WorldWideScience

Sample records for situ x-ray measurements

  1. Nanocalorimeter platform for in situ specific heat measurements and x-ray diffraction at low temperature

    Science.gov (United States)

    Willa, K.; Diao, Z.; Campanini, D.; Welp, U.; Divan, R.; Hudl, M.; Islam, Z.; Kwok, W.-K.; Rydh, A.

    2017-12-01

    Recent advances in electronics and nanofabrication have enabled membrane-based nanocalorimetry for measurements of the specific heat of microgram-sized samples. We have integrated a nanocalorimeter platform into a 4.5 T split-pair vertical-field magnet to allow for the simultaneous measurement of the specific heat and x-ray scattering in magnetic fields and at temperatures as low as 4 K. This multi-modal approach empowers researchers to directly correlate scattering experiments with insights from thermodynamic properties including structural, electronic, orbital, and magnetic phase transitions. The use of a nanocalorimeter sample platform enables numerous technical advantages: precise measurement and control of the sample temperature, quantification of beam heating effects, fast and precise positioning of the sample in the x-ray beam, and fast acquisition of x-ray scans over a wide temperature range without the need for time-consuming re-centering and re-alignment. Furthermore, on an YBa2Cu3O7-δ crystal and a copper foil, we demonstrate a novel approach to x-ray absorption spectroscopy by monitoring the change in sample temperature as a function of incident photon energy. Finally, we illustrate the new insights that can be gained from in situ structural and thermodynamic measurements by investigating the superheated state occurring at the first-order magneto-elastic phase transition of Fe2P, a material that is of interest for magnetocaloric applications.

  2. In-Situ Silver Acetylide Silver Nitrate Explosive Deposition Measurements Using X-Ray Fluorescence.

    Energy Technology Data Exchange (ETDEWEB)

    Covert, Timothy Todd

    2014-09-01

    The Light Initiated High Explosive facility utilized a spray deposited coating of silver acetylide - silver nitrate explosive to impart a mechanical shock into targets of interest. A diagnostic was required to measure the explosive deposition in - situ. An X - ray fluorescence spectrometer was deployed at the facility. A measurement methodology was developed to measure the explosive quantity with sufficient accuracy. Through the use of a tin reference material under the silver based explosive, a field calibration relationship has been developed with a standard deviation of 3.2 % . The effect of the inserted tin material into the experiment configuration has been explored.

  3. In situ measurements of X-ray peak profile asymmetry from individual grains

    DEFF Research Database (Denmark)

    Wejdemann, Christian; Lienert, U.; Pantleon, Wolfgang

    2010-01-01

    Two copper samples, pre-deformed in tension to 5% plastic strain, are subjected to an in situ tensile deformation of 1% plastic strain while X-ray peak profiles from individual bulk grains are obtained. One sample is oriented with the in situ tensile axis parallel to the pre-deformation axis......, and peak profiles are obtained with the scattering vector parallel to this direction. The profiles show the expected asymmetry explained by the composite model as caused by intra-grain stresses. The other sample is oriented with the in situ tensile axis perpendicular to the pre-deformation axis, and peak...

  4. Nanocalorimeter platform for in situ specific heat measurements and x-ray diffraction at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Willa, K. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Diao, Z. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden; Laboratory of Mathematics, Physics and Electrical Engineering, Halmstad University, P.O. Box 823, SE-301 18 Halmstad, Sweden; Campanini, D. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden; Welp, U. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Divan, R. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Hudl, M. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden; Islam, Z. [X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Kwok, W. -K. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Rydh, A. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden

    2017-12-01

    Recent advances in electronics and nanofabrication have enabled membrane-based nanocalorimetry for measurements of the specific heat of microgram-sized samples. We have integrated a nanocalorimeter platform into a 4.5 T split-pair vertical-field magnet to allow for the simultaneous measurement of the specific heat and x-ray scattering in magnetic fields and at temperatures as low as 4 K. This multi-modal approach empowers researchers to directly correlate scattering experiments with insights from thermodynamic properties including structural, electronic, orbital, and magnetic phase transitions. The use of a nanocalorimeter sample platform enables numerous technical advantages: precise measurement and control of the sample temperature, quantification of beam heating effects, fast and precise positioning of the sample in the x-ray beam, and fast acquisition of x-ray scans over a wide temperature range without the need for time-consuming re-centering and re-alignment. Furthermore, on an YBa2Cu3O7-delta crystal and a copper foil, we demonstrate a novel approach to x-ray absorption spectroscopy by monitoring the change in sample temperature as a function of incident photon energy. Finally, we illustrate the new insights that can be gained from in situ structural and thermodynamic measurements by investigating the superheated state occurring at the first-order magneto-elastic phase transition of Fe2P, a material that is of interest for magnetocaloric applications.

  5. In-situ X-ray structure measurements on aerodynamically levitated high temperature liquids

    International Nuclear Information System (INIS)

    Weber, Richard; Benmore, Christopher; Mei Qiang; Wilding, Martin

    2009-01-01

    High energy, high flux X-ray sources enable new measurements of liquid and amorphous materials in extreme conditions. Aerodynamic levitation in combination with laser beam heating can be used to access high purity and non-equilibrium liquids at temperatures up to 3000 K. In this work, a small aerodynamic levitator was integrated with high energy beamline 11 ID-C at the Advanced Photon Source. Scattered X-rays were detected with a Mar345 image plate. The experiments investigated a series of binary in the CaO-Al 2 O 3 , MgO-SiO 2 , SiO 2 -Al 2 O 3 metal oxide compositions and pure SiO 2 . The results show that the liquids exhibit large changes in structure when the predominant network former is diluted. Measurements on glasses with the same compositions as the liquids suggest that significant structural rearrangement consistent with a fragile-strong transition occurs in these reluctant glass forming liquids as they vitrify.

  6. Effective X-ray elastic constant measurement for in situ stress measurement of biaxially strained AA5754-O

    International Nuclear Information System (INIS)

    Iadicola, Mark A.; Gnäupel-Herold, Thomas H.

    2012-01-01

    Accurate measurement of stresses by X-ray diffraction requires accurate X-ray elastic constants. Calibration experiments are one method to determine these for a specific material in a specific condition. In this paper, uniaxial tension experiments are used to investigate the variation of these constants after uniaxial and equal-biaxial plastic deformation for an aluminum alloy (AA5754-O) of interest to the automotive industry. These data are critical for accurate measurement of the biaxial mechanical properties of the material using a recent experimental method combining specialized sheet metal forming equipment with portable X-ray diffraction equipment. The measured effective X-ray elastic constants show some minor variation with increased plastic deformation, and this behavior was found to be consistent for both uniaxially and equal-biaxially strained samples. The use of two average values for effective X-ray elastic constants, one in the rolling direction and one transverse to the rolling direction of the sheet material, is shown to be of sufficient accuracy for the combined tests of interest. Comparison of uniaxial data measured using X-ray diffraction and standard methods show good agreement, and biaxial stress–strain results show good repeatability. Additionally, the calibration data show some non-linear behavior, which is analyzed in regards to crystallographic texture and intergranular stress effects. The non-linear behavior is found to be the result of intergranular stresses based on comparison with additional measurements using other X-ray diffraction equipment and neutron diffraction.

  7. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J. K. R.; Alderman, O. L. G. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Tamalonis, A.; Sendelbach, S. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Benmore, C. J. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Hebden, A.; Williamson, M. A. [Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-07-15

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.

  8. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    Science.gov (United States)

    Weber, J. K. R.; Tamalonis, A.; Benmore, C. J.; Alderman, O. L. G.; Sendelbach, S.; Hebden, A.; Williamson, M. A.

    2016-07-01

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.

  9. In-situ stress measurement of single and multilayer thin-films used in x-ray astronomy optics applications

    Science.gov (United States)

    Broadway, David M.; Ramsey, Brian D.; O'Dell, Stephen L.; Gurgew, Danielle

    2017-09-01

    We present in-situ stress measurement results for single and multilayer thin-films deposited by magnetron sputtering. In particular, we report on the influence of the material interfaces on the ensuing stress in both the transient and steady-state regimes of film growth. This behavior is used to determine the appropriate thicknesses of the constituent layers that will result in a net tensile stress in multilayers composed of various material combinations. These multilayers can then be used to compensate the compressive integrated stress in single and multilayer EUV and x-ray optical coatings. The use of multilayers to compensate the integrated stress might be advantageous because, unlike single layers of chromium, the roughness is not expected to increase with the total thickness of the multilayer. In this paper, we demonstrate the technique for W/Si and Mo/Si multilayers and discuss its application to other material combinations.

  10. Measuring twinning and slip in shock-compressed Ta from in-situ x-ray diffraction

    Science.gov (United States)

    Wehrenberg, Christopher; McGonegle, David; Sliwa, Marcin; Suggit, Matt; Wark, Justin; Lee, Hae Ja; Nagler, Bob; Tavella, Franz; Remington, Bruce; Rudd, Rob; Lazicki, Amy; Park, Hye-Sook; Swift, Damian; Zepeda-Ruiz, Louis; Higginbotham, Andrew; Bolme, Cindy

    2017-06-01

    A fundamental understanding of high-pressure and high-strain-rate deformation rests on grasping the underlying microstructural processes, such as twinning and dislocation generation and transport (slip), yet simulations and ex-post-facto recovery experiments provide conflicting answers to these basic issues. Here, we report direct, in-situ observation of twinning and slip in shock compressed Ta using in-situ x-ray diffraction. A series of shock experiments were performed on the Matter in Extreme Conditions end station at LCLS. Direct laser ablation was used to drive a shock, ranging in pressure from 10-300 GPa, into a Ta sample with an initial (110) fiber texture. The subsequent changes in texture were observed in-situ by examining the azimuthal distribution of the diffraction intensity and found to match twinning and lattice rotation. Measurements of the twin fraction and lattice rotation were used to calculate the equivalent plastic strain from twinning and slip. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  11. In-situ measurement of the strain relaxation of GaN nanograins during X-ray irradiation

    International Nuclear Information System (INIS)

    Choe, Hyeokmin; Lee, Sanghwa; Sohn, Yuri; Kim, Chinkyo

    2008-01-01

    GaN nanograins were grown on a c-plane sapphire substrate and their strain relaxation due to X-ray irradiation was investigated in-situ by utilizing synchrotron xray scattering. The GaN nanograins were constantly exposed to the synchrotron X-ray and θ-2θ scans through the (002) Bragg peak of GaN were repeatedly carried out during the irradiation. The Bragg peak of the compressively strained GaN nanograins gradually shifted toward higher angle, which implies that the GaN nanograins in compressive strain experienced strain relaxation during X-ray irradiation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy

    Science.gov (United States)

    Zhang, Chunjuan; Grass, Michael E.; McDaniel, Anthony H.; Decaluwe, Steven C.; Gabaly, Farid El; Liu, Zhi; McCarty, Kevin F.; Farrow, Roger L.; Linne, Mark A.; Hussain, Zahid; Jackson, Gregory S.; Bluhm, Hendrik; Eichhorn, Bryan W.

    2010-11-01

    Photoelectron spectroscopic measurements have the potential to provide detailed mechanistic insight by resolving chemical states, electrochemically active regions and local potentials or potential losses in operating solid oxide electrochemical cells (SOCs), such as fuel cells. However, high-vacuum requirements have limited X-ray photoelectron spectroscopy (XPS) analysis of electrochemical cells to ex situ investigations. Using a combination of ambient-pressure XPS and CeO2-x/YSZ/Pt single-chamber cells, we carry out in situ spectroscopy to probe oxidation states of all exposed surfaces in operational SOCs at 750°C in 1mbar reactant gases H2 and H2O. Kinetic energy shifts of core-level photoelectron spectra provide a direct measure of the local surface potentials and a basis for calculating local overpotentials across exposed interfaces. The mixed ionic/electronic conducting CeO2-x electrodes undergo Ce3+/Ce4+ oxidation-reduction changes with applied bias. The simultaneous measurements of local surface Ce oxidation states and electric potentials reveal the active ceria regions during H2 electro-oxidation and H2O electrolysis. The active regions extend ~150μm from the current collectors and are not limited by the three-phase-boundary interfaces associated with other SOC materials. The persistence of the Ce3+/Ce4+ shifts in the ~150μm active region suggests that the surface reaction kinetics and lateral electron transport on the thin ceria electrodes are co-limiting processes.

  13. Formation and texture of palladium germanides studied by in situ X-ray diffraction and pole figure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Geenen, F.A., E-mail: Filip.Geenen@UGent.be [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium); Knaepen, W.; De Keyser, K. [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium); Opsomer, K. [Interuniversitair Micro-Electronica Centrum (IMEC), Kapeldreef 75, 3001 Leuven (Belgium); Vanmeirhaeghe, R.L. [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium); Jordan-Sweet, J.; Lavoie, C. [IBM T.J. Watson Research Center, Yorktown (United States); Detavernier, C. [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium)

    2014-01-31

    The solid state reaction between 30 nm Pd films and various Ge substrates (Ge(100), Ge(111), polycrystalline Ge and amorphous Ge) was studied by means of in situ X-ray diffraction and in situ sheet resistance measurements. The reported phase sequence of Pd{sub 2}Ge followed by PdGe was verified on all substrates. The texture of the germanides was analysed by pole figure measurements on samples quenched in the Pd{sub 2}Ge and in the PdGe phase on both Ge(100) and (111) substrates. We report an epitaxial growth of Pd{sub 2}Ge on Ge(111) and on Ge(100). The formed PdGe has an axiotaxial alignment on Ge(111). On Ge(100), the axiotaxial texture is observed together with a fibre texture. The higher formation temperature of PdGe on Ge(111) could be related to the epitaxial alignment of the Pd{sub 2}Ge parent phase on Ge(111). - Highlights: • Solid-state reaction is studied on a Pd film with Ge substrates. • Pd2Ge grains have an epitaxial texture on both Ge 100 and Ge 111. • PdGe grains are found to grow with an axiotaxial texture. • Retarded PdGe formation on Ge111 is related with strong epitaxy of Pd2Ge.

  14. Development of a new micro-furnace for "in situ" high-temperature single crystal X-ray diffraction measurements

    Science.gov (United States)

    Alvaro, Matteo; Angel, Ross J.; Marciano, Claudio; Zaffiro, Gabriele; Scandolo, Lorenzo; Mazzucchelli, Mattia L.; Milani, Sula; Rustioni, Greta; Domeneghetti, Chiara M.; Nestola, Fabrizio

    2015-04-01

    Several experimental methods to reliably determine elastic properties of minerals at non-ambient conditions have been developed. In particular, different techniques for generating high-pressure and high-temperature have been successfully adopted for single-crystal and powder X-ray diffraction measurements. High temperature devices for "in-situ" measurements should provide the most controlled isothermal environment as possible across the entire sample. It is intuitive that in general, thermal gradients across the sample increase as the temperature increases. Even if the small isothermal volume required for single-crystal X-ray diffraction experiments makes such phenomena almost negligible, the design of a furnace should also aim to reduce thermal gradients by including a large thermal mass that encloses the sample. However this solution often leads to complex design that results in a restricted access to reciprocal space or attenuation of the incident or diffracted intensity (with consequent reduction of the accuracy and/or precision in lattice parameter determination). Here we present a newly-developed H-shaped Pt-Pt/Rh resistance microfurnace for in-situ high-temperature single-crystal X-ray diffraction measurements. The compact design of the furnace together with the long collimator-sample-detector distance allows us to perform measurements up to 2θ = 70° with no further restrictions on any other angular movement. The microfurnace is equipped with a water cooling system that allows a constant thermal gradient to be maintained that in turn guarantees thermal stability with oscillations smaller than 5°C in the whole range of operating T of room-T to 1200°C. The furnace has been built for use with a conventional 4-circle Eulerian geometry equipped with point detector and automated with the SINGLE software (Angel and Finger 2011) that allows the effects of crystal offsets and diffractometer aberrations to be eliminated from the refined peak positions by the 8

  15. In Situ Local Contact Angle Measurement in a CO2-Brine-Sand System Using Microfocused X-ray CT.

    Science.gov (United States)

    Lv, Pengfei; Liu, Yu; Wang, Zhe; Liu, Shuyang; Jiang, Lanlan; Chen, Junlin; Song, Yongchen

    2017-04-11

    The wettability of porous media is of major interest in a broad range of natural and engineering applications. The wettability of a fluid on a solid surface is usually evaluated by the contact angle between them. While in situ local contact angle measurements are complicated by the topology of porous media, which can make it difficult to use traditional methods, recent advances in microfocused X-ray computed tomography (micro-CT) and image processing techniques have made it possible to measure contact angles on the scale of the pore sizes in such media. However, the effects of ionic strength, CO 2 phase, and flow pattern (drainage or imbibition) on pore-scale contact angle distribution are still not clear and have not been reported in detail in previous studies. In this study, we employed a micro-CT scanner for in situ investigation of local contact angles in a CO 2 -brine-sand system under various conditions. The effects of ionic strength, CO 2 phase, and flow pattern on the local contact-angle distribution were examined in detail. The results showed that the local contact angles vary over a wide range as a result of the interaction of surface contaminants, roughness, pore topology, and capillarity. The wettability of a porous surface could thus slowly weaken with increasing ionic strength, and the average contact angle could significantly increase when gaseous CO 2 (gCO 2 ) turns into supercritical CO 2 (scCO 2 ). Contact angle hysteresis also occurred between drainage and imbibition procedures, and the hysteresis was more significant under gCO 2 condition.

  16. Measurement of Localized Corrosion Rates at Inclusion Particles in AA7075 by In Situ Three Dimensional (3D) X-ray Synchrotron Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sudhanshu S.; Williams, Jason J.; Stannard, Tyler J.; Xiao, Xianghui; De Carlo, Francesco; Chawla, Nikhilesh

    2016-03-01

    In situ X-ray synchrotron tomography was used to measure the localized corrosion rate of Mg2Si particles present in 7075 aluminum alloys in deionized ultra-filtered (DIUF) water. The evolution of hydrogen bubbles was captured as a function of time and the measured volume was used to calculate the local corrosion rate of Mg2Si particles. It was shown that in the absence of chloride ions, stress was needed to create fresh particle surfaces, either by fracture or debonding, to initiate corrosion at the particles.

  17. Effective X-ray beam size measurements of an X-ray tube and polycapillary X-ray lens system using a scanning X-ray fluorescence method

    Energy Technology Data Exchange (ETDEWEB)

    Gherase, Mihai R., E-mail: mgherase@csufresno.edu; Vargas, Andres Felipe

    2017-03-15

    Size measurements of an X-ray beam produced by an integrated polycapillary X-ray lens (PXL) and X-ray tube system were performed by means of a scanning X-ray fluorescence (SXRF) method using three different metallic wires. The beam size was obtained by fitting the SXRF data with the analytical convolution between a Gaussian and a constant functions. For each chemical element in the wire an effective energy was calculated based on the incident X-ray spectrum and its photoelectric cross section. The proposed method can be used to measure the effective X-ray beam size in XRF microscopy studies.

  18. Dynamics of mineral crystallization from precipitated slab-derived fluid phase: first in situ synchrotron X-ray measurements

    Science.gov (United States)

    Malaspina, Nadia; Alvaro, Matteo; Campione, Marcello; Wilhelm, Heribert; Nestola, Fabrizio

    2015-03-01

    Remnants of the fluid phase at ultrahigh pressure (UHP) in subduction environments may be preserved as primary multiphase inclusions in UHP minerals. The mode of crystallization of daughter minerals during precipitation within the inclusion and/or the mechanism of interaction between the fluid at supercritical conditions and the host mineral are still poorly understood from a crystallographic point of view. A case study is represented by garnet-orthopyroxenites from the Maowu Ultramafic Complex (China) deriving from harzburgite precursors metasomatized at ~4 GPa, 750 °C by a silica- and incompatible trace element-rich fluid phase. This metasomatism produced poikilitic orthopyroxene and inclusion-rich garnet porphyroblasts. Solid multiphase primary inclusions in garnet display a size within a few tens of micrometres and negative crystal shapes. Infilling minerals (spinel: 10-20 vol%; amphibole, chlorite, talc, mica: 80-90 vol%) occur with constant volume proportions and derive from trapped solute-rich aqueous fluids. To constrain the possible mode of precipitation of daughter minerals, we performed for the first time a single-crystal X-ray diffraction experiment by synchrotron radiation at Diamond Light Source. In combination with electron probe microanalyses, this measurement allowed the unique identification of each mineral phase and reciprocal orientations. We demonstrated the epitaxial relationship between spinel and garnet and between some hydrous minerals. Such information is discussed in relation to the physico-chemical aspects of nucleation and growth, shedding light on the mode of mineral crystallization from a fluid phase trapped at supercritical conditions.

  19. A high-temperature in situ cell with a large solid angle for fluorescence X-ray absorption fine structure measurement.

    Science.gov (United States)

    Murata, Naoyoshi; Kobayashi, Makoto; Okada, Yukari; Suzuki, Takuya; Nitani, Hiroaki; Niwa, Yasuhiro; Abe, Hitoshi; Wada, Takahiro; Mukai, Shingo; Uehara, Hiromitsu; Ariga, Hiroko; Takakusagi, Satoru; Asakura, Kiyotaka

    2015-03-01

    We present the design and performance of a high-temperature in situ cell with a large solid angle for fluorescence X-ray absorption fine structure (XAFS) spectra. The cell has a large fluorescence XAFS window (116 mm(ϕ)) near the sample in the cell, realizing a large half-cone angle of 56°. We use a small heater (25 × 35 mm(2)) to heat the sample locally to 873 K. We measured a Pt-SnO2 thin layer on a Si substrate at reaction conditions having a high activity. In situ measurement enables the analysis of the difference XAFS spectra between before and during the reaction to reveal the structure change during the operation.

  20. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Tamura, Nobumichi; Kunz, Martin; Tu, King-Ning; Lai, Yi-Shao

    2009-12-01

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron X-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the Beta-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was built-up as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of Beta-Sn derived from the electromigration data is in good agreement with the calculated value.

  1. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Tamura, Nobumichi; Kunz, Martin; Tu, King-Ning; Lai, Yi-Shao

    2009-05-15

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron X-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the {beta}-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was built-up as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of {beta}-Sn derived from the electromigration data is in good agreement with the calculated value.

  2. Measurement of Mechanical Coherency Temperature and Solid Volume Fraction in Al-Zn Alloys Using In Situ X-ray Diffraction During Casting

    Science.gov (United States)

    Drezet, Jean-Marie; Mireux, Bastien; Kurtuldu, Güven; Magdysyuk, Oxana; Drakopoulos, Michael

    2015-09-01

    During solidification of metallic alloys, coalescence leads to the formation of solid bridges between grains or grain clusters when both solid and liquid phases are percolated. As such, it represents a key transition with respect to the mechanical behavior of solidifying alloys and to the prediction of solidification cracking. Coalescence starts at the coherency point when the grains begin to touch each other, but are unable to sustain any tensile loads. It ends up at mechanical coherency when the solid phase is sufficiently coalesced to transmit macroscopic tensile strains and stresses. Temperature at mechanical coherency is a major input parameter in numerical modeling of solidification processes as it defines the point at which thermally induced deformations start to generate internal stresses in a casting. This temperature has been determined for Al-Zn alloys using in situ X-ray diffraction during casting in a dog-bone-shaped mold. This setup allows the sample to build up internal stress naturally as its contraction is prevented. The cooling on both extremities of the mold induces a hot spot at the middle of the sample which is irradiated by X-ray. Diffraction patterns were recorded every 0.5 seconds using a detector covering a 426 × 426 mm2 area. The change of diffraction angles allowed measuring the general decrease of the lattice parameter of the fcc aluminum phase. At high solid volume fraction, a succession of strain/stress build up and release is explained by the formation of hot tears. Mechanical coherency temperatures, 829 K to 866 K (556 °C to 593 °C), and solid volume fractions, ca. 98 pct, are shown to depend on solidification time for grain refined Al-6.2 wt pct Zn alloys.

  3. In-situ grazing incidence X-ray diffraction measurements of relaxation in Fe/MgO/Fe epitaxial magnetic tunnel junctions during annealing

    Energy Technology Data Exchange (ETDEWEB)

    Eastwood, D.S. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Ali, M.; Hickey, B.J. [Department of Physics and Astronomy, University of Leeds, Leeds LS2 1JT (United Kingdom); Tanner, B.K., E-mail: b.k.tanner@dur.ac.uk [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2013-12-15

    The relaxation of Fe/MgO/Fe tunnel junctions grown epitaxially on (001) MgO substrates has been measured by in-situ grazing incidence in-plane X-ray diffraction during the thermal annealing cycle. We find that the Fe layers are fully relaxed and that there are no irreversible changes during annealing. The MgO tunnel barrier is initially strained towards the Fe but on annealing, relaxes and expands towards the bulk MgO value. The strain dispersion is reduced in the MgO by about 40% above 480 K post-annealing. There is no significant change in the “twist” mosaic. Our results indicate that the final annealing stage of device fabrication, crucial to attainment of high TMR, induces substantial strain relaxation at the MgO barrier/lower Fe electrode interface. - Highlights: • Lattice relaxation of Fe/MgO/Fe epitaxial magnetic tunnel junctions measured. • In-plane lattice parameter of Fe equal to bulk value; totally relaxed. • MgO barrier initially strained towards the Fe but relaxes on annealing. • Reduction in strain dispersion in the MgO barrier by 40% above about 470 K. • No change in the in-plane “twist” mosaic throughout the annealing cycle.

  4. X-ray Measurements of Black Hole X-ray Binary Source GRS 1915+ ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. We report the spectral measurement of GRS 1915+105 in the hard X ray energy band of 20 140keV. The observations were made on. March 30th, 1997 during a quiescent phase of the source. We discuss the mechanism of emission of hard X ray photons and the evolution of the spectrum by comparing the data ...

  5. Influence by x-ray facula on dimension measurement

    Science.gov (United States)

    Qin, Xulei; Li, Ye; Duanmu, Qingduo; Zhao, Peng

    2015-03-01

    Based on the imaging features of the original image intensifier of X-ray, the light halo caused by X-ray projective halation is analyzed, the result shows the stray X-ray energy is lower than the direct X-ray energy. The screen brightness generated by the image intensifier of X-ray stimulated by the stray X-ray energy is weaker than that generated by the direct X-ray energy. In addition the projector facula reflected from the direct X-ray is focused on the central region of X-ray image intensifier, therefore a toroidal ring similar to the solar halation is formed around the projector halation. The results of the theoretical analysis and experimental discovery show this phenomenon caused by X-ray tube on X-ray image intensifier can not be eliminated and in the system of X-ray size detection composed of them the X-ray halation will reduce the detection accuracy resulting in measurement results' deviation dispersion under given conditions. This kind of nonlinear system error can not be canceled out by the segmented modification of coefficient compensation but it can be restrained through the adjustment of correction coefficients. After the physical testing and comparison of the physical normal size the accuracy of 0.1mm of the compensated X-ray measurement results after the adjustment of correction coefficient has been reached. The results are highly reproducible and the method of the segmented coefficient compensation has been improved.

  6. Measuring device for soft X-rays

    International Nuclear Information System (INIS)

    Dissing, E.

    1978-09-01

    An instrument for the measurement of the absorbed energy per unit area of diagnostic X-rays in soft human tissue was developed. The instrument is intended for dosimetry applications in the field of dental and small skeleton radiography and for mammography. The detector assembly consists of a Polyvinyltoluene scintillator 2.54 diametre x 5.08 cm CsSb semitransparent head-on vacuum phototube. Polyvinyltoluene being a pure hydrocarbon may be considered a good representative material of human soft tissue concerning the absorption of X-rays. In the photon energy range of interest, 5 - 40 keV, the mass energy absorption coefficient for muscle tissue and for PVT differ about a factor 2 due to the considerable content of Oxygen in muscle tissue. This is to some extend reflected in the photon energy response characteristic for the instrument. For human adipose, the characteristic is practically flat from 5- 40 keV. The instrument is integrating the absorbed power per unit area and the digital display shows Joules/m 2 . The range for the instrument is from 000.1 μJ/m 2 to 19.99 J/m 2 (absorbed energy in 5 cm tissue). (author)

  7. In situ x-ray diffraction and in situ x-ray absorption spectroscopy for investigation of intercalation batteries

    International Nuclear Information System (INIS)

    Levy-Clement, C.; Mondoloni, C.; Godart, C.; Cortes, R.

    1991-01-01

    This paper presents applications of in situ X-ray diffraction and absorption techniques to the study of H + /MnO 2 alkaline batteries. The two complementary in situ techniques are described. Investigation of the electrochemical insertion and deinsertion of H + has been made through its influence on the evolution of the crystallographic structure of γ-MnO 2 , while investigation of the transfer of e - has been undertaken through the variation of the oxidation state of the manganese during the discharging and charging process of a battery. New insights in the understanding of the mechanisms of proton insertion and charge transfer into γ-MnO 2 are discussed

  8. Comparison of 3.0 T magnetic resonance imaging and X-ray mammography in the measurement of ductal carcinoma in situ: A comparison with histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Pickles, Martin D., E-mail: m.pickles@hull.ac.uk [Centre for Magnetic Resonance Investigations, Hull York Medical School at University of Hull, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ (United Kingdom); Gibbs, Peter [Centre for Magnetic Resonance Investigations, Hull York Medical School at University of Hull, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ (United Kingdom); Hubbard, Anne; Rahman, Ayesha; Wieczorek, Joanna [Breast Care Unit, Hull & East Yorkshire Hospitals NHS Trust, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ (United Kingdom); Turnbull, Lindsay W. [Centre for Magnetic Resonance Investigations, Hull York Medical School at University of Hull, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ (United Kingdom)

    2015-04-15

    Highlights: •Accuracy of X-ray mammography and MRI were assesses against histopathology results. •The highest level of agreement was noted between MRI and histopathology. •MRI provides a more accurate estimation of DCIS size than X-ray mammography. •MRI's superior size assessment was also noted for clinically relevant subdivisions. -- Abstract: Purpose: To determine if MRI data obtained at 3.0 T can more accurately report the size of DCIS as compared to radiographic mammography, as a whole cohort and when subdivided by lesion characteristics. Methods: Thirty-nine participants underwent X-ray mammography and MRI prior to breast surgery for DCIS. Longest diameter (LD) measurements were recorded for each imaging modality and compared to histopathological LD via a logarithmic transformed Bland–Altman agreement plot methodology resulting in dimensionless mean difference and 95% limits of agreement (LoA). Results: Data from 39 patients with a median age of 55 years (range 38–78 years) underwent analysis. Mastectomy was undertaken in 21 cases, while breast conserving surgery was performed in 18 subjects. Histopathological analysis revealed one low grade, nine intermediate grade, and 21 high grade lesions. The mean ± standard deviation LD measurements for histopathology, X-ray mammography and MRI were 50.6 ± 34.2 mm, 30.7 ± 23.1 mm and 49.6 ± 26.8 mm respectively. Bland–Altman agreement plot analysis for the whole cohort revealed not only a smaller logarithmic mean difference between MRI and histopathology (0.086), but also narrower 95% LoA (−0.941 to 1.113) compared with X-ray mammography and histopathology (mean difference −0.658, 95% LoA −3.503 to 2.187). When the level of agreement was assessed between clinically relevant subgroups additional significant differences were noted based on grade, hormonal receptor status, invasion, necrosis, mircocalcifications and growth pattern. Conclusion: MRI provides a more accurate estimation of DCIS size

  9. Comparison of 3.0 T magnetic resonance imaging and X-ray mammography in the measurement of ductal carcinoma in situ: A comparison with histopathology

    International Nuclear Information System (INIS)

    Pickles, Martin D.; Gibbs, Peter; Hubbard, Anne; Rahman, Ayesha; Wieczorek, Joanna; Turnbull, Lindsay W.

    2015-01-01

    Highlights: •Accuracy of X-ray mammography and MRI were assesses against histopathology results. •The highest level of agreement was noted between MRI and histopathology. •MRI provides a more accurate estimation of DCIS size than X-ray mammography. •MRI's superior size assessment was also noted for clinically relevant subdivisions. -- Abstract: Purpose: To determine if MRI data obtained at 3.0 T can more accurately report the size of DCIS as compared to radiographic mammography, as a whole cohort and when subdivided by lesion characteristics. Methods: Thirty-nine participants underwent X-ray mammography and MRI prior to breast surgery for DCIS. Longest diameter (LD) measurements were recorded for each imaging modality and compared to histopathological LD via a logarithmic transformed Bland–Altman agreement plot methodology resulting in dimensionless mean difference and 95% limits of agreement (LoA). Results: Data from 39 patients with a median age of 55 years (range 38–78 years) underwent analysis. Mastectomy was undertaken in 21 cases, while breast conserving surgery was performed in 18 subjects. Histopathological analysis revealed one low grade, nine intermediate grade, and 21 high grade lesions. The mean ± standard deviation LD measurements for histopathology, X-ray mammography and MRI were 50.6 ± 34.2 mm, 30.7 ± 23.1 mm and 49.6 ± 26.8 mm respectively. Bland–Altman agreement plot analysis for the whole cohort revealed not only a smaller logarithmic mean difference between MRI and histopathology (0.086), but also narrower 95% LoA (−0.941 to 1.113) compared with X-ray mammography and histopathology (mean difference −0.658, 95% LoA −3.503 to 2.187). When the level of agreement was assessed between clinically relevant subgroups additional significant differences were noted based on grade, hormonal receptor status, invasion, necrosis, mircocalcifications and growth pattern. Conclusion: MRI provides a more accurate estimation of DCIS size

  10. Indirect measurements of X-ray spectra

    International Nuclear Information System (INIS)

    Mainardi, R.T.

    2006-01-01

    To the effects of measuring the spectral distribution of the radiation emitted by the x-ray tubes and electron accelerators, numerous procedures that are grouped in two big categories exist at the present time: direct and indirect methods. The first ones use high resolution detectors that should be positioned, together with the appropriate collimator, in the direction of the x ray beam. The user should be an expert in the use and correction of the obtained data by the different effects that affect the detector operation such as efficiency and resolution in terms of the energy of the detected radiation. The indirect procedures, although its are more simple to use, its also require a considerable space along the beam to position the ionization chamber and the necessary absorbents to construct by this way the denominated attenuation curve. We will analyze the operation principle of the indirect methods and a new proposal in which such important novelties are introduced as the beam dispersion to avoid to measure along the main beam and that of determination of the attenuation curve in simultaneous form. By this way, with a single shot of the tube, the attenuation curve is measured, being necessary at most a shot of additional calibration to know the relative response of the detectors used in the experimental array. The physical processes involved in the obtaining of an attenuation curve are very well well-known and this it finishes it can be theoretically calculated if the analytic form of the spectrum is supposed well-known. Finally, we will see a spectra reconstruction example with the Kramers parametric form and comparisons with numeric simulations carried out with broadly validated programs as well as the possibility of the use of solid state dosemeters in the obtention of the attenuation curve. (Author)

  11. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...... in a test quadrant of the telescope structure and from ASTRO-D foils held in a simple fixture. The X-ray data is compared with laser data and other surface structure data such as STM, atomic force microscopy (AFM), TEM, and electron micrography. The data obtained at Cu K-alpha(1), (8.05 keV) from all...

  12. X-ray measurements on wood - spectra measurements

    DEFF Research Database (Denmark)

    Jensen, Signe Kamp; Thygesen, Lisbeth Garbrecht; Gerward, Leif

    The report concerns simultaneous non-destructive measurements of water content and density of wood. Theoretically, this should be possible using a x-ray equipment newly build at BKM, and this work is an attempt to use the equipment for assessing water content and density of wood samples under...... laboratory conditions. A number of wood samples with different densities are placed at different relative humidities from 0.5 to 97 %RH. When equilibrium is obtained the samples are measured with the x-ray equipment such that 10 points are measured in the sample followed by measurements outside the sample...... (free-scanning). In this way 100 points are measured for each wood sample. This produces information about moisture content and density of the samples as water and wood attenuations of the x-rays are different for the different energy levels contained in the x-rays. The "real" density and moisture...

  13. Electrochemical cell for in situ x-ray diffraction under ultrapure conditions

    DEFF Research Database (Denmark)

    Koop, T.; Schindler, W.; Kazimirov, A.

    1998-01-01

    of the crystal using a Luggin capillary and a standard reference electrode. We demonstrate the performance of our cell by in situ synchrotron x-ray diffraction measurements on ultrathin Co layers electrodeposited on Cu(001) in an aqueous H(2)SO(4)/CoSO(4) solution. (C) 1998 American Institute of Physics....

  14. In situ X-ray studies of film cathodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuoss, Paul, E-mail: fuoss@anl.gov; Chang, Kee-Chul; You, Hoydoo, E-mail: hyou@anl.gov

    2013-10-15

    Highlights: •Synchrotron X-rays are used to study in operando the structural and chemical changes of LSM and LSCF film cathodes during half-cell operations. •A-site and B-site cations actively segregate or desegregate on the changes of temperature, pO{sub 2}, and electrochemical potential. •Chemical lattice expansions show that oxygen-cathode interface is the primary source of rate-limiting processes. •The surface and subsurface of the LSM and LSCF films have different oxidation-states due to vacancy concentration changes. •Liquid-phase infiltration and coarsening processes of cathode materials into porous YSZ electrolyte backbone were monitored by USAXS. -- Abstract: Synchrotron-based X-ray techniques have been used to study in situ the structural and chemical changes of film cathodes during half-cell operations. The X-ray techniques used include X-ray reflectivity (XR), total-reflection X-ray fluorescence (TXRF), high-resolution diffraction (HRD), ultra-small angle X-ray scattering (USAXS). The epitaxial thin film model cathodes for XR, TXRF, and HRD measurements are made by pulse laser deposition and porous film cathodes for USAX measurements are made by screen printing technique. The experimental results reviewed here include A-site and B-site segregations, lattice expansion, oxidation-state changes during cell operations and liquid-phase infiltration and coarsening of cathode to electrolyte backbone.

  15. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2015-06-06

    The two-dimensional slope error of an X-ray mirror has been retrieved by employing the speckle scanning technique, which will be valuable at synchrotron radiation facilities and in astronomical telescopes. In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.

  16. Effects of X-ray tube parameters on thickness measure precision in X-ray profile gauge

    International Nuclear Information System (INIS)

    Miao Jichen; Wu Zhifang; Xing Guilai

    2011-01-01

    Instantaneous profile gauge technology has been widely used in metallurgy industry because it can on-line get the profile of steel strip. It has characters of high measure precision and wide measure range, but the X-ray tube parameters only can be set few different values during measurement. The relations of thickness measure precision and X-ray tube current, X-ray tube voltage were analyzed. The results show that the X-ray tube current affects the thickness measure precision and the X-ray tube voltage determines the thickness measure range. The method of estimating the X-ray current by thickness measure precision was provided in the end. This method is the base of X-ray source selection and X-ray source parameter's setting in the instantaneous profile gauge. (authors)

  17. Solution spectroelectrochemical cell for in situ X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Antonio, M.R.; Soderholm, L.

    1995-01-01

    A purpose-built spectroelectrochemical cell for in situ fluorescence XAFS (X-ray Absorption Fine Structure) measurements of bulk solution species during constant-potential electrolysis is described. The cell performance was demonstrated by the collection of europium L 3 -edge XANES (X-ray Absorption Near Edge Structure) throughout the course of electrolysis of an aqueous solution of EuCl 3 ·6H 2 O in 1 M H 2 SO 4 . The europium L 3 -edge resonances reported here for the Eu III and Eu II ions demonstrate that their 2p 3/2 → 5d electronic transition probabilities are not the same

  18. Innovative in Situ Ball Mill for X-ray Diffraction.

    Science.gov (United States)

    Ban, Voraksmy; Sadikin, Yolanda; Lange, Michael; Tumanov, Nikolay; Filinchuk, Yaroslav; Černý, Radovan; Casati, Nicola

    2017-12-19

    The renewed interest of mechanochemistry as an ecofriendly synthetic route has inspired original methodologies to probe reactions, with the aim to rationalize unknown mechanisms. Recently, Friščić et al. ( Nat. Chem. 2013 , 5 , 66 - 73 , DOI: 10.1038/nchem.1505 ) monitored the progress of milling reactions by synchrotron X-ray powder diffraction (XRPD). For the first time, it was possible to acquire directly information during a mechanochemical process. This new methodology is still in its early stages, and its development will definitively transform the fundamental understanding of mechanochemistry. A new type of in situ ball mill setup has been developed at the Materials Science beamline (Swiss Light Source, Paul Scherrer Institute, Switzerland). Its particular geometry, described here in detail, results in XRPD data displaying significantly lower background and much sharper Bragg peaks, which in turn allow more sophisticated analysis of mechanochemical processes, extending the limits of the technique.

  19. Application of the nuclear x-ray fluorescence method to prospecting for gold in-situ

    International Nuclear Information System (INIS)

    Zhang, Y.; Xie, T.; Zhou, S.; Ge, L.

    1989-01-01

    Arsenic and chalcophile elements are often associated with gold, and can be considered indicator elements when prospecting for gold deposits. The nuclear geophysics X-ray fluorescence method can be used to search for hidden gold deposits by measuring fluorescence intensities of the indicator elements in situ. The method can speed geologic investigation and reduce exploration cost. Three types of portable radioisotope X-ray fluorescence analyzers, designed and manufactured by Chengdu College of Geology and Chongqing Geological Instrument Factory, are briefly introduced. These analyzers are widely used in different stages of geologic investigation for gold in China. In the two case histories presented five anomalous zones of X-ray fluorescence intensity related to gold mineralization are located and one hidden gold deposit is discovered with gold content of 23 g/t

  20. Hydrothermal formation of tobermorite studied by in situ X-ray diffraction under autoclave condition.

    Science.gov (United States)

    Kikuma, Jun; Tsunashima, Masamichi; Ishikawa, Tetsuji; Matsuno, Shin-ya; Ogawa, Akihiro; Matsui, Kunio; Sato, Masugu

    2009-09-01

    Hydrothermal formation of tobermorite from a pre-cured cake has been investigated by transmission X-ray diffraction (XRD) using high-energy X-rays from a synchrotron radiation source in combination with a newly designed autoclave cell. The autoclave cell has a large and thin beryllium window for wide-angle X-ray diffraction; nevertheless, it withstands a steam pressure of more than 1.2 MPa, which enables in situ XRD measurements in a temperature range of 373 to 463 K under a saturated steam pressure. Formation and/or decomposition of several components has been successfully observed during 7.5 h of reaction time. From the intensity changes of the intermediate materials, namely non-crystalline C-S-H and hydroxylellestadite, two pathways for tobermorite formation have been confirmed. Thus, the newly developed autoclave cell can be used for the analyses of reaction mechanisms under specific atmospheres and temperatures.

  1. A quality measurement study of a diagnostic x-ray

    International Nuclear Information System (INIS)

    Nishitani, Motohiro; Fujimoto, Nobuhisa; Yamada, Katsuhiko

    1982-01-01

    It is important to check periodically the quality and quantity of the X-rays emitted, in order to obtain the best possible performance from your diagnostic X-ray apparatus. The best way of checking the exact quality of the X-ray is to measure the spectrum of the X-ray, but it is not an easy task to carry out. The second way is to plot the attenuation curve of the X-rays. We have developed a method to plot the attenuation curve by a single exposure, utilizing J.r. Greening's empirical formula. The output of the three cavity ionization chambers, one with 7 mmAl filter, another with a 3 mmAl and the third without any filter, exposed to the same X-ray, were put into a microcomputer. The programming was arranged to display the attenuation curve of the X-rays, effective energy of the X-rays, the 1st HVL and the 2nd HVL on the CRT. The attenuation curves of the X-rays, emitted at a tube voltage at between 60 and 140 kV obtained by this method, agreed with the experimental results with an error of +-4 %. The effective energy obtained by this method agreed with the experimental data with an error of +-1 %. (author)

  2. X-Ray Measurements Of Displacements In Hostile Environments

    Science.gov (United States)

    Fralick, Gustave C.; Canistraro, Howard A.; Jordan, Eric H.; Pease, Douglas M.

    1995-01-01

    Developmental method of noncontact extensometry of objects in hot or otherwise hostile environments based on focusing and scanning of x rays. Principal advantage: ability to make measurements through stratified and/or flowing gases, smoke, and flames, as well as through solid layers of x-ray-transparent materials.

  3. Study of 3-D stress development in parent and twin pairs of a hexagonal close-packed polycrystal: Part I - In-situ three-dimensional synchrotron X-ray diffraction measurement

    DEFF Research Database (Denmark)

    Abdolvand, Hamidreza; Majkut, Marta; Oddershede, Jette

    2015-01-01

    becomes more complicated when deformation twinning plays a significant role in accommodating an externally applied load. In this paper, a comprehensive study of stress development in a coarse grained strongly textured hcp polycrystal Zircaloy-2, is given using three-dimensional X-ray diffraction (3DXRD......) microscopy. In-situ uniaxial straining was carried out at seven steps up to 2.7% in the macroscopic direction that favors twin formation, while center-of-mass position, crystallographic orientation, elastic strain, stress, and relative volume of each grain were measured. This information was used...

  4. Precise stress measurements with white synchrotron x rays

    International Nuclear Information System (INIS)

    Weidner, Donald J.; Vaughan, Michael T.; Wang Liping; Long, Hongbo; Li Li; Dixon, Nathaniel A.; Durham, William B.

    2010-01-01

    In situ measurement of stress in polycrystalline samples forms the basis for studies of the mechanical properties of materials with very broad earth science and materials science applications. Synchrotron x rays have been used to define the local elastic strain in these samples, which in turn define stress. Experimental work to date has been carried out on a prototype detection system that provided a strain measurement precision >10 -4 , which corresponds to a stress resolution >50 MPa for silicate minerals. Here we report operation of a new, permanent, energy dispersive detection system for white radiation, which has been developed at the National Synchrotron Light Source. The new system provides differential strain measurements with a precision of 3x10 -5 for volumes that are 50x50x500 μm 3 . This gives a stress precision of about 10 MPa for silicate minerals.

  5. DCARR: a spectrograph for measuring low-energy x rays

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    DCARR, the Differential Critical Angle Reflection Refraction detector system, is described. This detector was designed to measure low-energy x rays, 500 to 5000 eV, with a high degree of resolution, 250 eV. DCARR was developed because these low-energy measurements are of interest in the diagnostics of x-radiation in nuclear tests and available equipment could not make measurements at this low an energy in field tests. DCARR is a versatile piece of equipment that can also be used as a laboratory tool, such as in measuring the low-energy x rays emitted by lasers and various x-ray machines

  6. X-ray measurements of water fog density

    International Nuclear Information System (INIS)

    Camp, A.L.

    1982-11-01

    Water-fog densities were measured in a laboratory experiment using x-ray diagnostics. Fog densities were measured, varying the flow rate, nozzle type, nozzle configuration, nozzle height above the x-ray beam, and water surface tension. Suspended water volume fractions between 0.0008 and 0.0074 percent were measured. The fog density increases approximately as the square root of the flow rate; the other parameters had little effect on the density

  7. Phase boundary between cubic B1 and rhombohedral structures in (Mg,Fe)O magnesiowüstite determined by in situ X-ray diffraction measurements

    Science.gov (United States)

    Dymshits, Anna M.; Litasov, Konstantin D.; Shatskiy, Anton; Chanyshev, Artem D.; Podborodnikov, Ivan V.; Higo, Yuji

    2018-01-01

    The phase relations and equation of state of (Mg0.08Fe0.92)O magnesiowüstite (Mw92) have been studied using the Kawai-type high-pressure apparatus coupled with synchrotron radiation. To determine the phase boundary between the NaCl-type cubic (B1) and rhombohedral ( rB1) structures in Mw92, in situ X-ray observations were carried out at pressures of 0-35 GPa and temperatures of 300-1473 K. Au and MgO were used as the internal pressure markers and metallic Fe as oxygen fugacity buffer. The phase boundary between B1 and rB1 structures was described by a linear equation P (GPa) = 1.6 + 0.033 × T (K). The Clapeyron slope (d P/d T) determined in this study is close to that obtained at pressures above 70 GPa but steeper than that obtained for FeO. An addition of MgO to FeO structure expands the stability field of the rB1 phase to lower pressures and higher temperatures. Thus, the rB1 phase may be stabilized with respect to the B1 phase at a lower pressures. The pressure-volume-temperature equation of state of B1-Mw92 was determined up to 30 GPa and 1473 K. Fitting the hydrostatic compression data up to 30 GPa with the Birch-Murnaghan equation of state (EoS) yielded: unit cell volume ( V 0, T0), 79.23 ± 4 Å3; bulk modulus ( K 0, T0), 183 ± 4 GPa; its pressure derivative ( K' T ), 4.1 ± 0.4; (∂ K 0, T /∂ T) = -0.029 ± 0.005 GPa K‒1; a = 3.70 ± 0.27 × 10-5 K-1 and b = 0.47 ± 0.49 × 10-8 K-2, where α0, T = a + bT is the volumetric thermal expansion coefficient. The obtained bulk modulus of Mw92 is very close to the value expected for stoichiometric iron-rich (Mg,Fe)O. This result confirms the idea that the bulk modulus of (Mg,Fe)O is greatly affected by the actual defect structure, caused by either Mg2+ or vacancies.

  8. X-Ray-Scattering Measurements Of Strain In PEEK

    Science.gov (United States)

    Cebe, Peggy; Lowry, Lynn E.; Chung, Shirley Y.; Yavrouian, Andre H.; Gupta, Amitava

    1988-01-01

    Internal stress relieved by heating above glass-transition temperature. Report describes wide-angle x-ray scattering and differential scanning calorimetry of specimens of poly(etheretherketone) having undergone various thermal treatments. Wide-angle x-ray scattering particularly useful in determining distances between atoms, crystallinity, and related microstructurally generated phenomena, as thermal expansion and strain. Calorimetric measurements aid interpretation of scattering measurements by enabling correlation with thermal effects.

  9. Application of In Situ Neutron and X-Ray Measurements at High Temperatures in the Development of Co-Re-Based Alloys for Gas Turbines

    Czech Academy of Sciences Publication Activity Database

    Mukherji, D.; Rösler, J.; Wehrs, J.; Strunz, Pavel; Beran, Přemysl; Gilles, R.; Hofmann, M.; Holzel, M.; Eckerlebe, H.; Szentmiklosi, L.; Macsik, Z.

    44A, č. 1 (2013), s. 22-30 ISSN 1073-5623 Institutional support: RVO:61389005 Keywords : Co base alloy * neutron diffraction * X-Ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.730, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs11661-012-1363-6

  10. X-ray stress measurement of the materials with texture

    International Nuclear Information System (INIS)

    Yashiro, Tsutomu

    1981-01-01

    The X-ray stress analysis of materials with texture was investigated on the basis of the application to the non-distructive testing. The portable X-ray stress analyzer with the fixed phi method was developed and the measured result of low carbon cold rolled steel was compaired with the calculated result by the elastic anisotropic theory averaged by the distribution of phi-dependent intensity of (211) reflection. (author)

  11. X-ray Measurements of Black Hole X-ray Binary Source GRS 1915+ ...

    Indian Academy of Sciences (India)

    tribpo

    features in the X ray light curve include flickering, strong quasi periodic oscillations, irregular X ray bursts, pronounced dips and rapid high low transitions both in soft and hard X ray bands (Greiner et al. 1996; Morgan et al. 1997; Yadav et al. 1999). Among the main dynamical features of the source are the emission of two.

  12. In situ X-ray diffraction studies on the piezoelectric response of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Davydok, A., E-mail: davydok@mpie.de [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France); Max-Planck-Institut für Eisenforschung, Department Structure and Nano-/Micromechanics of Materials, D-40237 Düsseldorf (Germany); Cornelius, T.W. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France); Mocuta, C. [SOLEIL Synchrotron, DiffAbs beamline, L' Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex (France); Lima, E.C. [Universidade Federal do Tocantins, 77500-000 Porto Nacional, TO (Brazil); Araujo, E.B. [Departamento de Fisica e Quimica, Universidade Estadual Paulista, Av. Brasil, 56 Centro, 15385-000 Ilha Solteira, SP (Brazil); Thomas, O. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France)

    2016-03-31

    Piezoelectric properties of randomly oriented self-polarized PbZr{sub 0.50}Ti{sub 0.50}O{sub 3} (PZT) thin films were investigated using in situ synchrotron X-ray diffraction. Possibilities for investigating the piezoelectric effect using micro-sized hard X-ray beams are demonstrated and perspectives for future dynamical measurements on PZT samples with variety of compositions and thicknesses are given. Studies performed on the crystalline [100, 110] directions evidenced piezoelectric anisotropy. The piezoelectric coefficient d{sub 33} was calculated in terms of the lab reference frame (d{sub perp}) and found to be two times larger along the [100] direction than along the [110] direction. The absolute values for the d{sub perp} amount to 120 and 230 pm/V being in good agreement with experimental and theoretical values found in literature for bulk PZT ceramics. - Highlights: • We performed in situ synchrotron X-ray diffraction studies on (PZT) thin films. • We discuss anisotropy of piezo effect in different crystallographic directions. • Perpendicular component Piezo coefficient of thin PZT layer is defined.

  13. Dynamics of mineral crystallization at inclusion-garnet interface from precipitated slab-derived fluid phase: first in-situ synchrotron x-ray measurements

    Science.gov (United States)

    Malaspina, Nadia; Alvaro, Matteo; Campione, Marcello; Nestola, Fabrizio

    2015-04-01

    Remnants of the fluid phase at ultrahigh pressure (UHP) in subduction environments may be preserved as primary multiphase inclusions in UHP minerals. These inclusions are frequently hosted by minerals stable at mantle depths, such as garnet, and show the same textural features as fluid inclusions. The mineral infillings of the solid multiphase inclusions are generally assumed to have crystallized by precipitation from the solute load of dense supercritical fluids equilibrating with the host rock. Notwithstanding the validity of this assumption, the mode of crystallization of daughter minerals during precipitation within the inclusion and/or the mechanism of interaction between the fluid at supercritical conditions and the host mineral are still poorly understood from a crystallographic point of view. A case study is represented by garnet orthopyroxenites from the Maowu Ultramafic Complex (China) deriving from harzburgite precursors metasomatised at ~ 4 GPa, 750 °C by a silica- and incompatible trace element-rich fluid phase. This metasomatism produced poikilitic orthopyroxene and inclusion-rich garnet porphyroblasts. Solid multiphase primary inclusions in garnet display a size within a few tens of micrometers and negative crystal shapes. Infilling minerals (spinel: 10-20 vol.%; amphibole, chlorite, talc, mica: 80- 90 vol.%) occur with constant volume ratios and derive from trapped solute-rich aqueous fluids. To constrain the possible mode of precipitation of daughter minerals, we performed for the first time a single-crystal X-ray diffraction experiment by means of Synchrotron Radiation at DLS-Diamond Light Source. In combination with electron probe microanalyses, this measurement allowed the unique identification of each mineral phase and their reciprocal orientations. We demonstrated the epitaxial relationship between spinel and garnet and between some hydrous minerals. Epitaxy drives a first-stage nucleation of spinel under near-to-equilibrium conditions

  14. Local detection of X-ray spectroscopies with an in-situ Atomic Force Microscope

    International Nuclear Information System (INIS)

    Rodrigues, M S; Dhez, O; Denmat, S Le; Felici, R; Comin, F; Chevrier, J

    2008-01-01

    The in situ combination of Scanning Probe Microscopies with X-ray microbeams adds a variety of new possibilities to the panoply of synchrotron radiation techniques. This paper describes an optics-free Atomic Force Microscope that can be directly installed on most of the synchrotron radiation end-stations for combined X-ray and atomic force microscopy experiments. The instrument can be used for atomic force imaging of the investigated sample or to locally measure the X-ray absorption or diffraction, or it can also be used to mechanically interact with the sample while simultaneously taking spectroscopy or diffraction measurements. The local character of these measurements is intrinsically linked with the use of the Atomic Force Microscope tip. It is the sharp tip that gives the opportunity to measure the photons flux impinging on it, or to locally measure the absorption coefficient or the shape of the diffraction pattern. At the end an estimation of the limits of the various techniques presented is also discussed.

  15. X ray spectra measurement using a CdTe detector

    International Nuclear Information System (INIS)

    Kurkova, D.; Judas, L.

    2014-01-01

    X ray spectra were measured using a CdTe XR-100T detector (Amptek). Spectra of N series were measured (according to ISO 4037-1:1996): from N60 to N150 for anode voltage of the tube 60-150 kV, realised by x ray tubeIsovolt Titan in dosimetric laboratory SURO, v.v.i.. Two sets of spectra were measured - first without using the tungsten collimator kit of the spectrometer, in a distance of 7 m from x ray tube and low tube current and second using a tungsten collimator kit measured in a distance 1 m from x ray tube focus and low tube current. Elimination of random coincidences was achieved by reduction of counting rates on the detection system. Further artefacts in measured spectra were compensated using an analytic response matrix. Response matrix was computed and subsequently applied in a program made in MATLAB. We demonstrate a function of response matrix on both model physical spectra and measured spectra. In consequence of mainly continuous character of measured spectra more parameters are needed for its description compared to the line spectra. Therefore we came up with additional parameters for characterization and mutual comparison of x ray spectra. (authors)

  16. Observation of phase transformations in LiMn2O4 under high pressure and at high temperature by in situ X-ray diffraction measurements

    International Nuclear Information System (INIS)

    Darul, J.; Nowicki, W.; Lathe, C.; Piszora, P.

    2011-01-01

    This work presents the diffraction features of lithium-manganese oxide in extreme pressure and temperature conditions used as positive electrode materials in lithium-ion batteries. Energy-dispersive X-ray diffraction yield reliable description of material lattice, its distortion and chemical stability under high pressure and at high temperature (HP/HT). The phase evolution as a function of pressure and temperature is reported and analyzed in the LiMn 2 O 4 sample. A comparison with another tetragonal spinel shows the influence of the Jahn-Teller effect on the HP/HT structure of this class of materials.

  17. Final Report on Developing Microstructure-Property Correlation in Reactor Materials using in situ High-Energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei [Argonne National Lab. (ANL), Argonne, IL (United States); Almer, Jonathan D. [Argonne National Lab. (ANL), Argonne, IL (United States); Yang, Yong [Univ. of Florida, Gainesville, FL (United States); Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    This report provides a summary of research activities on understanding microstructure – property correlation in reactor materials using in situ high-energy X-rays. The report is a Level 2 deliverable in FY16 (M2CA-13-IL-AN_-0403-0111), under the Work Package CA-13-IL-AN_- 0403-01, “Microstructure-Property Correlation in Reactor Materials using in situ High Energy Xrays”, as part of the DOE-NE NEET Program. The objective of this project is to demonstrate the application of in situ high energy X-ray measurements of nuclear reactor materials under thermal-mechanical loading, to understand their microstructure-property relationships. The gained knowledge is expected to enable accurate predictions of mechanical performance of these materials subjected to extreme environments, and to further facilitate development of advanced reactor materials. The report provides detailed description of the in situ X-ray Radiated Materials (iRadMat) apparatus designed to interface with a servo-hydraulic load frame at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermal-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. We conducted several case studies using the iRadMat to obtain a better understanding of deformation and fracture mechanisms of irradiated materials. In situ X-ray measurements on neutron-irradiated pure metal and model alloy and several representative reactor materials, e.g. pure Fe, Fe-9Cr model alloy, 316 SS, HT-UPS, and duplex cast austenitic stainless steels (CASS) CF-8 were performed under tensile loading at temperatures of 20-400°C in vacuum. A combination of wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and imaging techniques were utilized to interrogate microstructure at different length scales in real time while the specimen was subject to thermal-mechanical loading. In addition, in situ X-ray studies were

  18. Ultra-small-angle x-ray scattering by single-crystal Al deformed in situ

    Science.gov (United States)

    Long, Gabrielle; Levine, Lyle

    1997-03-01

    Among the earliest small-angle x-ray scattering and small-angle neutron scattering experiments were attempts to study dislocation structures. These structures have proven to be very difficult to measure because of the intrinsically low contrast of the microstructure, and the requirement that multiple Bragg diffraction be strictly avoided. Thus, many attempts to measure dislocation structures have been compromised by these difficulties. We present results from ultra-small-angle x-ray scattering measurements on single-crystal Al, deformed in situ on beam line X23A3 at the National Synchrotron Light Source. Radiographic images, which are in the O-beam position for diffraction, were taken of the scattering volume. The Al crystal was also rotated to ensure that the scattering data would be accumulated in a region sufficiently distant from accidental Bragg diffractions. Stress-strain data were obtained simultaneously with the x-ray scattering data. We report on the evolution of dislocation structures from 0% strain to 18% strain.

  19. X-ray-based displacement measurement for hostile environments

    Science.gov (United States)

    Canistraro, H. A.; Jordan, E. H.; Pease, D. M.

    1992-01-01

    A new method on noncontacting, high temperature extensometry based on the focus and scanning of X-rays is currently under development and shows great promise of overcoming limitations associated with available techniques. The chief advantage is the ability to make undisturbed measurements through stratified or flowing gases, smoke, and flame. The system is based on the ability to focus and scan low energy, hard X-rays such as those emanating from copper or molybdenum sources. The X-rays are focused into a narrow and intense line image which can be scanned onto targets that fluoresce secondary X-ray radiation. The final goal of the system is the ability to conduct macroscopic strain measurements in hostile environments by utilizing two or more fluorescing targets. Current work is limited to displacement measurement of a single target with a resolution of 1.25 micro-m and a target temperature of 1200 C, directly through an open flame. The main advantage of the technique lies in the penetrating nature of X-rays which are not affected by the presence of refracting gas layers, smoke, flame, or intense thermal radiation, all of which could render conventional extensometry methods inoperative or greatly compromise their performance.

  20. X ray based displacement measurement for hostile environments

    Science.gov (United States)

    Canistraro, Howard A.; Jordon, Eric H.; Pease, Douglas M.; Fralick, Gustave C.

    1992-01-01

    A new method on noncontacting, high temperature extensometry based on the focus and scanning of x rays is currently under development and shows great promise of overcoming limitations associated with available techniques. The chief advantage is the ability to make undisturbed measurements through stratified or flowing gases, smoke, and flame. The system is based on the ability to focus and scan low energy, hard x rays such as those emanating from copper or molybdenum sources. The x rays are focused into a narrow and intense line image which can be scanned onto targets that fluoresce secondary x ray radiation. The final goal of the system is the ability to conduct macroscopic strain measurements in hostile environments by utilizing two or more fluorescing targets. Current work is limited to displacement measurement of a single target with a resolution of 1.25 micro-m and a target temperature of 1200 C, directly through an open flame. The main advantage of the technique lies in the penetrating nature of x rays which are not affected by the presence of refracting gas layers, smoke, flame, or intense thermal radiation, all of which could render conventional extensometry methods inoperative or greatly compromise their performance.

