaccines Thermostable in Niger’s Vaccine Supply Chain

    Science.gov (United States)

    Lee, Bruce Y.; Cakouros, Brigid E.; Assi, Tina-Marie; Connor, Diana L.; Welling, Joel; Kone, Souleymane; Djibo, Ali; Wateska, Angela R.; Pierre, Lionel; Brown, Shawn T.

    2012-01-01

    Objective Determine the effects on the vaccine cold chain of making different types of World Health Organization (WHO) Expanded Program on Immunizations (EPI) vaccines thermostable. Methods Utilizing a detailed computational, discrete-event simulation model of the Niger vaccine supply chain, we simulated the impact of making different combinations of the six current EPI vaccines thermostable. Findings Making any EPI vaccine thermostable relieved existing supply chain bottlenecks (especially at the lowest levels), increased vaccine availability of all EPI vaccines, and decreased cold storage and transport capacity utilization. By far, the most substantial impact came from making the pentavalent vaccine thermostable, increasing its own vaccine availability from 87% to 97% and the vaccine availabilities of all other remaining non-thermostable EPI vaccines to over 93%. By contrast, making each of the other vaccines thermostable had considerably less effect on the remaining vaccines, failing to increase the vaccine availabilities of other vaccines to more than 89%. Making tetanus toxoid vaccine along with the pentavalent thermostable further increased the vaccine availability of all EPI vaccines by at least 1–2%. Conclusion Our study shows the potential benefits of making any of Niger’s EPI vaccines thermostable and therefore supports further development of thermostable vaccines. Eliminating the need for refrigerators and freezers should not necessarily be the only benefit and goal of vaccine thermostability. Rather, making even a single vaccine (or some subset of the vaccines) thermostable could free up significant cold storage space for other vaccines, and thereby help alleviate supply chain bottlenecks that occur throughout the world. PMID:22789507

  14. Tetravalent Dengue Vaccine: A Review in the Prevention of Dengue Disease.

    Science.gov (United States)

    Scott, Lesley J

    2016-09-01

    Tetravalent, live-attenuated, dengue vaccine (Dengvaxia(®); CYD-TDV) is the first vaccine approved for the prevention of dengue disease caused by dengue virus (DENV) serotypes 1-4 in individuals aged 9-45 or 9-60 years living in high dengue endemic areas. This narrative review discusses the immunogenicity, protective efficacy, reactogenicity and safety of CYD-TDV in the prevention of dengue disease. In Latin American and Asian phase 3 trials in children and adolescents (n > 30,000), the recommended three-dose CYD-TDV regimen was efficacious in preventing virologically-confirmed dengue (VCD) during the period from 28 days after the last dose (month 13) to month 25, meeting the primary endpoint criteria. Protective efficacy against VCD in the respective individual trials was 60.8 and 56.5 % (primary analysis). During the 25-month active surveillance phase, CYD-TDV also provided protective efficacy against VCD, severe dengue, any grade of dengue haemorrhagic fever and VCD-related hospitalization in children aged 9 years and older. CYD-TDV was generally well tolerated, with no safety concerns identified after up to 4 years' follow-up (i.e. from post dose 1) in ongoing long-term studies. Based on evidence from the dengue clinical trial program, the WHO SAGE recommended that countries with high dengue endemicity consider introducing CYD-TDV as part of an integrated disease prevention strategy to lower disease burden. Pharmacoeconomic considerations will be pivotal to implementing dengue vaccination prevention strategies in these countries. The availability of a dengue vaccine is considered essential if the 2012 WHO global strategy targets for reducing the burden of dengue disease by 2020 are to be attained. Hence, CYD-TDV represents a major advance for the prevention of dengue disease in high dengue endemic regions.

  15. Vaccines against poverty

    Science.gov (United States)

    MacLennan, Calman A.; Saul, Allan

    2014-01-01

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented. PMID:25136089

  16. Dried influenza vaccines : Over the counter vaccines

    NARCIS (Netherlands)

    Saluja, Vinay; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2010-01-01

    Since last year influenza pandemic has struck again after 40 years, this is the right moment to discuss the different available formulation options for influenza vaccine. Looking back to the last 4 decades, most vaccines are still formulated as liquid solution. These vaccines have shown a poor

  17. Extended regimen combined oral contraception: A review of evolving concepts and acceptance by women and clinicians.

    Science.gov (United States)

    Nappi, Rossella E; Kaunitz, Andrew M; Bitzer, Johannes

    2016-01-01

    The clinical utility of extended regimen combined oral contraceptives (COCs) is increasingly being recognised. Our objective was to understand the attitudes of women and clinicians about the use of these regimens. We present the rationale for extended regimen COCs from a historical perspective, and trace their evolution and growing popularity in light of their clinical benefits. We conclude by offering potential strategies for counselling women about extended regimen COC options. We conducted a MEDLINE search to identify and summarise studies of extended regimen COCs, focusing on attitudes of women and clinicians regarding efficacy, safety/tolerability and fewer scheduled bleeding episodes and other potential benefits. The body of contemporary literature on extended regimen COCs suggests that their contraceptive efficacy is comparable to that of conventional 28-day (i.e., 21/7) regimens. For women seeking contraception that allows infrequent scheduled bleeding episodes, particularly those who suffer from hormone withdrawal symptoms and cyclical symptoms (e.g., headache, mood changes, dysmenorrhoea, heavy menstrual bleeding), extended regimen COCs are an effective and safe option. Although satisfaction with extended regimen COCs in clinical trials is high, misperceptions about continuous hormone use may still limit the widespread acceptance of this approach. Despite the widespread acceptance among clinicians of extended regimen COCs as an effective and safe contraceptive option, these regimens are underused, likely due to a lack of awareness about their availability and utility among women. Improved patient education and counselling regarding the safety and benefits of extended regimen COCs may help women make more informed contraceptive choices.

  18. Egg-Independent Influenza Vaccines and Vaccine Candidates

    Directory of Open Access Journals (Sweden)

    Ilaria Manini

    2017-07-01

    Full Text Available Vaccination remains the principal way to control seasonal infections and is the most effective method of reducing influenza-associated morbidity and mortality. Since the 1940s, the main method of producing influenza vaccines has been an egg-based production process. However, in the event of a pandemic, this method has a significant limitation, as the time lag from strain isolation to final dose formulation and validation is six months. Indeed, production in eggs is a relatively slow process and production yields are both unpredictable and highly variable from strain to strain. In particular, if the next influenza pandemic were to arise from an avian influenza virus, and thus reduce the egg-laying hen population, there would be a shortage of embryonated eggs available for vaccine manufacturing. Although the production of egg-derived vaccines will continue, new technological developments have generated a cell-culture-based influenza vaccine and other more recent platforms, such as synthetic influenza vaccines.

  19. Understanding the Process of Envelope Glycoprotein Incorporation into Virions in Simian and Feline Immunodeficiency Viruses

    Directory of Open Access Journals (Sweden)

    José L. Affranchino

    2014-01-01

    Full Text Available The lentiviral envelope glycoproteins (Env mediate virus entry by interacting with specific receptors present at the cell surface, thereby determining viral tropism and pathogenesis. Therefore, Env incorporation into the virions formed by assembly of the viral Gag polyprotein at the plasma membrane of the infected cells is a key step in the replication cycle of lentiviruses. Besides being useful models of human immunodeficiency virus (HIV infections in humans and valuable tools for developing AIDS therapies and vaccines, simian and feline immunodeficiency viruses (SIV and FIV, respectively are relevant animal retroviruses; the study of which provides important information on how lentiviral replication strategies have evolved. In this review, we discuss the molecular mechanisms underlying the incorporation of the SIV and FIV Env glycoproteins into viral particles.

  20. European surveillance network for influenza in pigs 3 (ESNIP 3)

    DEFF Research Database (Denmark)

    Simon, G.; Reid, S. M.; Larsen, Lars Erik

    and seeks to strengthen formal interactions with human and avian surveillance networks. Materials and Methods: The project consortium comprises 24 participants, contributing a variety of specialism’s and skills ensuring multi-disciplinary cutting-edge outputs. Most partners are actively working with swine...... influenza virus (SIV) experimentally and in the field. Three work packages aim to increase knowledge of the epidemiology and evolution of SIV in European pigs to inform changes in disease trends and variation in contemporary viruses through organised field surveillance programmes. Results: An inventory...... of the programmes that are currently active in fifteen of the partners showed that passive surveillance was primarily used. Detected virus strains will be characterised by antigenic cartography (informing better evidence-based approaches for selection of vaccine strains) and genetically through full genome...

  1. Rotavirus vaccines and vaccination in Latin America

    Directory of Open Access Journals (Sweden)

    Linhares Alexandre C.

