WorldWideScience

Sample records for situ soils measuring

  1. In-situ measurements of soil-water conductivity

    International Nuclear Information System (INIS)

    Murphy, C.E.

    1978-01-01

    Radionuclides and other environmentally important materials often move in association with water. In terrestrial ecosystems, the storage and movement of water in the soil is of prime importance to the hydrologic cycle of the ecosystem. The soil-water conductivity (the rate at which water moves through the soil) is a necessary input to models of soil-water movement. In situ techniques for measurement of soil-water conductivity have the advantage of averaging soil-water properties over larger areas than most laboratory methods. The in situ techniques also cause minimum disturbance of the soil under investigation. Results of measurements using a period of soil-water drainage after initial wetting indicate that soil-water conductivity and its variation with soil-water content can be determined with reasonable accuracy for the plot where the measurements were made. Further investigations are being carried out to look at variability between plots within a soil type

  2. In situ gamma-ray spectrometric measurements of uranium in phosphates soil

    International Nuclear Information System (INIS)

    Lavi, N.; Ne'eman, E.; Brenner, S.; Haquin, G.; Nir-El, Y.

    1997-01-01

    Abstract Radioactivity concentration of 238 U in a phosphate ores quarry was measured in situ. Independently, soil samples collected in the site were measured in the laboratory. It was disclosed that radon emanation from the soil lowers in situ results that are derived from radon daughters. Uranium concentration was found to be 121.6±1.9 mg kg -1 (authors)

  3. A New Technique for Deep in situ Measurements of the Soil Water Retention Behaviour

    DEFF Research Database (Denmark)

    Rocchi, Irene; Gragnano, Carmine Gerardo; Govoni, Laura

    2018-01-01

    In situ measurements of soil suction and water content in deep soil layers still represent an experimental challenge. Mostly developed within agriculture related disciplines, field techniques for the identification of soil retention behaviour have been so far employed in the geotechnical context ...

  4. In situ measurements reveal extremely low pH in soil

    DEFF Research Database (Denmark)

    Nielsen, Knud Erik; Loibide, Amaia Irixar; Nielsen, Lars Peter

    2017-01-01

    We measured pH in situ in the top organic soil horizons in heathland and pine forest and found values between 2.6 and 3.2. This was 0.5e0.8 units lower than concurrent laboratory pH measurements of the same soil, which raises questions about the interpretation of pH measurements. We propose that ...... that the higher pH recorded by standard laboratory methods may be due to buffering ions from soil biota released from drying, grinding and rewetting of soil samples, whereas the in situ pH reflects the correct level of acidification....

  5. Quantitative comparison of in situ soil CO2 flux measurement methods

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose

    2002-01-01

    Development of reliable regional or global carbon budgets requires accurate measurement of soil CO2 flux. We conducted laboratory and field studies to determine the accuracy and comparability of methods commonly used to measure in situ soil CO2 fluxes. Methods compared included CO2...

  6. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    Science.gov (United States)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  7. Blending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yijian Zeng

    2016-03-01

    Full Text Available The inter-comparison of different soil moisture (SM products over the Tibetan Plateau (TP reveals the inconsistency among different SM products, when compared to in situ measurement. It highlights the need to constrain the model simulated SM with the in situ measured data climatology. In this study, the in situ soil moisture networks, combined with the classification of climate zones over the TP, were used to produce the in situ measured SM climatology at the plateau scale. The generated TP scale in situ SM climatology was then used to scale the model-simulated SM data, which was subsequently used to scale the SM satellite observations. The climatology-scaled satellite and model-simulated SM were then blended objectively, by applying the triple collocation and least squares method. The final blended SM can replicate the SM dynamics across different climatic zones, from sub-humid regions to semi-arid and arid regions over the TP. This demonstrates the need to constrain the model-simulated SM estimates with the in situ measurements before their further applications in scaling climatology of SM satellite products.

  8. In situ measurement of some soil properties in paddy soil using visible and near-infrared spectroscopy.

    Directory of Open Access Journals (Sweden)

    Ji Wenjun

    Full Text Available In situ measurements with visible and near-infrared spectroscopy (vis-NIR provide an efficient way for acquiring soil information of paddy soils in the short time gap between the harvest and following rotation. The aim of this study was to evaluate its feasibility to predict a series of soil properties including organic matter (OM, organic carbon (OC, total nitrogen (TN, available nitrogen (AN, available phosphorus (AP, available potassium (AK and pH of paddy soils in Zhejiang province, China. Firstly, the linear partial least squares regression (PLSR was performed on the in situ spectra and the predictions were compared to those with laboratory-based recorded spectra. Then, the non-linear least-square support vector machine (LS-SVM algorithm was carried out aiming to extract more useful information from the in situ spectra and improve predictions. Results show that in terms of OC, OM, TN, AN and pH, (i the predictions were worse using in situ spectra compared to laboratory-based spectra with PLSR algorithm (ii the prediction accuracy using LS-SVM (R2>0.75, RPD>1.90 was obviously improved with in situ vis-NIR spectra compared to PLSR algorithm, and comparable or even better than results generated using laboratory-based spectra with PLSR; (iii in terms of AP and AK, poor predictions were obtained with in situ spectra (R2<0.5, RPD<1.50 either using PLSR or LS-SVM. The results highlight the use of LS-SVM for in situ vis-NIR spectroscopic estimation of soil properties of paddy soils.

  9. An automated, noncontact laser profile meter for measuring soil roughness in situ

    International Nuclear Information System (INIS)

    Bertuzzi, P.; Caussignac, J.M.; Stengel, P.; Morel, G.; Lorendeau, J.Y.; Pelloux, G.

    1990-01-01

    This paper describes a new optical technique for measuring in situ soil surface roughness profiles using a laser profile meter. The described method uses a low-power HeNe (helium-neon) laser as a laser source and a matrix-array detector, as the laser image. The matrix-array detector gives a defect-of-focus laser image of the soil. Soil elevation is measured by projecting a laser beam normally onto the soil surface and measuring the ratio (Ir/It) on the matrix-array detector between the referenced intensity of the return Laser beam (Ir), measured by the central cell of the detector and the total intensity (It), measured by all the cells of the detector. The measured profile leads to 1001 sampled values (volt, range 0 to 10 V) of the surface height profile, at a constant increment of 0.002 m, registered automatically on a microcomputer. A calibration is made in the laboratory in order to convert the electrical measurements into elevation data. The method is universal and can be adapted to different scales of soil surface roughness. Changing the scale is done by changing the lens. Tests were carried out to improve this method for field use and to compare this technique with a method of reference. This technique is considerably quicker and causes no disturbance to the soil. The accuracy on height measurement depends on the choice of the lens. The small focal lens is convenient for smooth soil surfaces. The accuracy on height measurement is less than 0.75 mm. The wide focal lens is convenient for rough soil surfaces. The accuracy on height measurement is estimated at about 1.0 to 1.5 mm

  10. IN-SITU MEASURING METHOD OF RADON AND THORON DIFFUSION COEFFICIENT IN SOIL

    Directory of Open Access Journals (Sweden)

    V.S. Yakovleva

    2014-06-01

    Full Text Available A simple and valid in-situ measurement method of effective diffusion coefficient of radon and thoron in soil and other porous materials was designed. The analysis of numerical investigation of radon and thoron transport in upper layers of soil revealed that thoron flux density from the earth surface does not depend on soil gas advective velocity and varies only with diffusion coefficient changes. This result showed the advantages of thoron using versus radon using in the suggested method. The comparison of the new method with existing ones previously developed. The method could be helpful for solving of problems of radon mass-transport in porous media and gaseous exchange between soil and atmosphere.

  11. Assessing the small-strain soil stiffness for offshore wind turbines based on in situ seismic measurements

    NARCIS (Netherlands)

    Versteijlen, W.G.; Van Dalen, K.N.; Metrikine, A.; Hamre, L.

    2014-01-01

    In this contribution, in situ seismic measurements are used to derive the small-strain shear modulus of soil as input for two soil-structure interaction (SSI) models to assess the initial soil stiffness for offshore wind turbine foundations. This stiffness has a defining influence on the first

  12. Water storage change estimation from in situ shrinkage measurements of clay soils

    Directory of Open Access Journals (Sweden)

    B. te Brake

    2013-05-01

    Full Text Available The objective of this study is to assess the applicability of clay soil elevation change measurements to estimate soil water storage changes, using a simplified approach. We measured moisture contents in aggregates by EC-5 sensors, and in multiple aggregate and inter-aggregate spaces (bulk soil by CS616 sensors. In a long dry period, the assumption of constant isotropic shrinkage proved invalid and a soil moisture dependant geometry factor was applied. The relative overestimation made by assuming constant isotropic shrinkage in the linear (basic shrinkage phase was 26.4% (17.5 mm for the actively shrinking layer between 0 and 60 cm. Aggregate-scale water storage and volume change revealed a linear relation for layers ≥ 30 cm depth. The range of basic shrinkage in the bulk soil was limited by delayed drying of deep soil layers, and maximum water loss in the structural shrinkage phase was 40% of total water loss in the 0–60 cm layer, and over 60% in deeper layers. In the dry period, fitted slopes of the ΔV–ΔW relationship ranged from 0.41 to 0.56 (EC-5 and 0.42 to 0.55 (CS616. Under a dynamic drying and wetting regime, slopes ranged from 0.21 to 0.38 (EC-5 and 0.22 to 0.36 (CS616. Alternating shrinkage and incomplete swelling resulted in limited volume change relative to water storage change. The slope of the ΔV–ΔW relationship depended on the drying regime, measurement scale and combined effect of different soil layers. Therefore, solely relying on surface level elevation changes to infer soil water storage changes will lead to large underestimations. Recent and future developments might provide a basis for application of shrinkage relations to field situations, but in situ observations will be required to do so.

  13. An optode sensor array for long term in situ Oxygen measurements in soil and sediment

    DEFF Research Database (Denmark)

    Rickelt, Lars F; Jensen, Louise Askær; Walpersdorf, Eva Christine

    2013-01-01

    Long-term measurements of molecular oxygen (O2) dynamics in wetlands are highly relevant for understanding the eff ects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We construc......Long-term measurements of molecular oxygen (O2) dynamics in wetlands are highly relevant for understanding the eff ects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We...... constructed an O2 optode sensor array for long-term in situ measurements in soil and sediment. Th e new device consists of a 1.3-m-long, cylindrical, spear-shaped rod equipped with 10 sensor spots along the shaft . Each spot contains a thermocouple fi xed with a robust fi beroptic O2 optode made...... characteristics of the sensor array system are presented along with a novel approach for temperature compensation of O2 optodes. During in situ application over several months in a peat bog, we used the new device to document pronounced variations in O2 distribution aft er marked shift s in water level. Th e...

  14. Portable gamma spectrometry: measuring soil erosion in-situ at four Critical Zone Observatories in P. R. China

    Science.gov (United States)

    Sanderson, N. K.; Green, S. M.; Chen, Z.; Wang, J.; Wang, Y.; Wang, R.; Yu, K.; Tu, C.; Jia, X.; Li, G.; Peng, X.; Quine, T. A.

    2017-12-01

    Detecting patterns of soil erosion, redistribution, and/soil nutrient loss is important for long-term soil conservation and agricultural sustainability. Caesium-137 (137Cs) and other fallout radionuclide inventories have been used over the the last 50 years to track soil erosion, transport and deposition on a catchment scale, and have been shown to be useful for informing models of temporal/spatial soil redistribution. Traditional sampling methods usually involves coring, grinding, sieving, sub-sampling and laboratory analysis using HPGe detectors, all of which can be costly and time consuming. In-situ measurements can provide a mechanism for assessment of 137Cs over larger areas that integrate the spatial variability, and expand turnover of analyses. Here, we assess the applicability of an in-situ approach based on radionuclide principles, and provide a comparison of the two approaches: laboratory vs. in-situ. The UK-China Critical Zone Observatory (CZO) programme provides an ideal research platform to assess the in-situ approach to measuring soil erosion: using a portable gamma spectrometer to determine 137Cs inventories. Four extensive field slope surveys were conducted in the CZO's, which covers four ecosystem types in China: karst, red soil, peri-urban, and loess plateau. In each CZO, 3-6 plots were measured along 2 slope transects, with 3 replicated 1 hour counts of 137Cs in each plot. In addition, 137Cs soil depth and bulk density profiles were also sampled for each plot, and lab-derived inventories calculated using traditional methods for comparison. Accurately and rapidly measuring 137Cs inventories using a portable field detector allows for a greater coverage of sampling locations and the potential for small-scale spatial integration, as well as the ability to re-visit sites over time and continually adapt and improve soil erosion/redistribution models, thus more effectively targeting areas of interest with reduced cost and time constraints.

  15. Water storage change estimation from in situ shrinkage measurements of clay soils

    NARCIS (Netherlands)

    Brake, te B.; Ploeg, van der M.J.; Rooij, de G.H.

    2012-01-01

    Water storage in the unsaturated zone is a major determinant of the hydrological behaviour of the soil, but methods to quantify soil water storage are limited. The objective of this study is to assess the applicability of clay soil surface elevation change measurements to estimate soil water storage

  16. Calibration of HPGe detector for in situ measurements of 137Cs in soil by 'peak to valley' method

    International Nuclear Information System (INIS)

    Fueloep, M.

    2000-01-01

    The contamination of soil with gamma-ray emitters can be measured in two ways: soil sampling method and in situ spectrometry of the ambient gamma-ray radiation. The conventional soil sampling method has two disadvantages: samples may not be representative for a large areas and determination of the depth distribution of radionuclide requires the measurement of several samples taken from different depths. In situ measurement of a radionuclide activity in soil is more sensitive and provides more representative data than data obtained by soil sample collection and subsequent laboratory analysis. In emergency situations time to assess the contamination is critical. For rapid assessment of the deposited activity direct measurement of ambient gamma-ray radiation are used. In order to obtain accurate measurements of radionuclides in the soil, the detector should be placed on relatively even and open terrain. It is our customary practice to place the detector 1 m above the soil surface. At this height, a tripod-mounted detector can be handled easily and still provide a radius of view for gamma emitting sources out to about 10 m. The 'field of view' actually varies, being somewhat larger for higher sources. Depending upon source energy, the detector effectively sees down to a depth of 15-30 cm. Commonly used method for field gamma spectrometry is method by Beck (1). The most important disadvantages of in situ spectrometry by Beck are that the accuracy of the analysis depends on a separate knowledge of the radioactivity distribution with soil depth. This information can be obtained by calculations using data from in situ measurements and energy dependence of absorption and scattering of photons in soil and track length distribution of photons in soil (2). A method of in situ measurements of 137 Cs in soil where radionuclide distribution in soil profile is calculated by unfolding of detector responses in the full energy peak net area at 0.662 MeV and in the valley under the

  17. Water storage change estimation from in situ shrinkage measurements of clay soils

    NARCIS (Netherlands)

    Brake, te B.; Ploeg, van der M.J.; Rooij, de G.H.

    2013-01-01

    The objective of this study is to assess the applicability of clay soil elevation change measurements to estimate soil water storage changes, using a simplified approach. We measured moisture contents in aggregates by EC-5 sensors, and in multiple aggregate and inter-aggregate spaces (bulk soil) by

  18. Comparison of in-situ gamma ray spectrometry measurements with conventional methods in determination natural and artificial nuclides in soil

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Doubal, A. W.

    2010-12-01

    Two nuclear analytical techniques (In-Situ Gamma ray spectrometry and laboratory gamma ray spectrometry) for determination of natural and artificial radionuclides in soil have been validated. The first technique depends on determination of radioactivity content of representative samples of the studied soil after laboratory preparation, while the second technique is based on direct determination of radioactivity content of soil using in-situ gamma-ray spectrometer. Analytical validation parameter such as detection limits, repeatability, reproducibility in addition to measurement uncertainties were estimated and compared for both techniques. Comparison results have shown that the determination of radioactivity in soil should apply the two techniques together where each of techniques is characterized by its low detection limit and uncertainty suitable for defined application of measurement. Radioactive isotopes in various locations were determined using the two methods by measuring 40 k, 238 U,and 137 Cs. The results showed that there are differences in attenuation factors due to soil moisture content differences; wet weight corrections should be applied when the two techniques are compared. (author)

  19. Assessing the small-strain soil stiffness for offshore wind turbines based on in situ seismic measurements

    International Nuclear Information System (INIS)

    Versteijlen, W G; Van Dalen, K N; Metrikine, A V; Hamre, L

    2014-01-01

    The fundamental natural frequency as measured on installed offshore wind turbines is significantly higher than its designed value, and it is expected that the explanation for this can be found in the currently adopted modeling of soil-structure interaction. The small-strain soil stiffness is an important design parameter, as it has a defining influence on the first natural frequency of these structures. In this contribution, in situ seismic measurements are used to derive the small-strain shear modulus of soil as input for 3D soil-structure interaction models to assess the initial soil stiffness at small strains for offshore wind turbine foundations. A linear elastic finite element model of a half-space of solids attached to a pile is used to derive an equivalent first mode shape of the foundation. The second model extends the first one by introducing contact elements between pile and soil, to take possible slip and gap-forming into account. The deflections derived with the 3D models are smaller than those derived with the p- y curve design code. This higher stiffness is in line with the higher measured natural frequencies. Finally a method is suggested to translate the response of 3D models into 1D engineering models of a beam laterally supported by uncoupled distributed springs

  20. In situ soil remediation using electrokinetics

    International Nuclear Information System (INIS)

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-11-01

    Electrokinetics is emerging as a promising technology for in situ soil remediation. This technique is especially attractive for Superfund sites and government operations which contain large volumes of contaminated soil. The approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The transport mechanisms include electroosmosis, electromigration, and electrophoresis. The feasibility of using electrokinetics to move radioactive 137 Cs and 60 Co at the Hanford Site in Richland, Washington, is discussed. A closed cell is used to provide in situ measurements of 137 Cs and 60 Co movement in Hanford soil. Preliminary results of ionic movement, along with the corresponding current response, are presented

  1. In-Situ Measurement of Soil Permittivity at Various Depths for the Calibration and Validation of Low-Frequency SAR Soil Moisture Models by Using GPR

    Directory of Open Access Journals (Sweden)

    Christian N. Koyama

    2017-06-01

    Full Text Available At radar frequencies below 2 GHz, the mismatch between the 5 to 15 cm sensing depth of classical time domain reflectometry (TDR probe soil moisture measurements and the radar penetration depth can easily lead to unreliable in situ data. Accurate quantitative measurements of soil water contents at various depths by classical methods are cumbersome and usually highly invasive. We propose an improved method for the estimation of vertical soil moisture profiles from multi-offset ground penetrating radar (GPR data. A semi-automated data acquisition technique allows for very fast and robust measurements in the field. Advanced common mid-point (CMP processing is applied to obtain quantitative estimates of the permittivity and depth of the reflecting soil layers. The method is validated against TDR measurements using data acquired in different environments. Depth and soil moisture contents of the reflecting layers were estimated with root mean square errors (RMSE on the order of 5 cm and 1.9 Vol.-%, respectively. Application of the proposed technique for the validation of synthetic aperture radar (SAR soil moisture estimates is demonstrated based on a case study using airborne L-band data and ground-based P-band data. For the L-band case we found good agreement between the near-surface GPR estimates and extended integral equation model (I2EM based SAR retrievals, comparable to those obtained by TDR. At the P-band, the GPR based method significantly outperformed the TDR method when using soil moisture estimates at depths below 30 cm.

  2. Comparison of Soil Moisture in Switzerland Using In-Situ Measurements and Model Output

    Science.gov (United States)

    Mittelbach, H.; Orth, R.; Seneviratne, S. I.

    2011-01-01

    Soil moisture is an essential contributor to land surface- atmosphere interactions. In this study we evaluate the two Land surface models CLM3.5 and SIB3 regarding their performance in simulating soil moisture and its anomalies for the one year period 01.09.2009 to 31.08.2010. Four grassland sites from the SwissSMEX/- Veg project were used as reference soil moisture data. In general, both models represent the soil moisture anomalies and their distribution better than the absolute soil moisture. Furthermore, both models show a seasonal dependence of the correlation and root mean square error. In contrast to the SIB3 model, the CLM3.5 model shows stronger seasonal variation of the root mean square error and a larger interquantile range for soil moisture anomalies.

  3. Measurement of in situ phosphorus availability in acidified soils using iron-infused resin.

    Czech Academy of Sciences Publication Activity Database

    Tahovská, K.; Čapek, P.; Šantrůčková, H.; Kaňa, Jiří; Kopáček, Jiří

    2016-01-01

    Roč. 47, č. 4 (2016), s. 487-494 ISSN 0010-3624 R&D Projects: GA ČR(CZ) GAP504/12/1218 Institutional support: RVO:60077344 Keywords : acidification * aluminium * forest soil * ion exchange resin * iron * phosphorus availability Subject RIV: DF - Soil Science Impact factor: 0.589, year: 2016

  4. DEVELOPMENT OF NEW HYPERSPECTRAL ANGLE INDEX FOR ESTIMATION OF SOIL MOISTURE USING IN SITU SPECTRAL MEASURMENTS

    Directory of Open Access Journals (Sweden)

    M. R. Mobasheri

    2013-10-01

    Full Text Available Near-surface soil moisture is one of the crucial variables in hydrological processes, which influences the exchange of water and energy fluxes at the land surface/atmosphere interface. Accurate estimate of the spatial and temporal variations of soil moisture is critical for numerous environmental studies. On the other hand, information of distributed soil moisture at large scale with reasonable spatial and temporal resolution is required for improving climatic and hydrologic modeling and prediction. The advent of hyperspectral imagery has allowed examination of continuous spectra not possible with isolated bands in multispectral imagery. In addition to high spectral resolution for individual band analyses, the contiguous narrow bands show characteristics of related absorption features, such as effects of strong absorptions on the band depths of adjacent absorptions. Our objective in this study was to develop a new spectral angle index to estimate soil moisture based on spectral region (350 and 2500 nm. In this paper, using spectral observations made by ASD Spectroradiometer for predicting soil moisture content, two soil indices were also investigated involving the Perpendicular Drought Index (PDI, NMDI (Normalized Multi-band Drought Index indices. Correlation and regression analysis showed a high relationship between PDI and the soil moisture percent (R2 = 0.9537 and NMDI (R2 = 0.9335. Furthermore, we also simulated these data according to the spectral range of some sensors such as MODIS, ASTER, ALI and ETM+. Indices relevant these sensors have high correlation with soil moisture data. Finally, we proposed a new angle index which shows significant relationship between new angle index and the soil moisture percentages (R2 = 0.9432.angle index relevant bands 3, 4, 5, 6, 7 MODIS also showing high accuracy in estimation of soil moisture (R2 = 0.719.

  5. Comparison of in situ DGT measurement with ex situ methods for predicting cadmium bioavailability in soils with combined pollution to biotas.

    Science.gov (United States)

    Wang, Peifang; Liu, Cui; Yao, Yu; Wang, Chao; Wang, Teng; Yuan, Ye; Hou, Jun

    2017-05-01

    To assess the capabilities of the different techniques in predicting Cadmium (Cd) bioavailability in Cd-contaminated soils with the addition of Zn, one in situ technique (diffusive gradients in thin films; DGT) was compared with soil solution concentration and four widely used single-step extraction methods (acetic acid, EDTA, sodium acetate and CaCl 2 ). Wheat and maize were selected as tested species. The results demonstrated that single Cd-polluted soils inhibited the growth of wheat and maize significantly compared with control plants; the shoot and root biomasses of the plants both dropped significantly (P 0.9) between Cd concentrations in two plants and Cd bioavailability indicated by each method in soils. Consequently, the results indicated that the DGT technique could be regarded as a good predictor of Cd bioavailability to plants, comparable to soil solution concentration and the four single-step extraction methods. Because the DGT technique can offer in situ data, it is expected to be widely used in more areas.

  6. A New Technique for Deep in situ Measurements of the Soil Water Retention Behaviour

    DEFF Research Database (Denmark)

    Rocchi, Irene; Gragnano, Carmine Gerardo; Govoni, Laura

    2018-01-01

    to monitor shallow landslides and seasonal volume changes beneath shallow foundations, within the most superficial ground strata. In this paper, a novel installation technique is presented, discussed and assessed, which allows to extend the use of commercially available low cost and low maintenance...... to the field data. The results of this study offer a convenient starting point to accommodate important geotechnical works such as river and road embankments in the traditional monitoring of unsaturated soil variables....

  7. Developing a High Fidelity Martian Soil Simulant Based on MSL Measurements: Applications for Habitability, Exploration, and In-Situ Resource Utilization

    Science.gov (United States)

    Cannon, K.; Britt, D. T.; Smith, T. M.; Fritsche, R. F.; Covey, S. D.; Batcheldor, D.; Watson, B.

    2017-12-01

    Powerful instruments, that include CheMin and SAM on the MSL Curiosity rover, have provided an unprecedented look into the mineral, chemical, and volatile composition of Martian soils. Interestingly, the bulk chemistry of the Rocknest windblown soil is a close match to similar measurements from the Spirit and Opportunity rovers, suggesting the presence of a global basaltic soil component. The Martian regolith is likely composed of this global soil mixed with locally to regionally derived components that include alteration products and evolved volcanic compositions. Without returned soil samples, researchers have relied on terrestrial simulants to address fundamental Mars science, habitability, in-situ resource utilization, and hardware for future exploration. However, these past simulants have low fidelity compared to actual Martian soils: JSC Mars-1a is an amorphous palagonitic material with spectral similarities to Martian dust, not soil, and Mojave Mars is simply a ground up terrestrial basalt chosen for its convenient location. Based on our experience creating asteroid regolith simulants, we are developing a high fidelity Martian soil simulant (Mars Global) designed ab initio to match the mineralogy, chemistry, and volatile contents of the global basaltic soil on Mars. The crystalline portion of the simulant is based on CheMin measurements of Rocknest and includes plagioclase, two pyroxenes, olivine, hematite, magnetite, anhydrite, and quartz. The amorphous portion is less well constrained, but we are re-creating it with basaltic glass, synthetic ferrihydrite, ferric sulfate, and carbonates. We also include perchlorate and nitrate salts based on evolved gas analyses from the SAM instrument. Analysis and testing of Mars Global will include physical properties (shear strength, density, internal friction angle), spectral properties, magnetic properties, and volatile release patterns. The simulant is initially being designed for NASA agricultural studies, but

  8. Combining in situ and laboratory measurements of soil-atmosphere carbonyl sulfide fluxes from four different biomes across Europe

    Science.gov (United States)

    Kitz, Florian; Gomez-Brandon, Maria; Hammerle, Albin; Spielmann, Felix M.; Insam, Heribert; Ibrom, Andreas; Migliavacca, Mirco; Moreno, Gerardo; Noe, Steffen M.; Wohlfahrt, Georg

    2017-04-01

    Flux partitioning, the quantification of photosynthesis and respiration, is a major uncertainty in modelling the carbon cycle and in times when robust models are needed to assess future global changes a persistent problem. A promising new approach is to derive gross primary production (GPP) from measurements of the carbonyl sulfide (COS) flux, the most abundant sulfur-containing trace gas in the atmosphere, with a mean concentration of about 500 pptv in the troposphere. This is possible because COS and CO2 enter the leaf via a similar pathway and are processed by the same enzyme (carbonic anhydrase). A prerequisite for using COS as a proxy for photosynthesis is a robust estimation of all non-leaf sources and sinks in an ecosystem. Past studies described soils either as a sink or source, depending on their properties like soil temperature and soil water content. In 2016 we conducted field campaigns in Austria (managed temperate mountain grassland), Spain (savannah), Denmark (temperate beech forest) and Estonia (hemiboreal forest) to estimate the soil-atmosphere COS fluxes under ambient conditions in different biomes. We used self-built fused silica soil chambers to avoid COS emissions from built-in materials and to assess the impact of radiation. At the grassland sites (Austria, Spain) vegetation was removed below the chambers, therefor more radiation reached the soil surface compared to natural conditions. The grassland sites were characterized by highly positive COS fluxes during daytime and COS fluxes around zero during nighttime. In contrast, the soils at the forest sites (Denmark, Estonia), characterized by less radiation on the soil surface, acted as a sink for COS. The impact of other abiotic factors, like soil water content and soil temperature, varied between the ecosystems. In addition to the field measurements soil and litter samples were taken at the study sites and used to measure COS fluxes under controlled conditions in the lab. Results from the

  9. The influence of PAH concentration and distribution on real-time in situ measurements of petroleum products in soils using laser induced fluorescence

    International Nuclear Information System (INIS)

    Douglas, G.S.; Lieberman, S.H.; McGinnis, W.C.; Knowles, D.; Peven, C.

    1995-01-01

    Real-time laser induced fluorescence (LIF) in situ measurements of soil samples provide a reliable and cost-effective screening tool for hydrocarbon site assessments. The site characterization and analysis penetrometer system (SCAPS), is a truck-mounted cone penetrometer probe modified with a sapphire window and connected to a laser by fiber optics. The pulsed nitrogen laser 337-nm excitation source induces fluorescence in polynuclear aromatic hydrocarbons (PAHs), which are present in petroleum products. The fluorescence response of these compounds is measured with a fluorometer. The SCAPS can provide continuous hydrocarbon screening measurements to soil depths greater than 100 feet. Discrete soil samples collected from the SCAPS boreholes were extracted and analyzed for total petroleum hydrocarbons (TPH), by gas chromatography with flame ionization detection (GC/FID), and 16 parent and over 100 alkyl substituted PAH compounds by gas chromatography with mass spectrometry detection (GC/MS). This method provides a basis for evaluating the relationship between TPH and PAH concentrations in the soil samples and laser induced fluorescence measurements from the soil borings

  10. Wireless network of stand-alone end effect probes for soil in situ permittivity measurements over the 100MHZ-6GHz frequency range

    Science.gov (United States)

    Demontoux, François; Bircher, Simone; Ruffié, Gilles; Bonnaudiin, Fabrice; Wigneron, Jean-Pierre; Kerr, Yann

    2017-04-01

    Microwave remote sensing and non-destructive analysis are a powerful way to provide properties estimation of materials. Numerous applications using microwave frequency behavior of materials (remote sensing above land surfaces, non-destructive analysis…) are strongly dependent on the material's permittivity (i.e. dielectric properties). This permittivity depends on numerous parameters such as moisture, texture, temperature, frequency or bulk density. Permittivity measurements are generally carried out in the laboratory. Additionally, dielectric mixing models allow, over a restricted range of conditions, the assessment of a material's permittivity. in-situ measurements are more difficult to obtain. Some in situ measurement probes based on permittivity properties of soil exist (e.g. Time Domain Reflectometers and Transmissometers, capacitance and impedance sensors). They are dedicated to the acquisition of soil moisture data based on permittivity (mainly the real part) estimations over a range of frequencies from around 50 MHz to 1 or 2 GHz. Other Dielectric Assessment Kits exist but they are expensive and they are rather dedicated to laboratory measurements. Furthermore, the user can't address specific issues related to particular materials (e.g. organic soils) or specific measurement conditions (in situ long time records). At the IMS Laboratory we develop probes for in situ soil permittivity measurements (real and imaginary parts) in the 0.5 - 6 GHz frequency range. They are based on the end effect phenomenon of a coaxial waveguide and so are called end effect probes in this paper. The probes can be connected to a portable Vector Network Analyzer (VNA, ANRITSU MS2026A) for the S11 coefficient measurements needed to compute permittivity. It is connected to a PC to record data using an USB connection. This measurement set-up is already used for in situ measurement of soil properties in the framework of the European Space Agency's (ESA) SMOS space mission. However

  11. Assessing soil erosion at landscape level: A step forward in the up-scaling of 137Cs measurements through the use of in-situ lanthanum bromide scintillator

    Science.gov (United States)

    Gonsalves, Basil C.; Darby, Iain G.; Toloza, Arsenio; Mabit, Lionel; Kaiser, Ralf B.; Dercon, Gerd

    2014-05-01

    Measuring Fallout Radionuclides (FRN), in particular 137Cs, is a well-established method to estimate soil erosion and deposition in agricultural landscapes. While extremely sensitive, laboratory based gamma-ray spectrometry requires careful handling and preparation of measurement samples with a lengthy measuring time (~1 day), In-situ gamma-ray spectrometry can give near instantaneous results, allowing prompt decisions to be made and identification of critical spots of soil erosion, while the equipment is in the field. The aim of this investigation was to compare the precision of the in-situ FRN measurements, made by a cost-effective lanthanum bromide (LaBr3 (Ce)) scintillation detector of 137Cs against those from conventional (high-purity germanium HPGe detector) but laborious laboratory based gamma-ray spectrometry for assessing soil erosion. As preliminary test, five cores of a gleyic Cambisol - per increments of 5 cm until 1 m depth - were collected at the experimental research station of the Austrian Agency for Health and Food Safety located in Grabenegg 130 km west of Vienna. Three soil cores were sampled at the study site and, in the vicinity of this experimental site, two additional cores were collected at two different undisturbed reference sites. Laboratory gamma analyses were carried out during 50 000 seconds using a HPGe coaxial detector. The gamma measurements performed at the laboratory confirmed the undisturbed status of the two selected reference sites (i.e. exponential decrease with depth of the 137Cs content). Using the surface area of the sampling tool, the 137Cs areal activities of the cores sampled in the study site have been established at 2134±465 Bq m-2, 1835±356 Bq m-2 and 2553±340 Bq m-2, and, for the two reference sites at 3221±444 Bq m-2 and 3946±527 Bq m-2. At the same location and prior to collect the five soil cores, in-situ measurements using a lanthanum bromide (LaBr3 (Ce)) scintillator were performed. The detector was placed

  12. Intercomparison measurements of surface soil contamination with in-situ gamma ray spectrometry. Pt.1. Artificial radionuclides

    International Nuclear Information System (INIS)

    Winkelmann, I.

    1994-01-01

    This intercomparison program was performed by the Federal Office of Radiation Protection in October 1993. It includes seven laboratory teams from five countries and is applied on a pasture in southern Germany having an undisturbed soil profile. The location was chosen because of its relatively high 137 Cs-soil contamination caused by the Chernobyl accident - up to 50 kBq/m 2 . The deposition of 134 Cs and 137 Cs was determined. The comparison demonstrated a good agreement between results from different labs. Additionally, the dose rate at all marked locations was measured and compared to the dose rate of individual radionuclides calculated from the measured spectra. A relatively good agreement was obtained. It is shown that the main contribution to the total dose rate of 70 nSv/h is made by 137 Cs with a value of 5 nSv/h. 4 figs., 2 tabs., 3 refs. (orig.)

  13. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements

    NARCIS (Netherlands)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Liu, Qing; Ardizzone, Joseph V.; Colliander, Andreas; Conaty, Austin; Crow, Wade; Jackson, Thomas J.; Jones, Lucas A.; Kimball, John S.; Koster, Randal D.; Mahanama, Sarith P.; Smith, Edmond B.; Berg, Aaron; Bircher, Simone; Bosch, David; Caldwell, Todd G.; Cosh, Michael; Holifield Collins, Chandra D.; Jensen, Karsten H.; Livingston, Stan; Lopez-baeza, Ernesto; Martínez-fernández, José; Mcnairn, Heather; Moghaddam, Mahta; Pacheco, Anna; Pellarin, Thierry; Prueger, John; Rowlandson, Tracy; Seyfried, Mark; Starks, Patrick; Su, Bob; Thibeault, Marc; Van Der Velde, Rogier; Walker, Jeffrey; Wu, Xiaoling; Zeng, Yijian

    2017-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present

  14. Demonstration testing and evaluation of in situ soil heating

    International Nuclear Information System (INIS)

    Sresty, G.C.

    1994-01-01

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the '70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid '80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern

  15. Statistical analyses of in-situ and soil-sample measurements for radionuclides in surface soil near the 116-K-2 trench

    International Nuclear Information System (INIS)

    Gilbert, R.O.; Klover, W.J.

    1988-09-01

    Radiation detection surveys are used at the US Department of Energy's Hanford Reservation near Richland, Washington, to determine areas that need posting as radiation zones or to measure dose rates in the field. The relationship between measurements made by Sodium Iodide (NaI) detectors mounted on the mobile Road Monitor vehicle and those made by hand-held GM P-11 probes and Micro-R meters are of particular interest because the Road Monitor can survey land areas in much less time than hand-held detectors. Statistical regression methods are used here to develop simple equations to predict GM P-11 probe gross gamma count-per-minute (cpm) and Micro-R-Meter μR/h measurements on the basis of NaI gross gamma count-per-second (cps) measurements obtained using the Road Monitor. These equations were estimated using data collected near the 116-K-2 Trench in the 100-K area on the Hanford Reservation. Equations are also obtained for estimating upper and lower limits within which the GM P-11 or Micro-R-Meter measurement corresponding to a given NaI Road Monitor measurement at a new location is expected to fall with high probability. An equation and limits for predicting GM P-11 measurements on the basis of Micro-R- Meter measurements is also estimated. Also, we estimate an equation that may be useful for approximating the 90 Sr measurement of a surface soil sample on the basis of a spectroscopy measurement for 137 Cs on that sample. 3 refs., 16 figs., 44 tabs

  16. In Situ TEM Electrical Measurements

    DEFF Research Database (Denmark)

    Canepa, Silvia; Alam, Sardar Bilal; Ngo, Duc-The

    2016-01-01

    understanding of complex physical and chemical interactions in the pursuit to optimize nanostructure function and device performance. Recent developments of sample holder technology for TEM have enabled a new field of research in the study of functional nanomaterials and devices via electrical stimulation...... influence the sample by external stimuli, e.g. through electrical connections, the TEM becomes a powerful laboratory for performing quantitative real time in situ experiments. Such TEM setups enable the characterization of nanostructures and nanodevices under working conditions, thereby providing a deeper...... and measurement of the specimen. Recognizing the benefits of electrical measurements for in situ TEM, many research groups have focused their effort in this field and some of these methods have transferred to ETEM. This chapter will describe recent advances in the in situ TEM investigation of nanostructured...

  17. An Expert support model for ex situ soil remediation

    NARCIS (Netherlands)

    Okx, J.P.; Frankhuizen, E.M.; Wit, de J.C.; Pijls, C.G.J.M.; Stein, A.

    2000-01-01

    This paper presents an expert support model recombining knowledge and experience obtained during ex situ soil remediation. To solve soil remediation problems, an inter-disciplinary approach is required. Responsibilities during the soil remediation process, however, are increasingly decentralised,

  18. In situ vadose zone remediation of petroleum-contaminated soils

    International Nuclear Information System (INIS)

    Greacen, J.R.; Finkel, D.J.

    1991-01-01

    This paper discusses a pilot-scale system treating vadose zone soils contaminated with petroleum products constructed and operated at a former petroleum bulk storage terminal in New England. A site investigation following decommissioning activities identified more than 100,000 yds of soil at the site contaminated by both No. 2 fuel oil and gasoline. Soil cleanup criteria of 50 ppm TPH and 0.25 ppm BTEX were established. A pilot-scale treatment unit with dimensions of 125 ft x 125 ft x 6 ft was constructed to evaluate the potential for in situ treatment of vadose zone soils. Contaminant levels in pilot cell soils ranged from 0 to 5,250 ppm TPH and 0.0 to 4.2 ppm BTEX. Two soil treatment methods n the pilot system were implemented; venting to treat the lighter petroleum fractions and bioremediation to treat the nonvolatile petroleum constituents. Seven soil gas probes were installed to monitor pressure and soil gas vapor concentrations in the subsurface. Changes in soil gas oxygen and carbon dioxide concentrations were used as an indirect measure of enhanced bioremediation of pilot cell soils. After operating the system for a period of 2.5 months, soil BTEX concentrations were reduced to concentrations below the remediation criteria for the site

  19. Soil conservation measures: exercises

    OpenAIRE

    Figueiredo, Tomás de; Fonseca, Felícia

    2009-01-01

    Exercises proposed under the topic of Soil Conservation Measures addresses to the design of structural measure, namely waterways in the context of a soil conservation plan. However, to get a better insight on the actual meaning of soil loss as a resource loss, a prior exercise is proposed to students. It concerns calculations of soil loss due to sheet (interrill) erosion and to gully erosion, and allows the perception through realistic number of the impact of these mechanism...

  20. Inducing in situ, nonlinear soil response applying an active source

    Science.gov (United States)

    Johnson, P.A.; Bodin, P.; Gomberg, J.; Pearce, F.; Lawrence, Z.; Menq, F.-Y.

    2009-01-01

    [1] It is well known that soil sites have a profound effect on ground motion during large earthquakes. The complex structure of soil deposits and the highly nonlinear constitutive behavior of soils largely control nonlinear site response at soil sites. Measurements of nonlinear soil response under natural conditions are critical to advancing our understanding of soil behavior during earthquakes. Many factors limit the use of earthquake observations to estimate nonlinear site response such that quantitative characterization of nonlinear behavior relies almost exclusively on laboratory experiments and modeling of wave propagation. Here we introduce a new method for in situ characterization of the nonlinear behavior of a natural soil formation using measurements obtained immediately adjacent to a large vibrator source. To our knowledge, we are the first group to propose and test such an approach. Employing a large, surface vibrator as a source, we measure the nonlinear behavior of the soil by incrementally increasing the source amplitude over a range of frequencies and monitoring changes in the output spectra. We apply a homodyne algorithm for measuring spectral amplitudes, which provides robust signal-to-noise ratios at the frequencies of interest. Spectral ratios are computed between the receivers and the source as well as receiver pairs located in an array adjacent to the source, providing the means to separate source and near-source nonlinearity from pervasive nonlinearity in the soil column. We find clear evidence of nonlinearity in significant decreases in the frequency of peak spectral ratios, corresponding to material softening with amplitude, observed across the array as the source amplitude is increased. The observed peak shifts are consistent with laboratory measurements of soil nonlinearity. Our results provide constraints for future numerical modeling studies of strong ground motion during earthquakes.

  1. Enhanced ex-situ bioremediation of soil contaminated with ...

    African Journals Online (AJOL)

    contaminated soil. Thus, the objective of this study was to investigate the feasibility and effectiveness of using electrical biostimulation processes to enhance ex-situ bioremediation of soils contaminated with organic pollutants. The effect of ...

  2. In situ measurement of diffusivity

    International Nuclear Information System (INIS)

    Berne, F.; Pocachard, J.

    2004-01-01

    The mechanism of molecular diffusion controls the migration of contaminants in very low-permeability porous media, like underground facilities for the storage of hazardous waste. Determining of relevant diffusion coefficients is therefore of prime importance. A few techniques exist for in situ measurement of the quantity, but they suffer from many handicaps (duration, complexity and cost of the experiments). We propose here two innovative methods that have some potential to improve the situation. So far, we have found them feasible on the basis of design calculations and laboratory experiments. This work is presently protected by a patent. (author)

  3. In situ measurement of diffusivity

    International Nuclear Information System (INIS)

    Berne, Ph.; Pocachard, J.

    2005-01-01

    The mechanism of molecular diffusion controls the migration of contaminants in very low-permeability porous media, like underground facilities for the storage of hazardous waste. Determining the relevant diffusion coefficients is, therefore, of prime importance. A few techniques exist for the in situ measurement of that quantity, but they suffer from many handicaps (duration, complexity and cost of the experiments). We propose here two innovative methods that have some potential to improve this situation. So far, we have found them feasible on the basis of design calculations and laboratory experiments. This work is presently protected by a patent. (author)

  4. An expert support model for in situ soil remediation

    NARCIS (Netherlands)

    Okx, J.P.; Stein, A.

    2000-01-01

    This article presents an expert support model for in situ soil remediation. It combines knowledge and experiences obtained from previous in situ soil remediations. The aim of this model is to optimise knowledge transfer among the various parties involved in contaminated site management. Structured

  5. In-situ measurements in Vesivehmaa air field - STUK team

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, M.; Honkamaa, T.; Niskala, P. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1997-12-31

    Nineteen in-situ gamma-ray spectrometric measurements were performed in Vesivehmaa air field on 17th August 1995. The results for {sup 137}Cs and natural radionuclides are in good agreement with the results from soil sampling and laboratory analyses. (au).

  6. In-situ measurements in Vesivehmaa air field - STUK team

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, M; Honkamaa, T; Niskala, P [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1998-12-31

    Nineteen in-situ gamma-ray spectrometric measurements were performed in Vesivehmaa air field on 17th August 1995. The results for {sup 137}Cs and natural radionuclides are in good agreement with the results from soil sampling and laboratory analyses. (au).

  7. In situ bioventing in deep soils at arid sites

    International Nuclear Information System (INIS)

    Frishmuth, R.A.; Ratz, J.W.; Blicker, B.R.; Hall, J.F.; Downey, D.C.

    1995-01-01

    In situ bioventing has been shown to be a cost-effective remedial alternative for vadose zone soils. The success of the technology relies on the ability of indigenous soil microorganisms to utilize petroleum hydrocarbon contaminants as a primary metabolic substrate. Soil microbial populations are typically elevated in shallow soils due to an abundance of naturally occurring substrates and nutrients, but may be limited at greater depths due to a lack of these constituents. Therefore, the effectiveness of in situ bioventing is questionable in contaminated soil zones that extend far below the ground surface. Also, because the soil microbial population relies on soil moisture to sustain hydrocarbon degradation, the viability of bioventing is questionable in arid climates, where the soil moisture content is suspected to be minimal

  8. In-situ vitrification of soil

    International Nuclear Information System (INIS)

    Buelt, J.L.; Brouns, R.A.; Bonner, W.F.

    1982-01-01

    A method of vitrifying soil at or below a soil surface location. Two or more conductive electrodes are inserted into the soil for heating of the soil mass between them to a temperature above its melting temperature. Materials in the soil, such as buried radioactive waste, can thereby be effectively immobilized. (author)

  9. Demonstration testing and evaluation of in situ heating of soil

    International Nuclear Information System (INIS)

    1995-01-01

    This document describes the Quality Assurance Project Plan (QAPP) for IITRI Project C06787 entitled open-quotes Demonstration Testing and Evaluation of In Situ Heating of Soilclose quotes. A work plan for the above mentioned work was previously submitted. This QAPP describes the sampling and analysis of soil core-samples obtained from the K-25 Site (Oak Ridge Gaseous Diffusion Plant) where an in-situ heating and soil decontamination demonstration experiment will be performed. Soil samples taken before and after the experiment will be analyzed for selected volatile organic compounds. The Work Plan mentioned above provides a complete description of the demonstration site, the soil sampling plan, test plan, etc

  10. Measurement of microbial activity in soil by colorimetric observation of in situ dye reduction: an approach to detection of extraterrestrial life

    Directory of Open Access Journals (Sweden)

    Barnes Bruce

    2002-07-01

    Full Text Available Abstract Background Detecting microbial life in extraterrestrial locations is a goal of space exploration because of ecological and health concerns about possible contamination of other planets with earthly organisms, and vice versa. Previously we suggested a method for life detection based on the fact that living entities require a continual input of energy accessed through coupled oxidations and reductions (an electron transport chain. We demonstrated using earthly soils that the identification of extracted components of electron transport chains is useful for remote detection of a chemical signature of life. The instrument package developed used supercritical carbon dioxide for soil extraction, followed by chromatography or electrophoresis to separate extracted compounds, with final detection by voltammetry and tandem mass-spectrometry. Results Here we used Earth-derived soils to develop a related life detection system based on direct observation of a biological redox signature. We measured the ability of soil microbial communities to reduce artificial electron acceptors. Living organisms in pure culture and those naturally found in soil were shown to reduce 2,3-dichlorophenol indophenol (DCIP and the tetrazolium dye 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide inner salt (XTT. Uninoculated or sterilized controls did not reduce the dyes. A soil from Antarctica that was determined by chemical signature and DNA analysis to be sterile also did not reduce the dyes. Conclusion Observation of dye reduction, supplemented with extraction and identification of only a few specific signature redox-active biochemicals such as porphyrins or quinones, provides a simplified means to detect a signature of life in the soils of other planets or their moons.