  1. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.; Hunt, D.; Hahn, D.; Cradick, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Morgan, D. V. [National Security Technologies LLC, Los Alamos, New Mexico 87544 (United States)

    2016-08-15

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from the sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.

  2. [Application of in situ micro energy dispersive X-ray fluorescence analysis in mineralogy].

    Science.gov (United States)

    Yang, Hai; Ge, Liang-Quan; Gu, Yi; Zhang, Qing-Xian; Xiong, Sheng-Qing

    2013-11-01

    Thirteen rock samples were collected for studying the variation of element content in the mineral during the alteration process from Xinjiang, China. The IED-6000 in situ micro energy dispersive X-ray fluorescence developed by CDUT was applied to get chemical and physical data from minerals. The non-destructive spectrometer is based on a low-power Mo-anode X-ray tube and a Si-PIN peltier cooled X-ray detector. The unique design of the tube's probe allows very close coupling of polycapillary and makes the use of micro-area measurement feasible and efficient. The spectrometer can be integrated into any microscope for analysis. The long axis diameter of beam spot is about 110 microm. According to micro-EDXRF measurement, the tetrahedrite was corrected to pyrite, improving the efficiency and accuracy of the mineral identification. The feldspar of mineralized rock sample is rich in Cu and Zn which can be used as prospecting indicator elements. Element content of Cr, Mn and Co shows negative correlation with the degree of mineralization.

  3. In Situ Ptychography of Heterogeneous Catalysts using Hard X-Rays

    DEFF Research Database (Denmark)

    Baier, Sina; Damsgaard, Christian Danvad; Scholz, Maria

    2016-01-01

    electron transparent window and allows heating. Two gold-based systems, 50 nm gold particles and nanoporous gold as a relevant catalyst sample, were used for studying the feasibility of the cell. Measurements showing a resolution around 40 nm have been achieved under a flow of synthetic air and during...... heating up to temperatures of 933 K. An elevated temperature exhibited little influence on image quality and resolution. With this study, the potential of in situ hard X-ray ptychography for investigating annealing processes of real catalyst samples is demonstrated. Furthermore, the possibility to use...

  4. Confocal X-ray fluorescence spectrometer for in-situ analyses of paintings

    Science.gov (United States)

    Trojek, Tomáš; Prokeš, Radek; Šefců, Radka; Bilavčíková, Hana; Čechák, Tomáš

    2017-08-01

    This paper describes the properties of the newly constructed device for confocal X-ray fluorescence analysis that was tested with a sample plate consisting of 19 combinations of two single pigment layers. The preparation of this experimental wooden board with layered systems was based on knowledge of the panel painting techniques of Bohemian collections from the National Gallery in Prague dating back to the 14th and 15th centuries. The design of the confocal setup allows its transport and the in-situ measurement of paintings in depositories or even in exhibition areas. The advantages of our confocal setup with movable collimating optics are also described.

  5. Computerized x-ray radiographic system for fuel pellet measurements

    International Nuclear Information System (INIS)

    Green, D.R.; Karnesky, R.A.; Bromley, C.

    1977-01-01

    The development and operation of a computerized system for determination of fuel pellet diameters from x-ray radiography is described. Actual fuel pellet diameter measurements made with the system are compared to micrometer measurements on the same pellets, and statistically evaluated. The advantages and limitations of the system are discussed, and recommendations are made for further development

  6. Figure Measurements of High-Energy-X-Ray Replicated Optics

    Science.gov (United States)

    Gubarev, Mikhail; Ramsey, Brian; Kester, Thomas; Engelhaupt, Darell; Speegle, Chet; Martin, Greg

    2003-01-01

    We are developing grazing incidence x-ray optics for a balloon-borne hard-x-ray telescope (HERO). The HERO mirror shells are fabricated using electroform-nickel replication off super-polished cylindrical mandrels. One of the sources for mirror resolution error is departure of the shell figure from prescription. We have modified a Vertical-scan Long Trace Profilometer (VLTP) in order to measure the figure of the inner surface of the HERO mirror shells for diameters as small as 76 mm. Mirror alignment method and sources for systematic errors will be discussed. Comparison of figure metrology of the mandrel and the shells will be presented together with results from x-ray tests.

  7. In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics.

    Science.gov (United States)

    White, Claire E; Provis, John L; Bloomer, Breaunnah; Henson, Neil J; Page, Katharine

    2013-06-14

    With the ever-increasing environmentally-driven demand for technologically advanced structural materials, geopolymer cement is fast becoming a viable alternative to traditional cements due to its proven engineering characteristics and the reduction in CO2 emitted during manufacturing (as much as 80% less CO2 emitted in manufacture, compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of reaction responsible for nanostructural evolution during the geopolymerisation process. Here, in situ X-ray total scattering measurements and pair distribution function (PDF) analysis are used to quantify the extent of reaction as a function of time for alkali-activated metakaolin/slag geopolymer binders, including the impact of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerisation reaction. Quantifying the reaction process in situ from X-ray PDF data collected during the initial ten hours can provide an estimate of the total reaction extent, but when combined with data obtained at longer times (128 days here) enables more accurate determination of the overall rate of reaction. To further assess the initial stages of the geopolymerisation reaction process, a pseudo-single step first order rate equation is fitted to the extent of reaction data, which reveals important mechanistic information regarding the role of free silica in the activators in the evolution of the binder systems. Hence, it is shown that in situ X-ray PDF analysis is an ideal experimental local structure tool to probe the reaction kinetics of complex reacting systems involving transitions between disordered/amorphous phases, of which geopolymerisation is an important example.

  8. In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration

    Directory of Open Access Journals (Sweden)

    Sungchul Bae

    2016-12-01

    Full Text Available The understanding and control of early hydration of tricalcium silicate (C3S is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (~1 h and acceleration (~4 h periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C–S–H. The formation of C–S–H nanoseeds in the C3S solution and the development of a fibrillar C–S–H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C–S–H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C–S–H.

  9. X-ray Spectral Measurements of a Dense Plasma Focus

    Science.gov (United States)

    Whitlock, Robert R.; Dozier, Charles M.; Newman, Daniel A.; Petr, Rodney A.; Freshman, Jay; Hoey, David W.; Heaton, John

    2002-10-01

    Absolute intensities of spectra in a dense-plasma-focus (DPF) source have been recorded and analyzed. This DPF source has been identified as one of the more promising sources for X-ray lithography. The source, developed by Science Research Laboratory, Inc., is currently undergoing testing and further development at BAE Systems, Inc. The DPF operates at 60 Hz and produces an average output pulse of ~5 J of X rays into 4π steradians in a continuous operation mode. In all runs, there was an initial number of pulses, typically between 30 to 40, during which the X-ray output increased and the DPF appeared to be undergoing a conditioning process, and after which a "steady-state" mode was achieved where the average X-ray power was relatively constant. Each spectral run was exposed to ~600 J of output, as measured by the PIN. The X-ray spectral region between 0.8 and 3 keV was recorded on Kodak DEF film in a potassium acid phthalate (KAP) convex curved-crystal spectrograph. The source emits neon line radiation from Ne IX and Ne X ionization stages in the 900 to 1300 eV region, suitable for lithographic exposures of photoresist. Two helium-like neon lines contribute more than 50% of the total energy. From continuum shape, plasma temperatures were found to be approximately 170-200 eV. The absolute, integrated spectral outputs were verified to within 30% by comparison with measurements by a PIN detector and a radiachromic X-ray dosimeter.

  10. Fusion cross sections from measurements of delayed X-rays

    International Nuclear Information System (INIS)

    Pacheco, A.J.; Gregorio, D.E. di; Fernandez Niello, J.O; Elgue, M.

    1988-01-01

    The program XRAY is a FORTRAN 77 computer code for the extraction of fusion cross sections from delayed X-ray measurements. This is accomplished by calculating the theoretical expressions of the time dependence of the evaporation-residue cross sections and taking them as adjustable parameters in a χ 2 minimization procedure. (orig.)

  11. Soft x-ray measurements from the PDX tokamak

    International Nuclear Information System (INIS)

    Silver, E.H.; Bitter, M.; Brau, K.; Eames, D.; Greenberger, A.; Hill, K.W.; Meade, D.M.; Roney, W.; Sauthoff, N.R.; von Goeler, S.

    1982-05-01

    Temporally and spatially-resolved profiles of the PDX soft x-ray spectra have been measured during single tokamak pulses of circular and divertor plasmas with a recently developed pulse height analyzer. This detection system incorporates an array of five vertically displaced sets of lithium-drifted silicon detectors, each consisting of three independent channels optimized for rapid data collection in adjacent energy regions. Simultaneous measurement of x-ray emission integrated along five chords of the plasma cross section can thereby be achieved. Abel inversion of these data yields temporally-resolved radial profiles of the local electron temperature from the slope of the continuum, concentrations of high-Z impurities from the characteristic line intensities, and a measure of Z/sub eff/ from the continuum intensity. The techniques of x-ray pulse height analysis, with illustrations featuring the results from the initial PDX circular plasma experiments are discussed in detail. In addition, comparisons between circular and divertor plasmas on PDX, derived from the x-ray measurements, are also presented

  12. Active silicon x-ray for measuring electron temperature

    International Nuclear Information System (INIS)

    Snider, R.T.

    1994-07-01

    Silicon diodes are commonly used for x-ray measurements in the soft x-ray region between a few hundred ev and 20 keV. Recent work by Cho has shown that the charge collecting region in an underbiased silicon detector is the depletion depth plus some contribution from a region near the depleted region due to charge-diffusion. The depletion depth can be fully characterized as a function of the applied bias voltage and is roughly proportional to the squart root of the bias voltage. We propose a technique to exploit this effect to use the silicon within the detector as an actively controlled x-ray filter. With reasonable silicon manufacturing methods, a silicon diode detector can be constructed in which the sensitivity of the collected charge to the impinging photon energy spectrum can be changed dynamically in the visible to above the 20 keV range. This type of detector could be used to measure the electron temperature in, for example, a tokamak plasma by sweeping the applied bias voltage during a plasma discharge. The detector samples different parts of the energy spectrum during the bias sweep, and the data collected contains enough information to determine the electron temperature. Benefits and limitations of this technique will be discussed along with comparisons to similar methods for measuring electron temperature and other applications of an active silicon x-ray filter

  13. In situ membrane bending setup for strain-dependent scanning transmission x-ray microscopy investigations.

    Science.gov (United States)

    Finizio, S; Wintz, S; Kirk, E; Raabe, J

    2016-12-01

    We present a setup that allows for the in situ generation of tensile strains by bending x-ray transparent Si 3 N 4 membranes with the application of a pressure difference between the two sides of the membrane, enabling the possibility to employ high resolution space- and time-resolved scanning transmission x-ray microscopy for the investigation of the magneto-elastic coupling.

  14. A flexible gas flow reaction cell for in situ x-ray absorption spectroscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Kroner, Anna B., E-mail: anna.kroner@diamond.ac.uk; Gilbert, Martin; Duller, Graham; Cahill, Leo; Leicester, Peter; Woolliscroft, Richard; Shotton, Elizabeth J. [Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Chilton, Oxfordshire, OX110DE (United Kingdom); Mohammed, Khaled M. H. [UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX110FA (United Kingdom); School of Chemistry, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2016-07-27

    A capillary-based sample environment with hot air blower and integrated gas system was developed at Diamond to conduct X-ray absorption spectroscopy (XAS) studies of materials under time-resolved, in situ conditions. The use of a hot air blower, operating in the temperature range of 298-1173 K, allows introduction of other techniques e.g. X-ray diffraction (XRD), Raman spectroscopy for combined techniques studies. The flexibility to use either quartz or Kapton capillaries allows users to perform XAS measurement at energies as low as 5600 eV. To demonstrate performance, time-resolved, in situ XAS results of Rh catalysts during the process of activation (Rh K-edge, Ce L{sub 3}-edge and Cr K-edge) and the study of mixed oxide membrane (La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ}) under various partial oxygen pressure conditions are described.

  15. In meso in situ serial X-ray crystallography of soluble and membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chia-Ying [Trinity College, Dublin (Ireland); Olieric, Vincent [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Ma, Pikyee [Trinity College, Dublin (Ireland); Panepucci, Ezequiel [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Diederichs, Kay [Universität Konstanz, M647, D-78457 Konstanz (Germany); Wang, Meitian, E-mail: meitian.wang@psi.ch [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Caffrey, Martin, E-mail: meitian.wang@psi.ch [Trinity College, Dublin (Ireland)

    2015-05-14

    A method for performing high-throughput in situ serial X-ray crystallography with soluble and membrane proteins in the lipid cubic phase is described. It works with microgram quantities of protein and lipid (and ligand when present) and is compatible with the most demanding sulfur SAD phasing. The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the β{sub 2}-adrenoreceptor–G{sub s} protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at

  16. Indirect measure of X-rays spectra using TLDs

    International Nuclear Information System (INIS)

    Bonzi, E. V.; Mainardi, R. T.

    2011-10-01

    A methodology of indirect measure of X-rays spectra, emitted by conventional tubes, was developed recently and its feasibility verified in the first place by Monte Carlo simulations. For that case is intended to measure, by means of plastic scintillators, attenuation curves of dispersed beams previously. In this work were carried out measurements of attenuation curves with thermoluminescent dosimeters (TLD) to verify the kindness of the indirect measure method. The attenuation curve was also measured using an ionization chamber brand Capintec (model 192) with the purpose of making a comparison. The results of the attenuation curve measured with both dosimeters present a good resolution inside the statistical fluctuations and the spectral reconstruction using diverse parametric functions is carried out in a quick and simple way with excellent resolutions in the functional form. For this reconstruction method are of fundamental importance the following properties of the used dosimeter: in the first place the repetition of the measures, property that could check; in second place the precision of the measured data and lastly the dosimeter response, this is, the increase of the thermoluminescent signal before an increase of the photons flow of X-rays. This parameter is the gradient of the curve thermoluminescent signal versus the dose imparted to the dosimeter. The measures were realized with a generator of X-rays brand Kevex provided of a conventional tube with tungsten anti cathode that polarizes with high tension to a maximum value of 50 kV and current of 0.5 ma. (Author)

  17. X-ray ablation measurements and modeling for ICF applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Andrew Thomas [Univ. of California, Berkeley, CA (United States)

    1996-09-01

    X-ray ablation of material from the first wall and other components of an ICF (Inertial Confinement Fusion) chamber is a major threat to the laser final optics. Material condensing on these optics after a shot may cause damage with subsequent laser shots. To ensure the successful operation of the ICF facility, removal rates must be predicted accurately. The goal for this dissertation is to develop an experimentally validated x-ray response model, with particular application to the National Ignition Facility (NIF). Accurate knowledge of the x-ray and debris emissions from ICF targets is a critical first step in the process of predicting the performance of the target chamber system. A number of 1-D numerical simulations of NIF targets have been run to characterize target output in terms of energy, angular distribution, spectrum, and pulse shape. Scaling of output characteristics with variations of both target yield and hohlraum wall thickness are also described. Experiments have been conducted at the Nova laser on the effects of relevant x-ray fluences on various materials. The response was diagnosed using post-shot examinations of the surfaces with scanning electron microscope and atomic force microscope instruments. Judgments were made about the dominant removal mechanisms for each material. Measurements of removal depths were made to provide data for the modeling. The finite difference ablation code developed here (ABLATOR) combines the thermomechanical response of materials to x-rays with models of various removal mechanisms. The former aspect refers to energy deposition in such small characteristic depths (~ micron) that thermal conduction and hydrodynamic motion are significant effects on the nanosecond time scale. The material removal models use the resulting time histories of temperature and pressure-profiles, along with ancillary local conditions, to predict rates of surface vaporization and the onset of conditions that would lead to spallation.

  18. Magnetic x-ray measurements using the elliptical multipole wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Montano, P. A.; Li, Y.; Beno, M. A.; Jennings, G.; Kimball, C. W.

    1999-10-26

    The EMW at the BESSRC beam lines at the APS provides high photon flux at high energies with the capability of producing circular polarization on axis. The authors observe a high degree of circularly polarized x-rays at such energies. The polarization and frequency tunability of the elliptical multipole wiggler (EMW) is an ideal source for many magnetic measurements from X-ray Magnetic Circular Dichroism (XMCD) to Compton scattering experiments. They performed Compton scattering measurements to determine the polarization and photon flux at the sample as a function of the deflection parameters K{sub y} and K{sub x}. They used for their measurements a Si (220) Laue monochromator providing simultaneous photon energies at 50 keV, 100 keV and 150 keV. Magnetic Compton Profiles were determined by either switching the magnet polarity or the photon helicity. The results obtained using Fe(110) single crystals were very similar.

  19. Measurement of density by back scattered X-rays

    International Nuclear Information System (INIS)

    Mizunuma, Mamoru

    1990-01-01

    Density-measurement by using back scattering of X-rays instead of gamma-rays have been studied. The back scattering were measured at 2 points of surface length of scatter for eliminated the bad effect be caused by unstable X-rays. The difference in distance of 2 points having constant ratio of the scattering and the ratio of scattering at 2 points having constant difference in distance were measured, and studied the relationship between the density and the ratio of scattering or the difference in distance of 2 points in theory and experiment. Furthermore, the relationship between the several unstable factors and accuracy of measurement were studied. These factors were the thickness of scatter, the fluctuation of X-rays, and the setting error of incident angle. The results were shown that the thickness need some dimension according to the tube voltage, and that the higher tube voltage and the larger exposure have better accuracy, and that in high incident angle, these measurements are little affected by the setting angle error. (author)

  20. A study of the reactivity of elemental Cr/Se/Te thin multilayers using X-ray reflectometry, in situ X-ray diffraction and X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Behrens, Malte; Tomforde, Jan; May, Enno; Kiebach, Ragnar; Bensch, Wolfgang; Haeussler, Dietrich; Jaeger, Wolfgang

    2006-01-01

    The reactivity of [Cr/Se/Te] multilayers under annealing was investigated using X-ray reflectometry, in situ X-ray diffraction, X-ray absorption fine structure (XAFS) measurements and transmission electron microscopy. For all samples, interdiffusion was complete at temperatures between 100 and 300 deg. C, depending on the repeating tri-layer thickness. A crystalline phase nucleated approximately 20 deg. C above the temperature where interdiffusion was finished. The first crystalline phase in a binary Cr/Te sample was layered CrTe 3 nucleating at 230 deg. C. In ternary samples (Se:Te=0.6-1.2), the low-temperature nucleation of such a layered CrQ 3 (Q=Se, Te) phase is suppressed and instead the phase Cr 2 Q 3 nucleates first. Interestingly, this phase decomposes around 500 deg. C into layered CrQ 3 . In contrast, binary Cr/Se samples form stable amorphous alloys after interdiffusion and Cr 3 Se 4 nucleates around 500 deg. C as the only crystalline phase. Evaluation of the XAFS data of annealed samples yield Se-Cr distances of 2.568(1) and 2.552(1) A for Cr 2 Q 3 and CrQ 3 , respectively. In the latter sample, higher coordination shells around Se are seen accounting for the Se-Te contacts in the structure. - Graphical abstract: The first step of the reaction of elemental Cr/Te/Se-multilayers is the interdiffusion of the elements as evidenced by the decay of the modulation peaks in the low-angle region of the X-ray diffraction patterns. The subsequent growth of Bragg peaks at higher scattering angles indicates crystallization of chromium chalcogenide Cr 2 Te 3- x Se x

  1. X-ray measurement with Pin type semiconductor detectors

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1999-01-01

    Here are presented the experimental results of the applications of Pin type radiation detectors developed in a National Institute of Nuclear Research (ININ) project, in the measurement of low energy gamma and X-rays. The applications were oriented mainly toward the Medical Physics area. It is planned other applications which are in process of implementation inside the National Institute of Nuclear Research in Mexico. (Author)

  2. Characterization of Gas-Solid Reactions using In Situ Powder X-ray Diffraction

    DEFF Research Database (Denmark)

    Møller, Kasper Trans; Hansen, Bjarne Rosenlund Søndertoft; Dippel, Ann-Christin

    2014-01-01

    X-ray diffraction is a superior technique for structural characterization of crystalline matter. Here we review the use of in situ powder X-ray diffraction (PXD) mainly for real-time studies of solid/gas reactions, data analysis and the extraction of valuable knowledge of structural, chemical...... by diffraction techniques, e.g. crystallite size. The aim of this review is to provide new inspiration for utilization of in situ PXD for characterization of a wide range of properties beyond the scope of crystal structure solution....

  3. Picosecond X-ray streak camera dynamic range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, C., E-mail: celine.zuber@cea.fr; Bazzoli, S.; Brunel, P.; Gontier, D.; Raimbourg, J.; Rubbelynck, C.; Trosseille, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Fronty, J.-P.; Goulmy, C. [Photonis SAS, Avenue Roger Roncier, BP 520, 19106 Brive Cedex (France)

    2016-09-15

    Streak cameras are widely used to record the spatio-temporal evolution of laser-induced plasma. A prototype of picosecond X-ray streak camera has been developed and tested by Commissariat à l’Énergie Atomique et aux Énergies Alternatives to answer the Laser MegaJoule specific needs. The dynamic range of this instrument is measured with picosecond X-ray pulses generated by the interaction of a laser beam and a copper target. The required value of 100 is reached only in the configurations combining the slowest sweeping speed and optimization of the streak tube electron throughput by an appropriate choice of high voltages applied to its electrodes.

  4. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    Science.gov (United States)

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  5. A New Technique for In Situ X-ray Microtomography Under High Pressure

    Science.gov (United States)

    Uchida, T.; Wang, Y.; Westferro, F.; Gebhardt, J.; Rivers, M. L.; Sutton, S. R.

    2004-12-01

    We have developed a new technique for in situ synchrotron microtomography to study texture evolution in multi-phase specimens under high pressure and temperature. Two critical issues in performing tomography experiments under pressure are (1) the limited X-ray access to the sample because of the highly absorbing materials, such as tungsten carbide and tool steel, typically used in the pressure vessel and (2) a high pressure compatible rotation mechanism to collect projections of the sample continuously from 0 to 180° . We addressed these issues by (1) employing an opposed-anvil high pressure cell, known as the Drickamer cell, with an X-ray transparent containment ring, to allow panoramic X-ray access, and (2) rotating the Dricakmer cell by Harmonic DriveTM gear reducers, with thrust bearings supporting the hydraulic load. The design of the rotation mechanism benefited from the rotational deformation apparatus developed by Yamazaki and Karato (Rev. Sci. Instrum., 72, 4207, 2001). We report results obtained from a test run performed under pressure with monochromatic synchrotron radiation. A sapphire sphere (1.0 mm dia.) was embedded in a powdered mixture of Fe and 9 wt.% S alloy. The diameter of the sample chamber was 2 mm. Under pressure, the entire Drickamer cell was rotated to collect radiographs of the sample at various angles from 0 to 179.5° in 0.5° step size. Computational reconstruction of these projections provided three dimensional (3D) distribution of linear attenuation coefficient of the sample with a spatial resolution of 6 microns. The shape change in the sapphire sphere during compression was clearly observed. Using the program Blob3d, reconstructed 3D images of the sphere were separated from the surrounding Fe-S alloy. Volumes of the sphere were then accurately determined from the extracted images, by carefully defining the image intensity threshold. The errors in the volume measurement are about 0.3 to 0.7%, mostly due to shadowing by anvil

  6. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions

    Science.gov (United States)

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F.; van Bokhoven, Jeroen A.

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  7. Transmission in situ and operando high temperature X-ray powder diffraction in variable gaseous environments

    Science.gov (United States)

    Schlicker, Lukas; Doran, Andrew; Schneppmüller, Peter; Gili, Albert; Czasny, Mathias; Penner, Simon; Gurlo, Aleksander

    2018-03-01

    This work describes a device for time-resolved synchrotron-based in situ and operando X-ray powder diffraction measurements at elevated temperatures under controllable gaseous environments. The respective gaseous sample environment is realized via a gas-tight capillary-in-capillary design, where the gas flow is achieved through an open-end 0.5 mm capillary located inside a 0.7 mm capillary filled with a sample powder. Thermal mass flow controllers provide appropriate gas flows and computer-controlled on-the-fly gas mixing capabilities. The capillary system is centered inside an infrared heated, proportional integral differential-controlled capillary furnace allowing access to temperatures up to 1000 °C.

  8. Orthorhombic boron oxide under pressure: In situ study by X-ray diffraction and Raman scattering

    Science.gov (United States)

    Cherednichenko, Kirill A.; Le Godec, Yann; Kalinko, Aleksandr; Mezouar, Mohamed; Solozhenko, Vladimir L.

    2016-11-01

    High-pressure phase of boron oxide, orthorhombic β-B2O3, has been studied in situ by synchrotron X-ray diffraction to 22 GPa and Raman scattering to 46 GPa at room temperature. The bulk modulus of β-B2O3 has been found to be 169(3) GPa that is in good agreement with our ab initio calculations. Raman and IR spectra of β-B2O3 have been measured at ambient pressure; all experimentally observed bands have been attributed to the theoretically calculated ones, and the mode assignment has been performed. Based on the data on Raman shift as a function of pressure, combined with equation-of-state data, the Grüneisen parameters of all experimentally observed Raman bands have been calculated. β-B2O3 enriched by 10B isotope has been synthesized, and the effect of boron isotopic substitution on Raman spectra has been studied.

  9. X ray measurement of residual stresses on metallic structures

    International Nuclear Information System (INIS)

    Barbarin, P.; Convert, M.; Miege

    1983-01-01

    The principle of measuring residual stresses by X ray diffraction (the famous Bragg'law is used) may be applied at an industrial level. CETIM has perfected an outfit adjusted to measurements on the spot, which can be used on metallic parts of a large size. This paper describes this equipment, giving its advantages towards previous devices, and assessing measurements errors. Some actual cases for results obtained are given. This paper starts with a brief historical account and theoretical backgrounds of the method [fr

  10. In situ X-ray diffraction environments for high-pressure reactions

    DEFF Research Database (Denmark)

    R. S. Hansen, Bjarne; Møller, Kasper Trans; Paskevicius, Mark

    2015-01-01

    New sample environments and techniques specifically designed for in situ powder X-ray diffraction studies up to 1000 bar (1 bar = 105 Pa) gas pressure are reported and discussed. The cells can be utilized for multiple purposes in a range of research fields. Specifically, investigations of gas–sol...

  11. Tensile behavior of orthorhombic alpha ''-titanium alloy studied by in situ X-ray diffraction

    DEFF Research Database (Denmark)

    Wang, X.D.; Lou, H.B.; Ståhl, Kenny

    2010-01-01

    The tensile behavior of a Ti-11%Zr-14%Nb-10%Sn alloy with pure orthorhombic alpha '' phase was studied by in situ X-ray diffraction using synchrotron radiation. It is found that no phase transformation happens during the whole tensile process. The "double-yielding" platforms of this alloy...

  12. Penumbral measurements in water for high-energy x rays

    International Nuclear Information System (INIS)

    Dawson, D.J.; Schroeder, N.J.; Hoya, J.D.

    1986-01-01

    Ionization chambers of varying inside diameter have been used to investigate the penumbral region of 60 Co, 6-MV, and 31-MV x-ray beams. Measurements were made in water at varying depths up to 25 cm for a square field of side length 10 cm. The dependence of the penumbral widths on both the inside diameter of the ionization chamber and the depth in water is established along with the asymmetry of the penumbral distributions about the 50% level. A standard correction is indicated to eliminate the dependence of the measured penumbral widths on the inside diameter of the ionization chamber

  13. The measurement of patient doses from diagnostic x-rays

    International Nuclear Information System (INIS)

    Morris, N.D.; Solomon, S.B.

    1980-06-01

    As part of the National Health and Medical Research Council survey to determine the genetic and mean bone-marrow doses to the Australian population from the medical, dental and chiropractic uses of radiation sources, doses to patients undergoing X-ray diagnostic procedures were evaluated. The doses were measured using capsules of LiF or CaF 2 :Dy thermoluminescent dosemeters (TLD). The evaluation of the TLD measurements is described and the mean values of the skin doses for patients undergoing various radiographic examinations in Australia in 1970 are presented

  14. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials.

    Science.gov (United States)

    Kulriya, P K; Singh, F; Tripathi, A; Ahuja, R; Kothari, A; Dutt, R N; Mishra, Y K; Kumar, Amit; Avasthi, D K

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90 MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T=255 K.

  15. Orbital Evolution Measurement of the Accreting Millisecond X-ray ...

    Indian Academy of Sciences (India)

    powered millisecond X-ray pulsar SAX J1808.4–3658 using. X-ray data obtained during four outbursts of this source. Extensive obser- vations were made with the proportional counter array of the Rossi X-ray. Timing Explorer (RXTE) during the four ...

  16. Orbital Evolution Measurement of the Accreting Millisecond X-ray ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We present results from a pulse timing analysis of the accretion-powered millisecond X-ray pulsar SAX J1808.4–3658 using X-ray data obtained during four outbursts of this source. Extensive observations were made with the proportional counter array of the Rossi X-ray Timing Explorer (RXTE) during the ...

  17. Measurements of X-rays from antiprotonic helium

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C.A.; Batty, C.J.; Moir, J.; Sakamoto, S.; Davies, J.D.; Lowe, J.; Nelson, J.M.; Pyle, G.J.; Squier, G.T.A.; Welsh, R.E.

    1989-04-17

    The absolute yields of X-rays from anti pHe atoms for 14 transitions covering the L, M and N series have been measured at target gas densities of 0.125, 0.25, 0.92, 1.0, 1.23, 2.0, 3.0 and 10.0 rho/sub STP/ and compared with the predictions of cascade calculations. The strong interaction width of the 3d state, has been determined to be 2.07+-0.11 meV.

  18. In situ X-ray probing reveals fingerprints of surface platinum oxide.

    Science.gov (United States)

    Friebel, Daniel; Miller, Daniel J; O'Grady, Christopher P; Anniyev, Toyli; Bargar, John; Bergmann, Uwe; Ogasawara, Hirohito; Wikfeldt, Kjartan Thor; Pettersson, Lars G M; Nilsson, Anders

    2011-01-07

    In situ X-ray absorption spectroscopy (XAS) at the Pt L(3) edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard X-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF code and complementary extended X-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

  19. In Situ X-Ray Probing Reveals Fingerprints of Surface Platinum Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Friebel, Daniel

    2011-08-24

    In situ x-ray absorption spectroscopy (XAS) at the Pt L{sub 3} edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard x-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF8 code and complementary extended x-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

  20. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  1. H electro-insertion into Pd/Pt(1 1 1) nanofilms: an original method for isotherm measurement coupled to in situ surface X-ray diffraction structural study

    International Nuclear Information System (INIS)

    Soldo-Olivier, Y.; Sibert, E.; Previdello, B.; Lafouresse, M.C.; Maillard, F.; De Santis, M.

    2013-01-01

    In order to get a thorough comprehension of the mechanisms governing hydrogen insertion into nanometric metallic films, we have studied ultra-thin Pd/Pt(1 1 1) layers. In this paper we propose an original method allowing the measurement of hydrogen insertion electrochemical isotherms. The use of a hanging meniscus rotating disc electrode and a new calculation approach permit to remove the contributions to the insertion charge of both hydrogen evolution and hydrogen oxidation reactions. Indeed, compared to hydrogen insertion such terms become non-negligible in the case of nanometric deposits, due to their large surface/bulk atom ratio. We have measured hydrogen insertion isotherms for Pd/Pt(1 1 1) films from 14 ML down to 4 ML. Independently from the film thickness, the maximum hydrogen insertion rate (H/Pd) max is smaller than that of bulk Pd. The so-called two-phase region is still present, but contrarily to bulk Pd it is characterized by a slope. Both hydrogen solubility and the two-phase domain width diminish with the decrease of the film thickness. In the present work the behaviour of hydrogen electrochemical insertion isotherms is interpreted in the light of the Pd nanofilms structure obtained with in situ surface X-ray diffraction. The lattice constraints induced by the substrate result in a lower insertion rate in the Pd deposit close to the Pt–Pd interface. Only the outermost region of the film is relaxed and behaves like bulk Pd. This description quantitatively accounts for the experimental behaviour of (H/Pd) max as a function of the film thickness. The obtained Pd/Pt(1 1 1) films structure also corresponds to the presence of non-equivalent hydrogen insertion sites, surely contributing to the slope observed in the two-phase domain

  2. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    Science.gov (United States)

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sönke; Schlepütz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  3. Atomic Physics Measurements in Support of X-ray Astronomy

    Science.gov (United States)

    Beiersdorfer, Peter; Brown, G. V.; Kelley, R. E.; Kilbourne, C. A.; Leutenegger, M.; Porter, F. S.; Obst, M.; Lepson, J. K.; Desai, P.; Gu, M. F.

    2010-10-01

    X-ray astronomy has been a voracious consumer of atomic data, especially after the launch of the Chandra and XMM-Newton X-ray Observatories, which have produced very high-resolution grating spectra of point sources. One of the important issues has been to understand the physics underlying the Fe L-shell spectra, and the Fe XVII spectrum in particular. A lot of progress has been made, including measurements of the electron-impact and resonance excitation cross sections, which now provides a rather clear picture of the production mechanism of the Fe XVII spectrum. Recent measurements of the radiative rates provide additional information on the deexcitation channels, while investigations of dielectronic satellite transitions provide a measure of the electron temperature. Many questions, however, still remain. Work at LLNL was performed under the auspices of DOE under contract DE-AC53-07NA27344 and supported by NASA's APRA program under contracts NNH07AF81I and NNG06WF08I. Part of this work was supported by Chandra Cycle 10 Award AR9-0002X.

  4. Reactor for nano-focused x-ray diffraction and imaging under catalytic in situ conditions

    Science.gov (United States)

    Richard, M.-I.; Fernández, S.; Hofmann, J. P.; Gao, L.; Chahine, G. A.; Leake, S. J.; Djazouli, H.; De Bortoli, Y.; Petit, L.; Boesecke, P.; Labat, S.; Hensen, E. J. M.; Thomas, O.; Schülli, T.

    2017-09-01

    A reactor cell for in situ studies of individual catalyst nanoparticles or surfaces by nano-focused (coherent) x-ray diffraction has been developed. Catalytic reactions can be studied in flow mode in a pressure range of 10-2-103 mbar and temperatures up to 900 °C. This instrument bridges the pressure and materials gap at the same time within one experimental setup. It allows us to probe in situ the structure (e.g., shape, size, strain, faceting, composition, and defects) of individual nanoparticles using a nano-focused x-ray beam. Here, the setup was used to observe strain and facet evolution of individual model Pt catalysts during in situ experiments. It can be used for heating other (non-catalytically active) nanoparticles (e.g., nanowires) in inert or reactive gas atmospheres or vacuum as well.

  5. Experimental device for the X-ray energetic distribution measurement in a tokamak plasma

    International Nuclear Information System (INIS)

    Perez-Navarro, A.

    1977-01-01

    An experimental system to measure the X-ray spectrum in a tokamak plasma is described, emphasizing its characteristics: resolution, dead time and the pulse pile-up distortion effects on the X-ray spectra. (author) [es

  6. Note: X-ray radiography for measuring chemical diffusion in metallic melts

    Energy Technology Data Exchange (ETDEWEB)

    Griesche, A.; Zhang, B. [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Linder Hoehe, 51170 Koeln (Germany); Solorzano, E.; Garcia-Moreno, F. [Institute of Applied Materials, Helmholtz-Zentrum Berlin (HZB), Hahn-Meitner Platz 1, 14109 Berlin (Germany)

    2010-05-15

    A x-ray radioscopy technique for measuring in situ chemical diffusion coefficients in metallic melts is presented. The long-capillary diffusion measurement method is combined with imaging techniques using microfocus tubes and flat panel detectors in order to visualize and quantitatively analyze diffusive mixing of two melts of different chemical composition. The interdiffusion coefficient as function of temperature and time is obtained by applying Fick's diffusion laws. Tracking the time dependence of the mean square penetration depth of the mixing process allows to detect changes in the mass transport caused by convective flow. The possibility to sort out convective mass transport contributions from analysis enhances significantly the accuracy compared to the conventional long-capillary diffusion measurement method with postmortem analysis. The performance of this novel diffusion measurement method with x-ray radiography technique is demonstrated by a diffusion experiment in an Al-Ni melt.

  7. Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in situ X-ray nanodiffraction.

    Science.gov (United States)

    Huang, Zhifeng; Bartels, Matthias; Xu, Rui; Osterhoff, Markus; Kalbfleisch, Sebastian; Sprung, Michael; Suzuki, Akihiro; Takahashi, Yukio; Blanton, Thomas N; Salditt, Tim; Miao, Jianwei

    2015-07-01

    In situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to investigate many physical science phenomena, ranging from phase transitions, chemical reactions and crystal growth to grain boundary dynamics. A major limitation of in situ XRD and TEM is a compromise that has to be made between spatial and temporal resolution. Here, we report the development of in situ X-ray nanodiffraction to measure high-resolution diffraction patterns from single grains with up to 5 ms temporal resolution. We observed, for the first time, grain rotation and lattice deformation in chemical reactions induced by X-ray photons: Br(-) + hv → Br + e(-) and e(-) + Ag(+) → Ag(0). The grain rotation and lattice deformation associated with the chemical reactions were quantified to be as fast as 3.25 rad s(-1) and as large as 0.5 Å, respectively. The ability to measure high-resolution diffraction patterns from individual grains with a temporal resolution of several milliseconds is expected to find broad applications in materials science, physics, chemistry and nanoscience.

  8. Soft-X-ray electron temperature measurements on TORTUR

    International Nuclear Information System (INIS)

    Lopes Cardozo, N.J.

    1984-02-01

    During June and July 1982, some 250 discharges were produced in the TORTUR tokamak. The discharges can be characterized roughly by the predischarge current peak of 40 to 45 kA at 2 ms, followed by a current plateau of 30 to 40 kA which lasted 20 to 30 ms. At 5 ms, Thomson scattering indicated a central Tsub(e) of about 900 eV which fell to a lasting temperature of 600 to 400 eV in discharges that were stigmatized 'mildly turbulent' for their high ohmic dissipation. Soft-X-ray measurements of Tsub(e) were carried out with PLATO, a 4-channel X-ray detector, in which two surface barrier diodes and two channeltrons were mounted. Tsub(e) was determined by means of the absorber foil technique. To that end four exchangeable Be absorber foils ranging in thickness from 30 to 100 micron were mounted in each channel. Every single discharge yielded 3 independent, time-resolved (resolution 100 μs) measurements of Tsub(e). (Auth.)

  9. Flat Field Anomalies in an X-Ray CCD Camera Measured Using a Manson X-Ray Source

    International Nuclear Information System (INIS)

    Michael Haugh

    2008-01-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. It determines how accurately NIF can point the laser beams and is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 (micro)m square pixels, and 15 (micro)m thick. A multi-anode Manson X-ray source, operating up to 10kV and 2mA, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE ∼ 12. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1.5% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. The efficiency pattern follows the properties of Si. The maximum quantum efficiency is 0.71. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation was >8% at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was less than the measurement uncertainty below 4 keV. We were also able to observe debris on the CCD chip. The debris showed maximum contrast at the lowest energy used, 930 eV, and disappeared by 4 keV. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager

  10. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA; Tung, I. C. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA; Chang, S. -H. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Bhattacharya, A. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Fong, D. D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Freeland, J. W. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA; Hong, Hawoong [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA

    2016-01-01

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  11. In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Freeland, J. W.; Hong, Hawoong, E-mail: hhong@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Tung, I. C. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Chang, S.-H.; Bhattacharya, A.; Fong, D. D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-01-15

    In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

  12. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    International Nuclear Information System (INIS)

    Emamzadah, Soheila; Petty, Tom J.; De Almeida, Victor; Nishimura, Taisuke; Joly, Jacques; Ferrer, Jean-Luc; Halazonetis, Thanos D.

    2009-01-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts

  13. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Emamzadah, Soheila [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland); Petty, Tom J. [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Biomedical Graduate Studies Genomics and Computational Biology Group, University of Pennsylvania, Philadelphia, PA 19104 (United States); De Almeida, Victor [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland); Nishimura, Taisuke [Department of Plant Biology, University of Geneva, CH-1205 Geneva (Switzerland); Joly, Jacques; Ferrer, Jean-Luc [Institut de Biologie Structurale J.-P. Ebel, CEA-CNRS-University J. Fourier, 38027 Grenoble CEDEX 1 (France); Halazonetis, Thanos D., E-mail: thanos.halazonetis@unige.ch [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland)

    2009-09-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  14. In situ flash x-ray high-speed computed tomography for the quantitative analysis of highly dynamic processes

    Science.gov (United States)

    Moser, Stefan; Nau, Siegfried; Salk, Manfred; Thoma, Klaus

    2014-02-01

    The in situ investigation of dynamic events, ranging from car crash to ballistics, often is key to the understanding of dynamic material behavior. In many cases the important processes and interactions happen on the scale of milli- to microseconds at speeds of 1000 m s-1 or more. Often, 3D information is necessary to fully capture and analyze all relevant effects. High-speed 3D-visualization techniques are thus required for the in situ analysis. 3D-capable optical high-speed methods often are impaired by luminous effects and dust, while flash x-ray based methods usually deliver only 2D data. In this paper, a novel 3D-capable flash x-ray based method, in situ flash x-ray high-speed computed tomography is presented. The method is capable of producing 3D reconstructions of high-speed processes based on an undersampled dataset consisting of only a few (typically 3 to 6) x-ray projections. The major challenges are identified, discussed and the chosen solution outlined. The application is illustrated with an exemplary application of a 1000 m s-1 high-speed impact event on the scale of microseconds. A quantitative analysis of the in situ measurement of the material fragments with a 3D reconstruction with 1 mm voxel size is presented and the results are discussed. The results show that the HSCT method allows gaining valuable visual and quantitative mechanical information for the understanding and interpretation of high-speed events.

  15. Note: Experiments in hard x-ray chemistry: in situ production of molecular hydrogen and x-ray induced combustion.

    Science.gov (United States)

    Pravica, Michael; Bai, Ligang; Park, Changyong; Liu, Yu; Galley, Martin; Robinson, John; Hatchett, David

    2012-03-01

    We have successfully loaded H(2) into a diamond anvil cell at high pressure using the synchrotron x-ray induced decomposition of NH(3)BH(3). In a second set of studies, radiation-assisted release of O(2) from KCLO(3), H(2) release from NH(3)BH(3), and reaction of these gases in a mixture of the reactants to form liquid water using x-rays at ambient conditions was observed. Similar observations were made using a KCLO(3) and NaBH(4) mixture. Depending on reaction conditions, an explosive or far slower reaction producing water was observed.

  16. In-Situ X-Ray Microscopy of Phase and Composition Distributions in Metal Alloys During Solidification

    Science.gov (United States)

    Kaukler, William F.; Curreri, Peter A.

    1999-01-01

    This research applies a state of the art X-ray Transmission Microscope, to image the solidification of metallic or semiconductor alloys in real-time. By employing a hard x-ray source with sub-micron dimensions, resolutions of up to 3 gm can be obtained with magnifications of over 800 X. Specimen growth conditions were optimized and the best imaging technologies applied to maintain x-ray image resolution, contrast and sensitivity. In addition, a special furnace design is required to permit controlled growth conditions and still offer maximum resolution and image contrast. We have successfully imaged in real-time: interfacial morphologies, phase growth, coalescence, incorporation of phases into the growing interface, and the solute boundary layer in the liquid at the solid-liquid inter-face. We have also measured true local growth rates and can evaluate segregation structures in the solid; a form of in-situ metallography. Composition gradients within the specimen cause vafiations in absorption of the flux such that the final image represents a spatial integral of composition (or thickness). During this study, the growth of secondary phase fibers and lameilae from eutectic and monotectic alloys have been imaged during solidification, in real-time, for the first time in bulk metal alloys. Keywords: x-ray, microscope, solidification, microfocus, real-time, microstructure

  17. Measurements of radio frequent cavity volt ages by X-ray spectrum measurements

    Directory of Open Access Journals (Sweden)

    Toprek Dragan

    2005-01-01

    Full Text Available This paper deals with X-ray spectrum measurement as a method for the measurement of radio frequent cavity voltage and the theory of X-ray spectrum calculation. Experimental results at 72 MHz for three different values of the radio frequent power of ACCEL K250 super conducting cyclotron are being presented.

  18. In situ X-ray phase analysis and computer simulation of carbide dissolution of ball bearing steel at different austenitizing temperatures

    International Nuclear Information System (INIS)

    Epp, Jeremy; Surm, Holger; Kessler, Olaf; Hirsch, Thomas

    2007-01-01

    This paper presents the results of in situ X-ray diffraction experiments and computer simulation of AISI 52100 steel during soaking at different austenitizing temperatures. A study of carbide dissolution kinetics and austenite lattice parameter variations has been executed. In situ X-ray diffraction investigations were carried out with a rotating anode and an area detector to allow a good time resolution. For the computer simulation, a Johnson-Mehl-Avrami equation was used. Lattice parameters of austenite obtained by X-ray diffraction show good agreement with values calculated from a model based on neutron diffraction experiments. Carbide contents measured by X-ray diffraction are close to those obtained by simulation. But discrepancies are present which are essentially due to local heterogeneity of the chemical composition

  19. In situ x-ray diffraction studies of YBa2Cu3Ox

    International Nuclear Information System (INIS)

    Williams, S.; Zheng, J.Q.; Shih, M.C.; Wang, X.K.; Lee, S.J.; Rippert, E.D.; Maglic, S.; Kajiyama, H.; Segel, D.; Dutta, P.; Chang, R.P.H.; Ketterson, J.B.; Roberts, T.; Lin, Y.; Kampwirth, R.T.; Gray, K.

    1992-01-01

    Using a specially designed off-axis faced magnetron sputtering chamber we have performed in situ x-ray diffraction studies of the growth of YBa 2 Cu 3 O x films using a synchrotron light source. The orientation and rocking curve width were studied as a function of substrate temperature, O 2 /Ar partial pressures, and deposition rate. Growth rate was studied on SrTiO 3 , LaAlO 3 , and MgO

  20. Measuring and understanding ultrafast phenomena using X-rays

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Nielsen, Martin Meedom

    2014-01-01

    Within the last decade, significant advances in X-ray sources and instrumentation as well as simultaneous developments in analysis methodology has allowed the field of fast- and ultrafast time-resolved X-ray studies of solution-state systems to truly come of age. We here describe some aspects of ...

  1. In situ X-ray powder diffraction, synthesis, and magnetic properties of InVO3

    International Nuclear Information System (INIS)

    Lundgren, Rylan J.; Cranswick, Lachlan M.D.; Bieringer, Mario

    2006-01-01

    We report the first synthesis and high-temperature in situ X-ray diffraction study of InVO 3 . Polycrystalline InVO 3 has been prepared via reduction of InVO 4 using a carbon monoxide/carbon dioxide buffer gas. InVO 3 crystallizes in the bixbyite structure in space group Ia-3 (206) with a=9.80636(31) A with In 3+ /V 3+ disorder on the (8b) and (24d) cation sites. In situ powder X-ray diffraction experiments and thermal gravimetric analysis in a CO/CO 2 buffer gas revealed the existence of the metastable phase InVO 3 . Bulk samples with 98.5(2)% purity were prepared using low-temperature reduction methods. The preparative methods limited the crystallinity of this new phase to approximately 225(50) A. Magnetic susceptibility and neutron diffraction experiments suggest a spin-glass ground state for InVO 3 . - Graphical abstract: In situ powder X-ray diffractograms for the reduction of InVO 4 in CO/CO 2 . The three temperature regions show the conversion of InVO 4 to InVO 3 and final decomposition into In 2 O 3 and V 2 O 3

  2. Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions

    International Nuclear Information System (INIS)

    Gumí-Audenis, B.; Carlà, F.; Vitorino, M. V.; Panzarella, A.; Porcar, L.; Boilot, M.; Guerber, S.; Bernard, P.; Rodrigues, M. S.; Sanz, F.; Giannotti, M. I.; Costa, L.

    2015-01-01

    The performance of a custom atomic force microscope for grazing-incidence X-ray experiments on hydrated soft and biological samples is presented. A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions

  3. Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gumí-Audenis, B. [ESRF, The European Synchrotron, Grenoble (France); Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Carlà, F. [ESRF, The European Synchrotron, Grenoble (France); Vitorino, M. V. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Panzarella, A. [ESRF, The European Synchrotron, Grenoble (France); Porcar, L. [Institut Laue-Langevin, Grenoble (France); Boilot, M. [ORTEC, Marseille (France); Guerber, S. [CEA, LETI Grenoble (France); Bernard, P. [ESRF, The European Synchrotron, Grenoble (France); Rodrigues, M. S. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Sanz, F.; Giannotti, M. I. [Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Costa, L., E-mail: luca.costa@esrf.fr [ESRF, The European Synchrotron, Grenoble (France)

    2015-09-30

    The performance of a custom atomic force microscope for grazing-incidence X-ray experiments on hydrated soft and biological samples is presented. A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions.

  4. System for calibration of instruments of x-ray measurement (CIR-X) applying the PGCS

    International Nuclear Information System (INIS)

    Gaytan G, E.; Rivero G, T.; Cruz E, P.; Tovar M, V.M.; Vergara M, F.J.

    2007-01-01

    The Department of Metrology of Ionizing Radiations of the ININ carries out calibration of instruments for X-ray measurement that determine the operation parameters in X-ray diagnostic machines of the health and private sectors. To facilitate this task, the Department of Automation and Instrumentation developed a system for acquisition and signals processing coming from a reference voltage divider with traceability at NIST that is connected directly to the X-rays tube. The system is integrated by the X-ray unit, the X-ray measurement equipment Dynalizer IIIU of RADCAL, a data acquisition card, a personal computer and the acquisition software and signals processing. (Author)

  5. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients.

    Science.gov (United States)

    Siddiqui, Sanna F; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha

    2013-08-01

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  6. Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies

    Science.gov (United States)

    Andersen, Tassie K.; Cook, Seyoung; Benda, Erika; Hong, Hawoong; Marks, Laurence D.; Fong, Dillon D.

    2018-03-01

    A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. The high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO3 oxide perovskites containing elements from both the metalorganic source and a traditional effusion cell.

  7. In situ study of the Porticello Bronzes by portable X-ray fluorescence and laser-induced breakdown spectroscopy

    Science.gov (United States)

    Ferretti, M.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Tognoni, E.; Console, E.; Palaia, P.

    2007-12-01

    This paper reports the results of a measurement campaign performed at the National Museum of Magna Grecia in Reggio Calabria (Italy). Portable X-Ray Fluorescence (XRF) and Laser-Induced Breakdown Spectroscopy (LIBS) instrumentation allowed in situ analysis of several bronze pieces belonging to the group of the so-called Porticello Bronzes. The find occurred at sea, off the village of Porticello (Reggio Calabria) in 1969 and consists of a number of fragments, including a bearded head, pertaining to at least two statues. The use of X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy techniques allowed for a classification of the fragments according to their elemental composition. The fragments appear to belong to at least two different statues; although, in general, the compositional classification agrees well with the stylistic analysis of the fragments, significant improvements with respect to previous achievements emerge from the joint results of the two techniques used.

  8. In situ study of the Porticello Bronzes by portable X-ray fluorescence and laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, M. [Istituto per le Tecnologie Applicate ai Beni Culturali, Via Salaria, km 29.300, c.p.10, 00016 Monterotondo St. - Roma (Italy); Cristoforetti, G.; Legnaioli, S. [Applied Laser Spectroscopy Laboratory, Istituto per i Processi Chimico Fisici del CNR, Area di Ricerca di Pisa, Via G.Moruzzi, 1-56124 Pisa (Italy); Palleschi, V. [Applied Laser Spectroscopy Laboratory, Istituto per i Processi Chimico Fisici del CNR, Area di Ricerca di Pisa, Via G.Moruzzi, 1-56124 Pisa (Italy); Salvetti, A.; Tognoni, E. [Applied Laser Spectroscopy Laboratory, Istituto per i Processi Chimico Fisici del CNR, Area di Ricerca di Pisa, Via G.Moruzzi, 1-56124 Pisa (Italy); Console, E. [T.E.A. s.a.s., Via Luigi Pascali, 23/25-88100 Catanzaro (Italy)], E-mail: elena@teacz.191.it; Palaia, P. [T.E.A. s.a.s., Via Luigi Pascali, 23/25-88100 Catanzaro (Italy)

    2007-12-15

    This paper reports the results of a measurement campaign performed at the National Museum of Magna Grecia in Reggio Calabria (Italy). Portable X-Ray Fluorescence (XRF) and Laser-Induced Breakdown Spectroscopy (LIBS) instrumentation allowed in situ analysis of several bronze pieces belonging to the group of the so-called Porticello Bronzes. The find occurred at sea, off the village of Porticello (Reggio Calabria) in 1969 and consists of a number of fragments, including a bearded head, pertaining to at least two statues. The use of X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy techniques allowed for a classification of the fragments according to their elemental composition. The fragments appear to belong to at least two different statues; although, in general, the compositional classification agrees well with the stylistic analysis of the fragments, significant improvements with respect to previous achievements emerge from the joint results of the two techniques used.

  9. Development of a speckle-based portable device for in situ metrology of synchrotron X-ray mirrors.

    Science.gov (United States)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-09-01

    A portable device for in situ metrology of synchrotron X-ray mirrors based on the near-field speckle scanning technique has been developed. Ultra-high angular sensitivity is achieved by scanning a piece of abrasive paper or filter membrane in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that optimizing active X-ray mirrors is simple and fast. The functionality and feasibility of this device have been demonstrated by characterizing and optimizing X-ray mirrors.

  10. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    OpenAIRE

    Oswald, Benjamin B.; Schuren, Jay C.; Pagan, Darren C.; Miller, Matthew P.

    2013-01-01

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 °C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic pro...

  11. Measuring Quasar Spin via X-ray Continuum Fitting

    Science.gov (United States)

    Jenkins, Matthew; Pooley, David; Rappaport, Saul; Steiner, Jack

    2018-01-01

    We have identified several quasars whose X-ray spectra appear very soft. When fit with power-law models, the best-fit indices are greater than 3. This is very suggestive of thermal disk emission, indicating that the X-ray spectrum is dominated by the disk component. Galactic black hole binaries in such states have been successfully fit with disk-blackbody models to constrain the inner radius, which also constrains the spin of the black hole. We have fit those models to XMM-Newton spectra of several of our identified soft X-ray quasars to place constraints on the spins of the supermassive black holes.

  12. In situ microfluidic dialysis for biological small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Skou, Magda; Skou, Soren; Jensen, Thomas Glasdam

    2014-01-01

    Owing to the demand for low sample consumption and automated sample changing capabilities at synchrotron small-angle X-ray (solution) scattering (SAXS) beamlines, X-ray microfluidics is receiving continuously increasing attention. Here, a remote-controlled microfluidic device is presented...... for simultaneous SAXS and ultraviolet absorption measurements during protein dialysis, integrated directly on a SAXS beamline. Microfluidic dialysis can be used for monitoring structural changes in response to buffer exchange or, as demonstrated, protein concentration. By collecting X-ray data during...... the concentration procedure, the risk of inducing protein aggregation due to excessive concentration and storage is eliminated, resulting in reduced sample consumption and improved data quality. The proof of concept demonstrates the effect of halted or continuous flow in the microfluidic device. No sample...

  13. Measurement of X-ray attenuation coefficients around K-absorption edges using Fe Kα X-rays

    International Nuclear Information System (INIS)

    Kerur, B.R.; Thontadarya, S.R.; Hanumaiah, B.

    1993-01-01

    The x-ray mass attenuation coefficients were measured around the K-absorption edges of elements in the range 16 ≤ Z ≤ 30 using Fe Kα x-rays of energy 6.400 keV, which is the weighted average energy of Kα 1 and Kα 2 x-ray components from the 57 Co radioactive source. Kβ x-rays were almost eliminated by the differential absorption technique. The small difference in energy between Kα 1 and Kα 2 , 13 eV, was shown to be inconsequential by comparing the measured and theoretical values of μ/ρ for standard materials such as Al, Cu, Mo and Ta. The effect of fine structure of the K-absorption edge on μ/ρ was elucidated by using the compounds of elements in the range 16 ≤ X ≤ 30, containing one element with its K-absorption edge energy (E k ) close to the incident photon energy (E x ). The results clearly indicate the validity of the theoretical mixture rule for all those compounds whose K edge is far away from the incident energy but show deviations of as much as 10% for the manganese compound whose K edge is 140 eV above E x and about 12% for the chromium compound whose K edge is 410 eV below E x . These deviations are attributed to the possible influence of resonance Raman scattering when the incident photon energy E x is less than the edge and to the influence of EXAFS when E x is more than the edge energy. (Author)

  14. Copper L X-ray spectra measured by a high resolution ion-induced X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Hamaguchi, Dai; Kageyama, Hiroyoshi [Kyoto Inst. of Tech. (Japan)] [and others

    1997-03-01

    High resolution L X-ray emission spectra of Cu have been measured by 0.75 MeV/u H, He, and F, 0.73 MeV/u Ar, 0.64 MeV/u Si, and 0.073 MeV/u Si ion impacts with a crystal spectrometer. The X-ray transition energies in the Cu target for L{iota}, L{eta}, L{alpha}{sub 1,2}, L{beta}{sub 1}, and L{beta}{sub 3,4} diagram lines induced by light ion impacts are determined, which are in good agreement with those given in the reference. The difference in L X-ray emission spectra produced by H, He, F, Si, and Ar ions are considered and the L{alpha}{sub 1,2} and L{beta}{sub 1} emission spectra are compared with the calculated ones based on the multiconfiguration Dirac-Fock method. (author)

  15. In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes.

    Science.gov (United States)

    Misra, Sumohan; Liu, Nian; Nelson, Johanna; Hong, Seung Sae; Cui, Yi; Toney, Michael F

    2012-06-26

    Silicon is a promising anode material for Li-ion batteries due to its high theoretical specific capacity. From previous work, silicon nanowires (SiNWs) are known to undergo amorphorization during lithiation, and no crystalline Li-Si product has been observed. In this work, we use an X-ray transparent battery cell to perform in situ synchrotron X-ray diffraction on SiNWs in real time during electrochemical cycling. At deep lithiation voltages the known metastable Li(15)Si(4) phase forms, and we show that avoiding the formation of this phase, by modifying the SiNW growth temperature, improves the cycling performance of SiNW anodes. Our results provide insight on the (de)lithiation mechanism and a correlation between phase evolution and electrochemical performance for SiNW anodes.

  16. In situ/Operando studies of electrocatalysts using hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lassalle-Kaiser, Benedikt [Synchrotron SOLEIL, Gif-sur-Yvette (France); Gul, Sheraz [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; Kern, Jan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Yachandra, Vittal K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; Yano, Junko [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.

    2017-05-02

    This review focuses on the use of X-ray absorption and emission spectroscopy techniques using hard X-rays to study electrocatalysts under in situ/operando conditions. The importance and the versatility of methods in the study of electrodes in contact with the electrolytes are described, when they are being cycled through the catalytic potentials during the progress of the oxygen-evolution, oxygen reduction and hydrogen evolution reactions. The catalytic oxygen evolution reaction is illustrated with examples using three oxides, Co, Ni and Mn, and two sulfides, Mo and Co. These are used as examples for the hydrogen evolution reaction. A bimetallic, bifunctional oxygen evolving and oxygen reducing Ni/Mn oxide is also presented. The various advantages and constraints in the use of these techniques and the future outlook are discussed.

  17. In Situ X-ray Diffraction Studies of (De)lithiation Mechanism in Silicon Nanowire Anodes

    KAUST Repository

    Misra, Sumohan

    2012-06-26

    Figure Persented: Silicon is a promising anode material for Li-ion batteries due to its high theoretical specific capacity. From previous work, silicon nanowires (SiNWs) are known to undergo amorphorization during lithiation, and no crystalline Li-Si product has been observed. In this work, we use an X-ray transparent battery cell to perform in situ synchrotron X-ray diffraction on SiNWs in real time during electrochemical cycling. At deep lithiation voltages the known metastable Li 15Si 4 phase forms, and we show that avoiding the formation of this phase, by modifying the SiNW growth temperature, improves the cycling performance of SiNW anodes. Our results provide insight on the (de)lithiation mechanism and a correlation between phase evolution and electrochemical performance for SiNW anodes. © 2012 American Chemical Society.

  18. Instrument for x-ray absorption spectroscopy with in situ electrical control characterizations

    International Nuclear Information System (INIS)

    Huang, Chun-Chao; Chang, Shu-Jui; Yang, Chao-Yao; Tseng, Yuan-Chieh; Chou, Hsiung

    2013-01-01

    We report a synchrotron-based setup capable of performing x-ray absorption spectroscopy and x-ray magnetic circular dichroism with simultaneous electrical control characterizations. The setup can enable research concerning electrical transport, element- and orbital-selective magnetization with an in situ fashion. It is a unique approach to the real-time change of spin-polarized electronic state of a material/device exhibiting magneto-electric responses. The performance of the setup was tested by probing the spin-polarized states of cobalt and oxygen of Zn 1-x Co x O dilute magnetic semiconductor under applied voltages, both at low (∼20 K) and room temperatures, and signal variations upon the change of applied voltage were clearly detected

  19. Versatile in situ powder X-ray diffraction cells for solid-gas investigations

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Torben R.; Nielsen, Thomas K.; Joergensen, Jens-Erik [Aarhus Univ. (Denmark). Center for Energy Materials, Center for Materials Crystallography; Filinchuk, Yaroslav [European Synchrotron Radiation Facility, Grenoble (France). Swiss-Norwegian Beam Lines; Cerenius, Yngve [Lund Univ. (Sweden). MAX-lab; Gray, Evan MacA.; Webb, Colin J. [Griffith Univ., Nathan, Brisbane (Australia). Queensland Micro- and Nanotechnology Centre

    2010-12-15

    This paper describes new sample cells and techniques for in situ powder X-ray diffraction specifically designed for gas absorption studies up to ca 300 bar (1 bar = 100 000 Pa) gas pressure. The cells are for multipurpose use, in particular the study of solid-gas reactions in dosing or flow mode, but can also handle samples involved in solid-liquid-gas studies. The sample can be loaded into a single-crystal sapphire (Al{sub 2}O{sub 3}) capillary, or a quartz (SiO{sub 2}) capillary closed at one end. The advantages of a sapphire single-crystal cell with regard to rapid pressure cycling are discussed, and burst pressures are calculated and measured to be {proportional_to}300 bar. An alternative and simpler cell based on a thin-walled silicate or quartz glass capillary, connected to a gas source via a VCR fitting, enables studies up to {proportional_to}100 bar. Advantages of the two cell types are compared and their applications are illustrated by case studies. (orig.)