    2000-01-01

    Full Text Available Worldwide, rotaviruses account for more than 125 million cases of infantile gastroenteritis and nearly 1 million deaths per year, mainly in developing countries. Rather than other control measures, vaccination is most likely to have a major impact on rotavirus disease incidence. The peak incidence of rotavirus diarrhea occurs between 6 and 24 months of age. In developing countries, however, cases are not uncommon among children younger than 6 months. G serotypes 1 to 4 are responsible for most disease, but there are indications that in Brazil that G type 5 is of emerging epidemiological importance. Both homotypic and heterotypic responses are elicited during natural rotavirus infection, and the immunological response at the intestinal mucosal surface is probably the more consistent predictor of clinical immunity. With the primary objective of protecting children against life-threatening dehydrating diarrhea, many approaches to rotavirus vaccine development have been attempted. One vaccine, the tetravalent rhesus-human reassortant rotavirus vaccine (RRV-TV, was given licensing approval in the United States of America, introduced to the market, and later withdrawn. A number of studies have found better efficacy of RRV-TV in developed countries than in developing ones. Field trials with a 4 X 10(4 plaque-forming units (PFU preparation of RRV-TV have been carried out in two countries in Latin America, Brazil and Peru. Those trials yielded protective efficacy rates against all rotavirus diarrhea ranging from 18% to 35%. Data from a large catchment trial in Venezuela with a higher RRV-TV dose, of 4 X 10(5 PFU/dose, indicated an efficacy rate of 48% against all rotavirus diarrhea and 88% against severe rotavirus diarrhea. It appears that breast-feeding does not compromise the efficacy of RRV-TV if three doses of the vaccine are administered. Similarly, possible interference of oral poliovirus vaccine with the "take" of the rotavirus vaccine can be

  2. Rotavirus vaccines and vaccination in Latin America

    Directory of Open Access Journals (Sweden)

    Alexandre C. Linhares

    2000-11-01

    Full Text Available Worldwide, rotaviruses account for more than 125 million cases of infantile gastroenteritis and nearly 1 million deaths per year, mainly in developing countries. Rather than other control measures, vaccination is most likely to have a major impact on rotavirus disease incidence. The peak incidence of rotavirus diarrhea occurs between 6 and 24 months of age. In developing countries, however, cases are not uncommon among children younger than 6 months. G serotypes 1 to 4 are responsible for most disease, but there are indications that in Brazil that G type 5 is of emerging epidemiological importance. Both homotypic and heterotypic responses are elicited during natural rotavirus infection, and the immunological response at the intestinal mucosal surface is probably the more consistent predictor of clinical immunity. With the primary objective of protecting children against life-threatening dehydrating diarrhea, many approaches to rotavirus vaccine development have been attempted. One vaccine, the tetravalent rhesus-human reassortant rotavirus vaccine (RRV-TV, was given licensing approval in the United States of America, introduced to the market, and later withdrawn. A number of studies have found better efficacy of RRV-TV in developed countries than in developing ones. Field trials with a 4 X 10(4 plaque-forming units (PFU preparation of RRV-TV have been carried out in two countries in Latin America, Brazil and Peru. Those trials yielded protective efficacy rates against all rotavirus diarrhea ranging from 18% to 35%. Data from a large catchment trial in Venezuela with a higher RRV-TV dose, of 4 X 10(5 PFU/dose, indicated an efficacy rate of 48% against all rotavirus diarrhea and 88% against severe rotavirus diarrhea. It appears that breast-feeding does not compromise the efficacy of RRV-TV if three doses of the vaccine are administered. Similarly, possible interference of oral poliovirus vaccine with the "take" of the rotavirus vaccine can be

  3. Hepatitis Vaccines

    OpenAIRE

    Ogholikhan, Sina; Schwarz, Kathleen B.

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B ...

  4. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    Directory of Open Access Journals (Sweden)

    Samantha Sayers

    2012-01-01

    Full Text Available Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO in the Web Ontology Language (OWL format.

  5. Vaxjo: a web-based vaccine adjuvant database and its application for analysis of vaccine adjuvants and their uses in vaccine development.

    Science.gov (United States)

    Sayers, Samantha; Ulysse, Guerlain; Xiang, Zuoshuang; He, Yongqun

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO) in the Web Ontology Language (OWL) format.

  6. EFSA Panel Animal Health and Welfare (AHAW); Scientific Opinion on the pandemic (H1N1) 2009 influenza and its potential implications for animal health

    DEFF Research Database (Denmark)

    Bøtner, Anette; Brown, Ian; Capua, Ilaria

    . Occasionally, pigs have been infected following exposure to pH1N1 infected humans. In pigs, a subclinical course was common and when clinical signs were seen (coughing, fever) they were generally mild. Presently, the clinical impact of pH1N1virus on the EU pig population is considered minimal. In poultry....... Such vaccines efficiently prevent disease by reducing virus replication in the lungs. However, voluntary vaccination of swine with these vaccines has not halted the circulation of SIV in swine. There is no urgency for vaccination of pigs against pH1N1 virus. Currently, no vaccines against H1 viruses for poultry...... are available but at present, there is no need to vaccinate poultry against pH1N1 virus. Monitoring of circulating influenza viruses in swine and poultry populations should be instigated to monitor the evolution of the pH1N1 virus including changes in virulence....

  7. Skin Vaccination against Rotavirus Using Microneedles: Proof of Concept in Gnotobiotic Piglets.

    Directory of Open Access Journals (Sweden)

    Yuhuan Wang

    Full Text Available Live-attenuated oral rotavirus (RV vaccines have lower efficacy in low income countries, and additionally are associated with a rare but severe adverse event, intussusception. We have been pursuing the development of an inactivated rotavirus vaccine (IRV using the human rotavirus strain CDC-9 (G1P[8] through parenteral immunization and previously demonstrated dose sparing and enhanced immunogenicity of intradermal (ID unadjuvanted IRV using a coated microneedle patch in comparison with intramuscular (IM administration in mice. The aim of this study was to evaluate the immune response and protection against RV infection and diarrhea conferred by the administration of the ID unadjuvanted IRV using the microneedle device MicronJet600® in neonatal gnotobiotic (Gn piglets challenged with virulent Wa G1P[8] human RV. Three doses of 5 μg IRV when administered intradermally and 5 μg IRV formulated with aluminum hydroxide [Al(OH3] when administered intramuscularly induced comparable rotavirus-specific antibody titers of IgA, IgG, IgG avidity index and neutralizing activity in sera of neonatal piglets. Both IRV vaccination regimens protected against RV antigen shedding in stools, and reduced the cumulative diarrhea scores in the piglets. This study demonstrated that the ID and IM administrations of IRV are immunogenic and protective against RV-induced diarrhea in neonatal piglets. Our findings highlight the potential value of an adjuvant sparing effect of the IRV ID delivery route.

  8. Skin Vaccination against Rotavirus Using Microneedles: Proof of Concept in Gnotobiotic Piglets.

    Science.gov (United States)

    Wang, Yuhuan; Vlasova, Anastasia; Velasquez, Daniel E; Saif, Linda J; Kandasamy, Sukumar; Kochba, Efrat; Levin, Yotam; Jiang, Baoming

    2016-01-01

    Live-attenuated oral rotavirus (RV) vaccines have lower efficacy in low income countries, and additionally are associated with a rare but severe adverse event, intussusception. We have been pursuing the development of an inactivated rotavirus vaccine (IRV) using the human rotavirus strain CDC-9 (G1P[8]) through parenteral immunization and previously demonstrated dose sparing and enhanced immunogenicity of intradermal (ID) unadjuvanted IRV using a coated microneedle patch in comparison with intramuscular (IM) administration in mice. The aim of this study was to evaluate the immune response and protection against RV infection and diarrhea conferred by the administration of the ID unadjuvanted IRV using the microneedle device MicronJet600® in neonatal gnotobiotic (Gn) piglets challenged with virulent Wa G1P[8] human RV. Three doses of 5 μg IRV when administered intradermally and 5 μg IRV formulated with aluminum hydroxide [Al(OH)3] when administered intramuscularly induced comparable rotavirus-specific antibody titers of IgA, IgG, IgG avidity index and neutralizing activity in sera of neonatal piglets. Both IRV vaccination regimens protected against RV antigen shedding in stools, and reduced the cumulative diarrhea scores in the piglets. This study demonstrated that the ID and IM administrations of IRV are immunogenic and protective against RV-induced diarrhea in neonatal piglets. Our findings highlight the potential value of an adjuvant sparing effect of the IRV ID delivery route.

  9. Experiements with an inactivated hepatitis leptospirosis vaccine in vaccination programmes for dogs.

    Science.gov (United States)

    Wilson, J H; Hermann-Dekkers, W M; Leemans-Dessy, S; Meijer, J W

    1977-06-25

    A fluid adjuvanted vaccine consisting of inactivated hepatitis virus (iH) and leptospirae antigens (L) was developed. The vaccine (Kavak iHL; Duphar) was tested in several vaccination programmes both alone and in combination with freeze dried measles (M) or distemper (D) vaccines. The results demonstrate that this new vaccine is also effective in pups with maternally derived antibodies, although a second vaccination at 14 weeks of age is recommended to boost the first vaccination. For the booster vaccination either the iHL-vaccine or the liver attenuated hepatitis vaccine (H) can be used.

  10. Gonadal function and fertility after stem cell transplantation in childhood: comparison of a reduced intensity conditioning regimen containing melphalan with a myeloablative regimen containing busulfan.

    Science.gov (United States)

    Panasiuk, Anna; Nussey, Stephen; Veys, Paul; Amrolia, Persis; Rao, Kanchan; Krawczuk-Rybak, Maryna; Leiper, Alison

    2015-09-01

    The occurrence of late sequelae after myeloablative conditioning regimens for stem-cell transplantation (SCT) has prompted the introduction of reduced-intensity chemotherapy (RIC) regimens in an attempt to reduce toxicity and spare fertility. We retrospectively evaluated gonadal function in survivors of SCT in childhood by comparing patients conditioned with a myeloablative regimen containing busulfan and cyclophosphamide (BuCy, N = 51, 28 boys) and a RIC regimen containing fludarabine and melphalan (FluMel, N = 40, 19 boys). Spontaneous puberty occurred in 56% of girls and 89% of boys after BuCy, whereas 90% of females and all males in the FluMel group entered puberty spontaneously (P = 0·012). Significantly more females (61%) conditioned with BuCy required hormone replacement compared with the FluMel group (10·5%, P = 0·012). Females in the FluMel group took significantly longer to develop elevation of serum follicle-stimulating hormone (FSH) concentrations (>10 iu/l) from the onset of puberty than females in the BuCy group (median 5·2 years vs. 2·7 years respectively, P = 0·0135). In males no difference was noted between the two conditioning groups in time to FSH elevation (median 4 years in FluMel versus 6 years in BuCy). Whilst the two regimens have similar effects on the testis, ovarian function seems to be better preserved in females undergoing SCT with RIC. © 2015 John Wiley & Sons Ltd.