  11. In-Situ Bioremediation of Perchlorate in Groundwater and Soil

    OpenAIRE

    Jin, Liyan

    2012-01-01

    Historical, uncontrolled disposal practices have made perchlorate a significant threat to drinking water supplies in the United States. In-situ bioremediation (ISB) technologies are cost effective and provide an environmental friendly solution for treating contaminated groundwater and soil. In situ bioremediation was considered as an option for treatment of perchlorate in groundwater and soil in Lockheed Martin Corporation's Beaumont Site 2 (Beaumont, CA). Based on the perchlorate distribu...

  12. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  13. In-situ stabilization of mixed waste contaminated soil

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Cline, S.R.; Gilliam, T.M.; Conner, J.R.

    1993-01-01

    A full-scale field demonstration was conducted to evaluate in for stabilizing an inactive RCRA land treatment site at a DOE facility in Ohio. Subsurface silt and clay deposits were contaminated principally with up to 500 mg/kg of trichloroethylene and other halocarbons, but also trace to low levels of Pb, Cr, 235 U, and 99 Tc. In situ solidification was studied in three, 3.1 m diameter by 4.6 m deep columns. During mixing, a cement-based grout was injected and any missions from the mixed region were captured in a shroud and treated by filtration and carbon adsorption. During in situ processing, operation and performance parameters were measured, and soil cores were obtained from a solidified column 15 months later. Despite previous site-specific treatability experience, there were difficulties in selecting a grout with the requisite treatment agents amenable to subsurface injection and at a volume adequate for distribution throughout the mixed region while minimizing volume expansion. observations during the demonstration revealed that in situ solidification was rapidly accomplished (e.g., >90 m 3 /d) with limited emissions of volatile organics (i.e., -6 cm/s vs. 10 -8 cm/s). Leaching tests performed on the treated samples revealed non-detectable to acceptably low concentrations of all target contaminants

  14. In-situ spectrometry of {sup 137}Cs in the soil by unfolding method

    Energy Technology Data Exchange (ETDEWEB)

    Fueloep, M; Ragan, P [Inst. of Preventive and Clinical Medicine, 833301 Bratislava (Slovakia); Krnac, S [Slovak Technical Univ., Bratislava (Slovakia)

    1996-12-31

    This contribution is aimed to the possibility of improving the in-situ gamma spectrometry to be independent on a knowledge about a depth distribution of {sup 137}Cs in soil and sufficiently sensitive for the measurement of the post-Chernobyl {sup 137}Cs at present, as well. The depth distribution of {sup 137}Cs averaged over a large area of soil is obtained by unfolding of the detector responses to primary and in soil forward scattered photons. The proposed method employs detector with and without collimator. The {sup 137}Cs distributions obtained in-situ measurements are analysed, and comparisons are made to the results obtained with soil sampling and with standard in-situ spectrometry, as well. 5 figs., 1 tab., 4 refs.

  15. In-situ spectrometry of 137Cs in the soil by unfolding method

    International Nuclear Information System (INIS)

    Fueloep, M.; Ragan, P.; Krnac, S.

    1995-01-01

    This contribution is aimed to the possibility of improving the in-situ gamma spectrometry to be independent on a knowledge about a depth distribution of 137 Cs in soil and sufficiently sensitive for the measurement of the post-Chernobyl 137 Cs at present, as well. The depth distribution of 137 Cs averaged over a large area of soil is obtained by unfolding of the detector responses to primary and in soil forward scattered photons. The proposed method employs detector with and without collimator. The 137 Cs distributions obtained in-situ measurements are analysed, and comparisons are made to the results obtained with soil sampling and with standard in-situ spectrometry, as well. 5 figs., 1 tab., 4 refs

  16. In situ subsoil stress-strain behaviour in relation to soil precompression stress

    DEFF Research Database (Denmark)

    Keller, T; Arvidsson, J; Schjønning, Per

    2012-01-01

    is assumed to be elastic and reversible as long as [sigma] work examined soil stress-strain behavior as measured in situ during wheeling experiments and related it to the stress-strain behavior and [sigma]pc measured on soil cores in uniaxial compression tests in the laboratory. The data......Soil compaction negatively influences many important soil functions, including crop growth. Compaction occurs when the applied stress, [sigma], overcomes the soil strength. Soil strength in relation to compaction is typically expressed by the soil precompression stress, [sigma]pc. Deformation...... analyzed were from a large number of wheeling experiments carried out in Sweden and Denmark on soils with a wide range of texture. Contradicting the concept of precompression stress, we observed residual strain, [Latin Small Letter Open E]res, at [sigma

  17. A new in-situ method to determine the apparent gas diffusion coefficient of soils

    Science.gov (United States)

    Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin

    2015-04-01

    Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.

  18. Use of tensiometer for in situ measurement of nitrate leaching

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Reddy, M.R.

    1999-07-01

    In order to monitor nitrate leaching from non-point source pollution, this study used tensiometers to measure in situ nitrate concentration and soil-moisture potential. Instead of filling the tensiometers with pure water, the study filled the tensiometers with nitrate ionic strength adjuster (ISA, 1 M (NH{sub 4}){sub 2}SO{sub 4}). After the installation of the tensiometers at various depths along soil profiles, a portable pressure transducer was used to measure the soil moisture potential, and a nitrate electrode attached to an ion analyzer was used to measure the nitrate concentration in situ. The measurement was continuous and non-destructive. To test this method in the laboratory, eight bottles filled with pure sand were treated with known nitrate solutions, and a tensiometer was placed in each bottle. Measurements were taken every day for 30 days. Laboratory test showed a linear relationship between the known nitrate concentration and the tensiometer readings (R{sup 2} = 0.9990). Then a field test was conducted in a watermelon field with green manure mulch. Field data indicated a potential of nitrate leaching below the soil depth of 100 cm when crop uptake of nutrients was low.

  19. Treatment of heavy metal contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Hansen, J.E.

    1991-01-01

    Contaminated soil site remediation objectives call for the destruction, removal, and/or immobilization of contaminant species. Destruction is applicable to hazardous compounds (e.g., hazardous organics such as PCBs; hazardous inorganics such as cyanide); however, it is not applicable to hazardous elements such as the heavy metals. Removal and/or immobilization are typical objectives for heavy metal contaminants present in soil. Many technologies have been developed specifically to meet these needs. One such technology is In Situ Vitrification (ISV), an innovative mobile, onsite, in situ solids remediation technology that has been available on a commercial basis for about two years. ISV holds potential for the safe and permanent treatment/remediation of previously disposed or current process solids waste (e.g., soil, sludge, sediment, tailings) contaminated with hazardous chemical and/or radioactive materials. This paper focuses on the application of ISV to heavy metal-contaminated soils

  20. Recent developments for in situ treatment of metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Metals contamination is a common problem at hazardous waste sites. This report assists the remedy selection process by providing information on four in situ technologies for treating soil contaminated with metals. The four approaches are electrokinetic remediation, phytoremediation, soil flushing, and solidification/stabilization. Electrokinetic remediation separates contaminants from soil through selective migration upon application of an electric current. Phytoremediation is an emerging technology that uses plants to isolate or stabilize contaminants. Soil flushing techniques promote mobility and migration of metals by solubilizing contaminants so that they can be recovered. Two types of in situ solidification/stabilization (S/S) techniques are discussed, one based on addition of reagents and the other based on the use of energy. The report discusses different techniques currently in practice or under development, identifies vendors and summarizes performance data, and discusses technology attributes that should be considered during early screening of potential remedies. 8 refs., 9 figs., 9 tabs., 2 apps.

  1. Stabilization of contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.

    1984-01-01

    In Situ Vitrification is an emerging technology developed by Pacific Northwest Laboratory for potential in-place immobilization of radioactive wastes. The contaminated soil is stabilized and converted to an inert glass form. This conversion is accomplished by inserting electrodes in the soil and establishing an electric current between the electrodes. The electrical energy causes a joule heating effect that melts the soil during processing. Any contaminants released from the melt are collected and routed to an off-gas treatment system. A stable and durable glass block is produced which chemically and physically encapsulates any residual waste components. In situ vitrification has been developed for the potential application to radioactive wastes, specifically, contaminated soil sites; however, it could possibly be applied to hazardous chemical and buried munitions waste sites. The technology has been developed and demonstrated to date through a series of 21 engineering-scale tests [producing 50 to 1000 kg (100 to 2000 lb) blocks] and seven pilot-scale tests [producing 9000 kg (20,000 lb) blocks], the most recent of which illustrated treatment of actual radioactively contaminated soil. Testing with some organic materials has shown relatively complete thermal destruction and incineration. Further experiments have documented the insensitivity of in situ vitrification to soil characteristics such as fusion temperature, specific heat, thermal conductivity, electrical resistivity, and moisture content. Soil inclusions such as metals, cements, ceramics, and combustibles normally present only minor process limitations. Costs for hazardous waste applications are estimated to be less than $175/m 3 ($5.00/ft 3 ) of material vitrified. For many applications, in situ vitrification can provide a cost-effective alternative to other disposal options. 13 references, 4 figures, 1 table

  2. Estimating cumulative soil accumulation rates with in situ-produced cosmogenic nuclide depth profiles

    International Nuclear Information System (INIS)

    Phillips, William M.

    2000-01-01

    A numerical model relating spatially averaged rates of cumulative soil accumulation and hillslope erosion to cosmogenic nuclide distribution in depth profiles is presented. Model predictions are compared with cosmogenic 21 Ne and AMS radiocarbon data from soils of the Pajarito Plateau, New Mexico. Rates of soil accumulation and hillslope erosion estimated by cosmogenic 21 Ne are significantly lower than rates indicated by radiocarbon and regional soil-geomorphic studies. The low apparent cosmogenic erosion rates are artifacts of high nuclide inheritance in cumulative soil parent material produced from erosion of old soils on hillslopes. In addition, 21 Ne profiles produced under conditions of rapid accumulation (>0.1 cm/a) are difficult to distinguish from bioturbated soil profiles. Modeling indicates that while 10 Be profiles will share this problem, both bioturbation and anomalous inheritance can be identified with measurement of in situ-produced 14 C

  3. In situ vitrification and the effects of soil additives

    International Nuclear Information System (INIS)

    Piepel, G.F.; Shade, J.W.

    1992-01-01

    This paper presents a case study involving in situ vitrification (ISV), a process for immobilizing chemical or nuclear wastes in soil by melting-dissolving the contaminated soil into a glass block. One goal of the study was to investigate how viscosity and electrical conductivity were affected by mixing CaO and Na 2 O with soil. A three-component constrained-region mixture experiment design was generated and the viscosity and electrical conductivity data collected. Several second-order mixture models were considered, and the Box-Cox transformation technique was applied to select property transformations. The fitted models were used to produce contour and component effects plots

  4. An in situ method for real-time monitoring of soil gas diffusivity

    Science.gov (United States)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect

  5. Modeling of soil CO2 efflux during water table fluctuation based on in situ measured data from a sedge-grass marsh

    Czech Academy of Sciences Publication Activity Database

    Pavelka, Marian; Dařenová, Eva; Dušek, Jiří

    2016-01-01

    Roč. 14, č. 3 (2016), s. 423-437 ISSN 1589-1623 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : carex acuta * fen * soil chamber * soil respiration * wetland Subject RIV: EH - Ecology, Behaviour Impact factor: 0.681, year: 2016

  6. Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter.

    Science.gov (United States)

    Piccolo, Alessandro; Spaccini, Riccardo; Nebbioso, Antonio; Mazzei, Pierluigi

    2011-08-01

    Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.

  7. In situ analysis of Mars soil sample with the sam gcms instrumentation onboard Curiosity : interpretation and comparison of measurements done at Rocknest and Yelloknife bay sites

    Science.gov (United States)

    Szopa, Cyril; Coll, Patrice; Cabane, Michel; Coscia, David; Buch, Arnaud; Francois, Pascaline; Millan, Maeva; Teinturier, Sammy; Navarro-Gonzales, Rafael; Glavin, Daniel; Freissinet, Caro; Steele, Andrew; Eigenbrode, Jen; Mahaffy, Paul

    2014-05-01

    The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was chosen to achieve all the measurements done up today, as it was designed for the separation of a wide range of volatile organic molecules. Three solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, and two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013), Science, [4] Ming D. et al. (2013), Science, 32, 64

  8. In situ measurements of oxygen dynamics in unsaturated archaeological deposits

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hollesen, Jørgen; Dunlop, Rory

    2015-01-01

    Oxygen is a key parameter in the degradation of archaeological material, but little is known of its dynamics in situ. In this study, 10 optical oxygen sensors placed in a 2 m deep test pit in the cultural deposits at Bryggen in Bergen have monitored oxygen concentrations every half hour for more ...... of the soil exceeds 10–15% vol, while oxygen dissolved in infiltrating rainwater is of less importance for the supply of oxygen in the unsaturated zone....... than a year. It is shown that there is a significant spatial and temporal variation in the oxygen concentration, which is correlated to measured soil characteristics, precipitation, soil water content and degradation of organic material. In these deposits oxygen typically occurs when the air content...

  9. Demonstration testing and evaluation of in situ soil heating. Treatability study work plan, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Sresty, G.C.

    1994-07-07

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the `70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid `80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern.

  10. Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using In Situ Data

    Directory of Open Access Journals (Sweden)

    Yayong Sun

    2017-03-01

    Full Text Available The Soil Moisture Active Passive (SMAP satellite makes coincident global measurements of soil moisture using an L-band radar instrument and an L-band radiometer. It is crucial to evaluate the errors in the newest L-band SMAP satellite-derived soil moisture products, before they are routinely used in scientific research and applications. This study represents the first evaluation of the SMAP radiometer soil moisture product over China. In this paper, a preliminary evaluation was performed using sparse in situ measurements from 655 China Meteorological Administration (CMA monitoring stations between 1 April 2015 and 31 August 2016. The SMAP radiometer-derived soil moisture product was evaluated against two schemes of original soil moisture and the soil moisture anomaly in different geographical zones and land cover types. Four performance metrics, i.e., bias, root mean square error (RMSE, unbiased root mean square error (ubRMSE, and the correlation coefficient (R, were used in the accuracy evaluation. The results indicated that the SMAP radiometer-derived soil moisture product agreed relatively well with the in situ measurements, with ubRMSE values of 0.058 cm3·cm−3 and 0.039 cm3·cm−3 based on original data and anomaly data, respectively. The values of the SMAP radiometer-based soil moisture product were overestimated in wet areas, especially in the Southwest China, South China, Southeast China, East China, and Central China zones. The accuracies over croplands and in Northeast China were the worst. Soil moisture, surface roughness, and vegetation are crucial factors contributing to the error in the soil moisture product. Moreover, radio frequency interference contributes to the overestimation over the northern portion of the East China zone. This study provides guidelines for the application of the SMAP-derived soil moisture product in China and acts as a reference for improving the retrieval algorithm.

  11. An analysis on remediation characteristics of soils contaminated with Co for in-situ application

    International Nuclear Information System (INIS)

    Kim, K. N.; Won, H. J.; Kweun, H. S.; Shon, J. S.; Oh, W. J.

    1999-01-01

    The solvent flushing apparatus for in-situ soil remediation was designed. After the soil around nuclear facilities was sampled and compulsorily contaminated by Co solution, the remediation characteristics by solvent flushing were analyzed. Meanwhile, the nonequilibrium sorption code was developed for modelling of the soil remediation by solvent flushing, and input parameters needed for modelling were measured by laboratory experiment. Experimental results are as follows: The soil around nuclear facilities belongs to Silt Loam including a lot of silt and sand. When water was used as a solvent, the higher was the hydraulic conductivity, the higher the efficiency of soil remediation was. The values calculated by the nonequilibrium sorption code agreed with experimental values more exactly than the values calculated by the equilibrium sorption code. When citric acid was used as a solvent, the soil remediation efficiency by citric acid showed 1.65 times that by water

  12. In situ neutron moisture meter calibration in lateritic soils

    International Nuclear Information System (INIS)

    Ruprecht, J.K.; Schofield, N.J.

    1990-01-01

    An in situ calibration procedure for complex lateritic soils of the jarrah forest of Western Australia is described. The calibration is based on non-destructive sampling of each access tube and on a regression of change in water content on change in neutron count ratio at 'wet' and 'dry' times of the year. Calibration equations with adequate precision were produced. However, there were high residual errors in the calibration equations which were due to a number of factors including soil water variability, the presence of a duricrust layer, soil sampling of gravelly soils and the variability of the cement slurry annulus surrounding each access tube. The calibration equations derived did not compare well with those from other studies in south-west Western Australia, but there was reasonable agreement with the general equations obtained by the Institute of Hydrology, U.K. 15 refs., 6 figs., 2 tabs

  13. In-situ vitrification of radioactively contaminated soils: summary paper

    International Nuclear Information System (INIS)

    Buelt, J.L.; Fitzpatrick, V.F.

    1987-01-01

    The in-situ vitrification (ISV) process is a new technology that has been developed from its conceptual phase through selected field-scale application tests during the last six years. In situ vitrification converts contaminated soils and waste inclusions into a durable glass and crystalline waste form by in-place melting. Electrodes are inserted into the soil to be treated and an electrical current is passed through the soil to be treated and an electrical current is passed through the soil to melt it. After cooling, the process fixes (TRU) and fission product radionuclides making them relatively nonleachable, resistant to intrusion, and nondispersible when intentionally disturbed. Another application considered for isolation of radioactively contaminated soils, but not yet developed, is the generation of impermeable barrier walls to prevent ground water seepage into a site. The barrier technique could also be used over the surface of an existing disposal site to deter plant and animal intrusion. The development units have been extensively tested with many types of soils and waste inclusions such as concrete, buried metals, sealed containers, organic chemicals with high boiling points such as polychlorinated biphenyls, and inorganic chemicals, including toxic heavy metals, nitrates, and sulfates. Nitrates and organics are destroyed, while heavy metals and fluorides are retained to a high percentage within the molten soil during processing. At $200 to $300/m 3 for radioactive waste, the process is economically competitive with many alternative remediation processes. The ISV process has been developed to the point where it is ready for large-scale field testing at an actual TRU-contaminated soil site. 5 references, 2 figures, 2 tables

  14. Ex-situ bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    Minier, M.R.

    1994-01-01

    The use of stress acclimated bacteria and nutrient supplements to enhance the biodegradation of petroleum contaminated soil can be a cost effective and reliable treatment technology to reduce organic contaminant levels to below established by local, state, and federal regulatory clean-up criteria. This paper will summarize the results of a field study in which 12,000 yds 3 of petroleum contaminated soil was successfully treated via ex-situ bioremediation and through management of macro and micronutrient concentrations, as well as, other site specific environmental factors that are essential for optimizing microbial growth

  15. In situ enhanced soil mixing. Innovative technology summary report

    International Nuclear Information System (INIS)

    1996-02-01

    In Situ Enhanced Soil Mixing (ISESM) is a treatment technology that has been demonstrated and deployed to remediate soils contaminated with volatile organic compounds (VOCs). The technology has been developed by industry and has been demonstrated with the assistance of the U.S. Department of Energy's Office of Science and Technology and the Office of Environmental Restoration. The technology is particularly suited to shallow applications, above the water table, but can be used at greater depths. ISESM technologies demonstrated for this project include: (1) Soil mixing with vapor extraction combined with ambient air injection. [Contaminated soil is mixed with ambient air to vaporize volatile organic compounds (VOCs). The mixing auger is moved up and down to assist in removal of contaminated vapors. The vapors are collected in a shroud covering the treatment area and run through a treatment unit containing a carbon filter or a catalytic oxidation unit with a wet scrubber system and a high efficiency particulate air (HEPA) filter.] (2) soil mixing with vapor extraction combined with hot air injection [This process is the same as the ambient air injection except that hot air or steam is injected.] (3) soil mixing with hydrogen peroxide injection [Contaminated soil is mixed with ambient air that contains a mist of diluted hydrogen peroxide (H 2 O 2 ) solution. The H 2 O 2 solution chemically oxidizes the VOCs to carbon dioxide (CO 2 ) and water.] (4) soil mixing with grout injection for solidification/stabilization [Contaminated soil is mixed as a cement grout is injected under pressure to solidify and immobilize the contaminated soil in a concrete-like form.] The soils are mixed with a single-blade auger or with a combination of augers ranging in diameter from 3 to 12 feet

  16. Demonstration testing and evaluation of in situ soil heating. Treatability study work plan (Revision 2)

    International Nuclear Information System (INIS)

    Sresty, G.C.

    1994-01-01

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 degrees to 95 degrees C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern. This document is a Treatability Study Work Plan for the demonstration program. The document contains a description of the proposed treatability study, background of the EM heating process, description of the field equipment, and demonstration test design

  17. Towards soil property retrieval from space: Proof of concept using in situ observations

    Science.gov (United States)

    Bandara, Ranmalee; Walker, Jeffrey P.; Rüdiger, Christoph

    2014-05-01

    Soil moisture is a key variable that controls the exchange of water and energy fluxes between the land surface and the atmosphere. However, the temporal evolution of soil moisture is neither easy to measure nor monitor at large scales because of its high spatial variability. This is mainly a result of the local variation in soil properties and vegetation cover. Thus, land surface models are normally used to predict the evolution of soil moisture and yet, despite their importance, these models are based on low-resolution soil property information or typical values. Therefore, the availability of more accurate and detailed soil parameter data than are currently available is vital, if regional or global soil moisture predictions are to be made with the accuracy required for environmental applications. The proposed solution is to estimate the soil hydraulic properties via model calibration to remotely sensed soil moisture observation, with in situ observations used as a proxy in this proof of concept study. Consequently, the feasibility is assessed, and the level of accuracy that can be expected determined, for soil hydraulic property estimation of duplex soil profiles in a semi-arid environment using near-surface soil moisture observations under naturally occurring conditions. The retrieved soil hydraulic parameters were then assessed by their reliability to predict the root zone soil moisture using the Joint UK Land Environment Simulator model. When using parameters that were retrieved using soil moisture observations, the root zone soil moisture was predicted to within an accuracy of 0.04 m3/m3, which is an improvement of ∼0.025 m3/m3 on predictions that used published values or pedo-transfer functions.

  18. Automated Quality Control of in Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products

    Science.gov (United States)

    Ek, M. B.; Xia, Y.; Ford, T.; Wu, Y.; Quiring, S. M.

    2015-12-01

    The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable due to the diversity of climatological conditions, land cover, soil texture, and topographies of the stations and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy and imprecision in the data set can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure the data is of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System phase 2 (NLDAS-2) Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20 cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and West Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1,200 NASMD stations in the near future.

  19. Using in situ bioventing to minimize soil vapor extraction costs

    International Nuclear Information System (INIS)

    Downey, D.C.; Frishmuth, R.A.; Archabal, S.R.; Pluhar, C.J.; Blystone, P.G.; Miller, R.N.

    1995-01-01

    Gasoline-contaminated soils may be difficult to remediate with bioventing because high concentrations of gasoline vapors become mobile when air is injected into the soil. Because outward vapor migration is often unacceptable on small commercial sites, soil vapor extraction (SVE) or innovative bioventing techniques are required to control vapors and to increase soil gas oxygen levels to stimulate hydrocarbon biodegradation. Combinations of SVE, off-gas treatment, and bioventing have been used to reduce the costs normally associated with remediation of gasoline-contaminated sites. At Site 1, low rates of pulsed air injection were used to provide oxygen while minimizing vapor migration. At Site 2, a period of high-rate SVE and off-gas treatment was followed by long-term air injection. Site 3 used an innovative approach that combined regenerative resin for ex situ vapor treatment with in situ bioventing to reduce the overall cost of site remediation. At each of these Air Force sites, bioventing provided cost savings when compared to more traditional SVE methods

  20. Combined in-situ and ex-situ bioremediation of petroleum hydrocarbon contaminated soils by closed-loop soil vapor extraction and air injection

    International Nuclear Information System (INIS)

    Hu, S.S.; Buckler, M.J.

    1993-01-01

    Treatment and restoration of petroleum hydrocarbon contaminated soils at a bulk petroleum above-ground storage tank (AST) site in Michigan is being conducted through in-situ and ex-situ closed-loop soil vapor extraction (SVE), soil vapor treatment, and treated air injection (AI) processes. The soil vapor extraction process applies a vacuum through the petroleum hydrocarbon affected soils in the ex-situ bio-remediation pile (bio-pile) and along the perimeter of excavated area (in-situ area) to remove the volatile or light petroleum hydrocarbons. This process also draws ambient air into the ex-situ bio-pile and in-situ vadose zone soil along the perimeter of excavated area to enhance biodegradation of light and heavy petroleum hydrocarbons in the soil. The extracted soil vapor is treated using a custom-designed air bio-remediation filter (bio-filter) to degrade the petroleum hydrocarbon compounds in the soil vapor extraction air streams. The treated air is then injected into a flush grade soil bed in the backfill area to perform final polishing of the air stream, and to form a closed-loop air flow with the soil vapor extraction perforated pipes along the perimeter of the excavated area

  1. Characterization of vitrified soil produced by in situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Lokken, R.O.

    1984-01-01

    Radioactive or other hazardous wastes buried at waste disposal sites may require further stabilization to secure the isolation of these wastes from the environment. One method of waste stabilization being developed is in situ vitrification. This process involves the in-place melting of buried wastes and the surrounding soil to produce a glass and crystalline waste form. Engineering-scale and pilot-scale demonstrations of this concept with soil contaminated with nonradioactive, hazardous species (Cs, Sr, Ru, Pb, Cd, etc.) were performed. These demonstrations provided information on species migration, crystalline-phase formation, and waste form durability. In addition to the nonradioactive tests, a crucible-scale melt of soil spiked with radioactive uranium, plutonium, and cesium was leach tested. The results show that hazardous waste components are retained in the product. The durability of the waste form in both the vitreous and the crystalline phases is similar to that of Pyrex glass

  2. Characterization of vitrified soil produced by in-situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Lokken, R.O.

    1983-01-01

    Radioactive or other hazardous wastes buried at waste-disposal sites may require further stabilization to secure the isolation of these wastes from the environment. One method of waste stabilization being developed is in-situ vitrification. This process involves the in-place melting of buried wastes and the surrounding soil to produce a glass and crystalline waste form. Engineering-scale and pilot-scale demonstrations of this concept with soil contaminated with nonradioactive, hazardous species (Cs, Sr, Ru, Pb, Cd, etc.) were performed. These demonstrations provided information on species migration, crystalline phase formation, and waste form durability. In addition to the nonradioactive tests, a crucible-scale melt of soil spiked with radioactive uranium, plutonium, and cesium was leach tested. The results show that hazardous waste components are retained in the product. The durability of the waste form in both the vitreous and crystalline phases is similar to that of pyrex glass

  3. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Jeffrey [ORNL; Brooks, J Renee [U.S. Environmental Protection Agency, Corvallis, OR; Dragila, Maria [Oregon State University, Corvallis; Meinzer, Rick [USDA Forest Service

    2011-01-01

    Nocturnal increases in water potential ( ) and water content (WC) in the upper soil profile are often attributed to root water efflux into the soil, a process termed hydraulic lift or hydraulic redistribution (HR). We have previously reported HR values up to ~0.29 mm day-1 in the upper soil for a seasonally dry old-growth ponderosa pine site. However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the diurnal patterns in WC, confounding efforts to determine the actual magnitude of HR. In this study, we estimated liquid (Jl) and vapor (Jv) soil water fluxes and their impacts on quantifying HR in situ by applying existing data sets of , WC, temperature (T) and soil physical properties to soil water transport equations. Under moist conditions, Jl between layers was estimated to be larger than necessary to account for measured nocturnal increases in WC of upper soil layers. However, as soil drying progressed unsaturated hydraulic conductivity declined rapidly such that Jl was irrelevant (< 2E-06 cm hr-1 at 0-60 cm depths) to total water flux by early August. In surface soil at depths above 15 cm, large T fluctuations can impact Jv leading to uncertainty concerning the role, if any, of HR in nocturnal WC dynamics. Vapor flux was estimated to be the highest at the shallowest depths measured (20 - 30 cm) where it could contribute up to 40% of hourly increases in nocturnal soil moisture depending on thermal conditions. While both HR and net soil water flux between adjacent layers contribute to WC in the 15-65 cm soil layer, HR was the dominant process and accounted for at least 80% of the diurnal increases in WC. While the absolute magnitude of HR is not easily quantified, total diurnal fluctuations in upper soil water content can be quantified and modeled, and remain highly applicable for establishing the magnitude and temporal dynamics of total ecosystem water flux.

  4. In-situ remediation system for groundwater and soils

    Science.gov (United States)

    Corey, John C.; Kaback, Dawn S.; Looney, Brian B.

    1993-01-01

    A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.

  5. Enhancement of in situ Remediation of Hydrocarbon Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.

    2006-07-01

    Approximately 750 000 sites of contaminated land exist across Europe. The harmful chemicals found in Finnish soils include heavy metals, oil products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorophenols, and pesticides. Petroleum and petroleum products enter soil from ruptured oil pipelines, land disposal of refinery products, leaking storage tanks and through accidents. PAH contamination is caused by the spills of coal tar and creosote from coal gasification and wood treatment sites in addition to oil spills. Cleanup of soil by bioremediation is cheaper than by chemical and physical processes. However, the cleaning capacity of natural attenuation and in situ bioremediation is limited. The purpose of this thesis was to find feasible options to enhance in situ remediation of hydrocarbon contaminants. The aims were to increase the bioavailability of the contaminants and microbial activity at the subsurface in order to achieve higher contaminant removal efficiency than by intrinsic biodegradation alone. Enhancement of microbial activity and decrease of soil toxicity during remediation were estimated by using several biological assays. The performance of these assays was compared in order to find suitable indicators to follow the progress of remediation. Phytoremediation and chemical oxidation are promising in situ techniques to increase the degradation of hydrocarbons in soil. Phytoremediation is plant-enhanced decontamination of soil and water. Degradation of hydrocarbons is enhanced in the root zone by increased microbial activity and through the detoxifying enzymes of plants themselves. Chemical oxidation of contaminants by Fenton's reaction can produce degradation products which are more biodegradable than the parent compounds. Fenton's reaction and its modifications apply solutions of hydrogen peroxide and iron for the oxidation of organic chemicals. The cost of oxidation can be reduced by aiming at partial instead of full

  6. An Operational In Situ Soil Moisture & Soil Temperature Monitoring Network for West Wales, UK: The WSMN Network.

    Science.gov (United States)

    Petropoulos, George P; McCalmont, Jon P

    2017-06-23

    This paper describes a soil moisture dataset that has been collecting ground measurements of soil moisture, soil temperature and related parameters for west Wales, United Kingdom. Already acquired in situ data have been archived to the autonomous Wales Soil Moisture Network (WSMN) since its foundation in July 2011. The sites from which measurements are being collected represent a range of conditions typical of the Welsh environment, with climate ranging from oceanic to temperate and a range of the most typical land use/cover types found in Wales. At present, WSMN consists of a total of nine monitoring sites across the area with a concentration of sites in three sub-areas around the region of Aberystwyth located in Mid-Wales. The dataset of composed of 0-5 (or 0-10) cm soil moisture, soil temperature, precipitation, and other ancillary data. WSMN data are provided openly to the public via the International Soil Moisture Network (ISMN) platform. At present, WSMN is also rapidly expanding thanks to funding obtained recently which allows more monitoring sites to be added to the network to the wider community interested in using its data.

  7. Unique 'man-made' object: reservoirs B10 and B11 of Techa cascade and means for in-situ measurement of its contamination - Water, soil, bottom sediments

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Oleg; Potapov, Victor; Stepanov, Vyacheslav; Smirnov, Sergey; Volkovich, Anatoly [National Research Centre - Kurchatov Institute, 1 Kurchatov Sq., Moscow (Russian Federation)

    2014-07-01

    Contamination of natural objects - alarm fallout zones and flood plains near production sites (the result of technological accidents and resource extraction) occupy large areas. Large area and volume of pollution, moderate activity facilities (at low and medium-level rad-wastes) to make such objects specific types of radioactive waste. These objects exist for a long time, now they are characterized by a bound state of nuclides with the matrix. There are no cost-effective ways to remove these rad-wastes, the only solution for the rehabilitation of such areas is their isolation and regular monitoring through direct and indirect measurements. The task of mapping and subsequent monitoring of pollution is very complex. Most of the complexity of the laboratory measurement techniques, as well as high levels of contamination (to 10{sup 9} Bk/m{sup 2}) for radionuclides Cs-137 and Sr-90 require for mapping pollution field physical methods of measurement of the specific activity of radionuclides directly on the ground. The set of instruments for in-situ contamination measurements: a portable spectrometric collimated detector, collimated borehole spectrometric detector, underwater spectrometric detector, spectrometer for field measurements of the specific activity of Sr-90, connected to a portable MCA. The complex was used in Bryansk region, on the Techa river and Yenisei river. We present measurements of contamination in and around the reservoir No. 10 of Techa cascade containing a huge amount of radioactive waste. Measurements are performed in the framework of international expeditions in 2008, 2011 and 2012. To develop plans and programs for the rehabilitation of non-standard large-size objects containing radioactive waste precise and detailed measurement data are necessary and very often there is not enough of such data. Measurements of contaminated water, soil and bottom sediments in area of water reservoirs of Techa cascade have shown that unique system of detectors and

  8. Chelator induced phytoextraction and in situ soil washing of Cu

    International Nuclear Information System (INIS)

    Kos, Bostjan; Lestan, Domen

    2004-01-01

    In a soil column experiment, we investigated the effect of 5 mmol kg -1 soil addition of citric acid, ethylenediamine tetraacetate (EDTA), diethylenetriamine-pentaacetate (DTPA) and [S,S]-stereoisomer of ethylenediamine-disuccinate (EDDS) on phytoextraction of Cu from a vineyard soil with 162.6 mg kg -1 Cu, into the test plant Brassica rapa var. pekinensis. We also examined the use of a horizontal permeable barrier, composed of layers of nutrient enriched sawdust and apatite, for reduction of chelator induced Cu leaching. The addition of all chelators, except citric acid, enhanced Cu mobility and caused leaching of 19.5-23% of initial total Cu from the soil column. However, Cu plant uptake did not increase accordingly; the most effective was the EDDS treatment, in which plant Cu concentration reached 37.8±1.3 mg kg -1 Cu and increased by 3.3-times over the control treatment. The addition of none of the chelators in the concentration range from 5 to 15 mmol kg -1 exerted any toxic effect on respiratory soil microorganisms. When EDDS was applied into the columns with horizontal permeable barriers, only 0.53±0.32% of the initial total Cu was leached. Cu (36.7%) was washed from the 18 cm soil layer above the barrier and accumulated in the barrier. Our results indicate that rather than for a reduction of Cu leaching during rather ineffective chelate induced Cu phytoextraction, horizontal permeable barriers could be more effective in a new remediation technique of controlled in situ soil washing of Cu with biodegradable chelates

  9. Mercury speciation during in situ thermal desorption in soil

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Min, E-mail: cmpark80@gmail.com; Katz, Lynn E.; Liljestrand, Howard M.

    2015-12-30

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg{sup 0} gas until the temperature reached 358.15 K. • Phase change of HgCl{sub 2(s)} completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg{sup 0}) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  10. Mercury speciation during in situ thermal desorption in soil

    International Nuclear Information System (INIS)

    Park, Chang Min; Katz, Lynn E.; Liljestrand, Howard M.

    2015-01-01

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg"0 gas until the temperature reached 358.15 K. • Phase change of HgCl_2_(_s_) completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg"0) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  11. In situ construction of horizontal soil containment barrier at Fernald

    International Nuclear Information System (INIS)

    Ridenour, D.; Pettit, P.J.; Walker, J.

    1995-01-01

    An innovative method of placing soil barriers to contain vertical flow is being prepared for demonstration by the Fernald Environmental Restoration Management Corporation (FERMCO), working in conjunction with the Department of Energy Office of Technology Development (DOE/OTD) and two principle subcontractors. The method employs proven directional drilling techniques, jet grouting technology and unique placement tooling to form horizontal soil barriers in situ. This is done without disturbance to existing land disposed wastes. This paper is a summary report on the current state of that demonstration, including: a discussion of the construction methods, the results of the initial tool tests, an overview of the Fernald site conditions and, the resulting path of tooling development for the second phase of tool testing

  12. Mapping of depleted uranium with in situ spectrometry and soil samples

    International Nuclear Information System (INIS)

    Shebell, P.; Reginatto, M.; Monetti, M.; Faller, S.; Davis, L.

    1999-01-01

    Depleted uranium (DU) has been developed in the past two decades as a highly effective material for armor penetrating rounds and vehicle shielding. There is now a growing interest in the defense community to determine the presence and extent of DU contamination quickly and with a minimum amount of intrusive sampling. We report on a new approach using deconvolution techniques to quantitatively map DU contamination in surface soil. This approach combines data from soil samples with data from in situ gamma-ray spectrometry measurements to produce an accurate and detailed map of DU contamination. Results of a field survey at the Aberdeen Proving Ground are presented. (author)

  13. On the in situ aqueous alteration of soils on Mars

    Science.gov (United States)

    Amundson, Ronald; Ewing, Stephanie; Dietrich, William; Sutter, Brad; Owen, Justine; Chadwick, Oliver; Nishiizumi, Kunihiko; Walvoord, Michelle; McKay, Christopher

    2008-08-01

    Early (>3 Gy) wetter climate conditions on Mars have been proposed, and it is thus likely that pedogenic processes have occurred there at some point in the past. Soil and rock chemistry of the Martian landing sites were evaluated to test the hypothesis that in situ aqueous alteration and downward movement of solutes have been among the processes that have transformed these portions of the Mars regolith. A geochemical mass balance shows that Martian soils at three landing sites have lost significant quantities of major rock-forming elements and have gained elements that are likely present as soluble ions. The loss of elements is interpreted to have occurred during an earlier stage(s) of weathering that may have been accompanied by the downward transport of weathering products, and the salts are interpreted to be emplaced later in a drier Mars history. Chemical differences exist among the sites, indicating regional differences in soil composition. Shallow soil profile excavations at Gusev crater are consistent with late stage downward migration of salts, implying the presence of small amounts of liquid water even in relatively recent Martian history. While the mechanisms for chemical weathering and salt additions on Mars remain unclear, the soil chemistry appears to record a decline in leaching efficiency. A deep sedimentary exposure at Endurance crater contains complex depth profiles of SO 4, Cl, and Br, trends generally consistent with downward aqueous transport accompanied by drying. While no model for the origin of Martian soils can be fully constrained with the currently available data, a pedogenic origin is consistent with observed Martian geology and geochemistry, and provides a testable hypothesis that can be evaluated with present and future data from the Mars surface.

  14. Three types of photon detectors for in situ measurements

    Science.gov (United States)

    Helmer, R. G.; Gehrke, R. J.; Carpenter, M. V.

    1999-02-01

    The authors have been involved in the calibration and use of three types of γ- and X-ray detectors for in situ measurements of soil contamination. These three detectors are an N-type, thin-window Ge semiconductor detector (5.0 cm diam.× 2.0 cm deep), a plastic scintillator (30.5 cm × 30.5 cm × 3.8 cm thick), and an array of six CaF 2 detectors (each 7.6 cm × 7.6 cm × 0.15 cm thick). The latter two detectors have been used with scanning systems that allow significant areas (say, >100 m 2) to be surveyed completely with the aid of either laser-based triangulation or a global positioning system (GPS) to record the precise position for each measurement. Typically, these systems scan at a rate of 15-30 cm/s which allows an area of 100 m 2 to covered with the plastic scintillator in about 15 min. The data are telemetered or transferred via RS232 protocol to a computer, providing operators with real-time mapping of the area surveyed and of the measured detector count rate. The "efficiencies" of these detectors have been determined by a combination of measurements of calibrated planar sources and Monte Carlo transport calculations for a variety of source sizes and depths in soil, as well as by comparing these field measurements with independent laboratory sample analysis.

  15. Soil weed seed bank in situ and ex situ at a smallholder field in Maranhão State, northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Mário Luiz Ribeiro Mesquita

    2014-11-01

    Full Text Available The objective of this research was to assess the density, floristic composition,  phytosociology and diversity of a soil weed seed bank ex situ by germination in a greenhouse and in situ by weed sampling on a smallholder corn field located in Lago Verde County, Maranhão State. Fifteen pairs of 25 m2 plots were designated. In half of these plots, 90 soil samples were collected with an open metal template measuring 25 x 16 x 3 cm and placed in a greenhouse to germinate. In the other half, 90 weed samples were collected using the same metal template. We recorded a total of 1,998 individuals from 40 species, 31 genera and 16 families, from which 659 individuals germinated in situ and 1,339 exsitu. Density was higher ex situ, with 372 plants m-2. The Cyperaceae family had the highest floristic richness with nine species, followed by the Poaceae with six. The dominant species based on the Importance Value Index were Lindernia crustacea (IVI 27.7% in situ and Scleria lithosperma (IVI 37.0% ex situ. Floristic diversity was higher ex situ, with H’ = 2.66 nats ind-1. These results could help predict infestation potential and could lead to improved weed management strategies in corn-growing areas on smallholdings in Maranhão State, northeastern Brazil.

  16. Experimental Measurement of In Situ Stress

    Science.gov (United States)

    Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul

    2016-04-01

    The World Stress Map data is determined by stress indicators including earthquake focal mechanisms, in situ measurement in mining, oil and gas boreholes as well as the borehole cores, and geologic data. Unfortunately, these measurements are not only infrequent but sometimes infeasible, and do not provide nearly enough data points with high accuracy to correctly infer stress fields in deep mines around the world. Improvements in stress measurements of Earth's crust is fundamental to several industries such as oil and gas, mining, nuclear waste management, and enhanced geothermal systems. Quantifying the state of stress and the geophysical properties of different rock types is a major complication in geophysical monitoring of deep mines. Most stress measurement techniques involve either the boreholes or their cores, however these measurements usually only give stress along one axis, not the complete stress tensor. The goal of this project is to investigate a new method of acquiring a complete stress tensor of the in situ stress in the Earth's crust. This project is part of a comprehensive, exploration geophysical study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, and focuses on two boreholes located in this mine. These boreholes are approximately 400 m long with NQ diameters and are located at depths of about 1300 - 1600 m and 1700 - 2000 m. Two borehole logging surveys were performed on both boreholes, October 2013 and July 2015, in order to perform a time-lapse analysis of the geophysical changes in the mine. These multi-parameter surveys include caliper, full waveform sonic, televiewer, chargeability (IP), and resistivity. Laboratory experiments have been performed on borehole core samples of varying geologies from each borehole. These experiments have measured the geophysical properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. The apparatus' used for this project are geophysical imaging cells capable

  17. Assessment of in situ and ex situ phytorestoration with grass mixtures in soils polluted with nickel, copper, and arsenic

    Science.gov (United States)

    Zacarías Salinas, Montserrat; Beltrán Villavicencio, Margarita; Bustillos, Luis Gilberto Torres; González Aragón, Abelardo

    This work shows a study of in situ and ex situ phytoextraction as a polishing step in the treatment of an industrial urban soil polluted with nickel, arsenic and copper. The soil was previously washed, and phytoextraction was performed by application of a mixture of grass (Festuca rubra, Cynodon dactylon, Lolium multiforum, Pennisetum). The soil had initial heavy metals concentrations of 131 ppm for Ni, 717 for As and 2734 for Cu (mg of metal/kg of dry soil). After seeding and emerging of grass, vegetal and soil samples were taken monthly during 4 months. Biomass generation, and concentration of Ni, As and Cu in vegetal tissue and soil were determined for every sample. Plants biomass growth in ex situ process was inhibited by 37% when compared with blank soil. Grass showed remarkable phytoextraction capability in situ, it produced 38 g of biomass every 15 days (wet weight) during a period of 3 months, but then declined in the fourth month. Concentrations of metals in grass biomass were up to 83 mg Ni/kg, 649 mg As/kg and 305 mg Cu/kg dry weight. Metal reduction of 49% for Ni, and 35% for Cu and As was observed at rhizospheric soil.

  18. Factors influencing in situ gamma-ray measurements

    Science.gov (United States)

    Loonstra, E. H.; van Egmond, F. M.

    2009-04-01

    Introduction In situ passive gamma-ray sensors are very well suitable for mapping physical soil properties. In order to make a qualitative sound soil map, high quality input parameters for calibration are required. This paper will focus on the factors that affect the output of in situ passive gamma-ray sensors, the primary source, soil, not taken into account. Factors The gamma-ray spectrum contains information of naturally occurring nuclides 40K, 238U and 232Th and man-made nuclides like 137Cs, as well as the total count rate. Factors that influence the concentration of these nuclides and the count rate can be classified in 3 categories. These are sensor design, environmental conditions and operational circumstances. Sensor design The main elements of an in situ gamma-ray sensor that influence the outcome and quality of the output are the crystal and the spectrum analysis method. Material and size of the crystal determine the energy resolution. Though widely used, NaI crystals are not the most efficient capturer of gamma radiation. Alternatives are BGO and CsI. BGO has a low peak resolution, which prohibits use in cases where man-made nuclides are subject of interest. The material is expensive and prone to temperature instability. CsI is robust compared to NaI and BGO. The density of CsI is higher than NaI, yielding better efficiency, especially for smaller crystal sizes. More volume results in higher energy efficiency. The reduction of the measured spectral information into concentration of radionuclides is mostly done using the Windows analysis method. In Windows, the activities of the nuclides are found by summing the intensities of the spectrum found in a certain interval surrounding a peak. A major flaw of the Windows method is the limited amount of spectral information that is incorporated into the analysis. Another weakness is the inherent use of ‘stripping factors' to account for contributions of radiation from nuclide A into the peak of nuclide B. This

  19. Assessment of the availability of As and Pb in soils after in situ stabilization.

    Science.gov (United States)

    Zhang, Wanying; Yang, Jie; Li, Zhongyuan; Zhou, Dongmei; Dang, Fei

    2017-10-01

    The in situ stabilization has been widely used to remediate metal-contaminated soil. However, the long-term retaining performance of heavy metals and the associated risk after in situ stabilization remains unclear and has evoked amounting concerns. Here, Pb- or As-contaminated soil was stabilized by a commercial amendment. The availability of Pb and As after in situ stabilization were estimated by ten different in vitro chemical extractions and DGT technique. After amendment application, a significant decline in extractable Pb or As was observed in treatments of Milli-Q water, 0.01 M CaCl 2 , 0.1 M NaNO 3 , 0.05 M (NH 4 ) 2 SO 4 , and 0.43 M HOAc. Potential available metal(loid)s determined by DGT also showed remarkable reduction. Meanwhile, the results of in vivo uptake assays demonstrated that Pb concentrations in shoots of ryegrass Lolium perenne L. declined to 12% of the control samples, comparable to the extraction ratio of 0.1 M NaNO 3 (15.8%) and 0.05 M (NH 4 ) 2 SO 4 (17.3%). For As-contaminated soil, 0.43 M HOAC provided a better estimation of relative phytoavailability (64.6 vs. 65.4% in ryegrass) compared to other extraction methods. We propose that 0.1 M NaNO 3 or 0.05 M (NH 4 ) 2 SO 4 for Pb and 0.43 M HOAc for As may serve as surrogate measures to estimate the lability of metal(loid)s after soil remediation of the tested contaminated soils. Further studies over a wider range of soil types and amendments are necessary to validate extraction methods.

  20. IN SITU MEASUREMENT OF BEDROCK EROSION

    Directory of Open Access Journals (Sweden)

    D. H. Rieke-Zapp

    2012-07-01

    Full Text Available While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are – if at all available – based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest

  1. In Situ Measurement of Bedrock Erosion

    Science.gov (United States)

    Rieke-Zapp, D. H.; Beer, A.; Turowski, J. M.; Campana, L.

    2012-07-01

    While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are - if at all available - based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ) and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest generation of compact

  2. In situ mapping of radionuclides in subsurface and surface soils: 1994 Summary report

    International Nuclear Information System (INIS)

    Schilk, A.J.; Hubbard, C.W.; Knopf, M.A.; Abel, K.H.