  20. Versatile in situ powder X-ray diffraction cells for solid-gas investigations

    International Nuclear Information System (INIS)

    Jensen, Torben R.; Nielsen, Thomas K.; Joergensen, Jens-Erik; Filinchuk, Yaroslav; Cerenius, Yngve; Gray, Evan MacA.; Webb, Colin J.

    2010-01-01

    This paper describes new sample cells and techniques for in situ powder X-ray diffraction specifically designed for gas absorption studies up to ca 300 bar (1 bar = 100 000 Pa) gas pressure. The cells are for multipurpose use, in particular the study of solid-gas reactions in dosing or flow mode, but can also handle samples involved in solid-liquid-gas studies. The sample can be loaded into a single-crystal sapphire (Al 2 O 3 ) capillary, or a quartz (SiO 2 ) capillary closed at one end. The advantages of a sapphire single-crystal cell with regard to rapid pressure cycling are discussed, and burst pressures are calculated and measured to be ∝300 bar. An alternative and simpler cell based on a thin-walled silicate or quartz glass capillary, connected to a gas source via a VCR fitting, enables studies up to ∝100 bar. Advantages of the two cell types are compared and their applications are illustrated by case studies. (orig.)

  1. X-Ray Measured Dynamics of Tycho's Supernova Remnant

    Science.gov (United States)

    Katsuda, Satoru; Petre, Robert; Hughes, John; Hwang, Una; Yamaguchi, Hiroya; Hayato, Asami; Mori, Koji; Tsunemi, Hiroshi

    2010-01-01

    We present X-ray proper-motion measurements of the forward shock and reverse-shocked ejecta in Tycho's supernova remnant, based on three sets of archival Chandra data taken in 2000, 2003, and 2007. We find that the proper motion of the edge of the remnant (i.e., the forward shock and protruding ejecta knots) varies from 0.''20 yr-1 (expansion index m = 0.33, where R = tm ) to 0.''40 yr-1 (m = 0.65) with azimuthal angle in 2000-2007 measurements, and 0.''14 yr-1 (m = 0.26) to 0.''40 yr-1 (m = 0.65) in 2003-2007 measurements. The azimuthal variation of the proper motion and the average expansion index of [approx]0.5 are consistent with those derived from radio observations. We also find proper motion and expansion index of the reverse-shocked ejecta to be 0.''21-0.''31 yr-1 and 0.43-0.64, respectively. From a comparison of the measured m-value with Type Ia supernova evolutionary models, we find a pre-shock ambient density around the remnant of [less, similar]0.2 cm-3.

  2. Layer thickness measurement using the X-ray fluorescence principle

    International Nuclear Information System (INIS)

    Mengelkamp, B.

    1980-01-01

    Curium 244 having a gamma energy of about 15.5 keV is used as excitation emitter for contactless and continuous measuring of the thickness of metallic layers on iron strip. Soft gamma radiation is absorbed in matter according to the photo effect, so that X-ray fluorescence radiation is generated in the matter, which depends on the element and is radiated to all sides. For instance, it amounts for iron 6.4 keV and is measured with a specific ionisation chamber for this energy range. With increasing atomic number of the elements, the energy of fluorescence radiation increases and hence also the emission signal of the detector. The prerequisite for a usable measuring effect is an element distance of at least two and the thickness of the layer to be measured being in an optimum range. A signal dependent on the thickness of the layer is produced either by absorption of iron radiation (absorption method - aluminium and tin) or by build-up radiation of the material of the layer (emission method - zinc and lead). (orig./GSCH) [de

  3. Measurement uncertainty in Total Reflection X-ray Fluorescence

    Science.gov (United States)

    Floor, G. H.; Queralt, I.; Hidalgo, M.; Marguí, E.

    2015-09-01

    Total Reflection X-ray Fluorescence (TXRF) spectrometry is a multi-elemental technique using micro-volumes of sample. This work assessed the components contributing to the combined uncertainty budget associated with TXRF measurements using Cu and Fe concentrations in different spiked and natural water samples as an example. The results showed that an uncertainty estimation based solely on the count statistics of the analyte is not a realistic estimation of the overall uncertainty, since the depositional repeatability and the relative sensitivity between the analyte and the internal standard are important contributions to the uncertainty budget. The uncertainty on the instrumental repeatability and sensitivity factor could be estimated and as such, potentially relatively straightforward implemented in the TXRF instrument software. However, the depositional repeatability varied significantly from sample to sample and between elemental ratios and the controlling factors are not well understood. By a lack of theoretical prediction of the depositional repeatability, the uncertainty budget can be based on repeat measurements using different reflectors. A simple approach to estimate the uncertainty was presented. The measurement procedure implemented and the uncertainty estimation processes developed were validated from the agreement with results obtained by inductively coupled plasma - optical emission spectrometry (ICP-OES) and/or reference/calculated values.

  4. X-ray measurements from the cathode surface of glow discharge tube used as a compact X-ray fluorescence instrument

    International Nuclear Information System (INIS)

    Tsuji, K.; Wagatsuma, K.; Yamaguchi, S.; Nagata, S.; Hirokawa, K.

    1998-01-01

    As previously reported, when a high-voltage is applied to a Grimm glow discharge tube, high-energy electrons emitted from the cathode surface bombard the glass window, leading to X-ray emissions from the window. In this study, we have applied an energy-dispersive X-ray analysis to detect X-rays from the cathode which are excited by X-rays emitted from the glass window. Thus, we have proposed to utilize this glow discharge tube as a compact X-ray fluorescence instrument, to which both the X-ray emission source and the sample are directly attached. This compact X-ray fluorescence instrument has the same advantages of easy maintenance, exchangeable target and sample, and simple construction. The quantitative determination of Si, Ti, and Mn in Fe-Si, Fe-Ti, and Fe-Mn alloys was demonstrated with the detection limits of 21, 150 and 420 ppm, respectively. The X-ray measurement form the cathode is a useful method to directly monitor the cathode surface during the glow discharge process. This would be applied to understand and control the glow discharge processes. Moreover, the X-ray diffraction peaks as well as the fluorescent X-ray peaks were observed, indicating that the structure analysis of the cathode material would also be possible. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. X-ray microtomography-based measurements of meniscal allografts.

    Science.gov (United States)

    Mickiewicz, P; Binkowski, M; Bursig, H; Wróbel, Z

    2015-05-01

    X-ray microcomputed tomography (XMT) is a technique widely used to image hard and soft tissues. Meniscal allografts as collagen structures can be imaged and analyzed using XMT. The aim of this study was to present an XMT scanning protocol that can be used to obtain the 3D geometry of menisci. It was further applied to compare two methods of meniscal allograft measurement: traditional (based on manual measurement) and novel (based on digital measurement of 3D models of menisci obtained with use of XMT scanner). The XMT-based menisci measurement is a reliable method for assessing the geometry of a meniscal allograft by measuring the basic meniscal dimensions known from traditional protocol. Thirteen dissected menisci were measured according the same principles traditionally applied in a tissue bank. Next, the same specimens were scanned by a laboratory scanner in the XMT Lab. The images were processed to obtain a 3D mesh. 3D models of allograft geometry were then measured using a novel protocol enhanced by computer software. Then, both measurements were compared using statistical tests. The results showed significant differences (P<0.05) between the lengths of the medial and lateral menisci measured in the tissue bank and the XMT Lab. Also, medial meniscal widths were significantly different (P<0.05). Differences in meniscal lengths may result from difficulties in dissected meniscus measurements in tissue banks, and may be related to the elastic structure of the dissected meniscus. Errors may also be caused by the lack of highlighted landmarks on the meniscal surface in this study. The XMT may be a good technique for assessing meniscal dimensions without actually touching the specimen. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Measurement of scattered and transmitted X-rays from intra-oral and panoramic dental X-ray equipment.

    Science.gov (United States)

    Holroyd, John Richard

    2018-04-10

    To quantify the levels of transmitted radiation arising from the use of intra-oral dental X-ray equipment and scattered radiation arising from the use of both intra-oral and panoramic X-ray equipment. Methods: Levels of scattered radiation were measured at 1 m from a phantom, using an 1800 cc ion chamber. Transmitted radiation was measured using both: i) a phantom and Dose Area Product (DAP) meter, ii) a patient and an 1800 cc ion chamber. Results: For intra-oral radiography the patient study gave a maximum transmission of 1.80% (range 0.04% to 1.80%, mean 0.26%) and the phantom study gave a maximum transmission of 6% (range 2% to 6%, mean 5%). The maximum scattered radiation, per unit DAP, was 5.5 nGy (mGy cm2)-1 at 70 kVp and a distance of 1 m. For panoramic radiography the maximum scattered radiation was 9.3 nGy (mGy cm2)-1 at 80 kVp and a distance of 1 m. Conclusions: Typical doses from scattered and transmitted radiation in modern dental practice have been measured and values are presented to enable the calculation of adequate protection measures for dental radiography rooms. Advances in knowledge: Previous studies have used a phantom and measured radiation doses at 1 m from the phantom to determine the radiation dose transmitted through a patient, whereas this study uses both patient and phantom measurements together with a large area dose meter, positioned to capture the entire X-ray beam, to ensure more realistic dose measurements can be made. © 2018 IOP Publishing Ltd.

  7. ON THE STATISTICAL ANALYSIS OF X-RAY POLARIZATION MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Strohmayer, T. E.; Kallman, T. R. [X-ray Astrophysics Lab, Astrophysics Science Division, NASA' s Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-08-20

    In many polarimetry applications, including observations in the X-ray band, the measurement of a polarization signal can be reduced to the detection and quantification of a deviation from uniformity of a distribution of measured angles of the form A + Bcos {sup 2}({phi} - {phi}{sub 0}) (0 < {phi} < {pi}). We explore the statistics of such polarization measurements using Monte Carlo simulations and {chi}{sup 2} fitting methods. We compare our results to those derived using the traditional probability density used to characterize polarization measurements and quantify how they deviate as the intrinsic modulation amplitude grows. We derive relations for the number of counts required to reach a given detection level (parameterized by {beta} the ''number of {sigma}'s'' of the measurement) appropriate for measuring the modulation amplitude a by itself (single interesting parameter case) or jointly with the position angle {phi} (two interesting parameters case). We show that for the former case, when the intrinsic amplitude is equal to the well-known minimum detectable polarization, (MDP) it is, on average, detected at the 3{sigma} level. For the latter case, when one requires a joint measurement at the same confidence level, then more counts are needed than what was required to achieve the MDP level. This additional factor is amplitude-dependent, but is Almost-Equal-To 2.2 for intrinsic amplitudes less than about 20%. It decreases slowly with amplitude and is Almost-Equal-To 1.8 when the amplitude is 50%. We find that the position angle uncertainty at 1{sigma} confidence is well described by the relation {sigma}{sub {phi}} = 28. Degree-Sign 5/{beta}.

  8. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements.

    Science.gov (United States)

    Seidler, G T; Mortensen, D R; Remesnik, A J; Pacold, J I; Ball, N A; Barry, N; Styczinski, M; Hoidn, O R

    2014-11-01

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10(6)-10(7) photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  9. In situ X-ray radiography for compression test of porous aluminum

    International Nuclear Information System (INIS)

    Watanabe, Takashi; Aruga, Yasuhiro; Makii, Koichi; Miyoshi, Tetsuji

    2003-01-01

    Foam aluminum, as a new structural material for the automobiles, which has attracted attention in recent years, was examined by X-ray radiography using SR light. We aimed to take pictures of the in situ image of the porous structure, and also aimed to clarify how the porous structure influenced the pressure-displacement curve, in this research. The basic information has been obtained, which can be fed back to a basic structural design with the structural materials for the automobile. This was done by combining the X-ray radiography record systems with SR light and CCD camera for the compression test, for instance real-time procedure for foam aluminum to absorb the plastic energy. The difference in foam size could be identified from comparison of each X-ray image using the two samples with different foam size (5.0, 1.7mm) clearly. Moreover, it turns out that the difference in foam size influences pressure-displacement curve in the compression test. As for the sample of which foam size of 1.5mm, it has been understood that displacement until the whole foam collapses is larger than the sample with 5.0mm. It was observed on the sample with 1.5mm in foam size, that it collapsed gradually from the edge through a few steps, though the sample with 5.0mm started to collapse from the vicinity of the center. (author)

  10. A Graphene-Based Microfluidic Platform for Electrocrystallization and In Situ X-ray Diffraction

    Directory of Open Access Journals (Sweden)

    Shuo Sui

    2018-02-01

    Full Text Available Here, we describe a novel microfluidic platform for use in electrocrystallization experiments. The device incorporates ultra-thin graphene-based films as electrodes and as X-ray transparent windows to enable in situ X-ray diffraction analysis. Furthermore, large-area graphene films serve as a gas barrier, creating a stable sample environment over time. We characterize different methods for fabricating graphene electrodes, and validate the electrical capabilities of our device through the use of methyl viologen, a redox-sensitive dye. Proof-of-concept electrocrystallization experiments using an internal electric field at constant potential were performed using hen egg-white lysozyme (HEWL as a model system. We observed faster nucleation and crystal growth, as well as a higher signal-to-noise for diffraction data obtained from crystals prepared in the presence of an applied electric field. Although this work is focused on the electrocrystallization of proteins for structural biology, we anticipate that this technology should also find utility in a broad range of both X-ray technologies and other applications of microfluidic technology.

  11. In situ structural study on underpotential deposition of Ag on Au(111) electrode using surface X-ray scattering technique

    OpenAIRE

    Kondo, Toshihiro; Morita, Jun; Okamura, Masayuki; Saito, Toshiya; Uosaki, Kohei

    2002-01-01

    In situ surface X-ray scattering (SXS) measurements were carried out to study the structure of a Ag layer on a Au(111) electrode formed by underpotential deposition (upd) in sulfuric acid solution. Specular rod profiles showed that a monolayer of Ag was formed at a potential between the second and third upd peaks, and a bilayer of Ag was formed at a potential between the third upd peak and bulk deposition. Non-specular rod profiles demonstrated that electrochemically deposited Ag atoms both i...

  12. Protection of the electronic components of measuring equipment from the X-ray radiation

    Science.gov (United States)

    Perez Vasquez, N. O.; Kostrin, D. K.; Uhov, A. A.

    2018-02-01

    In this work the effect of X-ray radiation on the operation of integrated circuits of the measurement equipment is discussed. The results of the calculations of a shielding system, allowing using integrated circuits with a high degree of integration in the vicinity of the X-ray source, are shown. The results of the verification of two measurement devices that was used for more than five years in the facility for training and testing of X-ray tubes are presented.

  13. X-ray Fluorescence Measurements of Turbulent Methane-Oxygen Shear Coaxial Flames (Briefing Charts)

    Science.gov (United States)

    2015-03-01

    techniques to increasingly complex flames Distribution A: Approved for public release; distribution unlimited. 3 X-Ray Diagnostics • X-ray...required • Two types of X-ray diagnostics radiography and fluorescence – Radiography has been widely used in sprays to obtain mass density measurements... Radiography - Radial EPL Profiles • Near-injector EPL profiles have elliptical shape expected from a solid liquid jet • Closest measurements were

  14. Setup for in situ X-ray diffraction studies of thin film growth by magnetron sputtering

    CERN Document Server

    Ellmer, K; Weiss, V; Rossner, H

    2001-01-01

    A novel method is described for the in situ-investigation of nucleation and growth of thin films during magnetron sputtering. Energy dispersive X-ray diffraction with synchrotron light is used for the structural analysis during film growth. An in situ-magnetron sputtering chamber was constructed and installed at a synchrotron radiation beam line with a bending magnet. The white synchrotron light (1-70 keV) passes the sputtering chamber through Kapton windows and hits one of the substrates on a four-fold sample holder. The diffracted beam, observed under a fixed diffraction angle between 3 deg. and 10 deg., is energy analyzed by a high purity Ge-detector. The in situ-EDXRD setup is demonstrated for the growth of tin-doped indium oxide (ITO) films prepared by reactive magnetron sputtering from a metallic target.

  15. Reduction of variable-truncation artifacts from beam occlusion during in situ x-ray tomography

    DEFF Research Database (Denmark)

    Borg, Leise; Jørgensen, Jakob Sauer; Frikel, Jürgen

    2017-01-01

    Many in situ x-ray tomography studies require experimental rigs which may partially occlude the beam and cause parts of the projection data to be missing. In a study of fluid flow in porous chalk using a percolation cell with four metal bars drastic streak artifacts arise in the filtered backproj......Many in situ x-ray tomography studies require experimental rigs which may partially occlude the beam and cause parts of the projection data to be missing. In a study of fluid flow in porous chalk using a percolation cell with four metal bars drastic streak artifacts arise in the filtered...... backprojection (FBP) reconstruction at certain orientations. Projections with non-trivial variable truncation caused by the metal bars are the source of these variable-truncation artifacts. To understand the artifacts a mathematical model of variable-truncation data as a function of metal bar radius and distance...... and artifact-reduction methods are designed in context of FBP reconstruction motivated by computational efficiency practical for large, real synchrotron data. While a specific variable-truncation case is considered, the proposed methods can be applied to general data cut-offs arising in different in situ x...

  16. In-situ x-ray absorption study of copper films in ground water solutions

    International Nuclear Information System (INIS)

    Kvashnina, K.O.; Butorin, S.M.; Modin, A.; Soroka, I.; Marcellini, M.; Nordgren, J.; Guo, J.-H.; Werme, L.

    2007-01-01

    This study illustrates how the damage from copper corrosion can be reduced by modifying the chemistry of the copper surface environment. The surface modification of oxidized copper films induced by chemical reaction with Cl - and HCO 3 - in aqueous solutions was monitored by in situ X-ray absorption spectroscopy. The results show that corrosion of copper can be significantly reduced by adding even a small amount of sodium bicarbonate. The studied copper films corroded quickly in chloride solutions, whereas the same solution containing 1.1 mM HCO 3 - prevented or slowed down the corrosion processes

  17. Measurement uncertainty in Total Reflection X-ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Floor, G.H., E-mail: geerke.floor@gfz-potsdam.de [GFZ German Research Centre for Geosciences Section 3.4. Earth Surface Geochemistry, Telegrafenberg, 14473 Postdam (Germany); Queralt, I. [Institute of Earth Sciences Jaume Almera ICTJA-CSIC, Solé Sabaris s/n, 08028 Barcelona (Spain); Hidalgo, M.; Marguí, E. [Department of Chemistry, University of Girona, Campus Montilivi s/n, 17071 Girona (Spain)

    2015-09-01

    Total Reflection X-ray Fluorescence (TXRF) spectrometry is a multi-elemental technique using micro-volumes of sample. This work assessed the components contributing to the combined uncertainty budget associated with TXRF measurements using Cu and Fe concentrations in different spiked and natural water samples as an example. The results showed that an uncertainty estimation based solely on the count statistics of the analyte is not a realistic estimation of the overall uncertainty, since the depositional repeatability and the relative sensitivity between the analyte and the internal standard are important contributions to the uncertainty budget. The uncertainty on the instrumental repeatability and sensitivity factor could be estimated and as such, potentially relatively straightforward implemented in the TXRF instrument software. However, the depositional repeatability varied significantly from sample to sample and between elemental ratios and the controlling factors are not well understood. By a lack of theoretical prediction of the depositional repeatability, the uncertainty budget can be based on repeat measurements using different reflectors. A simple approach to estimate the uncertainty was presented. The measurement procedure implemented and the uncertainty estimation processes developed were validated from the agreement with results obtained by inductively coupled plasma — optical emission spectrometry (ICP-OES) and/or reference/calculated values. - Highlights: • The uncertainty of TXRF cannot be realistically described by the counting statistics. • The depositional repeatability is an important contribution to the uncertainty. • Total combined uncertainties for Fe and Cu in waste/mine water samples were 4–8%. • Obtained concentrations agree within uncertainty with reference values.

  18. K-alpha conversion efficiency measurments for x-ray scattering in inertial confinement fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kritcher, A L; Neumayer, P; Urry, M K; Robey, H; Niemann, C; Landen, O L; Morse, E; Glenzer, S H

    2006-11-21

    The conversion efficiency of ultra short-pulse laser radiation to K-{alpha} x-rays has been measured for various chlorine-containing targets to be used as x-ray scattering probes of dense plasmas. The spectral and temporal properties of these sources will allow spectrally-resolved x-ray scattering probing with picosecond temporal resolution required for measuring the plasma conditions in inertial confinement fusion experiments. Simulations of x-ray scattering spectra from these plasmas show that fuel capsule density, capsule ablator density, and shock timing information may be inferred.

  19. Interpretation of Core Length in Shear Coaxial Rocket Injectors from X-ray Radiography Measurements

    Science.gov (United States)

    2014-06-01

    technique , X- ray radiography , to the well-studied problem of core length of shear coaxial jets is an important step in understanding the strengths...role, as is evident in Fig. 8a for the SC1. Unfortunately the X-ray radiography technique cannot distinguish between intact liquid in the jet and...Shear Coaxial Rocket Injectors from X-ray Radiography Measurements 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  20. Some considerations on X-ray fluorescence use in museum measurements - The case of medieval silver coins

    International Nuclear Information System (INIS)

    Constantinescu, B.; Bugoi, R.; Oberlaender-Tarnoveanu, E.; Parvan, K.

    2005-01-01

    The purpose of this paper is to give a general layout for the potential applications of Energy-Dispersive X-Ray Fluorescence (ED-XRF) technique for ancient silver coin characterization, using in-situ (in museums) measurements. Examples concerning originality testing, provenance (mines, workshops) identification, counterfeits selection, historical studies (manufacturing technologies, commercial, military and political relationships) are given. Two study cases of medieval coins are described: German brakteaten pfennige and Moldavian groschen. Other analysis methods and their use in the study of medieval coins are illustrated with the example of Particle Induced X-ray Emission (PIXE) technique. (authors)

  1. Few-femtosecond time-resolved measurements of X-ray free-electron lasers.

    Science.gov (United States)

    Behrens, C; Decker, F-J; Ding, Y; Dolgashev, V A; Frisch, J; Huang, Z; Krejcik, P; Loos, H; Lutman, A; Maxwell, T J; Turner, J; Wang, J; Wang, M-H; Welch, J; Wu, J

    2014-04-30

    X-ray free-electron lasers, with pulse durations ranging from a few to several hundred femtoseconds, are uniquely suited for studying atomic, molecular, chemical and biological systems. Characterizing the temporal profiles of these femtosecond X-ray pulses that vary from shot to shot is not only challenging but also important for data interpretation. Here we report the time-resolved measurements of X-ray free-electron lasers by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source. We demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron and X-ray temporal characterization. A resolution of less than 1 fs root mean square has been achieved for soft X-ray pulses. The lasing evolution along the undulator has been studied with the electron trapping being observed as the X-ray peak power approaches 100 GW.

  2. Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements

    International Nuclear Information System (INIS)

    Sun, Cheng-Jun; Brewe, Dale L.; Heald, Steve M.; Zhang, Bangmin; Chen, Jing-Sheng; Chow, G. M.; Venkatesan, T.

    2014-01-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr 0.67 Sr 0.33 MnO 3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam

  3. Space resolved x-ray diffraction measurements of the supercooled state of polymers

    International Nuclear Information System (INIS)

    Asano, Tsutomu; Yoshida, Shinya; Nishida, Akira; Mina, M.F.

    2002-01-01

    In order to measure an ordering process of polymers, the supercooled state near the crystallizing surface was observed by a space resolved X-ray diffraction method at Photon Factory (PF). Using temperature slope crystallization, low density polyethylene and even-number paraffins were examined during crystallization from the melt state. The results indicate that polyethylene shows a sharp b-axis orientation where the lamellar normal and crystalline c-axis are perpendicular to the temperature slope. The crystalline lamellae are well-developed with lamellar thickness of 180 A. The supercooled melt state just above the crystallizing plane shows some diffraction in the small angle region without any crystalline reflection in the wide angle. This fact suggests that a long-range ordering (lamellar structure) appears prior to the short-range one (crystalline structure). The in-situ crystallizing surface was observed by an optical microscope connected to a TV system. The crystallizing surface of even-number paraffins moves to upwards in the temperature slope. In-situ X-ray measurements at PF revealed that the crystalline c-axis and lamellar normal of the even number paraffins are parallel to the temperature slope. From these results, the crystalline ordering and the surface movement of even number paraffins are explained using special nucleation mechanism including a screw dislocation. (author)

  4. Fast in situ phase and stress analysis during laser surface treatment: A synchrotron x-ray diffraction approach

    Science.gov (United States)

    Kostov, V.; Gibmeier, J.; Wilde, F.; Staron, P.; Rössler, R.; Wanner, A.

    2012-11-01

    An in situ stress analysis by means of synchrotron x-ray diffraction was carried out during laser surface hardening of steel. A single exposure set-up that based on a special arrangement of two fast silicon strip line detectors was established, allowing for fast stress analysis according to the sin2ψ x-ray analysis method. For the in situ experiments a process chamber was designed and manufactured, which is described in detail. First measurements were carried out at the HZG undulator imaging beamline (IBL, beamline P05) at the synchrotron storage ring PETRA III, DESY, Hamburg (Germany). The laser processing was carried out using a 6 kW high power diode laser system. Two different laser optics were compared, a Gaussian optic with a focus spot of ø 3 mm and a homogenizing optic with a rectangular spot dimension of 8 × 8 mm2. The laser processing was carried out using spot hardening at a heating-/cooling rate of 1000 K/s and was controlled via pyrometric temperature measurement using a control temperature of 1150 °C. The set-up being established during the measuring campaign allowed for this first realization data collection rates of 10Hz. The data evaluation procedure applied enables the separation of thermal from elastic strains and gains unprecedented insight into the laser hardening process.

  5. In situ analysis of cracks in structural materials using synchrotron X-ray tomography and diffraction

    International Nuclear Information System (INIS)

    Steuwer, A.; Edwards, L.; Pratihar, S.; Ganguly, S.; Peel, M.; Fitzpatrick, M.E.; Marrow, T.J.; Withers, P.J.; Sinclair, I.; Singh, K.D.; Gao, N.; Buslaps, T.; Buffiere, J.-Y.

    2006-01-01

    The structural integrity and performance of many components and structures are dominated by cracks and hence the study of cracked bodies study is of major economical and social importance. Despite nearly 30 years of study, there is still no detailed consensus regarding either the fundamental parameters that drive cracks or the precise mechanisms of their growth in most materials. Thus, virtually all crack life prediction models currently in engineering use are largely phenomenological rather than physically based. Historically, a major hindrance to our understanding of crack initiation and propagation has been the inability to measure either the crack tip stresses or the crack morphology deep within materials. The development of very high-resolution strain and tomography mapping on third generation synchrotron sources such as the ESRF has opened up the possibility of developing complementary techniques to monitor the entire plastic/process zone growth mechanisms and the accompanying crack tip field and crack wake field around growing cracks. If realized, such techniques would produce unique information that would be invaluable both in validating present finite element simulations of fatigue crack growth and in developing the future high accuracy simulations necessary for the development of physically realistic fatigue life-prediction models. Recent technique developments at the ESRF, Grenoble, opens up the possibility of imaging cracks and crack tip stress/strain fields, and the ability to study the extend of crack closure and overload effects, even under in situ loading. In this paper, first results from synchrotron X-ray diffraction and tomography experiments performed on ID11 and ID19 (respectively) at the ESRF, Grenoble, are presented and discussed in comparison with predictions from finite element modeling

  6. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    Science.gov (United States)

    Oswald, Benjamin B.; Schuren, Jay C.; Pagan, Darren C.; Miller, Matthew P.

    2013-03-01

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 °C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models.

  7. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    International Nuclear Information System (INIS)

    Oswald, Benjamin B.; Pagan, Darren C.; Miller, Matthew P.; Schuren, Jay C.

    2013-01-01

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 °C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models.

  8. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, Benjamin B.; Pagan, Darren C.; Miller, Matthew P. [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853 (United States); Schuren, Jay C. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)

    2013-03-15

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 Degree-Sign C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models.

  9. A high speed X-ray computed tomography scanner for multipurpose flow visualization and measurement

    International Nuclear Information System (INIS)

    Hori, K.; Kawanishi, K.; Hamamura, H.; Ochi, M.; Akai, M.

    2004-01-01

    The development of a high-speed X-ray computed tomography (CT) scanner has been performed in this study. The object of interest is in a transient or unsettled state, which makes the conventional CT scanner inappropriate. This X-ray CT system uses the concept of electronic switching of electron beams for X-ray generation to increase scanning speed. A continuous operation X-ray CT scanner sampling at about 4 milliseconds scanning rate has already been developed and applied for air-water two-phase flow measurement. The feasibility and the excellent performance of this CT scanner system are demonstrated and confirmed. (author)

  10. Measurement of the spatial coherence of a soft x-ray laser

    International Nuclear Information System (INIS)

    Trebes, J.E.; Mrowka, S.; London, R.A.; Barbee, T.W.; Carter, M.R.; MacGowan, B.J.; Matthews, D.L.; Da Silva, L.B.; Stone, G.F.; Feit, M.D.; Nugent, K.A.

    1991-01-01

    The spatial coherence of a neon-like selenium x-ray laser operating at 206 and 210 Angstroems has been measured using a technique based on partially coherent x-ray diffraction. The time integrated spatial coherence of the selenium x-ray laser was determined to be equivalent to that of a quasi-monochromatic spatially incoherent disk source whose diameter is comparable to the line focus of the visible light laser pumping the x-ray laser. The spatial coherence was improved by narrowing the line focus width. 20 refs., 4 figs

  11. Development of a compact x-ray particle image velocimetry for measuring opaque flows.

    Science.gov (United States)

    Lee, Sang Joon; Kim, Guk Bae; Yim, Dae Hyun; Jung, Sung Yong

    2009-03-01

    A compact x-ray particle image velocimetry (PIV) system employing a medical x-ray tube as a light source was developed to measure quantitative velocity field information of opaque flows. The x-ray PIV system consists of a medical x-ray tube, an x-ray charge coupled device camera, a programmable shutter for a pulse-type x ray, and a synchronization device. Through performance tests, the feasibility of the developed x-ray PIV system as a flow measuring device was verified. To check the feasibility of the developed system, we tested a tube flow at two different mean velocities of 1 and 2 mm/s. The x-ray absorption of tracer particles must be quite different from that of working fluid to have a good contrast in x-ray images. All experiments were performed under atmospheric pressure condition. This system is unique and useful for investigating various opaque flows or flows inside opaque conduits.

  12. Development of a compact x-ray particle image velocimetry for measuring opaque flows

    International Nuclear Information System (INIS)

    Lee, Sang Joon; Kim, Guk Bae; Yim, Dae Hyun; Jung, Sung Yong

    2009-01-01

    A compact x-ray particle image velocimetry (PIV) system employing a medical x-ray tube as a light source was developed to measure quantitative velocity field information of opaque flows. The x-ray PIV system consists of a medical x-ray tube, an x-ray charge coupled device camera, a programmable shutter for a pulse-type x ray, and a synchronization device. Through performance tests, the feasibility of the developed x-ray PIV system as a flow measuring device was verified. To check the feasibility of the developed system, we tested a tube flow at two different mean velocities of 1 and 2 mm/s. The x-ray absorption of tracer particles must be quite different from that of working fluid to have a good contrast in x-ray images. All experiments were performed under atmospheric pressure condition. This system is unique and useful for investigating various opaque flows or flows inside opaque conduits.

  13. An in-situ X-ray diffraction study on the electrochemical formation of PtZn alloys on Pt(1 1 1) single crystal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Drnec, J., E-mail: drnec@esrf.fr [ESRF, Grenoble (France); Bizzotto, D. [Department of Chemistry, AMPEL, University of British Columbia, Vancouver, BC (Canada); Carlà, F. [ESRF, Grenoble (France); Fiala, R. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Sode, A. [Ruhr-Universität Bochum, Bochum (Germany); Balmes, O.; Detlefs, B.; Dufrane, T. [ESRF, Grenoble (France); Felici, R., E-mail: felici@esrf.fr [ESRF, Grenoble (France)

    2015-11-01

    Highlights: • PtZn electrochemical alloying is observed on single crystal Pt electrodes. • In-situ X-ray characterization during alloy formation and dissolution is provided. • Structural model of the surface during alloying and dissolution is discussed. • X-ray based techniques can be used in in-operando studies of bimetallic fuel cell catalysts. - Abstract: The electrochemical formation and dissolution of the oxygen reduction reaction (ORR) PtZn catalyst on Pt(1 1 1) surface is followed by in-situ X-ray diffraction (XRD) and X-ray reflectivity (XRR) measurements. When the crystalline Pt surface is polarized to sufficiently negative potential values, with respect to an Ag/AgCl|KCl reference electrode, the electrodeposited zinc atoms diffuse into the bulk and characteristic features are observed in the X-ray patterns. The surface structure and composition during deposition and dissolution is determined from analysis of XRR curves and measurements of crystal truncation rods. Thin Zn-rich surface layer is present during the alloy formation while a Zn-depleted layer forms during dissolution.

  14. [Multiple linear regression analysis of X-ray measurement and WOMAC scores of knee osteoarthritis].

    Science.gov (United States)

    Ma, Yu-Feng; Wang, Qing-Fu; Chen, Zhao-Jun; Du, Chun-Lin; Li, Jun-Hai; Huang, Hu; Shi, Zong-Ting; Yin, Yue-Shan; Zhang, Lei; A-Di, Li-Jiang; Dong, Shi-Yu; Wu, Ji

    2012-05-01

    To perform Multiple Linear Regression analysis of X-ray measurement and WOMAC scores of knee osteoarthritis, and to analyze their relationship with clinical and biomechanical concepts. From March 2011 to July 2011, 140 patients (250 knees) were reviewed, including 132 knees in the left and 118 knees in the right; ranging in age from 40 to 71 years, with an average of 54.68 years. The MB-RULER measurement software was applied to measure femoral angle, tibial angle, femorotibial angle, joint gap angle from antero-posterir and lateral position of X-rays. The WOMAC scores were also collected. Then multiple regression equations was applied for the linear regression analysis of correlation between the X-ray measurement and WOMAC scores. There was statistical significance in the regression equation of AP X-rays value and WOMAC scores (Pregression equation of lateral X-ray value and WOMAC scores (P>0.05). 1) X-ray measurement of knee joint can reflect the WOMAC scores to a certain extent. 2) It is necessary to measure the X-ray mechanical axis of knee, which is important for diagnosis and treatment of osteoarthritis. 3) The correlation between tibial angle,joint gap angle on antero-posterior X-ray and WOMAC scores is significant, which can be used to assess the functional recovery of patients before and after treatment.

  15. Radiation Dose Measurements in Routine X Ray Examinations

    International Nuclear Information System (INIS)

    Osman, H.; Sulieman, A.; Suliman, I.I.; Sam, A.K.

    2011-01-01

    The aim of current study was to evaluate patients radiation dose in routine X-ray examinations in Omdurman teaching hospital Sudan.110 patients was examined (134) radiographs in two X-ray rooms. Entrance surface doses (ESDs) were calculated from patient exposure parameters using DosCal software. The mean ESD for the chest, AP abdomen, AP pelvis, thoracic spine AP, lateral lumber spine, anteroposterior lumber spine, lower limb and for the upper limb were; 231±44 Gy,453± 29 Gy, 567±22 Gy, 311±33 Gy,716±39 Gy, 611±55 Gy,311±23 Gy, and 158±57 Gy, respectively. Data shows asymmetry in distribution. The results of were comparable with previous study in Sudan.

  16. Feasibility study for PTV measurement using x-ray holography

    International Nuclear Information System (INIS)

    Uemura, Tomomasa; Yamamoto, Yasufumi; Murata, Shigeru; Nishio, Shigeru; Iguchi, Manabu; Uesugi, Kentaro

    2005-01-01

    Some X-ray imaging techniques are examined for a feasibility study for micro-PIV in this study. There are three X-ray imaging method, the absorption contrast method, the refraction contrast method, and the phase contrast method. The first one is a common method but its spatial resolution is rather poor. The 2nd method corresponds to the Schlieren method that utilizes refraction of parallel light. The characteristics of the method, edge enhancement, can be effective in extracting tracer images. The third method is a kind of holography methods, and this method can record fine tracer particles. Among the three methods, the second and the third method are seemed to be applicable to PIV imaging, and those methods need a parallel X-ray. The SPring-8, the synchrotron radiation facility in Harima, is utilized. There are some methods to realize phase contrast image, most of them requires ultra-high precision in optical alignment. In the present study, though a coherent source is indispensable, the simplest and robust holography method, the inline holography, is used to take phase contrast pictures. (author)

  17. Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal

    2017-09-01

    For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.

  18. In situ observation of syntactic foams under hydrostatic pressure using X-ray tomography

    International Nuclear Information System (INIS)

    Lachambre, J.; Maire, E.; Adrien, J.; Choqueuse, D.

    2013-01-01

    Syntactic foams (hollow glass microspheres embedded in a polymeric matrix) are being used increasingly for the purpose of thermal insulation in ultradeep water. A better understanding of the damage mechanisms of these materials at the microsphere scale under such a hydrostatic loading condition is of prior importance in determining actual material limits, improving phenomenological modelling and developing novel formulations in the future. To achieve this goal, a study based on X-ray microtomography was performed on two syntactic foam materials (polypropylene and polyurethane matrix) and a standard foamed PP. A special set up has been designed in order to allow the X-ray microtomographic observation of the material during hydrostatic pressure loading using ethanol as the pressure fluid. Spatial resolution of (3.5 μm) 3 and in situ non-destructive scanning allowed a unique qualitative and quantitative analysis of the composite microstructure during stepwise isotropic compression by hydrostatic pressure up to 50 MPa. The collapse of weaker microspheres were observed during pressure increase and the damage parameters could be estimated. It is shown that the microspheres which are broken or the porosities which are close to the surface in the foamed PP are filled by a fluid (either the ethanol or the polymeric matrix itself). The hydrostatic pressure decreases the volume of the foam only slightly. In the PU matrix, ethanol diffusion is seen to induce swelling of the matrix, which is an unexpected phenomenon but reveals the high potential of X-ray microtomographic observation to improve diffusion analysis in complex media

  19. Measurement of x-rays emitted from projectiles moving in solid targets

    International Nuclear Information System (INIS)

    Fortner, R.J.; Matthews, D.L.; Feldman, L.C.; Garcia, J.D.; Oona, H.

    1975-01-01

    The results of three separate experiments all dealing with the production of x-rays in projectiles moving in solids are discussed. The first experiment deals with the measurement of line widths of x-rays emitted from projectiles moving in solid targets. The effect of collisional broadening of x-rays is found to dominate the line widths giving greater than an order of magnitude increase in the measured line widths. The second experiment studies ''solid target effects'' in producing non-binomial distributions of characteristic K x-ray spectra in heavy ion-atom collisions. The third experiment studies aluminum K x-ray production in Ar + → Al collisions in very thin aluminum foils as a function of foil thickness. Parameterization of the observed non-linear dependence enables the lifetime of the argon 2p vacancy and total ionization cross sections for the argon L-shell in Ar → Al collisions to be measured

  20. X-ray calorimeters used for measurement in laser-fusion experiments

    International Nuclear Information System (INIS)

    Tang Daorun; China Academy of Engineering Physics, Mianyang; Wu Dengxue; Lin Libin; Sun Kexu; Jiang Shaoen

    2005-01-01

    X-ray calorimeters are ready to measure the total soft X-ray energy emitted from the plasma produced by laser because of their bodily absorption, linear response, insensitivity to the electromagnetic disturbance, and so on. The calorimeters mainly include absorbers, thermocouples, bases and shrouds. When X-rays are deposited in the absorbers, photon energy absorbed is quickly converted into intrinsic energy which simultaneously dissipates by thermal conduction and radiation. The X-ray calorimeters were absolutely on-line calibrated in Shenguang-II laser facility with the X-ray diode array spectrometer which has been absolutely calibrated on Beijing Synchrotron Radiation Facility. 20 shots' experimental results show that the X-ray calorimeters are stable, the sensitivity of calorimeter is (84.1 ± 3.4) μv/mJ and the related combined standard uncertainty in the X-ray energy measure is about 31%. The calorimeters can be applied to measure the X-ray energy. (authors)

  1. Software System for the Calibration of X-Ray Measuring Instruments

    International Nuclear Information System (INIS)

    Gaytan-Gallardo, E.; Tovar-Munoz, V. M.; Cruz-Estrada, P.; Vergara-Martinez, F. J.; Rivero-Gutierrez, T.

    2006-01-01

    A software system that facilities the calibration of X-ray measuring instruments used in medical applications is presented. The Secondary Standard Dosimetry Laboratory (SSDL) of the Nuclear Research National Institute in Mexico (ININ in Spanish), supports activities concerning with ionizing radiations in medical area. One of these activities is the calibration of X-ray measuring instruments, in terms of air kerma or exposure by substitution method in an X-ray beam at a point where the rate has been determined by means of a standard ionization chamber. To automatize this process, a software system has been developed, the calibration system is composed by an X-ray unit, a Dynalizer IIIU X-ray meter by RADCAL, a commercial data acquisition card, the software system and the units to be tested and calibrated. A quality control plan has been applied in the development of the software system, ensuring that quality assurance procedures and standards are being followed

  2. X-ray PIV measurements of blood flows without tracer particles

    International Nuclear Information System (INIS)

    Kim, Guk Bae; Lee, Sang Joon

    2006-01-01

    We analyzed the non-Newtonian flow characteristics of blood moving in a circular tube flow using an X-ray PIV method and compared the experimental results with hemodynamic models. The X-ray PIV method was improved for measuring quantitative velocity fields of blood flows using a coherent synchrotron X-ray. Without using any contrast media, this method can visualize flow pattern of blood by enhancing the phase-contrast and interference characteristics of blood cells. The enhanced X-ray images were achieved by optimizing the sample-to-scintillator distance, the sample thickness, and hematocrit in detail. The quantitative velocity fields of blood flows inside opaque conduits were obtained by applying a two-frame PIV algorithm to the X-ray images of the blood flows. The measured velocity data show typical features of blood flow such as the yield stress and shear-thinning effects. (orig.)

  3. X-ray PIV measurements of blood flows without tracer particles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Guk Bae; Lee, Sang Joon [Pohang University of Science and Technology, Department of Mechanical Engineering, Pohang (Korea)

    2006-08-15

    We analyzed the non-Newtonian flow characteristics of blood moving in a circular tube flow using an X-ray PIV method and compared the experimental results with hemodynamic models. The X-ray PIV method was improved for measuring quantitative velocity fields of blood flows using a coherent synchrotron X-ray. Without using any contrast media, this method can visualize flow pattern of blood by enhancing the phase-contrast and interference characteristics of blood cells. The enhanced X-ray images were achieved by optimizing the sample-to-scintillator distance, the sample thickness, and hematocrit in detail. The quantitative velocity fields of blood flows inside opaque conduits were obtained by applying a two-frame PIV algorithm to the X-ray images of the blood flows. The measured velocity data show typical features of blood flow such as the yield stress and shear-thinning effects. (orig.)

  4. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    Science.gov (United States)

    Hong, Xinguo; Hao, Quan

    2009-01-01

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 °C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  5. Measurements of accurate x-ray scattering data of protein solutions using small stationary sample cells

    International Nuclear Information System (INIS)

    Hong Xinguo; Hao Quan

    2009-01-01

    In this paper, we report a method of precise in situ x-ray scattering measurements on protein solutions using small stationary sample cells. Although reduction in the radiation damage induced by intense synchrotron radiation sources is indispensable for the correct interpretation of scattering data, there is still a lack of effective methods to overcome radiation-induced aggregation and extract scattering profiles free from chemical or structural damage. It is found that radiation-induced aggregation mainly begins on the surface of the sample cell and grows along the beam path; the diameter of the damaged region is comparable to the x-ray beam size. Radiation-induced aggregation can be effectively avoided by using a two-dimensional scan (2D mode), with an interval as small as 1.5 times the beam size, at low temperature (e.g., 4 deg. C). A radiation sensitive protein, bovine hemoglobin, was used to test the method. A standard deviation of less than 5% in the small angle region was observed from a series of nine spectra recorded in 2D mode, in contrast to the intensity variation seen using the conventional stationary technique, which can exceed 100%. Wide-angle x-ray scattering data were collected at a standard macromolecular diffraction station using the same data collection protocol and showed a good signal/noise ratio (better than the reported data on the same protein using a flow cell). The results indicate that this method is an effective approach for obtaining precise measurements of protein solution scattering.

  6. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.

    Science.gov (United States)

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-01-01

    For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region.

  7. X-ray Spectral Measurements of the JMAR High-Power Laser-plasma Source

    Science.gov (United States)

    Whitlock, Robert R.; Dozier, Charles M.; Newman, Daniel A.; Turcu, I. C. Edmond; Gaeta, Celestino J.; Cassidy, Kelly L.; Powers, Michael F.; Kleindolph, Thomas; Morris, James H.; Forber, Richard A.

    2002-10-01

    X-ray spectra of Cu plasmas at the focus of a four-beam, solid-state diode-pumped laser have been recorded. This laser-plasma X-ray source is being developed for JMAR's lithography systems aimed at high- performance semiconductor integrated circuits. The unique simultaneous overlay of the four sub-nanosecond laser beams at 300 Hertz produces a bright, point-plasma X-ray source. PIN diode measurements of the X-ray output indicate that the conversion efficiency (ratio of X-ray emission energy into 2π steradians to incident laser energy) was approximately 9 percent with average X-ray power yields of greater than 10 Watts. Spectra were recorded on calibrated Kodak DEF film in a curved-crystal spectrograph. A KAP crystal (2d = 26.6 Angstroms) was used to disperse the 900 eV to 3000 eV spectral energies onto the film. Preliminary examination of the films indicated the existence of Cu and Cu XX ionization states. Additional spectra as a function of laser input power were also recorded to investigate potential changes in X-ray yields. These films are currently being analyzed. The analysis of the spectra provide absolute line and continuum intensities, and total X-ray output in the measured spectral range.

  8. In Situ X-ray Diffraction Studies of Cathode Materials in Lithium Batteries

    International Nuclear Information System (INIS)

    Yang, X. Q.; Sun, X.; McBreen, J.; Mukerjee, S.; Gao, Yuan; Yakovleva, M. V.; Xing, X. K.; Daroux, M. L.

    1998-01-01

    There is an increasing interest in lithiated transition metal oxides because of their use as cathodes in lithium batteries. LiCoO 2 , LiNiO 2 and LiMn 2 O 4 are the three most widely used and studied materials, At present, although it is relative expensive and toxic, LiCoO 2 is the material of choice in commercial lithium ion batteries because of its ease of manufacture, better thermal stability and cycle life. However, the potential use of lithium ion batteries with larger capacity for power tools and electric vehicles in the future will demand new cathode materials with higher energy density, lower cost and better thermal stability. LiNiO 2 is isostructural with LiCoO 2 . It offers lower cost and high energy density than LiCoO 2 . However, it has much poorer thermal stability than LiCoO 2 , in the charged (delithiated) state. Co, Al, and other elements have been used to partially replace Ni in LiNiO 2 system in order to increase the thermal stability. LiMn 2 O 4 has the highest thermal stability and lowest cost and toxicity. However, the low energy density and poor cycle life at elevated temperature are the major obstacles for this material. In order to develop safer, cheaper, and better performance cathode materials, the in-depth understanding of the relationships between the thermal stability and structure, performance and structure are very important. The performance here includes energy density and cycle life of the cathode materials. X-ray diffraction (XRD) is one of the most powerful tools to study these relationships. The pioneer ex situ XRD work on cathode materials for lithium batteries was done by Ohzuku. His XRD studies on LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiNi 0.5 Co 0.5 O 2 , and LiAl x Ni 1-x O 2 cathodes at different states of charge have provided important guidelines for the development of these new materials. However, the kinetic nature of the battery system definitely requires an in situ XRD technique to study the detail structural changes of the

  9. A Measurement Method for HVL Estimation of X-ray Spectrum Output

    International Nuclear Information System (INIS)

    Suric, M.; Radalj, Z.; Prlic, I.; Vrtar, M.

    2003-01-01

    While performing diagnostic radiology procedures stability and constancy of X-ray anode voltage are very important. Variations in kVp value changes X-ray beam's intensity and its penetrating power. Filters are commonly used in diagnostic radiology techniques to minimize a dose received by a patient without decreasing desired contrast of the diagnostic image. HVL (Half Value Layer) is used as a measurable quality parameter for X-ray beams and it is defined as a value of absorber thickness, which will transmit one half of the incident intensity of the X-ray radiation output incident upon it. It is known that HVL depends proportionally on kVp value so detecting any changes in HVL for the same nominal X-ray tube kVp value will indicate the malfunctions of the X-ray generator. In this paper a simple method of HVL determination using set of aluminum step wedges is presented. The method enables very simple and precise HVL determination and it is capable of detecting variations in kVp value, which are less than 5% of the nominal value. Using this method while performing periodical testing of X-ray units with constant parameters (chosen kVp and mAs value) could provide frequent kVp value monitoring, determining HVL changes, and controlling the beam intensity comparing X-ray films blackening from images taken with the same nominal parameters. (author)

  10. Hydride reorientation in Zircaloy-4 examined by in situ synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Weekes, H.E. [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Jones, N.G. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Lindley, T.C. [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Dye, D., E-mail: david.dye@imperial.ac.uk [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)

    2016-09-15

    The phenomenon of stress-reorientation has been investigated using in situ X-ray diffraction during the thermomechanical cycling of hydrided Zircaloy-4 tensile specimens. Results have shown that loading along a sample’s transverse direction (TD) leads to a greater degree of hydride reorientation when compared to rolling direction (RD)-aligned samples. The elastic lattice micro-strains associated with radially oriented hydrides have been revealed to be greater than those oriented circumferentially, a consequence of strain accommodation. Evidence of hydride redistribution after cycling, to α-Zr grains oriented in a more favourable orientation when under an applied stress, has also been observed and its behaviour has been found to be highly dependent on the loading axis. Finally, thermomechanical loading across multiple cycles has been shown to reduce the difference in terminal solid solubility of hydrogen during dissolution (TSS{sub D,H}) and precipitation (TSS{sub P,H}).

  11. In situ x-ray diffraction study on AgI nanowire arrays

    International Nuclear Information System (INIS)

    Wang Yinhai; Ye Changhui; Wang Guozhong; Zhang Lide; Liu Yanmei; Zhao Zhongyan

    2003-01-01

    The AgI nanowire arrays were prepared in the ordered porous alumina membrane by an electrochemical method. Transmission electron microscopy observation shows that the AgI nanowires are located in the channels of the alumina membrane. In situ x-ray diffractions show that the nanowire arrays possess hexagonal close-packed structure (β-AgI) at 293 K, orienting along the (002) plane, whereas at 473 K, the nanowire arrays possess a body-centered cubic structure (α-AgI), orienting along the (110) plane. The AgI nanowire arrays exhibit a negative thermal expansion property from 293 to 433 K, and a higher transition temperature from the β to α phase. We ascribe the negative thermal expansion behavior to the phase transition from the β to α phase, and the elevated transition temperature to the radial restriction by the channels of alumina membrane

  12. In situ X-ray and neutron diffraction study of Ba2In2O5

    International Nuclear Information System (INIS)

    Speakman, S.A.; Misture, S.T.

    2001-01-01

    Order-disorder transitions in barium indate, Ba 2 In 2 O 5 , have been studied using in-situ X-ray and neutron diffraction. At room temperature, the crystal structure is an orthorhombic brownmillerite structure. At 706 C, the crystal structure is orthorhombic, possibly of the Imma or Ibm2 space groups. At 900 C, oxygen vacancies begin to disorder. The order-disorder transition occurs slowly in two steps over a temperature range of 900 - 925 C. Above this temperature range, the crystal structure is tetragonal, most likely belonging to the space group I 4/mcm. A second order-disorder transition begins at 1040 C, and proceeds over the temperature range 1040 - 1065 C. Above this temperature range, the crystal structure is a cubic, oxygen-deficient perovskite structure, with space group Pm3m. At an undetermined temperature above 1200 C, Ba 2 In 2 O 5 begins to decompose. (orig.)

  13. In-Situ X-ray Tomography Study of Cement Exposed to CO2 Saturated Brine

    DEFF Research Database (Denmark)

    Chavez Panduro, E. A.; Torsæter, M.; Gawel, K.

    2017-01-01

    saturated brine is required. Here, we report in situ X-ray micro computed tomography (μ-CT) studies visualizing the microstructural changes upon exposure of cured Portland cement with an artificially engineered leakage path (cavity) to CO2 saturated brine at high pressure. Carbonation of the bulk cement......For successful CO2 storage in underground reservoirs, the potential problem of CO2 leakage needs to be addressed. A profoundly improved understanding of the behavior of fractured cement under realistic subsurface conditions including elevated temperature, high pressure and the presence of CO2......, self-healing of the leakage path in the cement specimen, and leaching of CaCO3 were thus directly observed. The precipitation of CaCO3, which is of key importance as a possible healing mechanism of fractured cement, was found to be enhanced in confined regions having limited access to CO2...

  14. X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator

    Science.gov (United States)

    Wharton, C. J.; Seabury, E. H.; Chichester, D. L.; Caffrey, A. J.; Simpson, J.; Lemchak, M.

    2011-06-01

    Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60° between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.

  15. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts

    NARCIS (Netherlands)

    van Oversteeg, Christina H M|info:eu-repo/dai/nl/413490483; Doan, Hoang Q; de Groot, Frank M F|info:eu-repo/dai/nl/08747610X; Cuk, Tanja

    2016-01-01

    X-ray absorption studies of the geometric and electronic structure of primarily heterogeneous Co, Ni, and Mn based water oxidation catalysts are reviewed. The X-ray absorption near edge and extended X-ray absorption fine structure studies of the metal K-edge, characterize the metal oxidation state,

  16. An examination of mass thickness measurements with X-ray sources

    International Nuclear Information System (INIS)

    Chen Mincong; Li Hongmei; Chen Ziyu; Shen Ji

    2008-01-01

    A method using X-rays to measure mass thickness is discussed. The method utilizes a filter to absorb low energy and characteristic photons so that the hardened X-ray spectra have a peaked energy distribution. An equivalent X-ray energy, which defines the attenuation in a material of interest can be used. The effect on the X-ray spectra of different filters is examined with Monte Carlo simulation using the EGSnrc package. A theoretical model for X-ray absorption that shows that the method can achieve good precision for a certain range of mass thicknesses is advanced. Experimental results agree well with the theoretical analysis. It is found that for a certain range of mass thicknesses, the relative error can be less than 1% for the aluminum alloy sample at the tube voltage of 30 or 45 kV

  17. An examination of mass thickness measurements with X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Chen Mincong; Li Hongmei; Chen Ziyu [Department of Modern Physics, University of Science and Technology of China, Jin Zhai Road, Hefei 230026 (China); Shen Ji [Department of Modern Physics, University of Science and Technology of China, Jin Zhai Road, Hefei 230026 (China)], E-mail: shenji@ustc.edu.cn

    2008-10-15

    A method using X-rays to measure mass thickness is discussed. The method utilizes a filter to absorb low energy and characteristic photons so that the hardened X-ray spectra have a peaked energy distribution. An equivalent X-ray energy, which defines the attenuation in a material of interest can be used. The effect on the X-ray spectra of different filters is examined with Monte Carlo simulation using the EGSnrc package. A theoretical model for X-ray absorption that shows that the method can achieve good precision for a certain range of mass thicknesses is advanced. Experimental results agree well with the theoretical analysis. It is found that for a certain range of mass thicknesses, the relative error can be less than 1% for the aluminum alloy sample at the tube voltage of 30 or 45 kV.

  18. Soft X-Ray Measurements of Z-Pinch-Driven Vacuum Hohlraums

    International Nuclear Information System (INIS)

    Baker, K.L.; Porter, J.L.; Ruggles, L.E.; Chandler, G.A.; Deeney, Chris; Varas, M.; Moats, Ann; Struve, Ken; Torres, J.; McGurn, J.; Simpson, W.W.; Fehl, D.L.; Chrien, R.E.; Matuska, W.; Idzorek, G.C.

    1999-01-01

    This article reports the experimental characterization of a z-pinch driven-vacuum hohlraum. The authors have measured soft x-ray fluxes of 5 x 10 12 W/cm 2 radiating from the walls of hohlraums which are 2.4--2.5 cm in diameter by 1 cm tall. The x-ray source used to drive these hohlraums was a z-pinch consisting of a 300 wire tungsten array driven by a 2 MA, 100 ns current pulse. In this hohlraum geometry, the z-pinch x-ray source can produce energies in excess of 800 kJ and powers in excess of 100 TW to drive these hohlraums. The x-rays released in these hohlraums represent greater than a factor of 25 in energy and more than a factor of three in x-ray power over previous laboratory-driven hohlraums

  19. Dietary iron-loaded rat liver haemosiderin and ferritin: in situ measurement of iron core nanoparticle size and cluster structure using anomalous small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bovell, Eliza; Buckley, Craig E.; Chua-anusorn, Wanida; Cookson, David; Kirby, Nigel; Saunders, Martin; St. Pierre, Timothy G. ((UWA)); ((Curtin U.)); ((ASRP))

    2009-03-16

    The morphology, particle size distribution and cluster structure of the hydrated iron(III) oxyhydroxide particles associated with haemosiderin and ferritin in dietary iron-loaded rat liver tissue have been investigated using transmission electron microscopy (TEM) and anomalous small-angle x-ray scattering (ASAXS). Rat liver tissue was removed from a series of female Porton rats which had been fed an iron-rich diet until sacrifice at various ages from 2-24 months. Hepatic iron concentrations ranged from 1 to 65 mg Fe g{sup -1} dry tissue. TEM studies showed both dispersed and clustered iron-containing nanoparticles. The dispersed particles were found to have mean sizes ({+-}standard deviation) of 54 {+-} 8 {angstrom} for the iron-loaded animals and 55 {+-} 7 {angstrom} for the controls. Superposition of particles in TEM images prevented direct measurement of nanoparticulate size in the clusters. The ASAXS data were modelled to provide a quantitative estimate of both the size and spacing of iron oxyhydroxide particles in the bulk samples. The modelling yielded close-packed particles with sizes of 60 to 78 {angstrom} which when corrected for anomalous scattering suggests sizes from 54 to 70 {angstrom}. Particle size distributions are of particular importance since they determine the surface iron to core iron ratios, which in turn are expected to be related to the molar toxicity of iron deposits in cells.

  20. Measuring the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pollock, B. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shaw, J. L. [Univ. of California, Los Angeles, CA (United States); Marsh, K. A. [Univ. of California, Los Angeles, CA (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, Y. -H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pak, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Clayton, C. E. [Univ. of California, Los Angeles, CA (United States); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Joshi, C. [Univ. of California, Los Angeles, CA (United States)

    2014-07-22

    This paper presents a new technique to measure the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator. Measurements are performed with a stacked image plates spectrometer, capable of detecting broadband x-ray radiation up to 1 MeV. It can provide measurements of the betatron x-ray spectrum at any angle of observation (within a 40 mrad cone) and of the beam profile. A detailed description of our data analysis is given, along with comparison for several shots. As a result, these measurements provide useful information on the dynamics of the electrons are they are accelerated and wiggled by the wakefield.

  1. System for automatic x-ray-image analysis, measurement, and sorting of laser fusion targets

    International Nuclear Information System (INIS)

    Singleton, R.M.; Perkins, D.E.; Willenborg, D.L.

    1980-01-01

    This paper describes the Automatic X-Ray Image Analysis and Sorting (AXIAS) system which is designed to analyze and measure x-ray images of opaque hollow microspheres used as laser fusion targets. The x-ray images are first recorded on a high resolution film plate. The AXIAS system then digitizes and processes the images to accurately measure the target parameters and defects. The primary goals of the AXIAS system are: to provide extremely accurate and rapid measurements, to engineer a practical system for a routine production environment and to furnish the capability of automatically measuring an array of images for sorting and selection

  2. Reduction of variable-truncation artifacts from beam occlusion during in situ x-ray tomography

    Science.gov (United States)

    Borg, Leise; Jørgensen, Jakob S.; Frikel, Jürgen; Sporring, Jon

    2017-12-01

    Many in situ x-ray tomography studies require experimental rigs which may partially occlude the beam and cause parts of the projection data to be missing. In a study of fluid flow in porous chalk using a percolation cell with four metal bars drastic streak artifacts arise in the filtered backprojection (FBP) reconstruction at certain orientations. Projections with non-trivial variable truncation caused by the metal bars are the source of these variable-truncation artifacts. To understand the artifacts a mathematical model of variable-truncation data as a function of metal bar radius and distance to sample is derived and verified numerically and with experimental data. The model accurately describes the arising variable-truncation artifacts across simulated variations of the experimental setup. Three variable-truncation artifact-reduction methods are proposed, all aimed at addressing sinogram discontinuities that are shown to be the source of the streaks. The ‘reduction to limited angle’ (RLA) method simply keeps only non-truncated projections; the ‘detector-directed smoothing’ (DDS) method smooths the discontinuities; while the ‘reflexive boundary condition’ (RBC) method enforces a zero derivative at the discontinuities. Experimental results using both simulated and real data show that the proposed methods effectively reduce variable-truncation artifacts. The RBC method is found to provide the best artifact reduction and preservation of image features using both visual and quantitative assessment. The analysis and artifact-reduction methods are designed in context of FBP reconstruction motivated by computational efficiency practical for large, real synchrotron data. While a specific variable-truncation case is considered, the proposed methods can be applied to general data cut-offs arising in different in situ x-ray tomography experiments.

  3. Soft X-ray fluorescence measurements of irradiated polymer films

    Science.gov (United States)

    Winarski, R. P.; Ederer, D. L.; Pivin, J.-C.; Kurmaev, E. Z.; Shamin, S. N.; Moewes, A.; Chang, G. S.; Whang, C. N.; Endo, K.; Ida, T.

    1998-11-01

    Fluorescent soft X-ray carbon Kα emission spectra (XES) have been used to characterize the bonding of carbon atoms in polyimide (PI) and polycarbosilane (PCS) films. The PI films have been irradiated with 40 keV nitrogen or argon ions, at fluences ranging from 1 × 10 14 to 1 × 10 16 cm -2. The PCS films have been irradiated with 5 × 10 15 carbon ions cm -2 of 500 keV and/or annealed at 1000°C. We find that the fine structure of the carbon XES of the PI films changes with implanted ion fluence above 1 × 10 14 cm -2 which we believe is due to the degradation of the PI into amorphous C:N:O. The width of the forbidden band as determined from the high-energy cut-off of the C Kα X-ray excitation decreases with the ion fluence. The bonding configuration of free carbon precipitates embedded in amorphous SiC which are formed in PCS after irradiation with C ions or combined treatments (irradiation and subsequent annealing) is close to either to that in diamond-like films or in silicidated graphite, respectively.