  11. Efficacy of combination of glycolic acid peeling with topical regimen in treatment of melasma.

    Science.gov (United States)

    Chaudhary, Savita; Dayal, Surabhi

    2013-10-01

    Various treatment modalities are available for management of melasma, ranging from topical and oral to chemical peeling, but none is promising alone. Very few studies are available regarding efficacy of combination of topical treatment with chemical peeling. Combination of chemical peeling and topical regimen can be a good treatment modality in the management of this recalcitrant disorder. To assess the efficacy of combination of topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling in the treatment of melasma in Indian patients. Forty Indian patients of moderate to severe epidermal variety melasma were divided into two groups of 20 each. One Group i.e. peel group received topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling and other group i.e. control group received topical regimen (2% hydroquinone, 1% hydrocortisone, 0.05% tretinoin). There was an overall decrease in MASI from baseline in 24 weeks of therapy in both the groups (P value peel with topical regimen showed early and greater improvement than the group which was receiving topical regimen only. This study concluded that combining topical regimen (2% hydroquinone, 1% hydrocortisone and 0.05% tretinoin) with serial glycolic acid peeling significantly enhances the therapeutic efficacy of glycolic acid peeling. The combination of glycolic acid peeling with the topical regimen is a highly effective, safe and promising therapeutic option in treatment of melasma.

  12. Single-dose Live Oral Cholera Vaccine CVD 103-HgR Protects Against Human Experimental Infection With Vibrio cholerae O1 El Tor.

    Science.gov (United States)

    Chen, Wilbur H; Cohen, Mitchell B; Kirkpatrick, Beth D; Brady, Rebecca C; Galloway, David; Gurwith, Marc; Hall, Robert H; Kessler, Robert A; Lock, Michael; Haney, Douglas; Lyon, Caroline E; Pasetti, Marcela F; Simon, Jakub K; Szabo, Flora; Tennant, Sharon; Levine, Myron M

    2016-06-01

    No licensed cholera vaccine is presently available in the United States. Cholera vaccines available in other countries require 2 spaced doses. A single-dose cholera vaccine that can rapidly protect short-notice travelers to high-risk areas and help control explosive outbreaks where logistics render 2-dose immunization regimens impractical would be a major advance.PXVX0200, based on live attenuated Vibrio cholerae O1 classical Inaba vaccine strain CVD 103-HgR, elicits seroconversion of vibriocidal antibodies (a correlate of protection) within 10 days of a single oral dose. We investigated the protection conferred by this vaccine in a human cholera challenge model. Consenting healthy adult volunteers, 18-45 years old, were randomly allocated 1:1 to receive 1 oral dose of vaccine (approximately 5 × 10(8) colony-forming units [CFU]) or placebo in double-blind fashion. Volunteers ingested approximately 1 × 10(5) CFU of wild-type V. cholerae O1 El Tor Inaba strain N16961 10 days or 3 months after vaccination and were observed on an inpatient research ward for stool output measurement and management of hydration. The vaccine was well tolerated, with no difference in adverse event frequency among 95 vaccinees vs 102 placebo recipients. The primary endpoint, moderate (≥3.0 L) to severe (≥5.0 L) diarrheal purge, occurred in 39 of 66 (59.1%) placebo controls but only 2 of 35 (5.7%) vaccinees at 10 days (vaccine efficacy, 90.3%; P < .0001) and 4 of 33 (12.1%) vaccinees at 3 months (vaccine efficacy, 79.5%; P < .0001). The significant vaccine efficacy documented 10 days and 3 months after 1 oral dose of PXVX0200 supports further development as a single-dose cholera vaccine. NCT01895855. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  13. vaccination with newcastle disease vaccines strain i2 and lasota

    African Journals Online (AJOL)

    UP Employee

    mash feed as vaccine carriers was conducted. Newcastle disease vaccine strain I2 and. NDV La Sota vaccines provided protection to commercial and local chickens vaccinated through i/o, i/m or dw. No significant difference (P≤0.05) was observed in the antibody titre of commercial or local chickens vaccinated with either ...

  14. New analytical methodology for analysing S(IV) species at low pH solutions by one stage titration method (bichromatometry) with a clear colour change. Could potentially replace the state-of-art-method iodometry at low pH analysis due higher accuracy.

    Science.gov (United States)

    Santasalo-Aarnio, Annukka; Galfi, Istvan; Virtanen, Jorma; Gasik, Michael M

    2017-01-01

    A new, faster and more reliable analytical methodology for S(IV) species analysis at low pH solutions by bichromatometry is proposed. For decades the state of the art methodology has been iodometry that is still well justified method for neutral solutions, thus at low pH media possess various side reactions increasing inaccuracy. In contrast, the new methodology has no side reactions at low pH media, requires only one titration step and provides a clear color change if S(IV) species are present in the solution. The method is validated using model solutions with known concentrations and applied to analyses of gaseous SO2 from purged solution in low pH media samples. The results indicate that bichromatometry can accurately analyze SO2 from liquid samples having pH even below 0 relevant to metallurgical industrial processes.

  15. Flu Vaccination

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  16. Flu vaccination

    CERN Multimedia

    CERN Medical Service

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor.CERN Medical Service

  17. FLU VACCINATION

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  18. Flu Vaccination

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical service

  19. Cleansing the colon in gallium-67 scintigraphy: a prospective comparison of regimens.

    Science.gov (United States)

    Novetsky, G J; Turner, D A; Ali, A; Raynor, W J; Fordham, E W

    1981-11-01

    Colonic accumulation of gallium-67 frequently complicates the interpretation of gallium-67 scintigrams. Although various modes of cleansing the colon prior to scintigraphy have been suggested, there is controversy over their efficacy and none have been tested prospectively. Three hundred nine patients undergoing gallium-67 scintigraphy were randomly assigned to one of four cleansing regimens: (1) a high fiber diet (78 patients); (2) castor oil (76); (3) milk of magnesia and cascara (76); and (4) not preparation (79). Patient compliance rates for the four regimens were 17%, 32%, 36%, and 46%, respectively. After noncompliant patients were excluded, gallium-67 scintigrams were graded for colonic activity on a scale of 0-3 by three independent, experienced observers. Gallium-67 activity in the colon was significantly less after administration of castor oil than after no preparation (p = 0.047). A high fiber diet also resulted in a substantial reduction of colonic activity when compared with no preparation; the difference, however, was not statistically significant (p = 0.083). Regimen 3 did not produce significantly better results than regimen 4 (p = 0.42). A major impediment to the success of any cleansing regimen seems to be poor compliance of patients.

  20. Cleansing the colon in gallium-67 scintigraphy: a prospective comparison of regimens

    International Nuclear Information System (INIS)

    Novetsky, G.J.; Turner, D.A.; Ali, A.; Raynor, W.J. Jr.; Fordham, E.W.

    1981-01-01

    Colonic accumulation of gallium-67 frequently complicates the interpretation of gallium-67 scintigrams. Although various modes of cleansing the colon prior to scintigraphy have been suggested, there is controversy over their efficacy and none have been tested prospectively. Three hundred nine patients undergoing gallium-67 scintigraphy were randomly assigned to one of four cleansing regimens: (1) a high fiber diet (78 patients); (2) castor oil (76); (3) milk of magnesia and cascara (76); and (4) not preparation (79). Patient compliance rates for the four regimens were 17%, 32%, 36%, and 46%, respectively. After noncompliant patients were excluded, gallium-67 scintigrams were graded for colonic activity on a scale of 0-3 by three independent, experienced observers. Gallium-67 activity in the colon was significantly less after administration of castor oil than after no preparation (p . 0.047). A high fiber diet also resulted in a substantial reduction of colonic activity when compared with no preparation; the difference, however, was not statistically significant (p . 0.083). Regimen 3 did not produce significantly better results than regimen 4 (p . 0.42). A major impediment to the success of any cleansing regimen seems to be poor compliance of patients

  1. Vaccination of carp against SVCV with an oral DNA vaccine or an insect cells-based subunit vaccine.

    Science.gov (United States)

    Embregts, C W E; Rigaudeau, D; Tacchi, L; Pijlman, G P; Kampers, L; Veselý, T; Pokorová, D; Boudinot, P; Wiegertjes, G F; Forlenza, M

    2018-03-19

    We recently reported on a successful vaccine for carp against SVCV based on the intramuscular injection of a DNA plasmid encoding the SVCV glycoprotein (SVCV-G). This shows that the intramuscular (i.m.) route of vaccination is suitable to trigger protective responses against SVCV, and that the SVCV G-protein is a suitable vaccine antigen. Yet, despite the general success of DNA vaccines, especially against fish rhabdoviruses, their practical implementation still faces legislative as well as consumer's acceptance concerns. Furthermore, the i.m. route of plasmid administration is not easily combined with most of the current vaccination regimes largely based on intraperitoneal or immersion vaccination. For this reason, in the current study we evaluated possible alternatives to a DNA-based i.m. injectable vaccine using the SVCV-G protein as the vaccine antigen. To this end, we tested two parallel approaches: the first based on the optimization of an alginate encapsulation method for oral delivery of DNA and protein antigens; the second based on the baculovirus recombinant expression of transmembrane SVCV-G protein in insect cells, administered as whole-cell subunit vaccine through the oral and injection route. In addition, in the case of the oral DNA vaccine, we also investigated the potential benefits of the mucosal adjuvants Escherichia coli lymphotoxin subunit B (LTB). Despite the use of various vaccine types, doses, regimes, and administration routes, no protection was observed, contrary to the full protection obtained with our reference i.m. DNA vaccine. The limited protection observed under the various conditions used in this study, the nature of the host, of the pathogen, the type of vaccine and encapsulation method, will therefore be discussed in details to provide an outlook for future vaccination strategies against SVCV. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Monitoring vaccine and non-vaccine HPV type prevalence in the post-vaccination era in women living in the Basilicata region, Italy.