    1995-04-01

    Uranium production and support facilities at several DOE sites occasionally caused local contamination of some surface and subsurface soils. The thorough cleanup of these sites is a major public concern and a high priority for the US Department of Energy, but before any effective remedial protocols can be established, the three-dimensional distributions of target contaminants must be characterized. Traditional means of measuring radionuclide activities in soil are cumbersome, expensive, time-consuming, and often do not accurately reflect conditions over very large areas. New technologies must be developed, or existing ones improved, to allow cheaper, faster, and safer characterization of radionuclides in soils at these sites. The Pacific Northwest Laboratory (PNL) was tasked with adapting, developing, and demonstrating technologies to measure uranium in surface and subsurface soils. In partial completion of this effort, PNL developed an improved in situ gamma-ray spectrometry system to satisfy the technical requirements. This document summarizes fiscal-year 1994 efforts at PNL to fulfill requirements for TTP number-sign 321103 (project number-sign 19307). These requirements included (a) developing a user-friendly software package for reducing field-acquired gamma-ray spectra, (b) constructing an improved data-acquisition hardware system for use with high-purity germanium detectors, (c) ensuring readiness to conduct field mapping exercises as specified by the sponsor, (d) evaluating the in situ gamma-ray spectrometer for the determination of uranium depth distribution, and (e) documenting these efforts

  3. Environmental gamma-ray measurements using in situ and core sampling techniques

    International Nuclear Information System (INIS)

    Dickson, H.W.; Kerr, G.D.; Perdue, P.T.; Abdullah, S.A.

    1976-01-01

    Dose rates from natural radionuclides and 137 Cs in soils of the Oak Ridge area have been determined from in situ and core sample measurements. In situ γ-ray measurements were made with a transportable spectrometer. A tape of spectral data and a soil core sample from each site were returned to ORNL for further analysis. Information on soil composition, density and moisture content and on the distribution of cesium in the soil was obtained from the core samples. In situ spectra were analyzed by a computer program which identified and assigned energies to peaks, integrated the areas under the peaks, and calculated radionuclide concentrations based on a uniform distribution in the soil. The assumption of a uniform distribution was adequate only for natural radionuclides, but simple corrections can be made to the computer calculations for man-made radionuclides distributed on the surface or exponentially in the soil. For 137 Cs a correction was used based on an exponential function fitted to the distribution measured in core samples. At typical sites in Oak Ridge, the dose rate determined from these measurements was about 5 μrad/hr. (author)

  4. In-situ Mass Distribution Quotient (iMDQ) - A New Factor to Compare Bioavailability of Pesticides in Soils?

    Science.gov (United States)

    Schroll, R.; Folberth, C.; Scherb, H.; Suhadolc, M.; Munch, J. C.

    2009-04-01

    Aim of this work was the development of a new non-biological factor to determine microbial in-situ bioavailability of chemicals in soils. Pesticide residues were extracted from ten highly different agricultural soils that had been incubated with the 14C-herbicide isoproturon (IPU) under comparable soil conditions (water tension - 15 kPa; soil density 1.3 g cm 3). Two different pesticide extraction approaches were compared: (i) 14C-Pesticide residues were measured in the pore water (PW) which was extracted from soil by centrifugation; (ii) 14C-Pesticide residues were extracted from soil samples with an excess of water (EEW). We introduce the pesticide's in-situ mass distribution quotient (iMDQ) as a measure for pesticide bioavailability, which is calculated as a quotient of adsorbed and dissolved chemical amounts for both approaches (iMDQPW, iMDQEEW). Pesticide mineralization in soils served as a reference for real microbial availability. A highly significant correlation between iMDQPW and mineralization showed that pore water extraction is adequate to assess IPU bioavailability. In contrast, no correlation exists between IPU mineralization and its extractability from soil with an excess of water. Therefore, it can be concluded that soil equilibration at comparable conditions and subsequent pore water extraction is vital for a isoproturon bioavailability ranking of soils.

  5. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Directory of Open Access Journals (Sweden)

    M. S. Demyan

    2013-05-01

    Full Text Available An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS is being proposed to rapidly characterize soil organic matter (SOM to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2 in order to relate evolved gas (i.e., CO2 to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i the Static Fertilization Experiment, Bad Lauchstädt (Chernozem, from treatments of farmyard manure (FYM, mineral fertilizer (NPK, their combination (FYM + NPK and control without fertilizer inputs; (ii Kraichgau; and (iii Swabian Alb (Cambisols areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM, sand and stable aggregates (Sa + A, silt and clay (Si + C, and NaOCl oxidized Si + C (rSOC to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm−1 being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min−1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max. Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the

  6. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    Science.gov (United States)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  7. NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS: PRINCIPLE AND RESULTS

    International Nuclear Information System (INIS)

    WIELOPOLSKI, L.; MITRA, S.; HENDREY, G.; ROGERS, H.; TORBERT, A.; PRIOR, S.

    2003-01-01

    Global warming is promoted by anthropogenic CO 2 emissions into the atmosphere, while at the same time it is partially mitigated by carbon sequestration by terrestrial ecosystems. However, improvement in the understanding and monitoring of below ground carbon processes is essential for evaluating strategies for carbon sequestration including quantification of carbon stores for credits. A system for non-destructive in situ carbon monitoring in soil, based on inelastic neutron scattering (INS), is described. The system can be operated in stationary or scanning mode and measures soil to depth of approximately 30 cm. There is a good agreement between results obtained from INS and standard chemical analysis of soil cores collected from the same study site

  8. In situ semi-quantitative analysis of polluted soils by laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Ismaël, Amina; Bousquet, Bruno; Michel-Le Pierrès, Karine; Travaillé, Grégoire; Canioni, Lionel; Roy, Stéphane

    2011-05-01

    Time-saving, low-cost analyses of soil contamination are required to ensure fast and efficient pollution removal and remedial operations. In this work, laser-induced breakdown spectroscopy (LIBS) has been successfully applied to in situ analyses of polluted soils, providing direct semi-quantitative information about the extent of pollution. A field campaign has been carried out in Brittany (France) on a site presenting high levels of heavy metal concentrations. Results on iron as a major component as well as on lead and copper as minor components are reported. Soil samples were dried and prepared as pressed pellets to minimize the effects of moisture and density on the results. LIBS analyses were performed with a Nd:YAG laser operating at 1064 nm, 60 mJ per 10 ns pulse, at a repetition rate of 10 Hz with a diameter of 500 μm on the sample surface. Good correlations were obtained between the LIBS signals and the values of concentrations deduced from inductively coupled plasma atomic emission spectroscopy (ICP-AES). This result proves that LIBS is an efficient method for optimizing sampling operations. Indeed, "LIBS maps" were established directly on-site, providing valuable assistance in optimizing the selection of the most relevant samples for future expensive and time-consuming laboratory analysis and avoiding useless analyses of very similar samples. Finally, it is emphasized that in situ LIBS is not described here as an alternative quantitative analytical method to the usual laboratory measurements but simply as an efficient time-saving tool to optimize sampling operations and to drastically reduce the number of soil samples to be analyzed, thus reducing costs. The detection limits of 200 ppm for lead and 80 ppm for copper reported here are compatible with the thresholds of toxicity; thus, this in situ LIBS campaign was fully validated for these two elements. Consequently, further experiments are planned to extend this study to other chemical elements and other

  9. Application of in situ measurement for site remediation and final status survey of decommissioning KRR site

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Bum; Nam, Jong Soo; Choi, Yong Suk; Seo, Bum Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    In situ gamma spectrometry has been used to measure environmental radiation, assumptions are usually made about the depth distribution of the radionuclides of interest in the soil. The main limitation of in situ gamma spectrometry lies in determining the depth distribution of radionuclides. The objective of this study is to develop a method for subsurface characterization by in situ measurement. The peak to valley method based on the ratio of counting rate between the photoelectric peak and Compton region was applied to identify the depth distribution. The peak to valley method could be applied to establish the relation between the spectrally derived coefficients (Q) with relaxation mass per unit area (β) for various depth distribution in soil. The in situ measurement results were verified by MCNP simulation and calculated correlation equation. In order to compare the depth distributions and contamination levels in decommissioning KRR site, in situ measurement and sampling results were compared. The in situ measurement results and MCNP simulation results show a good correlation for laboratory measurement. The simulation relationship between Q and source burial for the source layers have exponential relationship for a variety depth distributions. We applied the peak to valley method to contaminated decommissioning KRR site to determine a depth distribution and initial activity without sampling. The observed results has a good correlation, relative error between in situ measurement with sampling result is around 7% for depth distribution and 4% for initial activity. In this study, the vertical activity distribution and initial activity of {sup 137}Cs could be identifying directly through in situ measurement. Therefore, the peak to valley method demonstrated good potential for assessment of the residual radioactivity for site remediation in decommissioning and contaminated site.

  10. Forty years of 9Sr in situ migration: importance of soil characterization in modeling transport phenomena

    International Nuclear Information System (INIS)

    Fernandez, J.M.; Piault, E.; Macouillard, D.; Juncos, C.

    2006-01-01

    In 1960 experiments were carried out on the transfer of 9 Sr between soil, grapes and wine. The experiments were conducted in situ on a piece of land limited by two control strips. The 9 Sr migration over the last 40 years was studied by performing radiological and physico-chemical characterizations of the soil on eight 70 cm deep cores. The vertical migration modeling of 9 Sr required the definition of a triple layer conceptual model integrating the rainwater infiltration at constant flux as the only external factor of influence. Afterwards the importance of a detailed soil characterization for modeling was discussed and satisfactory simulation of the 9 Sr vertical transport was obtained and showed a calculated migration rate of about 1.0 cm year -1 in full agreement with the in situ measured values. The discussion was regarding some of the key parameters such as granulometry, organic matter content (in the Van Genuchten parameter determination), Kd and the efficient rainwater infiltration. Besides the experimental data, simplifying assumptions in modeling such as water-soil redistribution calculation and factual discontinuities in conceptual model were examined

  11. Demonstration testing and evaluation of in situ soil heating. Revision 1, Demonstration system design

    International Nuclear Information System (INIS)

    Dev, H.

    1994-01-01

    Over the last nine years IIT Research Institute (IITRI) has been developing and testing the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. The vaporized contaminants, water vapor and air are recovered from the heated zone by means of a vacuum manifold system which collects gases from below surface as well as from the soil surface. A vapor barrier is used to prevent fugitive emissions of the contaminants and to control air infiltration to minimize dilution of the contaminant gases and vapors. The recovered gases and vapors are conveyed to an on site vapor treatment system for the clean up of the vent gases. Electrical energy is applied to the soil by forming an array of electrodes in the soil which are electrically interconnected and supplied with power. The electrodes are placed in drilled bore holes which are made through the contaminated zone. There are two versions of the in situ heating and soil treatment process: the f irst version is called the In Situ Radio Frequency (RF) Soil Decontamination Process and the second version is called the In Situ Electromagnetic (EM) Soil Decontamination Process. The first version, the RF Process is capable of heating the soil in a temperature range of 100 degrees to 400 degrees C. The soil temperature in the second version, the EM Process, is limited to the boiling point of water under native conditions. Thus the soil will be heated to a temperature of about 85 degrees to 95 degrees C. In this project IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site due to the fact that most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 degrees to 95 degrees C

  12. Multi-time scale analysis of the spatial representativeness of in situ soil moisture data within satellite footprints

    Science.gov (United States)

    We conduct a novel comprehensive investigation that seeks to prove the connection between spatial and time scales in surface soil moisture (SM) within the satellite footprint (~50 km). Modeled and measured point series at Yanco and Little Washita in situ networks are first decomposed into anomalies ...

  13. In situ determination of soil carbon pool by inelastic neutron scattering: Comparison with dry combustion

    International Nuclear Information System (INIS)

    Wielopolski, L.; Mitra, S.; Chatterjee, A.; Lal, R.

    2011-01-01

    There is a well-documented need for new in situ technologies for elemental analysis of soil, particularly for carbon (C), that overcome the limitations of the currently established chemical method by dry combustion (DC). In this work, we evaluated the concordance between the new INS (inelastic neutron scattering) technology and the DC method. The comparisons were carried out in the high C content (30-40%) organic soils of Willard, Ohio (4 sites), in natural forest in Willard, Ohio (1 site), and in a watershed pasture, with an ∼ 10 o slope, in Coshocton, Ohio (5 sites). In addition to these stationary measurements, the organic soil and the pasture were continuously scanned with the inelastic neutron scattering (INS) system to obtain the transects mean C value. Both types of measurements, INS and DC, registered a decline in the surface density of C along transects in the watershed and in the organic soil. Similarly, both recorded a drop in C in the organic soil of about 0.16%. In the pastureland, declines in C levels of 0.08% and 0.10% were observed, respectively, by DC and INS. Combining the results from the three sites yielded a very satisfactory correlation between the INS- and DC-responses, with a regression coefficient, r 2 , value of about 0.99. This suggests the possibility of establishing a universal regression line for various soil types. In addition, we demonstrated the ability of INS to measure the mean value over transect. In organic soil the mean value of an INS scan agreed, ∼ 0.5%, with the mean values of the DC analysis, whereas large discrepancy between these two was recorded in the pastureland. Overall, the various trends observed in C measurements by INS concurred with those determined by the DC method, so enhancing the confidence in the new INS technology.

  14. Superfund Innovative Technology Evaluation - Demonstration Bulletin: In-Situ Soil Stabilization

    Science.gov (United States)

    In-situ stabilization technology immobilizes organics and inorganic compounds in wet or dry soils by using reagents (additives) to polymerize with the soils and sludges producing a cement-like mass. Two basic components of this technology are the Geo-Con/DSM Deep Soil Mixing Sy...

  15. Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils

    International Nuclear Information System (INIS)

    Heiser, J.; Fuhrmann, M.

    1997-09-01

    This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex

  16. Interpreting, measuring, and modeling soil respiration

    Science.gov (United States)

    Michael G. Ryan; Beverly E. Law

    2005-01-01

    This paper reviews the role of soil respiration in determining ecosystem carbon balance, and the conceptual basis for measuring and modeling soil respiration. We developed it to provide background and context for this special issue on soil respiration and to synthesize the presentations and discussions at the workshop. Soil respiration is the largest component of...

  17. Application of in-situ measurement to determine 137Cs in the Swiss Alps

    International Nuclear Information System (INIS)

    Schaub, M.; Konz, N.; Meusburger, K.; Alewell, C.

    2010-01-01

    Establishment of 137 Cs inventories is often used to gain information on soil stability. The latter is crucial in mountain systems, where ecosystem stability is tightly connected to soil stability. In-situ measurements of 137 Cs in steep alpine environments are scarce. Most studies have been carried out in arable lands and with Germanium (Ge) detectors. Sodium Iodide (NaI) detector system is an inexpensive and easy to handle field instrument, but its validity on steep alpine environments has not been tested yet. In this study, a comparison of laboratory measurements with GeLi detector and in-situ measurements with NaI detector of 137 Cs gamma soil radiation has been done in an alpine catchment with high 137 Cs concentration (Urseren Valley, Switzerland). The aim of this study was to calibrate the in-situ NaI detector system for application on steep alpine slopes. Replicate samples from an altitudinal transect through the Urseren Valley, measured in the laboratory with a GeLi detector, showed a large variability in 137 Cs activities at a meter scale. This small-scale heterogeneity determined with the GeLi detector is smoothed out by uncollimated in-situ measurements with the NaI detector, which provides integrated estimates of 137 Cs within the field of view (3.1 m 2 ) of each measurement. There was no dependency of 137 Cs on pH, clay content and carbon content, but a close relationship was determined between measured 137 Cs activities and soil moisture. Thus, in-situ data must be corrected for soil moisture. Close correlation (R 2 = 0.86, p 137 Cs activities (in Bq kg -1 ) estimated with in-situ (NaI detector) and laboratory (GeLi detector) methods. We thus concluded that the NaI detector system is a suitable tool for in-situ measurements in alpine environments. This paper describes the calibration of the NaI detector system for field application under elevated 137 Cs activities originating from Chernobyl fallout.

  18. Calibration and application of a HPGe gamma spectrometer for in-situ measurements

    International Nuclear Information System (INIS)

    Xiao Xuefu; Yue Qingyu

    1992-02-01

    The principle and methods of the calibration for an in-situ γ spectrometer are introduced. The calibration for a portable HPGe γ spectrometer has been completed. The N f /A(peak count rate per unit activity in soil) and N f /D(peak count rate per unit absorbed dose rate in the air) are listed. The uncertainties of the calibration factors are estimated. The in-situ measurements have been carried out in surroundings near the nuclear facilities and the data are compared with those measured by other methods

  19. Process for in-situ biodegradation of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Ely, D.L.; Heffner, D.A.

    1991-01-01

    This patent describes an in situ process for biodegrading hydrocarbons by drawing oxygen into an undisturbed hydrocarbon contaminated zone in a fluid permeable soil. It comprises: establishing a borehole extending from the earth's surface through a hydrocarbon contaminated zone having hydrocarbon degrading microbes therein; lining the borehole with a fluid impermeable liner coaxially spaced and sealingly connected to the inside surface of the borehole and extending from the earth's surface to the hydrocarbon-contaminated zone; the liner including a fluid permeable portion extending from the lower end thereof and through at least a portion of the hydrocarbon contaminated zone, fluidly connecting a source of negative pressure to the fluid impermeable line; evacuating gas from the borehole through the fluid permeable portion of the liner at a rate sufficient to draw air from the earth's surface into the hydrocarbon containing zone; and adjusting the flow rate of the evacuated gas so that the amount of hydrocarbon biodegradation therein is within 50% of the maximum hydrocarbon biodegradation rate as detected by the volume of carbon dioxide in the evacuated gas

  20. A combined process coupling phytoremediation and in situ flushing for removal of arsenic in contaminated soil.

    Science.gov (United States)

    Yan, Xiulan; Liu, Qiuxin; Wang, Jianyi; Liao, Xiaoyong

    2017-07-01

    Phytoremediation and soil washing are both potentially useful for remediating arsenic (As)-contaminated soils. We evaluated the effectiveness of a combined process coupling phytoremediation and in situ soil flushing for removal of As in contaminated soil through a pilot study. The results showed that growing Pteris vittata L. (P.v.) accompanied by soil flushing of phosphate (P.v./Flushing treatment) could significantly decrease the total As concentration of soil over a 37day flushing period compared with the single flushing (Flushing treatment). The P.v./Flushing treatment removed 54.04% of soil As from contaminated soil compared to 47.16% in Flushing treatment, suggesting that the growth of P. vittata was beneficial for promoting the removal efficiency. We analyzed the As fractionation in soil and As concentration in soil solution to reveal the mechanism behind this combined process. Results showed that comparing with the control treatment, the percent of labile arsenate fraction significantly increased by 17% under P.v./Flushing treatment. As concentration in soil solution remained a high lever during the middle and later periods (51.26-56.22mg/L), which was significantly higher than the Flushing treatment. Although soil flushing of phosphate for more than a month, P. vittata still had good accumulation and transfer capacity of As of the soil. The results of the research revealed that combination of phytoremediation and in situ soil flushing is available to remediate As-contaminated soils. Copyright © 2016. Published by Elsevier B.V.

  1. Measurements of soil respiration and simple models dependent on moisture and temperature for an Amazonian southwest tropical forest

    NARCIS (Netherlands)

    Zanchi, F.B.; Rocha, Da H.R.; Freitas, De H.C.; Kruijt, B.; Waterloo, M.J.; Manzi, A.O.

    2009-01-01

    Soil respiration plays a significant role in the carbon cycle of Amazonian tropical forests, although in situ measurements have only been poorly reported and the dependence of soil moisture and soil temperature also weakly understood. This work investigates the temporal variability of soil

  2. Remediation of PCB-contaminated soils. Risk analysis of biological in situ processes

    Energy Technology Data Exchange (ETDEWEB)

    Rein, Arno

    2006-12-08

    Biological in situ measures can be efficient and cost effective options for the remediation of contaminated sites. However, the accepted application requires a detailed and reliable analysis of potential impacts. An important objective is to quantify the potential of contaminant degradation and metabolite formation. This thesis addresses a quantitative multimedia risk assessment. Methodologies and tools were developed for this objective and applied to evaluate in situ bioremediation of soils contaminated with polychlorinated biphenyls (PCBs). Soil bacteria in conjunction with plant roots were addressed (rhizoremediation) with a focus on the use of genetically modified microorganisms (GMOs). PCBs are known to be harmful compounds that are ubiquitously distributed in the environment. PCB contaminations in soil and groundwater were identified as important problems. 209 different congeners are sterically possible, but not all are of environmental significance. PCB congeners of concern were evaluated with respect to their potential toxicity, environmental occurrence and mobility. For this objective, congener specific data on the toxicity potential and the frequency in environmental matrices were collected. To quantify the mobility potential, multimedia modelling was performed applying deterministic and probabilistic procedures. 56 PCB congeners of concern were evaluated, and multimedia risk assessments of PCB-contaminated soils should concentrate on this group. Kinetics parameters were specified for degradation experiments with individual PCB congeners in solution and different bacterial strains. These laboratory assays were performed with wild-type Burkholderia sp. strain LB400 and the genetically modified Pseudomonas fluorescens strains F113pcb and F113L::1180. The F113 derivatives demonstrated a good survival ability in willow (Salix sp.) rhizosphere (mesocosm experiments). Therefore, and due to high depletion rates, rhizoremediation with F113L::1180 and willow

  3. Feasibility testing of in situ vitrification of uranium-contaminated soils

    International Nuclear Information System (INIS)

    Ikuse, H.; Tsuchino, S.; Tasaka, H.; Timmerman, C.L.

    1989-01-01

    Process feasibility studies using in situ vitrification (ISV) were successfully performed on two different uranium-contaminated wastes. In situ vitrification is a thermal treatment process that converts contaminated soils into durable glass and crystalline form. Of the two different wastes, one waste was uranium mill tailings, while the other was uranium-contaminated soils which had high water contents. Analyses of the data from the two tests are presented

  4. In situ air sparging for bioremediation of groundwater and soils

    International Nuclear Information System (INIS)

    Lord, D.; Lei, J.; Chapdelaine, M.C.; Sansregret, J.L.; Cyr, B.

    1995-01-01

    Activities at a former petroleum products depot resulted in the hydrocarbon contamination of soil and groundwater over a 30,000-m 2 area. Site remediation activities consisted of three phases: site-specific characterization and treatability study, pilot-scale testing, and full-scale bioremediation. During Phase 1, a series of site/soil/waste characterizations was undertaken to ascertain the degree of site contamination and to determine soil physical/chemical and microbiological characteristics. Treatability studies were carried out to simulate an air sparging process in laboratory-scale columns. Results indicated 42% mineral oil and grease removal and 94% benzene, toluene, ethylbenzene, and xylenes (BTEX) removal over an 8-week period. The removal rate was higher in the unsaturated zone than in the saturated zone. Phase 2 involved pilot-scale testing over a 550-m 2 area. The radius of influence of the air sparge points was evaluated through measurements of dissolved oxygen concentrations in the groundwater and of groundwater mounding. A full-scale air sparging system (Phase 3) was installed on site and has been operational since early 1994. Physical/chemical and microbiological parameters, and contaminants were analyzed to evaluate the system performance

  5. In situ measurement of some gamma-emitting radionuclides in plant communities of the South Carolina coastal plain

    International Nuclear Information System (INIS)

    Ragsdale, H.L.; Tanner, B.K.; Coleman, R.N.; Palms, J.M.; Wood, R.E.

    1978-01-01

    In situ and laboratory gamma-ray spectroscopy measurements were taken in nine scrub oak forests and nine old fields to determine the applicability of in situ analysis in the coastal plain. Data collected at each of the 18 sites included a 2-hr count, soil density and moisture estimates, and vegetation measurements. Samples returned to the laboratory for radiometric analysis included litter and herbaceous vegetation and soil cores. Analysis of the gamma-emitter detection frequencies, concentrations, and burdens showed good to excellent agreement between laboratory and in situ methods. Generally, forests were determined to be superior in situ sampling systems. Laboratory analysis of collected samples may be a superior technique for gamma emitters with low energies, low concentrations, or nonuniform distributions in the soil. Three potential uses of in situ Ge(Li) spectrometers were identified and discussed in terms of their limits and of the replicate ecosystems appropriate for in situ analyses. Although the variety and the biogeochemical cycling regimes of southeastern coastal plain ecosystems complicate in situ analyses, it was concluded that comparable and probably accurate results can be achieved using in situ technology

  6. Comparison of GRACE with in situ hydrological measurement data ...

    African Journals Online (AJOL)

    Comparison of GRACE with in situ hydrological measurement data shows storage depletion in Hai River basin, Northern China. ... of the world, their application in conjunction with hydrological models could improve hydrological studies.

  7. A simplified in-situ electrochemical decontamination of lead from polluted soil (abstract)

    International Nuclear Information System (INIS)

    Ansari, T.M.; Ahmad, I.; Khan, Q.M.; Chaudhry, A.H.

    2011-01-01

    This paper reports a simplified In-Situ electrochemical method for remediation of field soil contaminated with lead. A series of electrochemical decontamination experiments including variable conditions such as operating duration and application of enhancement reagent were performed to demonstrate the efficiency of lead removal from spiked and polluted soil samples collected from Lahore, Pakistan. The results showed that the efficiency of lead removal from the contaminated soil increased with increasing the operating duration under a set of experimental conditions. The reagent used as complexing and solubilizing agent i.e. EDTA was found to be efficient in removing lead from the polluted soil. After 15 days duration, 85 % lead removal efficiency was observed in spiked soil under enhanced conditions , however, 63 % lead removal was achieved from the polluted soil samples by the simplified In-situ electrochemical decontamination method. The method is simple, rapid, cheaper and suitable for soil remediation purposes. (author)

  8. Comparative review of techniques used for in situ remediation of contaminated soils

    International Nuclear Information System (INIS)

    Escusol Tomey, M.; Rodriguez Abad, R.

    2014-01-01

    Soil pollution may influence the geotechnical parameters of the soil itself, properties such as solid particle density or water within its pores. It may also vary its friction angle, modify its structure and texture, or change the properties of its constitutive minerals due to the inclusion of polluting components. For these reasons, soil decontamination is an important factor to consider in geotechnics. This work focuses on those soil decontamination techniques carried out in situ, since they allow to eliminate soil pollutants in a less invasive way than confinement, containment or ex situ remediation techniques, causing a minor soil alteration and, therefore, affecting less to its mechanical properties. These factors should be taken into account when carrying out a geotechnical performance on a previously decontaminated soil. (Author)

  9. A new method for the determination of radionuclide distribution in the soil by in situ gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Zombori, P.; Andrasi, A.; Nemeth, I.

    1992-06-01

    A method was searched for to estimate the penetration characteristics of fallout radioactivity, using only spectral information obtained by in situ spectrometric measurements, and avoiding the need for long and tiresome sampling and sample analysis procedures. To speed up the analysis for depth distribution determination of fallout radioactivity in soil, an instrumental method based on the shape of spectra was developed. The ratio of peak to valley (the region between the photopeak and Compton edge) depends on the penetration of radionuclides in soil, providing an estimation of depth profile. These ratios were calculated and the method was tested by actual measurements. (R.P.) 7 refs.; 14 figs.; 2 tabs

  10. Determination of 228Th, 226Ra and 40K in Soil Using In-Situ GammaSpectrometer

    International Nuclear Information System (INIS)

    Bunawas; Wahyudi; Syarbaini; Untara

    2000-01-01

    Determination of natural radionuclide in latosol soil at six locationsaround PPTN Serpong by using Inspector portable gamma spectrometer with highpurity Germanium detector (HPGe) which has 26% relative efficiency had beenobtained. Radionuclides data of 228 Th, 226 Ra and 40 K were obtained in4 hours, shorter than laboratories analysis which needed 3 weeks. Thedifferences between in-situ measurement and laboratory were 3.6% to 56.2% forsix conditions of soil measured. According to the specific activity dataanalysis using statistic hypothesis, the result shows that the activity of 228 Th and 226 Ra are independent on location, but 40 K is dependent onlocation. (author)

  11. In situ measurement of conductivity during nanocomposite film deposition

    International Nuclear Information System (INIS)

    Blattmann, Christoph O.; Pratsinis, Sotiris E.

    2016-01-01

    Highlights: • Flame-made nanosilver dynamics are elucidated in the gas-phase & on substrates. • The resistance of freshly depositing nanosilver layers is monitored. • Low T g polymers facilitate rapid synthesis of conductive films. • Conductive nanosilver films form on top of or within the polymer depending on MW. - Abstract: Flexible and electrically conductive nanocomposite films are essential for small, portable and even implantable electronic devices. Typically, such film synthesis and conductivity measurement are carried out sequentially. As a result, optimization of filler loading and size/morphology characteristics with respect to film conductivity is rather tedious and costly. Here, freshly-made Ag nanoparticles (nanosilver) are made by scalable flame aerosol technology and directly deposited onto polymeric (polystyrene and poly(methyl methacrylate)) films during which the resistance of the resulting nanocomposite is measured in situ. The formation and gas-phase growth of such flame-made nanosilver, just before incorporation onto the polymer film, is measured by thermophoretic sampling and microscopy. Monitoring the nanocomposite resistance in situ reveals the onset of conductive network formation by the deposited nanosilver growth and sinternecking. The in situ measurement is much faster and more accurate than conventional ex situ four-point resistance measurements since an electrically percolating network is detected upon its formation by the in situ technique. Nevertheless, general resistance trends with respect to filler loading and host polymer composition are consistent for both in situ and ex situ measurements. The time lag for the onset of a conductive network (i.e., percolation) depends linearly on the glass transition temperature (T g ) of the host polymer. This is attributed to the increased nanoparticle-polymer interaction with decreasing T g . Proper selection of the host polymer in combination with in situ resistance monitoring

  12. Comparison of in situ gamma soil analysis and soil sampling data for mapping 241Am and 239Pu soil concentrations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kirby, J.A.; Anspaugh, L.R.; Phelps, P.L.; Huckabay, G.W.; Markwell, F.; Barnes, M.

    1976-01-01

    Soil sampling and in situ 241 Am-gamma counting with an array of four high purity, planar, Ge detectors are compared as means of determining soil concentration contours of plutonium and their associated uncertainties. Results of this survey, which covered an area of approximately 300,000 m 2 , indicate that with one-third the number of sampling locations, the in situ gamma survey provided soil concentration contours with confidence intervals that were about one-third as wide as those obtained with soil sampling. The methods of the survey are described and a discussion of advantages and limitations of both methods is given

  13. Comparison of in situ gamma soil analysis and soil sampling data for mapping 241Am and 239Pu soil concentrations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kirby, J.A.; Anspaugh, L.R.; Phelps, P.L.; Huckabay, G.W.; Markwell, F.R.; Barnes, M.G.

    1977-01-01

    Soil sampling and in situ 241 Am-gamma counting with an array of four high-purity, planar, Ge detectors are compared as means of determining soil concentration contours of plutonium and their associated uncertainties. Results of this survey, which covered an area of approximately 300,000 m 2 , indicate that with one-third the number of sampling locations, the in situ gamma survey provided soil concentration contours with confidence intervals that were about one-third as wide as those obtained with soil sampling. The methods of the survey are described and a discussion of advantages and limitations of both methods is given

  14. Measurement of radioactive soil contamination from the air

    International Nuclear Information System (INIS)

    Loman, A.C.; Kuile, C.R. ter; Slaper, H.

    1990-09-01

    In-situ gamma spectrometry can be used to determine the qualitative and quantitative deposition of radioactive materials on the ground surface. By applying the in-situ spectrometry method using either a helicopter or an airplane, large areas can be scanned in a short period of time. In this report the results of in-situ gamma spectroscopic measurements taken from a helicopter are described. Measurements were carried out using a single point source, a field of 36 point sources, and using the present ground contamination due to fall-out from the Chernobyl accident and atom bombs. The results of these measurements were used to determine calibration factors, which were in agreement with a calibration obtained using more simple (and less expensive) laboratory measurements in combination with flux calculations. Detection limits for the measurement of surface contamination were determined. At a height of 50 meters above the surface and using a measurement time of 2 minutes, the minimally detectable surface contamination was 1.1 kBqm -2 for a Cs-137 contamination and 2.1 kBqm -2 for I-131 contamination. Fall-out determinations based on measurements taken at a height of 50 meters were in agreement with determinations taken at a height of 1 meter, and with the results obtained measuring soil samples. The in-situ gamma spectroscopy, using helicopter or airplane, is a fast and powerful method for mapping surface contamination. (author). 13 refs.; 18 figs.; 13 tabs

  15. Demonstration, testing, & evaluation of in situ heating of soil. Draft final report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-02-12

    This document is a draft final report (Volume 1) for US DOE contract entitled, {open_quotes}Demonstration Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120{degrees} to 130{degrees}C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow.

  16. Demonstration, testing, ampersand evaluation of in situ heating of soil. Draft final report, Volume I

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-01-01

    This document is a draft final report (Volume 1) for US DOE contract entitled, open-quotes Demonstration Testing and Evaluation of In Situ Soil Heating,close quotes Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120 degrees to 130 degrees C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow

  17. Effective soil-stiffness validation : Shaker excitation of an in-situ monopile foundation

    NARCIS (Netherlands)

    Versteijlen, W.G.; Renting, F.W.; van der Valk, P. L.C.; van Dalen, K.N.; Metrikine, A.

    2017-01-01

    In an attempt to decrease the modelling uncertainty associated with the soil-structure interaction of large-diameter monopile foundations, a hydraulic shaker was used to excite a real-sized, in-situ monopile foundation in stiff, sandy soil in a near-shore wind farm. The response in terms of

  18. Process, engineering and design aspects of contaminated soil bioremediation. Pt. 1 In situ treatments

    International Nuclear Information System (INIS)

    De Fraja Frangipane, E.; Andreottola, G.; Tatano, F.

    1995-01-01

    The present paper is an up-to-date overview of contaminated soil bioremediation techniques, which are analyzed in detail with regard to main process, engineering and design aspects. General biochemical/kinetic aspects of bioremediation of contaminated soil, and in situ treatments, are discussed in this part one

  19. APPLICATION STRATEGIES AND DESIGN CRITERIA FOR IN SITU BIOREMEDIATION OF SOIL AND GROUNDWATER IMPACTED BY PAHS

    Science.gov (United States)

    Biotreatability studies conducted in our laboratory used soils from two former wood-treatment facilities to evaluate the use of in situ bioventing and biosparging applications for their potential ability to remediate soil and groundwater containing creosote. The combination of ph...

  20. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Science.gov (United States)

    Demyan, M. S.; Rasche, F.; Schütt, M.; Smirnova, N.; Schulz, E.; Cadisch, G.

    2013-05-01

    An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA) in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS) is being proposed to rapidly characterize soil organic matter (SOM) to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2) in order to relate evolved gas (i.e., CO2) to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i) the Static Fertilization Experiment, Bad Lauchstädt (Chernozem), from treatments of farmyard manure (FYM), mineral fertilizer (NPK), their combination (FYM + NPK) and control without fertilizer inputs; (ii) Kraichgau; and (iii) Swabian Alb (Cambisols) areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM), sand and stable aggregates (Sa + A), silt and clay (Si + C), and NaOCl oxidized Si + C (rSOC) to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm-1) being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min-1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS) for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max). Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the Chernozem

  1. In situ radiation measurements at the former Soviet Nuclear Test Site

    International Nuclear Information System (INIS)

    Tipton, W.J.

    1996-06-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the former Soviet Nuclear Test Site near Semipalatinsk, Kazakhstan, during the period of July 21-30, 1994. The survey team measured the terrestrial gamma radiation at selected areas on the site to determine the levels of natural and man-made radiation. The survey was part of a cooperative effort between the United States team and teams of radiation scientists from the National Nuclear Center of the Republic of Kazakhstan and the V.G. Khlopin Radium Institute in St. Petersburg, Russia. In addition to in situ radiation measurements made by the United States and Russian teams, soil samples were collected and analyzed by the Russian and Kazakhstani teams. All teams conducted their measurements at ten locations within the test site. The United States team also made a number of additional measurements to locate and verify the positions of three potential fallout plumes containing plutonium contamination from nonnuclear tests. In addition, the United States team made several measurements in Kurchatov City, the housing area used by personnel and their families who work(ed) at the test sites. Comparisons between the United States and Russian in situ measurements and the soil sample results are presented as well as comparisons with a Soviet aerial survey conducted in 1990-1991. The agreement between the different types of measurements made by all three countries was quite good

  2. Demonstration, testing, and evaluation of in situ heating of soil. Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-04-05

    This document is a final reports in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating.

  3. Demonstration, testing, and evaluation of in situ heating of soil. Volume 1, Final report

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-01-01

    This document is a final reports in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating

  4. Measurement of soil creep by inclinometer

    Science.gov (United States)

    Robert R. Ziemer

    1977-01-01

    Abstract - Continued inclinometer measurements at borehole sites installed in 1964 in northern California suggest that previously reported rates of soil creep are excessively high. Upon analysis of 35 access casings located in forested and grassland sites, no consistent direction of soil movement could be detected. In addition, no significant rate of soil creep could...

  5. Visualization of Enzyme Activities in Earthworm Biopores by In Situ Soil Zymography.

    Science.gov (United States)

    Razavi, Bahar S; Hoang, Duyen; Kuzyakov, Yakov

    2017-01-01

    Earthworms produce biopores with strongly increased microbial and enzyme activities and consequently they form microbial hotspots in soil. In extremely dynamic microhabitats and hotspots such as earthworm biopores, the in situ enzyme activities are a footprint of process rates and complex biotic interactions. The effect of earthworms on enzyme activities inside biopores, relative to earthworm-free soil, can be visualized by in situ soil zymography. Here, we describe the details of the approach and discuss its advantages and limitations. Direct zymography provides high spatial resolution for quantitative images of enzyme activities in biopores.

  6. Evaluation of different field methods for measuring soil water infiltration

    Science.gov (United States)

    Pla-Sentís, Ildefonso; Fonseca, Francisco

    2010-05-01

    Soil infiltrability, together with rainfall characteristics, is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the direct measurement of water infiltration rates or its indirect deduction from other soil characteristics or properties has become indispensable for the evaluation and modelling of the previously mentioned processes. Indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, have demonstrated to be of limited value in most of the cases. Direct "in situ" field evaluations have to be preferred in any case. In this contribution we present the results of past experiences in the measurement of soil water infiltration rates in many different soils and land conditions, and their use for deducing soil water balances under variable climates. There are also presented and discussed recent results obtained in comparing different methods, using double and single ring infiltrometers, rainfall simulators, and disc permeameters, of different sizes, in soils with very contrasting surface and profile characteristics and conditions, including stony soils and very sloping lands. It is concluded that there are not methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the surface

  7. Demonstration testing and evaluation of in situ soil heating. Revision 1, Demonstration system design

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.

    1994-08-16

    Over the last nine years IIT Research Institute (IITRI) has been developing and testing the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. The vaporized contaminants, water vapor and air are recovered from the heated zone by means of a vacuum manifold system which collects gases from below surface as well as from the soil surface. A vapor barrier is used to prevent fugitive emissions of the contaminants and to control air infiltration to minimize dilution of the contaminant gases and vapors. The recovered gases and vapors are conveyed to an on site vapor treatment system for the clean up of the vent gases. Electrical energy is applied to the soil by forming an array of electrodes in the soil which are electrically interconnected and supplied with power. The electrodes are placed in drilled bore holes which are made through the contaminated zone. There are two versions of the in situ heating and soil treatment process: the f irst version is called the In Situ Radio Frequency (RF) Soil Decontamination Process and the second version is called the In Situ Electromagnetic (EM) Soil Decontamination Process. The first version, the RF Process is capable of heating the soil in a temperature range of 100{degrees} to 400{degrees}C. The soil temperature in the second version, the EM Process, is limited to the boiling point of water under native conditions. Thus the soil will be heated to a temperature of about 85{degrees} to 95{degrees}C. In this project IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site due to the fact that most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85{degrees} to 95{degrees}C.

  8. Measuring Soil Moisture in Skeletal Soils Using a COSMOS Rover

    Science.gov (United States)

    Medina, C.; Neely, H.; Desilets, D.; Mohanty, B.; Moore, G. W.

    2017-12-01

    The presence of coarse fragments directly influences the volumetric water content of the soil. Current surface soil moisture sensors often do not account for the presence of coarse fragments, and little research has been done to calibrate these sensors under such conditions. The cosmic-ray soil moisture observation system (COSMOS) rover is a passive, non-invasive surface soil moisture sensor with a footprint greater than 100 m. Despite its potential, the COSMOS rover has yet to be validated in skeletal soils. The goal of this study was to validate measurements of surface soil moisture as taken by a COSMOS rover on a Texas skeletal soil. Data was collected for two soils, a Marfla clay loam and Chinati-Boracho-Berrend association, in West Texas. Three levels of data were collected: 1) COSMOS surveys at three different soil moistures, 2) electrical conductivity surveys within those COSMOS surveys, and 3) ground-truth measurements. Surveys with the COSMOS rover covered an 8000-h area and were taken both after large rain events (>2") and a long dry period. Within the COSMOS surveys, the EM38-MK2 was used to estimate the spatial distribution of coarse fragments in the soil around two COSMOS points. Ground truth measurements included coarse fragment mass and volume, bulk density, and water content at 3 locations within each EM38 survey. Ground-truth measurements were weighted using EM38 data, and COSMOS measurements were validated by their distance from the samples. There was a decrease in water content as the percent volume of coarse fragment increased. COSMOS estimations responded to both changes in coarse fragment percent volume and the ground-truth volumetric water content. Further research will focus on creating digital soil maps using landform data and water content estimations from the COSMOS rover.

  9. Rapid in situ assessment for predicting soil quality using an algae-soaked disc seeding assay.

    Science.gov (United States)

    Nam, Sun-Hwa; Moon, Jongmin; Kim, Shin Woong; Kim, Hakyeong; Jeong, Seung-Woo; An, Youn-Joo

    2017-11-16

    The soil quality of remediated land is altered and this land consequently exerts unexpected biological effects on terrestrial organisms. Therefore, field evaluation of such land should be conducted using biological indicators. Algae are a promising new biological indicator since they are a food source for organisms in higher soil trophic levels and easily sampled from the soil. Field evaluation of soil characteristics is preferred to be testing in laboratory conditions because many biological effects cannot be duplicated during laboratory evaluations. Herein, we describe a convenient and rapid algae-soaked disc seeding assay for assessing soil quality in the field based on soil algae. The collection of algae is easy and rapid and the method predicts the short-term quality of contaminated, remediated, and amended farm and paddy soils. The algae-soaked disc seeding assay is yet to be extensively evaluated, and the method cannot be applied to loamy sand soil in in situ evaluations. The algae-soaked disc seeding assay is recommended for prediction of soil quality in in situ evaluations because it reflects all variations in the environment. The algae-soaked disc seeding assay will help to develop management strategies for in situ evaluation.

  10. Comparison between ex situ and in situ measurement methods for the assessment of radioactively contaminated land. Comparison between measurement methods for the characterisation of radioactively contaminated land

    International Nuclear Information System (INIS)

    Rostron, Peter D.; Ramsey, Michael H.; Heathcote, John A.

    2012-01-01

    In the UK, it is estimated that there may be 20,000,000 cubic metres of contaminated land at Sellafield alone. Harwell and Dounreay are known to have significant amounts of radioactive or nonradioactive contaminated land (NDA, 2006). It is therefore important to devise optimal methods for the characterisation of areas of land for radionuclide content, in order to enable cost-effective decommissioning. With chemical contaminants, ex situ measurements are made on a larger volume of soil than are in situ measurements, such as PXRF. However, the opposite is often true for the characterisation of radioactive contamination, when this involves the detection of penetrating radiation from γ-emitting radionuclides. This means that when investigating for hotspots of radioactive contamination at or near the ground surface, better coverage can be obtained using in situ methods. This leads to the question, what is the optimal strategy (e.g. percentage coverage, counting time) for in situ characterisation of radioactively contaminated land' Surveys on light-moderate contaminated areas of ground were conducted at Dounreay in order to compare the relative effectiveness of in situ and ex situ methods, both for the detection of radioactive hotspots and also for estimating the average radionuclide content of an area of ground. These surveys suggest that continuous coverage by in situ devices is more effective at hotspot detection, with ex situ laboratory measurements being less effective, although in one case elevated activity below 10 cm depth that was identified by ex situ measurement was not located by in situ measurement. The surveys also highlighted that careful choice of an appropriate spatial model is critical to the estimation of activity concentrations over averaging areas. Whereas continuous coverage may be considered necessary for hotspot identification, in the particular case of the detection of hot particles (where the particle is very small compared to the sampling

  11. The in situ measurement of road reflection.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1994-01-01

    This paper describes a procedure that has been designed to measure P(0;0), P(2;0) and P(1;90), the three values that are the basis for the C1-C2 system for measuring road reflection of light. The system was proposed in The Netherlands, and subsequently adopted by the CIE as an alternative to the

  12. In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions

    Science.gov (United States)

    Kean, J.W.; Staley, D.M.; Cannon, S.H.

    2011-01-01

    Debris flows often occur in burned steeplands of southern California, sometimes causing property damage and loss of life. In an effort to better understand the hydrologic controls on post-fire debris-flow initiation, timing and magnitude, we measured the flow stage, rainfall, channel bed pore fluid pressure and hillslope soil-moisture accompanying 24 debris flows recorded in five different watersheds burned in the 2009 Station and Jesusita Fires (San Gabriel and Santa Ynez Mountains). The measurements show substantial differences in debris-flow dynamics between sites and between sequential events at the same site. Despite these differences, the timing and magnitude of all events were consistently associated with local peaks in short duration (landslides. By identifying the storm characteristics most closely associated with post-fire debris flows, these measurements provide valuable guidance for warning operations and important constraints for developing and testing models of post-fire debris flows. copyright. 2011 by the American Geophysical Union.

  13. satellite and in-situ measurements

    Directory of Open Access Journals (Sweden)

    José de Jesús Salas Pérez

    2005-01-01

    Full Text Available La distribución espacial y temporal de la circulación superficial de la Bahía de Banderas se obtuvo con el empleo de series temporales de rapidez de viento, temperatura superficial del mar (AVHR radiómetro y un termógrafo, nivel del mar y trazas ascendentes y descendentes del radar altimétrico ERS-2. El período que abarca dichos datos es de cuatro años, ya que comenzó en el verano de 1997 y finalizó en el invierno de 2002. La marea en la Bahía es mixta (F=0.25 con predominio del armónico M2. La bahía no muestra características de resonancia con la marea del mar abierto. Amplitudes promedio de 30 cms., resultan en corrientes de marea de pocos cms./s. Las bajas frecuencias (periodos mayores a tres días parecen ser los principales generadores de la circulación marina en esta área, en la que predomina el periodo estacional sobre los otros periodos. FEOs fueron aplicadas a las componentes de velocidad, calculadas con observaciones de altimetría medidas en la boca de la Bahía, las cuales mostraron dos principales distribuciones espaciales. El primer periodo de distribución, que se extendió desde febrero hasta julio, muestra un flujo de entrada por la porción norte/sur de la bahía, con un flujo de salida por su boca (distribución anticiclónica. El segundo periodo se extiende desde agosto hasta diciembre y es opuesto al primero (distribución ciclónica. Las características de la circulación aquí presentadas son hipotéticas y observaciones de velocidad medidas in-situ deben confirmarlas

  14. Polluted soils with heavy metals. Stabilization by magnesium oxide. Ex-situ and in-situ testings; Suelos contaminados con metales pesados. Estabilizacion con oxido de magnesio. Ensayos ex situ-in situ

    Energy Technology Data Exchange (ETDEWEB)

    Cenoz, S.; Hernandez, J.; Gangutia, N.

    2004-07-01

    This work describes the use of Low-Grade MgO as a stabiliser agent for polluted soil reclaim. Low-Grade MgO may be an economically feasible alternative in the stabilisation of heavy metals from heavily contaminated soils. The effectiveness of Low-Grade MgO has been studied in three ex-situ stabilisation of heavily polluted soils contaminated by the flue-dust of pyrite roasting. LG-MgO provides an alkali reservoir guaranteeing long-term stabilisation without varying the pH conditions. The success of the ex-situ stabilisation was corroborated with the analysis of heavy metals in the leachates collected from the landfill o ver a long period of time. The study also includes the results obtained in an in-situ pilot scale stabilisation of contaminated soil. (Author) 17 refs.