  4. The first X-ray diffraction measurements on Mars

    Directory of Open Access Journals (Sweden)

    David Bish

    2014-11-01

    Full Text Available The Mars Science Laboratory landed in Gale crater on Mars in August 2012, and the Curiosity rover then began field studies on its drive toward Mount Sharp, a central peak made of ancient sediments. CheMin is one of ten instruments on or inside the rover, all designed to provide detailed information on the rocks, soils and atmosphere in this region. CheMin is a miniaturized X-ray diffraction/X-ray fluorescence (XRD/XRF instrument that uses transmission geometry with an energy-discriminating CCD detector. CheMin uses onboard standards for XRD and XRF calibration, and beryl:quartz mixtures constitute the primary XRD standards. Four samples have been analysed by CheMin, namely a soil sample, two samples drilled from mudstones and a sample drilled from a sandstone. Rietveld and full-pattern analysis of the XRD data reveal a complex mineralogy, with contributions from parent igneous rocks, amorphous components and several minerals relating to aqueous alteration. In particular, the mudstone samples all contain one or more phyllosilicates consistent with alteration in liquid water. In addition to quantitative mineralogy, Rietveld refinements also provide unit-cell parameters for the major phases, which can be used to infer the chemical compositions of individual minerals and, by difference, the composition of the amorphous component.

  5. Stress and strain measurements. X-rays and neutrons

    International Nuclear Information System (INIS)

    Pyzalla, A.

    1999-01-01

    Neutron diffraction, often in combination with X-ray diffraction, is a powerful means with respect to an optimisation of the microstructure of multiphase alloys as well as to the optimisation of the manufacturing processes and the shape of components. As examples for engineering materials characterised and optimised by neutron diffraction and X-ray diffraction metal and ceramic matrix composites, Ni-base alloys as well as multiphase Al-alloys are given. Processes and components studied by neutron diffraction e.g. are single crystal turbine blade, turbine disks, impellers and shot peened samples. Neutron residual stress analysis is used for the calibration of finite element calculations, e.g. of calculations of the residual stress state in rails, crankshafts and extruded rods. Recently, a new method for residual stress analysis in the bulk of components by high energy synchrotron radiation, which is complementary to neutron residual stress analysis, has been introduced. This new method is compared to neutron residual stress analysis and future trends are outlined. (author)

  6. Measuring the black hole mass in ultraluminous X-ray sources with the X-ray scaling method

    Science.gov (United States)

    Jang, I.; Gliozzi, M.; Satyapal, S.; Titarchuk, L.

    2018-01-01

    In our recent work, we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BH), could be reliably extended to estimate the mass of supermassive black holes accreting at moderate to high level. Here, we apply this X-ray scaling method to ultraluminous X-ray sources (ULXs) to constrain their MBH. Using 49 ULXs with multiple XMM-Newton observations, we infer that ULXs host both stellar mass BHs and intermediate mass BHs. The majority of the sources of our sample seem to be consistent with the hypothesis of highly accreting massive stellar BHs with MBH ∼ 100 M⊙. Our results are in general agreement with the MBH values obtained with alternative methods, including model-independent variability methods. This suggests that the X-ray scaling method is an actual scale-independent method that can be applied to all BH systems accreting at moderate-high rate.

  7. In-Situ Synchrotron X-ray Study of the Phase and Texture Evolution of Ceria and Superconductor Films Deposited by Chemical Solution Method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude; He, Dong

    2012-01-01

    In situ synchrotron x-ray diffraction is used to study the phase and texture formation of ceria based films and superconductor films deposited by the chemical solution method on technical substrates. Combined analysis using in situ synchrotron x-ray diffraction, thermogravimetry/differential ther......In situ synchrotron x-ray diffraction is used to study the phase and texture formation of ceria based films and superconductor films deposited by the chemical solution method on technical substrates. Combined analysis using in situ synchrotron x-ray diffraction, thermogravimetry...

  8. Metallic thin film depth measurements by X-ray microanalysis

    International Nuclear Information System (INIS)

    Ng, F.L.; Wei, J.; Lai, F.K.; Goh, K.L.

    2006-01-01

    In this study, a low-cost technique, energy dispersive spectroscopy (EDS), was used to explore the application of X-ray microanalysis in depth determination of metallic films. Al, Ni and Au films with varied thicknesses from 50 to 400 nm were deposited on silicon (Si) substrates by magnetron sputtering. Electron beam energies ranging from 4 to 30 keV were applied while other parameters were kept constant to determine the electron beam energy required to penetrate the films. The effect of the atomic number of the metallic films on the penetration capability of the electron beam was investigated. Based on the experimental results, mathematical models for Al, Ni and Au films were established and the interaction volume was simulated using a Monte Carlo program. The simulations are in good agreement with the experimental results. Al/Ni/Au multilayers were also studied

  9. High pressure and high temperature in situ X-ray diffraction studies in the Paris-Edinburgh cell using a laboratory X-ray source†

    Science.gov (United States)

    Toulemonde, Pierre; Goujon, Céline; Laversenne, Laetitia; Bordet, Pierre; Bruyère, Rémy; Legendre, Murielle; Leynaud, Olivier; Prat, Alain; Mezouar, Mohamed

    2014-04-01

    We have developed a new laboratory experimental set-up to study in situ the pressure-temperature phase diagram of a given pure element or compound, its associated phase transitions, or the chemical reactions involved at high pressure and high temperature (HP-HT) between different solids and liquids. This new tool allows laboratory studies before conducting further detailed experiments using more brilliant synchrotron X-ray sources or before kinetic studies. This device uses the diffraction of X-rays produced by a quasi-monochromatic micro-beam source operating at the silver radiation (λ(Ag)Kα 1, 2≈0.56 Å). The experimental set-up is based on a VX Paris-Edinburgh cell equipped with tungsten carbide or sintered diamond anvils and uses standard B-epoxy 5 or 7 mm gaskets. The diffracted signal coming from the compressed (and heated) sample is collected on an image plate. The pressure and temperature calibrations were performed by diffraction, using conventional calibrants (BN, NaCl and MgO) for determination of the pressure, and by crossing isochores of BN, NaCl, Cu or Au for the determination of the temperature. The first examples of studies performed with this new laboratory set-up are presented in the article: determination of the melting point of germanium and magnesium under HP-HT, synthesis of MgB2 or C-diamond and partial study of the P, T phase diagram of MgH2.

  10. The Simultaneous Combination of Phase Contrast Imaging with In Situ X-ray diffraction from Shock Compressed Matter

    Science.gov (United States)

    McBride, Emma Elizabeth; Seiboth, Frank; Cooper, Leora; Frost, Mungo; Goede, Sebastian; Harmand, Marion; Levitan, Abe; McGonegle, David; Miyanishi, Kohei; Ozaki, Norimasa; Roedel, Melanie; Sun, Peihao; Wark, Justin; Hastings, Jerry; Glenzer, Siegfried; Fletcher, Luke

    2017-10-01

    Here, we present the simultaneous combination of phase contrast imaging (PCI) techniques with in situ X-ray diffraction to investigate multiple-wave features in laser-driven shock-compressed germanium. Experiments were conducted at the Matter at Extreme Conditions end station at the LCLS, and measurements were made perpendicular to the shock propagation direction. PCI allows one to take femtosecond snapshots of magnified real-space images of shock waves as they progress though matter. X-ray diffraction perpendicular to the shock propagation direction provides the opportunity to isolate and identify different waves and determine the crystal structure unambiguously. Here, we combine these two powerful techniques simultaneously, by using the same Be lens setup to focus the fundamental beam at 8.2 keV to a size of 1.5 mm on target for PCI and the 3rd harmonic at 24.6 keV to a spot size of 2 um on target for diffraction.

  11. In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment

    International Nuclear Information System (INIS)

    Kato, Naohiko; Konomi, Ichiro; Seno, Yoshiki; Motohiro, Tomoyoshi

    2005-01-01

    The crystallization processes of the Ge 2 Sb 2 Te 5 thin film used for PD and DVD-RAM were studied in its realistic optical disk film configurations for the first time by X-ray diffraction using an intense X-ray beam of a synchrotron orbital radiation facility (SPring-8) and in situ quick detection with a Position-Sensitive-Proportional-Counter. The dependence of the amorphous-to-fcc phase-change temperature T 1 on the rate of temperature elevation R et gave an activation energy E a : 0.93 eV much less than previously reported 2.2 eV obtained from a model sample 25-45 times thicker than in the real optical disks. The similar measurement on the Ge 4 Sb 1 Te 5 film whose large reflectance change attains the readability by CD-ROM drives gave E a : 1.13 eV with larger T 1 than Ge 2 Sb 2 Te 5 thin films at any R et implying a lower sensitivity in erasing as well as a better data stability of the phase-change disk

  12. In situ X-ray investigations of oxygen precipitation in semiconductor silicon; In-situ-Roentgenuntersuchungen der Sauerstoffpraezipitation in Halbleitersilizium

    Energy Technology Data Exchange (ETDEWEB)

    Grillenberger, Hannes

    2011-03-04

    The precipitation of oxygen in Czochralski grown semiconductor silicon is investigated in situ during thermal treatments up to 1000 C with high energy X-rays. All investigations are performed with a focusing Laue diffractometer. The parameters of the diffraction curve are the relative full width at half maximum (rFHWM) and the enhancement of the integral intensity (EII). A readout software has been developed to extract these automatically from the detector image for the measured 220, -220 and 040 Bragg peaks. The sample thickness is set to 15 mm as this enhances the sensitivity of the method and the samples are processed after the strain-field diffraction (SFD) experiments to wafers for an ex situ characterization demanding wafers. Three experimental series with a total of 21 in situ SFD experiments with different thermal treatments have been performed. The slope of the initial temperature ramp is set to 1 K/min in the first and the third series to generate a high precipitate (Bulk Micro Defect, BMD) density. In the second series the slope is chosen as 10 K/min to generate a lower density in the same silicon material. It is shown with all experiments and with preliminary works that the built up of strain during the heat treatment is caused by BMDs during the high temperature period of the treatment. The detection limit of series 1 is found at 7 nm at a density of 10{sup 13}/cm{sup 3}, of series 2 at 40 nm at a density of 2 x 10{sup 8}/cm{sup 3}, and at 8 nm at a density of 4.8 x 10{sup 12}/cm{sup 3} for series 3. The local maximum of the EII at 450 C, which emerges coincident with a local minimum of the rFWHM in series 2 may be caused by thermal donors (TD). With the experiments is shown that SFD operates in the infrared-laser scattering tomography detection range, but also reaches in a region covered only by transmission electron microscopy (TEM) so far. In contrast to these methods SFD is not limited to low temperatures and in situ experiments can be done. Thus

  13. In situ X-ray investigation of changing barrier growth temperatures on InGaN single quantum wells in metal-organic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Ju, Guangxu; Honda, Yoshio; Tabuchi, Masao; Takeda, Yoshikazu; Amano, Hiroshi

    2014-01-01

    The effects of GaN quantum barriers with changing growth temperatures on the interfacial characteristics of GaN/InGaN single quantum well (SQW) grown on GaN templates by metalorganic vapour phase epitaxy were in situ investigated by X-ray crystal truncation rod (CTR) scattering and X-ray reflectivity measurements at growth temperature using a laboratory level X-ray diffractometer. Comparing the curve-fitting results of X-ray CTR scattering spectra obtained at growth temperature with that at room temperature, the In x Ga 1-x N with indium composition less than 0.11 was stabile of the indium distribution at the interface during the whole growth processes. By using several monolayers thickness GaN capping layer to protect the InGaN well layer within temperature-ramping process, the interfacial structure of the GaN/InGaN SQW was drastically improved on the basis of the curve-fitting results of X-ray CTR scattering spectra, and the narrow full width at half-maximum and strong luminous intensity were observed in room temperature photoluminescence spectra

  14. In situ hydration of sulphoaluminate cement mixtures monitored by synchrotron x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Turrillas, X. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Barcelona (Spain); Martinez, L.G.; Carvalho, A.M.; Carezzato, G.L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rossetto, C.M. [Faculdade de Tecnologia de Sao Paulo (FATEC), SP (Brazil)

    2016-07-01

    Full text: The hydration of calcium sulpho-aluminate cement mixtures was studied in situ by synchrotron X-ray diffraction at the XRD1 beamline of the Laboratorio Nacional de Luz Sincrotron (LNLS) in Campinas, SP. The powder specimens were introduced in borosilicate glass capillary tubes of 0.7 mm of internal diameter and imbued with deionized water. As the hydration reaction is very fast the capillaries were placed on the goniometer and the data collection was started after two minutes of mixing with water. The X-ray energy chosen to get an adequate flux for these short time acquisitions was 12 keV or more precisely 1.033258 Å, determined with polycrystalline corundum standard. Diffraction patterns were collected sequentially every 35 seconds for several hours at temperatures ranging from 40 degC to 55 degC with an accuracy better than 0.1 degC attained with the help of a hot air blower. The diffracted signal was collected with an array of twenty-four Mythen detectors at 760 mm from the capillary tube. The diffraction patterns had appropriate statistics to determine the kinetics of the reaction either by quantitative Rietveld analysis or by fitting isolated diffraction peaks to Gaussian curves as a function of time. The most important phases involved in the hydration are Klein´s salt, also known as Ye’elimite, Ca4(AlO2)6SO4, and gypsum, CaSO4.2H2O to yield Ettringite, Ca6Al2(SO4)3(OH)12 - 26H2O, phase responsible for the mechanical properties. (author)

  15. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A. [Shenzhen College of International Education, 1st HuangGang Park St., Shenzhen, GuangDong (China); Luo, J. [Department of Biomedical Engineering, University at Buffalo, 332 Bonner Hall, Buffalo, NY 14260-1920 (United States); Wang, A. [Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Broadbent, C. [School of Engineering, Columbia University, 1130 Amsterdam Av., New York, NY 10027 (United States); Zhong, J. [Department of English, Dartmouth College, 6032 Sanborn House, Hanover, NH 03755 (United States); Dilmanian, F.A. [Departments of Radiation Oncology, Neurology, and Radiology, Stony Brook University, Stony Brook, NY 11794 (United States); Zafonte, F.; Zhong, Z. [National Synchrotron Light Source II, Brookhaven National Laboratory, Bldg. 743, Upton, NY 11973 (United States)

    2015-07-11

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.

  16. Convenient measurement of the residual stress using X-ray penetration depth

    Energy Technology Data Exchange (ETDEWEB)

    Ukai, Takayoshi; Shibano, Junichi [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering

    1994-10-01

    The residual stress measured with a characteristic X-ray is usually evaluated as a surface stress. However, it is a weighted mean value over all penetration depth of X-ray. Thus, the classical sin{sup 2}{Psi} method with the characteristic X-ray is difficult to use for measuring the steep gradient of residual stress that occurs along the depth direction in a subsurface layer of the material after cold rolling and grinding. This paper presents a convenient method of the residual stress measurement along the depth direction in a subsurface layer using the penetration depth depending on a characteristic X-ray. The residual stress distribution of JIS SKS51 steel plate was measured as an example of applying this method. As a result, it could be confirmed that a residual stress distribution along the depth direction in a subsurface layer could be evaluated nondestructively by this convenient method. (author).

  17. Atoms in Action: Observing Atomic Motion with Dynamic in situ X-ray Diffraction

    Science.gov (United States)

    Cox, Jordan Michael

    Metal-organic framework (MOF) materials are rich in both structural diversity and application. These materials are comprised of metal atoms or clusters which are connected in a three-dimensional polymer-like network by bridging organic linker molecules. One of the major attractive features in MOFs is their permanent pore space which can potentially be used to adsorb or exchange foreign molecules from/with the surrounding environment. While MOFs are an active area of scientific interest, MOF materials are still relatively new, only 20 years old. As such, there is still much that needs to be understood about these materials before they can be effectively applied to widespread chemical problems like CO2 sequestration or low-pressure hydrogen fuel storage. One of the most important facets of MOF chemistry to understand in order to rationally design MOF materials with tailor-made properties is the relationship between the structural features in a MOF and the chemical and physical properties of that material. By examining in detail the atomic structure of a MOF with known properties under a variety of conditions, scientists can begin to unravel the guiding principles which govern these relationships. X-ray diffraction remains one of the most effective tools for determining the structure of a crystalline material with atomic resolution, and has been applied to the determination of MOF structures for years. Typically these experiments have been carried out using powder X-ray diffraction, but this technique lacks the high-resolution structural information found in single-crystal methods. Some studies have been reported which use specialized devices, sometimes called Environmental Control Cells, to study single crystalline MOFs under non-ambient chemical conditions in situ . However, these in situ studies are performed under static conditions. Even in cases where the ECC provides continued access to the local chemical environment during diffraction data collections, the

  18. Measuring scatter radiation in diagnostic x rays for radiation protection purposes

    International Nuclear Information System (INIS)

    Panayiotakis, George; Vlachos, Ioannis; Delis, Harry; Tsantilas, Xenophon; Kalyvas, Nektarios; Kandarakis, Ioannis

    2015-01-01

    During the last decades, radiation protection and dosimetry in medical X-ray imaging practice has been extensively studied. The purpose of this study was to measure secondary radiation in a conventional radiographic room, in terms of ambient dose rate equivalent H*(10) and its dependence on the radiographic exposure parameters such as X-ray tube voltage, tube current and distance. With some exceptions, the results indicated that the scattered radiation was uniform in the space around the water cylindrical phantom. The results also showed that the tube voltage and filtration affect the dose rate due to the scatter radiation. Finally, the scattered X-ray energy distribution was experimentally calculated. (authors)

  19. Hydraulic Properties of Fractured Rock Samples at In-Situ Conditions - Insights from Lab Experiments Using X-Ray Tomography

    Science.gov (United States)

    Nehler, Mathias; Stöckhert, Ferdinand; Duda, Mandy; Renner, Jörg; Bracke, Rolf

    2017-04-01

    The hydraulic properties of low-porosity rock formations are controlled by the geometry of open fractures, joints and faults. Aperture, surface roughness, accessible length, and thus, the volume available for fluids associated of such interfaces are strongly affected by their state of stress. Moreover, these properties may evolve with time in particular due to processes involving chemically active fluids. Understanding the physico-chemical interactions of rocks with fluids at reservoir conditions will help to predict the long-term reservoir development and to increase the efficiency of geothermal power plants. We designed an x-ray transparent flow-through cell. Confining pressure can be up to 50 MPa and pore fluid can currently be circulated through the sample with pressures of up to 25 MPa. All wetted parts are made of PEEK to avoid corrosion when using highly saline fluids. Laboratory experiments were performed to investigate hydraulic properties of fractured low-porosity samples under reservoir conditions while x-rays transmit the sample. The cell is placed inside a µCT scanner with a 225 kV multifocal x-ray tube for high resolution x-ray tomography. Samples measure 10 mm in diameter and 25 mm in length resulting in a voxel resolution of approximately 10 µm. Samples with single natural as well as artificial fractures were subjected to various confining pressures ranging from 2.5 MPa to 25 MPa. At each pressure level, effective permeability was determined from steady-state flow relying on Darcy's law. In addition, a full 3D image was recorded by the µCT scanner to gain information on the fracture aperture and geometry. Subvolumes (400x400x400 voxels) of the images were analyzed to reduce computational cost. The subvolumes were filtered in 3D with an edge preserving non-local means filter. Further quantification algorithms were implemented in Matlab. Segmentation into pore space and minerals was done automatically for all datasets by a peak finder algorithm

  20. Solvent exchange in a metal-organic framework single crystal monitored by dynamic in situ X-ray diffraction.

    Science.gov (United States)

    Cox, Jordan M; Walton, Ian M; Bateman, Gage; Benson, Cassidy A; Mitchell, Travis; Sylvester, Eric; Chen, Yu Sheng; Benedict, Jason B

    2017-08-01

    Understanding the processes by which porous solid-state materials adsorb and release guest molecules would represent a significant step towards developing rational design principles for functional porous materials. To elucidate the process of liquid exchange in these materials, dynamic in situ X-ray diffraction techniques have been developed which utilize liquid-phase chemical stimuli. Using these time-resolved diffraction techniques, the ethanol solvation process in a flexible metal-organic framework [Co(AIP)(bpy) 0.5 (H 2 O)]·2H 2 O was examined. The measurements provide important insight into the nature of the chemical transformation in this system including the presence of a previously unreported neat ethanol solvate structure.

  1. Technical Development of Profile Measurement for the Soft X-Ray Via Compton Backward Scattering

    CERN Document Server

    Saito, Taku; Hayano, Hitoshi; Hidume, Kentaro; Kashiwagi, Shigeru; Kuroda, Ryunosuke; Minamiguchi, Shuichi; Oshima, Akihiro; Ueyama, Daisuke; Urakawa, Junji; Washio, Masakazu

    2005-01-01

    A compact X-ray source is called for such various fields as material development, biological science, and medical treatment. At Waseda University, we have already succeeded to generate the soft X-ray of the wavelength within so-called water window region (250-500eV) via Compton backward scattering between 1047nm Nd:YLF laser and 4.2MeV high quality electron beam. Although this method equips some useful characters, e.g. high intensity, short pulse, energy variableness, etc, the X-ray generating system is compact enough to fit in tabletop size. In the next step, there rises two principal tasks, that is, to make the soft X-ray intensity higher, and to progress X-ray profile measurement techniques as preliminary experiments for biomicroscopy. Specifically, we utilize two-pass amp for the former, and irradiate X-ray to a resist film which is previously exposed by UV lamp or get images with X-ray CCD for the latter. In this conference, we will show the experimental results and some future plans.

  2. Methodology of ionizing radiation measurement, from x-ray equipment, for radiation protection

    International Nuclear Information System (INIS)

    Caballero, Katia C.S.; Borges, Jose C.

    1996-01-01

    Most of X-rays beam used for diagnostic, are short exposure time (milliseconds). Exception are those used in fluoroscopy. measuring instruments (area monitors with ionizing chambers or Geiger tubes) used in hospitals and clinics, in general, have characteristic answer time not adequate to X-rays beams length in time. Our objective was to analyse instruments available commercially, to prepare a measuring methodology for direct and secondary beams, in order to evaluate protection barriers for beams used in diagnostic radiology installations. (author)

  3. Direct measurement of clinical mammographic x-ray spectra using a CdTe spectrometer.

    Science.gov (United States)

    Santos, Josilene C; Tomal, Alessandra; Furquim, Tânia A; Fausto, Agnes M F; Nogueira, Maria S; Costa, Paulo R

    2017-07-01

    To introduce and evaluate a method developed for the direct measurement of mammographic x-ray spectra using a CdTe spectrometer. The assembly of a positioning system and the design of a simple and customized alignment device for this application is described. A positioning system was developed to easily and accurately locate the CdTe detector in the x-ray beam. Additionally, an alignment device to line up the detector with the central axis of the radiation beam was designed. Direct x-ray spectra measurements were performed in two different clinical mammography units and the measured x-ray spectra were compared with computer-generated spectra. In addition, the spectrometer misalignment effect was evaluated by comparing the measured spectra when this device is aligned relatively to when it is misaligned. The positioning and alignment of the spectrometer have allowed the measurements of direct mammographic x-ray spectra in agreement with computer-generated spectra. The most accurate x-ray spectral shape, related with the minimal HVL value, and high photon fluence for measured spectra was found with the spectrometer aligned according to the proposed method. The HVL values derived from both simulated and measured x-ray spectra differ at most 1.3 and 4.5% for two mammography devices evaluated in this study. The experimental method developed in this work allows simple positioning and alignment of a spectrometer for x-ray spectra measurements given the geometrical constraints and maintenance of the original configurations of mammography machines. © 2017 American Association of Physicists in Medicine.

  4. 2D X-ray scanner and its uses in laboratory reservoir characterization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.; Doggett, K.

    1997-08-01

    X-ray techniques are used in petroleum laboratories for a variety of reservoir characterization measurements. This paper describes the configuration of a 2D X-ray scanner and many of the ways in which it simplifies and improves accuracy`s of laboratory measurements. Linear X-ray scanners are most often used to provide descriptions of fluid saturations within core plugs during flow tests. We configured our linear scanner for both horizontal and vertical movement. Samples can be scanned horizontally, vertically, or according to horizontal and vertical grids. X-ray measurements are fast, allowing measurements of two- and three-phase fluid saturations during both steady- and unsteady-state flow processes. Rock samples can be scanned while they are subjected to stress, pore pressure, and temperature conditions simulating those of a petroleum reservoir. Many types of measurements are possible by selecting appropriate X-ray power settings, dopes, filters, and collimator configurations. The scanner has been used for a variety of applications besides fluid saturation measurements. It is useful for measuring porosity distributions in rocks, concentrations of X-ray dopes within flow streams during tracer tests, gap widths in fracture flow cells, fluid interface levels in PVT cells and fluid separators, and other features and phenomena.

  5. Measuring the black hole mass in Ultraluminous X-ray Sources with the X-ray Scaling Method

    Science.gov (United States)

    Jang, Insuk; Gliozzi, M.

    2014-01-01

    The black hole mass is a crucial parameter to shed light on the physics of accretion. While the presence of stellar mass black holes (sMBHs) in binary systems and supermassive black holes (SMBHs) in the center of galaxies is widely accepted, the very existence of intermediate mass black holes (IMBHs) is still a matter of debate. It has been suggested that this type of black holes within the mass range of MBH=10^2-10^5 Msun may reside in Ultraluminous X-ray sources (ULXs) which are very bright off nuclear X-ray sources. Recently, a new method to constrain the mass of BH systems, based solely on X-ray data, was successfully used for sMBHs and SMBHs. Since the X-ray emission is thought to be produced by the same process (Comptonization) in all accretion objects, in principle, this method can be applied to estimate the mass of black holes in ULXs. We have carried out a systemic analysis of a sample of 43 ULXs with multiple X-ray observations and applied this novel method. Our preliminary results suggest that ~70% of the sample harbor IMBHs and indicates a good agreement with those derived with different methods present in the literature.

  6. In situ small angle x-ray studies of coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, K F

    1983-01-01

    This report summarizes the progress made the first 12 months of a planned 36 month project on small angle x-ray studies of coal and char pore structure. Model carbon studies have been employed to demonstrate the usefulness of small angle x-ray scattering (SAXS) in monitoring the structural changes in porous carbonaceous materials during gasification. Scattering data from particles gasified to varying levels of conversion show increases in the micropore sizes with conversion. This is also supported by surface area measurements by SAXS showing a maximum at intermediate conversion in agreements with previous studies by conventional means. The application of SAXS to PSOC coal samples is also demonstrated. Existing models for the porous structure have been reviewed and percolation theory has been selected as a consistent framework for both the modelling and the data analysis. This theory will make it possible to describe the porous structure in terms of its geometry and connectivity, rather than being limited to a fixed geometry as in conventional approaches. Two graduate students and the PI have been trained in SAXS and the associated theory. Results from the model carbon studies have been published. 18 references, 9 figures, 2 tables.

  7. In-situ real-time x-ray scattering for probing the processing-structure-performance relation

    KAUST Repository

    Smilgies, Detlef-M.

    2014-01-01

    © 2014 Materials Research Society. In-situ X-ray scattering methodology is discussed, in order to analyze the microstructure development of soft functional materials during coating, annealing, and drying processes in real-time. The relevance of a fundamental understanding of coating processes for future industrial production is pointed out.

  8. A compact high vacuum heating chamber for in-situ x-ray scattering studies.

    Science.gov (United States)

    Bertram, F; Deiter, C; Pflaum, K; Seeck, O H

    2012-08-01

    A very compact multi purpose high vacuum heating chamber for x-ray scattering techniques was developed. The compact design allows the chamber to be installed on high precision diffractometers which usually cannot support heavy and/or large equipment. The chamber is covered by a Be dome allowing full access to the hemisphere above the sample which is required for in-plane grazing incident x-ray diffraction and out-off plane wide angle x-ray diffraction.

  9. A compact high vacuum heating chamber for in-situ x-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, F.; Deiter, C.; Pflaum, K.; Seeck, O. H. [Hamburger Synchrotronstrahlungslabor am Deutschen Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg (Germany)

    2012-08-15

    A very compact multi purpose high vacuum heating chamber for x-ray scattering techniques was developed. The compact design allows the chamber to be installed on high precision diffractometers which usually cannot support heavy and/or large equipment. The chamber is covered by a Be dome allowing full access to the hemisphere above the sample which is required for in-plane grazing incident x-ray diffraction and out-off plane wide angle x-ray diffraction.

  10. Renal function measured by X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Boijsen, M.; Jacobsson, L.; Tylen, U.; Sahlgrenska Sjukhuset, Goeteborg

    1987-01-01

    In twenty-six patients injected with metrizoate during urography, plasma was analyzed for iodine concentration using X-ray fluorescence analysis, and total plasma clearance of contrast medium was calculated. Total plasma clearance of 51 Cr-EDTA was also determined, but not simultaneously, in order to find out if the urographic procedure would influence the kidneys to such an extent that the contrast medium clearance value would differ much from the 51 Cr-EDTA clearance value. The errors in the method were assessed and the total error of the contrast medium clearance determination was calculated. When comparing 51 Cr-EDTA and metrizoate clearance a correlation of 0.94 and a mean ratio of 1.046 (SD 0.138) was found. The assessable errors cannot fully explain the standard deviation, which might indicate a transient change in kidney function related to elements of the urographic procedure such as laxation with possible dehydration and/or the contrast medium dose. (orig.)

  11. In-situ X-ray Nanocharacterization of Defect Kinetics in Chalcogenide Solar Cell Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bertoni, Mariana [Arizona State Univ., Tempe, AZ (United States); Lai, Barry [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Masser, Jorg [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-09-21

    ) correlate positively, and In negatively with charge collection efficiency for cells with low Ga content, both at grain boundaries and in grain cores. For cells with high Ga content, the charge collection efficiency depends to much lesser extent on the elemental distribution. The objective is three folded: (1) develop an x-ray in-situ microscopy capability to simulate growth and processing conditions, (2) apply it to elucidate performance-governing defect kinetics in chalcogenide solar cell materials, and (3) to study approaches to engineer materials from the nanoscale up. The development of these capabilities will enable experimental characterization to take place under actual processing and operating conditions and it will have impact well beyond the proposed research, enabling future studies on a large variety of materials system where electronic properties depend on underlying structural or chemical inhomogeneities.

  12. Measurement of 238U muonic x-rays with a germanium detector setup

    Energy Technology Data Exchange (ETDEWEB)

    Esch, Ernst I [Los Alamos National Laboratory; Jason, Andrew [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Hoteling, Nathan J [Los Alamos National Laboratory; Heffner, Robert H [Los Alamos National Laboratory; Adelmann, Andreas [PAUL SCHERRER INSTITUT; Stocki, Trevor [HEALTH CANADA; Mitchell, Lee [NAVAL RESEARCH LAB

    2009-01-01

    In the field of nuclear non-proliferation muon interactions with materials are of great interest. This paper describes an experiment conducted at the Paul Scherrer Institut (PSI) in Switzerland where a muon beam is stopped in a uranium target. The muons produce characteristic muonic x-rays. Muons will penetrate shielding easily and the produced characteristic x-rays can be used for positive isotope identification. Furthermore, the x-rays for uranium isotopes lie in the energy range of 6-7 MeV, which allows them to have an almost optimal mean free path in heavy shielding such as lead or steel. A measurement was conducted at PSI to prove the feasibility of detecting muonic x-rays from a large sample of depleted uranium (several kilograms) with a germanium detector. In this paper, the experimental setup and analysis of the measurement itself is presented.

  13. Specific features of thermocouple calorimeter application for measurements of pulsed X-ray emission from plasma

    International Nuclear Information System (INIS)

    Gavrilov, V. V.; Fasakhov, I. K.

    2012-01-01

    It is shown that the accuracy of time-integrated measurements of pulsed X-ray emission from hot plasma with calibrated thermocouple calorimeters is mainly determined by two factors. The first and the most important factor is heating of the filter by the absorbed X-rays; as a result, the calorimeter measures the thermal radiation of the filter, which causes appreciable distortion of the temporal profile and amplitude of the recorded signal. The second factor is the dependence of the effective depth of X-ray absorption in the dielectric that covers the entrance window of the calorimeter on the energy of X-ray photons, i.e., on the recorded radiation spectrum. The results of model calculations of the calorimeter signal are compared with the experimental data.

  14. High precision instrumentation for measuring the true exposure time in diagnostic X-ray examinations

    International Nuclear Information System (INIS)

    Silva, Danubia B.; Santos, Marcus A.P.; Barros, Fabio R.; Santos, Luiz A.P.

    2013-01-01

    One of the most important physical quantities to be evaluated in diagnostic radiology is the radiation exposure time experimented by the patient during the X-ray examination. IAEA and WHO organizations have suggested that any country must create a quality surveillance program to verify if each type of ionizing radiation equipment used in the hospitals and medical clinics are in conformity with the accepted uncertainties following the international standards. The purpose of this work is to present a new high precision methodology for measuring true exposure time in diagnostic X-ray examinations: pulsed, continuous or digital one. An electronic system named CronoX, which will be soon registered at the Brazilian Patent Office (INPI), is the equipment that provides such a high precision measurement. The principle of measurement is based on the electrical signal captured by a sensor that enters in a regeneration amplifier to transform it in a digital signal, which is treated by a microprocessor (uP). The signal treatment results in a two measured times: 1) T rx , the true X-ray exposure time; 2) T nx , the time in which the X-ray machine is repeatedly cut off during the pulsed irradiation and there is no delivery dose to the patient. Conventional Polymat X-ray equipment and dental X-ray machines were used to generate X-ray photons and take the measurements with the electronic systems. The results show that such a high precision instrumentation displays the true exposure time in diagnostic X-ray examinations and indicates a new method to be purposed for the quality surveillance programs in radiology. (author)

  15. An experimental measurement of metal multilayer x-ray reflectivity degradation due to intense x-ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Hockaday, M.Y.P.

    1987-06-01

    The degradation of the x-ray reflection characteristics of metal multilayer Bragg diffractors due to intense x-ray flux was investigated. The Z-pinch plasma produced by PROTO II of Sandia National Laboratories, Albuquerque, New Mexico, was used as the source. The plasma generated total x-ray yields of as much as 40 kJ with up to 15 kJ in the neon hydrogen- and helium-like resonance lines in nominal 20-ns pulses. Molybdenum-carbon, palladium-carbon, and tungsten-carbon metal multilayers were placed at 15 and 150 cm from the plasma center. The multilayers were at nominal angles of 5/sup 0/ and 10/sup 0/ to diffract the neon resonance lines. The time-integrated x-ray reflection of the metal multilayers was monitored by x-ray film. A fluorescer-fiber optic-visible streak camera detector system was then used to monitor the time-resolved x-ray reflection characteristics of 135 A- 2d tungsten-carbon multilayers. A large specular component in the reflectivity prevented determination of the rocking curve of the multilayer. For a neon implosion onto a vanadium-doped polyacrylic acid foam target shot, detailed modeling was attempted. The spectral flux was determined with data from 5 XRD channels and deconvolved using the code SHAZAM. The observed decay in reflectivity was assumed to correspond to the melting of the first tungsten layer. A ''conduction factor'' of 82 was required to manipulate the heat loading of the first tungsten layer such that the time of melting corresponded to the observed decay. The power at destruction was 141 MW/cm/sup 2/ and the integrated energy at destruction was 2.0 J/cm/sup 2/. 82 refs., 66 figs., 10 tabs.

  16. An experimental measurement of metal multilayer x-ray reflectivity degradation due to intense x-ray flux

    International Nuclear Information System (INIS)

    Hockaday, M.Y.P.

    1987-06-01

    The degradation of the x-ray reflection characteristics of metal multilayer Bragg diffractors due to intense x-ray flux was investigated. The Z-pinch plasma produced by PROTO II of Sandia National Laboratories, Albuquerque, New Mexico, was used as the source. The plasma generated total x-ray yields of as much as 40 kJ with up to 15 kJ in the neon hydrogen- and helium-like resonance lines in nominal 20-ns pulses. Molybdenum-carbon, palladium-carbon, and tungsten-carbon metal multilayers were placed at 15 and 150 cm from the plasma center. The multilayers were at nominal angles of 5 0 and 10 0 to diffract the neon resonance lines. The time-integrated x-ray reflection of the metal multilayers was monitored by x-ray film. A fluorescer-fiber optic-visible streak camera detector system was then used to monitor the time-resolved x-ray reflection characteristics of 135 A- 2d tungsten-carbon multilayers. A large specular component in the reflectivity prevented determination of the rocking curve of the multilayer. For a neon implosion onto a vanadium-doped polyacrylic acid foam target shot, detailed modeling was attempted. The spectral flux was determined with data from 5 XRD channels and deconvolved using the code SHAZAM. The observed decay in reflectivity was assumed to correspond to the melting of the first tungsten layer. A ''conduction factor'' of 82 was required to manipulate the heat loading of the first tungsten layer such that the time of melting corresponded to the observed decay. The power at destruction was 141 MW/cm 2 and the integrated energy at destruction was 2.0 J/cm 2 . 82 refs., 66 figs., 10 tabs

  17. Data of low-dose phase-based X-ray imaging for in situ soft tissue engineering assessments

    Directory of Open Access Journals (Sweden)

    Zohreh Izadifar

    2016-03-01

    Full Text Available This article presents the data of using three phase-based X-ray imaging techniques to characterize biomaterial scaffold and soft tissues in situ, as reported in our study “Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments” [1]. The examined parameters include the radiation dose, scan time, and image quality, which are all critical to longitudinal in situ live animal assessments. The data presented were obtained from three dimensional imaging of scaffolds in situ cartilage by means of synchrotron-based computed tomography-diffraction enhanced imaging (CT-DEI, analyzer based imaging (CT-ABI, and in-line phase contrast imaging (CT-PCI at standard and low dose imaging modalities.

  18. Core Length and Spray Width Measurements in Shear Coaxial Rocket Injectors from X-ray Radiography Measurements

    Science.gov (United States)

    2015-05-01

    Rocket Injectors from X-ray Radiography Measurements 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) M. D...behavior. To overcome the problems of multiple scattering, the near-injector region was studied using x-ray radiography at Argonne National Laboratory’s...and understand more clearly what this term means. Three methods are explored to measure core length from x-ray radiography data and are compared to

  19. Core Length and Spray Width Measurements in Shear Coaxial Injectors from X-ray Radiography Measurements (Briefing Charts)

    Science.gov (United States)

    2015-04-01

    Injectors from X- ray Radiography Measurements 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...behavior. To overcome the problems of multiple scattering, the near-injector region was studied using x-ray radiography at Argonne National...length” and understand more clearly what this term means. Three methods are explored to measure core length from x-ray radiography data and are

  20. Spectral encoding method for measuring the relative arrival time between x-ray/optical pulses

    International Nuclear Information System (INIS)

    Bionta, M. R.; Hartmann, N.; Weaver, M.; French, D.; Glownia, J. M.; Bostedt, C.; Chollet, M.; Ding, Y.; Fritz, D. M.; Fry, A. R.; Krzywinski, J.; Lemke, H. T.; Messerschmidt, M.; Schorb, S.; Zhu, D.; White, W. E.; Nicholson, D. J.; Cryan, J. P.; Baker, K.; Kane, D. J.

    2014-01-01

    The advent of few femtosecond x-ray light sources brings promise of x-ray/optical pump-probe experiments that can measure chemical and structural changes in the 10–100 fs time regime. Widely distributed timing systems used at x-ray Free-Electron Laser facilities are typically limited to above 50 fs fwhm jitter in active x-ray/optical synchronization. The approach of single-shot timing measurements is used to sort results in the event processing stage. This has seen wide use to accommodate the insufficient precision of active stabilization schemes. In this article, we review the current technique for “measure-and-sort” at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The relative arrival time between an x-ray pulse and an optical pulse is measured near the experimental interaction region as a spectrally encoded cross-correlation signal. The cross-correlation provides a time-stamp for filter-and-sort algorithms used for real-time sorting. Sub-10 fs rms resolution is common in this technique, placing timing precision at the same scale as the duration of the shortest achievable x-ray pulses

  1. Equation of state measurements of shocked carbon foam using x-ray Thomson scattering

    Science.gov (United States)

    Belancourt, Patrick; Keiter, Paul; Drake, Paul; Theobald, Wolfgang; Hu, Suxing; Regan, Sean; Kozlowski, Pawel

    2017-10-01

    Simulating experiments of foams under high-energy-density physics (HEDP) conditions have been challenging due to the uncertainty of the equation of state (EOS) of foams in this regime. This motivated a recent experiment on the OMEGA EP laser system to measure the EOS of shocked 150 mg/cc carbonized resorcinol formaldehyde (CRF) foam. One OMEGA EP beam drives a shock into the CRF foam package, while the remaining three beams are used to create a nickel-He-alpha, x-ray probe. The x-ray probe penetrates the shocked foam and the imaging x-ray Thomson spectrometer (IXTS) measures the scattered x-rays from the probe. The IXTS spectrally resolves the scattered x-ray beam while imaging in 1-D. This results in a temperature and ionization measurement at the shock front from the scattered x-ray spectrum and a density measurement from the imaging component. Preliminary results from this experiment will be shown. This work is funded by the U.S. Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956, and through the Laboratory for Laser Energetics, University of Rochester by the NNSA/OICF under Cooperative Agreement No. DE-NA0001944.

  2. Uncertainty Measurement of kVp Output of the X-ray System using Spectrometry System

    International Nuclear Information System (INIS)

    Wan Hazlinda Ismail; Norhayati Abdullah; Muhammad Jamal Mohd Isa

    2011-01-01

    This study was carried out to determine the uncertainty of kVp output of the x-ray tube used in the calibration of non-invasive kVp meters. A non-invasive method was used to measure the spectrum of the x-ray output using Amptek XR-100T-CdTe spectrometry system. While an invasive high voltage divider (dynalyser) coupled to the x-ray system measures the true kilo voltage supplied to the x-ray tube with uncertainty of 2.5 % (k=2). The consistency of the kVp output was monitored daily at 9 points ranging between 40 kV-120 kV with interval steps of 10 kV from the dynalyser system. While the x-ray output spectrum of the 9 points were measured once a year. The uncertainty was determined from the consistency x-ray output, dynalyser system uncertainty, the spectrometry system accuracy, error and variation. The test results showed that kVp output measured by the dynalyser system everyday is consistent with coefficient of variations of not more than 0.89 %. The kVp output via dynalyser system and Spectrometry system shows good agreement with standard error of not more than 2.48 %. The total uncertainty of kVp output of the x-ray system using the spectrometry system is not more than 6.2 % (k=2). As a conclusion, the factors influencing the quality and quantity of the x-ray output also influence the uncertainty of the kVp output. (author)

  3. Precise measurement of inner diameter of mono-capillary optic using X-ray imaging technique.

    Science.gov (United States)

    Kwon, Soonmu; Lim, Jae Hong; Namba, Yoshiharu; Chon, Kwon Su

    2017-11-16

    Mono-capillary optics have been applied to increase the performance of X-ray instruments. However, performance of a mono-capillary optic strongly depends on the shape accuracy, which is determined by the diameters of the inner hollow of the capillary along the axial direction. To precisely determine the inner diameter of the capillary optic used in X-ray imaging technique, which aims to replace the conventional method using a visible microscope. High spatial resolution X-ray images of the mono-capillary optic were obtained by a synchrotron radiation beamline. The inner diameter of the mono-capillary optic was measured and analyzed by the pixel values of the X-ray image. Edge enhancement effect was quite useful in determining the inner diameter, and the accuracy of the diameter determination was less than 1.32 μm. Many images obtained by scanning the mono-capillary optic along the axial direction were combined, and the axial profile, consisting of diameters along the axial direction, was obtained from the combined image. The X-ray imaging method could provide an accurate measurement with slope error of±19 μrad. Applying X-ray imaging technique to determine the inner diameter of a mono-capillary optic can contribute to increasing fabrication accuracy of the mono-capillary optic through a feedback process between the fabrication and measurement of its diameter.

  4. Sub-keV, subnanosecond measurements of x-ray spectra from laser-produced plasmas

    International Nuclear Information System (INIS)

    Kornblum, H.N.; Koppel, L.N.; Slivinsky, V.W.; Glaros, S.S.; Ahlstrom, H.G.; Larsen, J.T.

    1977-01-01

    As part of the effort to extend our x-ray diagnostic capabilities, we have made x-ray spectral measurements of laser-produced plasmas for photon energies down to 100 eV with a time response of 0.5 nsec. Fast, windowless x-ray diodes were used in conjunction with critical angle reflecting mirrors and thin filters for energy definition for two channels, 300 to 600 eV and 800 to 1300 eV. A third channel, using only an x-ray diode and filter, provided spectral information in the 100 to 300 eV region. Results from exploding pusher targets will be presented and compared with those of other diagnostic techniques and Lasnex calculations. Future expansion and modifications of the present system will be discussed

  5. Measurement of thickness of thin films by the X-ray diffraction method

    International Nuclear Information System (INIS)

    Srinivasan, C.; Balasingh, C.; Singh, A.K.

    1979-07-01

    X-ray diffraction method can be used to measure the thickness of thin films (coatings). The principle and the experimental details of the x-ray diffraction methods are described. The intensities of the diffracted beams are derived assuming a random orientation of the crystallites in the diffracting medium. Consequently, the expressions are not valid when the sample has preferred orientation. To check the performance of the method, thicknesses of nickel deposits on mild steel plates were determined by the x-ray diffraction method and the results compared with those obtained by the weighing method and metallographic examination. The weighing method which gives an accuracy of +- 0.1 micron is taken as the standard. The x-ray diffraction methods and the metallographic examinations give values within +- 1 micron of the value obtained by the weighing method. (author)

  6. Rapid detection of chromosome rearrangement in medical diagnostic X-ray workers by using fluorescence in situ hybridization and study on dose estimation

    International Nuclear Information System (INIS)

    Wang Zhiquan; Sun Yuanming; Li Jin

    1998-01-01

    Objective: Biological doses were estimated for medical diagnostic X-ray workers. Methods: Chromosome rearrangements in X-ray workers were analysed by fluorescence in situ hybridization (FISH) with composite whole chromosome paintings number 4 and number 7. Results: The frequency of translocation in medical diagnostic X-ray workers was much higher than that in control group (P<0.01). The biological doses to individual X-ray workers were calculated by their translocation frequency. The translocation frequencies of both FISH and G-banding were in good agreement. Conclusion: The biological doses to X-ray workers are estimated by FISH first when their dosimetry records are not documented

  7. In situ x-ray photoelectron spectroscopy and capacitance voltage characterization of plasma treatments for Al2O3/AlGaN/GaN stacks

    International Nuclear Information System (INIS)

    Qin, Xiaoye; Lucero, Antonio; Azcatl, Angelica; Kim, Jiyoung; Wallace, Robert M.

    2014-01-01

    We investigate the Al 2 O 3 /AlGaN/GaN metal-oxide-semiconductor structure pretreated by O 2 anneals, N 2 remote plasma, and forming gas remote plasma prior to atomic layer deposition of Al 2 O 3 using in situ X-ray photoelectron spectroscopy, low energy electron diffraction, and capacitance- voltage measurements. Plasma pretreatments reduce the Ga-oxide/oxynitride formation and the interface state density, while inducing a threshold voltage instability.

  8. In Situ X-ray Diffraction Studies of Cathode Materials in Lithium Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X. Q.; Sun, X.; McBreen, J.; Mukerjee, S.; Gao, Yuan; Yakovleva, M. V.; Xing, X. K.; Daroux, M. L.

    1998-11-01

    There is an increasing interest in lithiated transition metal oxides because of their use as cathodes in lithium batteries. LiCoO{sub 2}, LiNiO{sub 2} and LiMn{sub 2}O{sub 4} are the three most widely used and studied materials, At present, although it is relative expensive and toxic, LiCoO{sub 2} is the material of choice in commercial lithium ion batteries because of its ease of manufacture, better thermal stability and cycle life. However, the potential use of lithium ion batteries with larger capacity for power tools and electric vehicles in the future will demand new cathode materials with higher energy density, lower cost and better thermal stability. LiNiO{sub 2} is isostructural with LiCoO{sub 2}. It offers lower cost and high energy density than LiCoO{sub 2}. However, it has much poorer thermal stability than LiCoO{sub 2}, in the charged (delithiated) state. Co, Al, and other elements have been used to partially replace Ni in LiNiO{sub 2} system in order to increase the thermal stability. LiMn{sub 2}O{sub 4} has the highest thermal stability and lowest cost and toxicity. However, the low energy density and poor cycle life at elevated temperature are the major obstacles for this material. In order to develop safer, cheaper, and better performance cathode materials, the in-depth understanding of the relationships between the thermal stability and structure, performance and structure are very important. The performance here includes energy density and cycle life of the cathode materials. X-ray diffraction (XRD) is one of the most powerful tools to study these relationships. The pioneer ex situ XRD work on cathode materials for lithium batteries was done by Ohzuku. His XRD studies on LiMn{sub 2}O{sub 4}, LiCoO{sub 2}, LiNiO{sub 2}, LiNi{sub 0.5}Co{sub 0.5}O{sub 2}, and LiAl{sub x}Ni{sub 1-x}O{sub 2} cathodes at different states of charge have provided important guidelines for the development of these new materials. However, the kinetic nature of the battery

  9. Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source (HTPD 08 paper)

    International Nuclear Information System (INIS)

    Haugh, M; Schneider, M B

    2008-01-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 (micro)m square pixels, and 15 (micro)m thick. A multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE ∼ 10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager

  10. Design And Measurement Of Radiation Exposure Rates At An X-Ray Diagnostic Radiological Unit

    International Nuclear Information System (INIS)

    Tito-Sutjipto

    2003-01-01

    Every radiation employees suffers radiation exposure risk while doing his job. It is important therefore to investigate the occupational health and safety of radiation employees on its relationship with the design and measurement of radiation exposure rates at an X-ray diagnostic radiological unit in this work, a case study was held on the radiological unit at BP-4 Yogyakarta for patient diagnostics, This research armed to investigate the relationship between the design of radiological unit for X-ray diagnostics and the location of the X-ray machine, based on the distance variable and radiation exposure rate during patient diagnostics. This was performed using radiological unit design data for X-ray diagnostics and the measurement of radiation exposure rates throughout patient diagnostics. The design data can then be used for determining the requirement of primary and secondary shielding materials for radiological unit as well as a calculation basis of radiation exposure rates during patient diagnostics. From the result of the research, it can be concluded that from the occupational health and safety point of view, radiation exposure around the X-ray machines are fairly good, both for the shielding materials in each X-ray room and the radiation exposures received by the workers, because they are far beyond the maximum permittable average limit (16.67 m R/days). (author)

  11. X-ray beam method for displacement measurement in hostile environments

    Science.gov (United States)

    Jordan, Eric H.; Pease, D. M.; Canistraro, H.; Brew, Dale

    1989-01-01

    A new method of extensometry using an X-ray beam was devised, and the results of current testing reveal it to be highly feasible. This technique has been shown to provide a non-contacting system that is immune to problems associated with density variations in gaseous environments, that plague currently available optical methods. This advantage is a result of the non-refracting penetrating nature of X-rays. The method is based on X-ray-induced X-ray fluorescence of targets, which subsequently serve as fudicial markers. Some target materials have melting points over 1600 degrees C which will facilitate measurement at extremely high temperatures. A highly focused intense X-ray beam, which is produced using a Johansen 'bent crystal', is then scanned across the target, which responds by fluorescing X-rays when stimulated by the incident beam. This secondary radiation is monitored using a detector. By carefully measuring beam orientation, change in target edge position can be determined. Many variations on this basic theme are now possible such as two targets demarcating a gage length, or a beam shadowing method using opaque targets.

  12. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts.

    Science.gov (United States)

    van Oversteeg, Christina H M; Doan, Hoang Q; de Groot, Frank M F; Cuk, Tanja

    2017-01-03

    X-ray absorption studies of the geometric and electronic structure of primarily heterogeneous Co, Ni, and Mn based water oxidation catalysts are reviewed. The X-ray absorption near edge and extended X-ray absorption fine structure studies of the metal K-edge, characterize the metal oxidation state, metal-oxygen bond distance, metal-metal distance, and degree of disorder of the catalysts. These properties guide the coordination environment of the transition metal oxide radical that localizes surface holes and is required to oxidize water. The catalysts are investigated both as-prepared, in their native state, and under reaction conditions, while transition metal oxide radicals are generated. The findings of many experiments are summarized in tables. The advantages of future X-ray experiments on water oxidation catalysts, which include the limited data available of the oxygen K-edge, metal L-edge, and resonant inelastic X-ray scattering, are discussed.

  13. A rotational and axial motion system load frame insert for in situ high energy x-ray studies

    Energy Technology Data Exchange (ETDEWEB)

    Shade, Paul A., E-mail: paul.shade.1@us.af.mil; Schuren, Jay C.; Turner, Todd J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Blank, Basil [PulseRay, Beaver Dams, New York 14812 (United States); Kenesei, Peter; Goetze, Kurt; Lienert, Ulrich; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Suter, Robert M. [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Bernier, Joel V.; Li, Shiu Fai [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lind, Jonathan [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-09-15

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.

  14. In situ alkali-silica reaction observed by x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurtis, K.E.; Monteiro, P.J.M. [Univ. of California, Berkeley, CA (United States); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  15. Scanning of Adsorption Hysteresis In Situ with Small Angle X-Ray Scattering

    Science.gov (United States)

    Mitropoulos, Athanasios Ch.; Favvas, Evangelos P.; Stefanopoulos, Konstantinos L.; Vansant, Etienne F.

    2016-01-01

    Everett’s theorem-6 of the domain theory was examined by conducting adsorption in situ with small angle x-ray scattering (SAXS) supplemented by the contrast matching technique. The study focuses on the spectrum differences of a point to which the system arrives from different scanning paths. It is noted that according to this theorem at a common point the system has similar macroscopic properties. Furthermore it was examined the memory string of the system. We concluded that opposite to theorem-6: a) at a common point the system can reach in a finite (not an infinite) number of ways, b) a correction for the thickness of the adsorbed film prior to capillary condensation is necessary, and c) the scattering curves although at high-Q values coincide, at low-Q values are different indicating different microscopic states. That is, at a common point the system holds different metastable states sustained by hysteresis effects. These metastable states are the ones which highlight the way of a system back to a return point memory (RPM). Entering the hysteresis loop from different RPMs different histories are implanted to the paths toward the common point. Although in general the memory points refer to relaxation phenomena, they also constitute a characteristic feature of capillary condensation. Analogies of the no-passing rule and the adiabaticity assumption in the frame of adsorption hysteresis are discussed. PMID:27741263

  16. In situ alkali-silica reaction observed by x-ray microscopy

    International Nuclear Information System (INIS)

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-01-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction

  17. X-RAY MEASUREMENTS OF IMPACTED MANDIBULAR THIRD MOLARS

    Directory of Open Access Journals (Sweden)

    Petya G. Kanazirska

    2017-03-01

    Full Text Available The X-ray diagnostics is essential in case of retention of teeth. An important condition for proper treatment plan for impacted third molars of the mandible is the determination of the type of retention in the jaw in accordance with their medio-distal inclination and the space available for eruption (retromolar space. Purpose: The purpose of this article is to present an objective method for determination of the medio-distal inclination and the space for eruption of the third molars of the mandible. Materials and methods: The studied patients with impacted third molars of the mandible are 127, aged 17 through 60. They were examined with Cone-beam Computed Tomography (CBCT. On the orthopantomography, obtained after the scanning as a reconstructed image, we defined the medio-distal inclination and space for eruption of the third molars of the mandible. For this purpose, we summarized several methods. Results: The most common inclination of the third molars of the mandible with retained eruption is the medial one at 120 teeth (61.5% ± 3.5. Second in frequency is the vertical one-34 teeth (17.4% ± 2.7, followed by the distal inclination– 21 teeth (10.8% ± 2.2. With the lowest frequency are the teeth which are positioned horizontally –20 teeth (10.3% ± 2.2. Shortage of retromolar space is established for173 teeth (88.7% ± 2.3. In 22 teeth (11.3% ± 2.3 there is enough space in the jaw for eruption. Conclusion: An objective method for determination of the medio-distal inclination of the teeth and the space available for eruption is introduced for the first time in Bulgaria. By determining the inclination of impacted wisdom teeth under this methodology one can avoid the subjective factor–the seventh tooth. It is not a reference plane, because it can also be tilted or missing. With the help of the developed method the retromolar point can be determined more objectively.

  18. In-situ observation of polymer blend phase separation by x-ray Talbot-Lau interferometer

    Science.gov (United States)

    Wu, Yanlin; Takano, Hidekazu; Momose, Atsushi

    2017-10-01

    Talbot interferometer using white synchrotron radiation has been demonstrated for time-resolved X-ray phase imaging and tomography as well as four-dimensional phase tomography to observe dynamics in samples. In this study, X-ray phase tomography has been used to follow the time evolution of phase separation in polymer blend through heating treatment. For this purpose, we performed in-situ X-ray phase imaging and tomography with X-ray Talbot-Lau interferometer using white synchrotron radiation. The X-ray Talbot-Lau interferometer consisted of a source grating (30 μm in period), a π/2 phase grating (4.5 μm in period), an amplitude grating (5.3 μm in period) and a high-speed camera. A polymer blend sample of polystyrene (PS) (Mw = 76,500) and polymethyl methacrylate (PMMA) (Mw = 33,200) was used for the CT observation. A compound of the PS and PMMA was made by a twin-screw kneading extruder and put into an Al tube whose inner diameter was 6 mm. The sample temperature was maintained at desired temperature sequence by controlling a lamp for heating, and CT scans were repeated to track the changes in sample structures at a temporal resolution of 5 seconds. PS-rich phase and PMMA-rich phase changing with time evolution were revealed.

  19. Eta Carinae's Thermal X-Ray Tail Measured with XMM-Newton and NuStar

    Science.gov (United States)

    Hamaguchi, Kenji; Corcoran, Michael F.; Gull, Theodore R.; Takahashi, Hiromitsu; Grefenstette, Brian; Yuasa, Takayuki; Stuhlinger, Martin; Russell, Christopher; Moffat, Anthony F. J.; Madura, Thomas

    2016-01-01

    The evolved, massive highly eccentric binary system, Car, underwent a periastron passage in the summer of 2014. We obtained two coordinated X-ray observations with XMM-Newton and NuSTAR during the elevated X-ray flux state and just before the X-ray minimum flux state around this passage. These NuSTAR observations clearly detected X-ray emission associated with eta Car extending up to approx. 50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit with the bremsstrahlung tail from a kT approx. 6 keV plasma. This temperature is delta kT 2 keV higher than those measured from the iron K emission line complex, if the shocked gas is in collisional ionization equilibrium. This result may suggest that the companion star's pre-shock wind velocity is underestimated. The NuSTAR observation near the X-ray minimum state showed a gradual decline in the X-ray emission by 40% at energies above 5 keV in a day, the largest rate of change of the X-ray flux yet observed in individual eta Car observations. The column density to the hardest emission component, N(sub H) approx. 10(exp24) H cm(exp-2), marked one of the highest values ever observed for eta Car, strongly suggesting the increased obscuration of the wind-wind colliding X-ray emission by the thick primary stellar wind prior to superior conjunction. Neither observation detected the power-law component in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011. The power-law source might have faded before these observations.

  20. A measurement of radiation output from X- ray tubes: AIIMS experience

    International Nuclear Information System (INIS)

    Karan, R.; Bahl, Shaila; Thulkar, S.; Kumar, Pratik

    2016-01-01

    The production of x-rays is a relatively inefficient process so that only a small fraction of the energy imparted by the decelerating electrons is converted into X-rays. The remaining energy is converted to heat. Thus, the production and dissipation of heat in the X-ray tube is a serious consideration. Quality control is a system of routine technical activities, to measure and control the quality of the inventory as it is being developed. This paper aims to study the X-ray tube output of the Digital flat panel Detector X-ray (Aristos MX) Unit. The radiation output of the tube was being monitored for duration of 1 year from July 2011 to June 2012 for two different KVp and mAs namely 81 KVp, 125 mAs and 60 KVp, 100mAs. The results obtained were plotted with the intensity of X-ray output obtained with respect to months and the results were analyzed. (author)

  1. X-ray imaging with amorphous selenium: Pulse height measurements of avalanche gain fluctuations

    International Nuclear Information System (INIS)

    Lui, Brian J. M.; Hunt, D. C.; Reznik, A.; Tanioka, K.; Rowlands, J. A.

    2006-01-01

    Avalanche multiplication in amorphous selenium (a-Se) can provide a large, adjustable gain for active matrix flat panel imagers (AMFPI), enabling quantum noise limited x-ray imaging during both radiography and fluoroscopy. In the case of direct conversion AMFPI, the multiplication factor for each x ray is a function of its depth of interaction, and the resulting variations in gain can reduce the detective quantum efficiency (DQE) of the system. An experimental method was developed to measure gain fluctuations by analyzing images of individual x rays that were obtained using a video camera with an a-Se target operated in avalanche mode. Pulse height spectra (PHS) of the charge produced per x ray were recorded for monoenergetic 30.9, 49.4, and 73.8 keV x-ray sources. The rapid initial decay and long tail of each PHS can be explained by a model in which positive charge dominates the initiation of avalanche. The Swank information factor quantifies the effect of gain fluctuation on DQE and was calculated from the PHS. The information factor was found to be 0.5 for a 25 μm a-Se layer with a maximum gain of ∼300. Changing the energy of the incident x ray influenced the range of the primary photoelectron and noticeably affected the tail of the experimental PHS, but did not significantly change the avalanche Swank factor

  2. X-Ray Diffraction for In-Situ Mineralogical Analysis of Planetesimals.

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Dera, P.; Downs, R. T.; Taylor, J.

    2017-12-01

    X-ray diffraction (XRD) is a general purpose technique for definitive, quantitative mineralogical analysis. When combined with XRF data for sample chemistry, XRD analyses yield as complete a characterization as is possible by any spacecraft-capable techniques. The MSL CheMin instrument, the first XRD instrument flown in space, has been used to establish the quantitative mineralogy of the Mars global soil, to discover the first habitable environment on another planet, and to provide the first in-situ evidence of silicic volcanism on Mars. CheMin is now used to characterize the depositional and diagenetic environments associated with the mudstone sediments of lower strata of Mt. Sharp. Conventional powder XRD requires samples comprised of small grains presented in random orientations. In CheMin, sample cells are vibrated to cause loose powder to flow within the cell, driven by granular convection, which relaxes the requirement for fine grained samples. Nevertheless, CheMin still requires mechanisms to collect, crush, sieve and deliver samples before analysis. XTRA (Extraterrestrial Regolith Analyzer) is an evolution of CheMin intended to analyze fines in as-delivered surface regolith, without sample preparation. Fine-grained regolith coats the surfaces of most airless bodies in the solar system, and because this fraction is typically comminuted from the rocky regolith, it can often be used as a proxy for the surface as a whole. HXRD (Hybrid-XRD) is concept under development to analyze rocks or soils without sample preparation. Like in CheMin, the diffracted signal is collected with direct illumination CCD's. If the material is sufficiently fine-grained, a powder XRD pattern of the characteristic X-ray tube emission is obtained, similar to CheMin or XTRA. With coarse grained crystals, the white bremsstrahlung radiation of the tube is diffracted into Laue patterns. Unlike typical Laue applications, HXRD uses the CCD's capability to distinguish energy and analyze the

  3. Solar quiescent Active Region temperature distribution inferred from the Miniature Solar X-ray Solar Spectrometer (MinXSS) CubeSat soft X-ray spectra, Hinode X-ray Telescope (XRT) soft X-ray filter images and EUV measurements.