    Science.gov (United States)

    Carozzi, Francesca; Puliti, Donella; Ocello, Cristina; Anastasio, Pasquale Silvio; Moliterni, Espedito Antonio; Perinetti, Emilia; Serradell, Laurence; Burroni, Elena; Confortini, Massimo; Mantellini, Paola; Zappa, Marco; Dominiak-Felden, Géraldine

    2018-01-15

    A large free-of-charge quadrivalent HPV (qHPV) vaccination program, covering four cohorts annually (women 11, 14, 17 and 24 years), has been implemented in Basilicata since 2007. This study evaluated vaccine and non-vaccine HPV prevalence 5-7 years post-vaccination program implementation in vaccinated and unvaccinated women. This population-based, cross-sectional study was conducted in the public screening centers of the Local Health Unit in Matera between 2012 and 2014. Cervical samples were obtained for Pap and HPV testing (HC2, LiPA Extra® assay) and participants completed a sociodemographic and behavioral questionnaire. Detailed HPV vaccination status was retrieved from the official HPV vaccine registry. HPV prevalence was described overall, by type and vaccination status. The association between HPV type-detection and risk/protective factors was studied. Direct vaccine protection (qHPV vaccine effectiveness [VE]), cross-protection, and type-replacement were evaluated in cohorts eligible for vaccination, by analyzing HPV prevalence of vaccine and non-vaccine types according to vaccination status. Overall, 2793 women (18-50 years) were included, 1314 of them having been in birth cohorts eligible for the HPV vaccination program (18- to 30-year-old women at enrolment). Among the latter, qHPV vaccine uptake was 59% (at least one dose), with 94% completing the schedule; standardized qHPV type prevalence was 0.6% in vaccinated versus 5.5% in unvaccinated women (P HPV, high-risk non-vaccine HPV, or any single non-vaccine type prevalence was observed between vaccinated and unvaccinated women. These results, conducted in a post-vaccine era, suggest a high qHPV VE and that a well-implemented catch-up vaccination program may be efficient in reducing vaccine-type infections in a real-world setting. No cross-protective effect or evidence of type-replacement was observed a few years after HPV vaccine introduction.

  3. Randomized Trials Comparing Inactivated Vaccine after Medium- or High-titer Measles Vaccine with Standard Titer Measles Vaccine after Inactivated Vaccine

    DEFF Research Database (Denmark)

    Aaby, Peter; Ravn, Henrik; Benn, Christine S.

    2016-01-01

    Background: Observational studies have suggested that girls have higher mortality if their most recent immunization is an inactivated vaccine rather than a live vaccine. We therefore reanalyzed 5 randomized trials of early measles vaccine (MV) in which it was possible to compare an inactivated va...

  4. FLU VACCINATION

    CERN Multimedia

    2007-01-01

    People working on the CERN site who wish to be vaccinated may go to the Infirmary (ground-floor, bldg. 57), with their vaccine, without a prior appointment. The vaccine can be reimbursed directly by Uniqa providing you attach the receipt and the prescription that you will receive from the Medical Service the day of your injection at the infirmary. Ideally, the vaccination should take place between 1st October and 30th November 2007 (preferably between 14:00 and 16:00). CERN staff aged 50 or over are recommended to have influenza vaccinations. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and those convalescing from serious medical problems or after serious surgical operations. The Medical Service will not administer vaccines for family members or retired staff members, who must contact their normal family doctor. Medical Service

  5. New Treatment Regimen for Latent Tuberculosis Infection

    Centers for Disease Control (CDC) Podcasts

    In this podcast, Dr. Kenneth Castro, Director of the Division of Tuberculosis Elimination, discusses the December 9, 2011 CDC guidelines for the use of a new regimen for the treatment of persons with latent tuberculosis infection.

  6. Long-term anti-HBs antibody persistence following infant vaccination against hepatitis B and evaluation of anamnestic response: a 20-year follow-up study in Thailand.

    Science.gov (United States)

    Poovorawan, Yong; Chongsrisawat, Voranush; Theamboonlers, Apiradee; Crasta, Priya Diana; Messier, Marc; Hardt, Karin

    2013-08-01

    Hepatitis B vaccine has been available worldwide since the mid-1980s. This vaccine was evaluated in a clinical trial in Thailand, conducted on subjects born to hepatitis B surface antigen positive and hepatitis B e-antigen positive mothers and vaccinated according to a 4-dose schedule at 0, 1, 2 and 12 mo of age and a single dose of hepatitis B immunoglobulin concomitantly at birth. All enrolled subjects seroconverted and were followed for 20 y to assess the persistence of antibody to the hepatitis B surface antigen (anti-HBs) (NCT00240539). At year 20, 64% of subjects had anti-HBs antibody concentrations≥10 milli-international units per milli liter (mIU/ml) and 92% of subjects had detectable levels (≥3.3 mIU/ml) of anti-HBs antibodies. At year 20, subjects with anti-HBs antibody titermemory (NCT00657657). Anamnestic response to the challenge dose was observed in 96.6% of subjects with an 82-fold (13.2 to 1082.4 mIU/ml) increase in anti-HBs antibody geometric mean concentrations. This study confirms the long-term immunogenicity of the 4-dose regimen of the HBV vaccine eliciting long-term persistence of antibodies and immune memory against hepatitis B for up to at least 20 y after vaccination.

  7. Combination of Intensive Chemotherapy and Anticancer Vaccines in the Treatment of Human Malignancies: The Hematological Experience

    Directory of Open Access Journals (Sweden)

    Knut Liseth

    2010-01-01

    Full Text Available In vitro studies have demonstrated that cancer-specific T cell cytotoxicity can be induced both ex vivo and in vivo, but this therapeutic strategy should probably be used as an integrated part of a cancer treatment regimen. Initial chemotherapy should be administered to reduce the cancer cell burden and disease-induced immune defects. This could be followed by autologous stem cell transplantation that is a safe procedure including both high-dose disease-directed chemotherapy and the possibility for ex vivo enrichment of the immunocompetent graft cells. The most intensive conventional chemotherapy and stem cell transplantation are used especially in the treatment of aggressive hematologic malignancies; both strategies induce T cell defects that may last for several months but cancer-specific T cell reactivity is maintained after both procedures. Enhancement of anticancer T cell cytotoxicity is possible but posttransplant vaccination therapy should probably be combined with optimalisation of immunoregulatory networks. Such combinatory regimens should be suitable for patients with aggressive hematological malignancies and probably also for other cancer patients.

  8. Public health impact and cost effectiveness of routine childhood vaccination for hepatitis a in Jordan: a dynamic model approach.

    Science.gov (United States)

    Hayajneh, Wail A; Daniels, Vincent J; James, Cerise K; Kanıbir, Muhammet Nabi; Pilsbury, Matthew; Marks, Morgan; Goveia, Michelle G; Elbasha, Elamin H; Dasbach, Erik; Acosta, Camilo J

    2018-03-07

    As the socioeconomic conditions in Jordan have improved over recent decades the disease and economic burden of Hepatitis A has increased. The purpose of this study is to assess the potential health and economic impact of a two-dose hepatitis A vaccine program covering one-year old children in Jordan. We adapted an age-structured population model of hepatitis A transmission dynamics to project the epidemiologic and economic impact of vaccinating one-year old children for 50 years in Jordan. The epidemiologic model was calibrated using local data on hepatitis A in Jordan. These data included seroprevalence and incidence data from the Jordan Ministry of Health as well as hospitalization data from King Abdullah University Hospital in Irbid, Jordan. We assumed 90% of all children would be vaccinated with the two-dose regimen by two years of age. The economic evaluation adopted a societal perspective and measured benefits using the quality-adjusted life-year (QALY). The modeled vaccination program reduced the incidence of hepatitis A in Jordan by 99%, 50 years after its introduction. The model projected 4.26 million avoided hepatitis A infections, 1.42 million outpatient visits, 22,475 hospitalizations, 508 fulminant cases, 95 liver transplants, and 76 deaths over a 50 year time horizon. In addition, we found, over a 50 year time horizon, the vaccination program would gain 37,502 QALYs and save over $42.6 million in total costs. The vaccination program became cost-saving within 6 years of its introduction and was highly cost-effective during the first 5 years. A vaccination program covering one-year old children is projected to be a cost-saving intervention that will significantly reduce the public health and economic burden of hepatitis A in Jordan.