  15. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization.

    Science.gov (United States)

    Zhai, Xiuqing; Li, Zhongwu; Huang, Bin; Luo, Ninglin; Huang, Mei; Zhang, Qiu; Zeng, Guangming

    2018-09-01

    The remediation of heavy metal-contaminated soils is a great challenge for global environmental sciences and engineering. To control the ecological risks of heavy metal-contaminated soil more effectively, the present study focused on the combination of soil washing (with FeCl 3 ) and in situ immobilization (with lime, biochar, and black carbon). The results showed that the removal rate of Cd, Pb, Zn, and Cu was 62.9%, 52.1%, 30.0%, and 16.7%, respectively, when washed with FeCl 3 . After the combined remediation (immobilization with 1% (w/w) lime), the contaminated soils showed 36.5%, 73.6%, 70.9%, and 53.4% reductions in the bioavailability of Cd, Cu, Pb, and Zn (extracted with 0.11M acetic acid), respectively, than those of the soils washed with FeCl 3 only. However, the immobilization with 1% (w/w) biochar or 1% (w/w) carbon black after washing exhibited low effects on stabilizing the metals. The differences in effects between the immobilization with lime, biochar, and carbon black indicated that the soil pH had a significant influence on the lability of heavy metals during the combined remediation process. The activity of the soil enzymes (urease, sucrase, and catalase) showed that the addition of all the materials, including lime, biochar, and carbon black, exhibited positive effects on microbial remediation after soil washing. Furthermore, lime was the most effective material, indicating that low soil pH and high acid-soluble metal concentrations might restrain the activity of soil enzymes. Soil pH and nutrition were the major considerations for microbial remediation during the combined remediation. These findings suggest that the combination of soil washing and in situ immobilization is an effective method to amend the soils contaminated with multiple heavy metals. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Granulometry and moisture influence for in situ soil analysis by portable EDXRF

    International Nuclear Information System (INIS)

    Melquiades, Fabio L.; Bastos, Rodrigo O.; Biase, Gabriel E.V.; Parreira, Paulo S.; Appoloni, Carlos R.

    2010-01-01

    Full text: The objective of this work was to verify the granulometry and the moisture influence in results when soils and sediment samples are measured for identification and quantification of metal, on field, employing a portable Energy Dispersive X-Ray Fluorescence (PXRF) equipment. Calibration curves, calculated using 5 reference samples, were used for sensitivity determination. A sediment Standard Reference Material from IAEA was used to certificate the sensitivity values. The PXRF-LFNA02 equipment, consisting of an Ag mini X-ray Tube and a Si-PIN detector, was employed to accomplish the measurements. Soil samples were collected and dried for 24 h at 60 deg C before granulometry tests. Three grounding procedures were analyzed for granulometry influence evaluation: samples without any grounding; grounded for one minute using a porcelain mortar and pestle set, but without sieving; and grounded for one minute using a porcelain mortar and pestle set, and sieved (smaller than 125 mum particle size). The obtained concentration values for Ti, Fe and Zr, are equivalent for the samples grounded for one minute and the samples grounded and sieved. This result indicates that, for in situ analysis of this soil, it is sufficient to ground the dried sample before to measure. Moisture tests were performed by sampling the soil in situ and leaving the samples on aluminum recipients in open air, at sun, for distinct times, from 0 up to 2h. A reference sample, dried for 24h at 60 deg C, was measured as well in order to compare the results. The concentration values obtained for the samples dried during 30 minutes or 120 minutes at sun are equivalent. On the other hand, the concentration values obtained for the samples dried during 24 h are higher than the values obtained for the same samples dried at sun. Moisture influences the concentrations values in around 20%. Some considerations are performed indicating a methodology for correction of this factor by using the background under

  17. Granulometry and moisture influence for in situ soil analysis by portable EDXRF

    Energy Technology Data Exchange (ETDEWEB)

    Melquiades, Fabio L.; Bastos, Rodrigo O.; Biase, Gabriel E.V. [Universidade Estadual do Centro Oeste (UNICENTRO), Guarapuava, PR (Brazil). Dept. de Fisica; Parreira, Paulo S.; Appoloni, Carlos R. [Universidade Estadual de Londrina (DF/UEL), PR (Brazil). Dept. de Fisica

    2010-07-01

    Full text: The objective of this work was to verify the granulometry and the moisture influence in results when soils and sediment samples are measured for identification and quantification of metal, on field, employing a portable Energy Dispersive X-Ray Fluorescence (PXRF) equipment. Calibration curves, calculated using 5 reference samples, were used for sensitivity determination. A sediment Standard Reference Material from IAEA was used to certificate the sensitivity values. The PXRF-LFNA02 equipment, consisting of an Ag mini X-ray Tube and a Si-PIN detector, was employed to accomplish the measurements. Soil samples were collected and dried for 24 h at 60 deg C before granulometry tests. Three grounding procedures were analyzed for granulometry influence evaluation: samples without any grounding; grounded for one minute using a porcelain mortar and pestle set, but without sieving; and grounded for one minute using a porcelain mortar and pestle set, and sieved (smaller than 125 mum particle size). The obtained concentration values for Ti, Fe and Zr, are equivalent for the samples grounded for one minute and the samples grounded and sieved. This result indicates that, for in situ analysis of this soil, it is sufficient to ground the dried sample before to measure. Moisture tests were performed by sampling the soil in situ and leaving the samples on aluminum recipients in open air, at sun, for distinct times, from 0 up to 2h. A reference sample, dried for 24h at 60 deg C, was measured as well in order to compare the results. The concentration values obtained for the samples dried during 30 minutes or 120 minutes at sun are equivalent. On the other hand, the concentration values obtained for the samples dried during 24 h are higher than the values obtained for the same samples dried at sun. Moisture influences the concentrations values in around 20%. Some considerations are performed indicating a methodology for correction of this factor by using the background under

  18. In situ measurements of Merensky pillar behaviour at Impala Platinum

    CSIR Research Space (South Africa)

    Watson, BP

    2009-12-01

    Full Text Available to stabilize the stoping excavations. This paper describes the in situ measurement, of stress within a Merensky pillar from Impala Platinum. These measurements were used to derive a stress-strain curve that includes pre and post failure behaviour. 2D FLAC...

  19. Demonstration testing and evaluation of in situ soil heating. Health and safety plan (Revision 2)

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.

    1994-12-28

    This document is the Health and Safety Plan (HASP) for the demonstration of IITRI`s EM Treatment Technology. In this process, soil is heated in situ by means of electrical energy for the removal of hazardous organic contaminants. This process will be demonstrated on a small plot of contaminated soil located in the Pit Area of Classified Burial Ground K-1070-D, K-25 Site, Oak Ridge, TN. The purpose of the demonstration is to remove organic contaminants present in the soil by heating to a temperature range of 85{degrees} to 95{degrees}C. The soil will be heated in situ by applying 60-Hz AC power to an array of electrodes placed in boreholes drilled through the soil. In this section a brief description of the process is given along with a description of the site and a listing of the contaminants found in the area.

  20. Demonstration testing and evaluation of in situ soil heating. Health and safety plan (Revision 2)

    International Nuclear Information System (INIS)

    Dev, H.

    1994-01-01

    This document is the Health and Safety Plan (HASP) for the demonstration of IITRI's EM Treatment Technology. In this process, soil is heated in situ by means of electrical energy for the removal of hazardous organic contaminants. This process will be demonstrated on a small plot of contaminated soil located in the Pit Area of Classified Burial Ground K-1070-D, K-25 Site, Oak Ridge, TN. The purpose of the demonstration is to remove organic contaminants present in the soil by heating to a temperature range of 85 degrees to 95 degrees C. The soil will be heated in situ by applying 60-Hz AC power to an array of electrodes placed in boreholes drilled through the soil. In this section a brief description of the process is given along with a description of the site and a listing of the contaminants found in the area

  1. In situ measurements of thoron exhalation rate in Okinawa (Japan)

    International Nuclear Information System (INIS)

    Shiroma, Y.; Isa, N.; Hosoda, M.; Sorimachi, A.; Ishikawa, T.; Tokonami, S.; Furukawa, M.

    2010-01-01

    Thoron exhalation rates from the ground surface were measured at 57 sites on Okinawa Island (Japan), using a ZnS(Ag) scintillation detector equipped with photomultiplier. The arithmetic means ± SD, median ± SD, minimum and maximum of the rates (unit: Bq m -2 s -1 ) were estimated to be 1.9 ± 1.4, 1.6 ± 0.3, 0.04 and 6.2, respectively. The soils distributed on the island are generally classified into dark red soils, residual regosols, as well as red and yellow soils. While it was assumed that the soils were originated from the bedrock, recent studies suggested that the main material of dark red soils is the East Asian eolian dust. In the dark red soils area, the exhalation rate is relatively higher than that in the other areas. This suggested that the eolian dust was an enhancer for the environmental thoron concentration on Okinawa Island. (authors)

  2. In situ assessment of phytotechnologies for multicontaminated soil management.

    Science.gov (United States)

    Ouvrard, S; Barnier, C; Bauda, P; Beguiristain, T; Biache, C; Bonnard, M; Caupert, C; Cébron, A; Cortet, J; Cotelle, S; Dazy, M; Faure, P; Masfaraud, J F; Nahmani, J; Palais, F; Poupin, P; Raoult, N; Vasseur, P; Morel, J L; Leyval, C

    2011-01-01

    Due to human activities, large volumes of soils are contaminated with organic pollutants such as polycyclic aromatic hydrocarbons, and very often by metallic pollutants as well. Multipolluted soils are therefore a key concern for remediation. This work presents a long-term evaluation of the fate and environmental impact of the organic and metallic contaminants of an industrially polluted soil under natural and plant-assisted conditions. A field trial was followed for four years according to six treatments in four replicates: unplanted, planted with alfalfa with or without mycorrhizal inoculation, planted with Noccaea caerulescens, naturally colonized by indigenous plants, and thermally treated soil planted with alfalfa. Leaching water volumes and composition, PAH concentrations in soil and solutions, soil fauna and microbial diversity, soil and solution toxicity using standardized bioassays, plant biomass, mycorrhizal colonization, were monitored. Results showed that plant cover alone did not affect total contaminant concentrations in soil. However, it was most efficient in improving the contamination impact on the environment and in increasing the biological diversity. Leaching water quality remained an issue because of its high toxicity shown by micro-algae testing. In this matter, prior treatment of the soil by thermal desorption proved to be the only effective treatment.

  3. In situ measurement of laser beam quality

    Science.gov (United States)

    Hashemi, Somayeh Sadat; Ghavami Sabouri, Saeed; Khorsandi, Alireza

    2017-09-01

    An innovative optical method is introduced for the beam quality measurement of any arbitrary transverse mode based on the reconstruction of the mode from a few-frame image of the beam cross-section. This is performed by the decomposition of a mode to its basic Hermite-Gaussian modal coefficients. The performance of the proposed method is examined through M 2-factor measurement of the beam of a Nd:YAG laser which was forced to oscillate in a certain mode using a crossed rectangular intracavity aperture. Obtained results have shown that this method can be alternatively replaced for the hologram- and ISO-based techniques recently exploiting for beam quality measurement regardless of the mode type and the position of utilized CCD camera along the beam direction.

  4. Feasibility of in situ beta ray measurements in underwater environment.

    Science.gov (United States)

    Park, Hye Min; Park, Ki Hyun; Kang, Sung Won; Joo, Koan Sik

    2017-09-01

    We describe an attempt at the development of an in situ detector for beta ray measurements in underwater environment. The prototype of the in situ detector is based on a CaF2: Eu scintillator using crystal light guide and Si photomultiplier. Tests were conducted using various reference sources for evaluating the linearity and stability of the detector in underwater environment. The system is simple and stable for long-term monitoring, and consumes low power. We show here an effective detection distance of 7 mm and a 2.273 MeV end-point energy spectrum of 90 Sr/ 90 Y when using the system underwater. The results demonstrate the feasibility of in situ beta ray measurements in underwater environment and can be applied for designing an in situ detector for radioactivity measurement in underwater environment. The in situ detector can also have other applications such as installation on the marine monitoring platform and quantitative analysis of radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Monitoring of In-Situ Remediation By Time Lapse 3D Geo-Electric Measurements

    Science.gov (United States)

    Kanli, A. I.; Tildy, P.; Neducza, B.; Nagy, P.; Hegymegi, C.

    2017-12-01

    Injection of chemical oxidant solution to degrade the subsurface contaminants can be used for hydrocarbon contamination remediation. In this study, we developed a non-destructive measurement strategy to monitor oxidative in-situ remediation processes. The difficulties of the presented study originate from the small volume of conductive solution that can be used due to environmental considerations. Due to the effect of conductive groundwater and the high clay content of the targeted layer and the small volume of conductive solution that can be used due to environmental considerations, a site specific synthetic modelling is necessary for measurement design involving the results of preliminary 2D ERT measurements, electrical conductivity measurements of different active agents and expected resistivity changes calculated by soil resistivity modelling. Because of chemical biodegradation, the results of soil resistivity modelling have suggested that the reagent have complex effects on contaminated soils. As a result the plume of resistivity changes caused by the injected agent was determined showing strong fracturing effect because of the high pressure of injection. 3D time-lapse geo-electric measurements were proven to provide a usable monitoring tool for in-situ remediation as a result of our sophisticated tests and synthetic modelling.

  6. Development of portable HPGe spectrometer for in situ measurements

    Directory of Open Access Journals (Sweden)

    Kail Artjoms

    2015-01-01

    Full Text Available In situ applications require a very high level of portability of high-resolution spectrometric equipment. Usage of HPGe detectors for radioactivity measurements in the environment or for nuclear safeguard applications, to combat illicit trafficking of nuclear materials or uranium and plutonium monitoring in nuclear wastes, has become a norm in the recent years. Portable HPGe-based radionuclide spectrometer with electrical cooling has lately appeared on the market for in situ applications. At the same time deterioration of energy resolution associated with vibrations produced by cryocooler or high weight of the instrument, short time of autonomous operation and high price of these spectrometers are limiting their usage in many cases. In this paper we present development results of ultra compact hand held all-in-one spectrometer for in situ measurements based on HPGe detector cooled by liquid nitrogen without listing the above disadvantages.

  7. Measurement of soil moisture using gypsum blocks

    DEFF Research Database (Denmark)

    Friis Dela, B.

    the building. Consequently, measuring the moisture of the surrounding soil is of great importance for detecting the source of moisture in a building. Up till now, information has been needed to carry out individual calibrations for the different types of gypsum blocks available on the market and to account......For the past 50 years, gypsum blocks have been used to determine soil moisture content. This report describes a method for calibrating gypsum blocks for soil moisture measurements. Moisture conditions inside a building are strongly influenced by the moisture conditions in the soil surrounding...

  8. In situ spectrophotometric measurement of dissolved inorganic carbon in seawater

    Science.gov (United States)

    Liua, Xuewu; Byrne, Robert H.; Adornato, Lori; Yates, Kimberly K.; Kaltenbacher, Eric; Ding, Xiaoling; Yang, Bo

    2013-01-01

    Autonomous in situ sensors are needed to document the effects of today’s rapid ocean uptake of atmospheric carbon dioxide (e.g., ocean acidification). General environmental conditions (e.g., biofouling, turbidity) and carbon-specific conditions (e.g., wide diel variations) present significant challenges to acquiring long-term measurements of dissolved inorganic carbon (DIC) with satisfactory accuracy and resolution. SEAS-DIC is a new in situ instrument designed to provide calibrated, high-frequency, long-term measurements of DIC in marine and fresh waters. Sample water is first acidified to convert all DIC to carbon dioxide (CO2). The sample and a known reagent solution are then equilibrated across a gas-permeable membrane. Spectrophotometric measurement of reagent pH can thereby determine the sample DIC over a wide dynamic range, with inherent calibration provided by the pH indicator’s molecular characteristics. Field trials indicate that SEAS-DIC performs well in biofouling and turbid waters, with a DIC accuracy and precision of ∼2 μmol kg–1 and a measurement rate of approximately once per minute. The acidic reagent protects the sensor cell from biofouling, and the gas-permeable membrane excludes particulates from the optical path. This instrument, the first spectrophotometric system capable of automated in situ DIC measurements, positions DIC to become a key parameter for in situ CO2-system characterizations.

  9. In situ formation of magnetite reactive barriers in soil for waste stabilization

    Science.gov (United States)

    Moore, Robert C.

    2003-01-01

    Reactive barriers containing magnetite and methods for making magnetite reactive barriers in situ in soil for sequestering soil contaminants including actinides and heavy metals, organic materials, iodine and technetium are disclosed. According to one embodiment, a two-step reagent introduction into soil takes place. In the first step, free oxygen is removed from the soil by separately injecting into the soil aqueous solutions of iron (II) salt, for example FeCl.sub.2, and base, for example NaOH or NH.sub.3 in about a 1:1 volume ratio. Then, in the second step, similar reagents are injected a second time (however, according to about a 1:2 volume ratio, iron to salt) to form magnetite. The magnetite formation is facilitated, in part, due to slow intrusion of oxygen into the soil from the surface. The invention techniques are suited to injection of reagents into soil in proximity to a contamination plume or source allowing in situ formation of the reactive barrier at the location of waste or hazardous material. Mixing of reagents to form. precipitate is mediated and enhanced through movement of reagents in soil as a result of phenomena including capillary action, movement of groundwater, soil washing and reagent injection pressure.

  10. Applicability study of using in-situ gamma-ray spectrometry technique for 137Cs and 210Pbex inventories measurement in grassland environments

    International Nuclear Information System (INIS)

    Li Junjie; Li Yong; Wang Yanglin; Wu Jiansheng

    2010-01-01

    In-situ measurement of fallout radionuclides 137 Cs and 210 Pb ex has the potential to assess soil erosion and sedimentation rapidly. In this study, inventories of 137 Cs and 210 Pb ex in the soil of Inner Mongolia grassland were measured using an In-situ Object Counting System (ISOCS). The results from the field study indicate that in-situ gamma-ray spectrometry has the following advantages over traditional laboratory measurements: no extra time is required for sample collection, no reference inventories are required, more economic, prompt availability of the results, the ability to average radionuclide inventory over a large area, and high precision.

  11. Groundbreaking technology: in-situ anaerobic bioremediation for treatment of contaminated soil and groundwater

    International Nuclear Information System (INIS)

    Fernandes, K.A.

    2002-01-01

    Anaerobic in-situ bioremediation is a technique often used to cleanse contaminated soil and groundwater. 'Anaerobic in-situ bioremediation' is a phrase with distinct terms all having relevance in the application of this technique. Anaerobic implies the absence of dissolved oxygen, while 'in-situ' simply means that the environmental cleansing occurs with out removing, displacing, or significantly disturbing the specimen or surrounding area. 'Bioremediation' is a term used to describe the biological use of microbes or plants to detoxify the environment. In order to properly implement this complex process, one must have an understanding of microbiology, biochemistry, genetics, metabolic processes, and structure and function of natural microbial communities. (author)

  12. Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2010-11-01

    Full Text Available The SMOSMANIA soil moisture network in Southwestern France is used to evaluate modelled and remotely sensed soil moisture products. The surface soil moisture (SSM measured in situ at 5 cm permits to evaluate SSM from the SIM operational hydrometeorological model of Météo-France and to perform a cross-evaluation of the normalised SSM estimates derived from coarse-resolution (25 km active microwave observations from the ASCAT scatterometer instrument (C-band, onboard METOP, issued by EUMETSAT and resampled to the Discrete Global Grid (DGG, 12.5 km gridspacing by TU-Wien (Vienna University of Technology over a two year period (2007–2008. A downscaled ASCAT product at one kilometre scale is evaluated as well, together with operational soil moisture products of two meteorological services, namely the ALADIN numerical weather prediction model (NWP and the Integrated Forecasting System (IFS analysis of Météo-France and ECMWF, respectively. In addition to the operational SSM analysis of ECMWF, a second analysis using a simplified extended Kalman filter and assimilating the ASCAT SSM estimates is tested. The ECMWF SSM estimates correlate better with the in situ observations than the Météo-France products. This may be due to the higher ability of the multi-layer land surface model used at ECMWF to represent the soil moisture profile. However, the SSM derived from SIM corresponds to a thin soil surface layer and presents good correlations with ASCAT SSM estimates for the very first centimetres of soil. At ECMWF, the use of a new data assimilation technique, which is able to use the ASCAT SSM, improves the SSM and the root-zone soil moisture analyses.

  13. enhanced ex-situ bioremediation of soil contaminated

    African Journals Online (AJOL)

    user

    refinery waste effluent having total organic compound (TOC) as model organic pollutant. .... the surface layer using white tissue paper. A soil .... the electrical stimulation of microbial PCB degradation in ... decrease of toxicity for bacterial action.

  14. Quality Improvement of the Satellite Soil Moisture Products by Fusing In Situ and GNSS-R Observation

    Science.gov (United States)

    Yuan, Q.; Xu, H.; Li, T.; Shen, H.; Zhang, L.

    2017-12-01

    Soil moisture plays a fundamental role in the hydrological cycle as well as in the energy partitioning. On this basis, it is of great concern to derive a long-term soil moisture time series on a global scale and monitor its temporal and spatial variations for practical applications. Although passive and active microwave satellites have been shown to provide useful retrievals of near-surface soil moisture at regional and global scales, the limitations in retrieval accuracy prevent them from high-quality applications in specific areas. On the other hand, measuring soil moisture straightly through in situdevices, such as soil moisture probes, is high accuracy, but is not able to derive global soil moisture maps. Recently, the ground-based GNSS-R method is emerging in monitoring near-surface soil moisture variations but still over limited spatial scales. In this paper, a multi-source data fusion method was applied to synthesize regional high-quality soil moisture products from 2015 to 2017 in western parts of the continental United States. Firstly, we put all the three soil moisture datasets into the generalized regression neural network (GRNN) model. The input signals of the model are SMOS and SMAP satellite-derived passive level 3 soil moisture daily products combined with date and latitude and longitude information, while the in situ measured and GNSS-R retrieved soil moisture are used as target. Finally, we apply the model to all the soil moisture time series in the experiment area and obtain two high-quality regional soil moisture products for SMOS and SMAP, respectively. The results before fusion show that the correlation coefficients between site-specific soil moisture and satellite-derived soil moisture are 0.39 for SMOS and 0.27 for SMAP and that unbiased root-mean-square errors (ubRMSE) are 0.113 for SMOS and 0.128 for SMAP, respectively. After applying the GRNN-R, the model fitted correlation coefficients have reached 0.72 for SMOS and 0.75 for SMAP and the

  15. Development of a low-cost soil moisture sensor for in-situ data collection by citizen scientists

    Science.gov (United States)

    Rajasekaran, E.; Jeyaram, R.; Lohrli, C.; Das, N.; Podest, E.; Hovhannesian, H.; Fairbanks, G.

    2017-12-01

    Soil moisture (SM) is identified as an Essential Climate Variable and it exerts a strong influence on agriculture, hydrology and land-atmosphere interaction. The aim of this project is to develop an affordable (low-cost), durable, and user-friendly, sensor and an associated mobile app to measure in-situ soil moisture by the citizen scientists or any K-12 students. The sensor essentially measures the electrical resistance between two metallic rods and the resistance is converted into SM based on soil specific calibration equations. The sensor is controlled by a micro-controller (Arduino) and a mobile app (available both for iOS and Android) reads the resistance from the micro-controller and converts it into SM for the soil type selected by the user. Extensive laboratory tests are currently being carried out to standardize the sensor and to calibrate the sensor for various soil types. The sensor will also be tested during field campaigns and recalibrated for field conditions. In addition to the development of the sensor and the mobile app, supporting documentation and videos are also being developed that show the step-by-step process of building the sensor from scratch and measurement protocols. Initial laboratory calibration and validation of the prototype suggested that the sensor is able to satisfactorily measure SM for sand, loam, sandy loam, sandy clay loam type of soils. The affordable and simple sensor will help citizen scientists to understand the dynamics of SM at their site and the in-situ data will further be utilized for validation of the satellite observations from the SMAP mission.

  16. Continuous in situ measurements of volcanic gases with a diode-laser-based spectrometer: CO2 and H2O concentration and soil degassing at Vulcano (Aeolian islands: Italy

    Directory of Open Access Journals (Sweden)

    De Natale Paolo

    2007-04-01

    Full Text Available Abstract We report on a continuous-measurement campaign carried out in Vulcano (Aeolian islands, Sicily, devoted to the simultaneous monitoring of CO2 and H2O concentrations. The measurements were performed with an absorption spectrometer based on a semiconductor laser source emitting around a 2-μm wavelength. The emitted radiation was selectively absorbed by two molecular ro-vibrational transitions specific of the investigated species. Data for CO2 and H2O concentrations, and CO2 soil diffusive flux using an accumulation chamber configuration, were collected at several interesting sampling points on the island (Porto Levante beach- PLB, Fossa Grande Crater – FOG- and Valley of Palizzi, PAL. CO2/H2O values, measured on the ground, are very similar (around 0.019 (± 0.006 and comparable to the previous discrete detected values of 0.213 (Fumarole F5-La Fossa crater rim and 0.012 (Fumarole VFS – Baia Levante beach obtaid during the 1977–1993 heating phase of the crater fumaroles. In this work much more homogeneous values are found in different points of the three sites investigated. The field work, although carried out in a limited time window (25th–28th August 2004, pointed out the new apparatus is suitable for continuous gas monitoring of the two species and their ratios, which are important geochemical indicators of volcanic activity, for which other reliable continuous monitoring systems are not yet available.

  17. Continuous in situ measurements of volcanic gases with a diode-laser-based spectrometer: CO2 and H2O concentration and soil degassing at Vulcano (Aeolian islands: Italy).

    Science.gov (United States)

    De Rosa, Maurizio; Gagliardi, Gianluca; Rocco, Alessandra; Somma, Renato; De Natale, Paolo; De Natale, Giuseppe

    2007-04-20

    We report on a continuous-measurement campaign carried out in Vulcano (Aeolian islands, Sicily), devoted to the simultaneous monitoring of CO2 and H2O concentrations. The measurements were performed with an absorption spectrometer based on a semiconductor laser source emitting around a 2-microm wavelength. The emitted radiation was selectively absorbed by two molecular ro-vibrational transitions specific of the investigated species. Data for CO2 and H2O concentrations, and CO2 soil diffusive flux using an accumulation chamber configuration, were collected at several interesting sampling points on the island (Porto Levante beach- PLB, Fossa Grande Crater - FOG- and Valley of Palizzi, PAL). CO2/H2O values, measured on the ground, are very similar (around 0.019 (+/- 0.006)) and comparable to the previous discrete detected values of 0.213 (Fumarole F5-La Fossa crater rim) and 0.012 (Fumarole VFS - Baia Levante beach) obtaid during the 1977-1993 heating phase of the crater fumaroles. In this work much more homogeneous values are found in different points of the three sites investigated. The field work, although carried out in a limited time window (25th-28th August 2004), pointed out the new apparatus is suitable for continuous gas monitoring of the two species and their ratios, which are important geochemical indicators of volcanic activity, for which other reliable continuous monitoring systems are not yet available.

  18. In situ Measurements of Phytoplankton Fluorescence Using Low Cost Electronics

    Directory of Open Access Journals (Sweden)

    Dana L. Wright

    2013-06-01

    Full Text Available Chlorophyll a fluorometry has long been used as a method to study phytoplankton in the ocean. In situ fluorometry is used frequently in oceanography to provide depth-resolved estimates of phytoplankton biomass. However, the high price of commercially manufactured in situ fluorometers has made them unavailable to some individuals and institutions. Presented here is an investigation into building an in situ fluorometer using low cost electronics. The goal was to construct an easily reproducible in situ fluorometer from simple and widely available electronic components. The simplicity and modest cost of the sensor makes it valuable to students and professionals alike. Open source sharing of architecture and software will allow students to reconstruct and customize the sensor on a small budget. Research applications that require numerous in situ fluorometers or expendable fluorometers can also benefit from this study. The sensor costs US$150.00 and can be constructed with little to no previous experience. The sensor uses a blue LED to excite chlorophyll a and measures fluorescence using a silicon photodiode. The sensor is controlled by an Arduino microcontroller that also serves as a data logger.

  19. A new probe for in situ TDR moisture measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yokuda, E. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Smith, R. (Sonsub Services, Inc., Houston, TX (United States))

    1993-01-01

    This paper explains the development of a new Time Domain Reflectometry (TDR) probe which can be inserted through waste and soil to a depth of 14 feet with minimal labor and minimal soil disturbance. TDR has been used for 10 years as a method for measuring soil moisture contents. Conventional TDR probes are 30 centimeters long and therefore are difficult to insert at depths below a few feet. Recently, a probe has been developed which can be inserted to depths of 14 feet with the use of a vibratory drill. Quality objectives for the instrument, preliminary data, and suggestions for future developments are presented.

  20. A new probe for in situ TDR moisture measurement

    International Nuclear Information System (INIS)

    Yokuda, E.; Smith, R.

    1993-01-01

    This paper explains the development of a new Time Domain Reflectometry (TDR) probe which can be inserted through waste and soil to a depth of 14 feet with minimal labor and minimal soil disturbance. TDR has been used for 10 years as a method for measuring soil moisture contents. Conventional TDR probes are 30 centimeters long and therefore are difficult to insert at depths below a few feet. Recently, a probe has been developed which can be inserted to depths of 14 feet with the use of a vibratory drill. Quality objectives for the instrument, preliminary data, and suggestions for future developments are presented

  1. A new probe for in situ TDR moisture measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yokuda, E. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Smith, R. [Sonsub Services, Inc., Houston, TX (United States)

    1993-05-01

    This paper explains the development of a new Time Domain Reflectometry (TDR) probe which can be inserted through waste and soil to a depth of 14 feet with minimal labor and minimal soil disturbance. TDR has been used for 10 years as a method for measuring soil moisture contents. Conventional TDR probes are 30 centimeters long and therefore are difficult to insert at depths below a few feet. Recently, a probe has been developed which can be inserted to depths of 14 feet with the use of a vibratory drill. Quality objectives for the instrument, preliminary data, and suggestions for future developments are presented.

  2. Cost studies of thermally enhanced in situ soil remediation technologies

    International Nuclear Information System (INIS)

    Bremser, J.; Booth, S.R.

    1996-05-01

    This report describes five thermally enhanced technologies that may be used to remediate contaminated soil and water resources. The standard methods of treating these contaminated areas are Soil Vapor Extraction (SVE), Excavate ampersand Treat (E ampersand T), and Pump ampersand Treat (P ampersand T). Depending on the conditions at a given site, one or more of these conventional alternatives may be employed; however, several new thermally enhanced technologies for soil decontamination are emerging. These technologies are still in demonstration programs which generally are showing great success at achieving the expected remediation results. The cost savings reported in this work assume that the technologies will ultimately perform as anticipated by their developers in a normal environmental restoration work environment. The five technologies analyzed in this report are Low Frequency Heating (LF or Ohmic, both 3 and 6 phase AC), Dynamic Underground Stripping (DUS), Radio Frequency Heating (RF), Radio Frequency Heating using Dipole Antennae (RFD), and Thermally Enhanced Vapor Extraction System (TEVES). In all of these technologies the introduction of heat to the formation raises vapor pressures accelerating contaminant evaporation rates and increases soil permeability raising diffusion rates of contaminants. The physical process enhancements resulting from temperature elevations permit a greater percentage of volatile organic compound (VOC) or semi- volatile organic compound (SVOC) contaminants to be driven out of the soils for treatment or capture in a much shorter time period. This report presents the results of cost-comparative studies between these new thermally enhanced technologies and the conventional technologies, as applied to five specific scenarios

  3. Comparative review of techniques used for in situ remediation of contaminated soils; Revision comparativa de tecnicas empleadas para la descontaminacion in situ de suelos contaminados

    Energy Technology Data Exchange (ETDEWEB)

    Escusol Tomey, M.; Rodriguez Abad, R.

    2014-07-01

    Soil pollution may influence the geotechnical parameters of the soil itself, properties such as solid particle density or water within its pores. It may also vary its friction angle, modify its structure and texture, or change the properties of its constitutive minerals due to the inclusion of polluting components. For these reasons, soil decontamination is an important factor to consider in geotechnics. This work focuses on those soil decontamination techniques carried out in situ, since they allow to eliminate soil pollutants in a less invasive way than confinement, containment or ex situ remediation techniques, causing a minor soil alteration and, therefore, affecting less to its mechanical properties. These factors should be taken into account when carrying out a geotechnical performance on a previously decontaminated soil. (Author)

  4. In-situ-gamma ray spectrometry for measurements of environmental radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, I

    1994-12-31

    A detailed description of the method is presented. The range of application is shown. The calibration of the in-situ gamma ray spectrometer with a HPGe semiconductor detector and the evaluation of the spectra are described. A measuring time of about 15-30 min is sufficient to determine the specific natural and man-made radioactivity of the soil of some ten Bq/m{sup 2}. The results of soil contamination measurements in Germany after the Chernobyl accident are reported. A total of 22 nuclides are detected. The measured contamination for the first days after the accident was as follows: {sup 132}Te/{sup 132}I - 100 kBq/m{sup 2}, and {sup 131}I - 70 kBq/m{sup 2}. 6 figs., 4 tabs. (orig.).

  5. Ex situ bioremediation of oil-contaminated soil.

    Science.gov (United States)

    Lin, Ta-Chen; Pan, Po-Tsen; Cheng, Sheng-Shung

    2010-04-15

    An innovative bioprocess method, Systematic Environmental Molecular Bioremediation Technology (SEMBT) that combines bioaugmentation and biostimulation with a molecular monitoring microarray biochip, was developed as an integrated bioremediation technology to treat S- and T-series biopiles by using the landfarming operation and reseeding process to enhance the bioremediation efficiency. After 28 days of the bioremediation process, diesel oil (TPH(C10-C28)) and fuel oil (TPH(C10-C40)) were degraded up to approximately 70% and 63% respectively in the S-series biopiles. When the bioaugmentation and biostimulation were applied in the beginning of bioremediation, the microbial concentration increased from approximately 10(5) to 10(6) CFU/g dry soil along with the TPH biodegradation. Analysis of microbial diversity in the contaminated soils by microarray biochips revealed that Acinetobacter sp. and Pseudomonas aeruginosa were the predominant groups in indigenous consortia, while the augmented consortia were Gordonia alkanivorans and Rhodococcus erythropolis in both series of biopiles during bioremediation. Microbial respiration as influenced by the microbial activity reflected directly the active microbial population and indirectly the biodegradation of TPH. Field experimental results showed that the residual TPH concentration in the complex biopile was reduced to less than 500 mg TPH/kg dry soil. The above results demonstrated that the SEMBT technology is a feasible alternative to bioremediate the oil-contaminated soil. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  6. In-Situ Electrokinetic Remediation for Metal Contaminated Soils

    Science.gov (United States)

    2001-03-01

    phytoremediation , and electrokinetic extraction. The US Army Environmental Center (USAEC) and Engineer Research and Development Center (ERDC...California (CA) List Metals: Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury , molybdenum, nickel, selenium...Comparison Technologies with which electrokinetic remediation must compete are "Dig and Haul", Soil Washing, and Phytoremediation . "Dig and haul

  7. SUMMARY PAPER: IN SITU BIOREMEDIATION OF CONTAMINATED VADOSE ZONE SOIL

    Science.gov (United States)

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of Issue Papers and Briefing Documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. In an attem...

  8. Case studies illustrating in-situ remediation methods for soil and groundwater contaminated with petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert A.; Lance, P.E.; Downs, A.; Kier, Brian P. [EMCON Northwest Inc., Portland, OR (United States)

    1993-12-31

    Four case studies of successful in-situ remediation are summarized illustrating cost-effective methods to remediate soil and groundwater contaminated with volatile and non-volatile petrochemicals. Each site is in a different geologic environment with varying soil types and with and without groundwater impact. The methods described include vadose zone vapor extraction, high-vacuum vapor extraction combined with groundwater tab.le depression, air sparging with groundwater recovery and vapor extraction, and bio remediation of saturated zone soils using inorganic nutrient and oxygen addition

  9. Case studies illustrating in-situ remediation methods for soil and groundwater contaminated with petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert A; Lance, P E; Downs, A; Kier, Brian P [EMCON Northwest Inc., Portland, OR (United States)

    1994-12-31

    Four case studies of successful in-situ remediation are summarized illustrating cost-effective methods to remediate soil and groundwater contaminated with volatile and non-volatile petrochemicals. Each site is in a different geologic environment with varying soil types and with and without groundwater impact. The methods described include vadose zone vapor extraction, high-vacuum vapor extraction combined with groundwater tab.le depression, air sparging with groundwater recovery and vapor extraction, and bio remediation of saturated zone soils using inorganic nutrient and oxygen addition

  10. Manual for soil physical measurements; Version 3

    NARCIS (Netherlands)

    Stolte, J.

    1997-01-01

    Manuals are given for several laboratory methods for determining hydraulic conductivity, water retention and shrinkage characteristics of soil. Measurement techniques described are: the constant-head and falling-head methods for saturated conductivitythe drip infiltrometer for unsaturated

  11. Examining the Suitability of a Sparse In Situ Soil Moisture Monitoring Network for Assimilation into a Spatially Distributed Hydrologic Model

    Science.gov (United States)

    De Vleeschouwer, N.; Verhoest, N.; Pauwels, V. R. N.

    2015-12-01

    The continuous monitoring of soil moisture in a permanent network can yield an interesting data product for use in hydrological data assimilation. Major advantages of in situ observations compared to remote sensing products are the potential vertical extent of the measurements, the finer temporal resolution of the observation time series, the smaller impact of land cover variability on the observation bias, etc. However, two major disadvantages are the typical small integration volume of in situ measurements and the often large spacing between monitoring locations. This causes only a small part of the modelling domain to be directly observed. Furthermore, the spatial configuration of the monitoring network is typically temporally non-dynamic. Therefore two questions can be raised. Do spatially sparse in situ soil moisture observations contain a sufficient data representativeness to successfully assimilate them into the largely unobserved spatial extent of a distributed hydrological model? And if so, how is this assimilation best performed? Consequently two important factors that can influence the success of assimilating in situ monitored soil moisture are the spatial configuration of the monitoring network and the applied assimilation algorithm. In this research the influence of those factors is examined by means of synthetic data-assimilation experiments. The study area is the ± 100 km² catchment of the Bellebeek in Flanders, Belgium. The influence of the spatial configuration is examined by varying the amount of locations and their position in the landscape. The latter is performed using several techniques including temporal stability analysis and clustering. Furthermore the observation depth is considered by comparing assimilation of surface layer (5 cm) and deeper layer (50 cm) observations. The impact of the assimilation algorithm is assessed by comparing the performance obtained with two well-known algorithms: Newtonian nudging and the Ensemble Kalman

  12. Geotechnical Parameters of Alluvial Soils from in-situ Tests

    Science.gov (United States)

    Młynarek, Zbigniew; Stefaniak, Katarzyna; Wierzbicki, Jedrzej

    2012-10-01

    The article concentrates on the identification of geotechnical parameters of alluvial soil represented by silts found near Poznan and Elblag. Strength and deformation parameters of the subsoil tested were identified by the CPTU (static penetration) and SDMT (dilatometric) methods, as well as by the vane test (VT). Geotechnical parameters of the subsoil were analysed with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. The article includes an analysis of the overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 9 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the Nkt coefficient, which might be used to identify the undrained shear strength of both sediments tested. On the basis of a detailed analysis of changes in terms of the constrained oedometric modulus M0, the relations between the said modulus, the liquidity index and the OCR value were identified. Mayne's formula (1995) was used to determine the M0 modulus from the CPTU test. The usefullness of the sediments found near Poznan as an earth construction material was analysed after their structure had been destroyed and compacted with a Proctor apparatus. In cases of samples characterised by different water content and soil particle density, the analysis of changes in terms of cohesion and the internal friction angle proved that these parameters are influenced by the soil phase composition (Fig. 18 and 19). On the basis of the tests, it was concluded that the most desirable shear strength parameters are achieved when the silt is compacted below the optimum water content.

  13. Integrating Multi-Sensor Remote Sensing and In-situ Measurements for Africa Drought Monitoring and Food Security Assessment

    Science.gov (United States)

    Hao, X.; Qu, J. J.; Motha, R. P.; Stefanski, R.; Malherbe, J.

    2015-12-01

    Drought is one of the most complicated natural hazards, and causes serious environmental, economic and social consequences. Agricultural production systems, which are highly susceptible to weather and climate extremes, are often the first and most vulnerable sector to be affected by drought events. In Africa, crop yield potential and grazing quality are already nearing their limit of temperature sensitivity, and, rapid population growth and frequent drought episodes pose serious complications for food security. It is critical to promote sustainable agriculture development in Africa under conditions of climate extremes. Soil moisture is one of the most important indicators for agriculture drought, and is a fundamentally critical parameter for decision support in crop management, including planting, water use efficiency and irrigation. While very significant technological advances have been introduced for remote sensing of surface soil moisture from space, in-situ measurements are still critical for calibration and validation of soil moisture estimation algorithms. For operational applications, synergistic collaboration is needed to integrate measurements from different sensors at different spatial and temporal scales. In this presentation, a collaborative effort is demonstrated for drought monitoring in Africa, supported and coordinated by WMO, including surface soil moisture and crop status monitoring. In-situ measurements of soil moisture, precipitation and temperature at selected sites are provided by local partners in Africa. Measurements from the Soil Moisture and Ocean Salinity (SMOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are integrated with in-situ observations to derive surface soil moisture at high spatial resolution. Crop status is estimated through temporal analysis of current and historical MODIS measurements. Integrated analysis of soil moisture data and crop status provides both in-depth understanding of drought conditions and

  14. Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater

    Science.gov (United States)

    Turick, Charles E.; Apel, William W.

    1997-10-28

    A method of reducing the concentration of Cr(VI) in a liquid aqueous residue comprises the steps of providing anaerobic Cr(VI) reducing bacteria, mixing the liquid aqueous residue with a nutrient medium to form a mixture, and contacting the mixture with the anaerobic Cr(VI) reducing bacteria such that Cr(VI) is reduced to Cr(III). The anaerobic Cr(VI) reducing bacteria appear to be ubiquitous in soil and can be selected by collecting a soil sample, diluting the soil sample with a sterile diluent to form a diluted sample, mixing the diluted sample with an effective amount of a nutrient medium and an effective amount of Cr(VI) to form a mixture, and incubating the mixture in the substantial absence of oxygen such that growth of Cr(VI) sensitive microorganisms is inhibited and growth of the anaerobic Cr(VI) reducing bacteria is stimulated. A method of in situ bioremediation of Cr(VI) contaminated soil and/or groundwater is also disclosed.

  15. Radar for Measuring Soil Moisture Under Vegetation

    Science.gov (United States)

    Moghaddam, Mahta; Moller, Delwyn; Rodriguez, Ernesto; Rahmat-Samii, Yahya

    2004-01-01

    A two-frequency, polarimetric, spaceborne synthetic-aperture radar (SAR) system has been proposed for measuring the moisture content of soil as a function of depth, even in the presence of overlying vegetation. These measurements are needed because data on soil moisture under vegetation canopies are not available now and are necessary for completing mathematical models of global energy and water balance with major implications for global variations in weather and climate.

  16. Visualization of enzyme activities inside earthworm biopores by in situ soil zymography

    Science.gov (United States)

    Thu Duyen Hoang, Thi; Razavi, Bahar. S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Earthworms can strongly activate microorganisms, increase microbial and enzyme activities and consequently the turnover of native soil organic matter. In extremely dynamic microhabitats and hotspots as biopores made by earthworms, the in situ enzyme activities are a footprint of complex biotic interactions. The effect of earthworms on the alteration of enzyme activities inside biopores and the difference between bio-pores and earthworm-free soil was visualized by in situ soil zymography (Spohn and Kuzyakov, 2014). For the first time, we prepared quantitative imaging of enzyme activities in biopores. Furthermore, we developed the zymography technique by direct application of a substrate saturated membrane to the soil to obtain better spatial resolution. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). Simultaneously, maize seed was sown in the soil. Control soil box with maize and without earthworm was prepared in the same way. After two weeks when bio-pore systems were formed by earthworm, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine aminopeptidase) and phosphatase. Followed by non-destructive zymography, biopore samples and control soil were destructively collected to assay enzyme kinetics by fluorogenically labeled substrates method. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. These differences were further confirmed by fluorimetric microplate enzyme assay detected significant difference of Vmax in four above mentioned enzymes. Vmax of β-glucosidase, chitinase, xylanase and phosphatase in biopores is 68%, 108%, 50% and 49% higher than that of control soil. However, no difference in cellobiohydrolase and leucine aminopeptidase kinetics between biopores and control soil were detected. This indicated little effect of earthworms on protein and cellulose transformation in soil

  17. Remediation of hydrocarbon-contaminated soils by ex situ microwave treatment: technical, energy and economic considerations.

    Science.gov (United States)

    Falciglia, P P; Vagliasindi, F G A

    2014-01-01

    In this study, the remediation of diesel-polluted soils was investigated by simulating an ex situ microwave (MW) heating treatment under different conditions, including soil moisture, operating power and heating duration. Based on experimental data, a technical, energy and economic assessment for the optimization of full-scale remediation activities was carried out. Main results show that the operating power applied significantly influences the contaminant removal kinetics and the moisture content in soil has a major effect on the final temperature reachable during MW heating. The first-order kinetic model showed an excellent correlation (r2 > 0.976) with the experimental data for residual concentration at all operating powers and for all soil moistures tested. Excellent contaminant removal values up to 94.8% were observed for wet soils at power higher than 600 W for heating duration longer than 30 min. The use of MW heating with respect to a conventional ex situ thermal desorption treatment could significantly decrease the energy consumption needed for the removal of hydrocarbon contaminants from soils. Therefore, the MW treatment could represent a suitable cost-effective alternative to the conventional thermal treatment for the remediation of hydrocarbon-polluted soil.

  18. In-situ bioremediation: Or how to get nutrients to all the contaminated soil

    International Nuclear Information System (INIS)

    Jackson, D.S.; Scovazzo, P.

    1994-01-01

    Petroleum contamination is a pervasive environmental problem. Bioremediation is winning favor primarily because the soil may be treated on site and systems can be installed to operate without interfering with facility activities. Although bioremediation has been utilized for many years, its acceptance as a cost-effective approach is only now being realized. KEMRON applied in-situ bioremediation at a retired rail yard which had maintained a diesel locomotive refueling station supplied by two 20,000 gallon above ground storage tanks. Contamination originated from both spillage at the pumps and leaking fuel distribution lines. The contamination spread over a 3 acre area from the surface to a depth of up to 20 feet. Levels of diesel contamination found in the soil ranged from less than a 100 ppm to more than 25,000 ppm. The volume of soil which ultimately required treatment was more than 60,000 cubic yards. Several remedial options were examined including excavation and disposal. Excavation was rejected because it would have been cost prohibitive due to the random distribution of the contaminated soil. In-situ Bioremediation was selected as the only alternative which could successfully treat all the contaminated soils. This paper focuses on how KEMRON solved four major problems which would have prevented a successful remediation project. These problems were: soil compaction, random distribution of contaminated soils, potential free product, and extremely high levels of dissolved iron in the groundwater

  19. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments.

    Science.gov (United States)

    Lee, Sang-Hwan; Lee, Jin-Soo; Choi, Youn Jeong; Kim, Jeong-Gyu

    2009-11-01

    Chemical stabilization is an in situ remediation method that uses inexpensive amendments to reduce contaminant availability in polluted soil. We tested the effects of several amendments (limestone, red-mud, and furnace slag) on the extractability of heavy metals, microbial activities, phytoavailability of soil metals (assessed using lettuce, Lactuca sativa L.), and availability of heavy metals in ingested soil to the human gastrointestinal system (assessed using the physiologically based extraction test). The application of soil amendments significantly decreased the amount of soluble and extractable heavy metals in the soil (p<0.05). The decreased extractable metal content of soil was accompanied by increased microbial activity and decreased plant uptake of heavy metals. Soil microbial activities (soil respiration, urease, and dehydrogenase activity) significantly increased in limestone and red-mud-amended soils. Red-mud was the most effective treatment in decreasing heavy-metal concentrations in lettuce. Compared to non-amended control soil, lettuce uptake of Cd, Pb, and Zn was reduced 86%, 58%, and 73%, respectively, by the addition of red-mud.