    Science.gov (United States)

    Moore, C. S.; Woods, T. N.; Caspi, A.; Mason, J. P.

    2016-12-01

    Soft X-rays serve as an important diagnostic tool for hot (T > 106 K) solar coronal plasma elemental composition, elemental ionization states, density of emitting plasma and dynamical events triggered by magnetic field structures. Spectrally resolved, solar disc averaged, soft X-ray spectra from the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat combined with spatially resolved soft X-ray filter images from the Hinode X-ray Telescope (XRT) and complimentary EUV data can yield unique inferences of the quiescent (non-flaring) active regions' emitting plasma temperature distribution and chemical composition. This talk will discuss how the MinXSS spectra and Hinode XRT images from the sparsely measured 0.7 - 10 keV ( 0.124 - 1.77 nm) region, can augment estimations of active region temperature distribution and elemental abundance variations that are currently being assessed primarily from typical EUV and hard X-ray observations.

  4. Measurements of heel pad thickness in normal Koreans by ultrasound and conventional X-ray

    International Nuclear Information System (INIS)

    Chung, Bong Lin; Kim, Yang Su; Kim, Kun Sang

    1987-01-01

    The measurement of heel pad thickness (HPT) has never been done by ultrasound in healthy Korean. To establish normal standard value of HPT in Koreans, 87 healthy volunteers were examined using 10MHZ high resolution ultrasound. As a control, measurement of HPT were done in 46 healthy volunteers on conventional X-ray. The results are as follows; 1. In ultrasonic measurement cases, the mean value of right HPT is 15.8 ± 1.9 mm and the mean value of left HPT is 15.4 ± 2.0mm. In X-ray measurement cases, the mean value of right HPT is 19.9 ± 2.17mm and the mean value of left HPT is 19.8 ± 2.28mm. 2. Maximum value of HPT is 20.8mm in ultrasonic measurement cases, 23mm in X-ray measurement cases. 3. The value of HPT is well correlated with weight, height both in ultrasound and in X-ray measurement (ρ < 0.05). Correlation between the value of HPT and age is not evident (correlation coefficients = -0.18, -0.15). There is no significant difference between left and right foot (ρ < 0.05), and male and female (ρ < 0.05). 4. The results can be considered that there is no significant difference in normal standard value of HPT between Koreans and white, and that upper limit of normal in Koreans is 23mm by conventional X-ray

  5. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry

    Energy Technology Data Exchange (ETDEWEB)

    Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng; Lin, Deqing; Dai, Liming

    2017-05-26

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurements and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.

  6. In situ synchrotron radiation X-ray diffraction studies on molecular aggregation structure of nylon 12 films during bulge testing.

    Science.gov (United States)

    Kojio, Ken; Nagano, Chigusa; Fujimoto, Aya; Nozaki, Shuhei; Yokomachi, Kazutoshi; Kamitani, Kazutaka; Watanabe, Hirohmi; Takahara, Atsushi

    2018-02-28

    It is desirable to establish a method for evaluating mechanical properties, such as modulus and strength, of micrometer and sub-micrometer thick polymer films. Bulge tests, where bulge deformation is imposed on films by the pressure of an inert gas, are suitable for satisfying this demand. However, very few studies on polymer films exist in the literature. In this study, bulge testing equipment for in situ synchrotron radiation wide-angle X-ray diffraction (WAXD) measurements is designed and used to study the relationship between the molecular aggregation structure and the mechanical properties of a crystalline nylon 12 (Ny12) film during bulge testing. Isothermally crystallized and quenched Ny12 films exhibited stress-strain curves similar to those obtained by conventional uniaxial elongation. In situ WAXD measurements during bulge testing revealed that the lattice extension of the crystallites is clearly dependent on crystallinity. Concretely, crystallites in the isothermally crystallized film show higher elastic properties than those in the quenched one. The results of the molecular aggregation structure, including the crystal structure and the amorphous chain surrounding the crystallites, of the films during bulge deformation firstly obtained in this study must be useful for designing toughened polymer films.

  7. Hydrogen Absorption in Metal Thin Films and Heterostructures Investigated in Situ with Neutron and X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Sara J. Callori

    2016-05-01

    Full Text Available Due to hydrogen possessing a relatively large neutron scattering length, hydrogen absorption and desorption behaviors in metal thin films can straightforwardly be investigated by neutron reflectometry. However, to further elucidate the chemical structure of the hydrogen absorbing materials, complementary techniques such as high resolution X-ray reflectometry and diffraction remain important too. Examples of work on such systems include Nb- and Pd-based multilayers, where Nb and Pd both have strong affinity to hydrogen. W/Nb and Fe/Nb multilayers were measured in situ with unpolarized and polarized neutron reflectometry under hydrogen gas charging conditions. The gas-pressure/hydrogen-concentration dependence, the hydrogen-induced macroscopic film swelling as well as the increase in crystal lattice plane distances of the films were determined. Ferromagnetic-Co/Pd multilayers were studied with polarized neutron reflectometry and in situ ferromagnetic resonance measurements to understand the effect of hydrogen absorption on the magnetic properties of the system. This electronic effect enables a novel approach for hydrogen sensing using a magnetic readout scheme.

  8. X-ray stress measurement of ferritic steel using fourier analysis of Debye-Scherrer ring

    International Nuclear Information System (INIS)

    Fujimoto, Yohei; Sasaki, Toshihiko; Miyazaki, Toshiyuki

    2015-01-01

    In this study, X-ray stress measurements of ferritic steel based on Fourier analysis are conducted. Taira et al. developed the cosα method for X-ray stress measurements using a two-dimensional X-ray detector. Miyazaki et al. reported that the cosα method can be described more concisely by developing the Fourier series (the Fourier analysis method). The Fourier analysis method is expected to yield the stress measurement with an imperfect Debye-Scherrer ring and there is a possibility that the materials evaluation is different compared with the conventional method, that is, the sin 2 ψ method. In the Fourier analysis method, the strain measured by X-rays is developed as a Fourier series, and all the plane-stress components can be calculated from the Fourier series. In this study, the normal stress calculation was confirmed. In addition, the Fourier-analysis and cosα methods were used for X-ray stress measurements during a four-point bending test on a S45C test piece, and the effectiveness of the Fourier analysis method was confirmed. It was found that the experimental results from the Fourier analysis and cosα methods were nearly identical. In addition, the measurement accuracies of both the methods were equivalent. (author)

  9. Experimental measurement of lattice strain pole figures using synchrotron x rays

    International Nuclear Information System (INIS)

    Miller, M.P.; Bernier, J.V.; Park, J.-S.; Kazimirov, A.

    2005-01-01

    This article describes a system for mechanically loading test specimens in situ for the determination of lattice strain pole figures and their evolution in multiphase alloys via powder diffraction. The data from these experiments provide insight into the three-dimensional mechanical response of a polycrystalline aggregate and represent an extremely powerful material model validation tool. Relatively thin (0.5 mm) iron/copper specimens were axially strained using a mechanical loading frame beyond the macroscopic yield strength of the material. The loading was halted at multiple points during the deformation to conduct a diffraction experiment using a 0.5x0.5 mm 2 monochromatic (50 keV) x ray beam. Entire Debye rings of data were collected for multiple lattice planes ({hkl}'s) in both copper and iron using an online image plate detector. Strain pole figures were constructed by rotating the loading frame about the specimen transverse direction. Ideal powder patterns were superimposed on each image for the purpose of geometric correction. The chosen reference material was cerium (IV) oxide powder, which was spread in a thin layer on the downstream face of the specimen using petroleum jelly to prevent any mechanical coupling. Implementation of the system at the A2 experimental station at the Cornell High Energy Synchrotron Source (CHESS) is described. The diffraction moduli measured at CHESS were shown to compare favorably to in situ data from neutron-diffraction experiments conducted on the same alloys

  10. In situ characterization of aluminum-containing mineral-microorganism aqueous suspensions using scanning transmission X-ray microscopy.

    Science.gov (United States)

    Yoon, Tae Hyun; Johnson, Stephen B; Benzerara, Karim; Doyle, Colin S; Tyliszczak, Tolek; Shuh, David K; Brown, Gordon E

    2004-11-23

    In situ characterization of colloidal particles under hydrous conditions is one of the key requirements for understanding their state of aggregation and impact on the transport of pollutants in aqueous environments. Scanning transmission X-ray microscopy (STXM) is one of the few techniques that can satisfy this need by providing element- and chemical-state-specific 2-D maps at a spatial resolution better than 50 nm using soft X-rays from synchrotron radiation wiggler or undulator sources tuned to the absorption edges of different elements. X-ray absorption near-edge structure (XANES) spectra can also be collected simultaneously at a similar spatial resolution and can provide phase identification in many cases. In this study, we report STXM images and XANES spectroscopy measurements at or above the Al K-edge (E = 1559.6 eV) of various Al-containing minerals and synthetic oxides [alpha-Al2O3 (corundum), gamma-Al2O3, gamma-AlOOH (boehmite), alpha-Al(OH)3 (bayerite), KAl2(AlSi3O10)(OH)2 (muscovite), (Al,Mg)8(Si4O10)4(OH)8.nH2O (montmorillonite), and Mg6Al2(OH)16CO3.4H2O (hydrotalcite)] and demonstrate the capability of this spectromicroscopic tool to identify different Al-containing mineral colloids in multiphase mixtures in aqueous solution. We also demonstrate that STXM imaging at or above the C K-edge (E = 284.2 eV) and Al K-edge can provide unique information on the interactions between bacteria and Al-containing nanoparticles in aqueous suspensions. STXM images of a mixture of Caulobacter crescentus and montmorillonite and corundum particles just above the C and Al K-edges show that the mineral particles and bacteria are closely associated in aggregates, which is likely due to the binding of bacteria to clay and corundum particles by extracellular polysaccharides.

  11. Application of x-ray fluorescence to the measurement of additives in paper

    International Nuclear Information System (INIS)

    Buchnea, A.; McNelles, L.A.; Sinclair, A.H.; Hewitt, J.S.

    1976-01-01

    Titanium dioxide content in paper was measured by x-ray fluorescence analysis using an 55 Fe source and an x-ray proportional counter to determine the feasibility of an on-line instrument. X-ray calibration curves for 60- and 100-g/m 2 paper samples were obtained using neutron activation to measure the titanium dioxide concentration. The predictions of a simple model were in good agreement with the experimental calibration curves. The measurements and calculations were extended to investigate the effects of clay and moisture. The presence of clay has a significant effect on the x-ray fluorescence determination of the titanium dioxide concentration; however, this can be well accounted for by the model. The calculations indicated that the effect of typical moisture levels on the titanium dioxide determination was small and can be ignored. It is not possible to measure the clay content by x-ray fluorescence; however, preliminary results for the determination of calcium carbonate concentration are promising

  12. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.; Scott, H. A.; Biener, M. M.; Fein, J. R.; Fournier, K. B.; Gamboa, E. J.; Kemp, G. E.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J. -E.; Wan, W. C.; Drake, R. P.

    2016-09-28

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.

  13. In situ X-ray ptychography imaging of high-temperature CO2 acceptor particle agglomerates

    DEFF Research Database (Denmark)

    Høydalsvik, Kristin; Fløystad, Jostein Bø; Zhao, Tiejun

    2014-01-01

    Imaging nanoparticles under relevant reaction conditions of high temperature and gas pressure is difficult because conventional imaging techniques, like transmission electron microscopy, cannot be used. Here we demonstrate that the coherent diffractive imaging technique of X-ray ptychography can ...

  14. Measurements of transient electron density distributions by femtosecond X-ray diffraction

    International Nuclear Information System (INIS)

    Freyer, Benjamin

    2013-01-01

    This thesis concerns measurements of transient charge density maps by femtosecond X-ray diffraction. Different X-ray diffraction methods will be considered, particularly with regard to their application in femtosecond X-ray diffraction. The rotation method is commonly used in stationary X-ray diffraction. In the work in hand an X-ray diffraction experiment is demonstrated, which combines the method with ultrafast X-ray pulses. This experiment is the first implementation which makes use of the rotation method to map transient intensities of a multitude of Bragg reflections. As a prototype material Bismuth is used, which previously was studied frequently by femtosecond X-ray diffraction by measuring Bragg reflections successively. The experimental results of the present work are compared with the literature data. In the second part a powder-diffraction experiment will be presented, which is used to study the dynamics of the electron-density distribution on ultrafast time scales. The experiment investigates a transition metal complex after photoexcitation of the metal to ligand charge transfer state. Besides expected results, i. e. the change of the bond length between the metal and the ligand and the transfer of electronic charge from the metal to the ligand, a strong contribution of the anion to the charge transfer was found. Furthermore, the charge transfer has predominantly a cooperative character. That is, the excitation of a single complex causes an alteration of the charge density of several neighboring units. The results show that more than 30 transition-metal complexes and 60 anions contribute to the charge transfer. This collective response is a consequence of the strong coulomb interactions of the densely packed ions.

  15. Investigation of the internal electric field distribution under in situ x-ray irradiation and under low temperature conditions by the means of the Pockels effect

    International Nuclear Information System (INIS)

    Prekas, G; Sellin, P J; Veeramani, P; Davies, A W; Lohstroh, A; Oezsan, M E; Veale, M C

    2010-01-01

    The internal electric field distribution in cadmium zinc telluride (CdZnTe) x-ray and γ-ray detectors strongly affects their performance in terms of charge transport and charge collection properties. In CdZnTe detectors the electric field distribution is sensitively dependent on not only the nature of the metal contacts but also on the working conditions of the devices such as the temperature and the rate of external irradiation. Here we present direct measurements of the electric field profiles in CdZnTe detectors obtained using the Pockels electo-optic effect whilst under in situ x-ray irradiation. These data are also compared with alpha particle induced current pulses obtained by the transient current technique, and we discuss the influence of both low temperature and x-ray irradiation on the electric field evolution. Results from these studies reveal strong distortion of the electric field consistent with the build-up of space charge at temperatures below 250 K, even in the absence of external irradiation. Also, in the presence of x-ray irradiation levels a significant distortion in the electric field is observed even at room temperature which matches well the predicted theoretical model.

  16. Structural investigations of LiFePO4 electrodes and in situ studies by Fe X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Deb, Aniruddha; Bergmann, Uwe; Cramer, S.P.; Cairns, Elton J.

    2005-01-01

    Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on electrodes containing LiFePO 4 to determine the local atomic and electronic structure and their stability with electrochemical cycling. A versatile electrochemical in situ cell has been constructed for long-term soft and hard X-ray experiments for the structural investigation on battery electrodes during the lithium-insertion/extraction processes. The device is used here for an X-ray absorption spectroscopic study of lithium insertion/extraction in a LiFePO 4 electrode, where the electrode contained about 7.7 mg of LiFePO 4 on a 20 μm thick Al-foil. Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on this electrode to determine the local atomic and electronic structure and their stability with electrochemical cycling. The initial state (LiFePO 4 ) showed iron to be in the Fe 2+ state corresponding to the initial state (0.0 mAh) of the cell, whereas in the delithiated state (FePO 4 ) iron was found to be in the Fe 3+ state corresponding to the final charged state (3 mAh). XANES region of the XAS spectra revealed a high spin configuration for the two states (Fe (II), d 6 and Fe (III), d 5 ). The results confirm that the olivine structure of the LiFePO 4 and FePO 4 is retained by the electrodes in agreement with the XRD observations reported previously. These results confirm that LiFePO 4 cathode material retains good structural short-range order leading to superior cycling capability

  17. Time-resolved measurements of x-ray damage to optical coatings

    Science.gov (United States)

    Elton, R. C.; Grun, J.; Burkhalter, P. G.; Burris, H. R.; Ripin, B. H.; Newman, D. A.; Millard, J. R.; Bey, D.-M.; Manka, C. K.; Konnert, J.

    1997-02-01

    Thin film optical coatings are susceptible to damage by high intensity x rays. Time-resolved measurements of this damage are required to better understand the mechanism, so that more rugged coatings can be developed. In the present experiment, dark-field shadowgraphy was used to temporally map the x-ray damage across the surface of certain anti-reflecting (AR) coatings. Two beams from the NRL PHAROS III high power Nd:glass laser system were utilized to generate a point source of plasma x rays, which in turn was used to irradiate and damage the optical coatings. Thin, opaque filters, coupled with permanent magnets and pinholes, were used to shield the optical samples from ultraviolet and charged-particle damage, respectively. The absolute, time-integrated x-ray fluence was measured with a crystal spectrograph, and also was temporally resolved with an x-ray diode. The surface morphology of the damaged optical samples was examined after each shot visually, and later with a profilometer as well as with both scanning electron- and atomic-force microscopes. A measured threshold fluence for damage of 0.049±30% cal/cm2 agrees very well with a radiation-damage code prediction of 0.046 cal/cm2.

  18. In-situ Characterization of Molecular Processes in Liquids by Ultrafast X-ray Absorption Spectroscopy

    Science.gov (United States)

    Chergui, Majed

    The need to visualize molecular and electronic structure in the course of a chemical reaction, a phase transformation a biological function has been the dream of scientists for decades. The development of time-resolved X-ray and electron based methods is making this true. X-ray absorption spectroscopy is ideal for the study of structural dynamics in liquids, because it can be implemented in amorphous media and it is chemically selective. Using X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) in laser pump/X-ray probe experiments allows the retrieval of the local geometric structure of the system under study, but also the underlying photoinduced electronic structure changes that drive the structural dynamics. We review the recent development in picosecond and femtosecond X-ray absorption spectroscopy applied to molecular systems in solution: examples on ultrafast photoinduced processes such as intramolecular electron transfer, high-to-low spin change, bond formation and water dynamics are presented.

  19. Analysis of biological slurry samples by total x-ray fluorescence after in situ microwave digestion

    International Nuclear Information System (INIS)

    Lue-Meru, M.P.; Capote, T.; Greaves, E.

    2000-01-01

    Biological slurry samples were analyzed by total reflection x-ray fluorescence (TXRF) after an in situ microwave digestion procedure on the quartz reflector. This method lead to the removal of the matrix by the digestion and permits the enrichment of the analites by using sample amounts higher than those normally used in TXRF for the thin layer requirement since the organic matrix is removed. In consequence, the pre-concentration of sample is performed and the detection capability is increased by a quasi direct method. The samples analyzed were the international IAEA blood standard, the SRM bovine liver 1577-a standard and fresh onion tissues. Slurries were prepared in three ways: a.- weighing a sample amount on the reflector and adding suprapure nitric acid and internal standard followed by microwave digestion, b.-weighing a sample amount and water with an appropriate concentration of the internal standard in an Eppendorf vial, taking then an aliquot to the quartz reflector for microwave digestion with suprapure nitric acid, c.- weighing a sample amount of fresh tissue, homogenising with high speed homegenator to obtain a slurry sample which can be diluted in an ependorf vial with water an the internal standard. Then an aliquot is taken to the reflector for microwave digestion with suprapure nitric acid. Further details of sample preparation procedures will be discussed during presentation. The analysis was carried out in a Canberra spectrometer using the Kalpha lines of the Ag and Mo tubes. The elements Ca, K, Fe, Cu, Zn, Se, Mn, Rb, Br, Sr were determined. The effect of the preparation procedure was evaluated by the accuracy and precision of the results for each element and the percent of recovery. (author)

  20. Measurement and simulation for a complementary imaging with the neutron and X-ray beams

    Directory of Open Access Journals (Sweden)

    Hara Kaoru Y.

    2017-01-01

    Full Text Available By using a composite source system, we measured radiographs of the thermal neutron and keV X-ray in the 45-MeV electron linear accelerator facility at Hokkaido University. The source system provides the alternative beam of neutron and X-ray by switching the production target onto the electron beam axis. In the measurement to demonstrate a complementary imaging, the detector based on a vacuum-tube type neutron color image intensifier was applied to the both beams for dual-purpose. On the other hand, for reducing background in a neutron transmission spectrum, test measurements using a gadolinium-type neutron grid were performed with a cold neutron source at Hokkaido University. In addition, the simulations of the neutron and X-ray transmissions for various substances were performed using the PHITS code. A data analysis procedure for estimating the substance of sample was investigated through the simulations.

  1. Measurement and simulation for a complementary imaging with the neutron and X-ray beams

    Science.gov (United States)

    Hara, Kaoru Y.; Sato, Hirotaka; Kamiyama, Takashi; Shinohara, Takenao

    2017-09-01

    By using a composite source system, we measured radiographs of the thermal neutron and keV X-ray in the 45-MeV electron linear accelerator facility at Hokkaido University. The source system provides the alternative beam of neutron and X-ray by switching the production target onto the electron beam axis. In the measurement to demonstrate a complementary imaging, the detector based on a vacuum-tube type neutron color image intensifier was applied to the both beams for dual-purpose. On the other hand, for reducing background in a neutron transmission spectrum, test measurements using a gadolinium-type neutron grid were performed with a cold neutron source at Hokkaido University. In addition, the simulations of the neutron and X-ray transmissions for various substances were performed using the PHITS code. A data analysis procedure for estimating the substance of sample was investigated through the simulations.

  2. Correction of build-up factor one x-ray hvl measurement

    International Nuclear Information System (INIS)

    Yuliati, Helfi; Akhadi, Mukhlis

    2000-01-01

    Research to obtain the value build-up factor (b) on half value layers (HVL) measurement of diagnostic X-Rays using pocket dosimeter behind aluminium (AI) filter with its thickness vary from 1 to 4 mm. From the measurement it was obtained HVL value of 1.997, 2.596 and 2.718 mmAI for X-Rays of kVp : 80 Kv with 1, 2, 3 and 4 mm filter thickness respectively. HVL value significantly increase with increasing AI filter thickness. Increasing of HVL means increasing filter thickness. From the calculation it was obtained increasing b value relative to 1 mm AI filter of 18.26 and 46% for filter thickness of 2, 3 and 4 mm respectively. Experiment result shows the need of involving b value in HVL calculation of X-Rays if the filter is relatively thick. Calculation of HVL of X-Rays can be carried out with thin layers filter. Key words : x-rays, half value layer, build up factor

  3. A flow cell for in situ synchrotron x-ray diffraction studies of scale formation under Bayer processing conditions

    Science.gov (United States)

    Webster, Nathan A. S.; Madsen, Ian C.; Loan, Melissa J.; Scarlett, Nicola V. Y.; Wallwork, Kia S.

    2009-08-01

    The design, construction, and commissioning of a stainless steel flow cell for in situ synchrotron x-ray diffraction studies of scale formation under Bayer processing conditions is described. The use of the cell is demonstrated by a study of Al(OH)3 scale formation on a mild steel substrate from synthetic Bayer liquor at 70 °C. The cell design allows for interchangeable parts and substrates and would be suitable for the study of scale formation in other industrial processes.

  4. In situ micro-focused X-ray beam characterization with a lensless camera using a hybrid pixel detector

    International Nuclear Information System (INIS)

    Kachatkou, Anton; Marchal, Julien; Silfhout, Roelof van

    2014-01-01

    Position and size measurements of a micro-focused X-ray beam, using an X-ray beam imaging device based on a lensless camera that collects radiation scattered from a thin foil placed in the path of the beam at an oblique angle, are reported. Results of studies on micro-focused X-ray beam diagnostics using an X-ray beam imaging (XBI) instrument based on the idea of recording radiation scattered from a thin foil of a low-Z material with a lensless camera are reported. The XBI instrument captures magnified images of the scattering region within the foil as illuminated by the incident beam. These images contain information about beam size, beam position and beam intensity that is extracted during dedicated signal processing steps. In this work the use of the device with beams for which the beam size is significantly smaller than that of a single detector pixel is explored. The performance of the XBI device equipped with a state-of-the-art hybrid pixel X-ray imaging sensor is analysed. Compared with traditional methods such as slit edge or wire scanners, the XBI micro-focused beam characterization is significantly faster and does not interfere with on-going experiments. The challenges associated with measuring micrometre-sized beams are described and ways of optimizing the resolution of beam position and size measurements of the XBI instrument are discussed

  5. X-ray polarization measurements at relativistic laser intensities

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Shepherd, R.; Mancini, R.C.

    2004-01-01

    An effort has been started to measure the short pulse laser absorption and energy partition at relativistic laser intensities up to 10 21 W/cm 2 . Plasma polarization spectroscopy is expected to play an important role in determining fast electron generation and measuring the electron distribution function. (author)

  6. Orbital Evolution Measurement of the Accreting Millisecond X-ray ...

    Indian Academy of Sciences (India)

    have included a table of the 27 mid-eclipse time measurements of this source that will be valuable for further studies of the orbital evolution of the source, especially with ASTROSAT. We point out that the measured rate of orbital period evolution is considerably faster than the most commonly discussed mechanisms of orbital ...

  7. In Situ X-ray Diffraction Study of Cesium Exchange in Synthetic Umbite

    International Nuclear Information System (INIS)

    Fewox, C.; Clearfield, A.; Celestian, A.

    2011-01-01

    The exchange of Cs + into H 1.22 K 0.84 ZrSi 3 O 9 · 2.16H 2 O (umbite-(HK)) was followed in situ using time-resolved X-ray diffraction at the National Synchrotron Light Source. The umbite framework (space group P2 1 /c with cell dimensions of a = 7.2814(3) (angstrom), b = 10.4201(4) (angstrom), c = 13.4529(7) (angstrom), and β = 90.53(1) o ) consists of wollastonite-like silicate chains linked by isolated zirconia octahedra. Within umbite-(HK) there are two unique ion exchange sites in the tunnels running parallel to the a-axis. Exchange Site 1 is marked by 8 member-ring (MR) windows in the bc-plane and contains K + cations. Exchange Site 2 is marked by a larger 8-MR channel parallel to [100], and contains H 2 O molecules. The occupancy of the Cs + cations through these channels was modeled by Rietveld structure refinements of the diffraction data and demonstrated that there is a two-step exchange process. The incoming Cs + ions populated the larger 8-MR channel (Exchange Site 2) first and then migrated into the smaller 8-MR channel. During the exchange process a structural change occurs, transforming the exchanger from monoclinic P2 1 /c to orthorhombic P2 1 2 1 2 1 . This structural change occurs when Cs + occupancy in the small cavity becomes greater than 0.50. The final in situ ion exchange diffraction pattern was refined to yield umbite-(CsK) with the molecular formula H 0.18 K 0.45 Cs 1.37 ZrSi 3 O 9 · 0.98H 2 O and possessing an orthorhombic unit cell with dimensions a = 10.6668(8) (angstrom), b = 13.5821(11) (angstrom), c = 7.3946(6) (angstrom). Solid state 133 Cs MAS NMR showed there is only a slight difference between the two cavities electronically. Valence bond sums for the completely occupied Exchange Site 1 demonstrate that Cs-O bonds of up to 3.8 (angstrom) contribute to the coordination of the Cs + cation.

  8. Evaluation of an in-situ x-ray fluorescence analyzer for inorganic pollutants in sediments and water columns

    International Nuclear Information System (INIS)

    Wogman, N.A.

    1979-09-01

    The applicability of an energy dispersive x-ray fluorescence spectrometer for measurement of trace elements in sediments and in water columns from Coast Guard vessels has been investigated. This investigation was conducted in both freshwater and saltwater areas and included Puget Sound, Lake Washington, Lake Union, and the ship canal in the State of Washington. The spectrometer system consisted of a solid cryogen-cooled Si(Li) detector and a 109 Cd excitation source. Sediments and water columns were viewed through a 0.2 mm Be window. This study showed the feasibility of measuring trace elements at concentrations ranging from 20 to about 100 ppM. Measurements of this sensitivity with a 100 mCi 109 Cd source are possible for time intervals as short as 5 minutes. This in-situ measurement capability permits the on-site mapping of pollution and avoids the problem of sediment disturbance which is inherent in the collection of grab samples of the sediment surface. Recommendations for an improved analyzer system included a detector assembly which could be towed, or allow continuous sediment surface analysis thereby recording the average composition of a large area

  9. Comparation of Some Values of Measured Parameteres between Old and New X-Ray Machines

    International Nuclear Information System (INIS)

    Kocic, B.; Marinkovic, J.; Praskalo, J.

    2013-01-01

    Checking the change of values of parameters like specific value of kerma, repeatability of expositions, linearity of exposition, stability of high voltage, time of exposition and HVL of X-ray machines that are in use in medical centres of Republic of Serbia give us an idea of comparing those values for two groups of X-ray machines. One is in use since 70's in last century and is still in use, and the other group is quite new, and is controlled for last 5 years. Checking the results of controlled parameters within those two groups of X-ray machines we can compare stability and quality of old and new machines, and the influence of 'aging' of machines to the quality and stability of measured parameters. Some of conclusions are that old machines are showing better stability and repeatability of values of measured parameters during the 'aging' than new machines.(author)

  10. Problems of exposure measurement with extended sources. Case of X-ray fluorescence

    International Nuclear Information System (INIS)

    Chartier, J.L.

    A number of problems involved in the measurement of exposure rates in X-ray or gamma-ray beams from extended sources were studied. A mathematical model simulating an experimental device producing practically monoenergetic X-ray beams (X-ray fluorescence method) was developed. The theoretical results were in good agreement with experimental data previously published. From this theoretical analogy, it was possible to determine the influence of various parameters of a free-air ionization chamber, and several corrective coefficients were evaluated and measured. The experiments were performed with a mesh-grid free-air chamber especially fitted to wide beams. The results were compared with those of cavity chambers used in the same expermental conditions [fr

  11. Description of EMX computer code. System for measuring soft X rays

    International Nuclear Information System (INIS)

    Marty, D.A.; Smeulders, P.; Launois, D.

    1978-07-01

    After briefly describing the system for measuring soft X rays implanted in TFR 600, the objectives and principles of the E.M.X calculation programme are presented. This model is divided into two distinct parts. The ultimate aim of EMX 1, the first part, is to build the soft X ray photo of a plasma with varied characteristics, seen through a certain collimation system (in this case a slit). That of EMX 2, the second part, is to filter the previously built soft X ray photo, by means of the system of absorbents belonging to the measuring system and to calculate the currents generated by each detector aimed at a plasma chord. The first calculation results are commented and discussed [fr

  12. Multi-scale mechanics of granular solids from grain-resolved X-ray measurements

    Science.gov (United States)

    Hurley, R. C.; Hall, S. A.; Wright, J. P.

    2017-11-01

    This work discusses an experimental technique for studying the mechanics of three-dimensional (3D) granular solids. The approach combines 3D X-ray diffraction and X-ray computed tomography to measure grain-resolved strains, kinematics and contact fabric in the bulk of a granular solid, from which continuum strains, grain stresses, interparticle forces and coarse-grained elasto-plastic moduli can be determined. We demonstrate the experimental approach and analysis of selected results on a sample of 1099 stiff, frictional grains undergoing multiple uniaxial compression cycles. We investigate the inter-particle force network, elasto-plastic moduli and associated length scales, reversibility of mechanical responses during cyclic loading, the statistics of microscopic responses and microstructure-property relationships. This work serves to highlight both the fundamental insight into granular mechanics that is furnished by combined X-ray measurements and describes future directions in the field of granular materials that can be pursued with such approaches.

  13. Development of an in-line X-ray reflectivity technique for metal film thickness measurement

    International Nuclear Information System (INIS)

    Windover, D.; Barnet, E.; Summers, J.; Gribbin, C.; Lu, T.-M.; Kumar, A.; Bakhru, H.; Lee, S.L.

    2001-01-01

    Non-destructive measurement of thin film (particularly metal film) thickness less than 10 nm has been a challenging task. In this work, we showed that it is possible to obtain the thickness of ultra-thin tantalum films within seconds using a fixed-angle, energy dispersive X-ray reflectivity technique by a conventional, low-energy X-ray copper or chromium source (20 kV/20 mA/400W) and using Parratt reflectivity modeling. We compared this fixed angle, energy dispersive result with more conventional fixed energy, angular dispersive reflectivity to establish the validity of the method and provide error estimates for fast thickness modeling. This X-ray technique is particularly useful for very thin diffusion barrier measurements in future microelectronics applications

  14. Multi-scale mechanics of granular solids from grain-resolved X-ray measurements.

    Science.gov (United States)

    Hurley, R C; Hall, S A; Wright, J P

    2017-11-01

    This work discusses an experimental technique for studying the mechanics of three-dimensional (3D) granular solids. The approach combines 3D X-ray diffraction and X-ray computed tomography to measure grain-resolved strains, kinematics and contact fabric in the bulk of a granular solid, from which continuum strains, grain stresses, interparticle forces and coarse-grained elasto-plastic moduli can be determined. We demonstrate the experimental approach and analysis of selected results on a sample of 1099 stiff, frictional grains undergoing multiple uniaxial compression cycles. We investigate the inter-particle force network, elasto-plastic moduli and associated length scales, reversibility of mechanical responses during cyclic loading, the statistics of microscopic responses and microstructure-property relationships. This work serves to highlight both the fundamental insight into granular mechanics that is furnished by combined X-ray measurements and describes future directions in the field of granular materials that can be pursued with such approaches.

  15. Method study on spectrum unscrambling of continuous hard X-ray measurement by HPGe detector

    International Nuclear Information System (INIS)

    Quan Lin; Tu Jing; Chen Zhihua; Liu Yueheng; Chang Yongfu; Liu Shuhuan

    2007-01-01

    The influence of counts caused by non-photoelectric effect in measured continuous hard X-ray spectrum was corrected. The pure photoelectric spectrum was obtained using the method of improved spectrum stripping technology accompanied by energy respond function of single-energy photon for HPGe detector which had been got in advance, and the real energy spectrum on measurement site was unfolded from the photoelectric spectrum by relative efficiency correction. The reliable method for continuous hard X-ray spectrum scrambling was obtained. (authors)

  16. In-situ X-ray CT results of damage evolution in L6 ordinary chondrite meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Cuadra, Jefferson A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hazeli, Kavan [Univ. of Alabama, Huntsville, AL (United States); Ramesh, K. T. [Johns Hopkins Univ., Baltimore, MD (United States). Hopkins Extreme Materials Inst.; Martz, Harry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Nondestructive Characterization Inst.

    2016-06-17

    These are slides about in-situ X-ray CT results of damage evolution in L6 ordinary chondrite meteorites. The following topics are covered: mechanical and thermal damage characterization, list of Grosvenor Mountain (GRO) meteorite samples, in-situ x-ray compression test setup, GRO-chipped reference at 0 N - existing cracks, GRO-chipped loaded at 1580 N, in-situ x-ray thermal fatigue test setup, GRO-B14 room temperature reference, GRO-B14 Cycle 47 at 200°C, GRO-B14 Cycle 47 at room temperature, conclusions from qualitative analysis, future work and next steps. Conclusions are the following: Both GRO-Chipped and GRO-B14 had existing voids and cracks within the volume. These sites with existing damage were selected for CT images from mechanically and thermally loaded scans since they are prone to damage initiation. The GRO-Chipped sample was loaded to 1580 N which resulted in a 14% compressive engineering strain, calculated using LVDT. Based on the CT cross sectional images, the GRO-B14 sample at 200°C has a thermal expansion of approximately 96 μm in height (i.e. ~1.6% engineering strain).

  17. Image quality measurements for X-ray television chains

    International Nuclear Information System (INIS)

    Mohr, M.

    1986-01-01

    Image quality measurements were carried out for 36 television chains during 3 years. For the parameters sensitivity, resolution, contrast-detail diagram, minimal contrast and dose rate average values and experiences on their long-term stability are reported. (author)

  18. X-Ray Spectroscopic Measurements from Copper and Tin Vacuum Spark Plasmas

    Science.gov (United States)

    Chew, S. H.; Yap, S. L.; Wong, C. S.

    2008-05-01

    X-ray emissions of copper and tin plasmas produced by a low energy and low inductance vacuum spark were studied. Both the time resolved and the time integrated measurements of the x-ray emissions were carried out using an x-ray spectrometer (XR-100 CR), a PIN diode and an x-ray diode (XRD). The x-ray spectra of the copper plasma obtained shows strong Kα and Kβ line radiations embedded in the continuum radiation. It is found that the hot spot formed has an electron temperature in the range from 2 keV to 3 keV. At this electron temperature, the dominant ionic specie is Cu27+ indicating that the plasma is not hot enough for the emission of the K line radiations. The emission of copper K lines is therefore believed to be produced by the energetic electron beam associated with sausage instability. For the case of tin plasma, strong Lα superimposed on the continuum background was observed. These tin spectra are predominantly the result of the interaction of electron beam generated from the transient hollow cathode effect with the anode tip.

  19. X-Ray Spectroscopic Measurements from Copper and Tin Vacuum Spark Plasmas

    International Nuclear Information System (INIS)

    Chew, S. H.; Yap, S. L.; Wong, C. S.

    2008-01-01

    X-ray emissions of copper and tin plasmas produced by a low energy and low inductance vacuum spark were studied. Both the time resolved and the time integrated measurements of the x-ray emissions were carried out using an x-ray spectrometer (XR-100 CR), a PIN diode and an x-ray diode (XRD). The x-ray spectra of the copper plasma obtained shows strong K α and K β line radiations embedded in the continuum radiation. It is found that the hot spot formed has an electron temperature in the range from 2 keV to 3 keV. At this electron temperature, the dominant ionic specie is Cu 27+ indicating that the plasma is not hot enough for the emission of the K line radiations. The emission of copper K lines is therefore believed to be produced by the energetic electron beam associated with sausage instability. For the case of tin plasma, strong L α superimposed on the continuum background was observed. These tin spectra are predominantly the result of the interaction of electron beam generated from the transient hollow cathode effect with the anode tip

  20. Development of an X-ray fluorescence holographic measurement system for protein crystals

    International Nuclear Information System (INIS)

    Sato-Tomita, Ayana; Shibayama, Naoya; Okabe, Takahiro; Happo, Naohisa; Kimura, Koji; Matsushita, Tomohiro; Park, Sam-Yong; Sasaki, Yuji C.; Hayashi, Kouichi

    2016-01-01

    Experimental procedure and setup for obtaining X-ray fluorescence hologram of crystalline metalloprotein samples are described. Human hemoglobin, an α 2 β 2 tetrameric metalloprotein containing the Fe(II) heme active-site in each chain, was chosen for this study because of its wealth of crystallographic data. A cold gas flow system was introduced to reduce X-ray radiation damage of protein crystals that are usually fragile and susceptible to damage. A χ-stage was installed to rotate the sample while avoiding intersection between the X-ray beam and the sample loop or holder, which is needed for supporting fragile protein crystals. Huge hemoglobin crystals (with a maximum size of 8 × 6 × 3 mm 3 ) were prepared and used to keep the footprint of the incident X-ray beam smaller than the sample size during the entire course of the measurement with the incident angle of 0°-70°. Under these experimental and data acquisition conditions, we achieved the first observation of the X-ray fluorescence hologram pattern from the protein crystals with minimal radiation damage, opening up a new and potential method for investigating the stereochemistry of the metal active-sites in biomacromolecules.

  1. Development of an X-ray fluorescence holographic measurement system for protein crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sato-Tomita, Ayana, E-mail: ayana.sato@jichi.ac.jp, E-mail: shibayam@jichi.ac.jp, E-mail: hayashi.koichi@nitech.ac.jp; Shibayama, Naoya, E-mail: ayana.sato@jichi.ac.jp, E-mail: shibayam@jichi.ac.jp, E-mail: hayashi.koichi@nitech.ac.jp; Okabe, Takahiro [Division of Biophysics, Department of Physiology, Jichi Medical University, Yakushiji, Shimotsuke 329-0498 (Japan); Happo, Naohisa [Department of Computer and Network Engineering, Graduate School of Information Sciences, Hiroshima City University, Asa-Minami-Ku, Hiroshima 731-3194 (Japan); Kimura, Koji [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan); Matsushita, Tomohiro [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Hyogo 679-5198 (Japan); Park, Sam-Yong [Drug Design Laboratory, Department of Medical Life Science, Yokohama City University, Suehiro, Tsurumi, Yokohama 230-0045 (Japan); Sasaki, Yuji C. [Department of Advanced Material Science, Graduate School of Frontier Science, The University of Tokyo, Kashiwanoha, Kashiwa 277-8561 (Japan); Hayashi, Kouichi, E-mail: ayana.sato@jichi.ac.jp, E-mail: shibayam@jichi.ac.jp, E-mail: hayashi.koichi@nitech.ac.jp [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan); Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan)

    2016-06-15

    Experimental procedure and setup for obtaining X-ray fluorescence hologram of crystalline metalloprotein samples are described. Human hemoglobin, an α{sub 2}β{sub 2} tetrameric metalloprotein containing the Fe(II) heme active-site in each chain, was chosen for this study because of its wealth of crystallographic data. A cold gas flow system was introduced to reduce X-ray radiation damage of protein crystals that are usually fragile and susceptible to damage. A χ-stage was installed to rotate the sample while avoiding intersection between the X-ray beam and the sample loop or holder, which is needed for supporting fragile protein crystals. Huge hemoglobin crystals (with a maximum size of 8 × 6 × 3 mm{sup 3}) were prepared and used to keep the footprint of the incident X-ray beam smaller than the sample size during the entire course of the measurement with the incident angle of 0°-70°. Under these experimental and data acquisition conditions, we achieved the first observation of the X-ray fluorescence hologram pattern from the protein crystals with minimal radiation damage, opening up a new and potential method for investigating the stereochemistry of the metal active-sites in biomacromolecules.

  2. Aluminum X-ray mass-ablation rate measurements

    Directory of Open Access Journals (Sweden)

    J.L. Kline

    2017-01-01

    Full Text Available Measurements of the mass ablation rate of aluminum (Al have been completed at the Omega Laser Facility. These measurements show that the mass-ablation rate of Al is higher than plastic (CH, comparable to high density carbon (HDC, and lower than beryllium. The mass-ablation rate is consistent with predictions using a 1D Lagrangian code, Helios. The results suggest Al capsules have a reasonable ablation pressure even with a higher albedo than beryllium or carbon ablators and further investigation into the viability of Al capsules for ignition should be pursued.

  3. In situ and real-time analysis of the growth and interaction of equiaxed grains by synchrotron X- ray radiography

    Science.gov (United States)

    Bogno, A.; Nguyen-Thi, H.; Billia, B.; Reinhart, G.; Mangelinck-Noël, N.; Bergeon, N.; Schenk, T.; Baruchel, J.

    2012-01-01

    The phenomena involved during equiaxed growth are dynamic, so that in situ and real-time investigation by X-ray imaging is compulsory to fully analyse the microstructure formation. The experiments on Al - 10 wt% Cu alloy of this paper are carried out at the European Synchrotron Radiation Facility (ESRF) in Grenoble (France). Equiaxed growth was achieved in nearly isothermal conditions and continuously monitored from the very early stages of solidification to an asymptotic state. First, measurements of dendrite arms velocity for a same grain showed slight differences in the early stages of the growth. This effect is attributed to a gravity-related "self - poisoning" of the grain. Then, the propagation of primary dendrite arms was analysed and two successive growth regimes were observed. First, due to the relative distance with neighbour grains, each grain could be considered as isolated (i.e. growing freely) and tip growth rate gradually increased. In a subsequent phase, tip growth rate slowly decreased towards zero, due to the proximity of neighbouring grains. Using an image analysis technique, we were able to measure the solute profiles in the liquid phase between interacting arms. These measurements confirmed that solutal impingement is responsible for stopping the grain growth.

  4. In situ MEMS testing: correlation of high-resolution X-ray diffraction with mechanical experiments and finite element analysis.

    Science.gov (United States)

    Schifferle, Andreas; Dommann, Alex; Neels, Antonia

    2017-01-01

    New methods are needed in microsystems technology for evaluating microelectromechanical systems (MEMS) because of their reduced size. The assessment and characterization of mechanical and structural relations of MEMS are essential to assure the long-term functioning of devices, and have a significant impact on design and fabrication. Within this study a concept for the investigation of mechanically loaded MEMS materials on an atomic level is introduced, combining high-resolution X-ray diffraction (HRXRD) measurements with finite element analysis (FEA) and mechanical testing. In situ HRXRD measurements were performed on tensile loaded single crystal silicon (SCSi) specimens by means of profile scans and reciprocal space mapping (RSM) on symmetrical (004) and (440) reflections. A comprehensive evaluation of the rather complex XRD patterns and features was enabled by the correlation of measured with simulated, 'theoretical' patterns. Latter were calculated by a specifically developed, simple and fast approach on the basis of continuum mechanical relations. Qualitative and quantitative analysis confirmed the admissibility and accuracy of the presented method. In this context [001] Poisson's ratio was determined providing an error of less than 1.5% with respect to analytical prediction. Consequently, the introduced procedure contributes to further going investigations of weak scattering being related to strain and defects in crystalline structures and therefore supports investigations on materials and devices failure mechanisms.

  5. Figure measurements of high-energy x-ray replicated optics

    Science.gov (United States)

    Gubarev, Mikhail V.; Ramsey, Brian D.; Kester, Thomas; Speegle, Chet O.; Engelhaupt, Darell; Martin, Greg

    2004-02-01

    We are developing grazing incidence x-ray optics for a balloon-borne hard-x-ray telescope (HERO). The HERO mirror shells are fabricated using electroform-nickel replication off super-polished cylindrical mandrels. One of the sources for mirror resolution error is departure of the shell figure from prescription. We have modified a Vertical-scan Long Trace Profilometer (VLTP) in order to measure the figure of the inner surface of the HERO mirror shells for diameters as small as 74 mm. Metrology of the figure, the microroughness, tilt angle, the circularity for the shell mirrors and the mandrels, as well as alignment procedures are discussed. Comparison of metrology of the mandrel and the shells is presented together with results from x-ray tests.

  6. Measured reflectance of graded multilayer mirrors designed for astronomical hard X-ray telescopes

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Craig, W.W.; Windt, D.L.

    2000-01-01

    Future astronomical X-ray telescopes, including the balloon-borne High-Energy Focusing Telescope (HEFT) and the Constellation-X Hard X-ray Telescope (Con-X HXT) plan to incorporate depth-graded multilayer coatings in order to extend sensitivity into the hard X-ray (10 less than or similar to E less......-graded W/Si multilayers optimized for broadband performance up to 69.5 keV (WK-edge). These designs are ideal for both the HEFT and Con-X HXT applications. We compare the measurements to model calculations to demonstrate that the reflectivity can be well described by the intended power law distribution...

  7. An instrument for X-ray set quality assurance measurements

    International Nuclear Information System (INIS)

    Willetts, R.J.; West, M.B.; Brydon, J.

    1989-01-01

    This paper describes a prototype electronic instrument for performing quality assurance (QA) measurements on diagnostic radiological equipment with a view to long-term performance assessment on a Regional basis. The instrument is based on a Tandy 200 laptop computer and has been developed primarily to include the assessment of image intensifier/TV systems in a general QA package. It is capable of accepting signals from the following sources: (1) a radiation detector (diode array); (2) a Keithley kV divider (Keithley Instruments, Inc.); (3) the video output of an image intensifier system. (author)

  8. Radiochromic film measurement of spatial uniformity for a laser generated x-ray environment

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, J. H.; Newlander, C. D.; Horton, R.; Fournier, K. B.; Emig, J.; Patterson, R.; Davis, J. F.; Seiler, S.; Jenkins, P. P.

    2012-10-01

    n existing x-ray source application (XRSA) test cassette was modified to hold multiple x-ray filter materials followed by two radiochromic film types (FWT-60 and HD-810 Gafchromic® film) to qualitatively characterize the spectral-spatial uniformity over the XRSA sample field of view. Multiple sets of film were examined and nominal set was determined. These initial, qualitative measurements suggest a low-energy regime (E < 3 keV) spatial anisotropy and spatial isotropy at higher energies (E > 3 keV).

  9. Phase analysis of micro-alloyed steels using X-ray diffraction measurements

    International Nuclear Information System (INIS)

    Tobisch, J.; Kleinstueck, K.; Schatt, W.; Riehle, M.; Technische Univ., Dresden

    1977-01-01

    The applicability of neutron diffraction and X-ray diffraction to phase analyses of micro-alloyed steels is tested. The results show that the resolution of neutron reflexes was too low for quantitative statements. X-ray diffraction measurements of the reflex intensity permit quantitative analyses of the phase TiN, TiC, and Ti 4 C 2 S 2 in micro-alloyed steels without and after heat treatment. The values of the quantitative determination of these phases ranged from about 0.03 to 0.4 per cent by weight

  10. Measurements of reciprocity law failure in green-sensitive X-ray films.

    Science.gov (United States)

    Arnold, B A; Eisenberg, H; Bjärngard, B E

    1978-02-01

    Reciprocity law failure was measured for four brands of medical x-ray films exposed with intensifying screens. Three of the films are green light-sensitized for use in combination with green light-emitting rare-earth screens. These films showed larger reciprocity failure effects than one conventional blue-sensitive film, Dupont Cronex-2. Development conditions had a small effect on reciprocity failure. As part of the investigation, a detector was constructed with a response that accurately monitors the light emission from the double screen-cassette combination over a wide range of x-ray photon energies.

  11. In Situ X-ray Microtomography of Stress Corrosion Cracking and Corrosion Fatigue in Aluminum Alloys

    Science.gov (United States)

    Singh, Sudhanshu S.; Stannard, Tyler J.; Xiao, Xianghui; Chawla, Nikhilesh

    2017-08-01

    Structural materials are subjected to combinations of stress and corrosive environments that work synergistically to cause premature failure. Therefore, studies on the combined effect of stress and corrosive environments on material behavior are required. Existing studies have been performed in two dimensions that are inadequate for full comprehension of the three-dimensional (3D) processes related to stress corrosion cracking (SCC) and corrosion-fatigue (CF) behavior. Recently, x-ray synchrotron tomography has evolved as an excellent technique to obtain the microstructure in 3D. Moreover, being nondestructive in nature, x-ray synchrotron tomography is well suited to study the evolution of microstructure with time (4D, or fourth dimension in time). This article presents our recent 4D studies on SCC and CF of Al 7075 alloys using x-ray synchrotron tomography.

  12. The Oxford-Diamond In Situ Cell for studying chemical reactions using time-resolved X-ray diffraction

    Science.gov (United States)

    Moorhouse, Saul J.; Vranješ, Nenad; Jupe, Andrew; Drakopoulos, Michael; O'Hare, Dermot

    2012-08-01

    A versatile, infrared-heated, chemical reaction cell has been assembled and commissioned for the in situ study of a range of chemical syntheses using time-resolved energy-dispersive X-ray diffraction (EDXRD) on Beamline I12 at the Diamond Light Source. Specialized reactor configurations have been constructed to enable in situ EDXRD investigation of samples under non-ambient conditions. Chemical reactions can be studied using a range of sample vessels such as alumina crucibles, steel hydrothermal autoclaves, and glassy carbon tubes, at temperatures up to 1200 °C.

  13. Stress-dependent crystal structure of lanthanum strontium cobalt ferrite by in situ synchrotron X-ray diffraction

    Science.gov (United States)

    Geiger, Philipp T.; Khansur, Neamul H.; Riess, Kevin; Martin, Alexander; Hinterstein, Manuel; Webber, Kyle G.

    2018-02-01

    Lanthanum strontium cobalt ferrite La1-xSrxCo1-yFeyO3-δ (LSCF) is one of the most studied mixed ionic-electronic conductor materials due to electrical and transport properties, which are attractive for intermediate temperature solid oxide fuel cells (SOFCs), oxygen permeation membranes, and catalysis. The integration of such materials, however, depends on the thermal as well as mechanical behavior. LSCF exhibits nonlinear hysteresis during compressive stress-strain measurements, marked by a remanent strain and coercive stress, i.e., ferroelasticity. However, the origin of ferroelastic behavior has not been investigated under high compressive stress. This study, therefore, investigates the microscopic origin of stress-induced mechanical behavior in polycrystalline (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ using in situ synchrotron x-ray diffraction. The data presented here reveals that the strain response originates from the intrinsic lattice strain as well as the extrinsic domain switching strain without any apparent change in crystallographic symmetry. A comparison of the calculated microscopic strain contribution with that of a macroscopic measurement indicates a significant change in the relative contributions of intrinsic and extrinsic strain depending on the applied stress state, i.e., under maximum stress and after unloading. Direct evidence of the microscopic origin of stress-strain response outlined in this paper may assist in guiding materials design with the improved mechanical reliability of SOFCs.

  14. Total x-ray power measurements in the Sandia LIGA program.

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, Michael E. (Sandia National Laboratories, Livermore, CA); Ting, Aili (Sandia National Laboratories, Livermore, CA)

    2005-08-01

    Total X-ray power measurements using aluminum block calorimetry and other techniques were made at LIGA X-ray scanner synchrotron beamlines located at both the Advanced Light Source (ALS) and the Advanced Photon Source (APS). This block calorimetry work was initially performed on the LIGA beamline 3.3.1 of the ALS to provide experimental checks of predictions of the LEX-D (LIGA Exposure- Development) code for LIGA X-ray exposures, version 7.56, the version of the code in use at the time calorimetry was done. These experiments showed that it was necessary to use bend magnet field strengths and electron storage ring energies different from the default values originally in the code in order to obtain good agreement between experiment and theory. The results indicated that agreement between LEX-D predictions and experiment could be as good as 5% only if (1) more accurate values of the ring energies, (2) local values of the magnet field at the beamline source point, and (3) the NIST database for X-ray/materials interactions were used as code inputs. These local magnetic field value and accurate ring energies, together with NIST database, are now defaults in the newest release of LEX-D, version 7.61. Three dimensional simulations of the temperature distributions in the aluminum calorimeter block for a typical ALS power measurement were made with the ABAQUS code and found to be in good agreement with the experimental temperature data. As an application of the block calorimetry technique, the X-ray power exiting the mirror in place at a LIGA scanner located at the APS beamline 10 BM was measured with a calorimeter similar to the one used at the ALS. The overall results at the APS demonstrated the utility of calorimetry in helping to characterize the total X-ray power in LIGA beamlines. In addition to the block calorimetry work at the ALS and APS, a preliminary comparison of the use of heat flux sensors, photodiodes and modified beam calorimeters as total X-ray power

  15. Reflection-mode x-ray powder diffraction cell for in situ studies of electrochemical reactions

    International Nuclear Information System (INIS)

    Roberts, G.A.; Stewart, K.D.

    2004-01-01

    The design and operation of an electrochemical cell for reflection-mode powder x-ray diffraction experiments are discussed. The cell is designed for the study of electrodes that are used in rechargeable lithium batteries. It is designed for assembly in a glove box so that air-sensitive materials, such as lithium foil electrodes and carbonate-based electrolytes with lithium salts, can be used. The cell uses a beryllium window for x-ray transmission and electrical contact. A simple mechanism for compressing the electrodes is included in the design. Sample results for the cell are shown with a Cu Kα source and a position-sensitive detector

  16. Electron density measurement with dual-energy x-ray CT using synchrotron radiation

    International Nuclear Information System (INIS)

    Torikoshi, Masami; Tsunoo, Takanori; Sasaki, Makoto; Endo, Masahiro; Noda, Yutaka; Ohno, Yumiko; Kohno, Toshiyuki; Hyodo, Kazuyuki; Uesugi, Kentaro; Yagi, Naoto

    2003-01-01

    Monochromatic x-ray computed tomography (CT) at two different energies provides information about electron density of human tissue without ambiguity due to the beam hardening effect. This information makes the treatment planning for proton and heavy-ion radiotherapy more precise. We have started a feasibility study on dual energy x-ray CT by using synchrotron radiation. A translation-rotation scanning CT system was developed for quantitative measurement in order to clarify what precision in the measurement was achieved. Liquid samples of solutions of K 2 HPO 4 and solid samples of tissue equivalent materials were used to simulate human tissue. The experiments were carried out using monochromatic x-rays with energies of 40, 70 and 80 keV produced by monochromatizing synchrotron radiation. The solid samples were also measured in a complementary method using high-energy carbon beams to evaluate the electron densities. The measured electron densities were compared with the theoretical values or the values measured in the complementary method. It was found that these values were in agreement in 0.9% on average. Effective atomic numbers were obtained as well from dual-energy x-ray CT. The tomographic image based on each of the electron densities and the effective atomic number presents a different feature of the material, and its contrast drastically differs from that in a conventional CT image

  17. Electron temperature from x-ray continuum measurements on the NIF

    Science.gov (United States)

    Jarrott, Leonard; Bachmann, Benjamin; Benedetti, Robin; Izumi, Nobuhiko; Khan, Shahab; Landen, Otto; Ma, Tammy; Nagel, Sabrina; Pak, Arthur; Patel, Prav; Schneider, Marilyn; Springer, Paul; LLNL Collaboration

    2017-10-01

    We report on measurements of the electron temperature within the hot spot of inertially confined, layered implosions on the NIF using a titanium differential filtering x-ray diagnostic. The electron temperature from x-ray emission is insensitive to non-thermal velocity flows as is the case with ion temperature measurements and is thus a critical parameter in interpreting stagnated hot spot conditions. Here we discuss measurements using titanium filters ranging from 10 μm to 1mm in thickness with a sensitivity band of 10-30keV coupled with penumbral pinholes. The use of larger pinhole diameters increases x-ray fluence improving sensitivity of photon energies with minimal attenuation from the compressed fuel/shell. This diagnostic has been fielded on a series of cryogenic shots with DT ion temperatures ranging from 2-5keV. Analysis of the measurement will be presented along with a comparison against simulated electron temperatures and x-ray spectra as well as a comparison to DT ion temperature measurements. This work was performed under the auspices of U.S. DoE by LLNL under Contract No. DE-AC52-07NA27344.

  18. Calcium measurements with electron probe X-ray and electron energy loss analysis

    International Nuclear Information System (INIS)

    LeFurgey, A.; Ingram, P.

    1990-01-01

    This paper presents a broad survey of the rationale for electron probe X-ray microanalysis (EPXMA) and the various methods for obtaining qualitative and quantitative information on the distribution and amount of elements, particularly calcium, in cryopreserved cells and tissues. Essential in an introductory consideration of microanalysis in biological cryosections is the physical basis for the instrumentation, fundamentals of X-ray spectrometry, and various analytical modes such as static probing and X-ray imaging. Some common artifacts are beam damage and contamination. Inherent pitfalls of energy dispersive X-ray systems include Si escape peaks, doublets, background, and detector calibration shifts. Quantitative calcium analysis of thin cryosections is carried out in real time using a multiple least squares fitting program on filtered X-ray spectra and normalizing the calcium peak to a portion of the continuum. Recent work includes the development of an X-ray imaging system where quantitative data can be retrieved off-line. The minimum detectable concentration of calcium in biological cryosections is approximately 300 mumole kg dry weight with a spatial resolution of approximately 100 A. The application of electron energy loss (EELS) techniques to the detection of calcium offers the potential for greater sensitivity and spatial resolution in measurement and imaging. Determination of mass thickness with EELS can facilitate accurate calculation of wet weight concentrations from frozen hydrated and freeze-dried specimens. Calcium has multiple effects on cell metabolism, membrane transport and permeability and, thus, on overall cell physiology or pathophysiology. Cells can be rapidly frozen for EPXMA during basal or altered functional conditions to delineate the location and amount of calcium within cells. 72 references

  19. A new attempt of measurement film thickness by x-ray diffractometry

    International Nuclear Information System (INIS)

    Kosaka, Masao; Kobayashi, Hideo

    1987-01-01

    In order to make film thickness measurements independent from the property or the structure of the film materials or the substrate, it is needed to adopt instead of directly utilizing the X-ray diffraction intensity, or attenuation information obtained from the substrate or film material, other new methods for measurement. Among the information obtained by X-ray diffraction, if intensity is excluded, others are F.W.H.M. and diffraction angle, only. If it is possible to investigate the film thickness dependency of the diffraction angle, it should be possible to measure the film thickness by diffraction angle. However, since diffraction angle has no film thickness dependency, it cannot be used directly for measurement. However, if we consider the principle of the X-ray diffractometer method, although it may be very slight, the substrate will be eccentric from the revolving center of the goniometer on account of the thickness of the film. If eccentricity occurs, this will cause changes in the diffraction angle. If we set the radius of the goniometer as R, diffraction angle θ, and the eccentricity from the revolving center of the specimen surface X, the deflection angle Δ2θ of 2θ may be expressed by Δ2θ = -2X · COSθ/R Thus, if X is caused by the film thickness, and by measuring the Δ2θ, it will be possible to measure the film thickness. As a result of the experiment, it was found that X-ray diffraction method can be used for the measurement of the film thickness of a few microns or above by utilizing the eccentricity caused by the film thickness. Especially it has the advantage of being able to measure thick films that X-rays will not penetrate, without being influenced by the chemical structure of the film or the substrates. (author)

  20. Thin-film thickness measurement using x-ray peak ratioing in the scanning electron microscope

    International Nuclear Information System (INIS)

    Elliott, N.E.; Anderson, W.E.; Archuleta, T.A.; Stupin, D.M.

    1981-01-01

    The procedure used to measure laser target film thickness using a scanning electron microscope is summarized. This method is generally applicable to any coating on any substrate as long as the electron energy is sufficient to penetrate the coating and the substrate produces an x-ray signal which can pass back through the coating and be detected

  1. Rating of the X-ray method of measurement of stresses in steels

    International Nuclear Information System (INIS)

    Skrzypinski, A.

    1977-01-01

    The possibilities of utilization of some dependencies occuring in the X-ray technique of measurement of natural stresses for determination of distances of a between - plane lattice without natural stresses (d 0 ) are discussed. The proposed methodics of determination of d 0 is illustrated with the investigations which were carried-out on bearing steel LH15. (author)

  2. Femtosecond Near Edge X-ray Absorption Measurement of the VO2 Phase Transition

    International Nuclear Information System (INIS)

    Cavalleri, A.; Chong, H.H.W.; Fourmaux, S.; Glover, T.E.; Heimann, P.A; Kieffer, J.C.; Padmore, H.A.; Schoenlein, R.W.

    2004-01-01

    The authors measure the insulator-to-metal transition in VO 2 using femtosecond Near-Edge X-ray Absorption. Sliced pulses of synchrotron radiation are used to detect the photo-induced dynamics at the 516-eV Vanadium L 3 edge

  3. X-ray and neutron diffraction line broadening measurements in a martensitic steel for fusion technology

    International Nuclear Information System (INIS)

    Coppola, R.; Lukas, P.; Vrana, M.; Montanari, R.; Rustichelli, F.