  9. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Saranya Sridhar

    2015-04-01

    Full Text Available Influenza is a major respiratory pathogen causing annual outbreaks and occasional pandemics. Influenza vaccination is the major method of prophylaxis. Currently annual influenza vaccination is recommended for groups at high risk of complications from influenza infection such as pregnant women, young children, people with underlying disease and the elderly, along with occupational groups such a healthcare workers and farm workers. There are two main types of vaccines available: the parenteral inactivated influenza vaccine and the intranasal live attenuated influenza vaccine. The inactivated vaccines are licensed from 6 months of age and have been used for more than 50 years with a good safety profile. Inactivated vaccines are standardized according to the presence of the viral major surface glycoprotein hemagglutinin and protection is mediated by the induction of vaccine strain specific antibody responses. In contrast, the live attenuated vaccines are licensed in Europe for children from 2–17 years of age and provide a multifaceted immune response with local and systemic antibody and T cell responses but with no clear correlate of protection. Here we discuss the immunological immune responses elicited by the two vaccines and discuss future work to better define correlates of protection.

  10. Rotavirus vaccine strain transmission by vaccinated infants in the foster home.

    Science.gov (United States)

    Miura, Hiroki; Kawamura, Yoshiki; Sugata, Ken; Koshiyama, Nozomi; Yoshikawa, Akiko; Komoto, Satoshi; Taniguchi, Koki; Ihira, Masaru; Yoshikawa, Tetsushi

    2017-01-01

    Previous studies have demonstrated the transmission of rotavirus vaccine strains from vaccinated children to nonvaccinated siblings. We sought to fully elucidate the safety of rotavirus (RV) vaccination in closed contact circumstance, such as the foster home for future assessment of the vaccine safety in an neonatal intensive care unit. Stool samples were collected from 4 RV vaccinated (160 samples) and 23 unvaccinated (766 samples) infants. RV viral RNA loads were measured using real-time reverse transcription polymerase chain reaction (RT-PCR). RV vaccine strain RNA was persistently detected in stool samples collected from the four vaccine recipients and one unvaccinated infant, but not in the stool samples collected from the 22 other unvaccinated infants. The unvaccinated infant who tested positive for the RV vaccine strain was vaccinated prior to enrollment in this study. The quantitative real-time RT-PCR data revealed a peak viral RNA load 1 week after vaccination followed by a gradual decrease. The current study suggests that RV vaccination may be safe in a close contact environment because there was limited transmission from RV vaccinated to unvaccinated infants. J. Med. Virol. 89:79-84, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Exercise-induced serum enzyme elevations confounding the evaluation of investigational drug toxicity. Report of two cases in a vaccine trial.

    Science.gov (United States)

    Johnson, Casey; Monath, Thomas P; Kanesa-Thasan, Niranjan; Mathis, Danell; Miller, Chuck; Shapiro, Seth; Nichols, Richard; McCarthy, Karen; Deary, Alison; Bedford, Philip

    2005-01-01

    Two subjects developed marked elevations in creatine kinase and other serum enzymes associated with mild myalgia during a randomized, double-blind, controlled Phase 1 clinical trial of an investigational live, attenuated vaccine against West Nile virus (ChimeriVax-WN02). One subject had received ChimeriVax-WN02 while the other subject was enrolled in an active control group and received licensed yellow fever 17D vaccine (YF-VAX). Subsequently, the clinical trial was interrupted, and an investigation was begun to evaluate the enzyme abnormalities. As daily serum samples were collected for determination of quantitative viremia, it was possible to define the enzyme elevations with precision and to relate these elevations to physical activity of the subjects, symptoms, and virological and serological measurements. Evaluation of both subjects clearly showed that skeletal muscle injury, and not cardiac or hepatic dysfunction, was responsible for the biochemical abnormalities. This investigation also implicated strenuous exercise as the cause of the apparent muscle injury rather than the study vaccines. As a result of this experience, subjects engaged in future early-stage trials of these live, attenuated viral vaccines will be advised not to engage in contact sports or new or enhanced exercise regimens for which they are not trained or conditioned. The inclusion of placebo control arm (in lieu of or addition to an active vaccine control) will also be useful in differentiating causally related serum enzyme elevations.

  12. Laser facilitates vaccination

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2016-01-01

    Full Text Available Development of novel vaccine deliveries and vaccine adjuvants is of great importance to address the dilemma that the vaccine field faces: to improve vaccine efficacy without compromising safety. Harnessing the specific effects of laser on biological systems, a number of novel concepts have been proposed and proved in recent years to facilitate vaccination in a safer and more efficient way. The key advantage of using laser technology in vaccine delivery and adjuvantation is that all processes are initiated by physical effects with no foreign chemicals administered into the body. Here, we review the recent advances in using laser technology to facilitate vaccine delivery and augment vaccine efficacy as well as the underlying mechanisms.

  13. Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis Vaccines).

    Science.gov (United States)

    Doroshenko, Alexander; Halperin, Scott A

    2009-06-01

    Annual influenza epidemics continue to have a considerable impact in both developed and developing countries. Vaccination remains the principal measure to prevent seasonal influenza and reduce associated morbidity and mortality. The WHO recommends using established mammalian cell culture lines as an alternative to egg-based substrates in the manufacture of influenza vaccine. In June 2007, the EMEA approved Optaflu, a Madin Darby canine kidney cell culture-derived influenza vaccine manufactured by Novartis Vaccines. This review examines the advantages and disadvantages of cell culture-based technology for influenza vaccine production, compares immunogenicity and safety data for Optaflu with that of currently marketed conventional egg-based influenza vaccines, and considers the prospects for wider use of cell culture-based influenza vaccines.

  14. Sustainable vaccine development: a vaccine manufacturer's perspective.

    Science.gov (United States)

    Rappuoli, Rino; Hanon, Emmanuel

    2018-05-08

    Vaccination remains the most cost-effective public health intervention after clean water, and the benefits impressively outweigh the costs. The efforts needed to fulfill the steadily growing demands for next-generation and novel vaccines designed for emerging pathogens and new indications are only realizable in a sustainable business model. Vaccine development can be fast-tracked through strengthening international collaborations, and the continuous innovation of technologies to accelerate their design, development, and manufacturing. However, these processes should be supported by a balanced project portfolio, and by managing sustainable vaccine procurement strategies for different types of markets. Collectively this will allow a gradual shift to a more streamlined and profitable vaccine production, which can significantly contribute to the worldwide effort to shape global health. Copyright © 2018 GlaxoSmithKine Biologicals SA. Published by Elsevier Ltd.. All rights reserved.

  15. 17D yellow fever vaccine elicits comparable long-term immune responses in healthy individuals and immune-compromised patients.

    Science.gov (United States)

    Wieten, R W; Goorhuis, A; Jonker, E F F; de Bree, G J; de Visser, A W; van Genderen, P J J; Remmerswaal, E B M; Ten Berge, I J M; Visser, L G; Grobusch, M P; van Leeuwen, E M M

    2016-06-01

    The 17D live attenuated yellow fever (YF) vaccine is contra-indicated in immune-compromised individuals and may elicit a suboptimal immunologic response. The aim of this study is to assess whether long-term immune responses against the YF vaccine are impaired in immune-compromised patients. Fifteen patients using different immunosuppressive drugs and 30 healthy individuals vaccinated 0-22 years ago were included. The serological response was measured using the plaque reduction neutralization test (PRNT). CD8(+) and CD4(+) T-cell responses were measured following proliferation and re-stimulation with YFV peptide pools. Phenotypic characteristics and cytokine responses of CD8(+) T-cells were determined using class I tetramers. The geometric mean titre of neutralizing antibodies was not different between the groups (p = 0.77). The presence of YFV-specific CD4(+) and CD8(+) T-cell did not differ between patients and healthy individuals (15/15, 100.0% vs. 29/30, 96.7%, p = 0.475). Time since vaccination correlated negatively with the number of YFV-specific CD8(+) T-cells (r = -0.66, p = 0.0045). Percentages of early-differentiated memory cells increased (r = 0.67, p = 0.017) over time. These results imply that YF vaccination is effective despite certain immunosuppressive drug regimens. An early-differentiated memory-like phenotype persisted, which is associated with effective expansion upon re-encounter with antigen, suggesting a potent memory T-cell pool remains. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  16. Immunogenicity of a killed bivalent (O1 and O139 whole cell oral cholera vaccine, Shanchol, in Haiti.

    Directory of Open Access Journals (Sweden)

    Richelle C Charles

    2014-05-01

    Full Text Available Studies of the immunogenicity of the killed bivalent whole cell oral cholera vaccine, Shanchol, have been performed in historically cholera-endemic areas of Asia. There is a need to assess the immunogenicity of the vaccine in Haiti and other populations without historical exposure to Vibrio cholerae.We measured immune responses after administration of Shanchol, in 25 adults, 51 older children (6-17 years, and 47 younger children (1-5 years in Haiti, where cholera was introduced in 2010. A≥4-fold increase in vibriocidal antibody titer against V. cholerae O1 Ogawa was observed in 91% of adults, 74% of older children, and 73% of younger children after two doses of Shanchol; similar responses were observed against the Inaba serotype. A≥2-fold increase in serum O-antigen specific polysaccharide IgA antibody levels against V. cholerae O1 Ogawa was observed in 59% of adults, 45% of older children, and 61% of younger children; similar responses were observed against the Inaba serotype. We compared immune responses in Haitian individuals with age- and blood group-matched individuals from Bangladesh, a historically cholera-endemic area. The geometric mean vibriocidal titers after the first dose of vaccine were lower in Haitian than in Bangladeshi vaccinees. However, the mean vibriocidal titers did not differ between the two groups after the second dose of the vaccine.A killed bivalent whole cell oral cholera vaccine, Shanchol, is highly immunogenic in Haitian adults and children. A two-dose regimen may be important in Haiti, and other populations lacking previous repeated exposures to V. cholerae.