  20. Difficulties in the evaluation and measuring of soil water infiltration

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2013-04-01

    conditions by the land management, but also due to the manipulation of the soil before and during the measurement. Direct "in situ" field evaluations have to be preferred in any case to indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, or through the use of stochastic models such as the SCS Curve Number Method, or of other models using empirical or physical approaches, which have demonstrated to be of limited value in most of the cases. References Philip, J. R., 1954., An infiltration equation with physical significance: Soil Sci..,v. 77, p. 153-157. Philip, J. R., 1958. The theory of infiltration, pt. 7: Soil Sci., v. 85, no. 6, p. 333-337. Pla, I.1981. Simuladores de lluvia para el estudio de relaciones suelo-agua bajo agricultura de secano en los trópicos. Rev. Fac. Agron. XII(1-2):81-93.Maracay (Venezuela) Pla, I. 1986. A routine laboratory index to predict the effects of soil sealing on soil and water conservation. En "Assesment of Soil Surface Sealing and Crusting". 154-162.State Univ. of Ghent.Gante (Bélgica Pla, I., 1997. A soil water balance model for monitoring soil erosion processes and effects on steep lands in the tropics. Soil Technology. 11(1):17-30. Elsevier Pla, I., M.C. Ramos, S. Nacci, F. Fonseca y X. Abreu. 2005. Soil moisture regime in dryland vineyards of Catalunya (Spain) as influenced by climate, soil and land management. "Integrated Soil and Water Management for Orchard Development". FAO Land and Water Bulletin 10. 41-49. Roma (Italia). Pla, I., 2006. Hydrological approach for assessing desertification processes in the Mediterranean region. In W.G. Kepner et al. (Editors), Desertification in the Mediterranean Region. A Security Issue. 579-600 Springer. Heidelberg (Germany) Pla, I. 2011. Evaluación y Modelización Hidrológica para el Diagnóstico y Prevención de "Desastres Naturales". Gestión y Ambiente 14 (3): 17-22. UN

  1. In Situ Analysis of Mars Soil and Rocks Sample with the Sam Gcms Instrumentation Onboard Curiosity : Interpretation and Comparison of Measurements Done during the First Martian Year of Curiosity on Mars

    Science.gov (United States)

    Szopa, C.; Coll, P. J.; Cabane, M.; Buch, A.; Coscia, D.; Millan, M.; Francois, P.; Belmahadi, I.; Teinturier, S.; Navarro-Gonzalez, R.; Glavin, D. P.; Freissinet, C.; Steele, A.; Eigenbrode, J. L.; Mahaffy, P. R.

    2014-12-01

    The characterisation of the chemical and mineralogical composition of solid surface samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, SAM-GC analytical channels composed of thermal-desorption injector, and a MXT-CLP or a MXT-Q chromatographic column was chosen to achieve all the measurements done up today, with the aim to separate of a wide range of volatile inorganic and organic molecules. Four solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller, and one rock sample collected at the Kimberly site. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013

  2. Improved Understanding of In Situ Chemical Oxidation Soil Reactivity

    Science.gov (United States)

    2007-12-01

    followed by a mixture of nitric and perchloric acids . This sequence uses precise heat ramping and holding cycles which takes the sample to dryness...release different kinds of products (e.g., benzenepolycarboxylic acids , phenolic acids , and fatty acids ) with varying resistance to the attack of... oxalate might be the only organic product in the oxidation of humic and non-humic soils by permanganate or even hydrogen peroxide (Harada and Inoko

  3. Floristic diversity of the soil weed seed bank in a rice-growing area of Brazil: in situ and ex situ evaluation

    Directory of Open Access Journals (Sweden)

    Mário Luiz Ribeiro Mesquita

    2013-09-01

    Full Text Available The objective of this study was to compare the ex situ and in situ floristic diversity of the soil weed seed bank of a rice field in northeastern Brazil. In a rice field in the county of Bacabal, located in the state of Maranhão, thirty 25-m² plots were laid out. From 15 plots, soil samples (6/plot; n = 90 were taken with a soil probe (25 × 16 × 3 cm and placed in aluminum trays in the greenhouse. From the remaining 15 plots, weed samples (6/plot; n = 90 were taken with the same soil probe. The number of seeds was estimated by germination. We evaluated the numbers of species and individuals, as well as the density, frequency, abundance and importance value (IV for each species. Diversity was computed by the Shannon index (H'. We recorded 13,892 individuals (among 20 families, 40 genera and 60 species, of which 11,530 (among 50 species germinated ex situ and 2,362 (among 34 species germinated in situ. The family Cyperaceae had the highest number of species (16, followed by Poaceae (10. The dominant species, in situ and ex situ, were Schoenoplectus juncoides (IV=47.4% and Ludwigia octovalvis (IV=34.8%, respectively. Floristic diversity was higher ex situ (H'=2.66. The information obtained here could help determine the infestation potential of these species, which could lead to improved management strategies.

  4. Measurements of radon in soil gas

    International Nuclear Information System (INIS)

    Paschuk, Sergei A.; Correa, Janine Nicolosi; Schelin, Hugo R.; Barbosa, Laercio; Sadula, Tatyana; Matsuzaki, Cristiana A.

    2009-01-01

    Full text: After the decades of systematic and numerous studies performed at different countries of the World, it has been concluded that radon as well as its progeny is the main cause of lung cancer. It is well known that more than 50% of the effective annual radiation dose received by a human being is related to the radon and its progenies. Among the principle mechanisms that bring the radon inside the dwelling is the soil exhalation as well as exhalation and release from the water. Radon concentration in the soil and its transport (emanation, diffusion, advection and adsorption) to the surface depends on different physical, geological and ambient parameters such as the geology of the area, geochemical composition of the soil, its porosity and permeability, grain size, soil humidity, bottom sediments and inputs from streams, temperature, atmospheric pressure, etc. Since the main part of indoor radon originates in the soil, the measurements of radon concentration in soil gas have to be considered as an important tool and indicator of probable high levels of radon inside the dwellings. Present work describes the radon in soil gas measurements performed during the last two years in cooperation between the Laboratory of Applied Nuclear Physics of the Federal University of Technology (UTFPR), the Nuclear Technology Development Center (CDTN) and the Institute of Radiation Protection and Dosimetry (IRD) from the Brazilian Nuclear Energy Commission (CNEN). Following previously concluded measurements of radon concentration in dwellings and the measurements of 222 Rn activity in drinking water collected at artesian bores of Curitiba urban area, present step of activities has been dedicated to measurements of radon concentration in soil gas. Experimental setup was based on the Professional Radon Monitor (ALPHA GUARD) connected to specially developed for such measurements Soil Gas Probe through the air pump and filter system. The equipment was adjusted with air flow of 0

  5. Soil nitrogen availability and in situ nitrogen uptake by Acer rubrum L. and Pinus palustris Mill. in the southeastern U.S. Coastal Plain

    Science.gov (United States)

    Plant uptake of soil organic N in addition to inorganic N could play an important role in ecosystem N cycling as well as plant nutrition. We measured in situ plant uptake of organic and inorganic N by the dominant canopy species in two contrasting temperate forest ecosystems (bottomland floodplain ...

  6. In situ measurement of tritium permeation through stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Walter G., E-mail: walter.luscher@pnnl.gov [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); Senor, David J., E-mail: david.senor@pnnl.gov [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); Clayton, Kevin K., E-mail: kevin.clayton@inl.gov [Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States); Longhurst, Glen R., E-mail: glenlonghurst@suu.edu [Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States)

    2013-06-15

    Highlights: ► In situ tritium permeation measurements collected over broad pressure range. ► Test conditions relevant to 316 SS in commercial light water reactors. ► Comparisons between in- and ex-reactor measurements provided. ► Correlation between tritium permeation, temperature, and pressure developed. -- Abstract: The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a {sup 4}He carrier gas mixed with a specified quantity of tritium (T{sub 2}) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He–Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of {sup 3}He to T, was also evaluated by introducing a {sup 4}He carrier gas mixed with {sup 3}He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from {sup 3}He transmutation contributed to tritium permeation.

  7. A transportable magnetic resonance imaging system for in situ measurements of living trees: the Tree Hugger.

    Science.gov (United States)

    Jones, M; Aptaker, P S; Cox, J; Gardiner, B A; McDonald, P J

    2012-05-01

    This paper presents the design of the 'Tree Hugger', an open access, transportable, 1.1 MHz (1)H nuclear magnetic resonance imaging system for the in situ analysis of living trees in the forest. A unique construction employing NdFeB blocks embedded in a reinforced carbon fibre frame is used to achieve access up to 210 mm and to allow the magnet to be transported. The magnet weighs 55 kg. The feasibility of imaging living trees in situ using the 'Tree Hugger' is demonstrated. Correlations are drawn between NMR/MRI measurements and other indicators such as relative humidity, soil moisture and net solar radiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Soil surface stabilization using an in situ plutonium coating techniuqe at the Nevada Test Site

    International Nuclear Information System (INIS)

    Lew, J.; Snipes, R.; Tamura, T.

    1996-01-01

    The Hazardous Waste Remedial Actions Program (HAZWRAP), in collaboration with the University of Nevada at Reno (UNR), has developed and is investigating an in situ plutonium treatment for soils at the Nevada Test Site (NTS). The concept, conceived by Dr. T. Tamura and refined at HAZWRAP, was developed during the Nevada Applied Ecology Program investigation. In analyzing for plutonium in soils, it was noted that the alpha emanation of plutonium was greatly attenuated if traces of iron or manganese oxides were present in the final electroplating stage. The technique would reduce resuspension of alpha particles into the air by coating the contaminants in soils in situ with an environmentally compatible, durable, and nontoxic material. The coating materials (calcium hydroxide, ferrous sulfate) reduce resuspension by providing a cementitious barrier against radiation penetration while retaining soil porosity. This technique not only stabilizes plutonium-contaminated soils, but also provides an additional protection from worker exposure to radiation during remediation activities. Additionally, the coating would decrease the water solubility of the contaminant and, thus, reduce its migration through soil and uptake by plants

  9. In situ vitrification: Test results for a contaminated soil melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Bonner, W.F.

    1989-04-01

    Pacific Northwest Laboratory (PNL) is developing in situ vitrification (ISV), a remedial action process for treating contaminated soils. In situ vitrification is a thermal treatment process that converts contaminated soil into a chemically inert and stable glass and crystalline product. Figure 1 depicts the process. A square array of four molybdenum/graphite electrodes is inserted into the ground to the desired treatment depth. Because soil is not electrically conductive when the moisture has been driven off, a conductive mixture of flaked graphite and glass frit is placed between the pairs of electrodes as a starter path. An electrical potential is applied to the electrodes to establish an electric current in the starter path. The resultant power heats the starter path and surrounding soil to 2000 degree C, well above the initial soil-melting temperature of 1100 to 1400 degree C. The graphite starter path is eventually consumed by oxidation, and the current is transferred to the molten soil, which is electrically conductive. As the molten or vitrified zone grows, it incorporates radionuclides and nonvolatile hazardous elements, such as heavy metals, and destroys organic components by pyrolysis. The pyrolyzed byproducts migrate to the surface of the vitrified zone, where they burn in the presence of oxygen. A hood placed over the area being vitrified directs the gaseous effluents to an off-gas treatment system. 5 refs., 1 fig., 1 tab

  10. Measuring temperature dependence of soil respiration: importance of incubation time, soil type, moisture content and model fits

    Science.gov (United States)

    Schipper, L. A.; Robinson, J.; O'Neill, T.; Ryburn, J.; Arcus, V. L.

    2015-12-01

    Developing robust models of the temperature response and sensitivity of soil respiration is critical for determining changes carbon cycling in response to climate change and at daily to annual time scales. Currently, approaches for measuring temperature dependence of soil respiration generally use long incubation times (days to weeks and months) at a limited number of incubation temperatures. Long incubation times likely allow thermal adaptation by the microbial population so that results are poorly representative of in situ soil responses. Additionally, too few incubation temperatures allows for the fit and justification of many different predictive equations, which can lead to inaccuracies when used for carbon budgeting purposes. We have developed a method to rapidly determine the response of soil respiration rate to wide range of temperatures. An aluminium block with 44 sample slots is heated at one end and cooled at the other to give a temperature gradient from 0 to 55°C at about one degree increments. Soil respiration is measured within 5 hours to minimise the possibility of thermal adaptation. We have used this method to demonstrate the similarity of temperature sensitivity of respiration for different soils from the same location across seasons. We are currently testing whether long-term (weeks to months) incubation alter temperature response and sensitivity that occurs in situ responses. This method is also well suited for determining the most appropriate models of temperature dependence and sensitivity of soil respiration (including macromolecular rate theory MMRT). With additional testing, this method is expected to be a more reliable method of measuring soil respiration rate for soil quality and modelling of soil carbon processes.

  11. In situ measurement of tritium permeation through stainless steel

    Science.gov (United States)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  12. Pilot-scale feasibility of petroleum hydrocarbon-contaminated soil in situ bioremediation

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Walker, A.B.

    1995-01-01

    An environmental project was conducted to evaluate in situ bioremediation of petroleum hydrocarbon-contaminated soils on Kwajalein Island, a US Army Kwajalein Atoll base in the Republic of the Marshall Islands. Results of laboratory column studies determined that nutrient loadings stimulated biodegradation rates and that bioremediation of hydrocarbon-contaminated soils at Kwajalein was possible using indigenous microbes. The column studies were followed by an ∼10-month on-site demonstration at Kwajalein to further evaluate in situ bioremediation and to determine design and operating conditions necessary to optimize the process. The demonstration site contained low levels of total petroleum hydrocarbons (diesel fuel) in the soil near the ground surface, with concentrations increasing to ∼10,000 mg/kg in the soil near the groundwater. The demonstration utilized 12 in situ plots to evaluate the effects of various combinations of water, air, and nutrient additions on both the microbial population and the hydrocarbon concentration within the treatment plots as a function of depth from the ground surface

  13. Phosphorus Amendment Efficacy for In Situ Remediation of Soil Lead Depends on the Bioaccessible Method

    Science.gov (United States)

    A validated method is needed to measure reductions of in vitro bioaccessible (IVBA) Pb in urban soil remediated with amendments. This study evaluated the effect of in vitro extraction solution pH and glycine buffer on bioaccesible Pb in P-treated soils. Two Pb-contaminated soils...

  14. Localized enrichment of polycyclic aromatic hydrocarbons in soil, spruce needles, and lake sediments linked to in-situ bitumen extraction near Cold Lake, Alberta

    International Nuclear Information System (INIS)

    Korosi, J.B.; Irvine, G.; Skierszkan, E.K.; Doyle, J.R.; Kimpe, L.E.; Janvier, J.; Blais, J.M.

    2013-01-01

    The extraction of bitumen from the Alberta oil sands using in-situ technologies is expanding at a rapid rate; however, investigations into the environmental impacts of oil sands development have focused on surface mining in the Athabasca region. We measured polycyclic aromatic hydrocarbons (PAH) in soils, spruce needles, and lake sediment cores in the Cold Lake oil sands region to provide a historical and spatial perspective on PAH contamination related to in-situ extraction activities. A pronounced increase in PAH concentrations was recorded in one of two study lakes (Hilda Lake) corresponding to the onset of commercial bitumen production in ∼1985. Distance from extraction rigs was not an important predictor of PAH concentrations in soils, although two samples located near installations were elevated in alkyl PAHs. Evidence of localized PAH contamination in Hilda Lake and two soil samples suggests that continued environmental monitoring is justified to assess PAH contamination as development intensifies. -- Highlights: •In-situ bitumen extraction linked to rise in alkyl PAHs in one of two study lakes. •Alkyl PAHs elevated in two soil samples. •PAH contamination likely related to effluent sources, not atmospheric deposition. -- PAHs in sediments and soils were generally low in areas adjacent to in-situ bitumen extraction rigs in the Cold Lake Alberta oil sands, but evidence of localized contamination at some sites was evident

  15. An in-situ measuring method for planar straightness error

    Science.gov (United States)

    Chen, Xi; Fu, Luhua; Yang, Tongyu; Sun, Changku; Wang, Zhong; Zhao, Yan; Liu, Changjie

    2018-01-01

    According to some current problems in the course of measuring the plane shape error of workpiece, an in-situ measuring method based on laser triangulation is presented in this paper. The method avoids the inefficiency of traditional methods like knife straightedge as well as the time and cost requirements of coordinate measuring machine(CMM). A laser-based measuring head is designed and installed on the spindle of a numerical control(NC) machine. The measuring head moves in the path planning to measure measuring points. The spatial coordinates of the measuring points are obtained by the combination of the laser triangulation displacement sensor and the coordinate system of the NC machine, which could make the indicators of measurement come true. The method to evaluate planar straightness error adopts particle swarm optimization(PSO). To verify the feasibility and accuracy of the measuring method, simulation experiments were implemented with a CMM. Comparing the measurement results of measuring head with the corresponding measured values obtained by composite measuring machine, it is verified that the method can realize high-precise and automatic measurement of the planar straightness error of the workpiece.

  16. In situ solidification/stabilization pilot study for the treatment of coal tar contaminated soils and river sediments

    International Nuclear Information System (INIS)

    Lawson, M.A.; Venn, J.G.; Pugh, L.B.; Vallis, T.

    1996-01-01

    Coal tar contamination was encountered at a former coal gasification site in soils below the groundwater table, and in the sediments of the adjacent river. Ex situ remediation techniques at this site would be costly because of the need to dewater the impacted media. In situ solidification/stabilization was tested to evaluate its effectiveness. Treatability testing was performed to evaluate a Portland cement/fly ash binder system with added stabilizing agents. Results were sufficiently promising to warrant pilot testing. Grout containing Portland cement, fly ash, organically modified clay, and granular activated carbon was pilot tested at the site. Test specimens were collected and tested to evaluate durability, compressive strength, and permeability. The samples were extracted by several methods and analyzed to measure the leachable concentrations of organic compounds and metals. Results indicated acceptable physical characteristics. Leachable concentrations of most polynuclear aromatic compounds were decreased

  17. Monitoring groundwater variation by satellite and implications for in-situ gravity measurements

    International Nuclear Information System (INIS)

    Fukuda, Yoichi; Yamamoto, Keiko; Hasegawa, Takashi; Nakaegawa, Toshiyuki; Nishijima, Jun; Taniguchi, Makoto

    2009-01-01

    In order to establish a new technique for monitoring groundwater variations in urban areas, the applicability of precise in-situ gravity measurements and extremely high precision satellite gravity data via GRACE (Gravity Recovery and Climate Experiment) was tested. Using the GRACE data, regional scale water mass variations in four major river basins of the Indochina Peninsula were estimated. The estimated variations were compared with Soil-Vegetation-Atmosphere Transfer Scheme (SVATS) models with a river flow model of 1) globally uniform river velocity, 2) river velocity tuned by each river basin, 3) globally uniform river velocity considering groundwater storage, and 4) river velocity tuned by each river basin considering groundwater storage. Model 3) attained the best fit to the GRACE data, and the model 4) yielded almost the same values. This implies that the groundwater plays an important role in estimating the variation of total terrestrial storage. It also indicates that tuning river velocity, which is based on the in-situ measurements, needs further investigations in combination with the GRACE data. The relationships among GRACE data, SVATS models, and in-situ measurements were also discussed briefly.

  18. In Situ Earthworm Breeding to Improve Soil Aggregation, Chemical Properties, and Enzyme Activity in Papayas

    Directory of Open Access Journals (Sweden)

    Huimin Xiang

    2018-04-01

    Full Text Available The long-term use of mineral fertilizers has decreased the soil fertility in papaya (Carica papaya L. orchards in South China. In situ earthworm breeding is a new sustainable practice for improving soil fertility. A field experiment was conducted to compare the effects of four treatments consisting of the control (C, chemical fertilizer (F, compost (O, and in situ earthworm breeding (E on soil physico-chemical properties and soil enzyme activity in a papaya orchard. The results showed that soil chemical properties, such as pH, soil organic matter (SOM, total nitrogen (TN, available nitrogen (AN, and total phosphorus (TP were significantly improved with the E treatment but declined with the F treatment. On 31 October 2008, the SOM and TN with the O and E treatments were increased by 26.3% and 15.1%, respectively, and by 32.5% and 20.6% compared with the F treatment. Furthermore, the O and E treatments significantly increased the activity of soil urease and sucrase. Over the whole growing season, soil urease activity was 34.4%~40.4% and 51.1%~58.7% higher with the O and E treatments, respectively, than that with the C treatment. Additionally, the activity of soil sucrase with the E treatment was always the greatest of the four treatments, whereas the F treatment decreased soil catalase activity. On 11 June 2008 and 3 July 2008, the activity of soil catalase with the F treatment was decreased by 19.4% and 32.0% compared with C. Soil bulk density with the four treatments was in the order of O ≤ E < F < C. The O- and E-treated soil bulk density was significantly lower than that of the F-treated soil. Soil porosity was in the order of C < F < E < O. Soil porosity with the O and E treatments was 6.0% and 4.7% higher, respectively, than that with the F treatment. Meanwhile, the chemical fertilizer applications significantly influenced the mean weight diameter (MWD of the aggregate and proportion of different size aggregate fractions. The E treatment

  19. In situ vitrification: Test results for a contaminated soil-melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Timmerman, C.L.; Westsik, J.H. Jr.

    1989-10-01

    In situ vitrification (ISV) is being developed at Pacific Northwest Laboratory for the Department of Energy to stabilize soils and sludges that are contaminated with radioactive and hazardous chemical wastes. ISV is a process that immobilizes contaminated soil in place by converting it to a durable glass and crystalline product similar to obsidian and basalt. In June 1987, a large-scale test of the process was completed at a transuranic-contaminated soil site. The test constituted the first full-scale demonstration of ISV at an actual site. This paper summarizes the results of that test and describes the potential adaptation of the process to radioactive and hazardous chemical waste-contaminated soils. 15 refs., 9 figs., 3 tabs

  20. Impedance matching of a coaxial antenna for microwave in-situ processing of polluted soils.

    Science.gov (United States)

    Pauli, Mario; Kayser, Thorsten; Wiesbeck, Werner; Komarov, Vyacheslav

    2011-01-01

    The present paper is focused on the minimization of return loss of a slotted coaxial radiator proposed for a decontamination system for soils contaminated by volatile or semi-volatile organic compounds such as oils or fuels. The antenna upgrade is achieved by coating it with a 5 mm thick Teflon layer. The electromagnetic characteristics reflection coefficient and power density distribution around the antenna surrounded by soils with different moisture levels are analyzed numerically. Simplified analytical approaches are employed to accelerate the optimization of the given antenna for microwave heating systems. The improved antenna design shows a good matching of the antenna to the surrounding soil with varying moisture levels. This ensures a high efficiency of the proposed in-situ soil decontamination system.

  1. In Situ Vitrification: Recent test results for a contaminated soil melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Timmerman, C.L.; Westsik, J.H. Jr.

    1988-06-01

    In Situ Vitrification (ISV) is being developed at Pacific Northwest Laboratory for the Department of Energy and other clients for the stabilization of soils and sludges contaminated with radioactive and hazardous chemical wastes. ISV is a process that immobilizes contaminated soil in place by converting it to a durable glass and crystalline product that is similar to obsidian. In June 1987, a large-scale test of the process was completed at a transuranic- contaminated soil site. This constituted the first full-scale demonstration of the ISV process at an actual site. This paper summarizes the preliminary results of this test and describes the processes' potential adaptation to radioactive and hazardous chemical waste contaminated soils. 10 refs., 10 figs

  2. Strip-drains for in situ clean up of contaminated fine-grained soils

    International Nuclear Information System (INIS)

    Bowders, J.J.; Gabr, M.A.

    1995-01-01

    Methods for in situ remediation of contaminated soils, such as bioremediation, vacuum/air stripping and soil flushing have been found to be less effective under fine-grained soil conditions. To enhance the performance of these techniques, it was proposed that strip-drains or wick drains also known as prefabricated vertical (PV) drains be used. The research objective was to determine the feasibility of using PV drains to enhance the soil flushing process. Bench top and intermediate-scale laboratory experiments were conducted. An overview of the work, results and future considerations were presented. Results indicated that the technology is feasible. A preliminary model for the technology to be used in any field situation was developed. The model is currently being tested with data from physical experiments on both intermediate and field tests. 5 figs

  3. Integration of pneumatic fracturing and in situ vitrification in the soil subsurface

    International Nuclear Information System (INIS)

    Luey, J.; Seiler, D.K.; Schuring, J.R.

    1995-02-01

    Pacific Northwest Laboratory is evaluating ways to increase the applicability of the in situ vitrification (ISV) process at hazardous and radioactive waste sites. One innovation is the placement of a conductive material that will facilitate initiating the ISV process at a target depth. A series of laboratory tests performed at the New Jersey Institute of Technology (NJIT) assessed the feasibility of pneumatic fracturing (PF) in the highly permeable soils of the Hanford Site. The NJIT tests included an analysis of Hanford soils, a series of PF injection tests, and a parametric analysis to determine how soil properties affect the PF process. Results suggest that the PF process can be applied to Hanford soils and that dry medium (e.g., conductive material such as graphite flake) can be injected into the fracture. This paper describes the laboratory testing performed at NJIT, its results, and the application of those results to plans for a field demonstration at Hanford

  4. In situ vadose zone bioremediation of soil contaminated with nonvolatile hydrocarbons

    International Nuclear Information System (INIS)

    Hogg, D.S.; Burden, R.J.; Riddell, P.J.

    1992-01-01

    In situ bioremediation has been successfully carried out on petroleum hydrocarbon-contaminated soil at a decommissioned bulk storage terminal in New Zealand. The site soils were contaminated mainly with diesel fuel and spent oil at concentrations ranging up to 95,000 mg/kg of total recoverable petroleum hydrocarbons. The in situ remediation system combines an enhanced bioremediation with vapor extraction and is installed almost entirely below grade, thereby allowing above ground activities to continue unimpeded. Laboratory-scale feasibility testing indicated that although appreciable volatilization of low molecular weight components would occur initially, biodegradation would be the primary mechanism by which contaminated soil would be remediated. During the remedial design phase, preliminary field testing was conducted to evaluate the optimum spacing for extraction wells and inlet vents. A pilot-scale system was installed in a 15-m by 35-m area of the site in June 1989 and operated for approximately 1 year. Soil monitoring performed approximately every 3 months indicated an overall reduction in soil petroleum hydrocarbon concentrations of 87% for the period from June 1989 to May 1991

  5. Engineering-scale tests of in situ vitrification to PCB and radioactive contaminated soils

    International Nuclear Information System (INIS)

    Liikala, S.C.

    1991-01-01

    In Situ Vitrification (ISV) is a thermal treatment technology applicable to the remediation of hazardous chemical and radioactive contaminated soil and sludge sites. The ISV process utilizes electricity, through joule heating, to melt contaminated soil and form an inert glass and microcrystalline residual product. Applications of ISV to polychlorinated biphenyls (PCBs) and radionuclides have been demonstrated at engineering-scale in numerous tests (1,2,3). An updated evaluation of ISV applicability to treatment of PCBs and radionuclides, and recent test results are presented herein

  6. Methodologically controlled variations in laboratory and field pH measurements in waterlogged soils

    DEFF Research Database (Denmark)

    Elberling, Bo; Matthiesen, Henning

    2007-01-01

    artefacts is critical. But the study includes agricultural and forest soils for comparison. At a waterlogged site, Laboratory results were compared with three different field methods: calomel pH probes inserted in the soil from pits, pH measurements of soil solution extracted from the soil, and pH profiles...... using a solid-state pH electrode pushed into the soil from the surface. Comparisons between in situ and laboratory methods revealed differences of more than 1 pH unit. The content of dissolved ions in soil solution and field observations of O2 and CO2 concentrations were used in the speciation model...... PHREEQE in order to predict gas exchange processes. Changes in pH in soil solution following equilibrium in the laboratory could be explained mainly by CO2 degassing. Only soil pH measured in situ using either calomel or solid-state probes inserted directly into the soil was not affected by gas exchange...

  7. Laboratory evaluation of the in situ chemical treatment approach to soil and groundwater remediation

    International Nuclear Information System (INIS)

    Thorton, E.C.; Trader, D.E.

    1993-10-01

    Results of initial proof of principle laboratory testing activities successfully demonstrated the viability of the in situ chemical treatment approach for remediation of soil and groundwater contaminated by hexavalent chromium. Testing activities currently in progress further indicate that soils contaminated with hexavalent chromium and uranium at concentrations of several hundred parts per million can be successfully treated with 100 ppM hydrogen sulfide gas mixtures. Greater than 90% immobilization of hexavalent chromium and 50% immobilization of uranium have been achieved in these tests after a treatment period of one day. Activities associated with further development and implementation of the in situ chemical treatment approach include conducting additional bench scale tests with contaminated geomedia, and undertaking scale-up laboratory tests and a field demonstration. This report discusses the testing and further development of this process

  8. Laser-induced breakdown spectroscopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon. A review.

    Science.gov (United States)

    Senesi, Giorgio S; Senesi, Nicola

    2016-09-28

    Soil organic carbon (OC) measurement is a crucial factor for quantifying soil C pools and inventories and monitoring the inherent temporal and spatial heterogeneity and changes of soil OC content. These are relevant issues in addressing sustainable management of terrestrial OC aiming to enhance C sequestration in soil, thus mitigating the impact of increasing CO2 concentration in the atmosphere and related effects on global climate change. Nowadays, dry combustion by an elemental analyzer or wet combustion by dichromate oxidation of the soil sample are the most recommended and commonly used methods for quantitative soil OC determination. However, the unanimously recognized uncertainties and limitations of these classical laboursome methods have prompted research efforts focusing on the development and application of more advanced and appealing techniques and methods for the measurement of soil OC in the laboratory and possibly in situ in the field. Among these laser-induced breakdown spectroscopy (LIBS) has raised the highest interest for its unique advantages. After an introduction and a highlight of the LIBS basic principles, instrumentation, methodologies and supporting chemometric methods, the main body of this review provides an historical and critical overview of the developments and results obtained up-to-now by the application of LIBS to the quantitative measurement of soil C and especially OC content. A brief critical summary of LIBS advantages and limitations/drawbacks including some final remarks and future perspectives concludes this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. In situ surface roughness measurement using a laser scattering method

    Science.gov (United States)

    Tay, C. J.; Wang, S. H.; Quan, C.; Shang, H. M.

    2003-03-01

    In this paper, the design and development of an optical probe for in situ measurement of surface roughness are discussed. Based on this light scattering principle, the probe which consists of a laser diode, measuring lens and a linear photodiode array, is designed to capture the scattered light from a test surface with a relatively large scattering angle ϕ (=28°). This capability increases the measuring range and enhances repeatability of the results. The coaxial arrangement that incorporates a dual-laser beam and a constant compressed air stream renders the proposed system insensitive to movement or vibration of the test surface as well as surface conditions. Tests were conducted on workpieces which were mounted on a turning machine that operates with different cutting speeds. Test specimens which underwent different machining processes and of different surface finish were also studied. The results obtained demonstrate the feasibility of surface roughness measurement using the proposed method.

  10. ''In situ'' investigations of the radioactive fissionable element infiltration and retention in different soils

    International Nuclear Information System (INIS)

    Oncescu, M.; Danis, A.; Sahagia, M.; Negrescu, C.; Bobe, M.; Balanescu, P.; Burcescu, M.; Tautu, N.

    1980-01-01

    ''In situ'' investigations of the natural and forced infiltration and retention of the fissionable elements from a liquid residue in several natural compacted soils and compacted clays are presented. The velocities and flow rates for different stages of the residue infiltration are determined. The retention of the fissionable elements by variation of the fissionable element concentration with the distance from the place of the residue depot is investigated. (author)

  11. Implementing a physical soil water flow model with minimal soil characteristics and added value offered by surface soil moisture measurements assimilation.

    Science.gov (United States)

    Chanzy, André

    2010-05-01

    climatic data. The strategy takes profit of all work made on soil texture as a proxi of soil hydraulic through pedotransfer functions. It also takes into account the constraints in soil moisture variations after important precipitation events. Performances on soil moisture are assessed by considering both the soil moisture accuracy and the ability of detecting a soil moisture threshold. o The added value of soil moisture measurements. The aim is to evaluate to which extent we can improve soil moisture simulations by assimilating a few soil moisture measurements made in the surface layer (ploughed layers). We focus on such a layer since moisture can be derived from remote sensing observations or by using in situ sensors (capacitance sensor, TDR) with minimal effort. The validity of such measurements to represent the soil moisture at the field scale is analysed. It is shown that relative variations in soil moisture are much easier to obtain than an absolute characterisation of the soil moisture measurements. We evaluate the value of assimilating surface measurement in the TEC model and how we can deal with a measurement of relative soil moisture variations (in order to prevent a tedious calibration process). Again the performances of the approach are evaluated with the soil moisture accuracy and the ability of detecting a soil moisture threshold.

  12. In situ treatment of soil contaminated with PAHs and phenols

    International Nuclear Information System (INIS)

    Sresty, G.; Dev, H.; Chang, J.; Houthoofd, J.

    1992-01-01

    The wood preserving industry uses more pesticides than any other industry worldwide. The major chemicals used are creosote, pentachlorophenol, and CCA (copper, chrome and arsenate). It is reported that between 415 to 550 creosoting operations within the United States consume approximately 454,000 metric tons of creosote annually. When properly used and disposed off, creosote does not appear to significantly threaten human health. However, due to improper disposal and spillage at old facilities, creosote and other wood preserving chemicals have found their way into surface soils. Active wood preserving sites generate an estimated 840 to 1530 dry metric tons of hazardous contaminated sludge annually, which is classified as KOOL. Creosote, obtained from coal tar, contains a large number of chemical components. The three main families of compounds represented in creosote are: polycyclic aromatic hydrocarbons (PAH), phenolic, and heterocyclic compounds. Creosote is composed of approximately 85% PAHs, 10% phenolic compounds and 5% heterocyclic compounds. There are approximately a total of 17 PAHs present in creosote. The four most prominent compounds belonging to the PAH family are naphthalene, 2-methylnaphthalene, phenanthrene, and anthracene. These four compounds represent approximately 52% of the total PAHs present in creosote. There are approximately 12 different phenolic compounds present in creosote among which phenol is the most abundant, representing 20% of the total phenolics. In addition, the various isomers of cresol represent about 20% and pentachlorophenol (PCP) represents 10% of the total phenolics. There are approximately 13 different heterocyclic compounds are the most abundant, representing approximately 70% of the total heterocyclics. All of these compounds possess toxic properties and some of them, for example, PCP, when subjected to high temperature environments are suspected precursors in the formation of dioxins

  13. Test plan for in situ stress measurement system development

    International Nuclear Information System (INIS)

    Kim, K.

    1981-09-01

    The tests are to be performed to provide information regarding the state of stress of the basalt rock beneath the Hanford Site. This test series is designed to obtain information necessary to determine if hydrofracturing stress measurement is feasible in a fractured basalt medium. During the course of these field tests, it will be attempted to adapt the conventional hydrofracturing test method and analysis techniques to the basalt medium. If the test is shown to be feasible, more holes will be identified for testing. A comprehensive in situ stress determination program will be initiated. 2 figs

  14. In situ nuclear magnetic resonance response of permafrost and active layer soil in boreal and tundra ecosystems

    Directory of Open Access Journals (Sweden)

    M. A. Kass

    2017-12-01

    Full Text Available Characterization of permafrost, particularly warm and near-surface permafrost which can contain significant liquid water, is critical to understanding complex interrelationships with climate change, ecosystems, and disturbances such as wildfires. Understanding the vulnerability and resilience of permafrost requires an interdisciplinary approach, relying on (for example geophysical investigations, ecological characterization, direct observations, remote sensing, and more. As part of a multiyear investigation into the impacts of wildfires on permafrost, we have collected in situ measurements of the nuclear magnetic resonance (NMR response of the active layer and permafrost in a variety of soil conditions, types, and saturations. In this paper, we summarize the NMR data and present quantitative relationships between active layer and permafrost liquid water content and pore sizes and show the efficacy of borehole NMR (bNMR to permafrost studies. Through statistical analyses and synthetic freezing simulations, we also demonstrate that borehole NMR is sensitive to the nucleation of ice within soil pore spaces.

  15. Implementation of in situ vitrification technology for remediation of Oak Ridge contaminated soil sites: Past results and future plans

    International Nuclear Information System (INIS)

    Tixier, J.S.; Powell, T.D.; Spalding, B.P.; Jacobs, G.K.

    1993-02-01

    In situ vitrification is a thermal treatment technology being developed for remediation of contaminated soils. The process transforms easily leached, contaminated soils into a durable, leach-resistant. vitreous and crystalline monolith. This paper presents the results of the recent highly successful ISV demonstration conducted jointly by PNL and ORNL on a tracer-level quantity of radioactive sludge in a model trench at ORNL. A retention of 90 r in the vitreous and crystalline product of greater than 99.9999% was measured with a reduction in potential environmental mobility of more than two orders of magnitude. The paper also presents the current plans for continued collaboration on a two-setting treatability test on one portion of an old seepage pit at ORNL

  16. Application of in situ vitrification in the soil subsurface: Engineering-scale testing

    International Nuclear Information System (INIS)

    Luey, J.; Seiler, D.K.

    1995-03-01

    Engineering-scale testing to evaluate the initiation and propagation of the in situ vitrification (ISV) process in the soil subsurface has been completed. Application of ISV in the soil subsurface both increases the applicable treatment depth (beyond a demonstrated 5 m) and allows treatment of local contamination, such as liquid seepage trenches (found on many US Department of Energy sites) that were designed to remove contamination at the bottom of the trench. The following observations and conclusions resulted from the test data: the ISV process can be initiated in the soil subsurface and propagated in both vertical directions, with the downward direction providing greater ease of operation; energy efficiency to process a kilogram of soil was 20% better than for an ISV melt initiated at the soil surface, increased efficiency was attributed to insulation from the soil overburden; the feasibility of initiating the process with a planar starter path was confirmed, thus increasing the number of options for initiating the process in the field; soil subsidence was pronounced and requires attention before field demonstration of subsurface ISV. Further field work at pilot-scale is recommended for this new ISV application. The key step will be the placement of starter material at depth to initiate the process

  17. Drought monitoring with soil moisture active passive (SMAP) measurements

    Science.gov (United States)

    Mishra, Ashok; Vu, Tue; Veettil, Anoop Valiya; Entekhabi, Dara

    2017-09-01

    Recent launch of space-borne systems to estimate surface soil moisture may expand the capability to map soil moisture deficit and drought with global coverage. In this study, we use Soil Moisture Active Passive (SMAP) soil moisture geophysical retrieval products from passive L-band radiometer to evaluate its applicability to forming agricultural drought indices. Agricultural drought is quantified using the Soil Water Deficit Index (SWDI) based on SMAP and soil properties (field capacity and available water content) information. The soil properties are computed using pedo-transfer function with soil characteristics derived from Harmonized World Soil Database. The SMAP soil moisture product needs to be rescaled to be compatible with the soil parameters derived from the in situ stations. In most locations, the rescaled SMAP information captured the dynamics of in situ soil moisture well and shows the expected lag between accumulations of precipitation and delayed increased in surface soil moisture. However, the SMAP soil moisture itself does not reveal the drought information. Therefore, the SMAP based SWDI (SMAP_SWDI) was computed to improve agriculture drought monitoring by using the latest soil moisture retrieval satellite technology. The formulation of SWDI does not depend on longer data and it will overcome the limited (short) length of SMAP data for agricultural drought studies. The SMAP_SWDI is further compared with in situ Atmospheric Water Deficit (AWD) Index. The comparison shows close agreement between SMAP_SWDI and AWD in drought monitoring over Contiguous United States (CONUS), especially in terms of drought characteristics. The SMAP_SWDI was used to construct drought maps for CONUS and compared with well-known drought indices, such as, AWD, Palmer Z-Index, sc-PDSI and SPEI. Overall the SMAP_SWDI is an effective agricultural drought indicator and it provides continuity and introduces new spatial mapping capability for drought monitoring. As an

  18. Management Plan: Demonstration testing and evaluation of in situ soil heating

    International Nuclear Information System (INIS)

    Dev, H.

    1993-01-01

    In this project IITRI will demonstrate an in situ soil heating technology for the removal of hazardous organic contaminants present in the soil. In Situ heating will be accomplished by the application of 60 Hz AC power to the soil. The soil will be heated to a temperature of about 90 degree C. This technology is suited for the removal of those organic compounds which have a normal boiling point in the range of 100 degree to 210 degree C, or else for those which exhibit a pure component vapor pressure of at least 10 mm Hg in the 90 degree to 100 degree C temperature range. For example, perchloroethylene, dichlorobenzene, trichlorobenzene, etc. may be removed by in situ AC heating. It is planned to demonstrate the technology by heating approximately 400 tons of soil in the K-1070 Classified Burial Ground located at DOE's K-25 Site located in Oak Ridge, TN. It is estimated that the heating portion of the demonstration will take approximately 3 weeks at an average power input rate of 150 to 175 kill. IITRI expects to spend considerable time in the front end reviewing site characteristics, preparing detail design, developing Health and Safety Plans and other documents needed to obtain regulatory approval for the demonstration, arranging for site sampling, infrastructure development and document preparation. It is anticipated that site activities will begin in approximately 5 to 6 months. This contract was signed on September 30, 1993. IITRI started work on it in October 1993. It is planned to complete the demonstration and submit approved final reports by September 30, 1994. This project has 12 tasks and four major milestones. The major milestones and their planned completion dates are presented

  19. Measuring lateral saturated soil hydraulic conductivity at different spatial scales

    Science.gov (United States)

    Di Prima, Simone; Marrosu, Roberto; Pirastru, Mario; Niedda, Marcello

    2017-04-01

    Among the soil hydraulic properties, saturated soil hydraulic conductivity, Ks, is particularly important since it controls many hydrological processes. Knowledge of this soil property allows estimation of dynamic indicators of the soil's ability to transmit water down to the root zone. Such dynamic indicators are valuable tools to quantify land degradation and developing 'best management' land use practice (Castellini et al., 2016; Iovino et al., 2016). In hillslopes, lateral saturated soil hydraulic conductivity, Ks,l, is a key factor since it controls subsurface flow. However, Ks,l data collected by point-scale measurements, including infiltrations tests, could be unusable for interpreting field hydrological processes and particularly subsurface flow in hillslopes. Therefore, they are generally not representative of subsurface processes at hillslope-scale due mainly to soil heterogeneities and the unknown total extent and connectivity of macropore network in the porous medium. On the other hand, large scale Ks,l measurements, which allow to average soil heterogeneities, are difficult and costly, thus remain rare. Reliable Ks,l values should be measured on a soil volume similar to the representative elementary volume (REV) in order to incorporate the natural heterogeneity of the soil. However, the REV may be considered site-specific since it is expected to increase for soils with macropores (Brooks et al., 2004). In this study, laboratory and in-situ Ks,l values are compared in order to detect the dependency Ks,l from the spatial scale of investigation. The research was carried out at a hillslope located in the Baratz Lake watershed, in northwest Sardinia, Italy, characterized by degraded vegetation (grassland established after fire or clearing of the maquis). The experimental area is about 60 m long, with an extent of approximately 2000 m2, and a mean slope of 30%. The soil depth is about 35 to 45 cm. The parent material is a very dense grayish, altered

  20. In situ measurements of dose rates from terrestrial gamma rays

    International Nuclear Information System (INIS)

    Horng, M.C.; Jiang, S.H.

    2002-01-01

    A portable, high purity germanium (HPGe) detector was employed for the performance of in situ measurements of radionuclide activity concentrations in the ground in Taiwan, at altitudes ranging from sea level to 3900 m. The absolute peak efficiency of the HPGe detector for a gamma-ray source uniformly distributed in the semi-infinite ground was determined using a semi-empirical method. The gamma-ray dose rates from terrestrial radionuclides were calculated from the measured activity levels using recently published dose rate conversion factors. The absorbed dose rate in air due to cosmic rays was derived by subtracting the terrestrial gamma-ray dose rate from the overall absorbed dose rate in air measured using a high-pressure ionization chamber. The cosmic-ray dose rate calculated as a function of altitude, was found to be in good agreement with the data reported by UNSCEAR. (orig.)

  1. Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. Climate Reference Network (USCRN) locations: Analysis and applications to AMSR-E satellite validation

    Science.gov (United States)

    Surface soil moisture is critical parameter for understanding the energy flux at the land atmosphere boundary. Weather modeling, climate prediction, and remote sensing validation are some of the applications for surface soil moisture information. The most common in situ measurement for these purpo...

  2. The production and degradation of trichloroacetic acid in soil: Results from in situ soil column experiments

    Czech Academy of Sciences Publication Activity Database

    Heal, M. R.; Dickey, C. A.; Heal, K.V.; Stidson, R.T.; Matucha, Miroslav; Cape, J. N.

    2010-01-01

    Roč. 79, č. 4 (2010), s. 401-407 ISSN 0045-6535 Institutional research plan: CEZ:AV0Z50380511 Keywords : Trichloroacetic acid * TCA * Soil lysimeter Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 3.155, year: 2010

  3. Modular enrichment measurement system for in-situ enrichment assay

    International Nuclear Information System (INIS)

    Stewart, J.P.

    1976-01-01

    A modular enrichment measurement system has been designed and is in operation within General Electric's Nuclear Fuel Fabrication Facility for the in-situ enrichment assay of uranium-bearing materials in process containers. This enrichment assay system, which is based on the ''enrichment meter'' concept, is an integral part of the site's enrichment control program and is used in the in-situ assay of the enrichment of uranium dioxide (UO 2 ) powder in process containers (five gallon pails). The assay system utilizes a commercially available modular counting system and a collimnator designed for compatability with process container transport lines and ease of operator access. The system has been upgraded to include a microprocessor-based controller to perform system operation functions and to provide data acquisition and processing functions. Standards have been fabricated and qualified for the enrichment assay of several types of uranium-bearing materials, including UO 2 powders. The assay system has performed in excess of 20,000 enrichment verification measurements annually and has significantly contributed to the facility's enrichment control program

  4. Ecotoxicological evaluation of in situ bioremediation of soils contaminated by the explosive 2,4,6-trinitrotoluene (TNT)

    International Nuclear Information System (INIS)

    Frische, Tobias

    2003-01-01

    The luminescent bacteria assay, using soil leachates, was the most sensitive toxicity indicator. - To evaluate the environmental relevance of in situ bioremediation of contaminated soils, effective and reliable monitoring approaches are of special importance. The presented study was conducted as part of a research project investigating in situ bioremediation of topsoils contaminated by the explosive 2,4,6-trinitrotoluene (TNT). Changes in soil toxicity within different experimental fields at a former ordnance factory were evaluated using a battery of five bioassays (plant growth, Collembola reproduction, soil respiration, luminescent bacteria acute toxicity and mutagenicity test) in combination to chemical contaminant analysis. Resulting data reveal clear differences in sensitivities between methods with the luminescent bacteria assay performed with soil leachates as most sensitive toxicity indicator. Complete test battery results are presented in so-called soil toxicity profiles to visualise and facilitate the interpretation of data. Both biological and chemical monitoring results indicate a reduction of soil toxicity within 17 months of remediation

  5. In situ Micrometeorological Measurements during RxCADRE

    Science.gov (United States)

    Clements, C. B.; Hiers, J. K.; Strenfel, S. J.