    1995-01-01

    X-ray and neutron diffraction line broadening measurements have been carried out on a modified martensitic steel DIN 1.4914 for fusion technology (MANET) after quenching followed by tempering treatments at 700C. The results of the two experiments are discussed with reference to Cr redistribution phenomena in the matrix

  4. Soft x-ray laser gain measurements in a recombining plasma column

    International Nuclear Information System (INIS)

    Suckewer, S.; Skinner, C.H.; Milchberg, H.; Keane, C.; Voorhees, D.

    1985-03-01

    An enhancement of approx. 100 of stimulated emission over spontaneous emission of the CVI 182 A line (one-pass gain approx. = 6.5) was measured in a recombining, magnetically confined plasma column by two independent techniques using intensity calibrated XUV monochromators. Additional confirmation that the enhancement was due to stimulated emission has been obtained with a soft x-ray mirror

  5. Absolute pulse energy measurements of soft x-rays at the Linac Coherent Light Source

    Czech Academy of Sciences Publication Activity Database

    Tiedtke, K.; Sorokin, A. A.; Jastrow, U.; Juranić, P.; Kreis, S.; Gerken, N.; Richter, M.; Arp, U.; Feng, Y.; Nordlund, D.; Soufli, R.; Fernández-Perea, M.; Juha, Libor; Heimann, P.; Nagler, B.; Lee, H.J.; Mack, S.; Cammarata, M.; Krupin, O.; Messerschmidt, M.; Holmes, M.; Rowen, M.; Schlotter, W.; Moeller, S.; Turner, J.J.

    2014-01-01

    Roč. 22, č. 18 (2014), s. 21214-21226 ISSN 1094-4087 R&D Projects: GA MŠk(CZ) LG13029 Institutional support: RVO:68378271 Keywords : soft x-ray * free electron laser * LCLS * instrumentation * measurement * metrology Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.488, year: 2014

  6. Correlating Gas Transport Parameters and X-ray Computed Tomography Measurements in Porous Media

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Hamamoto, Shoichiro; Kawamoto, Ken

    2013-01-01

    Gas transport parameters and X-ray computed tomography (CT) measurements in porous medium under controlled and identical conditions provide a useful methodology for studying the relationships among them, ultimately leading to a better understanding of subsurface gaseous transport and other soil p...

  7. Hard x-ray measurements of the hot-electron rings in EBT-S

    International Nuclear Information System (INIS)

    Hillis, D.L.

    1982-06-01

    A thorough understanding of the hot electron rings in ELMO Bumpy Torus-Scale (EBT-S) is essential to the bumpy torus concept of plasma production, since the rings provide bulk plasma stability. The hot electrons are produced via electron cyclotron resonant heating using a 28-GHz cw gyrotron, which has operated up to power levels of 200 kW. The parameters of the energetic electron rings are studied via hard x-ray measurement techniques and with diamagnetic pickup coils. The hard x-ray measurements have used collimated NaI(Tl) detectors to determine the electron temperature T/sub e/ and electron density n/sub e/ for the hot electron annulus. Typical values of T/sub e/ are 400 to 500 keV and of n/sub e/ 2 to 5 x 10 11 cm -3 . The total stored energy of a single energetic electron ring as measured by diamagnetic pickup loops approaches approx. 40 J and is in good agreement with that deduced from hard x-ray measurements. By combining the experimental measurements from hard x-rays and the diamagnetic loops, an estimate can be obtained for the volume of a single hot electron ring. The ring volume is determined to be approx. 2.2 litres, and this volume remains approximately constant over the T-mode operating regime. Finally, the power in the electrons scattered out of the ring is measured indirectly by measuring the x-ray radiation produced when those electrons strike the chamber walls. The variation of this radiation with increasing microwave power levels is found to be consistent with classical scattering estimates

  8. In situ x-ray imaging of nanoparticle agglomeration in fluidized beds

    International Nuclear Information System (INIS)

    Jenneson, Paul Michael; Gundogdu, Ozcan

    2006-01-01

    A high spatial (down to 400 nm) and temporal resolution (down to 1 ms) x-ray imaging apparatus has been designed to study the agglomeration of arc plasma synthesized zinc oxide nanoparticles (average diameter of 50 nm) in fluidized beds under different gas flow velocities. The mean volume distribution of the nanoparticle agglomerates was determined with x-ray microtomography and found to correspond to a lognormal distribution with a mean value of 0.70x10 9 μm 3 and a variance of 3.6x10 21 (μm 3 ) 2 . The average density of the agglomerates was found to be 2.9 g cm -3 compared to 5.6 g cm -3 for the individual nanoparticles. The powder assembly was then dynamically imaged using an x-ray image intensifier coupled to a digital camera using a field of view of 24.20 mm by 32.25 mm and a temporal resolution of 40 ms. Sequential frames were captured into computer memory for a range of gas flow velocities from 0.026 ms -1 to 0.313 ms -1 . The breakup energy of the agglomerates was calculated to be approximately 2x10 -8 J using a combination of dynamic observations and physical properties of the agglomerate system extracted from the x-ray microtomographic data

  9. Series of phase transitions in cesium azide under high pressure studied by in situ x-ray diffraction

    Science.gov (United States)

    Hou, Dongbin; Zhang, Fuxiang; Ji, Cheng; Hannon, Trevor; Zhu, Hongyang; Wu, Jianzhe; Ma, Yanzhang

    2011-08-01

    In situ x-ray diffraction measurements of cesium azide (CsN3) were performed at high pressures of up to 55.4 GPa at room temperature. Three phase transitions were revealed as follows: tetragonal (I4/mcm, Phase II) → monoclinic (C2/m, Phase III) → monoclinic (P21/m or P21, Phase IV) → triclinic (P1 or P1¯, Phase V), at 0.5, 4.4, and 15.4 GPa, respectively. During the II-III phase transition, CsN3 keeps its layered structure and the azide anions rotate obviously. The compressibility of Phase II is dominated by the repulsions between azide anions. The deformation of unit cell is isotropic in Phases II and IV and anisotropic in Phase III. With increasing pressures, the monoclinic angle increases in Phase III and then becomes stable in Phase IV. The bulk moduli of Phases II, III, IV, and V are determined to be 18 ± 4, 20 ± 1, 27 ± 1 and 34 ± 1 GPa, respectively. The ionic character of alkali azides is found to play a key role in their pressure-induced phase transitions.

  10. In Situ Sub-cm Chemistry for Assessing Ancient Habitability on Mars with the Alpha Particle X-ray Spectrometer

    Science.gov (United States)

    Vanbommel, Scott; Gellert, Ralf; Berger, Jeff; Thompson, Lucy; Campbell, John L.; Edgett, Ken; McBride, Marie; Apxs Team; Mahli Team

    The Alpha Particle X-ray Spectrometer (APXS) is a chemical analysis instrument on board NASA's Mars rovers. Mounted at the end of the rover arm, the APXS conducts high-precision in situ measurements of rocks and regolith, playing a significant role in understanding the surface composition and geochemical processes on Mars. Curium-244 sources provide complementary PIXE and XRF excitation resulting in a slowly varying and high sensitivity across the range of geochemically important elements with the added benefits of low power demand, low mass, and robust durability. We combine oversampled APXS data with pictures from the arm-mounted MAHLI camera to produce a 3D model of the target and deconvolve the sub-cm-scale chemistry of visible endmembers within heterogeneous targets. Quantitative chemistry at these small scales is perfectly tailored for deconvolving chemical differences in the rock record that resulted from aqueous processes, particularly the fluid mobilization of biologically essential elements such as P, S, and Zn. This is critical for understanding the history of ancient Mars and contributes to Curiosity's quest to discover past habitable environments on Mars. This work has been supported by the Canadian Space Agency under contract 9F052-14-0592.

  11. In situ applications of X ray fluorescence techniques. Final report of a coordinated research project 2000-2003

    International Nuclear Information System (INIS)

    2005-09-01

    In 2000 the IAEA initiated a Coordinated Research Project (CRP) on In Situ Applications of XRF Techniques as one of the elements of the project on Nuclear Instruments for Specific Applications, the major objective of which is to assist Member States in the development of nuclear instruments and software for special applications such as the characterization of materials. An overall objective of the CRP was to assist laboratories in Member States in such areas as environmental pollution monitoring, mineral exploration, the preservation of cultural heritage, the control of industrial processes and the optimization of analytical methodologies for these applications using field-portable X ray fluorescence (FPXRF). Although a significant amount of work has been undertaken in the development of FPXRF techniques, there is little consensus on the best approach for any particular application. The most important aspect before FPXRF techniques can be applied successfully is, therefore, the development of a clear FPXRF methodology. Because of the wide range of problems to which FPXRF can be applied, these procedures must be comprehensive and cover many applications involving the analysis of samples such as rocks, soils, air particulates or liquid samples. The specific research objectives of the CRP included the development and optimization of sampling methodologies for in situ XRF measurements, the improvement in the analytical performance of FPXRF based on the study of mineralogical effects, surface irregularity effects, heterogeneity and the influence of moisture content, the development and validation of quantitative and/or semi-quantitative procedures to be applied for in situ XRF analysis and development of complete operating procedures for selected in situ applications, including relevant quality assurance. The CRP covered a period of four years (2000?2003). Twelve laboratories from both developed and developing Member States and the IAEA?s Laboratories participated

  12. Strip velocity measurements for gated x-ray imagers using short pulse lasers

    Science.gov (United States)

    Ross, P. W.; Cardenas, M.; Griffin, M.; Mead, A.; Silbernagel, C. T.; Bell, P.; Haque, S.

    2013-09-01

    Strip velocity measurements of gated X-ray imagers are presented using an ultra-short pulse laser. Obtaining time- resolved X-ray images of inertial confinement fusion shots presents a difficult challenge. One diagnostic developed to address this challenge is the gated X-ray imagers. The gated X-ray detectors (GXDs) developed by Lawrence Livermore National Laboratory and Los Alamos National Laboratory use a microchannel plate (MCP) coated with a gold strip line, which serves as a photocathode. GXDs are used with an array of pinholes, which image onto various parts of the GXD image plane. As the pulse sweeps over the strip lines, it creates a time history of the event with consecutive images. In order to accurately interpret the timing of the images obtained using the GXDs, it is necessary to measure the propagation of the pulse over the strip line. The strip velocity was measured using a short pulse laser with a pulse duration of approximately 1-2 ps. The 200nm light from the laser is used to illuminate the GXD MCP. The laser pulse is split and a retroreflective mirror is used to delay one of the legs. By adjusting the distance to the mirror, one leg is temporally delayed compared to the reference leg. The retroreflective setup is calibrated using a streak camera with a 1 ns full sweep. Resolution of 0.5 mm is accomplished to achieve a temporal resolution of ~5 ps on the GXD strip line.

  13. Statistical analysis of x-ray stress measurement by centroid method

    International Nuclear Information System (INIS)

    Kurita, Masanori; Amano, Jun; Sakamoto, Isao

    1982-01-01

    The X-ray technique allows a nondestructive and rapid measurement of residual stresses in metallic materials. The centroid method has an advantage over other X-ray methods in that it can determine the angular position of a diffraction line, from which the stress is calculated, even with an asymmetrical line profile. An equation for the standard deviation of the angular position of a diffraction line, σsub(p), caused by statistical fluctuation was derived, which is a fundamental source of scatter in X-ray stress measurements. This equation shows that an increase of X-ray counts by a factor of k results in a decrease of σsub(p) by a factor of 1/√k. It also shows that σsub(p) increases rapidly as the angular range used in calculating the centroid increases. It is therefore important to calculate the centroid using the narrow angular range between the two ends of the diffraction line where it starts to deviate from the straight background line. By using quenched structural steels JIS S35C and S45C, the residual stresses and their standard deviations were calculated by the centroid, parabola, Gaussian curve, and half-width methods, and the results were compared. The centroid of a diffraction line was affected greatly by the background line used. The standard deviation of the stress measured by the centroid method was found to be the largest among the four methods. (author)

  14. In situ surface X-ray diffraction studies of the copper-electrolyte interface. Atomic structure and homoepitaxial grwoth

    Energy Technology Data Exchange (ETDEWEB)

    Golks, Frederik

    2011-05-19

    Copper electrodeposition is the predominantly used technique for on-chip wiring in the fabrication of ultra-large scale integrated (ULSI) microchips. In this 'damascene copper electroplating' process, multicomponent electrolytes containing organic additives realize void-free filling of trenches with high aspect ratio ('superconformal deposition'). Despite manifold studies, motivated by the continuous trend to shrink wiring dimensions and thus the demand of optimized plating baths, detailed knowledge on the growth mechanism - in presence and absence of additives - is still lacking. Using a recently developed hanging meniscus X-ray transmission cell, brilliant synchrotron x-rays and a fast, one-dimensional detector system, unique real-time in situ surface X-ray diffraction studies of copper electrodeposition were performed under realistic reaction conditions, approaching rates of technological relevance. Preparatory measurements of the electrochemical dissolution of Au(001) in chloride-containing electrolyte demonstrated the capability of this powerful technique, specifically the possibility to follow atomic-scale deposition or dissolution processes with a time resolution down to five milliseconds. The electrochemical as well as structural characterization of the Cu(001)- and Cu(111)-electrolyte interfaces provided detailed insight into the complex atomic-scale structures in presence of specifically adsorbed chloride on these surfaces. The interface of Cu(001) in chloride-containing electrolyte exhibits a continuous surface phase transition of a disordered Cl adlayer to a c(2 x 2) Cl adlayer with increasing potential. The latter was found to induce a small vertical corrugation of substrate atoms, which can be ascribed to lattice relaxations induced by the presence of coadsorbed water molecules and cations in the outer part of the electrochemical double layer. The study of the specific adsorption of chloride on Cu(111) from acidic aqueous

  15. In situ analyses of Ag speciation in tissues of cucumber and wheat using synchrotron-based X-ray absorption spectroscopy

    Data.gov (United States)

    U.S. Environmental Protection Agency — In situ analyses of Ag speciation in tissues of cucumber and wheat using synchrotron-based X-ray absorption spectroscopy showing spectral fitting and linear...

  16. Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet-visible spectroscopy

    NARCIS (Netherlands)

    Mesu, J. Gerbrand; Beale, Andrew M.|info:eu-repo/dai/nl/325802068; de Groot, Frank M. F.|info:eu-repo/dai/nl/08747610X; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2006-01-01

    Time-resolved in situ video monitoring and ultraviolet-visible spectroscopy in combination with X-ray absorption near-edge spectroscopy (XANES) have been used for the first time in a combined manner to study the effect of synchrotron radiation on a series of homogeneous aqueous copper solutions in a

  17. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure

    International Nuclear Information System (INIS)

    Chow, P.; Xiao, Y. M.; Rod, E.; Bai, L. G.; Shen, G. Y.; Sinogeikin, S.; Gao, N.; Ding, Y.; Mao, H.-K.

    2015-01-01

    The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input field of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation

  18. Longitudinal detection of ferromagnetic resonance using x-ray transmission measurements

    International Nuclear Information System (INIS)

    Boero, G.; Rusponi, S.; Kavich, J.; Rizzini, A. Lodi; Piamonteze, C.; Nolting, F.; Tieg, C.; Thiele, J.-U.; Gambardella, P.

    2009-01-01

    We describe a setup for the x-ray detection of ferromagnetic resonance in the longitudinal geometry using element-specific transmission measurements. Thin magnetic film samples are placed in a static magnetic field collinear with the propagation direction of a polarized soft x-ray beam and driven to ferromagnetic resonance by a continuous wave microwave magnetic field perpendicular to it. The transmitted photon flux is measured both as a function of the x-ray photon energy and as a function of the applied static magnetic field. We report experiments performed on a 15 nm film of doped Permalloy (Ni 73 Fe 18 Gd 7 Co 2 ) at the L 3 /L 2 -edges of Fe, Co, and Ni. The achieved ferromagnetic resonance sensitivity is about 0.1 monolayers/√(Hz). The obtained results are interpreted in the framework of a conductivity tensor based formalism. The factors limiting the sensitivity as well as different approaches for the x-ray detection of ferromagnetic resonance are discussed.

  19. Measurements of fast electron beams and soft X-ray emission from plasma-focus experiments

    Directory of Open Access Journals (Sweden)

    Surała Władysław

    2016-06-01

    Full Text Available The paper reports results of the recent experimental studies of pulsed electron beams and soft X-rays in plasma-focus (PF experiments carried out within a modified PF-360U facility at the NCBJ, Poland. Particular attention was focused on time-resolved measurements of the fast electron beams by means of two different magnetic analyzers, which could record electrons of energy ranging from about 41 keV to about 715 keV in several (6 or 8 measuring channels. For discharges performed with the pure deuterium filling, many strong electron signals were recorded in all the measuring channels. Those signals were well correlated with the first hard X-ray pulse detected by an external scintillation neutron-counter. In some of the analyzer channels, electron spikes (lasting about dozens of nanoseconds and appearing in different instants after the current peculiarity (so-called current dip were also recorded. For several discharges, fast ion beams, which were emitted along the z-axis and recorded with nuclear track detectors, were also investigated. Those measurements confirmed a multibeam character of the ion emission. The time-integrated soft X-ray images, which were taken side-on by means of a pinhole camera and sensitive X-ray films, showed the appearance of some filamentary structures and so-called hot spots. The application of small amounts of admixtures of different heavy noble gases, i.e. of argon (4.8% volumetric, krypton (1.6% volumetric, or xenon (0.8% volumetric, decreased intensity of the recorded electron beams, but increased intensity of the soft X-ray emission and showed more distinct and numerous hot spots. The recorded electron spikes have been explained as signals produced by quasi-mono-energetic microbeams emitted from tiny sources (probably plasma diodes, which can be formed near the observed hot spots.

  20. A Next-Generation Hard X-Ray Nanoprobe Beamline for In Situ Studies of Energy Materials and Devices

    Science.gov (United States)

    Maser, Jörg; Lai, Barry; Buonassisi, Tonio; Cai, Zhonghou; Chen, Si; Finney, Lydia; Gleber, Sophie-Charlotte; Jacobsen, Chris; Preissner, Curt; Roehrig, Chris; Rose, Volker; Shu, Deming; Vine, David; Vogt, Stefan

    2014-01-01

    The Advanced Photon Source is developing a suite of new X-ray beamlines to study materials and devices across many length scales and under real conditions. One of the flagship beamlines of the APS upgrade is the In Situ Nanoprobe (ISN) beamline, which will provide in situ and operando characterization of advanced energy materials and devices under varying temperatures, gas ambients, and applied fields, at previously unavailable spatial resolution and throughput. Examples of materials systems include inorganic and organic photovoltaic systems, advanced battery systems, fuel cell components, nanoelectronic devices, advanced building materials and other scientifically and technologically relevant systems. To characterize these systems at very high spatial resolution and trace sensitivity, the ISN will use both nanofocusing mirrors and diffractive optics to achieve spots sizes as small as 20 nm. Nanofocusing mirrors in Kirkpatrick-Baez geometry will provide several orders of magnitude increase in photon flux at a spatial resolution of 50 nm. Diffractive optics such as zone plates and/or multilayer Laue lenses will provide a highest spatial resolution of 20 nm. Coherent diffraction methods will be used to study even small specimen features with sub-10 nm relevant length scale. A high-throughput data acquisition system will be employed to significantly increase operations efficiency and usability of the instrument. The ISN will provide full spectroscopy capabilities to study the chemical state of most materials in the periodic table, and enable X-ray fluorescence tomography. In situ electrical characterization will enable operando studies of energy and electronic devices such as photovoltaic systems and batteries. We describe the optical concept for the ISN beamline, the technical design, and the approach for enabling a broad variety of in situ studies. We furthermore discuss the application of hard X-ray microscopy to study defects in multi-crystalline solar cells, one

  1. Residual stress measurement with high energy x-rays at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Winholtz, R. A.; Haeffner, D. R.; Green, R.E.L.; Varma, R.; Hammond, D.

    2000-01-01

    Preliminary measurements with high energy x-rays from the SRI CAT 1-ID beam line at the Advanced Photon show great promise for the measurement of stress and strain using diffraction. Comparisons are made with neutron measurements. Measurements of strains in a 2 mm thick 304 stainless steel weld show that excellent strain and spatial resolutions are possible. With 200 microm slits, strain resolutions of 1 x 10 -5 were achieved

  2. Feasibility study for the in vivo measurement of lead in bone using L-x-ray fluorescence

    International Nuclear Information System (INIS)

    Wielopolski, L.; Slatkin, D.N.; Vartsky, D.; Ellis, K.J.; Cohn, S.H.

    1980-01-01

    Lead deposits in bone were detected by x-ray fluorescence using x-rays from either a 125 I or a 109 Cd source. Measurements were taken from tibia in intact human legs, post-mortem. On the basis of preliminary measurements, it was concluded that an exposure of one rad is adequate for determination of lead in bone. Both the advantages and the disadvantages of L-x-rays, used in the technique developed for this study, are compared with those of K-x-rays

  3. Transmission properties of barite mortar using X-ray spectra measured with Cd Te detector

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J. C.; Mariano, L.; Costa, P. R. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R. 187, Cidade Universitaria, 05508-090 Sao Paulo (Brazil); Tomal, A., E-mail: josilene@usp.br [Universidade Federal de Goias, Instituto de Fisica, Campus Samambaia, 74001-970 Goiania (Brazil)

    2014-08-15

    Current methods for calculating X-ray shielding barriers do not take into account spectral distribution of the beam transmitted by the protective material. This consideration is important in dose estimations for radiation workers and general public in diagnostic radiology facilities. The aim of the present study was to estimate barite mortar attenuation curves using X-ray spectra weighted by a workload distribution. These curves were described in units of ambient dose equivalent (H (10)), since it is the radiation quantity adopted by IAEA for dose assessment in medical environment. Attenuation curves were determined using the optimized model for shielding evaluation presented by Costa and Caldas (2002). Workload distribution presented by Simpkin (1996), measured primary spectra and mass attenuation coefficients of barite mortar were used as input data in this model. X-ray beams in diagnostic energy range were generated by an industrial X-ray tube with 3 mm of aluminum additional filtration. Primary experimental spectra were measured by a Cd Te detector and corrected by the response function of detector by means of a stripping procedure. Air kerma measurements were performed using an ionization chamber for normalization purpose of the spectra. The corrected spectra presented good agreement with spectra generated by a semi-empirical model. The variation of the ambient dose equivalent as a function of barite mortar thickness was calculated. Using these data, it was estimated the optimized thickness of protective barrier needed for shielding a particular area in an X-ray imaging facility. The results obtained for primary protective barriers exhibit qualitative agreement with those presented in literature. (Author)

  4. Novel micro-reactor flow cell for investigation of model catalysts using in situ grazing-incidence X-ray scattering

    DEFF Research Database (Denmark)

    Kehres, Jan; Pedersen, Thomas; Masini, Federico

    2016-01-01

    -incidence small-angle X-ray scattering (GISAXS) in transmission through 10 µm-thick entrance and exit windows by using micro-focused beams. An additional thinning of the Pyrex glass reactor lid allows simultaneous acquisition of the grazing-incidence wide-angle X-ray scattering (GIWAXS). In situ experiments......The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SIO), permits grazing...

  5. Measurement of the energy distribution of parametric X-ray radiation from a double-crystal system

    International Nuclear Information System (INIS)

    Mori, Akira; Hayakawa, Yasushi; Kidokoro, Akio; Sato, Isamu; Tanaka, Toshinari; Hayakawa, Ken; Kobayashi, Kouji; Ohshima, Hisashi

    2006-01-01

    A parametric X-ray radiation (PXR) generator system was developed at the Laboratory for Electron Beam Research and Applications (LEBRA) at Nihon University; this PXR generator system is a tunable wavelength and quasi-monochromatic X-ray source constructed as one of the advanced applications of the LEBRA 125-MeV electron linear accelerator. The PXR beam which has characteristic of energy distribution. The theoretical values of energy distribution obtained at the output port were calculated to be approximately 300 eV and 2 keV at the central X-ray energies of 7 keV and 20 keV, respectively. In order to investigate the energy distribution, several measurements of the X-ray energy were carried out. The X-ray absorption of known materials and that of thin aluminum has been evaluated based on analyses of images taken using an imaging plate. The X-ray energy was deduced base on the identification of the absorption edges, and the energy distribution was estimated based on measurements using aluminum step method. In addition, an X-ray diffraction method using a perfect silicon crystal was employed, and spectra were measured using a solid state detector (SSD). The results of these experiments agreed with the calculated results. In particular, the well-defined absorption edges in the X-ray images and the typical rocking curves obtained by the measurement of the X-ray diffraction indicated that the distribution has a high-energy resolution

  6. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  7. Wide Bandgap Semiconductor Detector Optimization for Flash X-Ray Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Roecker, Caleb Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schirato, Richard C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-17

    Charge trapping, resulting in a decreased and spatially dependent electric field, has long been a concern for wide bandgap semiconductor detectors. While significant work has been performed to characterize this degradation at varying temperatures and radiation environments, this work concentrates upon examining the event-to-event response in a flash X-ray environment. The following work investigates if charge trapping is a problem for CZT detectors, with particular emphasis on flash X-ray radiation fields at cold temperatures. Results are compared to a non-flash radiation field, using an Am-241 alpha source and similar temperature transitions. Our ability to determine if a response change occurred was hampered by the repeatability of our flash X-ray systems; a small response change was observed with the Am-241 source. Due to contrast of these results, we are in the process of revisiting the Am-241 measurements in the presence of a high radiation environment. If the response change is more pronounced in the high radiation environment, a similar test will be performed in the flash X-ray environment.

  8. Evaluation of stress gradient by x-ray stress measurement based on change in angle phi

    International Nuclear Information System (INIS)

    Sasaki, Toshihiko; Kuramoto, Makoto; Yoshioka, Yasuo.

    1985-01-01

    A new principle of X-ray stress evaluation for a sample with steep stress gradient has been prosed. The feature of this method is that the stress is determined by using so-called phi-method based on the change of phi-angle and thus has no effect on the penetration depth of X-rays. The procedure is as follows; firstly, an average stress within the penetration depth of X-rays is determined by changing only phi-angle under a fixed psi-angle, and then a distribution of the average stress vs. the penetration depth of X-rays is detected by repeating the similar procedure at different psi-angles. The following conclusions were found out as the result of residual stress measurements on a carbon steel of type S 55 C polished by emery paper. This method is practical enough to use for a plane stress problem. And the assumption of a linear stress gradient adopted in the authors' previous investigations is valid. In case of a triaxial stress analysis, this method is effective for the solution of three shearing stresses. However, three normal stresses can not be solved perfectly except particular psi-angles. (author)

  9. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  10. Ultraminiature X-ray fluorescence spectrometer for in-situ geochemical analysis on Mars.

    Science.gov (United States)

    Clark, B. C.; Baird, A. K.

    1973-01-01

    A spectrometer based upon the X-ray fluorescence method of elemental analysis has been developed in an ultraminiature, rugged form suitable for a spacecraft mission to Mars. The instrument employs two radioisotope sources (Fe-55 and Cd-109) which irradiate adjacent areas on a regolith sample. Fluorescent X rays emitted by the sample are detected by four thin-window proportional counters. Using pulse-height discrimination, the energy spectra are determined. Virtually all elements above sodium in the periodic table are detected if present at sufficient levels. Minimum detection limits range from 30 ppm to 2% depending upon the element and the matrix. For most elements, they are below 0.5%. Accuracies also depend upon the matrix, but are generally better than plus or minus 0.5% for all elements of atomic number greater than 14. Elements below sodium are also detected, but as a single group. Ambiguities of identification of the elements producing the observed spectra are minimal.

  11. Measurements of Strontium Levels in Human Bone In Vivo Using Portable X-ray Fluorescence (XRF).

    Science.gov (United States)

    Specht, Aaron J; Mostafaei, Farshad; Lin, Yanfen; Xu, Jian; Nie, Linda H

    2017-08-01

    Measurement of bone strontium (Sr) is vital to determining the effectiveness of Sr supplementation, which is commonly used for the treatment of osteoporosis. Previous technology uses radioisotope sources and bulky equipment to measure bone Sr. This study demonstrates the effectiveness of portable X-ray fluorescence (XRF) for bone Sr measurement and validates it using data from a population of 238 children. We identified correlations between bone Sr and age in our participants.

  12. In situ stress determination by X-ray diffractometry and its prospects

    International Nuclear Information System (INIS)

    Castex, Louis

    The mechanical behavior of the metallic construction generally relates to the amount of the residual stress which reigned in the constitutive material. It is then essential to evaluate the residual stress inside the material without destruction. The X-ray diffractometry apparatus which we have developed for this study consisted of the use of the linear sensitive detector, the special psi-goniometer and the programming computer [fr

  13. In situ X-ray scattering of perovskite solar cell active layers roll-to-roll coated on flexible substrates

    DEFF Research Database (Denmark)

    Rossander, Lea Hildebrandt; Larsen-Olsen, Thue T.; Dam, Henrik Friis

    2016-01-01

    In an effort to understand recent results showing differences between the power conversion efficiencies of lead halide (CH3NH3PbI3-xClx) solar cells on glass versus flexible substrates, this study investigates the influence that substrate and processing methods have on morphological...... and crystallographic development. Using our in situ slot-die micro roll-to-roll coater setup, we measured small and wide angle X-ray scattering in grazing incidence while the material dried, enabling us to follow the crystallization from just after the deposition and up to 25 minutes later. The data showed differing...

  14. Measurement and quality control of the radiation output of X-ray tubes

    International Nuclear Information System (INIS)

    Aalbers, A.H.L.

    1989-01-01

    In this paper, attention is focused on the measurement of the radiation output in order to evaluate the performance of the medical X-ray tube and generator system. An ionometric method used to assess the consistency of radiation output and the variation of tube output with kV p and mA settings is described. The precision and accuracy achievable with the measurement technique described are discussed in relation to requirements and limitations of the quality-control parameter being measured. Use of a calibrated ionization chamber, carried out under well defined measurement conditions, provides a simple and reliable means to monitor the radiation output of X-ray tubes. (author)

  15. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell

    International Nuclear Information System (INIS)

    Deb, A.; Bergmann, U.; Cairns, E.L.; California Univ., Berkeley, CA; Cramer, S.P.; California Univ., Davis, CA

    2004-01-01

    The extraction and insertion of lithium in LiFePO 4 has been investigated in practical Li-ion intercalation electrodes for Li-ion batteries using Fe K-edge X-ray absorption spectroscopy (XAS). A versatile electrochemical in situ reaction cell was utilized, specifically designed for long-term X-ray experiments on battery electrodes during the lithium-extraction/insertion process in electrode materials for Li-ion batteries. The electrode contained about 7.7 mg of LiFePO 4 on a 20 μm-thick Al foil. In order to determine the charge compensation mechanism and structural perturbations occurring in the system during cycling, in situ X-ray absorption fine-structure spectroscopy (XAFS) measurements were conducted on the cell at a moderate rate using typical Li-ion battery operating voltages (3.0-4.1 V versus Li/Li + ).XAS studies of the LiFePO 4 electrode measured at the initial state (LiFePO 4 ) showed iron to be in the Fe(II) state corresponding to the initial state (0.0 mAh) of the battery, whereas in the delithiated state (FePO 4 ) iron was found to be in the FE(III) state corresponding to the final charged state (3 m Ah) of the battery. The X-ray absorption near-edge structure (XANES) region of the XAS spectra revealed a high-spin configuration for the two states [Fe(II), d 6 and Fe(III), d 5 ]. The XAFS data analysis confirmed that the olivine structure of the LeFePO 4 and FePO 4 is retained by the electrodes, which is in agreement with the X-ray diffraction observations on these compounds. The XAFS data that were collected continuously during cycling revealed details about the response of the cathode to Li insertion and extraction. These measurements on the LiFePO 4 cathode show that the material retains good structural short-range order leading to superior cycling

  16. Ultra-fast in-situ X-ray studies of evolving columnar dendrites in solidifying steel weld pools

    OpenAIRE

    Mirihanage, W.U.; Di Michiel, M.; Mathiesen, R.H.

    2015-01-01

    High-brilliance polychromatic synchrotron radiation has been used to conduct in-situ studies of the solidification microstructure evolution during simulated welding. The welding simulations were realized by rapidly fusing ~ 5 mm spot in Fe-Cr-Ni steel. During the solid- liquid-solid phase transformations, a section of the weld pool was placed in an incident 50-150 keV polychromatic synchrotron X-ray beam, in a near-horizontal position at a very low inclination angle. Multiple high-resolution ...

  17. In situ X-ray diffraction study of solid state transformations during catalytic graphitisation of amorphous carbon

    CERN Document Server

    Krivoruchko, O P; Zaikovskii, V I

    2001-01-01

    Here we report on the results of an in situ X-ray diffraction study of phase transformations during catalytic graphitisation of amorphous carbon. It is demonstrated that there is unusual change of iron catalyst reflection intensity at low temperature approx 640 deg. C. This unusual intensity change may possibly be caused by the transition of some part of metal into liquid state at low temperature. It was also shown by electron microscopy that although no graphite reflections were detected 80-90% of amorphous carbon becomes graphite after sample heating in a high temperature vacuum chamber.

  18. In-situ observation of deuteride formation in palladium electrochemical cathode by X-ray diffraction method

    International Nuclear Information System (INIS)

    Yamamoto, Takao; Oka, Takashi; Taniguchi, Ryoichi

    1990-01-01

    In-situ X-ray diffraction observation of palladium foil cathode (10 μm) was carried out during electrolysis of 0.1N-LiOD heavy water solution in order to estimate the deuterium content in palladium during the detection of charged particles in our previous work. A complete transformation into β-palladium deuteride phase was observed, and its maximum lattice constant 4.06 A was evaluated as corresponding to D/Pd = 0.73. The deuterium concentration in the previous work was estimated as higher than this considering the difference in cell conditions. (author)

  19. Thermal expansion and phase transformations of nitrogen-expanded austenite studied with in situ synchrotron X-ray diffraction

    DEFF Research Database (Denmark)

    Brink, Bastian; Ståhl, Kenny; Christiansen, Thomas Lundin

    2014-01-01

    as a fitting parameter. The stacking fault density is constant for temperatures up to 680 K, whereafter it decreases to nil. Surprisingly, a transition phase with composition M4N (M = Fe, Cr, Ni, Mo) appears for temperatures above 770 K. The linear coefficient of thermal expansion depends on the nitrogen......Nitrogen-expanded austenite, _N, with high and low nitrogen contents was produced from AISI 316 grade stainless steel powder by gaseous nitriding in ammonia/hydrogen gas mixtures. In situ synchrotron X-ray diffraction was applied to investigate the thermal expansion and thermal stability...

  20. Near K-edge measurement of the X-ray attenuation coefficient of heavy elements using a tuneable X-ray source based on an electron LINAC

    CERN Document Server

    Materna, T; Mondelaers, W; Masschaele, B

    2000-01-01

    The X-ray attenuation coefficients of bismuth and of uranium were measured in the regions of 40-240 and 70-240 keV, respectively, using a tuneable hard X-ray source based on the linear electron accelerator at the University of Ghent. Results were compared with the semi-empirical values of Storm and Israel and to the theoretical values of Berger and Hubbell. We also propose a simple function for the attenuation coefficient in the vicinity of the K-edge for uranium and in an extended range of energy for bismuth. The set-up of the source at Ghent is described and the future improvements are explained.

  1. Measuring the X-ray Resolving Power of Bent Potassium Acid Phthalate Diffraction Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Haugh, M. J. [NSTec; Wu, M. [SNL; Jacoby, K. D. [NSTec; Loisel, G. P. [SNL

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories (SNL) in Albuquerque, NM. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a dual goniometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  2. Soft-x-ray magneto-optical Kerr effect and element-specific hysteresis measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Interest in the utilization of x-ray magneto-optical properties to provide element-specific magnetic information, combined with recent development of tunable linear polarizers for spectroscopic polarization measurement, have led the authors to the study of magneto-optical rotation (MOR) near core levels of magnetic atoms in magnetic multilayer and alloy films. Their initial observation of Faraday rotation (in transmission) demonstrated that for Fe MOR is easily measured and is larger at its L{sub 3} resonance than in the near-visible spectral regions. This work also demonstrated that the spectroscopic behavior of the MOR signal in transmission, resulting from the differential reaction of left- and right-circular components of a linearly polarized beam, is related to the magnetic circular dichroism (MCD), or differential absorption, as expected by a Kramers-Kronig transformation. Thus MCD measurements using circular polarization and MOR measurements using linear polarization can provide complementary, and in some cases equivalent, information. On beamline 6.3.2 the authors have begun to investigate soft x-ray MOR in the reflection geometry, the x-ray magneto-optic Kerr effect (XMOKE). Early measurements have demonstrated the ability to measure element-specific hysteresis loops and large rotations compared to analogous near-visible measurements. The authors are investigating the spectral dependence of the XMOKE signal, and have initiated systematic materials studies of sputter-deposited films of Fe, Fe{sub x}Cr{sub 1{minus}x} alloys, and Fe/Cr multilayers.

  3. X-Ray Measurements Of Total Reflectivity And Scattering From Au-Coated Foils

    DEFF Research Database (Denmark)

    Hornstrup, Allan; Christensen, Finn Erland; Schnopper, H. W.

    1989-01-01

    We present X-ray measurements of total reflectivity and scattering from gold coated foils. The foils are two sorts of 0.3 mm thick dip-lacquered aluminum, 0.125 mm thick plastic (Upilex) and 0.5 mm thick dip-lacquered nickel. The analysis of the data show a high reflectivity for all but the plastic...... foil, and only small microroughness (-10A at lengthscales below -0.1 micron), evidenced by low resolution scat-tering measurements....

  4. Diamond Thermal Expansion Measurement Using Transmitted X-ray Back-diffraction.

    OpenAIRE

    Giles, Carlos; Adriano, Cris; Lubambo, Adriana Freire; Cusatis, Cesar; Mazzaro, Irineu; Hönnicke, Marcelo Goncalves

    2015-01-01

    The linear thermal expansion coefficient of diamond has been measured using forward-diffracted profiles in X-ray backscattering. This experimental technique is presented as an alternative way of measuring thermal expansion coefficients of solids in the high-resolution Bragg backscattering geometry without the intrinsic difficulty of detecting the reflected beam. The temperature dependence of the lattice parameter is obtained from the high sensitivity of the transmitted profiles to the Bragg a...

  5. Soft x-ray camera for internal shape and current density measurements on a noncircular tokamak

    International Nuclear Information System (INIS)

    Fonck, R.J.; Jaehnig, K.P.; Powell, E.T.; Reusch, M.; Roney, P.; Simon, M.P.

    1988-05-01

    Soft x-ray measurements of the internal plasma flux surface shaped in principle allow a determination of the plasma current density distribution, and provide a necessary monitor of the degree of internal elongation of tokamak plasmas with a noncircular cross section. A two-dimensional, tangentially viewing, soft x-ray pinhole camera has been fabricated to provide internal shape measurements on the PBX-M tokamak. It consists of a scintillator at the focal plane of a foil-filtered pinhole camera, which is, in turn, fiber optically coupled to an intensified framing video camera (/DELTA/t />=/ 3 msec). Automated data acquisition is performed on a stand-alone image-processing system, and data archiving and retrieval takes place on an optical disk video recorder. The entire diagnostic is controlled via a PDP-11/73 microcomputer. The derivation of the polodial emission distribution from the measured image is done by fitting to model profiles. 10 refs., 4 figs

  6. Using measurements of the spatial SNR to optimize phase contrast X-ray imaging

    Science.gov (United States)

    Ullherr, M.; Balles, A.; Fella, C.; Zabler, S.

    2018-01-01

    X-ray phase contrast imaging is a measurement task which is challenging to optimize, because many physical effects determine signal and noise. If we describe the detail visibility by the spatial signal to noise ratio, SNR(u), we can optimize an imaging setup by maximizing its SNR(u). We propose a measurement method for the spatial SNR which is suitable for this purpose. It consists of measuring a series of images from which the spatial SNR is calculated. This allows a convenient and exact optimization of the SNR that does not rely on theoretical simplifications and is not specific to X-ray imaging. We demonstrate the measurement method for the example of choosing the optimal geometrical magnification for cone-beam inline X-ray phase contrast. Additionally, we propose the use of a known signal reconstruction method - the Wiener Deconvolution - to improve the detail visibility by post-processing images within the limits given by the measured SNR(u). As the SNR(u) gives the degree of this improvement, we derive a measure for the effective spatial resolution from the SNR(u).

  7. Evaluation of stresses generated in steel finger joint of bridge by X-ray stress measurement

    International Nuclear Information System (INIS)

    Kohri, Ami; Kawano, Yutaka; Nishido, Takayuki

    2017-01-01

    In a steel bridge, the evaluation of the stress generated in the finger joint without a gap to absorb temperature change can be an index when evaluating the remaining life. This study chose as the object the finger joint of a diagonal bridge, where the generated stress state is considered to be more complicated, prepared a finger joint test specimen that simulated an actual part, and performed a load test. For judgment, FEM analysis, non-destructive X-ray stress measurement, and measurement of the generated stress using strain gauge were applied. Compared with the FEM analysis results, the difference in the stress value was generated due to the difference in the contact state, but the trends of the stress distribution were equivalent. In addition, the same measurement value as the strain gauge was obtained, and the validity of the X-ray stress measurement method was confirmed. As a result, it was found that the stress measurement method by X-ray is effective for measuring the generated stress including the residual stress of the finger joint without gap at a bridge. (A.O.)

  8. A compact x-ray system for two-phase flow measurement

    Science.gov (United States)

    Song, Kyle; Liu, Yang

    2018-02-01

    In this paper, a compact x-ray densitometry system consisting of a 50 kV, 1 mA x-ray tube and several linear detector arrays is developed for two-phase flow measurement. The system is capable of measuring void fraction and velocity distributions with a spatial resolution of 0.4 mm per pixel and a frequency of 1000 Hz. A novel measurement model has been established for the system which takes account of the energy spectrum of x-ray photons and the beam hardening effect. An improved measurement accuracy has been achieved with this model compared with the conventional log model that has been widely used in the literature. Using this system, void fraction and velocity distributions are measured for a bubbly and a slug flow in a 25.4 mm I.D. air-water two-phase flow test loop. The measured superficial gas velocities show an error within  ±4% when compared with the gas flowmeter for both conditions.

  9. Measurement of plutonium in spent nuclear fuel by self-induced x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Andrew S [Los Alamos National Laboratory; Rudy, Cliff R [Los Alamos National Laboratory; Tobin, Steve J [Los Alamos National Laboratory; Charlton, William S [Los Alamos National Laboratory; Stafford, A [TEXAS A& M; Strohmeyer, D [TEXAS A& M; Saavadra, S [ORNL

    2009-01-01

    Direct measurement of the plutonium content in spent nuclear fuel is a challenging problem in non-destructive assay. The very high gamma-ray flux from fission product isotopes overwhelms the weaker gamma-ray emissions from plutonium and uranium, making passive gamma-ray measurements impossible. However, the intense fission product radiation is effective at exciting plutonium and uranium atoms, resulting in subsequent fluorescence X-ray emission. K-shell X-rays in the 100 keV energy range can escape the fuel and cladding, providing a direct signal from uranium and plutonium that can be measured with a standard germanium detector. The measured plutonium to uranium elemental ratio can be used to compute the plutonium content of the fuel. The technique can potentially provide a passive, non-destructive assay tool for determining plutonium content in spent fuel. In this paper, we discuss recent non-destructive measurements of plutonium X-ray fluorescence (XRF) signatures from pressurized water reactor spent fuel rods. We also discuss how emerging new technologies, like very high energy resolution microcalorimeter detectors, might be applied to XRF measurements.

  10. Recent measurements of soft X-ray emission from the DPF-1000U facility

    Directory of Open Access Journals (Sweden)

    Surała Władysław

    2015-06-01

    Full Text Available Soft X-ray imaging is a very useful diagnostic technique in plasma-focus (PF experiments. This paper reports results of four experimental sessions which were carried out at the DPF-1000U plasma-focus facility in 2013 and 2014. Over 200 discharges were performed at various experimental conditions. Measurements were taken using two X-ray pinhole cameras with a line of sight perpendicular to the z-axis, at different azimuthal angles (about 20° and 200°, and looking towards the centre of the PF-pinch column. They were equipped with diaphragms 1000 μm or 200–300 μm in diameter and coated with filters of 500 μm Al foil and 10 μm Be foil, respectively. Data on the neutron emission were collected with silver activation counters. For time-resolved measurements the use was made of four PIN diodes equipped with various filters and oriented towards the centre of the PF-column, in the direction perpendicular to the electrode axis. The recorded X-ray images revealed that when the additional gas-puff system is activated during the discharge, the stability of the discharge is improved. The data collected in these experiments confirmed the appearance of a filamentary fine structure in the PF discharges. In the past years the formation of such filaments was observed in many Z-pinch type experiments. Some of the recorded X-ray images have also revealed the appearance of the so-called hot-spots, i.e. small plasma regions of a very intense X-ray emission. Such a phenomenon was observed before in many PF experiments, e.g. in the MAJA-PF device, but it has not been investigated so far in a large facility such as the DPF-1000U. The time-resolved measurements provided the evidence of a time lapse between the X-ray emission from plasma regions located at different distance from the anode surface. The formation of distinct ‘hot-spots’ in different instants of the DPF-1000U discharge was also observed.

  11. Diffraction measurements of residual macrostress and microstress using x-rays, synchrotron and neutrons

    International Nuclear Information System (INIS)

    Tanaka, Keisuke; Akiniwa, Yoshiaki

    2004-01-01

    The present paper reviews some recent developments of the measurements of the macrostress and microstress by diffraction using X-rays, synchrotron and neutrons especially in Japan. These three methods are based on the same principle of the diffraction of crystals, and have different advantages. The conventional X-rays detect the stress very near the surface, while the neutron diffraction takes the stress in the interior of the materials. High-energy X-rays from synchrotron sources have the penetration depth in between and are suitable for the measurement of subsurface stresses. After describing the developments of the fundamentals of the methods, the paper covers the recent applications of the diffraction methods to the residual stress analysis in textured thin films, the nondestructive determination of the subsurface distribution of residual stress in shot-peened materials, local stress measurements near the crack tip, the stress measurements of single crystals, macrostress and microstress measurements in composites, and the determination of the internal distribution of the residual stress in welded joints. (author)

  12. Device for measuring the exposure time in dental X-ray - Cronox

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Claudio J.M.; Santos, Luiz A.P. dos, E-mail: cjmm@cnen.gov.b [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2009-07-01

    The Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE) developed a test device for monitoring the X-ray beam in dental equipment to its application in quality control programs. This device, called Odontologic Dosimetric Card (CDO of Cartao Dosimetrico Odontologico in Portuguese) uses thermoluminescent dosimeters (TLD) for the measurement of some parameters of the X-ray beam as the entrance surface dose, the peak tension and half value layer (HVL). Radiographic films record the size of the radiation field. However, the TLD does not allow the assessment of exposure time, a parameter that complements the requirements of the Diretrizes de Protecao Radiologica em Radiodiagnostico Medico e Odontologico of Department of Health in Brazil for such equipment. Thus was developed a system based on sensitivity to ionizing radiation of phototransistors for measurement of exposure time when a patient is put in a clinical dental radiography. The system, called CRONOX was sized to be inserted within the CDO. The results showed that the measuring error had developed for less than 3% when compared to reference values obtained with the Tektronix digital oscilloscope, TDS2022 model. The readings obtained with the CRONOX were also compared with the nominal values selected in the X-ray equipment and with the values measured with the instrument of trade PTW Diavolt Universal. The results showed that the measuring device developed showed a maximum deviation of 5.92% on the nominal value selected, while for the instrument of PTW was 17.86%. (author)

  13. Device for measuring the exposure time in dental X-ray - Cronox

    International Nuclear Information System (INIS)

    Menezes, Claudio J.M.; Santos, Luiz A.P. dos

    2009-01-01

    The Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE) developed a test device for monitoring the X-ray beam in dental equipment to its application in quality control programs. This device, called Odontologic Dosimetric Card (CDO of Cartao Dosimetrico Odontologico in Portuguese) uses thermoluminescent dosimeters (TLD) for the measurement of some parameters of the X-ray beam as the entrance surface dose, the peak tension and half value layer (HVL). Radiographic films record the size of the radiation field. However, the TLD does not allow the assessment of exposure time, a parameter that complements the requirements of the Diretrizes de Protecao Radiologica em Radiodiagnostico Medico e Odontologico of Department of Health in Brazil for such equipment. Thus was developed a system based on sensitivity to ionizing radiation of phototransistors for measurement of exposure time when a patient is put in a clinical dental radiography. The system, called CRONOX was sized to be inserted within the CDO. The results showed that the measuring error had developed for less than 3% when compared to reference values obtained with the Tektronix digital oscilloscope, TDS2022 model. The readings obtained with the CRONOX were also compared with the nominal values selected in the X-ray equipment and with the values measured with the instrument of trade PTW Diavolt Universal. The results showed that the measuring device developed showed a maximum deviation of 5.92% on the nominal value selected, while for the instrument of PTW was 17.86%. (author)

  14. Simultaneous measurements of X-rays and electrons during a pulsating aurora

    Directory of Open Access Journals (Sweden)

    N. Østgaard

    1998-02-01

    Full Text Available The PULSAUR II rocket was launched from Andøya Rocket Range at 23.43 UT on 9 February 1994 into a pulsating aurora. In this paper we focus on the observations of precipitating electrons and auroral X-rays. By using models it is possible to deduce the electron energy spectrum from X-ray measurements. Comparisons are made between the deduced electron fluxes and the directly measured electron fluxes on the rocket. We found the shape of the observed and the deduced electron spectra to fit very well, with almost identical e-folding energies in the energy range from 10 ke V to ~60–80 ke V. For the integrated fluxes from 10.8 to 250 ke V, we found a discrepancy of 30% . By combining two models, we have found a good method of deducing the electron precipitation from X-ray measurements. The discrepancies between calculations and measurements are in the range of the uncertainties in the measurements.Key words. Ionospheric particle precipitation · Magnetospheric physics · Annual phenomena · Energetic particle

  15. A diamond detector for inertial confinement fusion X-ray bang-time measurements at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    MacPhee, A G; Brown, C; Burns, S; Celeste, J; Glenzer, S H; Hey, D; Jones, O S; Landen, O; Mackinnon, A J; Meezan, N; Parker, J; Edgell, D; Glebov, V Y; Kilkenny, J; Kimbrough, J

    2010-11-09

    An instrument has been developed to measure X-ray bang-time for inertial confinement fusion capsules; the time interval between the start of the laser pulse and peak X-ray emission from the fuel core. The instrument comprises chemical vapor deposited polycrystalline diamond photoconductive X-ray detectors with highly ordered pyrolytic graphite X-ray monochromator crystals at the input. Capsule bang-time can be measured in the presence of relatively high thermal and hard X-ray background components due to the selective band pass of the crystals combined with direct and indirect X-ray shielding of the detector elements. A five channel system is being commissioned at the National Ignition Facility at Lawrence Livermore National Laboratory for implosion optimization measurements as part of the National Ignition Campaign. Characteristics of the instrument have been measured demonstrating that X-ray bang-time can be measured with {+-} 30ps precision, characterizing the soft X-ray drive to +/- 1eV or 1.5%.

  16. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, Simon G., E-mail: simon.alcock@diamond.ac.uk; Nistea, Ioana; Sawhney, Kawal [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2016-05-15

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM’s autocollimator adds into the overall measured value of the mirror’s slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  17. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad

    International Nuclear Information System (INIS)

    Alcock, Simon G.; Nistea, Ioana; Sawhney, Kawal

    2016-01-01

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM’s autocollimator adds into the overall measured value of the mirror’s slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  18. Nano-metrology: The art of measuring X-ray mirrors with slope errors <100 nrad.

    Science.gov (United States)

    Alcock, Simon G; Nistea, Ioana; Sawhney, Kawal

    2016-05-01

    We present a comprehensive investigation of the systematic and random errors of the nano-metrology instruments used to characterize synchrotron X-ray optics at Diamond Light Source. With experimental skill and careful analysis, we show that these instruments used in combination are capable of measuring state-of-the-art X-ray mirrors. Examples are provided of how Diamond metrology data have helped to achieve slope errors of <100 nrad for optical systems installed on synchrotron beamlines, including: iterative correction of substrates using ion beam figuring and optimal clamping of monochromator grating blanks in their holders. Simulations demonstrate how random noise from the Diamond-NOM's autocollimator adds into the overall measured value of the mirror's slope error, and thus predict how many averaged scans are required to accurately characterize different grades of mirror.

  19. Dynamic measures of regional lung air volume using phase contrast x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kitchen, M J; Lewis, R A; Morgan, M J; Siu, K K W; Habib, A [School of Physics, Monash University, Melbourne VIC 3800 (Australia); Wallace, M J; Siew, M L; Hooper, S B [Department of Physiology, Monash University, Melbourne VIC 3800 (Australia); Fouras, A [Division of Biological Engineering, Monash University, Melbourne VIC 3800 (Australia); Yagi, N; Uesugi, K [SPring-8/JASRI, Sayo, Hyogo 679-5198 (Japan)], E-mail: Marcus.Kitchen@sci.monash.edu.au

    2008-11-07

    Phase contrast x-ray imaging can provide detailed images of lung morphology with sufficient spatial resolution to observe the terminal airways (alveoli). We demonstrate that quantitative functional and anatomical imaging of lung ventilation can be achieved in vivo using two-dimensional phase contrast x-ray images with high contrast and spatial resolution (<100 {mu}m) in near real time. Changes in lung air volume as small as 25 {mu}L were calculated from the images of term and preterm rabbit pup lungs (n = 28) using a single-image phase retrieval algorithm. Comparisons with plethysmography and computed tomography showed that the technique provided an accurate and robust method of measuring total lung air volumes. Furthermore, regional ventilation was measured by partitioning the phase contrast images, which revealed differences in aeration for different ventilation strategies.

  20. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles.

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Seo, Seung-Jun; Lim, Jae-Hong; Lee, Sang-Joon

    2015-03-06

    Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases.

  1. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Seo, Seung-Jun; Lim, Jae-Hong; Lee, Sang-Joon

    2015-01-01

    Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases. PMID:25744850

  2. Measurement of Heart size by mass chest X-ray in Medical students

    International Nuclear Information System (INIS)

    Khin San Wai; Khin Aye Mon

    1971-01-01

    Mass miniature P-A view chest X-ray films of 83 students were taken at the TB clinic and were used for measuring the heart size. Measurements taken on 70 mm film were changed to the equivalent values for standard 6 foot chest films, by multiplying with a factor 5.23 which is the ratio between 70 mm mass miniature X-ray film and 6 foot chest film. Frontal cardiac area was also calculated. The mean heart diameters and frontal cardiac area for 54 male students were transverse diameter-11.30 cm, length-11.98 cm, breadth-10.32 cm, frontal area-106.50 sq cm and aortic diameter-5.31 cm. Those for 28 female students were:transverse diameter-10.27 cm, length-11.56, breadth-9.45 cm, frontal area-88.70 sq cm and aortic diameter-4.75 cm

  3. Uncertainty calculations for the measurement of in vivo bone lead by x-ray fluorescence.

    Science.gov (United States)

    O'Meara, J M; Fleming, D E B

    2009-04-21

    In order to quantify the bone lead concentration from an in vivo x-ray fluorescence measurement, typically two estimates of the lead concentration are determined by comparing the normalized x-ray peak amplitudes from the Kalpha(1) and Kbeta(1) features to those of the calibration phantoms. In each case, the normalization consists of taking the ratio of the x-ray peak amplitude to the amplitude of the coherently scattered photon peak in the spectrum. These two Pb concentration estimates are then used to determine the weighted mean lead concentration of that sample. In calculating the uncertainties of these measurements, it is important to include any covariance terms where appropriate. When determining the uncertainty of the lead concentrations from each x-ray peak, the standard approach does not include covariance between the x-ray peaks and the coherently scattered feature. These spectral features originate from two distinct physical processes, and therefore no covariance between these features can exist. Through experimental and simulated data, we confirm that there is no observed covariance between the detected Pb x-ray peaks and the coherently scattered photon signal, as expected. This is in direct contrast to recent work published by Brito (2006 Phys. Med. Biol. 51 6125-39). There is, however, covariance introduced in the calculation of the weighted mean lead concentration due to the common coherent normalization. This must be accounted for in calculating the uncertainty of the weighted mean lead concentration, as is currently the case. We propose here an alternative approach to calculating the weighted mean lead concentration in such a way as to eliminate the covariance introduced by the common coherent normalization. It should be emphasized that this alternative approach will only apply in situations in which the calibration line intercept is not included in the calculation of the Pb concentration from the spectral data: when the source of the intercept is

  4. Verification of a novel method for tube voltage constancy measurement of orthovoltage x-ray irradiators.

    Science.gov (United States)

    Wang, Chu; Belley, Matthew D; Chao, Nelson J; Dewhirst, Mark W; Yoshizumi, Terry

    2014-08-01

    For orthovoltage x-ray irradiators, the tube voltage is one of the most fundamental system parameters as this directly relates to the dosimetry in radiation biology studies; however, to the best of our knowledge, there is no commercial portable quality assurance (QA) tool to directly test the constancy of the tube voltage greater than 160 kV. The purpose of this study is to establish the Beam Quality Index (BQI), a quantity strongly correlated to the tube voltage, as an alternative parameter for the verification of the tube voltage as part of the QA program of orthovoltage x-ray irradiators. A multipurpose QA meter and its associated data acquisition software were used to customize the measurement parameters to measure the BQI and collect its time-plot. BQI measurements were performed at 320 kV with four filtration levels on three orthovoltage x-ray irradiators of the same model, one of which had been recently energy-calibrated at the factory. For each of the four filtration levels, the measured BQI values were in good agreement (tube voltage for orthovoltage irradiators. The time-plot of BQI offers information on the behavior of beam energy at different phases of the irradiation time line. In addition, this would provide power supply performance characteristics from initial ramp-up to plateau, and finally, the sharp drop-off at the end of the exposure.

  5. The structural analysis of zinc borate glass by laboratory EXAFS and X-ray diffraction measurements

    International Nuclear Information System (INIS)

    Kajinami, Akihiko; Harada, Yasushi; Inoue, Shinsuke; Deki, Shigehito; Umesaki, Norimasa

    1999-01-01

    The structure of zinc borate glass has been investigated by laboratory EXAFS and X-ray diffraction measurement as preliminary investigations for the detailed study in SPring-8. The zinc borate glass was prepared in the range from 40 to 65 mol% of zinc oxide content. The X-ray diffraction was measured by horizontal θ-θ goniometer with 60 kV and 300 mA output of Mo target. The EXAFS of zinc borate glass was measured by laboratory EXAFS system with 20 kV, 100 mA output of Mo target for the K absorption edge of zinc atom. From the X-ray diffraction and the EXAFS measurements, it is found that the zinc ion is surrounded by four oxygen atoms and formed a tetrahedral structure whose (Zn-O) distance is about 2 A and that the structure is unchanged with the zinc oxide content. The diffraction data show that the neighboring structure of boron atom transforms from BO 4 tetrahedra to BO 3 tetragonal planar structure with increasing of the zinc oxide content. (author)

  6. Differential emission measure analysis of hot-flare plasma from solar-maximum mission X-ray data

    NARCIS (Netherlands)

    Schrijver, J.; Jakimiec, J.; Sylwester, J.; Lemen, J.R.; Mewe, R.; Bentley, R.D.; Fludra, A.; Sylwester, B.

    1984-01-01

    We have investigated differential emission measure (DEM) distribution of hot flare plasma (T>10 MK) using SMM X-ray data from Bent Crystal Spectrometer (BCS) and Hard X-ray Imaging Spectrometer (HXIS). We have found that the analysis provide a very sensitive test of consistency of observational data

  7. Probing Stress States in Silicon Nanowires During Electrochemical Lithiation Using In Situ Synchrotron X-Ray Microdiffraction

    Directory of Open Access Journals (Sweden)

    Imran Ali

    2018-04-01

    Full Text Available Silicon is considered as a promising anode material for the next-generation lithium-ion battery (LIB due to its high capacity at nanoscale. However, silicon expands up to 300% during lithiation, which induces high stresses and leads to fractures. To design silicon nanostructures that could minimize fracture, it is important to understand and characterize stress states in the silicon nanostructures during lithiation. Synchrotron X-ray microdiffraction has proven to be effective in revealing insights of mechanical stress and other mechanics considerations in small-scale crystalline structures used in many important technological applications, such as microelectronics, nanotechnology, and energy systems. In the present study, an in situ synchrotron X-ray microdiffraction experiment was conducted to elucidate the mechanical stress states during the first electrochemical cycle of lithiation in single-crystalline silicon nanowires (SiNWs in an LIB test cell. Morphological changes in the SiNWs at different levels of lithiation were also studied using scanning electron microscope (SEM. It was found from SEM observation that lithiation commenced predominantly at the top surface of SiNWs followed by further progression toward the bottom of the SiNWs gradually. The hydrostatic stress of the crystalline core of the SiNWs at different levels of electrochemical lithiation was determined using the in situ synchrotron X-ray microdiffraction technique. We found that the crystalline core of the SiNWs became highly compressive (up to -325.5 MPa once lithiation started. This finding helps unravel insights about mechanical stress states in the SiNWs during the electrochemical lithiation, which could potentially pave the path toward the fracture-free design of silicon nanostructure anode materials in the next-generation LIB.

  8. Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments.

    Science.gov (United States)

    Izadifar, Zohreh; Honaramooz, Ali; Wiebe, Sheldon; Belev, George; Chen, Xiongbiao; Chapman, Dean

    2016-03-01

    In tissue engineering, non-invasive imaging of biomaterial scaffolds and tissues in living systems is essential to longitudinal animal studies for assessments without interrupting the repair process. Conventional X-ray imaging is inadequate for use in soft tissue engineering due to the limited absorption difference between the soft tissue and biomaterial scaffolds. X-ray phase-based imaging techniques that derive contrast from refraction or phase effects rather than absorption can provide the necessary contrast to see low-density biomaterial scaffolds and tissues in large living systems. This paper explores and compares three synchrotron phase-based X-ray imaging techniques-computed tomography (CT)-diffraction enhanced imaging (DEI), -analyzer based imaging (ABI), and -phase contrast imaging (PCI)-for visualization and characterization of low-density biomaterial scaffolds and tissues in situ for non-invasive soft tissue engineering assessments. Intact pig joints implanted with polycaprolactone scaffolds were used as the model to assess and compare the imaging techniques in terms of different qualitative and quantitative criteria. For long-term in vivo live animal imaging, different strategies for reducing the imaging radiation dose and scan time-reduced number of CT projections, region of interest, and low resolution imaging-were examined with the presented phase-based imaging techniques. The results demonstrated promising capabilities of the phase-based techniques for visualization of biomaterial scaffolds and soft tissues in situ. The low-dose imaging strategies were illustrated effective for reducing the radiation dose to levels appropriate for live animal imaging. The comparison among the imaging techniques suggested that CT-DEI has the highest efficiency in retaining image contrast at considerably low radiation doses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Fast, versatile x-ray fluorescence method for measuring tin in impregnated wood

    DEFF Research Database (Denmark)

    Drabæk, I.; Christensen, Leif Højslet

    1985-01-01

    The present paper describes an energy-dispersive x-ray fluorescence method for measuring tin in bis(tri-n-butyl)tin-oxide impregnated wood. The proposed method is of the backscatter/fundamental parameter type. Its versatility, precision, and accuracy is demonstrated by analyses of eleven samples...... of sapwood of Baltic Redwood. The results obtained are compared with those from neutron activation analysis....