  17. Vaccines today, vaccines tomorrow: a perspective

    OpenAIRE

    Loucq, Christian

    2013-01-01

    Vaccines are considered as one of the major contributions of the 20th century and one of the most cost effective public health interventions. The International Vaccine Institute has as a mission to discover, develop and deliver new and improved vaccines against infectious diseases that affects developing nations. If Louis Pasteur is known across the globe, vaccinologists like Maurice Hilleman, Jonas Salk and Charles M?rieux are known among experts only despite their contribution to global hea...

  18. Vaccination coverage and reasons for non-vaccination in a district of Istanbul

    Directory of Open Access Journals (Sweden)

    Bakırcı Nadi

    2006-05-01

    Full Text Available Abstract Background In order to control and eliminate the vaccine preventable diseases it is important to know the vaccination coverage and reasons for non-vaccination. The primary objective of this study was to determine the complete vaccination rate; the reasons for non-vaccination and the predictors that influence vaccination of children. The other objective was to determine coverage of measles vaccination of the Measles Immunization Days (MID 2005 for children aged 9 month to 6 years in a region of Umraniye, Istanbul, Turkey. Methods A '30 × 7' cluster sampling design was used as the sampling method. Thirty streets were selected at random from study area. Survey data were collected by a questionnaire which was applied face to face to parents of 221 children. A Chi-square test and logistic regression was used for the statistical analyses. Content analysis method was used to evaluate the open-ended questions. Results The complete vaccination rate for study population was 84.5% and 3.2% of all children were totally non-vaccinated. The siblings of non-vaccinated children were also non-vaccinated. Reasons for non-vaccination were as follows: being in the village and couldn't reach to health care services; having no knowledge about vaccination; the father of child didn't allow vaccination; intercurrent illness of child during vaccination time; missed opportunities like not to shave off a vial for only one child. In logistic regression analysis, paternal and maternal levels of education and immigration time of both parents to Istanbul were found to influence whether children were completely vaccinated or non-vaccinated. Measles vaccination coverage during MID was 79.3%. Conclusion Efforts to increase vaccination coverage should take reasons for non-vaccination into account.

  19. An Adjuvanted A(H5N1) Subvirion Vaccine Elicits Virus-Specific Antibody Response and Improves Protection Against Lethal Influenza Viral Challenge in Mouse Model of Protein Energy Malnutrition.

    Science.gov (United States)

    Jones, Enitra N; Amoah, Samuel; Cao, Weiping; Sambhara, Suryaprakash; Gangappa, Shivaprakash

    2017-09-15

    Protein energy malnutrition (PEM) increases susceptibility to infectious diseases, including influenza infection, but no studies have addressed the potential influences of PEM on the immunogenicity and protective efficacy of avian influenza A(H5N1) vaccine. We investigated the role of PEM on vaccine-mediated protection after a lethal challenge with recombinant A(H5N1) virus using isocaloric diets providing either adequate protein (AP; 18% protein) or very low protein (VLP; 2% protein) in an established murine model of influenza vaccination. We demonstrated that mice maintained on a VLP diet succumb to lethal challenge at greater rates than mice maintained on an AP diet, despite comparable immunization regimens. Importantly, there was no virus-induced mortality in both VLP and AP groups of mice when either group was immunized with adjuvanted low-dose A(H5N1) subvirion vaccine. Our results suggest that adjuvanted vaccination in populations where PEM is endemic may be one strategy to boost vaccination-promoted immunity and improve outcomes associated with highly pathogenic A(H5N1). Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Meningococcal B vaccine. An immunogenic vaccine possibly useful during outbreaks.

    Science.gov (United States)

    2014-09-01

    Invasive meningococcal infections can be life-threatening and cause severe sequelae. Antibiotic therapy is only partially effective. Bexsero is the first meningococcal B vaccine to be approved in the European Union. It contains four capsular antigens from various strains of group B meningococci. Clinical trials of this meningococcal B vaccine did not assess clinical protection. Two immunogenicity studies in adults, one in adolescents and six in infants, are available. They established the immunogenicity of the meningococcal B vaccine, determined age-appropriate vaccination schedules, and verified that concomitant administration of other vaccines did not undermine its immunogenicity. In the absence of relevant clinical trials, an in vitro study showed that sera from vaccinated individuals were likely to have bactericidal activity against 85% of 200 invasive meningococcal B strains isolated in France in 2007-2008. The meningococcal B vaccine provoked local adverse effects in most vaccinees, including local erythema, induration and pain. Fever occurred in about half of vaccinated children. Six cases of Kawasaki syndrome have been reported in children who received the vaccine, compared to only one case in control groups. In practice, the harm-benefit balance of this meningococcal B vaccine justify using it during outbreaks, provided the outbreak strain is covered by the vaccine antigens. Vaccinees should be enrolled in studies designed to evaluate clinical efficacy and to better determine the risk of Kawasaki syndrome.

  1. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Amy R Noe

    Full Text Available The circumsporozoite protein (CSP of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA and immunofluorescence assay (IFA, as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime

  2. Vaccine Safety

    Science.gov (United States)

    ... During Pregnancy Frequently Asked Questions about Vaccine Recalls Historical Vaccine Safety Concerns FAQs about GBS and Menactra ... CISA Resources for Healthcare Professionals Evaluation Current Studies Historical Background 2001-12 Publications Technical Reports Vaccine Safety ...

  3. 5 year efficacy of a bivalent killed whole-cell oral cholera vaccine in Kolkata, India: a cluster-randomised, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Bhattacharya, Sujit K; Sur, Dipika; Ali, Mohammad; Kanungo, Suman; You, Young Ae; Manna, Byomkesh; Sah, Binod; Niyogi, Swapan K; Park, Jin Kyung; Sarkar, Banwarilal; Puri, Mahesh K; Kim, Deok Ryun; Deen, Jacqueline L; Holmgren, Jan; Carbis, Rodney; Dhingra, Mandeep Singh; Donner, Allan; Nair, G Balakrish; Lopez, Anna Lena; Wierzba, Thomas F; Clemens, John D

    2013-12-01

    Efficacy and safety of a two-dose regimen of bivalent killed whole-cell oral cholera vaccine (Shantha Biotechnics, Hyderabad, India) to 3 years is established, but long-term efficacy is not. We aimed to assess protective efficacy up to 5 years in a slum area of Kolkata, India. In our double-blind, cluster-randomised, placebo-controlled trial, we assessed incidence of cholera in non-pregnant individuals older than 1 year residing in 3933 dwellings (clusters) in Kolkata, India. We randomly allocated participants, by dwelling, to receive two oral doses of modified killed bivalent whole-cell cholera vaccine or heat-killed Escherichia coli K12 placebo, 14 days apart. Randomisation was done by use of a computer-generated sequence in blocks of four. The primary endpoint was prevention of episodes of culture-confirmed Vibrio cholerae O1 diarrhoea severe enough for patients to seek treatment in a health-care facility. We identified culture-confirmed cholera cases among participants seeking treatment for diarrhoea at a study clinic or government hospital between 14 days and 1825 days after receipt of the second dose. We assessed vaccine protection in a per-protocol population of participants who had completely ingested two doses of assigned study treatment. 69 of 31 932 recipients of vaccine and 219 of 34 968 recipients of placebo developed cholera during 5 year follow-up (incidence 2·2 per 1000 in the vaccine group and 6·3 per 1000 in the placebo group). Cumulative protective efficacy of the vaccine at 5 years was 65% (95% CI 52-74; pcholera vaccines. Established long-term efficacy of this vaccine could assist policy makers formulate rational vaccination strategies to reduce overall cholera burden in endemic settings. Bill & Melinda Gates Foundation and the governments of South Korea and Sweden. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T-cell-Mediated Tumor Control in the Genital Tract.

    Science.gov (United States)

    Sun, Yun-Yan; Peng, Shiwen; Han, Liping; Qiu, Jin; Song, Liwen; Tsai, Yachea; Yang, Benjamin; Roden, Richard B S; Trimble, Cornelia L; Hung, Chien-Fu; Wu, T-C

    2016-02-01

    Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high-grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T-cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Here, we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than intramuscular (IM) delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16(+) cervical cancer (TC-1 luc). We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8(+) T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8(+) T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8(+) T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8(+) T-cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Our results support future clinical translation using cervicovaginal TA-HPV vaccination. ©2015 American Association for Cancer Research.