    2009-12-01

    The Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment (RxCADRE) was a collaborative research project designed to fully instrument prescribed fires in the Southeastern United States. Data were collected on pre-burn fuel loads, post burn consumption, ambient weather, in situ atmospheric dynamics, plume dynamics, radiant heat release (both from in-situ and remote sensors), in-situ fire behavior, and select fire effects. The sampling was conducted at Eglin Air Force Base, Florida, and the Joseph W. Jones Ecological Research Center in Newton, Georgia, from February 29 to March 6, 2008. Data were collected on 5 prescribed burns, totaling 4458 acres. The largest aerial ignition totaled 2,290 acres and the smallest ground ignition totaled 104 acres. Quantifying fire-atmospheric interactions is critical for understanding wildland fire dynamics and enhancing modeling of smoke plumes. During Rx-CADRE, atmospheric soundings using radiosondes were made at each burn prior to ignition. In situ micrometeorological measurements were made within each burn unit using five portable, 10-m towers equipped with sonic and prop anemometers, fine-wire thermocouples, and a carbon dioxide probes. The towers were arranged within the burn units to capture the wind and temperature fields as the fire front and plume passed the towers. Due to the interaction of fire lines following ignition, several of the fire fronts that passed the towers were backing fires and thus less intense. Preliminary results indicate that the average vertical velocities associated with the fire front passage were on the order of 3-5 m s-1 and average plume temperatures were on the order of 30-50 °C above ambient. During two of the experimental burns, radiosondes were released into the fire plumes to determine the vertical structure of the plume temperature, humidity, and winds. A radiosonde released into the plume during the burn conducted on 3 March 2008 indicated a definite plume boundary in the

  6. Measuring soil sydric content by the attenuation of a microwave signal

    International Nuclear Information System (INIS)

    Orden, S.; Goldberg, M.; Landini, A.; Sainato, C.; Bottini, L.; Arrigo, N.

    1995-01-01

    Measuring soil water content by means of microwave signal attenuation. The attenuation of microwave signal was used to measure the moisture of various soils. Samples of three soils with different textures and organic matter contents were used. The attenuation of the transmitted electromagnetic signal was measured for each sample with different values of soil moisture. Linear regression models were used to fit the experimental values obtained, and the 95% prediction interval was estimated for the attenuation. From the comparison between the moisture values obtained with this method and those of the gravimetric method, the advantages of the first one are seen, both in speed and in the possibility to estimate the in situ moisture, even if this method has a greater relative error. This method would be useful to operate an automatic control irrigation system, preventing hydric stress when the values of soil moisture reach near field capacity. (author) [es

  7. In situ bio-remediation of contaminated soil in a uranium deposit

    International Nuclear Information System (INIS)

    Groudev, St.; Spasova, I.; Nicolova, M.; Georgiev, P.

    2005-01-01

    The uranium deposit Curilo, located in Western Bulgaria, for a long period of time was a site of intensive mining activities including both the open-pit and underground techniques as well as in situ leaching of uranium. The mining operations were ended in 1990 but until now both the surface and ground waters and soils within and near the deposit are heavily polluted with radionuclides (mainly uranium and radium) and heavy metals (mainly copper, zinc and cadmium). Laboratory experiments carried out with soil samples from the deposit revealed that an efficient removal of the above-mentioned contaminants was achieved by their solubilizing and washing the soil profile by means of acidified water solutions. The solubilization was connected with the activity of the indigenous soil microflora, mainly with the activity of some acidophilic chemo-litho-trophic bacteria. It was possible to enhance considerably this activity by suitable changes in the levels of some essential environmental factors such as pH and water, oxygen and nutrient contents in the soil. Such treatment was successfully applied also under real field conditions in the deposit. The effluents from the soil profile during the operation above-mentioned contained the pollutants as well as other heavy metals such as iron and manganese dissolved from the soil in concentrations usually higher than the relevant permissible levels for waters intended for use in the agriculture and/or industry. For that reason, these effluents were efficiently cleaned up by means of a natural wetland located near the treated soil. However, such treatment as any other method for treatment of polluted waters is connected with additional costs which increase the total costs for the soil cleanup. A possible way to avoid or at least largely to facilitate the cleanup of the soil effluents is to apply a biotechnological method in which the soil contaminants solubilized in the upper soil layers (mainly in the horizon A) are transferred into

  8. Soil behavior under earthquake loading conditions. In situ impulse test for determination of shear modulus for seismic response analyses. Progress report

    International Nuclear Information System (INIS)

    1974-06-01

    Progress is reported in the determination of the best methods of evaluation and prediction of soil behavior of potential nuclear power plant sites under seismic loading conditions. Results are reported of combined experimental and analytical studies undertaken to continue development of an in situ impulse test for determination of the soil shear modulus. Emphasis of the field work was directed toward making the field measurements at frequent depth intervals and at shear strains in the strong motion earthquake range. Emphasis of the analytical work was aimed toward supporting the field effort through processing and evaluation of the experimental test results combined with additional calculations required to gain insight into data interpretation and the in situ test setup itself. Continuing studies to evaluate free field soil behavior under earthquake loading conditions are discussed. (U.S.)

  9. Chlorine and Sulfur Volatiles from in Situ Measurements of Martian Surface Materials

    Science.gov (United States)

    Clark, B. C.

    2014-12-01

    A sentinel discovery by the first in situ measurements on Mars was the high sulfur and chlorine content of global-wide soils. A variety of circumstantial evidence led to the conclusion that soil S is in the form of sulfate, and the Cl is probably chloride. An early hypothesis states that these volatiles are emitted as gases from magmas, and quickly react with dust, soil, and exposed rocks. Subsequent determination that SNC meteorites are also samples of the martian crust revealed a significantly higher S content, as sulfide, than terrestrial igneous rocks but substantially less than in soils. The ensuing wet chemical analyses by the high-latitude Phoenix mission discovered not only chloride but also perchlorate and possibly chlorate. MSL data now also implicate perchlorate at low latitudes. Gaseous interactions may have produced amorphous material on grain surfaces without forming stoichiometric salts. Yet, when exposed to liquid water, Phoenix samples released electrolytes, indicating that the soils have not been leached by rain or fresh groundwater. Sulfate occurrences at many locations on Mars, as well as some chloride enrichments, have now been discovered by remote sensing, Landed missions have discovered Cl-enrichments and ferric, Mg, Ca and more complex sulfates as duricrust, subsurface soil horizons, sandstone evaporites, and rock coatings - most of which cannot be detected from orbit. Salt-forming volatiles affect habitability wherever they are in physical contact: physicochemical parameters (ionic strength, freezing point, water activity); S is an essential element for terrestrial organisms; perchlorate is an oxidant which can degrade some organics but also can be utilized as an energy source; the entire valence range of S-compounds has been exploited by diverse microbiota on Earth. Whether such salt-induced conditions are "extremes" of habitability depends on the relative abundance of liquid H2O.

  10. Hot water extraction with in situ wet oxidation: Kinetics of PAHs removal from soil

    International Nuclear Information System (INIS)

    Dadkhah, Ali A.; Akgerman, Aydin

    2006-01-01

    Finding environmentally friendly and cost-effective methods to remediate soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is currently a major concern of researchers. In this study, a series of small-scale semi-continuous extractions - with and without in situ wet oxidation - were performed on soils polluted with PAHs, using subcritical water (i.e. liquid water at high temperatures and pressures, but below the critical point) as the removal agent. Experiments were performed in a 300 mL reactor using an aged soil sample. To find the desorption isotherms and oxidation reaction rates, semi-continuous experiments with residence times of 1 and 2 h were performed using aged soil at 250 deg. C and hydrogen peroxide as oxidizing agent. In all combined extraction and oxidation flow experiments, PAHs in the remaining soil after the experiments were almost undetectable. In combined extraction and oxidation no PAHs could be detected in the liquid phase after the first 30 min of the experiments. Based on these results, extraction with hot water, if combined with oxidation, should reduce the cost of remediation and can be used as a feasible alternative technique for remediating contaminated soils and sediments

  11. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.; Wang, Lixin; Parkes, Stephen; Strauss, Josiah; McCabe, Matthew; Evans, Jason P.; Griffiths, Alan D.

    2015-01-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  12. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  13. A new method for the determination of radionuclide distribution in the soil by in situ gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Zombori, P.; Andrasi, A.; Nemeth, I.

    1995-01-01

    In case of major nuclear accidents when larger amount of radioactive material is released into the atmosphere vast areas can become contaminated by the nuclear fallout. The deposited radioactivity penetrates the soil in a complex manner: dry and wet deposition lead to different initial distribution patterns which are further modified by the later transport processes in the upper layers of the soil. The distribution is influenced by various factors (physico-chemical characteristics of the radioisotopes, soil type, weather conditions, environment etc.), the resulting soil profile is hardly predictable. An important lesson we learned from the Chernobyl reactor accident is the great variability of the contamination both in the extent of the deposition and in the penetration features. In recent years - following the reactor accident in Chernobyl - an increased interest for rapid methods of monitoring environmental radioactivity was expressed. The International Atomic Energy Agency initiated a research project to co-ordinate the activities carried out in various laboratories aiming at the development of rapid monitoring procedures. The Co-ordinated Research Project (CRP) G6 10 01 under the title Rapid Instrumental and Separation Methods for Monitoring Radionuclides in Food and the Environment has given a frame for 11 research programs. The Health Physics Department of the KFKI Institute for Atomic Energy Research (the former Central Research Institute for Physics) has taken a part in this CRP with a project titled: Rapid In Situ Gamma Spectrometric Determination of Fallout Radioactivity in the Environment. The main objective of our study was to find a method to estimate the penetration characteristics of the fallout radioactivity by using only spectral information obtained by the in situ spectrometric measurement thus avoiding the need for a long and tiresome sampling and sample analysis procedure

  14. Contact sponge water absorption test implemented for in situ measures

    Science.gov (United States)

    Gaggero, Laura; Scrivano, Simona

    2016-04-01

    The contact sponge method is a non-destructive in-situ methodology used to estimate a water uptake coefficient. The procedure, unlike other in-situ measurement was proven to be directly comparable to the water uptake laboratory measurements, and was registered as UNI 11432:2011. The UNI Normal procedure requires to use a sponge with known density, soaked in water, weighed, placed on the material for 1 minute (UNI 11432, 2011; Pardini & Tiano, 2004), then weighed again. Difficulties arise in operating on test samples or on materials with porosity varied for decay. While carrying on the test, fluctuations in the bearing of the environmental parameters were negligible, but not the pressure applied to the surface, that induced the release of different water amounts towards the material. For this reason we designed a metal piece of the same diameter of the plate carrying the sponge, to be screwed at the tip of a pocket penetrometer. With this instrument the sponge was kept in contact with the surface for 1 minute applying two different loads, at first pushed with 0.3 kg/cm2 in order to press the sponge, but not its holder, against the surface. Then, a load of 1.1 kg/ cm2 was applied, still avoiding deviating the load to the sponge holder. We applied both the current and our implemented method to determine the water absorption by contact sponge on 5 fresh rock types (4 limestones: Fine - and Coarse grained Pietra di Vicenza, Rosso Verona, Breccia Aurora, and the silicoclastic Macigno sandstone). The results show that 1) the current methodology imply manual skill and experience to produce a coherent set of data; the variable involved are in fact not only the imposed pressure but also the compression mechanics. 2) The control on the applied pressure allowed reproducible measurements. Moreover, 3) the use of a thicker sponge enabled to apply the method even on rougher surfaces, as the device holding the sponge is not in contact with the tested object. Finally, 4) the

  15. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  16. Demonstration, testing, & evaluation of in situ heating of soil. Draft final report, Volume II: Appendices A to E

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-02-12

    This document is a draft final report for US DOE contract entitled, {open_quotes}Demonstration Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report This document is Volume II, containing appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120{degrees}to 130{degrees}C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow.

  17. Demonstration, testing, ampersand evaluation of in situ heating of soil. Draft final report, Volume II: Appendices A to E

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-01-01

    This document is a draft final report for US DOE contract entitled, open-quotes Demonstration Testing and Evaluation of In Situ Soil Heating,close quotes Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report This document is Volume II, containing appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120 degrees to 130 degrees C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow

  18. Soil measurements during HAPEX-Sahel intensive observation period.

    NARCIS (Netherlands)

    Cuenca, R.H.; Brouwer, J.; Chanzy, A.; Droogers, P.; Galle, S.; Gaze, S.R.; Sicot, M.; Stricker, J.N.M.; Angulo-Jaramillo, R.; Boyle, S.A.; Bromley, J.; Chebhouni, A.G.

    1997-01-01

    This article describes measurements made at each site and for each vegetation cover as part of the soils program for the HAPEX-Sahel regional scale experiment. The measurements were based on an initial sampling scheme and included profile soil water content, surface soil water content, soil water

  19. [Improving Agricultural Safety of Soils Contaminated with Polycyclic Aromatic Hydrocarbons by In Situ Bioremediation].

    Science.gov (United States)

    Jiao, Hai-huan; Pan, Jian-gang; Xu, Shena-jun; Bai, Zhi-hui; Wang, Dong; Huang, Zhan-bin

    2015-08-01

    In order to reduce the risk of enrichment of polycyclic aromatic hydrocarbons (PAHs) in crops, reduce the potential hazards of food-sourced PAHs to human and increase the agricultural safety of PAHs contaminated soils, the bio-augmented removal of polycyclic aromatic hydrocarbons (PAHs) was investigated through in situ remediation by introducing Rhodobacter sphaeroides (RS) into the agricultural soil contaminated by PAHs. The 50-times diluted RS was sprayed on leaf surface (in area B) or irrigated to roots (in area D). The treatment of spraying water of the equal amount was taken as the control (A) and the wheat field without any treatment as the blank (CK). Treatments were conducted since wheat seeding. Soil and wheat samples were collected in the mature period to analyze the changes of community structure of the soil microorganisms and the concentration of PAHs in soils and investigate the strengthening and restoration effects of RS on PAHs contaminated soils. Compared to the CK Area, the areas B and D revealed that the variation ratio of phospholipid fatty acids (PLFAs) that were the biomarker of soil microorganisms was 29.6%, and the ratio of total PAHs removed was increased 1.59 times and 1.68 times, respectively. The dry weight of wheat grain of 50 spikes was increased by 8.95% and 12.5%, respectively, and the enrichment factor of total PAHs was decreased by 58.9% and 62.2% respectively in the wheat grains. All the results suggested that RS reduced enrichment of PAHs in wheat grains and increased wheat yield, which had great exploitation and utilization potentiality in repairing and improving the agricultural safety of the soils contaminated with PHAs.

  20. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactor integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.

  1. In situ measured elimination of Vibrio cholerae from brackish water.

    Science.gov (United States)

    Pérez, María Elena Martínez; Macek, Miroslav; Galván, María Teresa Castro

    2004-01-01

    In situ elimination of fluorescently labelled Vibrio cholerae (FLB) was measured in two saline water bodies in Mexico: in a brackish water lagoon, Mecoacán (Gulf of Mexico; State of Tabasco) and an athalassohaline lake, Alchichica (State of Puebla). Disappearance rates of fluorescently labelled V. cholera O1 showed that they were eliminated from the environment at an average rate of 32% and 63%/day, respectively (based on the bacterial standing stocks). The indirect immunofluorescence method confirmed the presence of V. cholerae O1 in the lagoon. However, the elimination of FLB was not directly related either to the presence or absence of the bacterium in the water body or to the phytoplankton concentration.

  2. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    Science.gov (United States)

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  3. Biological in situ treatment of soil contaminated with petroleum - Laboratory scale simulations

    International Nuclear Information System (INIS)

    Palvall, B.

    1997-06-01

    Laboratory scale simulations of biological in situ treatment of soil contaminated with petroleum compounds have been made in order to get a practical concept in the general case. The work was divided into seven distinct parts. Characterisation, leaching tests and introductory microbiological investigations were followed by experiments in suspended phases and in situ simulations of solid phase reactors. For the suspensions, ratios L/S 3/1 and shaking for a couple of hours were enough to detach organic compounds in colloid or dissolved form. When testing for a time of one month anaerobic environment and cold temperatures of 4 centigrade as well gave acceptable reductions of the actual pollution levels. The range of variation in the soil tests performed showed that at least triple samples are needed to get satisfactory statistical reliability. It was shown that adequate experimental controls demand very high concentrations of e.g. sodium azide when dealing with soil samples. For triple samples in suspended phase without inoculation the weight ratios of oxygen consumption/biological degradation of aliphatic compounds were 2.41 to 2.96. For the complex overall reduction no exact rate constants could be found. The reduction of hydrocarbons were in the interval 27 to 95 % in suspension tests. Solid phase simulations with maximum water saturation showed the highest degree of reduction of hydrocarbons when using dissolved peroxide of hydrogen as electron acceptor while the effect of an active sludge reactor in series was little - reductions of aliphatic compounds were between 21 and 33 % and of aromatic compounds between 32 and 65 %. The influence of different contents of water was greater than adding inoculum or shaking the soil at different intervals in the unsaturated cylinders. The starting level of hydrocarbons was 2400 mg/kg dry weight soil and the end analyses were made after 100 days. The reduction was between 32 and 80 %. 82 refs

  4. Use of in-situ Dual Vacuum Extraction trademark for remediation of soil and ground water

    International Nuclear Information System (INIS)

    Dodson, M.E.; Trowbridge, B.E.; Ott, D.

    1994-01-01

    Dual Vacuum Extraction trademark provides a rapid and cost-effective method of remediating soil and ground water contaminated with volatile organic compounds. The system involves the removal of both water and vapors through the same borehole by use of entrainment. This technology provides for the remediation of the vadose zone, capillary fringe, smear zone, and existing water table. The effectiveness of this technology is shown in a case study. A release from an underground storage tank was responsible for a hydrocarbon plume spreading over approximately 50,000 ft 2 . The release produced vadose-zone contamination in the silty and sandy clays from 10 to 30 ft below ground surface (bgs) with total petroleum hydrocarbon (TPH) concentrations up to 1,400 mg/kg. In addition, a layer of free-floating liquid hydrocarbon was present on a shallow aquifer located at 25 ft bgs in thicknesses ranging from 0.5 to 3.0 ft. An in-situ dual-extraction system was installed to remediate the soils and ground water to levels as required by the Los Angeles Regional Water Quality Control Board (RWQCB). The system operated 24 hr a day, with an operating efficiency of over 99%. After 196 days (28 weeks), over 17,000 lb of hydrocarbons had been extracted from the soils. Seven confirmatory soil borings in the area of highest initial hydrocarbon concentrations indicated that TPH and benzene, toluene, ethylbenzene, xylene (BTEX) concentrations had decreased over 99% from initial soil concentrations

  5. Calibrating soil respiration measures with a dynamic flux apparatus using artificial soil media of varying porosity

    Science.gov (United States)

    John R. Butnor; Kurt H. Johnsen

    2004-01-01

    Measurement of soil respiration to quantify ecosystem carbon cyclingrequires absolute, not relative, estimates of soil CO2 efflux. We describe a novel, automated efflux apparatus that can be used to test the accuracy of chamber-based soil respiration measurements by generating known CO2 fluxes. Artificial soil is supported...

  6. Demonstration of in situ-constructed horizontal soil containment barrier at Fernald

    International Nuclear Information System (INIS)

    Pettit, P.J.; Ridenour, D.; Walker, J.; Saugier, K.

    1994-01-01

    A new design of jet grouting tool that can be guided by horizontal well casings and that operates in the horizontal plane has been used for the in situ placement of grout and construction of a prototype horizontal barrier that is free of windows. Jet grouting techniques have been advanced to permit construction of horizontal barriers underneath contaminated soil without having to excavate or disturb the waste. The paper describes progress on the Fernald Environmental Restoration Management Corporation (FERMCO) In Situ Land Containment Project which is sponsored by the US Department of Energy's (DOE) Office of Technology Development (OTD) for DOE's Fernald Environmental Management Project (FEMP). The Fernald project is to demonstrate a novel, enabling technology for the controlled underground placement of horizontal panels of grout, and the joining of adjacent panels to construct practical, extensive barriers. Construction strategy, equipment mechanics and operating details of this new method are described

  7. Soil disturbance as a grassland restoration measure

    DEFF Research Database (Denmark)

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success...... to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration...

  8. The neutronic method for measuring soil moisture

    International Nuclear Information System (INIS)

    Couchat, Ph.

    1967-01-01

    The three group diffusion theory being chosen as the most adequate method for determining the response of the neutron soil moisture probe, a mathematical model is worked out using a numerical calculation programme with Fortran IV coding. This model is fitted to the experimental conditions by determining the effect of different parameters of measuring device: channel, fast neutron source, detector, as also the soil behaviour under neutron irradiation: absorbers, chemical binding of elements. The adequacy of the model is tested by fitting a line through the image points corresponding to the couples of experimental and theoretical values, for seven media having different chemical composition: sand, alumina, line stone, dolomite, kaolin, sandy loam, calcareous clay. The model chosen gives a good expression of the dry density influence and allows α, β, γ and δ constants to be calculated for a definite soil according to the following relation which gives the count rate of the soil moisture probe: N = (α ρ s +β) H v +γ ρ s + δ. (author) [fr

  9. Developments in wireline in-situ rock stress measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso, Carlos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Canas, Jesus A.; Holzberg, Bruno; Gmach, Helmut [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This paper presents recent developments of in-situ stress measurements with wireline tools. The stress measurements are based on the micro hydraulic techniques that can be initialized when an interval is pressurized by pumping fluid until a tensile fracture begins or by packers fracturing (sleeve fracturing). Ultrasonic and Micro-resistivity borehole image logs (before and after the testes) are used as a complement, in order to observe the fractures created by the tests, evaluating the mechanical behavior of the formation. An offshore case study is presented, where shales and tight sandstones at depths deeper than 4500 meters depth were successfully evaluated. A workflow to succeed on stress measurements on such environments is proposed, what includes a planning phase: where breakdown pressures ranges are estimated and compared with the capacity of the tools, a Real Time Monitoring phase, where a decision tree is proposed to help on quick decisions while testing, and an interpretation phase, where appropriate techniques are indicated to evaluate the results. Also, the paper presents the main operational needs to succeed on such environments. Basically, such tests require an entirely software controlled, motorized and modular design tool consisting of dual packer (DP), pump out and flow control modules (Figure 1). These modules were upgraded for the present environment: conditions such as temperatures above 300 deg F, formation pressures above 10,000 psia, very low formation permeability, high pressure differential need and oil based mud (OBM) environment. (author)

  10. In situ flume measurements of resuspension in the North Sea

    Science.gov (United States)

    Thompson, C. E. L.; Couceiro, F.; Fones, G. R.; Helsby, R.; Amos, C. L.; Black, K.; Parker, E. R.; Greenwood, N.; Statham, P. J.; Kelly-Gerreyn, B. A.

    2011-07-01

    The in situ annular flume, Voyager II, was deployed at three sites in the North Sea in order to investigate resuspension events, to determine the physical characteristics of the seabed, to determine the threshold of resuspension of the bed and to quantify erosion rates and erosion depths. These are the first controlled, in situ flume experiments to study resuspension in the North Sea, and were combined with long-term measurements of waves and currents. Resuspension experiments were undertaken at two muddy, and one sandy site: north of the Dogger Bank (DG: water depths ˜80 m, very fine, poorly sorted, very fine-skewed sediment experiencing seasonal thermal stratification of the water column along with oxygen depletion); the Oyster Grounds (OG: ˜40 m, similar bed properties, year round water column thermal stratification, Atlantic forcing); and in the Sean Gas Field (SGF: ˜20 m, moderately sorted, very coarse-skewed sand, and well mixed water column). The erosion thresholds of the bed were found to be 0.66-1.04 Pa (DG) and 0.91-1.27 Pa (OG), with corresponding erosion depths of 0.1-0.15 mm and 0.02-0.06 mm throughout the experiments. Evaluation of a year of current velocities from 2007 indicated that at OG, resuspension of the consolidated bed was limited to on average ˜8% of the time as a result of tidal forcing alone for short (properties of the bed. Therefore, while complex variations in biogeophysical factors affected the critical threshold of erosion, once exceeded, erosion rates were related to the nature of the sediment.

  11. Aerobic De-Epoxydation of Trichothecene Mycotoxins by a Soil Bacterial Consortium Isolated Using In Situ Soil Enrichment

    Directory of Open Access Journals (Sweden)

    Wei-Jie He

    2016-09-01

    Full Text Available Globally, the trichothecene mycotoxins deoxynivalenol (DON and nivalenol (NIV are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON. Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5–10 and temperatures (20–37 °C values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase, as higher concentrations of DON were used in the subculture media, from 0 to 500 μg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation.

  12. In-situ γ spectrometry of the Chernobyl fallout using soil-sample independent corrections for surface roughness and migration

    International Nuclear Information System (INIS)

    Karlberg, O.

    1993-12-01

    The 661 keV gamma and 32 keV X-ray fluences from Cs-137 were measured in-situ with a Gamma-X Ge detector on different types of urban and rural surfaces. In comparison with a model calculation, the 661 keV fluence was used to estimate the surface activity assuming an ideal, infinite surface and the quotient between the 32 and 661 fluences was used to estimate the correction factors for the surfaces due to migration and surface roughness. As an alternative to the X-ray method, the use of a collimator for ordinary measurements of the 661 keV peak was analysed, and compared with the X-ray method and with measurements without a collimator. The X-ray method with the optimal soil distribution and composition gives the best results, but ordinary measurements with use of a collimator with a constant correction factor seems to be an appropriate method, when soil profiles for determination of a more exact calibration factor are not available

  13. Measuring water content in soil using TDR: A state-of-the-art in 1998

    International Nuclear Information System (INIS)

    Topp, G.C.; Ferre, P.A.

    2000-01-01

    Over the past decade or so, the development and continuing refinement of the time-domain reflectometry (TDR) technique for in-situ, nondestructive measurement of water content has revolutionized the study and management of the transfer and storage of water within the soil profile. The principles for the application of TDR to water content are now well accepted and straight forward. For many mineral soils, the calibration for water content has a linear relationship with the square root of the relative permittivity measured by TDR. This allows a two-point calibration. TDR-measured water content has been applied successfully to water balance studies ranging from the km scale of small watersheds to the nun scale of the root-soil interface. Soil probes can be designed to meet many and varied requirements. The performance of a number of probe geometries is presented, including some of their strengths and weaknesses. Although coated soil probes allow measurement in more conductive soils, the probe coatings alter the water-content calibration both in sensitivity and linearity. Three general options are available for determining profiles of soil water content from the soil surface to a depth of 1 m. Soil probes of differing total depths extending to the surface are the most accessible. Soil probes buried at selected depths provide easily repeatable values. The vertically installed single probe, Aith depth segments separated by diodes, allows repeated measurement in a single vertical slice. The portability of TDR instrumentation coupled with the simplicity and flexibility of probes has allowed the mapping of spatial patterns of water content and field-based spatial and temporal soil water content distributions. The usefulness and power of the TDR technique for characterizing soil water content is increasing rapidly through continuing improvements in instrument operating range, probe design, multiplexing and automated data collection. (author)

  14. In situ measurement of inelastic light scattering in natural waters

    Science.gov (United States)

    Hu, Chuanmin

    Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to macrophytes, have been measured and have been found to vary with time possibly due to nonphotochemical quenching

  15. Decoupling pipeline influences in soil resistivity measurements with finite element techniques

    Science.gov (United States)

    Deo, R. N.; Azoor, R. M.; Zhang, C.; Kodikara, J. K.

    2018-03-01

    Periodic inspection of pipeline conditions is an important asset management strategy conducted by water and sewer utilities for efficient and economical operations of their assets in field. The Level 1 pipeline condition assessment involving resistivity profiling along the pipeline right-of-way is a common technique for delineating pipe sections that might be installed in highly corrosive soil environment. However, the technique can suffer from significant perturbations arising from the buried pipe itself, resulting in errors in native soil characterisation. To address this problem, a finite element model was developed to investigate the degree to which pipes of different a) diameters, b) burial depths, and c) surface conditions (bare or coated) can influence in-situ soil resistivity measurements using Wenner methods. It was found that the greatest errors can arise when conducting measurements over a bare pipe with the array aligned parallel to the pipe. Depending upon the pipe surface conditions, in-situ resistivity measurements can either be underestimated or overestimated from true soil resistivities. Following results based on simulations and decoupling equations, a guiding framework for removing pipe influences in soil resistivity measurements were developed that can be easily used to perform corrections on measurements. The equations require simple a-prior information on the pipe diameter, burial depth, surface condition, and the array length and orientation used. Findings from this study have immediate application and is envisaged to be useful for critical civil infrastructure monitoring and assessment.

  16. Measuring in-situ stress in deep boreholes

    International Nuclear Information System (INIS)

    1985-08-01

    The hydrofracturing method of in-situ stress measurement is the only technique which has been proven to be reliable in boreholes below depths of 300 m. The method has been used in a variety of applications at depths of up to 5000m, and in a range of borehole diameters. The equipment used is composed of standard components from proven and long-established oil industry well-logging tools and is simple to operate. This is preferable to the delicate electrical devices used in the overcoring stress measurement method. Electrical components are difficult to waterproof, very small strains are monitored and the tendency of electrical circuits to drift, due to a variety of effects, makes interpretation of the results difficult. However, the interpretation of hydrofracturing test results is often not easy. Many factors can prevent ideal fracturing behaviour from occurring, in which case conventional analyses will yield incorrect answers. The complete state of stress can often not be determined and sweeping assumptions are commonly made about principal stress direction, which cannot always be subsequently verified. (author)

  17. In situ electrical measurements of polytypic silver nanowires

    International Nuclear Information System (INIS)

    Liu Xiaohua; Zhu Jing; Jin Chuanhong; Peng Lianmao; Tang Daiming; Cheng Huiming

    2008-01-01

    Novel 4H structure silver nanowires (4H-AgNWs) have been reported to coexist with the usual face-centered cubic (FCC) ones. Here we report the electrical properties of these polytypic AgNWs for the first time. AgNWs with either 4H or FCC structures in the diameter range of 20-80 nm were measured in situ inside a transmission electron microscope (TEM). Both kinds of AgNW in the diameter range show metallic conductance. The average resistivity of the 4H-AgNWs is 19.9 μΩ cm, comparable to the 11.9 μΩ cm of the FCC-AgNWs. The failure current density can be up to ∼10 8 A cm -2 for both 4H-and FCC-AgNWs. The maximum stable current density (MSCD) is introduced to estimate the AgNWs' current-carrying ability, which shows diameter-dependence with a peak around 34 nm in diameter. It is attributed to fast annihilation of the current-induced vacancies and the enhanced surface scattering. Our investigations also suggest that the magnetic field of the electromagnetic lens may also introduce some influence on the measurements inside the TEM

  18. Hysteresis in YHx films observed with in situ measurements

    International Nuclear Information System (INIS)

    Remhof, A.; Kerssemakers, J.W.J.; Molen, S.J. van der; Griessen, R.; Kooij, E.S.

    2002-01-01

    Giant hysteretic effects in the YH x hydrogen switchable mirror system are observed between x=1.9 and x=3 in pressure composition isotherms, optical and electrical properties, and mechanical stress. Polycrystalline Y films are studied by simultaneous in situ measurements of electrical resistivity, optical transmittance and x-ray diffractometry. These experiments are linked to optical microscopy of the samples. During hydrogen loading above x=1.9 the films stay in the metallic fcc phase until the optical transmittance reaches its minimum and the electrical resistance curve exhibits a characteristic feature at x=2.1. Upon further loading the system crosses the miscibility gap in which the fcc phase coexists with the hcp phase before hydrogen saturation is reached in the pure hcp phase. While the fcc phase stays at a concentration of x=2.1 in the coexistence region during loading, it remains at a concentration of x=1.9 during unloading. The hysteretic effects observed in optical transmission and electrical resistivity result from the different properties of the low concentration fcc phase YH 1.9 and the high concentration fcc phase YH 2.1 . They can be explained on the basis of the bulk phase diagram if the different stress states during loading and unloading are taken into account. These results contradict earlier interpretations of the hysteresis in thin film YH x , based on nonsimultaneous measurements of the optical and structural properties on different films

  19. Demonstration, testing, and evaluation of in situ heating of soil. Final report, Volume 2, Appendices A to E

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-01-01

    This is a final report presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOC's and other organic chemicals. Although it may be applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by air flow

  20. Demonstration, testing, and evaluation of in situ heating of soil. Final report, Volume 2, Appendices A to E

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-04-05

    This is a final report presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOC`s and other organic chemicals. Although it may be applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by air flow.

  1. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection

    Science.gov (United States)

    Mojarro, Angel; Ruvkun, Gary; Zuber, Maria T.; Carr, Christopher E.

    2017-08-01

    Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars.

  2. In situ immobilisation of toxic metals in soil using Maifan stone and illite/smectite clay.

    Science.gov (United States)

    Ou, Jieyong; Li, Hong; Yan, Zengguang; Zhou, Youya; Bai, Liping; Zhang, Chaoyan; Wang, Xuedong; Chen, Guikui

    2018-03-15

    Clay minerals have been proposed as amendments for remediating metal-contaminated soils owing to their abundant reserves, high performance, simplicity of use and low cost. Two novel clay minerals, Maifan stone and illite/smectite clay, were examined in the in situ immobilisation of soil metals. The application of 0.5% Maifan stone or illite/smectite clay to field soils significantly decreased the fractions of diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Ni, Cr, Zn, Cu and Pb. Furthermore, reductions of 35.4% and 7.0% in the DTPA-extractable fraction of Cd were obtained with the Maifan stone and illite/smectite clay treatments, respectively, which also significantly reduced the uptake of Cd, Ni, Cr, Zn, Cu and Pb in the edible parts of Brassica rapa subspecies pekinensis, Brassica campestris and Spinacia oleracea. Quantitatively, the Maifan stone treatment reduced the metal uptake in B. rapa ssp. Pekinensis, B. campestris and S. oleracea from 11.6% to 62.2%, 4.6% to 41.8% and 11.3% to 58.2%, respectively, whereas illite/smectite clay produced reductions of 8.5% to 62.8% and 4.2% to 37.6% in the metal uptake in B. rapa ssp. Pekinensis and B. campestris, respectively. Therefore, both Maifan stone and illite/smectite clay are promising amendments for contaminated soil remediation.

  3. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection.

    Science.gov (United States)

    Mojarro, Angel; Ruvkun, Gary; Zuber, Maria T; Carr, Christopher E

    2017-08-01

    Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars. Key Words: Life-detection instruments-Nucleic acids-Mars-Panspermia. Astrobiology 17, 747-760.

  4. A novel phytoremediation technology shown to remediate petroleum hydrocarbons from soils in situ

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.D.; Yu, X.M.; Gerhardt, K.; Glick, B.; Greenberg, B [Waterloo Environmental Biotechnology Inc., Hamilton, ON (Canada); Waterloo Univ., ON (Canada). Dept. of Biology

    2009-04-01

    This article described a newly developed, advanced microbe-enhanced phytoremediation system that can be used to remediate lands polluted by hydrocarbons, salts and metals. The technology uses 3 complementary processes to achieve effective remediation of strongly bound persistent organic pollutants (POPs) from soil. The remediation process involves physical soil treatment, photochemical photooxidation, microbial remediation and growth of plants treated with plant growth promoting rhizobacteria (PGPR). The PGPR-enhanced phytoremediation system (PEPS) alleviates plant stress and increases biodegradation activities, thereby accelerating plant growth in the presence of POPs or poor soils. The PEPS has been used successfully to remove petroleum hydrocarbons (PHCs) from impacted soils in situ at several sites across Canada. Studies have shown that the PHCs are degraded in the rhizosphere. This article also presented a summary of the work conducted at 3 sites in Alberta. It took only 2 years to remediate the 3 sites to levels required for site closure under Alberta Tier 1 guidelines. It was concluded that PEPS is equally effective for total PHC and Fraction 3 CCME hydrocarbons. 1 tab., 3 figs.

  5. In situ-observation of the vertical motion of soil waters by means of deuterated water using the gamma/neutron method: Laboratory and field

    International Nuclear Information System (INIS)

    Moutonnet, P.; Couchat, P.; Brissaud, F.; Puard, M.; Pappalardo, A.

    1978-01-01

    In order to study water movements in the field, the gamma/neutron method for measuring deuterated water was investigated. A laboratory device is presented which supplies measurements on 5 ml soil solution samples. A probe for in situ experiments is studied in all its performances: Background, calibration (count rate versus volumetric deuterated water content) and resolution. A dispersive transport of D 2 O pulses on soil column is presented and checked with a numerical simulation model. Then simultaneous measurement of soil water content and D 2 O concentration by neutron moisture gauge and gamma/neutron probe enable us to interpret the evolution of D 2 O pulse with an experimental field irrigation. (orig.) [de

  6. In situ chemical fixation of arsenic-contaminated soils: Anexperimental study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Donahoe, Rona J.; Redwine, James C.

    2007-03-27

    This paper reports the results of an experimentalstudytesting a low-cost in situ chemical fixation method designed to reclaimarsenic-contaminated subsurface soils. Subsurface soils from severalindustrial sites in southeastern U.S. were contaminated with arsenicthrough heavy application of herbicide containing arsenic trioxide. Themean concentrations of environmentally available arsenic in soilscollected from the two study sites, FW and BH, are 325 mg/kg and 900mg/kg, respectively. The soils are sandy loams with varying mineralogicaland organic contents. The previous study [Yang L, Donahoe RJ. The form,distribution and mobility of arsenic in soils contaminated by arsenictrioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341]indicated that a large portion of the arsenic in both soils is associatedwith amorphous aluminum and iron oxyhydroxides and shows very slowrelease against leaching by synthetic precipitation. The soil's amorphousaluminum and iron oxyhydroxides content was found to have the mostsignificant effect on its ability to retain arsenic.Based on thisobservation, contaminated soils were reacted with different treatmentsolutions in an effort to promote the formation of insolublearsenic-bearing phases and thereby decrease the leachability of arsenic.Ferrous sulfate, potassium permanganate and calcium carbonate were usedas the reagents for the chemical fixation solutions evaluated in threesets of batch experiments: (1) FeSO4; (2) FeSO4 and KMnO4; (3) FeSO4,KMnO4 and CaCO3. The optimum treatment solutions for each soil wereidentified based on the mobility of arsenic during sequential leaching oftreated and untreated soils using the fluids described in EPA Method 1311[USEPA. Method 1311: toxicity characteristic leaching procedure. Testmethods for evaluating solid waste, physical/chemical methods. 3rd ed.Washington, DC: U.S. Environmental Protection Agency, Office of SolidWaste. U.S. Government Printing Office; 1992]toxic characteristicsleaching

  7. Measured and simulated soil water evaporation from four Great Plains soils

    Science.gov (United States)

    The amount of soil water lost during stage one and stage two soil water evaporation is of interest to crop water use modelers. The ratio of measured soil surface temperature (Ts) to air temperature (Ta) was tested as a signal for the transition in soil water evaporation from stage one to stage two d...

  8. In situ oil burning in the marshland environment : soil temperatures resulting from crude oil and diesel fuel burns

    International Nuclear Information System (INIS)

    Bryner, N.P.; Walton, W.D.; Twilley, W.H.; Roadarmel, G.; Mendelssohn, I.A.; Lin, Q.; Mullin, J.V.

    2001-01-01

    The unique challenge associated with oil spill cleanups in sensitive marsh environments was discussed. Mechanical recovery of crude or refined hydrocarbons in wetlands may cause more damage to the marsh than the oil itself. This study evaluated whether in situ burning of oiled marshlands would provide a less damaging alternative than mechanical recovery. This was done through a series of 6 crude oil and 5 diesel fuel burns conducted in a test tank to examine the impact of intentional burning of oil spilled in a wetlands environment. There are several factors which may influence how well such an environment would recover from an in situ oil burn, such as plant species, fuel type and load, water level, soil type, and burn duration. This paper focused on soil, air and water temperatures, as well as total heat fluxes that resulted when 3 plant species were exposed to full-scale in situ burns that were created by burning diesel fuel and crude oil. The soil temperatures were monitored during the test burn at three different soil/water elevations for 700 second burn exposures. A total of 184 plant sods were harvested from marshlands in southern Louisiana and were subjected to the burning fuel. They were instrumental in characterizing the thermal and chemical stress that occur during an in-situ burn. The plants were inserted into the test tanks at various water and soil depths. The results indicated that diesel fuel and crude oil burns produced similar soil temperature profiles at each of three plant sod elevations. Although in-situ burning did not appear to remediate oil that had penetrated into the soil, it did effectively remove floating oil from the water surface, thereby preventing it from potentially contaminating adjacent habitats and penetrating the soil when the water recedes. The regrowth and recovery of the plants will be described in a separate report. 25 refs., 7 tabs., 15 figs

  9. Spatially-Dependent Measurements of Surface and Near-Surface Radioactive Material Using In situ Gamma Ray Spectrometry (ISGRS) For Final Status Surveys

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Chapman, A. J. Boerner, E. W. Abelquist

    2006-11-15

    In-situ, high-resolution gamma-ray spectrometry (ISGRS) measurements were conducted at the Oak Ridge Institute for Science and Education (ORISE) field laboratory in Oak Ridge, Tennessee. The purpose of these tests was to provide analytical data for assessing how “fit for use” this technology is for detecting discrete particles in soil.

  10. Spatially-Dependent Measurements of Surface and Near-Surface Radioactive Material Using In situ Gamma Ray Spectrometry (ISGRS) For Final Status Surveys

    International Nuclear Information System (INIS)

    J. A. Chapman, A. J. Boerner, E. W. Abelquist

    2006-01-01

    In-situ, high-resolution gamma-ray spectrometry (ISGRS) measurements were conducted at the Oak Ridge Institute for Science and Education ORISE field laboratory in Oak Ridge, Tennessee. The purpose of these tests was to provide analytical data for assessing how 'fit for use' this technology is for detecting discrete particles in soil

  11. Application of the differential soil bioreactor to in-situ biodegradation of trichloroethylene at the Savannah River Site

    International Nuclear Information System (INIS)

    Andrews, G.F.; Hansen, S.G.

    1994-01-01

    The differential soil bioreactor is a continuous-flow, laboratory treatability-study device in which groundwater, supplemented with nutrients, is recirculated through a disc of aquifer material at a rate that simulates actual groundwater flow. A high recycle ratio ensures that all bacteria in the disc are exposed to the same physiochemical environment, so rate and yield parameters needed for modeling in-situ bioremediation can, in principle, be derived directly from measurements of inlet and outlet concentrations of contaminants, nutrients and cells. Results are shown for the biodegradation of trichloroethylene by methanotrophic bacteria in sediments from the Savannah River site. The limitations of the technique for slow-flowing aquifers are discussed

  12. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    Science.gov (United States)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  13. The application of in situ air sparging as an innovative soils and ground water remediation technology

    International Nuclear Information System (INIS)

    Marley, M.C.; Hazebrouck, D.J.; Walsh, M.T.

    1992-01-01

    Vapor extraction (soil venting) has been demonstrated to be a successful and cost-effective remediation technology for removing VOCs from the vadose (unsaturated) zone. However, in many cases, seasonal water table fluctuations, drawdown associated with pump-and-treat remediation techniques, and spills involving dense, non-aqueous phase liquids (DNAPLS) create contaminated soil below the water table. Vapor extraction alone is not considered to be an optimal remediation technology to address this type of contamination. An innovative approach to saturated zone remediation is the use of sparging (injection) wells to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below the areas of contamination. The contaminants dissolved in the ground water and sorbed onto soil particles partition into the advective air phase, effectively simulating an in situ air-stripping system. The stripped contaminants are transported in the gas phase to the vadose zone, within the radius of influence of a vapor extraction and vapor treatment system. In situ air sparging is a complex multifluid phase process, which has been applied successfully in Europe since the mid-1980s. To date, site-specific pilot tests have been used to design air-sparging systems. Research is currently underway to develop better engineering design methodologies for the process. Major design parameters to be considered include contaminant type, gas injection pressures and flow rates, site geology, bubble size, injection interval (areal and vertical) and the equipment specifications. Correct design and operation of this technology has been demonstrated to achieve ground water cleanup of VOC contamination to low part-per-billion levels

  14. Comparing the ensemble and extended Kalman filters for in situ soil moisture assimilation with contrasting conditions

    Directory of Open Access Journals (Sweden)

    D. Fairbairn

    2015-12-01

    Full Text Available Two data assimilation (DA methods are compared for their ability to produce an accurate soil moisture analysis using the Météo-France land surface model: (i SEKF, a simplified extended Kalman filter, which uses a climatological background-error covariance, and (ii EnSRF, the ensemble square root filter, which uses an ensemble background-error covariance and approximates random rainfall errors stochastically. In situ soil moisture observations at 5 cm depth are assimilated into the surface layer and 30 cm deep observations are used to evaluate the root-zone analysis on 12 sites in south-western France (SMOSMANIA network. These sites differ in terms of climate and soil texture. The two methods perform similarly and improve on the open loop. Both methods suffer from incorrect linear assumptions which are particularly degrading to the analysis during water-stressed conditions: the EnSRF by a dry bias and the SEKF by an over-sensitivity of the model Jacobian between the surface and the root-zone layers. These problems are less severe for the sites with wetter climates. A simple bias correction technique is tested on the EnSRF. Although this reduces the bias, it modifies the soil moisture fluxes and suppresses the ensemble spread, which degrades the analysis performance. However, the EnSRF flow-dependent background-error covariance evidently captures seasonal variability in the soil moisture errors and should exploit planned improvements in the model physics. Synthetic twin experiments demonstrate that when there is only a random component in the precipitation forcing errors, the correct stochastic representation of these errors enables the EnSRF to perform better than the SEKF. It might therefore be possible for the EnSRF to perform better than the SEKF with real data, if the rainfall uncertainty was accurately captured. However, the simple rainfall error model is not advantageous in our real experiments. More realistic rainfall error models are

  15. The use of in-situ dual vacuum extraction for remediation of soil and groundwater

    International Nuclear Information System (INIS)

    Trowbridge, B.E.; Ott, D.E.

    1992-01-01

    Dual Extraction provides a rapid and cost-effective method of remediating soil and groundwater impacted by volatile organic compounds (VOC's). Dual Extraction is the removal of both water and vapors through the same borehole using entrainment. This technology provides for the remediation of the vadose zone, capillary fringe, smear zone, and existing water table. The effectiveness of this technology is shown in a case study. A release from an Underground Storage Tank (UST) was responsible for a hydrocarbon plume spreading over approximately 50,000 square feet. The release produced vadose zone contamination in the silty and sandy clays from 10 - 30 feet below ground surface with TPH concentrations up to 1,400 mg/kg. A layer of free floating liquid hydrocarbon was present on a shallow aquifer located at 30 feet bgs in thicknesses ranging from 0.5 feet to 3.0 feet. An in-situ dual-extraction system was installed to remediate the soils and groundwater to levels as required by the Los Angeles Regional Water Quality Control Board (RWQCB). The system operated 24 hours/day for 196 days with an operating efficiency of over 99%. After 196 days, over 17,000 pounds of hydrocarbons had been extracted from the soils. Seven confirmatory soil borings were advanced in the area of highest initial hydrocarbon concentrations and indicated that TPH and BTEX concentrations had decreased over 99% from initial soil concentrations. Three confirmatory groundwater samples were obtained from monitoring wells initially exhibiting up to 3 feet of floating product. Confirmatory samples exhibited non-detectable (ND) concentrations of TPH and BTEX. Based upon the positive confirmatory results, site closure was obtained from the RWQCB in May of 1991. In only 28 weeks of operation, the groundwater contamination was reduced from free floating product to non-detectable concentrations of TPH using Dual Vacuum Extraction

  16. Use of in situ volumetric water content at field capacity to improve prediction of soil water retention properties

    OpenAIRE

    Al Majou , Hassan; Bruand , Ary; Duval , Odile

    2008-01-01

    International audience; Use of in situ volumetric water content at field capacity to improve prediction of soil water retention properties. Most pedotransfer functions (PTFs) developed over the last three decades to generate water retention characteristics use soil texture, bulk density and organic carbon content as predictors. Despite of the high number of PTFs published, most being class- or continuous-PTFs, accuracy of prediction remains limited. In this study, we compared the performance ...

  17. Measurement and characteristics of microbial biomass in forest soils

    International Nuclear Information System (INIS)

    Vance, E.D.