  10. The measurement of X-rays radiation temperature with a new developed filter-fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Zhang Chuanfei; Lin Libin; Lou Fuhong; Peng Taiping

    2001-01-01

    The author introduces how to measure the energy spectra of X-rays by filter-fluorescence spectroscopy. The design principle and structure of new-developed double diaphragms and filter-fluorescence spectroscopy with 5 channels are depicted. The parameters of optimized spectroscopy by numerical method are given. The filter-fluorescence spectroscopy designed according as Rousseau balance principle improves signal-noises ratio

  11. The use of a CCD imaging system for X-ray film intensity measurement

    International Nuclear Information System (INIS)

    Grigg, M.W.; Barnea, Z.

    1994-01-01

    The use of a simple CCD-based imaging system for digitizing and x-ray film image is demonstrated. A method of extending the region of linear response of the film based upon an analytic representation of the observed response to a series of increasing exposures is described. The validity of the procedure is illustrated through an example of the absolute intensity measurement of a reflection of cadmium sulphide. 3 refs., 7 figs

  12. Exposure measurement in the neighboring hospital beds during an x-ray procedure in hospitalization unit

    International Nuclear Information System (INIS)

    Goto, Rafael E.; Capeleti, Felipe F.; Cabete, Henrique V.

    2017-01-01

    There are lots of discussion about the exposure in hospitalization units in Brazil, especially around labor legislation and economic advantages of unhealthiness. With the attention focused on hospitalized patients, there were measured the exposure in neighboring beds of the patient submitted to an X-ray procedure with a mobile X-ray system that could be used to illustrate the discussion with consistent values. The most common X-ray procedure made in hospitalization units are chests images with techniques between 70 to 120 kV and 5 to 20 mAs. The measurement was made during routine exposure and simulations using a scattering phantom with Radcal AccuPro electrometer and 1800cc ionization chamber in a private hospital and a philanthropic hospital, both in Sao Paulo, Brazil. The ionization chambers are placed at 2 meters distance of the patient exposed of both sides during the routine procedure. During the simulation, a nylon phantom of 20 centimeters thick and 30 x 30 cm² size was placed on the bed, a typical exposure technique was used and the exposure was measured surrounding the phantom at 0.6, 1.0 and 2.0 meters distance for scattered radiation characterization. Initial results showed that the neighboring exposure at about 2 meters distance from the exposed patient bed have low values, even when exposure is integrated during the length of hospital stay. Therefore, the exposure in hospitalization units are very low compared to the exams doses. (author). (author)

  13. Exposure measurement in the neighboring hospital beds during an x-ray procedure in hospitalization unit

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Rafael E.; Capeleti, Felipe F.; Cabete, Henrique V., E-mail: rafael.goto@fcmsantacasasp.edu.br, E-mail: felipe.capeleti@fcmsantacasasp.edu.br, E-mail: henrique@gmpbrasil.com.br [Faculdade de Ciencias Medicas da Santa Casa Sao Paulo, SP (Brazil); GMP Consultoria em Radioprotecao e Fisica Medica e Assessoria LTDA, Sao Paulo, SP (Brazil)

    2017-11-01

    There are lots of discussion about the exposure in hospitalization units in Brazil, especially around labor legislation and economic advantages of unhealthiness. With the attention focused on hospitalized patients, there were measured the exposure in neighboring beds of the patient submitted to an X-ray procedure with a mobile X-ray system that could be used to illustrate the discussion with consistent values. The most common X-ray procedure made in hospitalization units are chests images with techniques between 70 to 120 kV and 5 to 20 mAs. The measurement was made during routine exposure and simulations using a scattering phantom with Radcal AccuPro electrometer and 1800cc ionization chamber in a private hospital and a philanthropic hospital, both in Sao Paulo, Brazil. The ionization chambers are placed at 2 meters distance of the patient exposed of both sides during the routine procedure. During the simulation, a nylon phantom of 20 centimeters thick and 30 x 30 cm² size was placed on the bed, a typical exposure technique was used and the exposure was measured surrounding the phantom at 0.6, 1.0 and 2.0 meters distance for scattered radiation characterization. Initial results showed that the neighboring exposure at about 2 meters distance from the exposed patient bed have low values, even when exposure is integrated during the length of hospital stay. Therefore, the exposure in hospitalization units are very low compared to the exams doses. (author). (author)

  14. Development of the measurement system with interferometers for ultraprecise X-ray mirror

    CERN Document Server

    Yamauchi, K; Mimura, H

    2003-01-01

    A figure measurement system with a stitching method has been developed for evaluation and fabrication of the ultraprecise hard X-ray mirror optics. This system was constructed by two interferometers. One is the Michelson-type microscopic interferometer which is improved to keep the focus distance within 0.1 mu m. Another is the Fizeau's interferometer employed to compensate stitching error in the long spatial wavelength range. To estimate the absolute accuracy in this figure measurement system, the reflection X-ray intensity distributions of flat and aspherical mirrors, which are fabricated by us, were predicted by wave-optical simulation based on measured profile an compared with actually observed distributions. As the result, they are in good agreements. These agreements prove that the developed system has sub-nanometer absolute accuracy in all the spatial wavelength range longer than 0.5mm, because sub-nanometer figure error in those spatial wavelength ranges are known to affect reflection X-ray intensity ...

  15. New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer Cubesat

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Thomas N.; Jones, Andrew; Kohnert, Richard; Mason, James Paul; Moore, Christopher S.; Palo, Scott; Rouleau, Colden [University of Colorado, Boulder, CO (United States); Caspi, Amir [Southwest Research Institute, Boulder, CO (United States); Chamberlin, Phillip C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Solomon, Stanley C. [National Center for Atmospheric Research, Boulder, CO (United States); Machol, Janet; Viereck, Rodney [NOAA Space Weather Prediction Center, Boulder, CO (United States)

    2017-02-01

    The goal of the Miniature X-ray Solar Spectrometer ( MinXSS ) CubeSat is to explore the energy distribution of soft X-ray (SXR) emissions from the quiescent Sun, active regions, and during solar flares and to model the impact on Earth's ionosphere and thermosphere. The energy emitted in the SXR range (0.1–10 keV) can vary by more than a factor of 100, yet we have limited spectral measurements in the SXRs to accurately quantify the spectral dependence of this variability. The MinXSS primary science instrument is an Amptek, Inc. X123 X-ray spectrometer that has an energy range of 0.5–30 keV with a nominal 0.15 keV energy resolution. Two flight models have been built. The first, MinXSS -1, has been making science observations since 2016 June 9 and has observed numerous flares, including more than 40 C-class and 7 M-class flares. These SXR spectral measurements have advantages over broadband SXR observations, such as providing the capability to derive multiple-temperature components and elemental abundances of coronal plasma, improved irradiance accuracy, and higher resolution spectral irradiance as input to planetary ionosphere simulations. MinXSS spectra obtained during the M5.0 flare on 2016 July 23 highlight these advantages and indicate how the elemental abundance appears to change from primarily coronal to more photospheric during the flare. MinXSS -1 observations are compared to the Geostationary Operational Environmental Satellite ( GOES ) X-ray Sensor (XRS) measurements of SXR irradiance and estimated corona temperature. Additionally, a suggested improvement to the calibration of the GOES XRS data is presented.

  16. New Solar Irradiance Measurements from the Miniature X-Ray Solar Spectrometer CubeSat

    Science.gov (United States)

    Woods, Thomas N.; Caspi, Amir; Chamberlin, Phillip C.; Jones, Andrew; Kohnert, Richard; Mason, James Paul; Moore, Christopher S.; Palo, Scott; Rouleau, Colden; Solomon, Stanley C.; Machol, Janet; Viereck, Rodney

    2017-02-01

    The goal of the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is to explore the energy distribution of soft X-ray (SXR) emissions from the quiescent Sun, active regions, and during solar flares and to model the impact on Earth's ionosphere and thermosphere. The energy emitted in the SXR range (0.1-10 keV) can vary by more than a factor of 100, yet we have limited spectral measurements in the SXRs to accurately quantify the spectral dependence of this variability. The MinXSS primary science instrument is an Amptek, Inc. X123 X-ray spectrometer that has an energy range of 0.5-30 keV with a nominal 0.15 keV energy resolution. Two flight models have been built. The first, MinXSS-1, has been making science observations since 2016 June 9 and has observed numerous flares, including more than 40 C-class and 7 M-class flares. These SXR spectral measurements have advantages over broadband SXR observations, such as providing the capability to derive multiple-temperature components and elemental abundances of coronal plasma, improved irradiance accuracy, and higher resolution spectral irradiance as input to planetary ionosphere simulations. MinXSS spectra obtained during the M5.0 flare on 2016 July 23 highlight these advantages and indicate how the elemental abundance appears to change from primarily coronal to more photospheric during the flare. MinXSS-1 observations are compared to the Geostationary Operational Environmental Satellite (GOES) X-ray Sensor (XRS) measurements of SXR irradiance and estimated corona temperature. Additionally, a suggested improvement to the calibration of the GOES XRS data is presented.

  17. In situ X-ray synchrotron study of organic semiconductor ultra-thin films growth

    International Nuclear Information System (INIS)

    Moulin, J.-F.; Dinelli, F.; Massi, M.; Albonetti, C.; Kshirsagar, R.; Biscarini, F.

    2006-01-01

    In this work we present an X-ray diffraction study of the early stages of growth of an organic semiconductor (sexithiophene, T 6 ) thin film prepared by high vacuum sublimation. Specular reflectometry and grazing incidence X-ray diffraction were used to monitor the formation of T 6 films on silicon oxide. Our results show that T 6 grows as a crystalline layer from the beginning of the evaporation. The reflectometry analysis suggests that, in the range of rates and temperatures studied, the growth is never layer by layer but rather 3D in nature. In-plane GIXD has allowed us to observe for the first time a thin film phase of T 6 formed of molecules standing normal to the substrate and arranged in a compressed unit cell with respect to the bulk, i.e. the unit cell parameters b and c are relatively smaller. We have followed the dynamics of formation of this new phase and identified the threshold of appearance of the bulk phase, which occurs above ∼5-6 monolayers. These results are relevant to the problem of organic thin film transistors, for which we have previously demonstrated experimentally that only the first two monolayers of T 6 films are involved in the electrical transport. The layers above the second one do not effectively contribute to charge mobility, either because they are more 'disordered' or because of a screening of the gate field

  18. A free-standing thin foil bolometer for measuring soft x-ray fluence.

    Science.gov (United States)

    Hu, Qingyuan; Ning, Jiamin; Ye, Fan; Meng, Shijian; Xu, Rongkun; Yang, Jianlun; Chu, Yanyun; Qin, Yi; Fu, Yuecheng; Chen, Faxin; Xu, Zeping

    2016-10-01

    A free-standing thin foil bolometer for measuring soft x-ray fluence in z-pinch experiments is developed. For the first time, we present the determination of its sensitivity by different methods. The results showed great consistency for the different methods, which confirms the validity of the sensitivity and provides confidence for its application in z-pinch experiments. It should be highlighted that the sensitivity of a free-standing foil bolometer could be calibrated directly using Joule heating without any corrections that will be necessary for a foil bolometer with substrate because of heat loss. The difference of the waveforms between the free-standing foil bolometer and that with substrate is obvious. It reveals that the heat loss to the substrate should be considered for the latter in despite of the short x-ray pulse when the peak value is used to deduce the total deposited energy. The quantitative influence is analyzed through a detailed simulation.

  19. Measurements of the spectrum and energy dependence of X-ray transition radiation

    Science.gov (United States)

    Cherry, M. L.

    1978-01-01

    The results of experiments designed to test the theory of X-ray transition radiation and to verify the predicted dependence of the characteristic features of the radiation on the radiator dimensions are presented. The X-ray frequency spectrum produced by 5- to 9-GeV electrons over the range 4 to 30 keV was measured with a calibrated single-crystal Bragg spectrometer, and at frequencies up to 100 keV with an NaI scintillator. The interference pattern in the spectrum and the hardening of the radiation with increasing foil thickness are clearly observed. The energy dependence of the total transition-radiation intensity was studied using a radiator with large dimensions designed to yield energy-dependent signals at very high particle energies, up to E/mc-squared approximately equal to 100,000. The results are in good agreement with the theoretical predictions.

  20. Neutron and hard x-ray measurements during pellet deposition in TFTR

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Milora, S.L.; Schmidt, G.L.; Schneider, W.; Ramsey, A.

    1986-06-01

    Measurements of neutrons and hard x rays are made with a pair of plastic scintillators during injection of deuterium pellets into deuterium TFTR plasmas. Three cases are investigated. During ohmic heating in plasmas with few runaway electrons, the neutron emission does not increase when a pellet is injected, indicating that strong acceleration of the pellet ions does not occur. In ohmic plasmas with low but detectable levels of runaway electrons, an x-ray burst is observed on a detector near the pellet injector as the pellet ablates, while a detector displaced 126 0 toroidally from the injector does not measure a synchronous burst. Reduced pellet penetration correlates with the presence of x-ray emission, suggesting that the origin of the burst is bremsstrahlung from runaway electrons that strike the solid pellet. In deuterium beam-heated discharges, an increase in the d-d neutron emission is observed when the pellet ablates. In this case, the increase is due to fusion reactions between beam ions and the high density neutral and plasma cloud produced by ablation of the pellet; this localized density perturbation equilibrates in about 700 μsec. Analysis of the data indicates that the density propagates without forming a sharp shock front with a rapid initial propagation velocity (greater than or equal to 2 x 10 7 cm/sec) that subsequently decreases to around 3 x 10 6 cm/sec. Modelling suggests that the electron heat flux into the pellet cloud is much less than the classical Spitzer value

  1. X-ray beam penetration in TXRF measurement of polycrystalline and amorphous surfaces

    International Nuclear Information System (INIS)

    Ghatak-Roy, A.R.; Hossain, T.Z.

    2000-01-01

    For TXRF measurement on single crystal silicon surface, it is generally agreed that the x-ray beam penetration is of the order of a few hundred Angstroms from the surface. However, for polycrystalline and amorphous surfaces - frequently used in semiconductor manufacturing there are evidences that x-rays penetrate much deeper revealing underlying layers. The evidences come from various measurements done with films such as silicon dioxide, silicon nitride and metal films such as aluminum, titanium and cobalt. A systematic study was carried out to help understand the issue further. Four sets of samples (on 8 inch wafers) were prepared to create layers buried under various deposited metal and non-metal layers. The metal layers created were aluminum, titanium and cobalt and the non-metal layers were silicon dioxide and silicon nitride. These samples were analyzed by TXRF under various angles and energies and the data were analyzed for signals from various buried layers along with their angular dependence. The results indicated deep penetration of x-ray beams. The samples were further analyzed by SIMS (Secondary Ion Mass Spectrometry) and some of them by ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) to obtain information about their depth profiles. This was done in order to rule out the possibility of intermixing of layers during deposition. (author)

  2. X-ray Debye-Waller factor measurements of solid 3He and 4He

    International Nuclear Information System (INIS)

    Arms, D.A.; Shah, R.S.; Simmons, R.O.

    2003-01-01

    X-ray synchrotron radiation was used to measure Debye-Waller factors of helium crystals for both 3 He and 4 He in both hcp and fcc phases. To our knowledge, there are no previous measurements for 3 He. The ranges studied for 3 He and 4 He crystals were 11.52-12.82 and 10.95-12.13 cm 3 , respectively, and 11.5-18.2 and 12.0-20.3 K. With small uncertainty, only a Gaussian dependence upon momentum transfer Q was found, and no anisotropy was detected in the hcp phase. Mean square atomic deviations, 2 >, and Lindemann ratios were obtained. Large Lindemann ratios confirm that these solids are highly anharmonic. The 2 > values agree within an average 1% with computations of Draeger and Ceperley from path integral Monte Carlo methods including unusual extrapolations to the thermodynamic limit. Because the path-integral Monte Carlo (PIMC) computations exhibit a T 3 dependence for 2 >, which also depends upon molar volume, an empirical analysis was made of the present data as well as of published x-ray and neutron data on hcp 4 He. The volume dependencies are similar to those found from calorimetry, over a large volume range, and the temperature dependencies show similar systematic variations with molar volume both in x-ray data and PIMC results

  3. Equation-of-State Measurements of Resorcinol Formaldehyde Foam Using Imaging X-Ray Thomson Spectrometer

    Science.gov (United States)

    Belancourt, Patrick; Theobald, W.; Keiter, P. A.; Collins, T. J. B.; Bonino, M. J.; Kozlowski, P.; Drake, R. P.

    2015-11-01

    Understanding the equation of state of materials under shocked conditions is important for laboratory astrophysics and high-energy-density physics experiments. This talk will focus on experiments dedicated to developing a platform for measuring the equation of state of shocked foams on OMEGA EP. The foam used in the development of this platform is resorcinol formaldehyde foam with an initial density of 0.34 g/cc. One OMEGA EP beam drives a shock into the foam, while the remaining three beams irradiate a nickel foil to create the x-ray backlighter. The primary diagnostic for this platform, the imaging x-ray Thomson spectrometer (IXTS), spectrally resolves the scattered x-ray beam while imaging in one spatial dimension. The IXTS is ideally suited to measure plasma conditions upstream, downstream and at the shock front in the foam. Preliminary results from these experiments will be shown. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944, the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas DE-NA0001840, and by the National Laser User Facility Program DE-NA0000850.

  4. Recent Measurements And Plans for the SLAC Compton X-Ray Source

    Energy Technology Data Exchange (ETDEWEB)

    Vlieks, A.E.; Akre, R.; Caryotakis, G.; DeStefano, C.; Frederick, W.J.; Heritage, J.P.; Luhmann, N.C.; Martin, D.; Pellegrini, C.; /SLAC /UC, Davis /UCLA

    2006-02-14

    A compact source of monoenergetic X-rays, generated via Compton backscattering, has been developed in a collaboration between U.C Davis and SLAC. The source consists of a 5.5 cell X-band photoinjector, a 1.05 m long high gradient accelerator structure and an interaction chamber where a high power (TW), short pulse (sub-ps) infrared laser beam is brought into a nearly head-on collision with a high quality focused electron beam. Successful completion of this project will result in the capability of generating a monoenergetic X-ray beam, continuously tunable from 20 - 85 keV. We have completed a series of measurements leading up to the generation of monoenergetic X-rays. Measurements of essential electron beam parameters and the techniques used in establishing electron/photon collisions will be presented. We discuss the design of an improved interaction chamber, future electro-optic experiments using this chamber and plans for expanding the overall program to the generation of Terahertz radiation.

  5. Soft x-ray imaging system for measurement of noncircular tokamak plasmas

    International Nuclear Information System (INIS)

    Fonck, R.J.; Reusch, M.; Jaehnig, K.P.; Hulse, R.; Roney, P.

    1986-08-01

    A soft x-ray camera and image processing system has been constructed to provide measurements of the internal shape of high temperature tokamak plasmas. The camera consists of a metallic-foil-filtered pinhole aperture and a microchannel plate image intensifier/convertor which produces a visible image for detection by a CCD TV camera. A wide-angle tangential view of the toroidal plasma allows a single compact camera to view the entire plasma cross section. With Be filters 12 to 50 μm thick, the signal from the microchannel plate is produced mostly by nickel L-line emissions which orignate in the hot plasma core. The measured toroidal image is numerically inverted to produce a cross-sectional soft x-ray image of the plasma. Since the internal magnetic flux surfaces are usually isothermal and the nickel emissivity depends strongly on the local electron temperature, the x-ray emission contours reflect the shape of the magnetic surfaces in the plasma interior. Initial results from the PBX tokamak experiment show clear differences in internal plasma shapes for circular and bean-shaped discharges

  6. Measured reflectance of graded multilayer mirrors designed for astronomical hard X-ray telescopes

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Craig, W.W.; Windt, D.L.

    2000-01-01

    Future astronomical X-ray telescopes, including the balloon-borne High-Energy Focusing Telescope (HEFT) and the Constellation-X Hard X-ray Telescope (Con-X HXT) plan to incorporate depth-graded multilayer coatings in order to extend sensitivity into the hard X-ray (10 less than or similar to E less...... than or similar to 80 keV) band. In this paper, we present measurements of the reflectance in the 18-170 keV energy range of a cylindrical prototype nested optic taken at the European Synchrotron Radiation Facility (ESRF). The mirror segments, mounted in a single bounce stack, are coated with depth......-graded W/Si multilayers optimized for broadband performance up to 69.5 keV (WK-edge). These designs are ideal for both the HEFT and Con-X HXT applications. We compare the measurements to model calculations to demonstrate that the reflectivity can be well described by the intended power law distribution...

  7. Reconstructing a Flare's Thermodynamic-Spatial Form from Scaling Laws and Soft X-ray Measurements

    Science.gov (United States)

    Garcia, H.

    1997-05-01

    This analysis of a solar flare's macro thermodynamic-spatial structure is based on the RTV model of the dynamics of quiescent solar coronal forms (Rosner,Tucker and Vaiana,1978) and full disk soft X-ray measurements by the GOES two-channel soft X-ray sensor. The RTV model provides a relationship between maximum (loop top) temperature, T_m, and the semi- loop length, L. In order to reconstruct the flare's thermo- dynamic macro structure utilizing the RTV law one must know or be able to solve for T_m and the internal pressure, p (the latter assumed spatially constant at fixed times). From the GOES dual X-ray measurement one can derive the spatially averaged temperature, Tav, and the emission measure, EM, at any point during the flare. Treating these two derived parameters as measurements one can solve for the unknowns p and T_m if the loop length L can be independently specified. The constant crossection A can be deduced from L utilizing the theoretical relationship of the ratio L/A to T_m and EM (Sylwester,1988). Once the flare's L and A are specified one can numerically integrate over the full semi-length to compute density, X-ray emission, and the differentials of of volume, thermal energy and emission measure for equal increments of temperature; compare the computed Tav and EM with their observed (derived) values; and recover T_m and p by linearized iterative solutions. As noted everything depends on the availability of an independently obtained L. Fortunately L bears a robust physical relationship with the flare's rise and decay times and peak temperature. Metcalf and Fisher (1996) and predecessors (Fisher and Hawley, 1990; Hawley et al.,1995) have developed algorithms which permit the loop length to be estimated from X-ray light curves. These data are used to initiate a solution which not only yields T_m and p but collaterally determines L as well. Fourteen cases are discussed comparing thermodynamic results with Yohkoh SXT measured loop data. Fisher, G

  8. Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone.

    Science.gov (United States)

    Specht, Aaron J; Weisskopf, Marc G; Nie, Linda Huiling

    2017-03-01

    K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 µg g -1 bone mineral using a cadmium zinc telluride detector. In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment.

  9. Ex-situ X-ray computed tomography data for a non-crimp fabric based glass fibre composite under fatigue loading

    Directory of Open Access Journals (Sweden)

    Kristine M. Jespersen

    2017-12-01

    Full Text Available The data published with this article are high resolution X-ray computed tomography (CT data obtained during an ex-situ fatigue test of a coupon test specimen made from a non-crimp fabric based glass fibre composite similar to those used for wind turbine blades. The fatigue test was interrupted four times for X-ray CT examination during the fatigue life of the considered specimen. All the X-ray CT experiments were performed in the region where unidirectional fibre fractures first became visible, and thereby include the damage progression in 3D in this specific region during fatigue loading of the specimen.

  10. In Situ Identification of Mineral Resources with an X-Ray-Optical "Hands-Lens" Instrument

    Science.gov (United States)

    Marshall, J.; Koppel, L.; Bratton, C.; Metzger, E.; Hecht, M.

    1999-01-01

    The recognition of material resources on a planetary surface requires exploration strategies not dissimilar to those employed by early field geologists who searched for ore deposits primarily from surface clues. In order to determine the location of mineral ores or other materials, it will be necessary to characterize host terranes at regional or subregional scales. This requires geographically broad surveys in which statistically significant numbers of samples are rapidly scanned from a roving platform. To enable broad-scale, yet power-conservative planetary-surface exploration, we are developing an instrument that combines x-ray diffractometry (XRD), x-ray fluorescence spectrometry (XRF), and optical capabilities; the instrument can be deployed at the end of a rover's robotic arm, without the need for sample capture or preparation. The instrument provides XRD data for identification of mineral species and lithological types; diffractometry of minerals is conducted by ascertaining the characteristic lattice parameters or "d-spacings" of mineral compounds. D-spacings of 1.4 to 25 angstroms can be determined to include the large molecular structures of hydrated minerals such as clays. The XRF data will identify elements ranging from carbon (Atomic Number = 6) to elements as heavy as barium (Atomic Number = 56). While a sample is being x-rayed, the instrument simultaneously acquires an optical image of the sample surface at magnifications from lx to at least 50x (200x being feasible, depending on the sample surface). We believe that imaging the sample is extremely important as corroborative sample-identification data (the need for this capability having been illustrated by the experience of the Pathfinder rover). Very few geologists would rely on instrument data for sample identification without having seen the sample. Visual inspection provides critical recognition data such as texture, crystallinity, granularity, porosity, vesicularity, color, lustre, opacity, and

  11. Measurement of dose received in knee joint x-ray examination

    International Nuclear Information System (INIS)

    Abashar, Basamat Musa Hajo

    2014-11-01

    Diagnostic x-rays examinations play an important role in the health care of the population. These examinations may involve significant irradiation of the patient and probably represent the largest man-made source of radiation exposure for the population. This study was performed in Khartoum Teaching Hospital in period of January to June 2014. This study performed to assess the effective dose (ED) received in knee joint radiographic examination and to analyze dose (ed) received in knee joint radiographic examination and to analyze effective dose distribution among radiological departments under study. The study was performed in Khartoum Teaching Hospital, covering two x-ray units and a sample of 50 patients. The following parameters were recorded age, weight, height, body mass ines (BMI) derived from weight (Kg) and (Height (M)) and (height (m)) and exposure factors. The dose was measured for knee joint x-rays examination. For effective dose calculation, the entrance surface dose (ESD) values were estimated from the x-ray tube output parameters for knee joint Ap and lateral examinations. The ED values were then calculated from the obtained ESD values using IAEA calculation methods. Effective doses were then calculated from energy imparted using ED conversion factors proposed by IAEA. The results of ED values calculated showed that patient exposure were within the normal range of exposure. The mean ED values calculated were( 2.49 + 0.03) and (5.60 + 0.22) milli Grey for knee joint AP and lateral examinations, respectively, Further studies are recommended with more number of patients and using more two modalities for comparison.(Author)

  12. The X-ray quantum efficiency measurement of high resistivity CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Neil J. [Imaging for Space and Terrestrial Applications, School of Engineering and Design, Brunel University, Uxbridge, UB8 3PH (United Kingdom); e2v centre for electronic imaging, Planetary and Space Sciences Research Institute, The Open University, Milton Keynes, MK7 6AA (United Kingdom)], E-mail: n.j.murray@open.ac.uk; Holland, Andrew D. [e2v centre for electronic imaging, Planetary and Space Sciences Research Institute, The Open University, Milton Keynes, MK7 6AA (United Kingdom); Smith, David R.; Gow, Jason P. [Imaging for Space and Terrestrial Applications, School of Engineering and Design, Brunel University, Uxbridge, UB8 3PH (United Kingdom); Pool, Peter J.; Burt, David J. [e2v technologies plc, 106 Waterhouse Lane, Chelmsford, CM1 2QU (United Kingdom)

    2009-06-01

    The CCD247 is the second generation of high-resistivity device to be manufactured in e2v technologies plc development programme. Intended for infrared astronomy, the latest devices are fabricated on high resistivity ({approx}8 k{omega} cm) bulk silicon, allowing for a greater device thickness whilst maintaining full depletion when 'thinned' to a thickness of 150 {mu}m. In the case of the front illuminated variant, depletion of up to 300 {mu}m is achievable by applying a gate to substrate potential of up to 120 V, whilst retaining adequate spectral performance. The increased depletion depth of high-resistivity CCDs greatly improves the quantum efficiency (QE) for incident X-ray photons of energies above 5 keV, making such a device beneficial in future X-ray astronomy missions and other applications. Here we describe the experimental setup and present results of X-ray QE measurements taken in the energy range 2-20 keV for a front illuminated CCD247, showing QE in excess of 80% at 10 keV. Results for the first generation CCD217 and swept-charge device (1500 {omega} cm epitaxial silicon) are also presented.

  13. Optimization of an in vivo X-ray fluorescence mercury measurement system

    International Nuclear Information System (INIS)

    O'Meara, J.M.; Boerjesson, J.; Chettle, D.R.; McNeill, F.E.

    2004-01-01

    A non-invasive in vivo X-ray fluorescence (XRF) method of measuring renal mercury concentrations has previously been reported, as a potential occupational monitoring tool for those who work with this toxic element [Phys. Med. Biol. 40 (1995) 413]. However, the detection limits remain high compared to the typical values anticipated in these populations. Our approach for further enhancing the XRF renal mercury detection limit has been threefold: investigations of the ideal filtration and tube voltage with a conventional tungsten anode X-ray tube, and the replacement of the existing tungsten X-ray tube with a Fluorex tube [Phys. Med. Biol. 36 (1991) 1573]. In all cases the systems were compared by Monte Carlo simulation to that reported by Boerjesson et al. [Phys. Med. Biol. 40 (1995) 413]. The optimal filtration was found to be a 0.035 cm uranium filter, positioned after the polarizer. Modest improvement was achieved by increasing the tungsten tube voltage from 160 [Phys. Med. Biol. 40 (1995) 413] to 200 kV, decreasing the system detection limit by 27% for the same subject dose. It was found that the Fluorex tube did not improve the system sensitivity for a given dose rate, either when the tube was used for direct excitation or in a polarized configuration. Despite the improved performance reported here at 200 kV, detection limits remain high compared to typical levels in occupationally exposed individuals

  14. High pressure in-situ X-ray diffraction study on Zn-doped magnetite nanoparticles

    Science.gov (United States)

    Ferrari, S.; Bilovol, V.; Pampillo, L. G.; Grinblat, F.; Errandonea, D.

    2018-03-01

    We have performed high pressure synchrotron X-ray powder diffraction experiments on two different samples of Zn-doped magnetite nanoparticles (formula Fe(3-x)ZnxO4; x = 0.2, 0.5). The structural behavior of then a noparticles was studied up to 13.5 GPa for x = 0.2, and up to 17.4 GPa for x = 0.5. We have found that both systems remain in the cubic spinel structure as expected for this range of applied pressures. The analysis of the unit cell volume vs. pressure results in bulk modulus values lower than in both end-members, magnetite (Fe3O4) and zinc ferrite (ZnFe2O4), suggesting that chemical disorder may favor compressibility, which is expected to improve the increase of the Neel temperature under compression.

  15. MapX An In Situ, Full-frame X-Ray Spectroscopic Imager for Planetary Science and Astrobiology

    Science.gov (United States)

    Blake, David; Sarrazin, Philippe; Thompson, Kathleen; Bristow, Thomas

    2017-01-01

    Microbial life exploits micron-scale disequilibria at boundaries where valence, chemical potential, pH, Eh, etc. vary on a length scale commensurate with the organisms - 10's to 100's of microns. The detection of accumulations of the biogenic elements C,N,O,P,S at appropriate concentrations on or in a mineral/ice substrate would constitute permissive evidence of extant life, but context is also required. Does the putative biosignature exist under habitable conditions? Under what conditions of P, T, and chemical potential was the host mineralogy formed? MapX is an in situ robotic spacecraft instrument that images the biogenic elements C, N, O, P, S, as well as the cations of the rock-forming minerals (Na, Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe) and important anions such as Cl, Fl. MapX provides element maps with less than or equal to100 microns resolution over a 2.5 cm X 2.5 cm area, as well as quantitative XRF spectra from ground- or instrument-selected Regions of Interest (ROI). XRF spectra are converted to mineralogies using ground- or instrument-based algorithms. Either X-ray tube or radioisotope sources such as 244Cm (Alpha-particle and gamma- ray fluorescence) can be used. Fluoresced sample Xrays are imaged onto an X-ray sensitive CCD through an X-ray MicroPore Optic (MPO). The MapX design as well as baseline performance requirements for a MapX instrument intended for life detection / identification of habitable environments will be presented.

  16. Measuring system with stereoscopic x-ray television for accurate diagnosis

    International Nuclear Information System (INIS)

    Iwasaki, K.; Shimizu, S.

    1987-01-01

    X-ray stereoscopic television is diagnostically effective. The authors invented a measuring system using stereoscopic television whereby the coordinates of any two points and their separation can be measured in real time without physical contact. For this purpose, the distances between the two foci of the tube and between the tube and image intensifier were entered into a microcomputer beforehand, and any two points on the CRT stereoscopic image can be defined through the stereoscopic spectacles. The coordinates and distance are then displayed on the CRT monitor. By this means, measurements such as distance between vessels and size of organs are easily made

  17. The application of photoconductive detectors to the measurement of x-ray production in laser produced plasmas

    International Nuclear Information System (INIS)

    Kania, D.R.; Bell, P.; Trebes, J.

    1987-08-01

    Photoconductive detectors (PCDs) offer an attractive alternative for the measurement of pulsed x-rays from laser produced plasmas. These devices are fast (FWHM ∼100 ps), sensitive and simple to use. We have used InP, GaAs, and Type IIa diamond as PCDs to measure x-rays emission from 100 eV to 100 keV. Specifically, we have used these detectors to measure total radiation yields, corona temperatures, and hot electron generated x-rays from laser produced plasmas. 5 refs., 4 figs

  18. Measurement of total calcium in neurons by electron probe X-ray microanalysis.

    Science.gov (United States)

    Pivovarova, Natalia B; Andrews, S Brian

    2013-11-20

    In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ≤-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis

  19. Nanoflaky MnO2/functionalized carbon nanotubes for supercapacitors: an in situ X-ray absorption spectroscopic investigation

    Science.gov (United States)

    Chang, Han-Wei; Lu, Ying-Rui; Chen, Jeng-Lung; Chen, Chi-Liang; Lee, Jyh-Fu; Chen, Jin-Ming; Tsai, Yu-Chen; Chang, Chien-Min; Yeh, Ping-Hung; Chou, Wu-Ching; Liou, Ya-Hsuan; Dong, Chung-Li

    2015-01-01

    The surfaces of acid- and amine-functionalized carbon nanotubes (C-CNT and N-CNT) were decorated with MnO2 nanoflakes as supercapacitors by a spontaneous redox reaction. C-CNT was found to have a lower edge plane structure and fewer defect sites than N-CNT. MnO2/C-CNT with a highly developed surface area exhibited favorable electrochemical performance. To determine the atomic/electronic structures of the MnO2/functionalized CNTs (MnO2/C-CNT and MnO/N-CNT) during the charge/discharge process, in situ X-ray absorption spectroscopy (XAS) measurements were made at the Mn K-edge. Both C-CNT and N-CNT are highly conductive. The effect of the scan rate on the capacitance behavior was also examined, revealing that the π* state of CNT and the size of the tunnels in pseudo-capacitor materials (which facilitate conduction and the transport of electrolyte ions) are critical for the capacitive performance, and their role depends on the scan rate. In the slow charge/discharge process, MnO2/N-CNT has a more symmetrical rectangular cyclic voltammetry (CV) curve. In the fast charge/discharge process, MnO2/C-CNT with a highly developed surface provides fast electronic and ionic channels that support a reversible faradaic redox reaction between MnO2 nanoflakes and the electrolyte, significantly enhancing its capacitive performance over that of MnO2/N-CNT. The MnO2/C-CNT architecture has great potential for supercapacitor applications. The information that was obtained herein helps to elucidate CNT surface modification and the design of the MnO2/functionalized CNT interface with a view for the further development of supercapacitors. This work, and especially the combination of CV with in situ XAS measurements, will be of value to readers with an interest in nanomaterial, nanotechnology and their applications in energy storage.The surfaces of acid- and amine-functionalized carbon nanotubes (C-CNT and N-CNT) were decorated with MnO2 nanoflakes as supercapacitors by a spontaneous redox

  20. Detailed assessment of diesel spray atomization models using visible and X-ray extinction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Magnotti, G.M.; Genzale, C.L. (GIT)

    2017-12-01

    The physical mechanisms characterizing the breakup of a diesel spray into droplets are still unknown. This gap in knowledge has largely been due to the challenges of directly imaging this process or quantitatively measuring the outcomes of spray breakup, such as droplet size. Recent x-ray measurements by Argonne National Laboratory, utilized in this work, provide needed information about the spatial evolution of droplet sizes in selected regions of the spray under a range of injection pressures (50–150 MPa) and ambient densities (7.6–22.8 kg/m3) relevant for diesel operating conditions. Ultra-small angle x-ray scattering (USAXS) measurements performed at the Advanced Photon Source are presented, which quantify Sauter mean diameters (SMD) within optically thick regions of the spray that are inaccessible by conventional droplet sizing measurement techniques, namely in the near-nozzle region, along the spray centerline, and within the core of the spray. To quantify droplet sizes along the periphery of the spray, a complementary technique is proposed and introduced, which leverages the ratio of path-integrated x-ray and visible laser extinction (SAMR) measurements to quantify SMD. The SAMR and USAXS measurements are then utilized to evaluate current spray models used for engine computational fluid dynamic (CFD) simulations. We explore the ability of a carefully calibrated spray model, premised on aerodynamic wave growth theory, to capture the experimentally observed trends of SMD throughout the spray. The spray structure is best predicted with an aerodynamic primary and secondary breakup process that is represented with a slower time constant and larger formed droplet size than conventionally recommended for diesel spray models. Additionally, spray model predictions suggest that droplet collisions may not influence the resultant droplet size distribution along the spray centerline in downstream regions of the spray.

  1. Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries

    Science.gov (United States)

    Iwasaki, Yuma; Kusne, A. Gilad; Takeuchi, Ichiro

    2017-12-01

    Machine learning techniques have proven invaluable to manage the ever growing volume of materials research data produced as developments continue in high-throughput materials simulation, fabrication, and characterization. In particular, machine learning techniques have been demonstrated for their utility in rapidly and automatically identifying potential composition-phase maps from structural data characterization of composition spread libraries, enabling rapid materials fabrication-structure-property analysis and functional materials discovery. A key issue in development of an automated phase-diagram determination method is the choice of dissimilarity measure, or kernel function. The desired measure reduces the impact of confounding structural data issues on analysis performance. The issues include peak height changes and peak shifting due to lattice constant change as a function of composition. In this work, we investigate the choice of dissimilarity measure in X-ray diffraction-based structure analysis and the choice of measure's performance impact on automatic composition-phase map determination. Nine dissimilarity measures are investigated for their impact in analyzing X-ray diffraction patterns for a Fe-Co-Ni ternary alloy composition spread. The cosine, Pearson correlation coefficient, and Jensen-Shannon divergence measures are shown to provide the best performance in the presence of peak height change and peak shifting (due to lattice constant change) when the magnitude of peak shifting is unknown. With prior knowledge of the maximum peak shifting, dynamic time warping in a normalized constrained mode provides the best performance. This work also serves to demonstrate a strategy for rapid analysis of a large number of X-ray diffraction patterns in general beyond data from combinatorial libraries.

  2. In situ X-ray diffraction analysis of the crystallisation of VOHPO4·0.5H2O

    Science.gov (United States)

    O'Mahony, L.; Zemlyanov, D.; Mihov, M.; Curtin, T.; Hodnett, B. K.

    2005-02-01

    Vanadium phosphorus oxide catalysts, used commercially for n-butane oxidation, are normally formed by heating VOHPO4·0.5H2O in a mixture of n-butane and air. The transformation of the precursor into the final catalyst is topotactic so that the crystalline habit is established when the precursor crystallises. In this study, the synthesis of VOHPO4·0.5H2O by reaction of a reduced suspension/solution of V2O5 in alcohol and o- H3PO4 has been studied by in situ X-ray diffraction (XRD) and ex situ X-ray photoelectron spectroscopy (XPS) and focused ion beam microscopy (FIB), including cross-sectioning. XPS, XRD and microscopy evidence is presented for the temporal dissolution of V2O5 and formation in succession of VOPO4·2H2O, VOPO4·H2O and VOHPO4·0.5H2O. Time-resolved in situ X-ray diffraction has identified VOPO4·2H2O at early synthesis times (less than 300 s) from d-spacings of d=7.5 and 3.1 Å. The feature at 7.5 Å shifted to 6.7 Å during the first 20 min of synthesis, associated with the formation of VOPO4·H2O and this phase collapsed as VOHPO4·0.5H2O formed. Thin symmetrical platelets of 10×10 μm dimensions were observed when samples were recovered after short synthesis times. The platelets appeared to delaminate, possibly associated with the strain generated when the d-spacing shifted from 7.5 to 6.7 Å and the reducing action of the alcohol solvent. Growth of the VOHPO4·0.5H2O in the familiar rosette morphology occurs from these delaminated edges. Evidence is presented that VOHPO4·0.5H2O particles continue to grow and become more dense as synthesis time is increased.

  3. In situ X-ray diffraction of surface oxide on type 430 stainless steel in breakaway condition using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, Isao, E-mail: isaos@mmm.muroran-it.ac.jp [Department of Materials Science and Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585 (Japan); Sugiyama, Yusuke [Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585 (Japan); Hayashi, Shigenari; Yamauchi, Akira [Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 006-8628 (Japan); Doi, Takashi; Nishiyama, Yoshitaka [Corporate R and D Laboratories, Sumitomo Metals Industries Ltd., 1-8 Fuso-cho, Amagasaki, Hyogo 660-0891 (Japan); Kyo, Shoji [Power Engineering R and D Centre, Kansai Electric Power Co., Inc., 3-11-20 Wakaoji, Amagasaki, Hyogo 661-0794 (Japan); Suzuki, Shigeru [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Sato, Masugu [Japan Synchrotron Radiation Research Institute, 1-1-1 Koto, Sayo-cho, Hyogo 679-5198 (Japan); Fujimoto, Shinji [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Breakaway studied with Synchrotron radiation X-ray. Black-Right-Pointing-Pointer Local equilibria between phases established during high-temperature oxidation. Black-Right-Pointing-Pointer Chemical failure model well describes the breakaway. - Abstract: Changes in the crystal structure of type 430 stainless steel and the oxides on its surface were studied in situ at 1373 K using a high-intensity synchrotron X-ray source provided by SPring-8 in Japan. The surface of the steel was initially covered with Cr{sub 2}O{sub 3}, which was then converted to FeCr{sub 2}O{sub 4}, and finally Fe{sub 3}O{sub 4} and Fe{sub 2}O{sub 3} formed on it. These results indicated that the reason for the breakaway oxidation in type 430 stainless steel is Cr depletion beneath Cr{sub 2}O{sub 3} layer and the subsequent ionisation of Fe, not the simple mechanical failure of Cr{sub 2}O{sub 3}.

  4. Probing the isothermal (delta)->(alpha)' martensitic transformation in Pu-Ga with in situ x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Jeffries, J R; Blobaum, K M; Schwartz, A J; Cynn, H; Yang, W; Evans, W J

    2010-03-11

    The time-temperature-transformation (TTT) curve for the {delta} {yields} {alpha}{prime} isothermal martensitic transformation in a Pu-1.9 at. % Ga alloy is peculiar because it is reported to have a double-C curve. Recent work suggests that an ambient temperature conditioning treatment enables the lower-C curve. However, the mechanisms responsible for the double-C are still not fully understood. When the {delta} {yields} {alpha}{prime} transformation is induced by pressure, an intermediate {gamma}{prime} phase is observed in some alloys. It has been suggested that transformation at upper-C temperatures may proceed via this intermediate phase, while lower-C transformation progresses directly from {delta} to {alpha}{prime}. To investigate the possibility of thermally induced transformation via the intermediate {gamma}{prime} phase, in situ x-ray diffraction at the Advanced Photon Source was performed. Using transmission x-ray diffraction, the {delta} {yields} {alpha}{prime} transformation was observed in samples as thin at 30 {micro}m as a function of time and temperature. The intermediate {gamma}{prime} phase was not observed at -120 C (upper-C curve) or -155 C (lower-C curve). Results indicate that the bulk of the {alpha}{prime} phase forms relatively rapidly at -120 C and -155 C.

  5. Quick extended x-ray absorption fine structure instrument with millisecond time scale, optimized for in situ applications

    Science.gov (United States)

    Khalid, S.; Caliebe, W.; Siddons, P.; So, I.; Clay, B.; Lenhard, T.; Hanson, J.; Wang, Q.; Frenkel, A. I.; Marinkovic, N.; Hould, N.; Ginder-Vogel, M.; Landrot, G. L.; Sparks, D. L.; Ganjoo, A.

    2010-01-01

    In order to learn about in situ structural changes in materials at subseconds time scale, we have further refined the techniques of quick extended x-ray absorption fine structure (QEXAFS) and quick x-ray absorption near edge structure (XANES) spectroscopies at beamline X18B at the National Synchrotron Light Source. The channel cut Si (111) monochromator oscillation is driven through a tangential arm at 5 Hz, using a cam, dc motor, pulley, and belt system. The rubber belt between the motor and the cam damps the mechanical noise. EXAFS scan taken in 100 ms is comparable to standard data. The angle and the angular range of the monochromator can be changed to collect a full EXAFS or XANES spectrum in the energy range 4.7-40.0 KeV. The data are recorded in ascending and descending order of energy, on the fly, without any loss of beam time. The QEXAFS mechanical system is outside the vacuum system, and therefore changing the mode of operation from conventional to QEXAFS takes only a few minutes. This instrument allows the acquisition of time resolved data in a variety of systems relevant to electrochemical, photochemical, catalytic, materials, and environmental sciences.

  6. In situ X-ray scattering studies of protein solution droplets drying on micro- and nanopatterned superhydrophobic PMMA surfaces.

    Science.gov (United States)

    Accardo, Angelo; Gentile, Francesco; Mecarini, Federico; De Angelis, Francesco; Burghammer, Manfred; Di Fabrizio, Enzo; Riekel, Christian

    2010-09-21

    Superhydrophobic poly(methyl methacrylate) surfaces with contact angles of ∼170° and high optical and X-ray transparencies have been fabricated through the use of optical lithography and plasma etching. The surfaces contain either a microscale pattern of micropillars or a random nanofibrillar pattern. Nanoscale asperities on top of the micropillars closely resemble Nelumbo nucifera lotus leaves. The evolution of the contact angle of water and lysozyme solution droplets during evaporation was studied on the micro- and nanopatterned surfaces, showing in particular contact-line pinning for the protein solution droplet on the nanopatterned surface. The microstructural evolution of lysozyme solution droplets was studied on both types of surfaces in situ under nearly contact-free conditions by synchrotron radiation microbeam wide-angle and small-angle X-ray scattering revealing the increasing protein concentration and the onset of precipitation. The solid residuals show hollow sphere morphologies. Rastermicrodiffraction of the detached residuals suggests about a 1/3 volume fraction of ≥17 nm lysozyme nanocrystalline domains and about a 2/3 short-range-order volume fraction. About 5-fold larger nanocrystalline domains were observed at the attachment points of the sphere to the substrates, which is attributed to particle growth in a shear flow. Such surfaces represent nearly contact-free sample supports for studies of inorganic and organic solution droplets, which find applications in biochips.

  7. In situ synchrotron x-ray characterization of microstructure formation in solidification processing of Al-based metallic alloys

    International Nuclear Information System (INIS)

    Billia, Bernard; Nguyen-Thi, Henri; Mangelinck-Noel, Nathalie

    2010-01-01

    The microstructure formed during the solidification step has a major influence on the properties of materials processed by major techniques (casting, welding ...). In situ and real-time characterization by synchrotron X-ray imaging is the method of choice to unveil the dynamical formation of the solidification microstructure in metallic alloys, and thus provide precise data for the critical validation of the theoretical predictions that is needed for sound advancement of modeling and numerical simulation. After a description of the experimental procedure used at the European Synchrotron Radiation Facility (ESRF), dynamical phenomena in the formation of the grain structure and dendritic or equiaxed solidification microstructure in Al-based alloys are presented. Beyond fluid flow interaction, earth gravity induces stresses, deformation and fragmentation in the dendritic mush. Settling of dendrite arms and equiaxed grains thus occurs, in particular in the columnar to equiaxed transition. Other types of stresses and strains are caused by the mere formation of the solidification microstructure itself. In white-beam X-ray topography, stresses and strains are manifested by specific contrasts and breaking of the Laue images into several pieces. Finally, quantitative analysis of the grey level in radiographs enables the analysis of solute segregation, which noticeably results in solutal poisoning of growth when equiaxed grains are interacting. (author)

  8. Tuning of colossal dielectric constant in gold-polypyrrole composite nanotubes using in-situ x-ray diffraction techniques

    Directory of Open Access Journals (Sweden)

    Abhisakh Sarma

    2014-09-01

    Full Text Available In-situ x-ray diffraction technique has been used to study the growth process of gold incorporated polypyrrole nanotubes that exhibit colossal dielectric constant due to existence of quasi-one-dimensional charge density wave state. These composite nanotubes were formed within nanopores of a polycarbonate membrane by flowing pyrrole monomer from one side and mixture of ferric chloride and chloroauric acid from other side in a sample cell that allows collection of x-ray data during the reaction. The size of the gold nanoparticle embedded in the walls of the nanotubes was found to be dependent on chloroauric acid concentration for nanowires having diameter more than 100 nm. For lower diameter nanotubes the nanoparticle size become independent of chloroauric acid concentration and depends on the diameter of nanotubes only. The result of this study also shows that for 50 nm gold-polypyrrole composite nanotubes obtained with 5.3 mM chloroauric acid gives colossal dielectric constant of about 107. This value remain almost constant over a frequency range from 1Hz to 106 Hz even at 80 K temperature.

  9. In-Situ Additive Manufacturing Platform for Neutron, X-ray and Proton Beamlines

    Science.gov (United States)

    Cooley, Jason C.; Brown, Donald B.; Carpenter, John S.; Clausen, Bjorn; Cross, Carl E.; Lienert, Thomas J.; Bernal, John E.; Losko, Adrian S.

    Advanced manufacturing offers the promise to make high value components with complex shapes without complex machining or significant material waste on short notice. There are however significant technical barriers to overcome with focused research and development. In the case of metallic parts made by melting and depositing wire or powder, additive manufacturing results in repetitive heating and cooling of the deposited material. The thermal gradients imposed are significantly higher than typically encountered during casting. These gradients produce residual stresses we cannot currently predict and can cause the formation of undesirable secondary phases. Efforts to accurately predict the final state of materials manufactured additively will require an understanding of the time evolution of the microstructure which includes intertwined residual stresses, texture, and chemical inhomogeneity. The best way to understand these linked effects is to measure their evolution in-situ during the deposition process. In order to do this a prototype device for making quasi 1-D features while making real time beamline measurements (radiography and diffraction) has been built and recently tested. Work funded by the Department of Energy under Contract Number DEAC5206NA25396.

  10. The adsorption of methanol and water on SAPO-34: in situ and ex situ X-ray diffraction studies

    DEFF Research Database (Denmark)

    Wragg, David S.; Johnsen, Rune; Norby, Poul

    2010-01-01

    adsorption displaying greater flexibility than silicalite under similar conditions. When water is adsorbed onto the framework it contracts, while the non-polar polymethylbenzene intermediates in the methanol to olefin process cause a significant expansion. We therefore suggest that the expansion (water...... for adsorbed water molecules on the same framework, supporting the observation from the in situ data that water is more strongly bound than methanol. The results are consistent with previous results from thermodynamic and tapered element oscillating microbalance measurements....

  11. Elastohydrodynamic film thickness formula based on X-ray measurements with a synthetic paraffinic oil

    Science.gov (United States)

    Loewenthal, S. H.; Parker, R. J.; Zaretsky, E. V.

    1973-01-01

    An empirical elastohydrodynamic film thickness formula for heavily loaded contacts based upon X-ray film thickness measurements made with a synthetic paraffinic oil is presented. The deduced relation was found to adequately reflect the high load dependence exhibited by the measured minimum film thickness data at high Hertizian contact stresses, that is, above 1.04 x 10 to the ninth N/sq m (150,000 psi). Comparisons were made with the numerical results from a theoretical isothermal film thickness formula. The effects of changes in contact geometry, material, and lubricant properties on the form of the empirical model are also discussed.

  12. X-ray measurements of total reflectivity and scattering from Au-coated foils

    DEFF Research Database (Denmark)

    Hornstrup, Allan; Christensen, Finn Erland; Jespersen, Ellen

    1990-01-01

    We present x-ray measurements of total reflectivity and scattering from gold-coated foils. The foils are two sorts of 0.3 mm thick dip-lacquered aluminum, 0.125 mm thick plastic (Upilex) and 0.5 mm thick dip-lacquered nickel. The analysis of the data shows a high reflectivity for all...... but the plastic foil, and only small microroughness (∼15 Å at length scales below ∼0.1 μm), evidenced by low resolution scattering measurements....

  13. Measurements of laser generated soft X-ray emission from irradiated gold foils

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. S.; Keiter, P. A.; Klein, S. R.; Drake, R. P.; Shvarts, D. [University of Michigan, 2455 Hayward St., Ann Arbor, Michigan 48109 (United States); Frank, Y.; Raicher, E.; Fraenkel, M. [Soreq Nuclear Research Center, Yavne (Israel)

    2016-11-15

    Soft x-ray emission from laser irradiated gold foils was measured at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6 ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.

  14. Measurement of the performance characteristics of diagnostic X-ray systems used in medicine

    International Nuclear Information System (INIS)

    1981-01-01

    A booklet has been produced by the Diagnostic Radiology Topic Group of the Hospital Physicists' Association, providing the basis for exhaustive performance tests on X-ray image intensifier television systems. After a general introduction to the equipment, the parameters which may need to be assessed are outlined in section 1. The measurement techniques and equipment necessary to undertake the measurements are presented in section 2. Specimen data sheets are also presented which the user may find useful to record the data acquired in the field. (U.K.)

  15. Development of compton scatter X-ray technique for bone density measurement in vivo

    International Nuclear Information System (INIS)

    Kapoor, K.K.; Clarke, R.L.; Barton, R.D.

    1980-01-01

    A technique for bone density measurement in vivo based on the fact that cross-section for compton scattering depends directly upon the electron density of the scattering material has been developed and described. The theory is explained. Electron density is converted to mass density by using weighted average of atomic number to mass number of the material. The method uses a low energy X-ray source and three scintillation detectors. The method has the advantage of permitting measurement of bones in vivo of different sizes and shapes without recalibration and without any specific knowledge of absorption of scattering properties of the surrounding tissue. (M.G.B.)

  16. The Determination of γ and X Rays Variation in Radioactivity Measurement of Eu-152 Using Merlin Gerin Ionization Chamber

    International Nuclear Information System (INIS)

    Gatot-Wurdiyanto; Tuti-Budiantari, C; Ermi-Juita; Hermawan-Candra; Eni-Suswantini; Holnisar; Wahyudi

    2001-01-01

    Activity measurement of Eu-152 was carried out by using dose calibrator Merlin Gerin. Four samples having their solution factors was prepared for the measurement. The activities of each sample were determined with four variations of γ-rays and X-rays, namely all of γ-rays, all of γ rays and all of X-rays; 15 greater γ-rays intensities; 15 greater γ-rays intensities and all of X-rays. The reference of the measurement is the measurement result using γ-spectrometry methods. The result of the measurement is fairly good, meanwhile the best measurement of Eu-152 is based on all of γ-rays and X-rays which its difference of under 0.5 %. (author)

  17. In situ observation of high-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    Science.gov (United States)

    Tracy, Sally June

    2017-06-01

    SiC is an important high-strength ceramic material used for a range of technological applications, including lightweight impact shielding and abrasives. SiC is also relevant to geology and planetary science. It may be a host of reduced carbon in the Earth's interior and also occurs in meteorites and impact sites. SiC has also been put forward as a possible major constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but lattice-level structural information was not obtained. Here we present the behavior of silicon carbide under shock loading as investigated through a series of time-resolved pump-probe x-ray diffraction measurements up to 200 GPa. Our experiments were conducted at the Materials in Extreme Conditions beamline of the Linac Coherent Light Source. In situ x-ray diffraction data on shock-compressed SiC was collected using a free electron laser source combined with a pulsed high-energy laser. These measurements allow for the determination of time-dependent atomic arrangements, demonstrating that the wurtzite phase of SiC transforms directly to the B1 structure. Our measurements also reveal details of the material texture evolution under shock loading and release.

  18. Three-dimensional shape measurement for x-ray ellipsoidal mirror

    Science.gov (United States)

    Kume, T.; Takei, Y.; Egawa, S.; Yamaguchi, G.; Motoyama, H.; Mimura, H.

    2017-09-01

    An X-ray ellipsoidal mirror requires nanometer-level shape accuracy for its internal surface. Owing to the difficulty in processing the surface, electroforming using a high precision master mandrel has been applied to mirror fabrication. In order to investigate the replication accuracy of electroforming, a measurement method for the entire internal surface of the mirror must be developed. The purpose of this study is to evaluate the shape replication accuracy of electroforming. In this study, a three-dimensional shape measurement apparatus for an X-ray ellipsoidal mirror is developed. The apparatus is composed of laser probes, a contact probe, reference flats, a z-axis stage, and a rotation table. First, longitudinal profiles of a mandrel or mirror placed vertically on the rotation table are measured at several angular positions. Subsequently, without realignment of the measured sample, circularity at every height is measured at regular intervals of 0.1 mm. During each measurement, the effect of motion errors is calculated and subtracted from each profile by referring to the distances between the probes and reference flats. Combining the circularity data with the longitudinal profiles, a three-dimensional error distribution of the entire surface is obtained. Using a mandrel with nanometer-level shape accuracy and a replicated mirror, the performance of the measurement apparatus and the replication accuracy are evaluated. Measurement repeatability of single-nanometer order and replication accuracy of sub-100-nm order are confirmed.

  19. Characteristics Measurement of CdWO4 Crystal and Photo PIN Diode for X-ray Scanner

    International Nuclear Information System (INIS)

    Kang, K. H.; Hyun, H. J.; Jeon, H. B.; Kim, B. B.; Park, H.; Uozumi, S.; Moon, M. K.

    2014-01-01

    CWO is commonly used in X-ray scanner due to its detection efficiency and low after glow. We measured a decay time, emission wavelength, and light yield of CWO. And we measure signal-to-noise ratio (SNR) and energy resolution of γ-ray with CsI(Tl) by using the PD. Measurements results determine quality of the CWO crystal and PD. After this study, we will study X-ray response by using combined CWO and PD

  20. Sample Handling System for in-situ Powder X-ray Diffraction Instruments., Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a Powder Handling System (PHS) that will deliver powdered samples to in situ planetary XRD instruments and provide unique means of...

  1. High-temperature dehydration of talc: a kinetics study using in situ X-ray powder diffraction

    Science.gov (United States)

    Wang, Duojun; Yi, Li; Huang, Bojin; Liu, Chuanjiang

    2015-06-01

    High-temperature in situ X-ray powder diffraction patterns were used to study the dehydration kinetics of natural talc with a size of 10-15 µm. The talc was annealed from 1073 to 1223 K, and the variations in the characteristic peaks corresponding to talc with the time were recorded to determine the reaction progress. The decomposition of talc occurred, and peaks corresponding to talc and peaks corresponding to enstatite and quartz were observed. The enstatite and talc exhibited a topotactic relationship. The dehydration kinetics of talc was studied as a function of temperature between 1073 and 1223 K. The kinetics data could be modeled using an Avrami equation that considers nucleation and growth processes ? where n varies from 0.4 to 0.8. The rate constant (k) equation for the natural talc is ? The reaction mechanism for the dehydration of talc is a heterogeneous nucleation and growth mechanism.

  2. Kinetics of thermal decomposition of titanium hydride powder using in situ high-temperature X-ray diffraction (HTXRD

    Directory of Open Access Journals (Sweden)

    Hugo Ricardo Zschommler Sandim

    2005-09-01

    Full Text Available The thermal decomposition of titanium hydride powder (delta-phase to titanium (alpha-phase was investigated by means of thermogravimetric analysis (TGA and high-temperature X-ray diffraction (HTXRD in high vacuum. The delta-to-alpha phase transformation was followed in situ by HTXRD at temperatures varying from room temperature up to 1000 °C. The transformation was also analyzed as a function of time at isothermal conditions from 450 to 650 °C. The results of TGA show that the decomposition of the titanium hydride becomes significant at about 450 °C. Above 500 °C the decomposition is completed in times shorter than 50 minutes. The apparent activation energy for hydrogen desorption was found to be 63 ± 6 kJ.mol-1.

  3. Oxygen partial pressure control during in-situ high temperature X-ray diffraction on cerium dioxide

    International Nuclear Information System (INIS)

    Strach, M.; Belin, R.C.; Richaud, J-C.; Rogez, J.

    2014-01-01

    Cerium dioxide is widely used as a surrogate for plutonium dioxide in the studies of MOX type nuclear fuel. Thus, obtaining an accurate description of the structures present in this system in a range of temperatures is of importance to the development of fuel for the IV. generation of nuclear reactors. However, such a study requires appropriate scientific tools, in particular regarding the control and monitoring of the oxygen partial pressure (pO 2 ). Here we discuss several in-situ X-ray diffraction experiments performed to determine the phases present in the hypo-stoichiometric CeO 2-x region of the phase diagram and clearly demonstrate the need for controlling the pO 2 . (authors)

  4. In-situ early stage electromigration study in Al line using synchrotron polychromatic X-ray microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Tamura, Nobumichi; Tu, King-Ning

    2007-10-31

    Electromigration is a phenomenon that has attracted much attention in the semiconductor industry because of its deleterious effects on electronic devices (such as interconnects) as they become smaller and current density passing through them increases. However, the effect of the electric current on the microstructure of interconnect lines during the very early stage of electromigration is not well documented. In the present report, we used synchrotron radiation based polychromatic X-ray microdiffraction for the in-situ study of the electromigration induced plasticity effects on individual grains of an Al (Cu) interconnect test structure. Dislocation slips which are activated by the electric current stressing are analyzed by the shape change of the diffraction peaks. The study shows polygonization of the grains due to the rearrangement of geometrically necessary dislocations (GND) in the direction of the current. Consequences of these findings are discussed.