  5. Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T Cell Mediated Tumor Control in the Genital Tract

    Science.gov (United States)

    Sun, Yun-Yan; Peng, Shiwen; Han, Liping; Qiu, Jin; Song, Liwen; Tsai, Yachea; Yang, Benjamin; Roden, Richard B.S.; Trimble, Cornelia L.; Hung, Chien-Fu; Wu, T-C

    2015-01-01

    Purpose Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Experimental Design Here we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than IM delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16+ cervical cancer (TC-1 luc). Results We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8+ T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8+ T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8+ T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8+ T cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Conclusions Our results support future clinical translation using cervicovaginal TA-HPV vaccination. PMID:26420854

  6. Differences in Lipid Measurements by Antiretroviral Regimen Exposure in Cohorts from Asia and Australia

    Directory of Open Access Journals (Sweden)

    Amit C. Achhra

    2012-01-01

    Full Text Available We explored the mean differences in routinely measured lipids (total cholesterol, triglycerides, and high-density lipoprotein cholesterol according to exposure to different combination antiretroviral regimens in Asian (n=2051 and Australian (predominantly Caucasian, n=794 cohorts. The regimen was defined as at least 3 antiretroviral drugs with at least 2 nucleoside-reverse transcriptases (NRTIs and either of at least one protease inhibitor (PI or non-nucleoside-reverse transcriptases (NNRTIs. We categorised cART regimens as: NRTIs as tenofovir based or not; NNRTIs as nevirapine or efavirenz (but not both; and PI as atazanavir based or not. We found that the impact of various antiretroviral regimens on lipids in Asian and Australian cohorts was only different by cohort for total cholesterol (P for interaction between regimen and cohort: 0.05. The differences in total cholesterol were however small and unlikely to be of clinical significance. Overall, tenofovir with nevirapine or atazanavir was associated with the most favorable lipids, while the PI regimens without tenofovir and atazanavir were associated with least favorable lipids. We conclude that the impact of various ART regimens on lipids is largely similar in Asian and Australian cohorts and that the newer drugs such as tenofovir and atazanavir are likely to provide similar benefit in terms of lipid profiles in both populations.

  7. Contribution of nonneutralizing vaccine-elicited antibody activities to improved protective efficacy in rhesus macaques immunized with Tat/Env compared with multigenic vaccines.

    Science.gov (United States)

    Florese, Ruth H; Demberg, Thorsten; Xiao, Peng; Kuller, LaRene; Larsen, Kay; Summers, L Ebonita; Venzon, David; Cafaro, Aurelio; Ensoli, Barbara; Robert-Guroff, Marjorie

    2009-03-15

    Previously, chronic-phase protection against SHIV(89.6P) challenge was significantly greater in macaques primed with replicating adenovirus type 5 host range mutant (Ad5hr) recombinants encoding HIVtat and env and boosted with Tat and Env protein compared with macaques primed with multigenic adenovirus recombinants (HIVtat, HIVenv, SIVgag, SIVnef) and boosted with Tat, Env, and Nef proteins. The greater protection was correlated with Tat- and Env-binding Abs. Because the macaques lacked SHIV(89.6P)-neutralizing activity prechallenge, we investigated whether Ab-dependent cellular cytotoxicity (ADCC) and Ab-dependent cell-mediated viral inhibition (ADCVI) might exert a protective effect. We clearly show that Tat can serve as an ADCC target, although the Tat-specific activity elicited did not correlate with better protection. However, Env-specific ADCC activity was consistently higher in the Tat/Env group, with sustained cell killing postchallenge exhibited at higher levels (p vaccine regimens.

  8. Vaccination of School Children With Live Mumps Virus Vaccine

    Science.gov (United States)

    Furesz, J.; Nagler, F. P.

    1970-01-01

    Live, attenuated mumps virus vaccine (Mumpsvax) was administered to 146 school children 6 to 9 years of age. One child developed clinical mumps nine days after vaccination; epidemiological and serological data strongly suggest that this child had become infected before vaccination. Apart from this single instance there were no apparent clinical reactions that could be ascribed to the administration of the vaccine. Sixty-three of the 146 children with no clinical history of mumps had an initial serum neutralizing antibody titre of less than 1:2. Specific antibodies to mumps virus were detected in 93.5% of the sera of the susceptible children 28 days after vaccination, and the geometric mean antibody titre of these sera was low (1:6). Of the 80 initially seropositive children 21 (26.2%) showed a significant antibody response to the vaccine and this was influenced by the pre-existing antibody level. These data have further demonstrated the safety and efficacy of the live mumps vaccine in children. PMID:5420994

  9. Vaccine hesitancy among parents of adolescents and its association with vaccine uptake.

    Science.gov (United States)

    Roberts, James R; Thompson, David; Rogacki, Brianna; Hale, Jessica J; Jacobson, Robert M; Opel, Douglas J; Darden, Paul M

    2015-03-30

    Addressing parental vaccine hesitancy may increase adolescent vaccination acceptance. However, no validated measure exists to identify parents hesitant toward adolescent vaccines. To determine if a modified version of the Parent Attitudes about Childhood Vaccines (PACV) survey, a previously validated tool to identify parental hesitancy toward vaccines in infants, predicts adolescent vaccine uptake at office visits. We modified the PACV for use in the adolescent setting and distributed it to a convenience sample of parents of adolescents aged 11 to 17 presenting for care at a diverse group of six pediatric practices in Oklahoma and South Carolina. We determined the vaccination status of the parents' adolescents for 3 vaccines (Tetanus-diphtheria-acellular pertussis [Tdap], meningococcal conjugate [MCV4], and human papillomavirus [HPV] vaccines). We used Fisher's exact tests to compare vaccination status with each survey item and with an overall general hesitancy scale that we constructed. We analyzed 363 surveys. At the time of the visit, vaccination coverage was 84% for Tdap, 73% for MCV, and 45% for any dose of HPV. Thirty-nine percent of parents expressed concern about vaccine efficacy and 41% expressed concern about side effects. Forty-five percent of parents disagreed with the statement that "teens can get all of the vaccines that are due at a single visit." Two individual items were associated with not receiving a dose of HPV vaccine that was due. The overall modified PACV score failed to predict adolescent vaccine uptake at an office visit. Several individual items were associated with vaccine uptake. The cumulative modified PACV, a general measure of vaccine hesitancy, was not associated with vaccination status despite illuminating parental hesitancy. We need to better understand vaccine-specific concerns for the adolescent population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. New drugs and perspectives for new anti-tuberculosis regimens

    Directory of Open Access Journals (Sweden)

    S. Tiberi

    2018-03-01

    Full Text Available Tuberculosis (TB is the ninth cause of global death, more than any other infectious disease. With growing drug resistance the epidemic remains and will require significant attention and investment for the elimination of this disease to occur. With susceptible TB treatment not changing over the last four decades and the advent of drug resistance, new drugs and regimens are required.Recently, through greater collaboration and research networks some progress with significant advances has taken place, not withstanding the comparatively low amount of resources invested. Of late the availability of the new drugs bedaquiline, delamanid and repurposed drugs linezolid, clofazimine and carbapenems are being used more frequently in drug-resistant TB regimens.The WHO shorter multidrug-resistant tuberculosis regimen promises to reach more patients and treat them more quickly and more cheaply.With this new enthusiasm and hope we this review gives an update on the new drugs and perspectives for the treatment of drug-susceptible and drug-resistant tuberculosis. Keywords: Bedaquiline, Delamanid, Linezolid, MDR, XDR-TB, TB

  11. Physician communication about adolescent vaccination: How is human papillomavirus vaccine different?

    Science.gov (United States)

    Gilkey, Melissa B; Moss, Jennifer L; Coyne-Beasley, Tamera; Hall, Megan E; Shah, Parth D; Brewer, Noel T

    2015-08-01

    Low human papillomavirus (HPV) vaccination coverage stands in stark contrast to our success in delivering other adolescent vaccines. To identify opportunities for improving physicians' recommendations for HPV vaccination, we sought to understand how the communication context surrounding adolescent vaccination varies by vaccine type. A national sample of 776 U.S. physicians (53% pediatricians, 47% family medicine physicians) completed our online survey in 2014. We assessed physicians' perceptions and communication practices related to recommending adolescent vaccines for 11- and 12-year-old patients. About three-quarters of physicians (73%) reported recommending HPV vaccine as highly important for patients, ages 11-12. More physicians recommended tetanus, diphtheria, and acellular pertussis (Tdap) (95%) and meningococcal vaccines (87%, both pCommunication strategies are needed to support physicians in recommending HPV vaccine with greater confidence and efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Comparison of a four-drug fixed-dose combination regimen with a single tablet regimen in smear-positive pulmonary tuberculosis.

    Science.gov (United States)

    Bartacek, A; Schütt, D; Panosch, B; Borek, M

    2009-06-01

    To compare the efficacy, safety and acceptability of two short-course regimens of isoniazid, rifampicin, pyrazinamide and ethambutol (HRZE) given either as fixed-dose combination (4-FDC) tablets or as single tablets (ST) in patients with newly diagnosed pulmonary tuberculosis (PTB). This randomised, open, multicentre, multinational study was conducted in 26 centres and included 1159 patients with smear-positive PTB. 4-FDC daily for 2 months then H+R for 4 months, or single preparations of H, R, Z and E for 2 months followed by H and R for 4 months were administered daily. Sputum smear conversion rates at 2, 4 and 6 months (end of treatment [EOT], primary endpoint) and at 9 and 12 months (follow-up) were measured, together with adverse events and the acceptability of the formulations. Smear conversion rates for 4-FDC and ST at EOT were 80.4% (468/582 patients) vs. 82.7% (477/577) in the intent-to-treat (ITT) population, and 98.1% (404/412) vs. 98.6% (416/422) in the per-protocol (PP) subgroup. Non-inferiority of 4-FDC was demonstrated at month 2, EOT and follow-up in both the ITT and the PP populations. Overall numbers of adverse events were not significantly different between the groups. The efficacy of the 4-FDC regimen was non-inferior to that of the ST regimens, but patient acceptability significantly improved with 4-FDC.