    1986-01-01

    The soil microbial biomass is the primary agent responsible for the breakdown and mineralization of soil organic matter and plays a major role in regulating nutrient availability to plants. In this study, methods for measuring biomass in soil were compared and tested in forest soils ranging in pH from 3.2 to 7.2. A good relationship between biomass C measured using the chloroform fumigation-incubation method and soil ATP or microbial biomass C by direct microscopy was found in soils at or above pH 4.2. The fumigation-incubation method consistently underestimated biomass C in soils below pH 4.2, however. Hypotheses for the breakdown of the fumigation-incubation method in strongly acid soils were tested by using an alterative fumigant, measuring the proportion of added 14 C labelled fungi and bacteria decomposed in fumigated soils (k/sub C/), and by studying the effect of large, non-fumigated soil inocula on the flush of respiration following fumigation. These studies indicated that the failure of the method in strongly acid soils was due to inhibited decomposition of non-microbial soil organic matter by the microbial recolonizing population following fumigation. A modified method for measuring biomass C by fumigation-incubation in acid soils is proposed

  18. Novel Sensor for the In Situ Measurement of Uranium Fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Hatfield, Kirk [Univ. of Florida, Gainesville, FL (United States)

    2015-02-10

    The goal of this project was to develop a sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of flux for uranium and groundwater in porous media. Measurable contaminant fluxes [J] are essentially the product of concentration [C] and groundwater flux or specific discharge [q ]. The sensor measures [J] and [q] by changes in contaminant and tracer amounts respectively on a sorbent. By using measurement rather than inference from static parameters, the sensor can directly advance conceptual and computational models for field scale simulations. The sensor was deployed in conjunction with DOE in obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) at the Rifle IFRC Site in Rifle, Colorado. Project results have expanded our current understanding of how field-scale spatial variations in fluxes of uranium, groundwater and salient electron donor/acceptors are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The coupling between uranium, various nutrients and micro flora can be used to estimate field-scale rates of uranium attenuation and field-scale transitions in microbial communities. This research focuses on uranium (VI), but the sensor principles and design are applicable to field-scale fate and transport of other radionuclides. Laboratory studies focused on sorbent selection and calibration, along with sensor development and validation under controlled conditions. Field studies were conducted at the Rifle IFRC Site in Rifle, Colorado. These studies were closely coordinated with existing SBR (formerly ERSP) projects to complement data collection. Small field tests were conducted during the first two years that focused on evaluating field-scale deployment procedures and validating sensor performance under

  19. Kinematic analysis of in situ measurement during chemical mechanical planarization process

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongkai; Wang, Tongqing; Zhao, Qian; Meng, Yonggang; Lu, Xinchun, E-mail: xclu@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-10-15

    Chemical mechanical planarization (CMP) is the most widely used planarization technique in semiconductor manufacturing presently. With the aid of in situ measurement technology, CMP tools can achieve good performance and stable productivity. However, the in situ measurement has remained unexplored from a kinematic standpoint. The available related resources for the kinematic analysis are very limited due to the complexity and technical secret. In this paper, a comprehensive kinematic analysis of in situ measurement is provided, including the analysis model, the measurement trajectory, and the measurement time of each zone of wafer surface during the practical CMP process. In addition, a lot of numerical calculations are performed to study the influences of main parameters on the measurement trajectory and the measurement velocity variation of the probe during the measurement process. All the efforts are expected to improve the in situ measurement system and promote the advancement in CMP control system.

  20. Using 137 Cs measurements to investigate the influence of erosion and soil redistribution on soil properties.

    Science.gov (United States)

    Du, P; Walling, D E

    2011-05-01

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide (137)Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using (137)Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). (137)Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha(-1) yr(-1) to a deposition rate of 19.2 t ha(-1) yr(-1). Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil redistribution rate, but for

  1. Using 137Cs measurements to investigate the influence of erosion and soil redistribution on soil properties

    International Nuclear Information System (INIS)

    Du, P.; Walling, D.E.

    2011-01-01

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide 137 Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using 137 Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). 137 Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha -1 yr -1 to a deposition rate of 19.2 t ha -1 yr -1 . Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil redistribution rate, but for most

  2. Validation of remotely-sensed soil moisture in the absence of in situ soil moisture: the case of the Yankin Basin, a tributary of the Niger River basin

    CSIR Research Space (South Africa)

    Badou, DF

    2017-10-01

    Full Text Available of remotely-sensed soil moisture is therefore promising. However, considering the limitations of remote sensing data, there is a need to check their validity prior to their utilization for impact studies. This in turn poses a problem in the absence of in situ...

  3. Application of an in-situ soil sampler for assessing subsurface biogeochemical dynamics in a diesel-contaminated coastal site during soil flushing operations.

    Science.gov (United States)

    Kwon, Man Jae; O'Loughlin, Edward J; Ham, Baknoon; Hwang, Yunho; Shim, Moojoon; Lee, Soonjae

    2018-01-15

    Subsurface biogeochemistry and contaminant dynamics during the remediation of diesel-contamination by in-situ soil flushing were investigated at a site located in a coastal region. An in-situ sampler containing diesel-contaminated soils separated into two size fractions (fraction were much higher than those in the fraction. Increases in soil TPH in DH1 were consistent with the expected outcomes following well pumping and surfactant injection used to enhance TPH extraction. However, the number of diesel-degrading microorganisms decreased after surfactant injection. 16S-rRNA gene-based analysis also showed that the community composition and diversity depended on both particle size and diesel contamination. The multidisciplinary approach to the contaminated site assessments showed that soil flushing with surfactant enhanced diesel extraction, but negatively impacted in-situ diesel biodegradation as well as groundwater quality. The results also suggest that the in-situ sampler can be an effective monitoring tool for subsurface biogeochemistry as well as contaminant dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Savannah River Site Experiences in In Situ Field Measurements of Radioactive Materials

    International Nuclear Information System (INIS)

    Moore, F.S.

    1999-01-01

    This paper discusses some of the field gamma-ray measurements made at the Savannah River Site, the equipment used for the measurements, and lessons learned during in situ identification and characterization of radioactive materials

  5. Transformation of natural ferrihydrite aged in situ in As, Cr and Cu contaminated soil studied by reduction kinetics

    DEFF Research Database (Denmark)

    Nielsen, Sanne Skov; Kjeldsen, Peter; Hansen, Hans Christian Bruun

    2014-01-01

    following 4 yr of in situ burial at a contaminated site was examined in samples of impure (Si-bearing) ferrihydrite in soil heavily polluted with As, Cr and Cu. The samples are so-called iron water treatment residues (Fe-WTR) precipitated from anoxic groundwater during aeration. The extent of transformation...

  6. Soil heat flux measurements in an open forest

    NARCIS (Netherlands)

    vanderMeulen, MJW; Klaassen, W; Kiely, G

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  7. Soil Heat Flux Measurements in an Open Forest

    NARCIS (Netherlands)

    Meulen, M.W.J. van der; Klaassen, W.

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  8. In situ stabilization of trace metals in a copper-contaminated soil using P-spiked Linz-Donawitz slag.

    Science.gov (United States)

    Negim, Osama; Mench, Michel; Bes, Clémence; Motelica-Heino, Mikael; Amin, Fouad; Huneau, Frédéric; Le Coustumer, Philippe

    2012-03-01

    A former wood exploitation revealing high Cu and As concentration of the soils served as a case study for assisted phytoextraction. P-spiked Linz-Donawitz (LD) slag was used as a soil additive to improve physico-chemical soil properties and in situ stabilize Cu and other trace metals in a sandy Cu-contaminated soil (630 mg kg⁻¹ soil). The LD slag was incorporated into the contaminated soil to consist four treatments: 0% (T1), 1% (T2), 2% (T3), and 4% (T4). A similar uncontaminated soil was used as a control (CTRL). After a 1-month reaction period, potted soils were used for a 2-week growth experiment with dwarf beans. Soil pH increased with the incorporation rate of LD slag. Similarly the soil electrical conductivity (EC, in millisiemens per centimetre) is ameliorated. Bean plants grown on the untreated soil (T1) showed a high phytotoxicity. All incorporation rates of LD slag increased the root and shoot dry weight yields compared to the T1. The foliar Ca concentration of beans was enhanced for all LD slag-amended soil, while the foliar Mg, K, and P concentrations were not increased. Foliar Cu, Zn, and Cr concentrations of beans decreased with the LD slag incorporation rate. P-spiked LD slag incorporation into polluted soil allow the bean growth and foliar Ca concentration, but also to reduce foliar Cu concentration below its upper critical value avoiding an excessive soil EC and Zn deficiency. This dual effect can be of interest for soil remediation at larger scale.

  9. The environmental radiation monitoring system and in-situ measurements for early notification and OIL (Operational Intervention Levels) calculations

    International Nuclear Information System (INIS)

    Haquin, G.; Ne'eman, E.; Brenner, S.; Lavi, N.

    1997-01-01

    The efficiency of the environmental radiation monitoring, low level laboratory and in-situ gamma-ray spectrometry are evaluated as the systems for early notification and for determination of dose rate in air, surface contamination and activity concentration in food during emergencies for Operational Intervention Levels (OIL) recalculation.The National Environmental Radiation Monitoring System has proved its efficiency in the early detection of unregistered radiography work. A mobile station of the network can be used for absorbed dose rate measurement during emergencies in contaminated areas. The calibrated in-situ gamma-ray spectrometry system in an open phosphate ore mine has showed the efficiency of this technique for fast and accurate determination of soil activity concentration. The calibration for an uniform depth distribution can be easily mathematically converted to an exponential depth distribution in cases of radioactive material fallout

  10. Study on the influence factors about the soil radon measurement

    International Nuclear Information System (INIS)

    Wu Zixiang; Liu Yanbin; Jia Yuxin; Mai Weiji; Liu Xiaolian; Yang Yuhua

    2006-01-01

    Objective: To explore relevant factors about the soil radon measurement and provide gist of formulating correct measure method by studying the way of the soil radon measurement. Methods: Deflation-ionization room standard is adopted. Results: The concentration of soil radon becomes higher with the sample's volume added, it also augmented with the measure depth increased in certain degree; The concentration of soil radon changes little when sample's depth is above 60 cm; The time of deflation has no obvious influence on the concentration of soil radon, but microwave show serious effect on it; The results will be lowered when the desiccant is humidified, raining has the same affection on it; Plant has some impact on it. Conclusion: The measured results will be affected by microwave, oscillate and plant. Sample's volume and depth, soil's humidity can influence it too. The result's veracity can be guaranteed by choosing appropriate sample and measure condition. (authors)

  11. An improved in situ measurement of offset phase shift towards quantitative damping-measurement with AFM

    International Nuclear Information System (INIS)

    Minary-Jolandan, Majid; Yu Minfeng

    2008-01-01

    An improved approach is introduced in damping measurement with atomic force microscope (AFM) for the in situ measurement of the offset phase shift needed for determining the intrinsic mechanical damping in nanoscale materials. The offset phase shift is defined and measured at a point of zero contact force according to the deflection part of the AFM force plot. It is shown that such defined offset phase shift is independent of the type of sample material, varied from hard to relatively soft materials in this study. This improved approach allows the self-calibrated and quantitative damping measurement with AFM. The ability of dynamic mechanical analysis for the measurement of damping in isolated one-dimensional nanostructures, e.g. individual multiwalled carbon nanotubes, was demonstrated

  12. Non-invasive Field Measurements of Soil Water Content Using a Pulsed 14 MeV Neutron Generator

    Energy Technology Data Exchange (ETDEWEB)

    Mitra S.; Wielopolski L.; Omonode, R.; Novak, J.; Frederick, J.; Chan, A.

    2012-01-26

    Current techniques of soil water content measurement are invasive and labor-intensive. Here, we demonstrate that an in situ soil carbon (C) analyzer with a multi-elemental analysis capability, developed for studies of terrestrial C sequestration, can be used concurrently to non-invasively measure the water content of large-volume ({approx}0.3 m{sup 3}) soil samples. Our objectives were to investigate the correlations of the hydrogen (H) and oxygen (O) signals with water to the changes in the soil water content in laboratory experiments, and in an agricultural field. Implementing prompt gamma neutron activation analyses we showed that in the field, the signal from the H nucleus better indicates the soil water content than does that from the O nucleus. Using a field calibration, we were able to use the H signal to estimate a minimum detectable change of {approx}2% volumetric water in a 0-30 cm depth of soil.

  13. Soil Water Measurement Using Actively Heated Fiber Optics at Field Scale.

    Science.gov (United States)

    Vidana Gamage, Duminda N; Biswas, Asim; Strachan, Ian B; Adamchuk, Viacheslav I

    2018-04-06

    Several studies have demonstrated the potential of actively heated fiber optics (AHFO) to measure soil water content (SWC) at high spatial and temporal resolutions. This study tested the feasibility of the AHFO technique to measure soil water in the surface soil of a crop grown field over a growing season using an in-situ calibration approach. Heat pulses of five minutes duration were applied at a rate of 7.28 W m -1 along eighteen fiber optic cable transects installed at three depths (0.05, 0.10 and 0.20 m) at six-hour intervals. Cumulative temperature increase (T cum ) during heat pulses was calculated at locations along the cable. While predicting commercial sensor measurements, the AHFO showed root mean square errors (RMSE) of 2.8, 3.7 and 3.7% for 0.05, 0.10 and 0.20 m depths, respectively. Further, the coefficients of determination (R²) for depth specific relationships were 0.87 (0.05 m depth), 0.46 (0.10 m depth), 0.86 (0.20 m depth) and 0.66 (all depths combined). This study showed a great potential of the AHFO technique to measure soil water at high spatial resolutions (<1 m) and to monitor soil water dynamics of surface soil in a crop grown field over a cropping season with a reasonable compromise between accuracy and practicality.

  14. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil.

    Science.gov (United States)

    Ángeles, Martínez-Toledo; Refugio, Rodríguez-Vázquez

    2013-01-01

    In situ biosurfactant (rhamnolipid) production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus), P. putida addition, and addition of both (P. putida and nutrients). The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils) supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH) was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil.

  15. Detection and Identification of potentially toxic elements in urban soil using in situ spectroscopy

    Science.gov (United States)

    Brook, Anna; Kopel, Daniella; Wittenberg, Lea

    2017-04-01

    Anthropogenic urban soils are the foundation of the urban green infrastructure, the green net quality is as good as each of its patches. In early days of pedology urban soil has been recognized with respect to contamination and the risks for human health but in study performed since the 70s, the importance of urban soil for the urban ecology became increasingly significant. Urban soils are highly disturbed land that was created by the process of urbanization. The dominant agent in the creation of urban soils is human activity which modifies the natural soil through mixing, filling or by contamination of land surfaces so as to create a layer of urban soil which can be more than 50 cm thick. The objective of this study is to determine the extent to which field spectroscopy methods can be used to extend the knowledge of toxic elements in urban soils. The majority of the studies on urban soils concentrate on identifying and mapping of known pollution mostly certain heavy metals, we are focusing on almost non disturbed soils where no direct disturbance occurred but the urban matrix inflicted on it. The elements in those soils where an-knowns features. In this study a top-down analysis is applied for detecting the presence of minerals, organic matter and pollutants in mixed soil samples. Results of the proposed top-down unmixing method suggest that the analysis is made very fast due to the simplified hierarchy which avoids the high-learning curve associated with unmixing algorithms showed that the most abundant components were coarse organic matter 12% followed by concrete dust, plastic crumbs, other man made materials, clay and other minerals. The results of the soils pH, measured electrometrically and the particle size distribution, measured by Laser diffraction, indicate there is no big different between the samples particle size distribution and the pH values of the samples but they are not significantly different from the expected, except for the OM percentage which

  16. Measurement of dielectric and magnetic properties of soil

    International Nuclear Information System (INIS)

    Patitz, W.E.; Brock, B.C.; Powell, E.G.

    1995-11-01

    The possibility of subsurface imaging using SAR technology has generated a considerable amount of interest in recent years. One requirement for the successful development of a subsurface imagin system is an understanding of how the soil affects the signal. In response to a need for an electromagnetic characterization of the soil properties, the Radar/Antenna department has developed a measurement system which determines the soils complex electric permittivity and magnetic permeability at UHF frequencies. The one way loss in dB is also calculated using the measured values. There are many reports of measurements of the electric properties of soil in the literature. However, most of these are primarily concerned with measuring only a real dielectric constant. Because some soils have ferromagnetic constituents it is desirable to measure both the electric and magnetic properties of the soil

  17. In situ olive mill residual co-composting for soil organic fertility restoration and by-product sustainable reuse

    Directory of Open Access Journals (Sweden)

    Teresa Casacchia

    2012-06-01

    Full Text Available The addition of organic matter in the form of compost improves overall physical, chemical and biological properties of soils but, to be really sustainable, the composting process should be carried out using the by-products available in situ. Two different soils of a Mediterranean olive orchard, one managed traditionally (NAS and the other amended with compost (AS, were investigated in a two-year experiment. Increases in total organic matter, total nitrogen and pH, were detected in AS if compared to NAS. Significant increases in total and specific microbial counts were observed in AS, with a clear amelioration of microbiological soil quality. The results demonstrated that soil amendment using compost deriving from olive mill by-products can be an important agricultural practice for supporting and stimulating soil microorganisms and, at the same time, for re-using these byproducts, so avoiding their negative environmental impact.

  18. In situ vitrification of Oak Ridge National Laboratory soil and limestone

    International Nuclear Information System (INIS)

    Carter, J.G.; Bates, S.O.; Maupin, G.D.

    1987-03-01

    Process feasibility studies were successfully performed on two different developmental scales to determine the technical application of in situ vitrification (ISV) to Oak Ridge National Laboratory (ORNL) intermediate-level waste. In the laboratory, testing was performed on crucibles containing quantities of 50% ORNL soil and 50% ORNL limestone. In the engineering-scale testing, a 1/12-scaled simulation of ORNL Trench 7 was constructed and vitrified, resulting in waste product soil and limestone concentrations of 68% and 32%, respectively. Results from the two scales of testing indicate that the ORNL intermediate-level waste sites may be successfully processed by ISV; the waste form will retain significant quantities of the cesium and strontium. Because 137 Cs is the major component of the radionuclide inventory in the ORNL seepage pits and trenches, final field process decontamination factors (i.e., off gas at the ground surface relative to the waste inventory) of 10 4 are desired to minimize activity buildup in the off-gas system. These values were realized during the engineering-scale test for both cesium and strontium. The vitrified material effectively contained 99.996% of the cesium and strontium placed in the engineering-scale test. This is equivalent to decontamination factors of greater than 10 4 . Volume reduction for the engineering-scale test was 60%. No migration of the cesium to the uncontaminated surrounding soil was detected. These favorable results indicate that, once verified in a pilot-scale test, an adequately designed ISV system could be produced to treat the ORNL seepage pits and trenches without excessive activity accumulation in the off-gas treatment system

  19. Gap assessment in current soil monitoring networks across Europe for measuring soil functions

    Science.gov (United States)

    van Leeuwen, J. P.; Saby, N. P. A.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R. P. O.; Spiegel, H.; Toth, G.; Creamer, R. E.

    2017-12-01

    Soil is the most important natural resource for life on Earth after water. Given its fundamental role in sustaining the human population, both the availability and quality of soil must be managed sustainably and protected. To ensure sustainable management we need to understand the intrinsic functional capacity of different soils across Europe and how it changes over time. Soil monitoring is needed to support evidence-based policies to incentivise sustainable soil management. To this aim, we assessed which soil attributes can be used as potential indicators of five soil functions; (1) primary production, (2) water purification and regulation, (3) carbon sequestration and climate regulation, (4) soil biodiversity and habitat provisioning and (5) recycling of nutrients. We compared this list of attributes to existing national (regional) and EU-wide soil monitoring networks. The overall picture highlighted a clearly unbalanced dataset, in which predominantly chemical soil parameters were included, and soil biological and physical attributes were severely under represented. Methods applied across countries for indicators also varied. At a European scale, the LUCAS-soil survey was evaluated and again confirmed a lack of important soil biological parameters, such as C mineralisation rate, microbial biomass and earthworm community, and soil physical measures such as bulk density. In summary, no current national or European monitoring system exists which has the capacity to quantify the five soil functions and therefore evaluate multi-functional capacity of a soil and in many countries no data exists at all. This paper calls for the addition of soil biological and some physical parameters within the LUCAS-soil survey at European scale and for further development of national soil monitoring schemes.

  20. In situ phytoremediation of PAH-contaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (Festuca arundinacea Schreb.) and associated soil microbial activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingming; Fu, Dengqiang; Teng, Ying; Shen, Yuanyuan; Luo, Yongming; Li, Zhengao [Chinese Academy of Sciences, Nanjing (China). Key Laboratory of Soil Environment and Pollution Remediation; Christie, Peter [Agri-Food and Biosciences Institute, Belfast (United Kingdom). Agri-Environment Branch

    2011-09-15

    Purpose: A 7-month field experiment was conducted to investigate the polycyclic aromatic hydrocarbon (PAH) remediation potential of two plant species and changes in counts of soil PAH-degrading bacteria and microbial activity. Materials and methods: Alfalfa and tall fescue were grown in monoculture and intercropped for 7 months in contaminated field soil. Soil and plant samples were analyzed for PAHs. Plant biomass, densities of PAH-degradation soil bacteria, soil microbial biomass C and N, enzyme activities, and the physiological profile of the soil microbial community were determined. Results and discussion: Average removal percentage of total PAHs in intercropping (30.5%) was significantly higher than in monoculture (19.9%) or unplanted soil (-0.6%). About 7.5% of 3-ring, 12.3% of 4-ring, and 17.2% of 5(+6)-ring PAHs were removed from the soil by alfalfa, with corresponding values of 25.1%, 10.4%, and 30.1% for tall fescue. Intercropping significantly enhanced the remediation efficiency. About 18.9% of 3-ring, 30.9% of 4-ring, and 33.4% of 5(+6)-ring PAHs were removed by the intercropping system. Higher counts of soil culturable PAH-degrading bacteria and elevated microbial biomass and enzyme activities were found after intercropping. Soil from intercropping showed significantly higher (p < 0.05) average well-color development obtained by the BIOLOG Ecoplate assay and Shannon-Weaver index compared with monoculture. Conclusions: Cropping promoted the dissipation of soil PAHs. Tall fescue gave greater removal of soil PAHs than alfalfa, and intercropping was more effective than monoculture. Intercropping of alfalfa and tall fescue may be a promising in situ bioremediation strategy for PAH-contaminated soils. (orig.)

  1. Relating soil solution Zn concentration to diffusive gradients in thin films measurements in contaminated soils.

    Science.gov (United States)

    Degryse, Fien; Smolders, Erik; Oliver, Ian; Zhang, Hao

    2003-09-01

    The technique of diffusive gradients in thin films (DGT) has been suggested to sample an available fraction of metals in soil. The objectives of this study were to compare DGT measurements with commonly measured fractions of Zn in soil, viz, the soil solution concentration and the total Zn concentration. The DGT technique was used to measure fluxes and interfacial concentrations of Zn in three series of field-contaminated soils collected in transects toward galvanized electricity pylons and in 15 soils amended with ZnCl2 at six rates. The ratio of DGT-measured concentration to pore water concentration of Zn, R, varied between 0.02 and 1.52 (mean 0.29). This ratio decreased with decreasing distribution coefficient, Kd, of Zn in the soil, which is in agreement with the predictions of the DGT-induced fluxes in soils (DIFS) model. The R values predicted with the DIFS model were generally larger than the observed values in the ZnCl2-amended soils at the higher Zn rates. A modification of the DIFS model indicated that saturation of the resin gel was approached in these soils, despite the short deployment times used (2 h). The saturation of the resin with Zn did not occur in the control soils (no Zn salt added) or the field-contaminated soils. Pore water concentration of Zn in these soils was predicted from the DGT-measured concentration and the total Zn content. Predicted values and observations were generally in good agreement. The pore water concentration was more than 5 times underpredicted for the most acid soil (pH = 3) and for six other soils, for which the underprediction was attributed to the presence of colloidal Zn in the soil solution.

  2. Concentrations and flux measurements of volatile organic compounds (VOC) in boreal forest soil

    Science.gov (United States)

    Mäki, Mari; Aaltonen, Hermanni; Heinonsalo, Jussi; Hellén, Heidi; Pumpanen, Jukka; Bäck, Jaana

    2017-04-01

    Volatile organic compounds (VOC) impact soil processes as VOCs transmit signals between roots and rhizosphere (Ditengou et al., 2015), VOCs can regulate microbial activity (Asensio et al., 2012), and VOCs can also promote root growth (Hung et al., 2012). Belowground concentrations of VOCs have not been measured in situ and for this reason, knowledge of how different soil organisms such as roots, rhizosphere and decomposers contribute to VOC production is limited. The aim of this study was to determine and quantify VOC fluxes and concentrations of different horizons from boreal forest soil. The VOC concentrations and fluxes were measured from Scots pine (Pinus sylvestris) forest soil at the SMEAR II station in southern Finland from 21th of April to 2nd of December in 2016. VOC fluxes were measured using dynamic (flow-through) chambers from five soil collars placed on five different locations. VOC concentrations were also measured in each location from four different soil horizons with the measurement depth 1-107 cm. VOCs were collected from underground gas collectors into the Tenax-Carbopack-B adsorbent tubes using portable pumps ( 100 ml min-1). The VOC concentrations and fluxes of isoprene, 11 monoterpenes, 13 sesquiterpenes and different oxygenated VOCs were measured. Sample tubes were analyzed using thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). Soil temperature and soil water content were continuously monitored for each soil horizon. Our preliminary results show that the primary source of VOCs is organic soil layer and the contribution of mineral soil to the VOC formation is minor. VOC fluxes and concentrations were dominated by monoterpenes such as α-pinene, camphene, β-pinene, and Δ3-carene. Monoterpene concentration is almost 10-fold in organic soil compared to the deeper soil layers. However, the highest VOC fluxes on the soil surface were measured in October, whereas the monoterpene concentrations in organic soil were highest in July

  3. Field soil-water properties measured through radiation techniques

    International Nuclear Information System (INIS)

    1984-07-01

    This report shows a major effort to make soil physics applicable to the behaviour of the field soils and presents a rich and diverse set of data which are essential for the development of effective soil-water management practices that improve and conserve the quality and quantity of agricultural lands. This piece of research has shown that the neutron moisture meter together with some complementary instruments like tensiometers, can be used not only to measure soil water contents but also be extremely handy to measure soil hydraulic characteristics and soil water flow. It is, however, recognized that hydraulic conductivity is highly sensitive to small changes in soil water content and texture, being extremely variable spatially and temporally

  4. Effects of Triton X-100 and Quillaya Saponin on the ex situ bioremediation of a chronically polychlorobiphenyl-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Fava, F.; Di Gioia, D. [Bologna Univ. (Italy). Dept. of Applied Chemistry and Material Science

    1998-12-31

    The possibility of enhancing the ex situ bioremediation of a chronically polychlorinated biphenyl (PCB)-contaminated soil by using Triton X-100 or Quillaya Saponin, a synthetic and a biogenic surfactant, respectively, was studied. The soil, which contained about 350 mg/kg of PCBs and indigenous aerobic bacteria capable of growing on biphenyl or on monochlorobenzoic acids, was amended with inorganic nutrients and biphenyl, saturated with water and treated in aerobic batch slurry- and fixed-phase reactors. Triton X-100 and Quillays Saponin were added to the reactors at a final concentration of 10 g/l at the 42nd day of treatment, and at the 43rd and 100th day, respectively. Triton X-100 was not metabolised by the soil microflora and it exerted inhibitory effects on the indigenous bacteria. Quillaya Saponin, on the contrary, was readily metabolised by the soil microflora. Under slurry-phase conditions, Triton X-100 negatively influenced the soil bioremediation process by affecting the availability of the chlorobenzoic acid degrading indigenous bacteria, wheres Quillays Saponin slightly enhanced the biological degradation and dechlorination of the soil PCBs. In the fixed-phase reactors, where both the surfactant availability and the mixing of the soil were lower, Triton X-100 did not exert inhibitory effects on the soil biomass and enhanced significantly the soil PCB depletion, whereas Quillays Saponin did not influence the bioremediation process. (orig.)

  5. Soil volumetric water content measurements using TDR technique

    Directory of Open Access Journals (Sweden)

    S. Vincenzi

    1996-06-01

    Full Text Available A physical model to measure some hydrological and thermal parameters in soils will to be set up. The vertical profiles of: volumetric water content, matric potential and temperature will be monitored in different soils. The volumetric soil water content is measured by means of the Time Domain Reflectometry (TDR technique. The result of a test to determine experimentally the reproducibility of the volumetric water content measurements is reported together with the methodology and the results of the analysis of the TDR wave forms. The analysis is based on the calculation of the travel time of the TDR signal in the wave guide embedded in the soil.

  6. The use of vinasse as an amendment to ex-situ bioremediation of soil and groundwater contaminated with diesel oil

    Directory of Open Access Journals (Sweden)

    Adriano Pinto Mariano

    2009-08-01

    Full Text Available This work investigated the possibility of using vinasse as an amendment in ex-situ bioremediation processes. Groundwater and soil samples were collected at petrol stations. The soil bioremediation was simulated in Bartha biometer flasks, used to measure the microbial CO2 production, during 48 days, where vinasse was added at a concentration of 33 mL.Kg-1of soil. Biodegradation efficiency was also measured by quantifying the total petroleum hydrocarbons (TPH by gas chromatography. The groundwater bioremediation was carried out in laboratory experiments simulating aerated (bioreactors and not aerated (BOD flasks conditions. In both the cases, the concentration of vinasse was 5 % (v/v and different physicochemical parameters were evaluated during 20 days. Although an increase in the soil fertility and microbial population were obtained with the vinasse, it demonstrated not to be adequate to enhance the bioremediation efficiency of diesel oil contaminated soils. The addition of the vinasse in the contaminated groundwaters had negative effects on the biodegradation of the hydrocarbons, since vinasse, as a labile carbon source, was preferentially consumed.Este trabalho investigou a possibilidade de se usar a vinhaça como um agente estimulador de processos de biorremediação ex-situ. Amostras de água subterrânea e solo foram coletadas em três postos de combustíveis. A biorremediação do solo foi simulada em frascos de Bartha, usados para medir a produção de CO2, durante 48 dias, onde a vinhaça foi adicionada a uma concentração de 33 mL.Kg-1 de solo. A eficiência de biodegradação também foi medida pela quantificação de hidrocarbonetos totais de petróleo (TPH por cromatografia gasosa. A biorremediação da água subterrânea foi realizada em experimentos laboratoriais simulando condições aeradas (bioreatores e não aeradas (frascos de DBO. Em ambos os casos, a concentração de vinhaça foi de 5 % (v/v e diferentes parâmetros f

  7. Interdependence of soil and agricultural practice in a two - year phytoremediation in situ experiment

    Science.gov (United States)

    Nwaichi, Eucharia; Onyeike, Eugene; Frac, Magdalena; Iwo, Godknows

    2016-04-01

    A two - year plant - based soil clean - up was carried out at a crude oil spill agricultural site in a Niger Delta community in Nigeria to access further clean - up potentials of Cymbopogon citratus. Applied diagnostic ratios identified mixed petrogenic and pyrogenic sources as the main contributors of PAHs. Up to 90.8% sequestration was obtained for carcinogenic PAHs especially Benz (a) pyrene in a 2 - phase manner. A community level approach for assessing patterns of sole carbon source utilization by mixed microbial samples was employed to differentiate spatial and temporal changes in the soil microbial communities. In relation to pollution, soil conditioning notably decreased the lag times and showed mixed effects for colour development rates, maximum absorbance and the overall community pattern. For rate and utilization of different carbon substrates in BIOLOG wells, after day 3, in comparison to control soil communities, contamination with hydrocarbons and associated types increased amines and amides consumption. Consumption of carbohydrates in all polluted and unamended regimes decreased markedlyin comparison to those cultivated with C. citratus. We found a direct relationship between cellulose breakdown, measurable with B-glucosidase activity, organic matter content and CO2 realease within all soils in the present study. Organic amendment rendered most studied contaminants unavailable for uptake in preference to inorganic fertilizer in both study years. Generally, phytoremediation improved significantly the microbial community activity and thus would promote ecosystem restoration in relation to most patronised techniques. Supplementation with required nutrients, in a long - term design would present many ecological benefits. Keywords: Agricultural soils; Recovery; Hydrocarbon pollution; Ecology; Management practice.

  8. Reliable practical technique for in-situ rock stress measurements in deep gold mines.

    CSIR Research Space (South Africa)

    Stacey, TR

    1998-03-01

    Full Text Available The proposed primary output of this research project is the development of a set of equipment and method of in situ stress measurements in a high stress environment typical of the deep level gold mines....

  9. Determination of the in situ modulus of the rockmass by the use of backfill measurements

    CSIR Research Space (South Africa)

    Gurtunca, RG

    1991-03-01

    Full Text Available In situ measurements and numerical modelling based on elastic theory showed that backfill stresses are considerably higher than originally thought. This has led to a change in understanding of rockmass behaviour. After describing previous work...

  10. Measurement of 222Rn in soil concentrations in interstitial air

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; Carretero, J.; Liger, E.

    1996-01-01

    Measurements of 222 Rn soil concentrations were made by inserting stainless-steel sampling tubes into the soil. The samples of the soil interstitial air were taken in to pre-evacuated 1 L glass flasks. The glass flasks are cylindrical and coated with a film of ZnS(Ag). 222 Rn was measured by counting the alpha particles emitted by 222 Rn and its daughter products, 218 Po and 214 Bi, when they reached radioactive equilibrium. Measurements of 222 Rn gas concentrations in the soil air interstices by the method at different depths were used to calculate the diffusion coefficient of the 222 Rn in the soil air. This study has been carried out for diverse soils. (Author)

  11. In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils.

    Science.gov (United States)

    Kim, Shin Woong; Chae, Yooeun; Moon, Jongmin; Kim, Dokyung; Cui, Rongxue; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-02-15

    Soils contaminated with heavy metals have been reused for agricultural, building, and industrial uses following remediation. This study assesses plant growth and bioaccumulation of heavy metals following remediation of industrially contaminated soil. The soil was collected from a field site near a nonferrous smelter and was subjected to laboratory- and field-scale studies. Soil from the contaminated site was remediated by washing with acid or mixed with soil taken from a distant uncontaminated site. The activities of various soil exoenzymes, the rate of plant growth, and the bioaccumulations of six heavy metals were measured to assess the efficacy of these bioremediation techniques. Growth of rice (Oryza sativa) was unaffected in acid-washed soil or the amended soil compared to untreated soil from the contaminated site. The levels of heavy metals in the rice kernels remained within safe limits in treated and untreated soils. Rice, sorghum (Sorghum bicolor), and wheat (Triticum aestivum) cultivated in the same soils in the laboratory showed similar growth rates. Soil exoenzyme activities and crop productivity were not affected by soil treatment in field experiments. In conclusion, treatment of industrially contaminated soil by acid washing or amendment did not adversely affect plant productivity or lead to increased bioaccumulation of heavy metals in rice.

  12. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction

    International Nuclear Information System (INIS)

    Beesley, Luke; Moreno-Jimenez, Eduardo; Clemente, Rafael; Lepp, Nicholas; Dickinson, Nicholas

    2010-01-01

    Three methods for predicting element mobility in soils have been applied to an iron-rich soil, contaminated with arsenic, cadmium and zinc. Soils were collected from 0 to 30 cm, 30 to 70 cm and 70 to 100 cm depths in the field and soil pore water was collected at different depths from an adjacent 100 cm deep trench. Sequential extraction and a column leaching test in the laboratory were compared to element concentrations in pore water sampled directly from the field. Arsenic showed low extractability, low leachability and occurred at low concentrations in pore water samples. Cadmium and zinc were more labile and present in higher concentrations in pore water, increasing with soil depth. Pore water sampling gave the best indication of short term element mobility when field conditions were taken into account, but further extraction and leaching procedures produced a fuller picture of element dynamics, revealing highly labile Cd deep in the soil profile. - Mobility of arsenic, cadmium and zinc in a polluted soil can be realistically interpreted by in-situ soil pore water sampling.

  13. Neutron probe measurement of soil water content close to soil surface

    International Nuclear Information System (INIS)

    Faleiros, M.C.; Ravelo S, A.; Souza, M.D. de

    1993-01-01

    The problem of neutron probe soil water content measurements close to soil surface is analysed from the spatial variability and also from the slow neutron loss to the atmosphere points of view. Results obtained on a dark red latosol of the county of Piracicaba, SP, indicate the possibility of precisely measuring the neutron sphere of influence when different media are used on soil surface. (author). 7 refs, 5 figs, 1 tab

  14. In-situ studies on the performance of landfill caps (compacted soil liners, geomembranes, geosynthetic clay liners, capillary barriers)

    International Nuclear Information System (INIS)

    Melchior, S.

    1997-01-01

    Since 1986 different types of landfill covers have been studied in-situ on the Georgswerder landfill in Hamburg, Germany. Water balance data are available for eight years. The performance of different carriers has been measured by collecting the leakage on areas ranging from 100 m 2 to 500 m 2 . Composite liners with geomembranes performed best, showing no leakage. An extended capillary barrier also performed well. The performance of compacted soil liners, however, decreased severely within five years due to desiccation, shrinkage and plant root penetration (liner leakage now ranging from 150 mm/a to 200 mm/a). About 50 % of the water that reaches the surface of the liner is leaking through it. The maximum leakage rates have increased from 2 x 10 -10 m 3 m -2 s -1 to 4 x 10 -8 m 3 m -2 s -1 . Two types of geosynthetic clay liners (GCL) have been tested for two years now with disappointing results. The GCL desiccated during the first dry summer of the study. High percolation rates through the GCL were measured during the following winter (45 mm resp. 63 mm in four months). Wetting of the GCL did not significantly reduce the percolation rates

  15. Measurement of thermal conductivity and diffusivity in situ: Literature survey and theoretical modelling of measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kukkonen, I.; Suppala, I. [Geological Survey of Finland, Espoo (Finland)

    1999-01-01

    In situ measurements of thermal conductivity and diffusivity of bedrock were investigated with the aid of a literature survey and theoretical simulations of a measurement system. According to the surveyed literature, in situ methods can be divided into `active` drill hole methods, and `passive` indirect methods utilizing other drill hole measurements together with cutting samples and petrophysical relationships. The most common active drill hole method is a cylindrical heat producing probe whose temperature is registered as a function of time. The temperature response can be calculated and interpreted with the aid of analytical solutions of the cylindrical heat conduction equation, particularly the solution for an infinite perfectly conducting cylindrical probe in a homogeneous medium, and the solution for a line source of heat in a medium. Using both forward and inverse modellings, a theoretical measurement system was analysed with an aim at finding the basic parameters for construction of a practical measurement system. The results indicate that thermal conductivity can be relatively well estimated with borehole measurements, whereas thermal diffusivity is much more sensitive to various disturbing factors, such as thermal contact resistance and variations in probe parameters. In addition, the three-dimensional conduction effects were investigated to find out the magnitude of axial `leak` of heat in long-duration experiments. The radius of influence of a drill hole measurement is mainly dependent on the duration of the experiment. Assuming typical conductivity and diffusivity values of crystalline rocks, the measurement yields information within less than a metre from the drill hole, when the experiment lasts about 24 hours. We propose the following factors to be taken as basic parameters in the construction of a practical measurement system: the probe length 1.5-2 m, heating power 5-20 Wm{sup -1}, temperature recording with 5-7 sensors placed along the probe, and

  16. Measurement of thermal conductivity and diffusivity in situ: Literature survey and theoretical modelling of measurements

    International Nuclear Information System (INIS)

    Kukkonen, I.; Suppala, I.

    1999-01-01

    In situ measurements of thermal conductivity and diffusivity of bedrock were investigated with the aid of a literature survey and theoretical simulations of a measurement system. According to the surveyed literature, in situ methods can be divided into 'active' drill hole methods, and 'passive' indirect methods utilizing other drill hole measurements together with cutting samples and petrophysical relationships. The most common active drill hole method is a cylindrical heat producing probe whose temperature is registered as a function of time. The temperature response can be calculated and interpreted with the aid of analytical solutions of the cylindrical heat conduction equation, particularly the solution for an infinite perfectly conducting cylindrical probe in a homogeneous medium, and the solution for a line source of heat in a medium. Using both forward and inverse modellings, a theoretical measurement system was analysed with an aim at finding the basic parameters for construction of a practical measurement system. The results indicate that thermal conductivity can be relatively well estimated with borehole measurements, whereas thermal diffusivity is much more sensitive to various disturbing factors, such as thermal contact resistance and variations in probe parameters. In addition, the three-dimensional conduction effects were investigated to find out the magnitude of axial 'leak' of heat in long-duration experiments. The radius of influence of a drill hole measurement is mainly dependent on the duration of the experiment. Assuming typical conductivity and diffusivity values of crystalline rocks, the measurement yields information within less than a metre from the drill hole, when the experiment lasts about 24 hours. We propose the following factors to be taken as basic parameters in the construction of a practical measurement system: the probe length 1.5-2 m, heating power 5-20 Wm -1 , temperature recording with 5-7 sensors placed along the probe, and

  17. Micrometeorological methods for measurements of mercury emissions over contaminated soils

    International Nuclear Information System (INIS)

    Kim, K.H.; Lindberg, S.E.; Hanson, P.J.; Owens, J.; Myers, T.P.

    1993-01-01

    As part of a larger study involving development and application of field and laboratory methods (micrometeorological, dynamic enclosure chamber, and controlled laboratory chamber methods) to measure the air/surface exchange of Hg vapor, we performed a series of preliminary measurements over contaminated soils. From March--April 1993, we used the modified Bowen ratio (MBR) method to measure emission rates of mercury over a floodplain contaminated with mercury near Oak Ridge, TN. The mercury emission rates measured from contaminated EFPC soils using the MBR method during early spring show that (1) in all cases, the contaminated soils acted as a source of mercury to the atmosphere with source strengths ranging from 17 to 160 ng m -2 h -1 ; and (2) the strengths of mercury emissions can be greatly influenced by the combined effects of surface soil temperature, residence time of air masses over the source area, and turbulence conditions. The mercury fluxes measured in a controlled flow chamber indicate that contaminated soils can exhibit up to an order of magnitude higher emission rates of Hg under conditions of elevated soil temperature, soil structure disturbance, and high turbulence. Mercury emissions from contaminated soils exceeded emissions from background soils by one to two orders of magnitude

  18. Application of Terahertz Radiation to Soil Measurements: Initial Results

    Science.gov (United States)

    Dworak, Volker; Augustin, Sven; Gebbers, Robin

    2011-01-01

    Developing soil sensors with the possibility of continuous online measurement is a major challenge in soil science. Terahertz (THz) electromagnetic radiation may provide the opportunity for the measurement of organic material density, water content and other soil parameters at different soil depths. Penetration depth and information content is important for a functional soil sensor. Therefore, we present initial research on the analysis of absorption coefficients of four different soil samples by means of THz transmission measurements. An optimized soil sample holder to determine absorption coefficients was used. This setup improves data acquisition because interface reflections can be neglected. Frequencies of 340 GHz to 360 GHz and 1.627 THz to 2.523 THz provided information about an existing frequency dependency. The results demonstrate the potential of this THz approach for both soil analysis and imaging of buried objects. Therefore, the THz approach allows different soil samples to be distinguished according to their different absorption properties so that relations among soil parameters may be established in future. PMID:22163737

  19. Using in situ pore water concentrations to estimate the phytotoxicity of nicosulfuron in soils to corn (Zea mays L.).

    Science.gov (United States)

    Liu, Kailin; Cao, Zhengya; Pan, Xiong; Yu, Yunlong

    2012-08-01

    The phytotoxicity of an herbicide in soil is typically dependent on the soil characteristics. To obtain a comparable value of the concentration that inhibits growth by 50% (IC50), 0.01 M CaCl(2) , excess pore water (EPW) and in situ pore water (IPW) were used to extract the bioavailable fraction of nicosulfuron from five different soils to estimate the nicosulfuron phytotoxicity to corn (Zea mays L.). The results indicated that the phytotoxicity of nicosulfuron in soils to corn depended on the soil type, and the IC50 values calculated based on the amended concentration of nicosulfuron ranged from 0.77 to 9.77 mg/kg among the five tested soils. The range of variation in IC50 values for nicosulfuron was smaller when the concentrations of nicosulfuron extracted with 0.01 M CaCl(2) and EPW were used instead of the amended concentration. No significant difference was observed among the IC50 values calculated from the IPW concentrations of nicosulfuron in the five tested soils, suggesting that the concentration of nicosulfuron in IPW could be used to estimate the phytotoxicity of residual nicosulfuron in soils. Copyright © 2012 SETAC.

  20. Land Use History Shifts In Situ Fungal and Bacterial Successions following Wheat Straw Input into the Soil.

    Directory of Open Access Journals (Sweden)

    Vincent Tardy

    Full Text Available Soil microbial communities undergo rapid shifts following modifications in environmental conditions. Although microbial diversity changes may alter soil functioning, the in situ temporal dynamics of microbial diversity is poorly documented. Here, we investigated the response of fungal and bacterial diversity to wheat straw input in a 12-months field experiment and explored whether this response depended on the soil management history (grassland vs. cropland. Seasonal climatic fluctuations had no effect on the diversity of soil communities. Contrastingly fungi and bacteria responded strongly to wheat regardless of the soil history. After straw incorporation, diversity decreased due to the temporary dominance of a subset of copiotrophic populations. While fungi responded as quickly as bacteria, the resilience of fungal diversity lasted much longer, indicating that the relative involvement of each community might change as decomposition progressed. Soil history did not affect the response patterns, but determined the identity of some of the populations stimulated. Most strikingly, the bacteria Burkholderia, Lysobacter and fungi Rhizopus, Fusarium were selectively stimulated. Given the ecological importance of these microbial groups as decomposers and/or plant pathogens, such regulation of the composition of microbial successions by soil history may have important consequences in terms of soil carbon turnover and crop health.

  1. Bioventing in the subarctic: Field scale implementation of soil heating to allow in situ vadose zone biodegradation throughout the year

    International Nuclear Information System (INIS)

    Oram, D.E.; Winters, A.T.; Winsor, T.R.

    1994-01-01

    Bioventing is a technique of in situ bioremediation of contaminants in unsaturated zone soils that has advantages over other technologies such as soil vapor extraction. At locations where off-gas treatment would be required, bioventing can be a more cost-effective method of remediation. Using bioventing to remediate petroleum hydrocarbons in the vadose zone soils in extremely cold climates may be augmented by heating the subsurface soils. The US Air Force has conducted a bioventing feasibility study at Eielson Air Force Base since 1991. The feasibility study evaluated different methods of heating soils to maintain biodegradation rates through the winter. Results from this study were used to optimize the design of a full-scale bioventing system that incorporated a soil heating system. The system installed consists of the typical components of a bioventing system including an air injection blower, a system to distribute air in the vadose zone, and a monitoring system. To maintain biodegradation at a constant rate throughout the year, soil heating and temperature monitoring systems were also installed. Results to date indicate that summer soil temperatures and biodegradation of hydrocarbons have been maintained through the winter

  2. Spatial Variability of Soil-Water Storage in the Southern Sierra Critical Zone Observatory: Measurement and Prediction

    Science.gov (United States)

    Oroza, C.; Bales, R. C.; Zheng, Z.; Glaser, S. D.