  5. A flow cell for the study of gas-solid reactions via in situ powder X-ray diffraction

    Science.gov (United States)

    Scarlett, Nicola V. Y.; Hewish, Damien; Pattel, Rachel; Webster, Nathan A. S.

    2017-10-01

    This paper describes the development and testing of a novel capillary flow cell for use in in situ powder X-ray diffraction experiments. It is designed such that it achieves 200° of rotation of the capillary whilst still allowing the flow of gas through the sample and the monitoring of off gas via mass spectrometry, gas chromatography, or other such analytical techniques. This high degree of rotation provides more uniform heating of the sample than can be achieved in static cells or those with lower rotational ranges and consequently also improves particle statistics. The increased uniformity of heating provides more accurate temperature calibration of the experimental setup as well. The cell is designed to be held in a standard goniometer head and is therefore suitable for use in many laboratory and synchrotron instruments.

  6. Dosimetry of x-ray beams: The measure of the problem

    International Nuclear Information System (INIS)

    de Castro, T.M.

    1986-08-01

    This document contains the text of an oral presentation on dosimetry of analytical x-ray equipment presented at the Denver X-Ray Conference. Included are discussions of sources of background radiation, exposure limits from occupational sources, and the relationship of these sources to the high dose source of x-rays found in analytical machines. The mathematical basis of x-ray dosimetry is reviewed in preparation for more detailed notes on personnel dosimetry and the selection of the most appropriate dosimeter for a specific application. The presentation concludes with a discussion common to previous x-ray equipment accidents. 2 refs

  7. Comparison of measurement methods for microsystem components: application to microstructures made by the deep x-ray lithography process (x-ray LIGA)

    Science.gov (United States)

    Meyer, Pascal; Mäder, Olaf; Saile, Volker; Schulz, Joachim

    2009-08-01

    The LIGA (a German acronym for lithography, electroplating and molding) process using highly parallel x-rays permits the production of a microstructure with still unique characteristics: high aspect ratio, high accuracy, high perpendicularity and lower roughness of the side wall. From a marketing point of view, this qualitative description might suffice to attract users to the technology. Regarding widespread commercialization and standardization of x-ray LIGA products, our goal is to establish a rigorous dimensional metrology for which we need to understand and quantify uncertainty, which is the key to accuracy. We report on our metrological study using a coordinate measurement machine (CMM) equipped with a fibre probe (3D measurements) which will be compared to two versions of lateral top-view measurements (2D/surface measurements): an optical microscope provided with a micrometric table and a CMM with an image processing sensor; these two types of measurement methods being complementary. In fact, microsystem technology requires measurements to be performed with precision and accuracy within the range of 0.1 µm. In this paper, we present an analysis and a discussion of both types of measurement systems. The precision and reproducibility of the CMM (with fibre probe) during a two-year study will be exposed; a calibrated series part is being measured every time the machine is used. In this case, the CMM is used as a comparator. Its accuracy and the calibration of the ball diameter using an etalon (ceramic gage block) will be exposed. Furthermore, by taking into account the results obtained by the measurement system analysis (MSA), we will show the measurement's impact on the process by taking as an example the fabrication of mm gold gears for watch industry; a quantitative description of process reproducibility and of the influence of processing parameters influence will be possible in the future.

  8. Highly efficient angularly resolving x-ray spectrometer optimized for absorption measurements with collimated sources

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Michal; Gonzalez, I.G.; Ekerfelt, H.; Svensson, J.B.; Hansson, M.; Wood, I. C.; Persson, A.; Mangles, S.P.D.; Lundh, O.; Falk, Kateřina

    2017-01-01

    Roč. 88, č. 6 (2017), s. 1-8, č. článku 063102. ISSN 0034-6748 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : acceleration * measurments * x ray * high energy Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.515, year: 2016

  9. Non-invasive measurement of peritoneal dialysate volume by the X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Takashi; Ohta, Y.; Tada, Yoko; Dohi, Takezumi (Tokyo Univ. (Japan). Faculty of Engineering); Azuma, N.; Matsugane, Takao; Sakurai, Hiroyuki; Mizumura, Hiroyuki; Suzuki, Mitsuru

    1991-02-01

    Graphical reconstruction of serial image data of the X-ray CT on three dialysis patients was studied to measure intraperitoneal dialysate volume. Volume estimation with a surface reconstructed model showed within 16% error while 36% error with a voxel model. However, total calculation time including data acquisition was 15 times faster with a voxel model. These results are indicative of higher relevance in clinical use of a voxel model when much clearer contour between water and tissues is obtained by improvement of software as well as the CT apparatus. (author).

  10. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas.

    Science.gov (United States)

    Lynn, Alan G; Gilmore, Mark

    2014-11-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  11. Interior Temperature Measurement Using Curved Mercury Capillary Sensor Based on X-ray Radiography

    Science.gov (United States)

    Chen, Shuyue; Jiang, Xing; Lu, Guirong

    2017-07-01

    A method was presented for measuring the interior temperature of objects using a curved mercury capillary sensor based on X-ray radiography. The sensor is composed of a mercury bubble, a capillary and a fixed support. X-ray digital radiography was employed to capture image of the mercury column in the capillary, and a temperature control system was designed for the sensor calibration. We adopted livewire algorithms and mathematical morphology to calculate the mercury length. A measurement model relating mercury length to temperature was established, and the measurement uncertainty associated with the mercury column length and the linear model fitted by least-square method were analyzed. To verify the system, the interior temperature measurement of an autoclave, which is totally closed, was taken from 29.53°C to 67.34°C. The experiment results show that the response of the system is approximately linear with an uncertainty of maximum 0.79°C. This technique provides a new approach to measure interior temperature of objects.

  12. Bipolar junction transistor as a detector for measuring in diagnostic X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Francisco A.; Monte, David S.; Alves, Aline N.; Barros, Fabio R.; Santos, Marcus A.P.; Santos, Luiz A.P., E-mail: franciscoacavalcanti@gmail.com, E-mail: lasantos@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2013-07-01

    Photodiode and phototransistor are the most frequently used devices for measuring ionizing radiation in medical applications. The cited devices have the operating principle well known, however the bipolar junction transistor (BJT) is not a typical device used as a detector for measuring some physical quantities for diagnostic radiation. In fact, a photodiode, for example, has an area about 10 mm square and a BJT has an area which can be more than 10 thousands times smaller. The purpose of this paper is to bring a new technique to estimate some physical quantities or parameters in diagnostic radiation; for example, peak kilovoltage (kVp), deep dose measurements. The methodology for each type of evaluation depends on the energy range of the radiation and the physical quantity or parameter to be measured. Actually, some characteristics of the incident radiation under the device can be correlated with the readout signal, which is a function of the electrical currents in the electrodes of the BJT: Collector, Base and Emitter. Samples of BJT are classified and submitted to diagnostic X-ray beams. The results show that the BJT could be a new semiconductor sensor type for measuring either the ionizing radiation dose or some characteristics of diagnostic X-ray beams. (author)

  13. Neutron and hard x-ray measurements during pellet deposition in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Heidbrink, W.W.; Milora, S.L.; Schmidt, G.L.; Schneider, W.; Ramsey, A.

    1986-06-01

    Measurements of neutrons and hard x rays are made with a pair of plastic scintillators during injection of deuterium pellets into deuterium TFTR plasmas. Three cases are investigated. During ohmic heating in plasmas with few runaway electrons, the neutron emission does not increase when a pellet is injected, indicating that strong acceleration of the pellet ions does not occur. In ohmic plasmas with low but detectable levels of runaway electrons, an x-ray burst is observed on a detector near the pellet injector as the pellet ablates, while a detector displaced 126/sup 0/ toroidally from the injector does not measure a synchronous burst. Reduced pellet penetration correlates with the presence of x-ray emission, suggesting that the origin of the burst is bremsstrahlung from runaway electrons that strike the solid pellet. In deuterium beam-heated discharges, an increase in the d-d neutron emission is observed when the pellet ablates. In this case, the increase is due to fusion reactions between beam ions and the high density neutral and plasma cloud produced by ablation of the pellet; this localized density perturbation equilibrates in about 700 ..mu..sec. Analysis of the data indicates that the density propagates without forming a sharp shock front with a rapid initial propagation velocity (greater than or equal to 2 x 10/sup 7/ cm/sec) that subsequently decreases to around 3 x 10/sup 6/ cm/sec. Modelling suggests that the electron heat flux into the pellet cloud is much less than the classical Spitzer value.

  14. Metrology of a mirror at the Advanced Photon Source : comparison between optical and x-ray measurements

    International Nuclear Information System (INIS)

    Assoufid, L.

    1998-01-01

    This paper describes metrology of a vertically focusing mirror on the bending magnet beamline in sector-1 of the Advanced Photon Source, Argonne National Laboratory. The mirror was evaluated using measurements from both an optical long trace profiler and x-rays. Slope error profiles obtained with the two methods were compared and were found to be in a good agreement. Further comparisons were made between x-ray measurements and results from the SHADOW ray-tracing code

  15. In Situ Mechanical Behavior of Mineral Crystals in Human Cortical Bone under Compressive Load Using Synchrotron X-Ray Scattering Techniques

    Science.gov (United States)

    Giri, Bijay; Almer, Jon D.; Dong, X. Neil; Wang, Xiaodu

    2012-01-01

    Mineral crystals, the major strength-bearing component of bone, are aligned in longitudinal bone with (00l) axes preferentially along the longitudinal axis, which in concert with crystal anisotropy leads to macroscopic anisotropy in mechanical behavior. Thus, it is of great interest to delineate the contributions of different subsets of mineral crystals as a function of orientation, on the bulk mechanical behavior of bone. Using a unique synergistic approach combining a progressive loading scheme and synchrotron X-ray scattering techniques, human cortical bone specimens were loaded in compression to examine the in situ mechanical behavior of mineral crystals as the function of orientation. The orientation distribution of mineral crystals was quantitatively estimated by measuring the X-ray diffraction intensity from the crystallographic (002) plane in different orientations. In addition, the average longitudinal (c-axis), transverse (a-axis), and shear strains of the subset of mineral crystals aligned in each orientation were determined by measuring the lattice deformation in the crystals normal to three distinct crystallographic planes (i.e. 002, 310, and 213). The experimental results indicated that the in situ strain and stress of mineral crystals varied with orientation. The normal strain and stress exerted on the longitudinally aligned mineral crystals were markedly greater than those on the transversely oriented crystals, whereas the shear stress reached a maximum for the crystals aligned in ±30° with respect to the loading direction, which coincided with the long axis of bone. The maximum principal strain and stress were observed in the mineral crystals oriented along the loading axis, with a similar trend observed in the maximum shear strain and stress. By examining their in situ behavior, the contribution of mineral crystals to load bearing and the bulk behavior of bone are discussed. PMID:22982959

  16. Evaluation of the spectral distribution of X-ray beams from measurements on the scattered radiation

    International Nuclear Information System (INIS)

    Casnati, E.; Baraldi, C.

    1980-01-01

    Most of the phenomena activated by photons with energies below 100 keV show an apparent or real dependence on the quantum energy. Therefore, knowledge of the beam energy characteristics is of primary importance for interpretation of the irradiation results. The greatest difficulty arises from the high flux density of the beams usually employed which does not allow direct measurements of the beam. A method was developed which permits evaluation of the spectral distribution of the X-ray beam from a spectrometric measurement of the radiation scattered by a thin foil of a suitable metal. This makes possible a new and more rational approach to the measurement of X-rays in the energy range where the interaction parameters show a large photon energy dependence. The corrections required by the presence of some collateral effects, among which the most important is the coexistence of the coherent and incoherent scattering, must be evaluated. The knowledge of the spectral distribution is of immediate usefulness for studies of radiation damage in biological and other materials, for the calibration of radiation measuring instruments and for the improvement of the radiological instrumentation response which contributes to reducing the patient's dose. (H.K.)

  17. Measurement of parameters for the quality control of X-ray units by using PIN diodes and a personal computer

    International Nuclear Information System (INIS)

    Ramirez, F.; Gaytan, E.; Mercado, I.; Estrada, M.; Cerdeira, A.

    2000-01-01

    The design of a new system for the measurement of the main parameters of X-ray units used in medicine is presented. The system measures automatically the exposure time, high voltage applied, waveform of the detected signal, exposure ratio and the total exposure (dose). The X-ray detectors employed are PIN diodes developed at CINVESTAV, the measurements are done in one single shot, without invasion of the X-ray unit. The results are shown in the screen of the computer and can be saved in a file for later analysis. The proposed system is intended to be used in the quality control of X-rays units for clinical radio-diagnosis. It is a simple and inexpensive equipment if compared with available commercial equipment that uses ionization chambers and accurate electrometers that small facilities and hospitals cannot afford

  18. Measurement of anisotropic soft X-ray emission during radio-frequency current drive in the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Kawashima, Hisato; Matoba, Tohru; Hoshino, Katsumichi; Kawakami, Tomohide; Yamamoto, Takumi; Hasegawa, Mitsuru; Fuchs, Gerhard; Uesugi, Yoshihiko.

    1994-01-01

    A new vertical soft X-ray pulse height analyzer (PHA) system and a tangential PHA system were used to measure the anisotropy of soft X-ray emission during lower-hybrid current drive (LHCD) and also during current drive by the combination of LHCD and electron cyclotron resonance heating (ECRH) in the JFT-2M tokamak. The strong soft X-ray emission was measured in the parallel forward direction during LHCD. When ECRH was applied during LHCD, the perpendicular emission was enhanced. The high-energy electron velocity distribution was evaluated by comparing the measured and calculated X-ray spectra. The distribution form was consistent with the theoretical prediction based on the electron Landau damping of lower-hybrid waves and the electron cyclotron damping of electron cyclotron waves for reasonable energy ranges. (author)

  19. Platform development of x-ray absorption-based temperature measurements above 100-eV on the OMEGA laser

    Science.gov (United States)

    Workman, Jonathan; Keiter, P.; Tierney, T.; Tierney, H.; Belle, K.; Magelssen, G.; Peterson, R.; Fryer, C.; Comley, A.; Taylor, M.

    2007-11-01

    Experiments were performed on the OMEGA laser system at the University of Rochester to measure radiation temperature in hohlraum-heated foams. Using x-ray absorption spectroscopy in the 3-6-keV x-ray range allows temperature determination in the range of 50-200-eV. Uranium, bismuth and gold M-shell x-ray emission were used as broadband backlighters. Backlighter absorption through heated chlorinated foam and scandium tracers were used to determine temperatures. The development of this technique in the temperature range of 100-200-eV will be used for platform development of future NIF experiments. We will present time-integrated and time-resolved measurements of x-ray emission from the backlighter materials as well as absorption measurements trough the heated tracer materials. We will also present future directions in the development of this platform.

  20. An in situ near-ambient pressure X-ray Photoelectron Spectroscopy study of Mn polarised anodically in a cell with solid oxide electrolyte

    International Nuclear Information System (INIS)

    Bozzini, Benedetto; Amati, Matteo; Bocchetta, Patrizia; Dal Zilio, Simone; Knop-Gericke, Axel; Vesselli, Erik; Kiskinova, Maya

    2015-01-01

    This paper reports an in situ study of the anodic behavior of a model solid oxide electrolysis cell (SOEC) by means of near-ambient pressure X-ray Photoelectron Spectroscopy (XPS) combined with near edge X-ray absorption fine structure (NEXAFS) measurements. The focus is on the anodic surface chemistry of MnO x , a model anodic material already considered in cognate SOFC-related studies, during electrochemical operation in CO 2 , CO 2 /H 2 O and H 2 O ambients. The XPS and NEXAFS results we obtained, complemented by electrochemical measurements and SEM characterisation, reveal the chemical evolution of Mn under electrochemical control. MnO is the stable chemical form at open-circuit potential (OCP), while Mn 3 O 4 forms under anodic polarisation in all the investigated gas ambients. Carbon deposits are present on the Mn electrode at OCP, but they are readily oxidised under anodic conditions. Prolonged operation of the MnO x anode leads to pitting of the Mn films, damaging of the triple-phase boundary region and also to formation of discontinuities in the Mn patch. This is accompanied by chemical transformations of the electrolyte and formation of ZrC without impact on the surface chemistry of the Mn-based anode

  1. An overview of quantification methods in energy-dispersive X-ray ...

    Indian Academy of Sciences (India)

    X-ray fluorescence; X-ray spectrometry; quantitative XRF analysis; in situ XRF measurements. Abstract. This paper reviews the major factors influencing the accuracy of the energy-dispersive X-ray fluorescence (EDXRF) analysis including physical and chemical matrix effects (resulting from particle size, surface irregularity, ...

  2. X-Ray Measurements Using a Microcalorimeter on an Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    Silver, E.; Brickhouse, N. S.; Chen, G. X.; Kirby, K.; Gillaspy, J. D.; Tan, J. N.; Pomeroy, J. M.; Laming, J. M.

    2007-01-01

    The X-ray telescopes and spectrometers flown on Chandra and XMM-Newton are returning exciting new data from a wide variety of cosmic sources such as stellar coronae, supernova remnants, galaxies, clusters of galaxies, active galactic nuclei and X-ray binaries. To achieve the best scientific interpretation of the data from these and future spectroscopic missions and related ground-based observations, theoretical calculations and plasma models must be verified or modified by the results obtained from measurements in the laboratory. Such measurements are the focus of several laboratory astrophysics programs that use an electron beam ion trap (EBIT) to simulate astrophysical plasma conditions. Here we describe our recent spectroscopic measurements of neon-like iron and nickel using a microcalorimeter on the EBIT at the National Institute of Standards (NIST). We obtain values for the intensity ratios of the well-known lines emitted by these ions and compare the results with new large scale electron-ion scattering calculations. Additional details about our laboratory astrophysics work can be found in some earlier papers

  3. Absolute brightness modeling for improved measurement of electron temperature from soft x-rays on MST

    Science.gov (United States)

    Reusch, L. M.; Franz, P.; Goetz, J. A.; den Hartog, D. J.; Nornberg, M. D.; van Meter, P.

    2017-10-01

    The two-color soft x-ray tomography (SXT) diagnostic on MST is now capable of Te measurement down to 500 eV. The previous lower limit was 1 keV, due to the presence of SXR emission lines from Al sputtered from the MST wall. The two-color technique uses two filters of different thickness to form a coarse spectrometer to estimate the slope of the continuum x-ray spectrum, which depends on Te. The 1.6 - 2.0 keV Al emission lines were previously filtered out by using thick Be filters (400 µm and 800 µm), thus restricting the range of the SXT diagnostic to Te >= 1 keV. Absolute brightness modeling explicitly includes several sources of radiation in the analysis model, enabling the use of thinner filters and measurement of much lower Te. Models based on the atomic database and analysis structure (ADAS) agree very well with our experimental SXR measurements. We used ADAS to assess the effect of bremsstrahlung, recombination, dielectronic recombination, and line emission on the inferred Te. This assessment informed the choice of the optimum filter pair to extend the Te range of the SXT diagnostic. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences program under Award Numbers DE-FC02-05ER54814 and DE-SC0015474.

  4. In vivo measurement of hemodynamic information in stenosed rat blood vessels using X-ray PIV.

    Science.gov (United States)

    Park, Hanwook; Park, Jun Hong; Lee, Sang Joon

    2016-11-28

    Measurements of the hemodynamic information of blood flows, especially wall shear stress (WSS), in animal models with circulatory vascular diseases (CVDs) are important to understand the pathological mechanism of CVDs. In this study, X-ray particle image velocimetry (PIV) with high spatial resolution was applied to obtain velocity field information in stenosed blood vessels with high WSS. 3D clips fabricated with a 3D printer were applied to the abdominal aorta of a rat cadaver to induce artificial stenosis in the real blood vessel of an animal model. The velocity and WSS information of blood flows in the stenosed vessel were obtained and compared at various stenosis severities. In vivo measurement was also conducted by fastening a stenotic clip on a live rat model through surgical intervention to reduce the flow rate to match the limited temporal resolution of the present X-ray PIV system. Further improvement of the temporal resolution of the system might be able to provide in vivo measurements of hemodynamic information from animal disease models under physiological conditions. The present results would be helpful for understanding the relation between hemodynamic characteristics and the pathological mechanism in animal CVD models.

  5. Quantitative evaluation of statistical errors in small-angle X-ray scattering measurements.

    Science.gov (United States)

    Sedlak, Steffen M; Bruetzel, Linda K; Lipfert, Jan

    2017-04-01

    A new model is proposed for the measurement errors incurred in typical small-angle X-ray scattering (SAXS) experiments, which takes into account the setup geometry and physics of the measurement process. The model accurately captures the experimentally determined errors from a large range of synchrotron and in-house anode-based measurements. Its most general formulation gives for the variance of the buffer-subtracted SAXS intensity σ 2 ( q ) = [ I ( q ) + const.]/( kq ), where I ( q ) is the scattering intensity as a function of the momentum transfer q ; k and const. are fitting parameters that are characteristic of the experimental setup. The model gives a concrete procedure for calculating realistic measurement errors for simulated SAXS profiles. In addition, the results provide guidelines for optimizing SAXS measurements, which are in line with established procedures for SAXS experiments, and enable a quantitative evaluation of measurement errors.

  6. Measurement of conversion coefficients between air Kerma and personal dose equivalent and backscatter factors for diagnostic X-ray beams

    International Nuclear Information System (INIS)

    Rosado, Paulo Henrique Goncalves

    2008-01-01

    Two sets of quantities are import in radiological protection: the protection and operational quantities. Both sets can be related to basic physical quantities such as kerma through conversion coefficients. For diagnostic x-ray beams the conversion coefficients and backscatter factors have not been determined yet, those parameters are need for calibrating dosimeters that will be used to determine the personal dose equivalent or the entrance skin dose. Conversion coefficients between air kerma and personal dose equivalent and backscatter factors were experimentally determined for the diagnostic x-ray qualities RQR and RQA recommended by the International Electrotechnical Commission (IEC). The air kerma in the phantom and the mean energy of the spectrum were measured for such purpose. Harshaw LiF-100H thermoluminescent dosemeters (TLD) were used for measurements after being calibrated against an 180 cm 3 Radcal Corporation ionization chamber traceable to a reference laboratory. A 300 mm x 300 mm x 150 mm polymethylmethacrylate (PMMA) slab phantom was used for deep-dose measurements. Tl dosemeters were placed in the central axis of the x-ray beam at 5, 10, 15, 25 and 35 mm depth in the phantom upstream the beam direction Another required parameter for determining the conversion coefficients from was the mean energy of the x-ray spectrum. The spectroscopy of x-ray beams was done with a CdTe semiconductor detector that was calibrated with 133 Ba, 241 Am and 57 Co radiation sources. Measurements of the x-ray spectra were carried out for all RQR and RQA IEC qualities. Corrections due to the detector intrinsic efficiency, total energy absorption, escape fraction of the characteristic x-rays, Compton effect and attenuation in the detector were done aiming an the accurate determination of the mean energy. Measured x-ray spectra were corrected with the stripping method by using these response functions. The typical combined standard uncertainties of conversion coefficients and

  7. X-ray diffraction measurements of polycrystalline diamond near the Hugoniot elastic limit under shock compression

    Science.gov (United States)

    MacDonald, M. J.; McBride, E. E.; Sun, P.; Gauthier, M.; Gamboa, E. J.; Kraus, D.; Schumaker, W.; Vorberger, J.; Galtier, E.; van Driel, T. B.; Zhou, X.; Granados, E.; Nam, I.; Drake, R. P.; Glenzer, S. H.; Fletcher, L. B.

    2016-10-01

    Direct measurements of the crystal structure under dynamic compression can be made using angularly resolved x-ray scattering at the MEC instrument at LCLS. Diffraction from several lattice planes using the x-ray beam at LCLS enabled time resolved measurements of elastic and plastic waves in polycrystalline diamond near the Hugoniot elastic limit. The behavior of diamond in these conditions is important to the understanding of the early stages of compression in inertial confinement fusion targets, meteorite impact events, and planetary interiors. Data were analyzed in the Reuss limit as described in a recent publication [M. J. MacDonald et al., J. Appl. Phys. 119, 215902 (2016)] to model the stresses near the Hugoniot elastic limit. This material is based upon work supported by the NSF under Grant No. 2013155705. This work was supported by the DOE Office of Science, FES under FWP 100182, by the NNSA-DS and SC-OFES Joint Program in HED Laboratory Plasmas, Grant No. DE-NA0002956, and used resources of the NERSC under Contract No. DE-AC02-05CH11231.

  8. Diagnosis of laser ablated carbon particles measured by time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Ohyanagi, T.; Murakami, K.

    1995-01-01

    The time and space resolved properties of laser ablated carbon particles were measured by X-ray absorption spectroscopy using LPX as an X-ray source. The energy density of the irradiation laser on the sample was in the range of 0.5-20J/cm 2 and the time delay was varied between 0 and 120ns. The absorption spectra exhibited several peaks originated from level to level transitions and an intense broad absorption in the energy range of C-K edge. At a delay time of 120ns, the absorption peak from 1s→2p transition of neutral carbon atom (C 0 ), C - , C + and C 2+ ions were observed. The absorption peak from C 0 was stronger as the probing position was closer to the sample surface and decreased rapidly with distance from the sample surface. The absorption peak C 2+ ion was observed only at comparatively distant positions from surface. The maximum speeds of highly charged ions were faster than that of neutral atoms and negative charged ions. The neutral atom and lower charged ions were emitted from the sample even after laser irradiation. The spatial distributions of the laser ablated carbon particles in the localized helium gas environment were measured. In the helium gas environment, the ablation plume was depressed by the helium cloud generated on the top of ablation plume. (author)

  9. Modeling and design of radiative hydrodynamic experiments with X-ray Thomson Scattering measurements on NIF

    Science.gov (United States)

    Ma, K. H.; Lefevre, H. J.; Belancourt, P. X.; MacDonald, M. J.; Doeppner, T.; Keiter, P. A.; Kuranz, C. C.; Johnsen, E.

    2017-10-01

    Recent experiments at the National Ignition Facility studied the effect of radiation on shock-driven hydrodynamic instability growth. X-ray radiography images from these experiments indicate that perturbation growth is lower in highly radiative shocks compared to shocks with negligible radiation flux. The reduction in instability growth is attributed to ablation from higher temperatures in the foam for highly radiative shocks. The proposed design implements the X-ray Thomson Scattering (XRTS) technique in the radiative shock tube platform to measure electron temperatures and densities in the shocked foam. We model these experiments with CRASH, an Eulerian radiation hydrodynamics code with block-adaptive mesh refinement, multi-group radiation transport and electron heat conduction. Simulations are presented with SiO2 and carbon foams for both the high temperature, radiative shock and the low-temperature, hydrodynamic shock cases. Calculations from CRASH give estimations for shock speed, electron temperature, effective ionization, and other quantities necessary for designing the XRTS diagnostic measurement. This work is funded by the LLNL under subcontract B614207, and was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  10. Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, Nicholas Bryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, John Oliver [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coleman, Joshua Eugene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-11

    A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to the beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.

  11. An in situ synchrotron X-ray diffraction study of precipitation kinetics in a severely deformed Cu–Ni–Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Azzeddine, H.; Mehdi, B. [Faculty of Physics, USTHB, BP 32 El-Alia, Dar El Beida, Algiers (Algeria); Hennet, L. [Conditions Extrêmes et Matériaux: Haute Température et Irradiation, CNRS-CEMHTI, 1D Ave de la Recherche Scientifique, 45071 Orléans Cedex 2 (France); Thiaudière, D. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette Cedex (France); Alili, B. [Faculty of Physics, USTHB, BP 32 El-Alia, Dar El Beida, Algiers (Algeria); Kawasaki, M., E-mail: megumi@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Bradai, D. [Faculty of Physics, USTHB, BP 32 El-Alia, Dar El Beida, Algiers (Algeria); Langdon, T.G. [Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2014-03-01

    In situ synchrotron X-ray diffraction was used to study the decomposition kinetics of a metastable Cu–2.5Ni–0.6Si (wt%) alloy after severe plastic deformation by equal-channel angular pressing (ECAP) and high-pressure torsion (HPT). The measurements were performed at room temperature and also at high temperatures of 723, 823 and 973 K in order to determine the ageing effect after processing. Two forms of precipitates, namely δ-Ni{sub 2}Si and γ-Ni{sub 5}Si{sub 2}, were identified and the sequence of their appearance was well established for ECAP processing and ageing. There was no detection of either a modulated structure resulting from spinodal decomposition or an ordered structure nucleated from the modulated structure. An X-ray hybrid pixel array detector (XPAD-S140 detector) permitted the detection of the nucleation stages of the δ-Ni{sub 2}Si phase that began soon after 24 s of ageing at 723 K. There was also no trace of any amorphization of the matrix phase.

  12. Usefulness of Non-Invasive Measurement Tool on Performance Evaluation of Inverter Type X-ray Unit

    International Nuclear Information System (INIS)

    Kang, Se Sik; Kim, Chang Soo; Ko, Sung Jin

    2008-01-01

    As the demand of a simple and precise method increases to evaluate the performance of the inverter type x-ray unit, we evaluated the usefulness of the recently-introduced X-ray Multi-Function Test Device (moldel : Xi (unfors)-prestige). We compared the performance of X-ray Multi-Function Test Device (XMFTD) which is non-inveasive type device with the performance of Dynalyzer III that has been most widely used inveasive type measure device. X-ray output dose was increased a little in the XMFTD, but both devices were below the performance evaluation standard, 0.002 in the output reproducibility. Linearity of XMFTD were below 0.1 which means that Dynalyzer III showed more excellency in linearity. As the the accuracy of exposure factor, 1.8 and 2 tube voltage, 2.01 and 2.3 tube current were measured. The exposure time was also measured by 0.01 sec ±10%. Both devices were within the acceptance of performance evaluation standard. We proved the usefulness of X-ray Multi-Function Test Device (model: Xi (unfors)-prestige) to evaluated the performance on reproductibility and linearity of X-ray output and accuracy of exposure factor of inverter type unit.

  13. Mass thickness measurement of dual-sample by dual-energy X-rays

    International Nuclear Information System (INIS)

    Chen Mincong; Li Hongmei; Chen Ziyu; Shen Ji

    2008-01-01

    X-ray equivalent energy can be used to measure mass thicknesses of materials. Based on this, a method of mass thickness measurement of dual-sample was discussed. It was found that in the range of sample mass thickness under investigation, the equivalent mass attenuation coefficient of a component could be used to compute mass thicknesses of a dual-sample, with relative errors of less than 5%. Mass thickness measurement of a fish sample was performed, and the fish bone and flesh could be displayed separately and clearly by their own mass thicknesses. This indicates that the method is effective in mass thickness measurement of dual-sample of suitable thicknesses. (authors)

  14. Application of Gamma and X-ray Technique (GXW) for Uranium and Plutonium Measurement

    International Nuclear Information System (INIS)

    Basuki Wibowo; Indro Yuwono

    2004-01-01

    The GXW method represents a generalization of the standard isotope measurement by special high resolution detector in that it exploits the full spectroscopic information contained in gamma spectrum from sample to achieve also a determination of sample mass fraction in the assay material. The method makes use of several gamma spectrometric analysis techniques as enrichment type measurements (IAMF), passive differential gamma absorptiometry (PDGA) and passive x-ray fluorescence analysis (PXRF), either individually or in combination, for determination of the element mass fraction from a single gamma spectrum. The approach works in principle for any kind sample, liquid and solid, provided the recommended geometry set up. A calibration or normalization with at least one reference sample is normally required for the mass fraction measurement. The measured sample mass fraction together with the knowledge of the net sample weight obtained from a weighing yield the total amount of sample. (author)

  15. Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging.

    Science.gov (United States)

    Zheng, Weili; Nichol, Helen; Liu, Saifeng; Cheng, Yu-Chung N; Haacke, E Mark

    2013-09-01

    Measuring iron content in the brain has important implications for a number of neurodegenerative diseases. Quantitative susceptibility mapping (QSM), derived from magnetic resonance images, has been used to measure total iron content in vivo and in post mortem brain. In this paper, we show how magnetic susceptibility from QSM correlates with total iron content measured by X-ray fluorescence (XRF) imaging and by inductively coupled plasma mass spectrometry (ICPMS). The relationship between susceptibility and ferritin iron was estimated at 1.10±0.08 ppb susceptibility per μg iron/g wet tissue, similar to that of iron in fixed (frozen/thawed) cadaveric brain and previously published data from unfixed brains. We conclude that magnetic susceptibility can provide a direct and reliable quantitative measurement of iron content and that it can be used clinically at least in regions with high iron content. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Fatigue History and in-situ Loading Studies of the overload Effect Using High Resolution X-ray Strain Profiling

    International Nuclear Information System (INIS)

    Croft, M.; Jisrawi, N.; Zhong, Z.; Holtz, R.; Sadananda, K.; Skaritka, J.; Tsakalakos, T.

    2007-01-01

    High-energy synchrotron X-ray diffraction experiments are used to perform local crack plane strain profiling of 4140 steel compact tension specimens fatigued at constant amplitude, subjected to a single overload cycle, then fatigued some more at constant amplitude. X-ray strain profiling results on a series of samples employing in-situ load cycling are correlated with the crack growth rate (da/dN) providing insight into the da/dN retardation known as the 'overload effect'. Immediately after the overload, the strain under maximum load is greatly reduced but the range of strain, between zero and maximum load, remains unchanged compared to the pre-overload values. At the point of maximum retardation, it is the strain range that is greatly reduced while the maximum-load strain has begun to recover to the pre-overload value. For a sample that has recovered to approximately half of the original da/dN value following the overload, the strain at maximum load is fully recovered while the strain range, though partially recovered, is still substantially reduced. The dominance of the strain range in the overload effect is clearly indicated. Subject to some assumptions, strong quantitative support for a crack growth rate driving force of the suggested form [(K max ) -p (ΔK) p ] γ is found. A dramatic nonlinear load dependence in the spatial distribution of the strain at maximum retardation is also demonstrated: at low load the response is dominantly at the overload position; whereas at high loads it is dominantly at the crack tip position. This transfer of load response away from the crack tip to the overload position appears fundamental to the overload effect for high R-ratio fatigue as studied here

  17. Absolute Soft X-ray Emission Measurements at the Nike Laser

    Science.gov (United States)

    Weaver, J.; Atkin, R.; Boyer, C.; Colombant, D.; Feldman, U.; Fielding, D.; Gardner, J.; Holland, G.; Klapisch, M.; Mostovych, A. N.; Obenscain, S.; Seely, J. F.

    2002-11-01

    Recent experiments at the Nike laser facility have demonstrated that, when a low intensity prepulse ( 2main laser intensity) is used to heat a thin Au or Pd coating on a planar CH target, the growth of non-uniformities due to laser imprint can be reduced from the growth observed for an uncoated CH target. The absolute radiation intensity in the soft x-ray region (0.1-1 keV) has a important role in the energy balance for layered targets. There is an ongoing effort to characterize the soft x-ray emission using an absolutely calibrated transmission grating spectrometer and filtered diode modules. Measurements of the angular distribution of the emission from unlayered solid targets (Au, Pd, CH) have recently been made using an array of moveable filtered diode modules. The data from the angular distribution studies will be presented. A new absolutely calibrated, time-resolving transmission grating spectrometer has been installed at the Nike. The new version has improved spectral resolution, selectable transmission filters, and the potential for simultaneous temporal, spatial, and spectral resolution. Preliminary data from the new spectrometer will be presented and future experiments will be briefly discussed. *Work was supported by DoE

  18. A high-resolution x-ray spectrometer for a kaon mass measurement

    Science.gov (United States)

    Phelan, Kevin; Suzuki, Ken; Zmeskal, Johann; Tortorella, Daniele; Bühler, Matthias; Hertrich, Theo

    2017-02-01

    The ASPECT consortium (Adaptable Spectrometer Enabled by Cryogenic Technology) is currently constructing a generalised cryogenic platform for cryogenic detector work which will be able to accommodate a wide range of sensors. The cryogenics system is based on a small mechanical cooler with a further adiabatic demagnetisation stage and will work with cryogenic detectors at sub-Kelvin temperatures. The commercial aim of the consortium is to produce a compact, user-friendly device with an emphasis on reliability and portability which can easily be transported for specialised on-site work, such as beam-lines or telescope facilities. The cryogenic detector platform will accommodate a specially developed cryogenic sensor, either a metallic magnetic calorimeter or a magnetic penetration-depth thermometer. The detectors will be designed to work in various temperatures regions with an emphasis on optimising the various detector resolutions for specific temperatures. One resolution target is of about 10 eV at the energies range typically created in kaonic atoms experiments (soft x-ray energies). A following step will see the introduction of continuous, high-power, sub-Kelvin cooling which will bring the cryogenic basis for a high resolution spectrometer system to the market. The scientific goal of the project will produce an experimental set-up optimised for kaon-mass measurements performing high-resolution x-ray spectroscopy on a beam-line provided foreseeably by the J-PARC (Tokai, Japan) or DAΦNE (Frascati, Italy) facilities.

  19. Determining surface coverage of ultra-thin gold films from X-ray reflectivity measurements

    International Nuclear Information System (INIS)

    Kossoy, A.; Simakov, D.; Olafsson, S.; Leosson, K.

    2013-01-01

    The paper describes usage of X-ray reflectivity for characterization of surface coverage (i.e. film continuity) of ultra-thin gold films which are widely studied for optical, plasmonic and electronic applications. The demonstrated method is very sensitive and can be applied for layers below 1 nm. It has several advantages over other techniques which are often employed in characterization of ultra-thin metal films, such as optical absorption, Atomic Force Microscopy, Transmission Electron Microscopy or Scanning Electron Microscopy. In contrast to those techniques our method does not require specialized sample preparation and measurement process is insensitive to electrostatic charge and/or presence of surface absorbed water. We validate our results with image processing of Scanning Electron Microscopy images. To ensure precise quantitative analysis of the images we developed a generic local thresholding algorithm which allowed us to treat series of images with various values of surface coverage with similar image processing parameters. - Highlights: • Surface coverage/continuity of ultra-thin Au films (up to 7 nm) was determined. • Results from X-ray reflectivity were verified by scanning electron microscopy. • We developed local thresholding algorithm to treat non-homogeneous image contrast

  20. Soft X-ray and cathodoluminescence measurement, optimisation and analysis at liquid nitrogen temperatures

    Science.gov (United States)

    MacRae, C. M.; Wilson, N. C.; Torpy, A.; Delle Piane, C.

    2018-01-01

    Advances in field emission gun electron microprobes have led to significant gains in the beam power density and when analysis at high resolution is required then low voltages are often selected. The resulting beam power can lead to damage and this can be minimised by cooling the sample down to cryogenic temperatures allowing sub-micrometre imaging using a variety of spectrometers. Recent advances in soft X-ray emission spectrometers (SXES) offer a spectral tool to measure both chemistry and bonding and when combined with spectral cathodoluminescence the complementary techniques enable new knowledge to be gained from both mineral and materials. Magnesium and aluminium metals have been examined at both room and liquid nitrogen temperatures by SXES and the L-emission Fermi-edge has been observed to sharpen at the lower temperatures directly confirming thermal broadening of the X-ray spectra. Gains in emission intensity and resolution have been observed in cathodoluminescence for liquid nitrogen cooled quartz grains compared to ambient temperature quartz. This has enabled subtle growth features at quartz to quartz-cement boundaries to be imaged for the first time.

  1. The Measurement of X-ray Fluoroscopy Input-output Characteristics in Angiography System.

    Science.gov (United States)

    Hagihara, Yoshiaki; Umehara, Takayoshi; Matsumoto, Kazuma; Fujita, Tomoko; Ikeuchi, Youko; Fujikawa, Keita; Takahashi, Yoshiyuki; Kotoura, Noriko

    2017-01-01

    Determination of X-ray fluoroscopy radiation dose and contrast with angiographic system automatically depending on the objects, and to control setting manually, which is difficult for the measurement of characteristics. Therefore, we examined the method to adjust the conditions of fluoroscopy and measured the input-output characteristics. To adjust and fix the condition of fluoroscopy, the exposure adjustment area at the center of the irradiation field was moved to the left side and attached the copper plates to regulate the exposure dose. The area to measure the digital value was selected at the center of the irradiation field, and the dosimeter was placed at the right side of the area, which was selected to measure the digital value. To regulate the entrance dose progressively, the acryl plates were inserted into the irradiation field except for the exposure adjustment area. We obtained a characteristic curve from the measured dose and the digital value. Difference of lookup table (LUT), dose dependency, and tube voltage dependency were checked by the digital characteristic curves. Each LUT showed different curves, but they all saturated with 4095, which is the maximum value of 12 bits. Dose dependency was measured as an increase in the permitted dose level with an increase in the setting dose. Tube voltage dependency improved with the tube voltage rises. Each characteristic curve became same by converting the relative exposure dose. As a result, measuring the shape of LUT would be possible. The method is useful for measuring the characteristic curve with the X-ray fluoroscopy of angiographic system.

  2. Hydrogen-Mediated Electron Doping of Gold Clusters As Revealed by In Situ X-ray and UV-vis Absorption Spectroscopy.

    Science.gov (United States)

    Ishida, Ryo; Hayashi, Shun; Yamazoe, Seiji; Kato, Kazuo; Tsukuda, Tatsuya

    2017-06-01

    We previously reported that small (∼1.2 nm) gold clusters stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP) exhibited a localized surface plasmon resonance (LSPR) band at ∼520 nm in the presence of NaBH 4 . To reveal the mechanism of this phenomenon, the electronic structure of Au:PVP during the reaction with NaBH 4 in air was examined by means of in situ X-ray absorption spectroscopy at Au L 3 -edge and UV-vis spectroscopy. These measurements indicated that the appearance of the LSPR band is not associated with the growth in size but is ascribed to electron doping to the Au sp band by the adsorbed H atoms.

  3. Study of the thermal nitridation of nanocrystalline Ti(OH)4 by X-ray and in situ neutron powder diffraction.

    Science.gov (United States)

    Legrand, Vincent; Merdrignac-Conanec, Odile; Paulus, Werner; Hansen, Thomas

    2012-09-27

    In situ neutron diffraction measurements of nanocrystalline titanium oxynitrides were performed, as a function of temperature and time, to explore the nitrogen/oxygen substitution mechanism occurring during their synthesis by reaction of gaseous ammonia with nanocrystalline Ti(OH)(4). These neutron diffraction experiments are supported by chemical analysis and X-ray diffraction, allowing the description of the structural variations and ordering process between the Ti(O/N)(2) anatase and the Ti(O/N) rock-salt phases. Our results show that the formation of the Ti(O/N) rock-salt phase goes along with the creation of vacancies on the Ti sites and that the N/O substitution proceeds but without N/O ordering.

  4. Solvent exchange in a metal–organic framework single crystal monitored by dynamic in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Jordan M.; Walton, Ian M.; Bateman, Gage; Benson, Cassidy A.; Mitchell, Travis; Sylvester, Eric; Chen, Yu-Sheng; Benedict, Jason B. (UC); (Buffalo)

    2017-07-25

    Understanding the processes by which porous solid-state materials adsorb and release guest molecules would represent a significant step towards developing rational design principles for functional porous materials. To elucidate the process of liquid exchange in these materials, dynamicin situX-ray diffraction techniques have been developed which utilize liquid-phase chemical stimuli. Using these time-resolved diffraction techniques, the ethanol solvation process in a flexible metal–organic framework [Co(AIP)(bpy)0.5(H2O)]·2H2O was examined. The measurements provide important insight into the nature of the chemical transformation in this system including the presence of a previously unreported neat ethanol solvate structure.

  5. The Definitive NuSTAR Measurement of the Unresolved Cosmic X-ray Background

    Science.gov (United States)

    Wik, Daniel

    The entire sky is aglow in X-rays, called the cosmic X-ray background (CXB), which we now know is made up almost entirely by point sources identified to be active galactic nuclei (AGN). The peak in the spectral energy distribution of the CXB requires a poorly understood population of AGN, whose emission is highly absorbed below energies of 10 keV where almost all focussing telescopes are sensitive. Studying this population in detail is hampered by systematic uncertainties in the measurements of the CXB spectrum, which span 10-40% in the 3-30 keV energy range. We propose to make definitive, low uncertainty measurements of the CXB with archival data from the NuSTAR hard X-ray observatory at these energies. The observatory background in this energy range is dominated by unreflected and unscattered stray light from the CXB, a consequence of the unenclosed optical path between optics and focal plane. We will carefully isolate this component from other backgrounds using its characteristic spatial distribution across the detectors and knowledge of the behavior of the other background components. A careful calibration of the solid angle on the sky this emission comes from will allow us to accurately and precisely measure the absolute flux and spectral shape of the CXB as well as its variance on several angular scales. First, we will refine the model already used to characterize the background of NuSTAR observations using all Earth-occulted and deep survey field data in the archive. Next, we will fit that model to all NuSTAR observations outside of the Galactic plane without bright or extended targets. The data and models will then be stacked to measure the average spectrum of the CXB, and that spectrum will then be compared to the measured CXB rates in each individual observation. The variance at different energies and on a range of angular scales will be compared to the predictions of AGN population synthesis models, which presuppose the redshift distribution and number

  6. First measurements using the ALS Soft X-ray Fourier Transform spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Duarte, R.M.; Howells, M.R.; Hussain, Z.; Spring, J. [and others

    1997-08-01

    Commissioning of a Fourier Transform Soft X-ray spectrometer (FT-SX) is under way at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, as a branch of beamline 9.3.2. The spectrometer is a novel soft x-ray interferometer designed for ultra-high resolution spectroscopy in the photon experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  7. Progresses in the measurement and evaluation of small-angle x-ray scattering data

    International Nuclear Information System (INIS)

    Bergmann, A.

    2000-08-01

    Scattering methods are a widely used technique for determining size and shape of particles in the mesoscopic size range. This work deals on the one hand with the development of instruments in the field of Small Angle x-ray Scattering (SAXS) and on the other hand with methodical contributions concerning the interpretation of small angle scattering data. After a short introduction about Small Angle Scattering (SAS) and its application in chapter one, follows in chapter two a derivation of the theory of Small Angle x-ray scattering. Thereafter indirect transformations (Generalized Indirect Fourier Transformation [GIFT], Indirect Fourier Transformation [IFT]) are discussed and in this connection the optimization of multidimensional hyper surfaces is described. There are different possibilities for optimizing such multidimensional surfaces. The pros and contras of the different optimization methods with respect to the evaluation of small angle scattering data from interacting systems are discussed in detail. Global optimization methods are mainly used, if the hypersurface, which has to be optimized, shows many local minima. The goal of the optimization is it to find the global minimum. It is essential, that the parameters of the hyper surface are independent of each other, as it is the case in the GIFT. If someone deals with problems in only few dimensions or with many boundary conditions, mostly local optimization routines are sufficient. Therefore a number of starting parameters for the optimization is chosen, which can be obtained systematically or randomly. The best solution obtained represents the result of the optimization procedure. Chapter 3 deals with the description of instruments used in the field of Small Angle x-ray Scattering. After a description of the components (x-ray sources, monochromators, detectors) of these instruments, the different beam geometries are discussed. In chapter 4 improvements of SAXS measurements on Kratky slit systems by Goebel

  8. In Situ High Resolution Synchrotron X-Ray Powder Diffraction Studies of Lithium Batteries

    DEFF Research Database (Denmark)

    Amri, Mahrez; Fitch, Andy; Norby, Poul

    2015-01-01

    Lithium ion battery technology is the heart in operating modern technology devices such as mobile phones and laptops. However, as our society is moving towards the utilization of sustainable energy sources, batteries can be foreseen to become an even more important part of the energy infrastructure...... materials [3]. We report results from the first in situ time resolved high resolution powder diffraction experiments at beamline ID22/31 at the European Synchrotron Radiation Facility, ESRF. We follow the structural changes during charge of commercial LiFePO4 based battery materials using the Rietveld...

  9. A New Measurement of the Bulk Flow of X-Ray Luminous Clusters of Galaxies

    Science.gov (United States)

    Kashlinsky, A.; Atrio-Barandela, F.; Ebeling, H.; Edge, A.; Kocevski, D.

    2010-01-01

    We present new measurements of the large-scale bulk flows of galaxy clusters based on five-year WMAP data and a significantly expanded X-ray cluster catalog. Our method probes the flow via measurements of the kinematic Sunyaev-Zel'dovich (SZ) effect produced by the hot gas in moving clusters. It computes the dipole in the cosmic microwave background data at cluster pixels, which preserves the SZ component while integrating down other contributions. Our improved catalog of over 1000 clusters enables us to further investigate possible systematic effects and, thanks to a higher median cluster redshift, allows us to measure the bulk flow to larger scales. We present a corrected error treatment and demonstrate that the more X-ray luminous clusters, while fewer in number, have much larger optical depth, resulting in a higher dipole and thus a more accurate flow measurement. This results in the observed correlation of the dipole derived at the aperture of zero monopole with the monopole measured over the cluster central regions. This correlation is expected if the dipole is produced by the SZ effect and cannot be caused by unidentified systematics (or primary cosmic microwave background anisotropies). We measure that the flow is consistent with approximately constant velocity out to at least [similar, equals]800 Mpc. The significance of the measured signal peaks around 500 h -1 70 Mpc, most likely because the contribution from more distant clusters becomes progressively more diluted by the WMAP beam. However, at present, we cannot rule out that these more distant clusters simply contribute less to the overall motion.

  10. Contributions to the defocusing effect on pole figure measurements by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Palacios G, J.; Salat F, R. S.; Jimenez J, A.; Kryshtab, T., E-mail: palacios@esfm.ipn.mx [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, 07738 Mexico D. F. (Mexico)

    2015-07-01

    A simple method, considering a parallel beam approximation has been made to reproduce the main features of the defocusing effect, observed when pole figures are measured with the Schulz reflection technique using X-ray diffraction. A Lorentzian curve was used to approximate the primary beam profile. This method applied to low index reflections of copper and silver shows qualitatively and partially quantitatively, the extent the elongation of the ellipse resulting from the intersection of the beam with the tilted sample causes the defocusing effect. Differences observed experimentally are attributed mainly to the divergence of the beam, but also partially to the particular primary beam profile. Additionally, measurements with two different vertical heights of the receiving slit, i. e. the measured arch length of the Debye-Scherrer ring, indicate that this parameter plays no role in defocusing. (Author)

  11. X-ray microprobe measurements of the chemical compositions of ALH84001 carbonate globules

    International Nuclear Information System (INIS)

    Flynn, G.J.; Sutton, S.R.; Keller, L.P.

    2004-01-01

    We measured minor element contents of carbonate from ALH84001 and report trends in tbe Ca, V, Mn and Sr in carbonate and the associated magnetite bands. McKay et al. suggested that carbonate globules in the ALH84001 meteorite from Mars contained evidence consistent with the development of bacterial life early in the history of Mars. This result provoked an extensive study of the ALH84001 meteorite. More recently Thomas-Keprta et al. have published a study showing that the magnetite associated with carbonate rims are of the size and shape produced by terrestrial bacteria. This paper has revived interest in ALH84001. The typical ALH84001 carbonate globule consists of four regions: a core of Fe-rich carbonate, a thin magnetite-rich band, a rim of Mn-rich carbonate, and another thin magnetite-rich band. Trace element analysis of each of these phases may allow us to address several important questions about these carbonates: (1) The origin of the magnetite-rich bands in the ALH84001 carbonate globules. If the magnetites are derived from the underlying carbonate through thermal decomposition (as proposed by Golden et al.), then we expect to see 'inherited' trace elements in these magnetite bands. (2) The origin of the rim carbonate, by determining whether the carbonate in the core has the same trace elements as the rim carbonates. (3) The age of the rim carbonate. Borg et al. dated the formation of the rim carbonate using the Rb/Sr chronometer. Borg et al. performed their measurements on an aliquot of what they called a high-Rb, low-Sr carbonate separate from the rim. We previously measured the trace element contents of chips from core and rim carbonates from an ALH84001 carbonate globule using an X-Ray Microprobe on Beamline X26A at the National Synchrotron Light Source. These measurements showed the rim carbonate had a very low Rb content, with Sr>>Rb, inconsistent with the ∼5 ppm Rb reported by Borg et al. in the sample they dated by the Rb/Sr chronometer. The large

  12. Dual energy x-ray laser measurement of calcaneal bone mineral density

    Energy Technology Data Exchange (ETDEWEB)

    Hakulinen, M A [Department of Applied Physics, University of Kuopio, Kuopio (Finland); Saarakkala, S [Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital and University of Kuopio, Kuopio (Finland); Toeyraes, J [Department of Applied Physics, University of Kuopio, Kuopio (Finland); Kroeger, H [Department of Surgery, Kuopio University Hospital, Kuopio (Finland); Jurvelin, J S [Department of Applied Physics, University of Kuopio, Kuopio (Finland)

    2003-06-21

    In dual energy x-ray absorptiometry (DXA) the photon attenuation is assumed to be similar in soft tissue overlying, adjacent to and inside the measured bone. In the calcaneal dual energy x-ray laser (DXL) technique, this assumption is not needed as attenuation by soft tissues at the local bone site is determined by combining DXA and heel thickness measurements. In the present study, 38 subjects were measured with DXL Calscan, Lunar PIXI and Lunar DPX-IQ DXA instruments and Hologic Sahara ultrasound instrument, and the performance and agreement of the instruments were analysed. Furthermore, numerical simulations on the effect of non-uniform fat-to-lean tissue ratio within soft tissue in heel were conducted. In vivo short-term precision (CV%, sCV%) of DXL Calscan (1.24%, 1.48%) was similar to that of Lunar PIXI (1.28%, 1.60%). Calcaneal areal bone mineral densities (BMD, g cm{sup -2}) measured using DXL Calscan and Lunar PIXI predicted equally well variations in BMD of femoral neck (r{sup 2} = 0.63 and 0.52, respectively) or lumbar spine (r{sup 2} = 0.61 and 0.64, respectively), determined with Lunar DPX-IQ. BMD values measured with DXL Calscan were, on average, 19% lower (p < 0.01) than those determined with Lunar PIXI. Interestingly, the difference in BMD values between instruments increased as a function of body mass index (BMI) (r{sup 2} = 0.17, p < 0.02) or heel thickness (r{sup 2} = 0.37, p < 0.01). Numerical simulations suggested that the spatial variation of soft tissue composition in heel can induce incontrollable inaccuracy in BMD when measured with the DXA technique. Theoretically, in contrast to DXA instruments, elimination of the effect of non-uniform soft tissue is possible with DXL Calscan.

  13. Ammonia-rich high-temperature superconducting intercalates of iron selenide revealed through time-resolved in situ X-ray and neutron diffraction.

    Science.gov (United States)

    Sedlmaier, Stefan J; Cassidy, Simon J; Morris, Richard G; Drakopoulos, Michael; Reinhard, Christina; Moorhouse, Saul J; O'Hare, Dermot; Manuel, Pascal; Khalyavin, Dmitry; Clarke, Simon J

    2014-01-15

    The development of a technique for following in situ the reactions of solids with alkali metal/ammonia solutions, using time-resolved X-ray diffraction methods, reveals high-temperature superconducting ammonia-rich intercalates of iron selenide which reversibly absorb and desorb ammonia around ambient temperatures.

  14. Central X-ray beam correction of radiographic acetabular cup measurement after THA: an experimental study.

    Science.gov (United States)

    Schwarz, T; Weber, M; Wörner, M; Renkawitz, T; Grifka, J; Craiovan, B

    2017-05-01

    Accurate assessment of cup orientation on postoperative radiographs is essential for evaluating outcome after THA. However, accuracy is impeded by the deviation of the central X-ray beam in relation to the cup and the impossibility of measuring retroversion on standard pelvic radiographs. In an experimental trial, we built an artificial cup holder enabling the setting of different angles of anatomical anteversion and inclination. Twelve different cup orientations were investigated by three examiners. After comparing the two methods for radiographic measurement of the cup position developed by Lewinnek and Widmer, we showed how to differentiate between anteversion and retroversion in each cup position by using a second plane. To show the effect of the central beam offset on the cup, we X-rayed a defined cup position using a multidirectional central beam offset. According to Murray's definition of anteversion and inclination, we created a novel corrective procedure to balance measurement errors caused by deviation of the central beam. Measurement of the 12 different cup positions with the Lewinnek's method yielded a mean deviation of [Formula: see text] (95 % CI 1.3-2.3) from the original cup anteversion. The respective deviation with the Widmer/Liaw's method was [Formula: see text] (95 % CI 2.4-4.0). In each case, retroversion could be differentiated from anteversion with a second radiograph. Because of the multidirectional central beam offset ([Formula: see text] cm) from the acetabular cup in the cup holder ([Formula: see text] anteversion and [Formula: see text] inclination), the mean absolute difference for anteversion was [Formula: see text] (range [Formula: see text] to [Formula: see text] and [Formula: see text] (range [Formula: see text] to [Formula: see text] for inclination. The application of our novel mathematical correction of the central beam offset reduced deviation to a mean difference of [Formula: see text] for anteversion and [Formula: see text

  15. Structural Investigation of Sodium Layered Oxides Via in Situ Synchrotron X-Ray Diffraction

    DEFF Research Database (Denmark)

    Jung, Young Hwa; Christiansen, Ane Sælland; Johnsen, Rune

    2015-01-01

    Sodium layered oxides with mixed transition metals have received significant attention as positive electrode candidates for sodium-ion batteries due to high reversible capacity. Sodium layered oxides would be more promising candidates than lithium-compounds in terms of high stability of MO2 slabs...... after extraction of Na induced from larger ionic size of Na. In addition, rich crystal chemistry for sodium layered compounds is available since larger Na+ ion is stable in more spacious prismatic site as compared to Li+ ion. In view of this, the phase transformation of layered compounds during......-situ synchrotron XRD experiments. A capillary Na-based cell is designed to minimize interference in other substances such as a separator or external battery parts. This approach could give us to obtain clear diffraction patterns with high intensity during electrochemical reaction in a short period of time without...

  16. Effect of beryllium filter purity on x-ray emission measurements

    Science.gov (United States)

    McGarry, M. B.; Franz, P.; Den Hartog, D. J.; Goetz, J. A.

    2014-12-01

    Beryllium foils of the purity grade typically specified for use as filters in soft x-ray (SXR) diagnostics may contain sufficient heavy element impurities to distort the energy transmission response of the filter. Electron microprobe analysis of the foils used in the Madison Symmetric Torus (MST) SXR tomography diagnostic revealed an impurity content of ˜0.3% fractional abundance by weight, comprised primarily of iron, zirconium, chromium, and nickel. These impurities lower the peak filter transmission in the energy range of the detector and alter the shape of the transmission curve. As a result, foil impurities introduce errors in any general measurement where radiation is being filtered. For example, neglecting the effect of impurities on filter transmission leads to large systematic errors (50%) in the electron temperature measured using the SXR double-filter technique on MST.

  17. Effect of beryllium filter purity on x-ray emission measurements

    International Nuclear Information System (INIS)

    McGarry, M B; Hartog, D J Den; Goetz, J A; Franz, P

    2014-01-01

    Beryllium foils of the purity grade typically specified for use as filters in soft x-ray (SXR) diagnostics may contain sufficient heavy element impurities to distort the energy transmission response of the filter. Electron microprobe analysis of the foils used in the Madison Symmetric Torus (MST) SXR tomography diagnostic revealed an impurity content of ∼0.3% fractional abundance by weight, comprised primarily of iron, zirconium, chromium, and nickel. These impurities lower the peak filter transmission in the energy range of the detector and alter the shape of the transmission curve. As a result, foil impurities introduce errors in any general measurement where radiation is being filtered. For example, neglecting the effect of impurities on filter transmission leads to large systematic errors (50%) in the electron temperature measured using the SXR double-filter technique on MST. (paper)

  18. X-ray radiographic technique for measuring density uniformity of silica aerogel

    International Nuclear Information System (INIS)

    Tabata, Makoto; Hatakeyama, Yoshikiyo; Adachi, Ichiro; Morita, Takeshi; Nishikawa, Keiko

    2013-01-01

    This paper proposes a new X-ray radiographic technique for measuring density uniformity of silica aerogels used as radiator in proximity-focusing ring-imaging Cherenkov detectors. To obtain high performance in a large-area detector, a key characteristic of radiator is the density (i.e. refractive index) uniformity of an individual aerogel monolith. At a refractive index of n=1.05, our requirement for the refractive index uniformity in the transverse plane direction of an aerogel tile is |δ(n−1)/(n−1)|<4% in a focusing dual layer radiator (with different refractive indices) scheme. We applied the radiographic technique to evaluate the density uniformity of our original aerogels from a trial production and that of Panasonic products (SP-50) as a reference, and to confirm they have sufficient density uniformity within ±1% along the transverse plane direction. The measurement results show that the proposed technique can quantitatively estimate the density uniformity of aerogels.

  19. Statistical x-ray computed tomography imaging from photon-starved measurements

    Science.gov (United States)

    Chang, Zhiqian; Zhang, Ruoqiao; Thibault, Jean-Baptiste; Sauer, Ken; Bouman, Charles

    2013-03-01

    Dose reduction in clinical X-ray computed tomography (CT) causes low signal-to-noise ratio (SNR) in photonsparse situations. Statistical iterative reconstruction algorithms have the advantage of retaining image quality while reducing input dosage, but they meet their limits of practicality when significant portions of the sinogram near photon starvation. The corruption of electronic noise leads to measured photon counts taking on negative values, posing a problem for the log() operation in preprocessing of data. In this paper, we propose two categories of projection correction methods: an adaptive denoising filter and Bayesian inference. The denoising filter is easy to implement and preserves local statistics, but it introduces correlation between channels and may affect image resolution. Bayesian inference is a point-wise estimation based on measurements and prior information. Both approaches help improve diagnostic image quality at dramatically reduced dosage.

  20. X-ray PIV measurement of blood flow in deep vessels of a rat: An in vivo feasibility study.

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Lee, Sang Joon

    2016-01-18

    X-ray PIV measurement is a noninvasive approach to measure opaque blood flows. However, it is not easy to measure real pulsatile blood flows in the blood vessels located at deep position of the body, because the surrounding tissues significantly attenuate the contrast of X-ray images. This study investigated the effect of surrounding tissues on X-ray beam attenuation by measuring the velocity fields of blood flows in deep vessels of a live rat. The decrease in image contrast was minimized by employing biocompatible CO2 microbubbles as tracer particles. The maximum measurable velocity of blood flows in the abdominal aorta of a rat model was found through comparative examination between the PIV measurement accuracy and the level of image contrast according to the input flow rate. Furthermore, the feasibility of using X-ray PIV to accurately measure in vivo blood flows was demonstrated by determining the velocity field of blood flows in the inferior vena cava of a rat. This study may serve as a reference in conducting in vivo X-ray PIV measurements of pulsatile blood flows in animal disease models and investigating hemodynamic characteristics and circulatory vascular diseases.