  13. Satisfactory safety and immunogenicity of MSP3 malaria vaccine candidate in Tanzanian children aged 12–24 months

    Directory of Open Access Journals (Sweden)

    Segeja Method D

    2009-07-01

    Full Text Available Abstract Background Development and deployment of an effective malaria vaccine would complement existing malaria control measures. A blood stage malaria vaccine candidate, Merozoite Surface Protein-3 (MSP3, produced as a long synthetic peptide, has been shown to be safe in non-immune and semi-immune adults. A phase Ib dose-escalating study was conducted to assess the vaccine's safety and immunogenicity in children aged 12 to 24 months in Korogwe, Tanzania (ClinicalTrials.gov number: NCT00469651. Methods This was a double-blind, randomized, controlled, dose escalation phase Ib trial, in which children were given one of two different doses of the MSP3 antigen (15 μg or 30 μg or a control vaccine (Engerix B. Children were randomly allocated either to the MSP3 candidate malaria vaccine or the control vaccine administered at a schedule of 0, 1, and 2 months. Immunization with lower and higher doses was staggered for safety reasons starting with the lower dose. The primary endpoint was safety and reactogenicity within 28 days post-vaccination. Blood samples were obtained at different time points to measure immunological responses. Results are presented up to 84 days post-vaccination. Results A total of 45 children were enrolled, 15 in each of the two MSP3 dose groups and 15 in the Engerix B group. There were no important differences in reactogenicity between the two MSP3 groups and Engerix B. Grade 3 adverse events were infrequent; only five were detected throughout the study, all of which were transient and resolved without sequelae. No serious adverse event reported was considered to be related to MSP3 vaccine. Both MSP3 dose regimens elicited strong cytophilic IgG responses (subclasses IgG1 and IgG3, the isotypes involved in the monocyte-dependant mechanism of Plasmodium falciparum parasite-killing. The titers reached are similar to those from African adults having reached a state of premunition. Furthermore, vaccination induced seroconversion in

  14. Measles, immune suppression and vaccination: direct and indirect nonspecific vaccine benefits.

    Science.gov (United States)

    Mina, Michael J

    2017-06-01

    The measles virus is among the most transmissible viruses known to infect humans. Prior to measles vaccination programs, measles infected over 95% of all children and was responsible for over 4 million deaths each year. Measles vaccination programs have been among the greatest public health achievements reducing, eliminating endemic measles in the whole of the Americas and across much of the globe. Where measles vaccines are introduced, unexpectedly large reductions in all-cause childhood mortality have been observed. These gains appear to derive in part from direct heterologous benefits of measles vaccines that enhance innate and adaptive immune responses. Additionally, by preventing measles infections, vaccination prevents measles-associated short- and long-term immunomodulating effects. Before vaccination, these invisible hallmarks of measles infections increased vulnerability to non-measles infections in nearly all children for weeks, months, or years following acute infections. By depleting measles incidence, vaccination has had important indirect benefits to reduce non-measles mortality. Delineating the relative importance of these two modes of survival benefits following measles vaccine introduction is of critical public health importance. While both support continued unwavering global commitments to measles vaccination programs until measles eradication is complete, direct heterologous benefits of measles vaccination further support continued commitment to measles vaccination programs indefinitely. We discuss what is known about direct and indirect nonspecific measles vaccine benefits, and their implications for continued measles vaccination programs. © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  15. Timeliness vaccination of measles containing vaccine and barriers to vaccination among migrant children in East China.

    Directory of Open Access Journals (Sweden)

    Yu Hu

    Full Text Available BACKGROUND: The reported coverage rates of first and second doses of measles containing vaccine (MCV are almost 95% in China, while measles cases are constantly being reported. This study evaluated the vaccine coverage, timeliness, and barriers to immunization of MCV1 and MCV2 in children aged from 8-48 months. METHODS: We assessed 718 children aged 8-48 months, of which 499 children aged 18-48 months in September 2011. Face to face interviews were administered with children's mothers to estimate MCV1 and MCV2 coverage rate, its timeliness and barriers to vaccine uptake. RESULTS: The coverage rates were 76.9% for MCV1 and 44.7% for MCV2 in average. Only 47.5% of surveyed children received the MCV1 timely, which postpone vaccination by up to one month beyond the stipulated age of 8 months. Even if coverage thus improves with time, postponed vaccination adds to the pool of unprotected children in the population. Being unaware of the necessity for vaccination and its schedule, misunderstanding of side-effect of vaccine, and child being sick during the recommended vaccination period were significant preventive factors for both MCV1 and MCV2 vaccination. Having multiple children, mother's education level, household income and children with working mothers were significantly associated with delayed or missing MCV1 immunization. CONCLUSIONS: To avoid future outbreaks, it is crucial to attain high coverage levels by timely vaccination, thus, accurate information should be delivered and a systematic approach should be targeted to high-risk groups.

  16. Evaluation of vaccine competition using HVT vector vaccines

    Science.gov (United States)

    Turkey herpesvirus (HVT) has been widely used as a vaccine for Marek’s disease (MD) since the 1970s. Because HVT is a safe vaccine that is poorly sensitive to interference from maternally derived antibodies, it has seen rising use as a vector for vaccines developed for protection against other comm...

  17. Adolescent Attitudes toward Influenza Vaccination and Vaccine Uptake in a School-Based Influenza Vaccination Intervention: A Mediation Analysis

    Science.gov (United States)

    Painter, Julia E.; Sales, Jessica M.; Pazol, Karen; Wingood, Gina M.; Windle, Michael; Orenstein, Walter A.; DiClemente, Ralph J.

    2011-01-01

    Background: School-based vaccination programs may provide an effective strategy to immunize adolescents against influenza. This study examined whether adolescent attitudes toward influenza vaccination mediated the relationship between receipt of a school-based influenza vaccination intervention and vaccine uptake. Methods: Participants were…

  18. Local measles vaccination gaps in Germany and the role of vaccination providers.

    Science.gov (United States)

    Eichner, Linda; Wjst, Stephanie; Brockmann, Stefan O; Wolfers, Kerstin; Eichner, Martin

    2017-08-14

    Measles elimination in Europe is an urgent public health goal, yet despite the efforts of its member states, vaccination gaps and outbreaks occur. This study explores local vaccination heterogeneity in kindergartens and municipalities of a German county. Data on children from mandatory school enrolment examinations in 2014/15 in Reutlingen county were used. Children with unknown vaccination status were either removed from the analysis (best case) or assumed to be unvaccinated (worst case). Vaccination data were translated into expected outbreak probabilities. Physicians and kindergartens with statistically outstanding numbers of under-vaccinated children were identified. A total of 170 (7.1%) of 2388 children did not provide a vaccination certificate; 88.3% (worst case) or 95.1% (best case) were vaccinated at least once against measles. Based on the worst case vaccination coverage, measles introduction lies between 39.5% (best case) and 73.0% (worst case). Four paediatricians were identified who accounted for 41 of 109 unvaccinated children and for 47 of 138 incomplete vaccinations; GPs showed significantly higher rates of missing vaccination certificates and unvaccinated or under-vaccinated children than paediatricians. Missing vaccination certificates pose a severe problem regarding the interpretability of vaccination data. Although the coverage for at least one measles vaccination is higher in the studied county than in most South German counties and higher than the European average, many severe and potentially dangerous vaccination gaps occur locally. If other federal German states and EU countries show similar vaccination variability, measles elimination may not succeed in Europe.

  19. Variability in Antibiotic Regimens for Surgical Necrotizing Enterocolitis Highlights the Need for New Guidelines.

    Science.gov (United States)

    Blackwood, Brian P; Hunter, Catherine J; Grabowski, Julia

    Necrotizing enterocolitis or NEC is the most common gastrointestinal emergency in the newborn. The etiology of NEC remains unknown, and treatment consists of antibiotic therapy and supportive care with the addition of surgical intervention as necessary. Unlike most surgical diseases, clear guidelines for the type and duration of peri-operative antibiotic therapy have not been established. Our aim was to review the antibiotic regimen(s) applied to surgical patients with NEC within a single neonatal intensive care unit (NICU) and to evaluate outcomes and help develop guidelines for antibiotic administration in this patient population. A single-center retrospective review was performed of all patients who underwent surgical intervention for NEC from August 1, 2005 through August 1, 2015. Relevant data were extracted including gestational age, age at diagnosis, gender, pre-operative antibiotic treatment, post-operative antibiotic treatment, development of stricture, and mortality. Patients were excluded if there was incomplete data documentation. A total of 90 patients were identified who met inclusion criteria. There were 56 male patients and 34 female patients. The average gestational age was 30 5/7 wks and average age of diagnosis 16.7 d. A total of 22 different pre-operative antibiotic regimens were identified with an average duration of 10.6 d. The most common pre-operative regimen was ampicillin, gentamicin, and metronidazole for 14 d. A total of 15 different post-operative antibiotic regimens were identified with an average duration of 6.6 d. The most common post-operative regimen was ampicillin, gentamicin, and metronidazole for two days. There were 26 strictures and 15 deaths. No regimen or duration proved superior. We found that there is a high degree of variability in the antibiotic regimen for the treatment of NEC, even within a single NICU, with no regimen appearing superior over another. As data emerge that demonstrate the adverse effects of

  20. Effects of the deletion of early region 4 (E4 open reading frame 1 (orf1, orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Directory of Open Access Journals (Sweden)

    Michael A Thomas

    Full Text Available The global health burden engendered by human immunodeficiency virus (HIV-induced acquired immunodeficiency syndrome (AIDS is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1 through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and