    2017-12-01

    Predicting the spatial distribution of soil moisture in mountain environments is confounded by multiple factors, including complex topography, spatial variably of soil texture, sub-surface flow paths, and snow-soil interactions. While remote-sensing tools such as passive-microwave monitoring can measure spatial variability of soil moisture, they only capture near-surface soil layers. Large-scale sensor networks are increasingly providing soil-moisture measurements at high temporal resolution across a broader range of depths than are accessible from remote sensing. It may be possible to combine these in-situ measurements with high-resolution LIDAR topography and canopy cover to estimate the spatial distribution of soil moisture at high spatial resolution at multiple depths. We study the feasibility of this approach using six years (2009-2014) of daily volumetric water content measurements at 10-, 30-, and 60-cm depths from the Southern Sierra Critical Zone Observatory. A non-parametric, multivariate regression algorithm, Random Forest, was used to predict the spatial distribution of depth-integrated soil-water storage, based on the in-situ measurements and a combination of node attributes (topographic wetness, northness, elevation, soil texture, and location with respect to canopy cover). We observe predictable patterns of predictor accuracy and independent variable ranking during the six-year study period. Predictor accuracy is highest during the snow-cover and early recession periods but declines during the dry period. Soil texture has consistently high feature importance. Other landscape attributes exhibit seasonal trends: northness peaks during the wet-up period, and elevation and topographic-wetness index peak during the recession and dry period, respectively.

  3. Evaluation of in situ capping with clean soils to control phosphate release from sediments

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Di [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Ding, Shiming, E-mail: smding@niglas.ac.cn [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Sun, Qin [College of Environmental Science and Engineering, Hohai University, Nanjing (China); Zhong, Jicheng [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Wu, Wei; Jia, Fei [College of Environmental Science and Engineering, Hohai University, Nanjing (China)

    2012-11-01

    Evaluation of in situ capping with clean soils to control phosphate release from the sediments of a eutrophic bay in Lake Taihu was performed after 18 months of capping. The concentrations of dissolved reactive phosphate (DRP) in pore waters and DRP resupply from native sediments and capped sediments were determined using high-resolution dialysis (HR-Peeper) and a Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) technique. The adsorption isotherm of these sediments was further investigated using a modified Langmuir model. The results showed low concentrations of DRP in pore waters with a low resupply from the sediments for sustaining pore water DRP concentration after capping. The calculated flux to the overlying water following the capping treatment was approximately half of that for the native sediments, implying that the capping reduced the release of phosphate from the sediments. The low resupply of the sediments after capping was further demonstrated by larger partitioning coefficient (K{sub p}) values and greater adsorption capacity (Q{sub max}) values, while zero equilibrium concentrations (EPC{sub 0}s) were similar to those in native sediments. The larger K{sub p} and Q{sub max} were attributed to higher active Fe and Al introduced by the capping, indicating that the binding of phosphate onto the active Fe and Al played a critical role in reducing the internal loading of phosphorous. Highlights: Black-Right-Pointing-Pointer Evaluation of capping with soils was performed through high-resolution sampling. Black-Right-Pointing-Pointer Capping decreased the concentrations of DRP in pore waters and its release to waters. Black-Right-Pointing-Pointer Capping decreased the resupply of pore water DRP from the sediments. Black-Right-Pointing-Pointer Capped sediments had stronger abilities to adsorb and retain P. Black-Right-Pointing-Pointer Active Fe and Al introduced by capping played a critical role.

  4. Evaluation of in situ capping with clean soils to control phosphate release from sediments

    International Nuclear Information System (INIS)

    Xu, Di; Ding, Shiming; Sun, Qin; Zhong, Jicheng; Wu, Wei; Jia, Fei

    2012-01-01

    Evaluation of in situ capping with clean soils to control phosphate release from the sediments of a eutrophic bay in Lake Taihu was performed after 18 months of capping. The concentrations of dissolved reactive phosphate (DRP) in pore waters and DRP resupply from native sediments and capped sediments were determined using high-resolution dialysis (HR-Peeper) and a Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) technique. The adsorption isotherm of these sediments was further investigated using a modified Langmuir model. The results showed low concentrations of DRP in pore waters with a low resupply from the sediments for sustaining pore water DRP concentration after capping. The calculated flux to the overlying water following the capping treatment was approximately half of that for the native sediments, implying that the capping reduced the release of phosphate from the sediments. The low resupply of the sediments after capping was further demonstrated by larger partitioning coefficient (K p ) values and greater adsorption capacity (Q max ) values, while zero equilibrium concentrations (EPC 0 s) were similar to those in native sediments. The larger K p and Q max were attributed to higher active Fe and Al introduced by the capping, indicating that the binding of phosphate onto the active Fe and Al played a critical role in reducing the internal loading of phosphorous. Highlights: ► Evaluation of capping with soils was performed through high-resolution sampling. ► Capping decreased the concentrations of DRP in pore waters and its release to waters. ► Capping decreased the resupply of pore water DRP from the sediments. ► Capped sediments had stronger abilities to adsorb and retain P. ► Active Fe and Al introduced by capping played a critical role.

  5. Measuring Low Concentrations of Liquid Water in Soil

    Science.gov (United States)

    Buehler, Martin

    2009-01-01

    An apparatus has been developed for measuring the low concentrations of liquid water and ice in relatively dry soil samples. Designed as a prototype of instruments for measuring the liquidwater and ice contents of Lunar and Martian soils, the apparatus could also be applied similarly to terrestrial desert soils and sands. The apparatus is a special-purpose impedance spectrometer: Its design is based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and, hence, the magnitude of impedance decreases) with increasing water content.

  6. Solubility measurement of uranium in uranium-contaminated soils

    International Nuclear Information System (INIS)

    Lee, S.Y.; Elless, M.; Hoffman, F.

    1993-08-01

    A short-term equilibration study involving two uranium-contaminated soils at the Fernald site was conducted as part of the In Situ Remediation Integrated Program. The goal of this study is to predict the behavior of uranium during on-site remediation of these soils. Geochemical modeling was performed on the aqueous species dissolved from these soils following the equilibration study to predict the on-site uranium leaching and transport processes. The soluble levels of total uranium, calcium, magnesium, and carbonate increased continually for the first four weeks. After the first four weeks, these components either reached a steady-state equilibrium or continued linearity throughout the study. Aluminum, potassium, and iron, reached a steady-state concentration within three days. Silica levels approximated the predicted solubility of quartz throughout the study. A much higher level of dissolved uranium was observed in the soil contaminated from spillage of uranium-laden solvents and process effluents than in the soil contaminated from settling of airborne uranium particles ejected from the nearby incinerator. The high levels observed for soluble calcium, magnesium, and bicarbonate are probably the result of magnesium and/or calcium carbonate minerals dissolving in these soils. Geochemical modeling confirms that the uranyl-carbonate complexes are the most stable and dominant in these solutions. The use of carbonate minerals on these soils for erosion control and road construction activities contributes to the leaching of uranium from contaminated soil particles. Dissolved carbonates promote uranium solubility, forming highly mobile anionic species. Mobile uranium species are contaminating the groundwater underlying these soils. The development of a site-specific remediation technology is urgently needed for the FEMP site

  7. Development of a direct push based in-situ thermal conductivity measurement system

    Science.gov (United States)

    Chirla, Marian Andrei; Vienken, Thomas; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    Heat pump systems are commonly utilized in Europe, for the exploitation of the shallow geothermal potential. To guarantee a sustainable use of the geothermal heat pump systems by saving resources and minimizing potential negative impacts induced by temperature changes within soil and groundwater, new geothermal exploration methods and tools are required. The knowledge of the underground thermal properties is a necessity for a correct and optimum design of borehole heat exchangers. The most important parameter that indicates the performance of the systems is thermal conductivity of the ground. Mapping the spatial variability of thermal conductivity, with high resolution in the shallow subsurface for geothermal purposes, requires a high degree of technical effort to procure adequate samples for thermal analysis. A collection of such samples from the soil can disturb sample structure, so great care must be taken during collection to avoid this. Factors such as transportation and sample storage can also influence measurement results. The use of technologies like Thermal Response Test (TRT) require complex mechanical and electrical systems for convective heat transport in the subsurface and longer monitoring times, often three days. Finally, by using thermal response tests, often only one integral value is obtained for the entire coupled subsurface with the borehole heat exchanger. The common thermal conductivity measurement systems (thermal analyzers) can perform vertical thermal conductivity logs only with the aid of sample procurement, or by integration into a drilling system. However, thermal conductivity measurements using direct push with this type of probes are not possible, due to physical and mechanical limitations. Applying vertical forces using direct push technology, in order to penetrate the shallow subsurface, can damage the probe and the sensors systems. The aim of this study is to develop a new, robust thermal conductivity measurement probe, for direct

  8. In situ/non-contact superfluid density measurement apparatus

    Science.gov (United States)

    Nam, Hyoungdo; Su, Ping-Hsang; Shih, Chih-Kang

    2018-04-01

    We present a double-coil apparatus designed to operate with in situ capability, which is strongly desired for superconductivity studies on recently discovered two-dimensional superconductors. Coupled with a scanning tunneling microscope, the study of both local and global superconductivity [for superconducting gap and superfluid density (SFD), respectively] is possible on an identical sample without sample degradations due to damage, contamination, or oxidation in an atmosphere. The performance of the double-coil apparatus was tested on atomically clean surfaces of non-superconducting Si(111)-7 × 7 and on superconducting films of 100 nm-thick Pb and 1.4 nm-ultrathin Pb. The results clearly show the normal-to-superconductor phase transition for Pb films with a strong SFD.

  9. Measurements of in situ produced 14C in terrestrial rocks

    International Nuclear Information System (INIS)

    Yokoyama, Yusuke; Caffee, Marc W.; Southon, John R.; Nishiizumi, Kunihiko

    2004-01-01

    We developed and are testing a system for extracting in situ produced 14 C from quartz. 14 C is liberated from quartz matrix using step-wise heating during which time a spiked carrier gas consisting O 2 -CO-CO 2 -He is flowed through the high-temperature chamber continuously. The total 14 C background is reproducible and typically (2.3 ± 0.2) x 10 6 atoms, and the recovery is consistently greater than 90%. To validate the performance of the system and determine the blank level, we are using quartz samples taken from the Homestake mine (1600 m below the surface), South Dakota. To determine the 14 C release pattern and recovery, we used samples taken from the Transantarctic Mountains, Antarctica

  10. In situ response time measurements of RTD temperature sensors

    International Nuclear Information System (INIS)

    Goncalves, I.M.P.

    1985-01-01

    The loop-current-step-response test provides a mean for determining the time constant of resistence thermometers. The test consist in heating the sensor a few degrees above ambient temperature by causing a step pertubation in the electric current that flows through the sensor leads. The developed mathematical transformation permits to use data collected during the internal heating transient to predict the sensor response to perturbations in fluid temperature. Experimental data obtained show that the time constant determined by method is within 15 percent of true value. The loop-current-step-response test is a remote in situ test, which can be performed with the sensor installed in the process. Consequently it takes account the local heat transfer conditions, and appropriated for nuclear power plants, where sensors are installed in points of difficult access. (author) [pt

  11. Burst mode trigger of STEREO in situ measurements

    Science.gov (United States)

    Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Curtis, D.; Schroeder, P.

    2013-06-01

    Since the launch of the STEREO spacecraft, the in situ instrument suites have continued to modify their burst mode trigger in order to optimize the collection of high-cadence magnetic field, solar wind, and suprathermal electron data. This report reviews the criteria used for the burst mode trigger and their evolution with time. From 2007 to 2011, the twin STEREO spacecraft observed 236 interplanetary shocks, and 54% of them were captured by the burst mode trigger. The capture rate increased remarkably with time, from 30% in 2007 to 69% in 2011. We evaluate the performance of multiple trigger criteria and investigate why some of the shocks were missed by the trigger. Lessons learned from STEREO are useful for future missions, because the telemetry bandwidth needed to capture the waveforms of high frequency but infrequent events would be unaffordable without an effective burst mode trigger.

  12. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals.

    Science.gov (United States)

    Song, Biao; Zeng, Guangming; Gong, Jilai; Liang, Jie; Xu, Piao; Liu, Zhifeng; Zhang, Yi; Zhang, Chen; Cheng, Min; Liu, Yang; Ye, Shujing; Yi, Huan; Ren, Xiaoya

    2017-08-01

    Soil and sediment contamination has become a critical issue worldwide due to its great harm to the ecological environment and public health. In recent years, many remediation technologies including physical, chemical, biological, and combined methods have been proposed and adopted for the purpose of solving the problems of soil and sediment contamination. However, current research on evaluation methods for assessing these remediation technologies is scattered and lacks valid and integrated evaluation methods for assessing the remediation effectiveness. This paper provides a comprehensive review with an environmental perspective on the evaluation methods for assessing the effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. The review systematically summarizes recent exploration and attempts of the remediation effectiveness assessment based on the content of pollutants, soil and sediment characteristics, and ecological risks. Moreover, limitations and future research needs of the practical assessment are discussed. These limitations are not conducive to the implementation of the abatement and control programs for soil and sediment contamination. Therefore, more attention should be paid to the evaluation methods for assessing the remediation effectiveness while developing new in situ remediation technologies in future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sound absorption coefficient in situ: an alternative for estimating soil loss factors.

    Science.gov (United States)

    Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina

    2015-01-01

    The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. X-231B technology demonstration for in situ treatment of contaminated soil: Laboratory evaluation of chemical oxidation using hydrogen peroxide

    International Nuclear Information System (INIS)

    Gates, D.D.; Siegrist, R.L.

    1993-09-01

    Treatability studies were conducted as part of a comprehensive research project initiated to demonstrate as well as evaluate in situ treatment technologies for volatile organic compounds (VOCs) and radioactive substances in wet, slowly permeable soils. The site of interest for this project was the X-231B Oil Biodegradation unit at the Portsmouth Gaseous Diffusion Plant, a US Department of Energy (DOE) facility in southern Ohio. This report describes the treatability studies that investigated the feasibility of the application of low-strength hydrogen peroxide (H 2 O 2 ) solutions to treat trichloroethylene (TCE)-contaminated soil

  15. Development of in situ vitrification for remediation of ORNL contaminated soils

    International Nuclear Information System (INIS)

    Tixier, J.S.; Spalding, B.P.

    1994-08-01

    A full-scale field treatability study of in situ vitrification (ISV) is underway at the Oak Ridge National Laboratory (ORNL) for the remediation of radioactive liquid waste seepage pits and trenches that received over one million curies of mixed fission products (mostly 137 Cs and 90 Sr) during the 1950s and 1960s. The treatability study is being conducted on a portion of the original seepage pit and will support an Interim Record of Decision (IROD) for closure of one or more of the seven seepage pits and trenches in early fiscal year (FY) 1996. Mr treatability study will establish ft technical performance of ISV for remediation of the contaminated soil sites. Melt operations at ORNL are expected to begin in early FY 1994. This paper presents the latest accomplishments of the project in preparation for the field testing. Discussion centers on the results of a parametric crucible melt study, a description of the site characterization efforts, and the salient features of a new hood design

  16. [Differential Effect and Mechanism of in situ Immobilization of Cadmium Contamination in Soil Using Diatomite Produced from Different Areas].

    Science.gov (United States)

    Zhu, Jian; Wang, Ping; Lin, Yan; Lei, Ming-jing; Chen, Yang

    2016-02-15

    In order to understand the difference of in situ immobilization effect and mechanism of Cd contamination in soil using diatomite produced from different areas, the test was conducted using diatomite produced from Yunnan Tengchong, Jilin Linjiang, Zhejiang Shengzhou and Henan Xinyang of China as modifiers to immobilize cadmium contamination in simulated soil. The results indicated that the diatomite from all the four producing areas could effectively immobilize available Cd in soil, decreasing the available Cd content in soil by 27.7%, 28.5%, 30.1% and 57.2%, respectively when the adding concentration was 30 g x kg(-1). Their ability for immobilizing available Cd in soil followed the sequence of Henan Xinyang > Zhejiang Shengzhou > Jilin Linjiang > Yunnan Tengchong. It was also found that the physical and chemical properties of diatomite played a main role in soil cadmium immobilization, lower bulk density, larger specific surface area, more micro pores and wider distribution range of aperture were more favorable for available Cd immobilization. The results also showed that, the diatomite could control Cd contamination by changing soil physical and chemical properties, among these properties, pH and organic matter content were the key factors, increasing soil pH value and organic matter content was favorable for available cadmium immobilization, while the soil water content had little effect on available cadmium immobilization. The control of soil cadmium contamination by using diatomite to change cation exchange capacity was limited by time in some degree. The diatomite produced from Henan Xinyang, Zhejiang Shengzhou and Yunnan Tengchong increased the soil pH value and organic matter content, and was favorable for available Cd immobilization, while the diatomite from Jilin Linjiang showed converse effect.

  17. Modelling of 90Sr in-situ migration: models comparison and coupled soil characterisation

    International Nuclear Information System (INIS)

    Piault, E.; van Dorpe, F.; Cartalade, A.; Beaucaire, C.; Fernandez, J.M.

    2005-01-01

    Full text of publication follows: In 1960, the Institute of Nuclear Protection and Safety of the French Atomic Energy Commission (CEA/IPSN) had launched a research program to quantify the soil-plant transfer of 90 Sr (transfer between soils, grapes and wine). The studies were conducted in-situ with the help of the National Institute for Agronomic Research (INRA) on an experimental site of Mediterranean type. The experiments consisted in contaminating with soluble strontium salt solutions (SrCl 2 ) a 400 m 2 (10 m x 40 m) piece of land bordered by two uncontaminated strip used as blanks. Prior to planting, the superficial layer of the contaminated plot had then been ploughed in order to homogenize the contamination on a depth of about 10 cm. Over time, the radionuclide was transported from the surface layer to the underground layers of the plot due to climatic factors. The 90 Sr migration over the last 40 years was studied owing eight 70 cm deep cores to perform a radiological and physico-chemical characterization of the soil. The vertical migration modelling of 90 Sr required the definition of a triple layers model whose the only external factor of influence considered is the rainwater infiltration at constant flux. Simulations were made using the code PORFLOW and also the code CAST3M, developed by CEA. These codes solve calculations of flows in unsaturated porous media taking into account the sorption/desorption phenomena of chemical species and radioactive decay. To complete the study an estimation of 90 Sr K d sorption coefficient (used by transfer models) using ion-exchange model was carried out for each layers. The dependence of 90 Sr K d on competitor cations present in fluids is analysed. The study shows that the agreement between the experimental and simulated results is acceptable if the characterization steps, including sampling are properly undertaken. The necessity to characterize the site according to needs of numerical modelling, in an iterative cycle

  18. Use of Ultrasonic Technology for Soil Moisture Measurement

    Science.gov (United States)

    Choi, J.; Metzl, R.; Aggarwal, M. D.; Belisle, W.; Coleman, T.

    1997-01-01

    In an effort to improve existing soil moisture measurement techniques or find new techniques using physics principles, a new technique is presented in this paper using ultrasonic techniques. It has been found that ultrasonic velocity changes as the moisture content changes. Preliminary values of velocities are 676.1 m/s in dry soil and 356.8 m/s in 100% moist soils. Intermediate values can be calibrated to give exact values for the moisture content in an unknown sample.

  19. Evaluation of the optimal strategy for ex situ bioremediation of diesel oil-contaminated soil.

    Science.gov (United States)

    Lin, Ta-Chen; Pan, Po-Tsen; Young, Chiu-Chung; Chang, Jo-Shu; Chang, Tsung-Chung; Cheng, Sheng-Shung

    2011-11-01

    Bioaugmentation and biostimulation have been widely applied in the remediation of oil contamination. However, ambiguous results have been reported. It is important to reveal the controlling factors on the field for optimal selection of remediation strategy. In this study, an integrated field landfarming technique was carried out to assess the relative effectiveness of five biological approaches on diesel degradation. The limiting factors during the degradation process were discussed. A total of five treatments were tested, including conventional landfarming, nutrient enhancement (NE), biosurfactant addition (BS), bioaugmentation (BA), and combination of bioaugmentation and biosurfactant addition (BAS). The consortium consisted of four diesel-degrading bacteria strains. Rhamnolipid was used as the biosurfactant. The diesel concentration, bacterial population, evolution of CO(2), and bacterial community in the soil were periodically measured. The best overall degradation efficiency was achieved by BAS treatment (90 ± 2%), followed by BA (86 ± 2%), NE (84 ± 3%), BS (78 ± 3%), and conventional landfarming (68 ± 3%). In the early stage, the total petroleum hydrocarbon was degraded 10 times faster than the degradation rates measured during the period from day 30 to 100. At the later stage, the degradation rates were similar among treatments. In the conventional landfarming, contaminated soil contained bacteria ready for diesel degradation. The availability of hydrocarbon was likely the limiting factor in the beginning of the degradation process. At the later stage, the degradation was likely limited by desorption and mass transfer of hydrocarbon in the soil matrix.

  20. Development of a mobile system based on laser-induced breakdown spectroscopy and dedicated to in situ analysis of polluted soils

    International Nuclear Information System (INIS)

    Bousquet, B.; Travaille, G.; Ismael, A.; Canioni, L.; Michel-Le Pierres, K.; Brasseur, E.; Roy, S.; Le Hecho, I.; Larregieu, M.; Tellier, S.; Potin-Gautier, M.; Boriachon, T.; Wazen, P.; Diard, A.; Belbeze, S.

    2008-01-01

    Principal Components Analysis (PCA) is successfully applied to the full laser-induced breakdown spectroscopy (LIBS) spectra of soil samples, defining classes according to the concentrations of the major elements. The large variability of the LIBS data is related to the heterogeneity of the samples and the representativeness of the data is finally discussed. Then, the development of a mobile LIBS system dedicated to the in-situ analysis of soils polluted by heavy metals is described. Based on the use of ten-meter long optical fibers, the mobile system allows deported measurements. Finally, the laser-assisted drying process studied by the use of a customized laser has not been retained to overcome the problem of moisture

  1. Development of a mobile system based on laser-induced breakdown spectroscopy and dedicated to in situ analysis of polluted soils

    Science.gov (United States)

    Bousquet, B.; Travaillé, G.; Ismaël, A.; Canioni, L.; Michel-Le Pierrès, K.; Brasseur, E.; Roy, S.; le Hecho, I.; Larregieu, M.; Tellier, S.; Potin-Gautier, M.; Boriachon, T.; Wazen, P.; Diard, A.; Belbèze, S.

    2008-10-01

    Principal Components Analysis (PCA) is successfully applied to the full laser-induced breakdown spectroscopy (LIBS) spectra of soil samples, defining classes according to the concentrations of the major elements. The large variability of the LIBS data is related to the heterogeneity of the samples and the representativeness of the data is finally discussed. Then, the development of a mobile LIBS system dedicated to the in-situ analysis of soils polluted by heavy metals is described. Based on the use of ten-meter long optical fibers, the mobile system allows deported measurements. Finally, the laser-assisted drying process studied by the use of a customized laser has not been retained to overcome the problem of moisture.

  2. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime

    International Nuclear Information System (INIS)

    Denyes, Mackenzie J.; Rutter, Allison; Zeeb, Barbara A.

    2013-01-01

    The in situ use of carbon amendments such as activated carbon (AC) and biochar to minimize the bioavailability of organic contaminants is gaining in popularity. In the first in situ experiment conducted at a Canadian PCB-contaminated Brownfield site, GAC and two types of biochar were statistically equal at reducing PCB uptake into plants. PCB concentrations in Cucurbita pepo root tissue were reduced by 74%, 72% and 64%, with the addition of 2.8% GAC, Burt's biochar and BlueLeaf biochar, respectively. A complementary greenhouse study which included a bioaccumulation study of Eisenia fetida (earthworm), found mechanically mixing carbon amendments with PCB-contaminated soil (i.e. 24 h at 30 rpm) resulted in shoot, root and worm PCB concentrations 66%, 59% and 39% lower than in the manually mixed treatments (i.e. with a spade and bucket). Therefore, studies which mechanically mix carbon amendments with contaminated soil may over-estimate the short-term potential to reduce PCB bioavailability. Highlights: •Biochar and GAC reduced PCB uptake into plants and earthworms. •Biochar offered additional benefits, including increased plant and earthworm biomass. •BSAF reductions are greater when amendments are mechanically vs. manually mixed. •Mechanically mixing carbon amendments may over-estimate their remediation potential. -- In situ AC and biochar soil amendments perform equally well at reducing PCB uptake, however, laboratory-based mixing methods may exaggerate the sorptive capacities of both amendments

  3. In-situ measurement of mechanical properties of structural components using cyclic ball indentation technique

    International Nuclear Information System (INIS)

    Chatterjee, S.; Madhusoodanan, K.; Panwar, Sanjay; Rupani, B.B.

    2007-01-01

    Material properties of components change during service due to environmental conditions. Measurement of mechanical properties of the components is important for assessing their fitness for service. In many instances, it is not possible to remove sizable samples from the component for doing the measurement in laboratory. In-situ technique for measurement of mechanical properties has great significance in such cases. One of the nondestructive methods that can be adopted for in-situ application is based on cyclic ball indentation technique. It involves multiple indentation cycles (at the same penetration location) on a metallic surface by a spherical indenter. Each cycle consists of indentation, partial unload and reload sequences. Presently, commercial systems are available for doing indentation test on structural component for limited applications. But, there is a genuine need of remotely operable compact in-situ property measurement system. Considering the importance of such applications Reactor Engineering Division of BARC has developed an In-situ Property Measurement System (IProMS), which can be used for in-situ measurement of mechanical properties of a flat or tubular component. This paper highlights the basic theory of measurement, qualification tests on IProMS and results from tests done on flat specimens and tubular component. (author)

  4. In situ pilot test for bioremediation of energetic compound-contaminated soil at a former military demolition range site.

    Science.gov (United States)

    Jugnia, Louis B; Manno, Dominic; Drouin, Karine; Hendry, Meghan

    2018-05-04

    Bioremediation was performed in situ at a former military range site to assess the performance of native bacteria in degrading hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitrotoluene (2,4-DNT). The fate of these pollutants in soil and soil pore water was investigated as influenced by waste glycerol amendment to the soil. Following waste glycerol application, there was an accumulation of organic carbon that promoted microbial activity, converting organic carbon into acetate and propionate, which are intermediate compounds in anaerobic processes. This augmentation of anaerobic activity strongly correlated to a noticeable reduction in RDX concentrations in the amended soil. Changes in concentrations of RDX in pore water were similar to those observed in the soil suggesting that RDX leaching from the soil matrix, and treatment with waste glycerol, contributed to the enhanced removal of RDX from the water and soil. This was not the case with 2,4-DNT, which was neither found in pore water nor affected by the waste glycerol treatment. Results from saturated conditions and Synthetic Precipitation Leaching Procedure testing, to investigate the environmental fate of 2,4-DNT, indicated that 2,4-DNT found on site was relatively inert and was likely to remain in its current state on the site.

  5. In situ remediation and phytotoxicity assessment of lead-contaminated soil by biochar-supported nHAP.

    Science.gov (United States)

    Yang, Zhangmei; Fang, Zhanqiang; Tsang, Pokeung Eric; Fang, Jianzhang; Zhao, Dongye

    2016-11-01

    In this study, a kind of biochar-supported nano-hydroxyapatite (nHAP@BC) material was used in in-situ remediation of lead-contaminated soil. Column experiments were performed to compare the mobility of nHAP@BC and Bare-nHAP. The immobilization, accumulation and toxic effects of Pb in the after-amended soil were assessed by the in vitro toxicity tests and pot experiments. The column experiments showed a significant improvement in the mobility of nHAP@BC. The immobilization rate of Pb in the soil was 74.8% after nHAP@BC remediation. Sequential extraction procedures revealed that the residual fraction of Pb increased by 66.6% after nHAP@BC remediation, which greatly reduced the bioavailability of Pb in the soil. In addition, pot experiments indicated that nHAP@BC could effectively reduce the upward translocation capacity of Pb in a soil-plant system. The concentration of Pb in the aerial part of the cabbage mustard was 0.1 mg/kg, which is lower than the tolerance limit (0.3 mg/kg). nHAP@BC can remediate Pb-contaminated soil effectively, which can restore soil quality for planting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Measurement of trifluralin volatilization in the field: Relation to soil residue and effect of soil incorporation

    International Nuclear Information System (INIS)

    Bedos, C.; Rousseau-Djabri, M.F.; Gabrielle, B.; Flura, D.; Durand, B.; Barriuso, E.; Cellier, P.

    2006-01-01

    Volatilization may represent a major dissipation pathway for pesticides applied to soils or crops. A field experiment (September, 2002), consisted in volatilization fluxes measurements during 6 days, covering the periods before and after soil incorporation carried out 24 h after trifluralin spraying on bare soil. Evolution of concentration in soil was measured during 101 days, together with soil physical and meteorological variables. Volatilization fluxes were very high immediately after application (1900 ng m -2 s -1 ), decreased down to 100 ng m -2 s -1 in the following 24 h. Soil incorporation strongly abated trifluralin concentration in the air. 99% of the total volatilization losses recorded over the 6 days following application occurred before incorporation. Volatilization fluxes evidenced a diurnal cycle driven by environmental conditions. Soil trifluralin residues could still be quantified 101 days after application. Our results highlight the caution required when using soil degradation half-life values in the field for volatile compounds. - Losses by volatilization contribute significantly to soil dissipation of the herbicide trifluralin before its soil incorporation

  7. In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chunjiang Zhao

    2016-10-01

    Full Text Available Sensing and mapping element distributions in plant tissues and its growth environment has great significance for understanding the uptake, transport, and accumulation of nutrients and harmful elements in plants, as well as for understanding interactions between plants and the environment. In this study, we developed a 3-dimensional elemental mapping system based on laser-induced breakdown spectroscopy that can be deployed in- field to directly measure the distribution of multiple elements in living plants as well as in the soil. Mapping is performed by a fast scanning laser, which ablates a micro volume of a sample to form a plasma. The presence and concentration of specific elements are calculated using the atomic, ionic, and molecular spectral characteristics of the plasma emission spectra. Furthermore, we mapped the pesticide residues in maize leaves after spraying to demonstrate the capacity of this method for trace elemental mapping. We also used the system to quantitatively detect the element concentrations in soil, which can be used to further understand the element transport between plants and soil. We demonstrate that this method has great potential for elemental mapping in plant tissues and soil with the advantages of 3-dimensional and multi-elemental mapping, in situ and in vivo measurement, flexible use, and low cost.

  8. Carbon dioxide titration method for soil respiration measurements

    OpenAIRE

    Martín Rubio, Luis

    2017-01-01

    This thesis was commissioned by Tampere University of Applied Sciences, which was interested in studying and developing a titration measurement method for soil respiration and biodegradability. Some experiments were carried out measuring soil respiration for testing the method and others adding some biodegradable material like polylactic acid compressed material and 100% biodegradable plastic bags to test its biodegradability and the possibility to measure it via titration. The thesi...

  9. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil

    Directory of Open Access Journals (Sweden)

    Martínez-Toledo Ángeles

    2013-01-01

    Full Text Available In situ biosurfactant (rhamnolipid production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus, P. putida addition, and addition of both (P. putida and nutrients. The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p < 0.019 between TPH concentration (mg/kg and surface tension (mN/m, When both bacteria and nutrients were involved, TPH levels were lowered to 33.7%, and biosurfactant production and surface tension were 2.03 mg/kg and 67.3 mN/m, respectively. In irradiated soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p < 0.009 was observed. When the nutrients and P. putida were added, TPH removal was 61.1%, 1.85 mg/kg of biosurfactants were produced, and the surface tension was 55.6 mN/m. In summary, in irradiated and non-irradiated soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil.

  10. Comparing measured with simulated vertical soil stress under vehicle load

    DEFF Research Database (Denmark)

    Keller, Thomas; Lamandé, Mathieu; Arvidsson, Johan

    The load transfer within agricultural soil is typically modelled on the basis of the theory of stress transmission in elastic media, usually in the semi-empirical form that includes the “concentration factor” (v). Measurements of stress in soil are needed to evaluate model calculations, but may...

  11. Electrochemically induced reactions in soils - a new approach to the in-situ remediation of contaminated soils?

    Energy Technology Data Exchange (ETDEWEB)

    Rahner, D.; Ludwig, G.; Roehrs, J. [Dresden Univ. of Technology, Inst. of Physical Chemistry and Electrochemistry (Germany); Neumann, V.; Nitsche, C.; Guderitz, I. [Soil and Groundwater Lab. GmbH, Dresden (Germany)

    2001-07-01

    Electrochemical reactions can be induced in soils if the soil matrix contains particles or films with electronic conducting properties ('microconductors'). In these cases the wet soil may act as a 'diluted' electrochemical solid bed reactor. A discussion of this reaction principle within the soil matrix will be presented here. It will be shown, that under certain conditions immobile organic contaminants may be converted. (orig.)

  12. Estimation of the in situ degradation of the washout fraction of starch by using a modified in situ protocol and in vitro measurements

    NARCIS (Netherlands)

    Jonge, de L.H.; Laar, van H.; Dijkstra, J.

    2015-01-01

    The in situ degradation of the washout fraction of starch in six feed ingredients (i.e. barley, faba beans, maize, oats, peas and wheat) was studied by using a modified in situ protocol and in vitro measurements. In comparison with the washing machine method, the modified protocol comprises a milder

  13. Estimating soil water evaporation using radar measurements

    Science.gov (United States)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  14. Measurement of K40 in mine soil

    International Nuclear Information System (INIS)

    Salazar R, A. R.; Vega C, H. R.

    2014-10-01

    The natural radioactivity of the soil and the external exposition of the gamma radiation mainly depend of the geologic characteristics of the same soil. Their radioactivity levels provide information of the radio-nuclides distribution in the environment and allow estimating the radiological risk. For this reason, the objective of this work was to determine the K 40 concentration in four soil samples of a mine that produces Ag, Pb, Cu, and Zn, in Zacatecas State (Mexico), through gamma rays spectrometry using a Sodium Iodide detector doped with Thallium (Nal (Tl)). The results it was found that the soil sample contaminated by the liquid effluents of the mine it has a specific activity of 353 Bq/kg, for draw Los Angeles of 55 Bq/kg, in the old dam of 307 Bq/kg and inside the mine of 485 Bq/kg, mentioning that all the sites refer to the same mine. Using a conversion factor of 0.043 n Gy/h (Bq/kg) -1 to calculate the absorbed dose in air of the natural radionuclide as the K 40 in the soil samples were founded the following dose reasons; of 15.18 n Gy/h, 2.37 n Gy/h, 13.2 n Gy/h and 20.86 n Gy/h, respectively. These results are similar to those reported for soil samples of Texas (USA), Karabuk (Turkey) and Kalpakkam (India), it should be noted that these samples are not mine samples; only were used like reference for this work. Our results are in an average of 300 Bq/kg that corresponds to one dose reason of 12.9 n Gy/h, comparing it with the highest value reported in the case of Chinese that is of 580 Bq/kg (24.94 n Gy/h) throwing a difference of 48.3% and compared with the smallest average value that belongs to Tripoli (Libya) of 270 Bq/kg (11.61 n Gy/h) is of 10%. The concentration average of the K 40 activity was below the world average of absorbed dose, which is of 55 n Gy/h of the average reported for the world, therefore these results can be used as a reference for the radioactivity analysis in the soil of this mine. (Author)

  15. Soil Stress-Strain Behavior: Measurement, Modeling and Analysis

    CERN Document Server

    Ling, Hoe I; Leshchinsky, Dov; Koseki, Junichi; A Collection of Papers of the Geotechnical Symposium in Rome

    2007-01-01

    This book is an outgrowth of the proceedings for the Geotechnical Symposium in Roma, which was held on March 16 and 17, 2006 in Rome, Italy. The Symposium was organized to celebrate the 60th birthday of Prof. Tatsuoka as well as honoring his research achievement. The publications are focused on the recent developments in the stress-strain behavior of geomaterials, with an emphasis on laboratory measurements, soil constitutive modeling and behavior of soil structures (such as reinforced soils, piles and slopes). The latest advancement in the field, such as the rate effect and dynamic behavior of both clay and sand, behavior of modified soils and soil mixtures, and soil liquefaction are addressed. A special keynote paper by Prof. Tatsuoka is included with three other keynote papers (presented by Prof. Lo Presti, Prof. Di Benedetto, and Prof. Shibuya).

  16. Measuring and understanding soil water repellency through novel interdisciplinary approaches

    Science.gov (United States)

    Balshaw, Helen; Douglas, Peter; Doerr, Stefan; Davies, Matthew

    2017-04-01

    Food security and production is one of the key global issues faced by society. It has become evermore essential to work the land efficiently, through better soil management and agronomy whilst protecting the environment from air and water pollution. The failure of soil to absorb water - soil water repellency - can lead to major environmental problems such as increased overland flow and soil erosion, poor uptake of agricultural chemicals and increased risk of groundwater pollution due to the rapid transfer of contaminants and nutrient leaching through uneven wetting and preferential flow pathways. Understanding the causes of soil hydrophobicity is essential for the development of effective methods for its amelioration, supporting environmental stability and food security. Organic compounds deposited on soil mineral or aggregate surfaces have long been recognised as a major factor in causing soil water repellency. It is widely accepted that the main groups of compounds responsible are long-chain acids, alkanes and other organic compounds with hydrophobic properties. However, when reapplied to sands and soils, the degree of water repellency induced by these compounds and mixtures varied widely with compound type, amount and mixture, in a seemingly unpredictable way. Our research to date involves two new approaches for studying soil wetting. 1) We challenge the theoretical basis of current ideas on the measured water/soil contact angle measurements. Much past and current discussion involves Wenzel and Cassie-Baxter models to explain anomalously high contact angles for organics on soils, however here we propose that these anomalously high measured contact angles are a consequence of the measurement of a water drop on an irregular non-planar surface rather than the thermodynamic factors of the Cassie-Baxter and Wenzel models. In our analysis we have successfully used a much simpler geometric approach for non-flat surfaces such as soil. 2) Fluorescent and phosphorescent

  17. Measurements of Soil Carbon by Neutron-Gamma Analysis in Static and Scanning Modes.

    Science.gov (United States)

    Yakubova, Galina; Kavetskiy, Aleksandr; Prior, Stephen A; Torbert, H Allen

    2017-08-24

    The herein described application of the inelastic neutron scattering (INS) method for soil carbon analysis is based on the registration and analysis of gamma rays created when neutrons interact with soil elements. The main parts of the INS system are a pulsed neutron generator, NaI(Tl) gamma detectors, split electronics to separate gamma spectra due to INS and thermo-neutron capture (TNC) processes, and software for gamma spectra acquisition and data processing. This method has several advantages over other methods in that it is a non-destructive in situ method that measures the average carbon content in large soil volumes, is negligibly impacted by local sharp changes in soil carbon, and can be used in stationary or scanning modes. The result of the INS method is the carbon content from a site with a footprint of ~2.5 - 3 m 2 in the stationary regime, or the average carbon content of the traversed area in the scanning regime. The measurement range of the current INS system is >1.5 carbon weight % (standard deviation ± 0.3 w%) in the upper 10 cm soil layer for a 1 hmeasurement.

  18. PROTOCOL FOR DETERMINING BIOAVAILABILITY AND BIOKINETICS OF ORGANIC POLLUTANTS IN DISPERSED, COMPACTED AND INTACT SOIL SYSTEMS TO ENHANCE IN SITU BIOREMEDIATION

    Science.gov (United States)

    The development of effective in situ and on-site bioremediation technologies can facilitate the cleanup of chemically-contaminated soil sites. Knowledge of biodegradation kinetics and bioavailability of organic pollutants can facilitate decisions on the efficacy of in situ and o...

  19. Variability of Measured Runoff and Soil Loss from Field Plots

    Directory of Open Access Journals (Sweden)

    F. Asadzadeh

    2016-02-01

    Full Text Available Introduction: Field plots are widely used in studies related to the measurements of soil loss and modeling of erosion processes. Research efforts are needed to investigate factors affecting the data quality of plots. Spatial scale or size of plots is one of these factors which directly affects measuring runoff and soil loss by means of field plots. The effect of plot size on measured runoff or soil loss from natural plots is known as plot scale effect. On the other hand, variability of runoff and sediment yield from replicated filed plots is a main source of uncertainty in measurement of erosion from plots which should be considered in plot data interpretation processes. Therefore, there is a demand for knowledge of soil erosion processes occurring in plots of different sizes and of factors that determine natural variability, as a basis for obtaining soil loss data of good quality. This study was carried out to investigate the combined effects of these two factors by measurement of runoff and soil loss from replicated plots with different sizes. Materials and Methods: In order to evaluate the variability of runoff and soil loss data seven plots, differing in width and length, were constructed in a uniform slope of 9% at three replicates at Koohin Research Station in Qazvin province. The plots were ploughed up to down slope in September 2011. Each plot was isolated using soil beds with a height of 30 cm, to direct generated surface runoff to the lower part of the plots. Runoff collecting systems composed of gutters, pipes and tankswere installed at the end of each plot. During the two-year study period of 2011-2012, plots were maintained in bare conditions and runoff and soil loss were measured for each single event. Precipitation amounts and characteristics were directly measured by an automatic recording tipping-bucket rain gauge located about 200 m from the experimental plots. The entire runoff volume including eroded sediment was measured on

  20. Analysis of the existing correlations of effective friction angle for eastern piedmont soils of Bogota from in situ tests

    Directory of Open Access Journals (Sweden)

    July E. Carmona-Álvarez

    2015-07-01

    Full Text Available To estimate the effective friction angle of soil from in situ test is a complicated job, due to high rates of strain existing in this kind of tests, which tend to be too invasive and disturb the vicinities of test depth, even the sample that eventually is taken at the site. Likewise, the most of the correlations found in the current bibliography to obtain the effective friction angle using field tests, have been developed for soils from different regions. For that reason when are implemented on tropical soils present high scatter, to compare the field parameter values with real results obtained at the lab. This research aims to use in situ tests define through of analysis of different correlations, which fits adequately to the specific conditions of the piedmont soils of Bogota. For the present study will be utilized data from SPT (widely used in Colombia and SPT-T (never before conducted in the country, carried out considering the appropriated norms to each test, taking in account to SPT-T, doesn’t exist local standard governing such tests. The correlations for field procedures of the tests implemented were for effective confining and energy transference of the SPT hammer, since the state-of-the-art mentions it as the most affect the reliability of the final results. The final results show the tendency of the methodologies used to obtain the correlation, in relation with the real value of effective friction angle from of lab tests.

  1. Lodgepole pine site index in relation to synoptic measures of climate, soil moisture and soil nutrients.

    Science.gov (United States)

    G. Geoff Wang; Shongming Huang; Robert A. Monserud; Ryan J. Klos

    2004-01-01

    Lodgepole pine site index was examined in relation to synoptic measures of topography, soil moisture, and soil nutrients in Alberta. Data came from 214 lodgepole pine-dominated stands sampled as a part of the provincial permanent sample plot program. Spatial location (elevation, latitude, and longitude) and natural subregions (NSRs) were topographic variables that...

  2. In situ measurement of ceramic vacuum chamber conductive coating quality

    International Nuclear Information System (INIS)

    Doose, C.; Harkay, K.; Kim, S.; Milton, S.

    1997-01-01

    A method for measuring the relative surface resistivity and quality of conductive coatings on ceramic vacuum chambers was developed. This method is unique in that it allows one to test the coating even after the ceramic chamber is installed in the accelerator and under vacuum; furthermore, the measurement provides a localized surface reading of the coating conductance. The method uses a magnetic probe is calibrated using the measured DC end-to-end resistance of the tube under test and by comparison to a high quality test surface. The measurement method has also been verified by comparison to high frequency impedance measurements. A detailed description, results, and sensitivity of the technique are given here

  3. Sensing soil properties in the laboratory, in situ, and on-Line: A review

    NARCIS (Netherlands)

    Kuang, B.; Mahmood, H.S.; Quraishi, Z.; Hoogmoed, W.B.; Mouazen, A.M.; Henten, van E.

    2012-01-01

    Since both the spatial and vertical heterogeneities in soil properties have an impact on crop growth and yield, accurate characterization of soil properties at high sampling resolution is a preliminary step in successful management of soil-water-plant system. Conventional soil sampling and analyses

  4. In-situ measurement of environment radioactivity by mobile nuclear field laboratory (MNFL)

    International Nuclear Information System (INIS)

    Gopalani, Deepak; Mathur, A.P.; Rawat, D.K.; Barala, S.S.; Singhal, K.P.; Singh, G.P.; Samant, R.P.

    2008-01-01

    In-situ measurement of environment radioactivity is useful tool for determine the unusual increase of radioactivity at any place due to any nuclear eventuality take place. A mobile nuclear field laboratory has been designed and developed for in-situ measurement of environment radioactivity at any desired location. This vehicle is equipped with different monitoring and analysis instruments. These equipment can be operated while vehicle is moving. The measured data can be stored in computer. This vehicle has the space for storage of various environmental matrices of affected area and these can analysis in laboratory. (author)

  5. In-situ ionic conductivity measurement of lithium ceramics under high energy heavy ion irradiation

    International Nuclear Information System (INIS)

    Nakazawa, Tetsuya; Noda, Kenji; Ishii, Yoshinobu; Ohno, Hideo; Watanabe, Hitoshi; Matsui, Hisayuki.

    1992-01-01

    To obtain fundamental information regarding the radiation damage in some lithium ceramics, e.g. Li 2 O, Li 4 SiO 4 etc., candidate of breeder materials exposed to severe irradiation environment, an in-situ experiment technique for the ionic conductivity measurement, which allows the specimen temperature control and the beam current monitoring, have been developed. This paper describes the features of an apparatus to measure in situ the ionic conductivity under the irradiation environment and presents some results of ionic conductivity measured for typical ceramic breeders using this apparatus. (J.P.N.)

  6. Estimation of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction measurements

    KAUST Repository

    Jadoon, Khan Zaib

    2015-05-12

    Low frequency electromagnetic induction (EMI) is becoming a useful tool for soil characterization due to its fast measurement capability and sensitivity to soil moisture and salinity. In this research, a new EMI system (the CMD mini-Explorer) is used for subsurface characterization of soil salinity in a drip irrigation system via a joint inversion approach of multiconfiguration EMI measurements. EMI measurements were conducted across a farm where Acacia trees are irrigated with brackish water. In situ measurements of vertical bulk electrical conductivity (σb) were recorded in different pits along one of the transects to calibrate the EMI measurements and to compare with the modeled electrical conductivity (σ) obtained by the joint inversion of multiconfiguration EMI measurements. Estimates of σ were then converted into the universal standard of soil salinity measurement (i.e., electrical conductivity of a saturated soil paste extract – ECe). Soil apparent electrical conductivity (ECa) was repeatedly measured with the CMD mini-Explorer to investigate the temperature stability of the new system at a fixed location, where the ambient air temperature increased from 26°C to 46°C. Results indicate that the new EMI system is very stable in high temperature environments, especially above 40°C, where most other approaches give unstable measurements. In addition, the distribution pattern of soil salinity is well estimated quantitatively by the joint inversion of multicomponent EMI measurements. The approach of joint inversion of EMI measurements allows for the quantitative mapping of the soil salinity distribution pattern and can be utilized for the management of soil salinity.

  7. Soil gas measurements at high permeabilities and below foundation depth

    International Nuclear Information System (INIS)

    Johner, H.U; Surbeck, H.

    2000-01-01

    We started a project of soil gas measurements beneath houses. Since the foundations of houses often lie deeper than 0.5 to 1 m - the depth where soil gas measurements are often made - the first approach was to apply the method developed previously to deeper soil layers. The radon availability index (RAI), which was defined empirically, proved to be a reliable indicator for radon problems in nearby houses. The extreme values of permeability, non-Darcy flow and scale dependence of permeability stimulated the development of a multi-probe method. A hydrological model was applied to model the soil gas transport. The soil gas measurements below foundation depth provided a wealth of new information. A good classification of soil properties could be achieved. If soil gas measurements are to be made, the low permeability layer has to be traversed. A minimum depth of 1 .5 m is suggested, profiles to below the foundation depth are preferable. There are also implications for mitigation works. A sub-slab suction system should reach the permeable layer to function well. This also holds for radon wells. If a house is located on a slope, it is most convenient to install the sub-slab suction system on the hillside, as the foundation reaches the deepest levels there

  8. In situ high-pressure measurement of crystal solubility by using neutron diffraction

    Science.gov (United States)

    Chen, Ji; Hu, Qiwei; Fang, Leiming; He, Duanwei; Chen, Xiping; Xie, Lei; Chen, Bo; Li, Xin; Ni, Xiaolin; Fan, Cong; Liang, Akun

    2018-05-01

    Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.

  9. Caliper variable sonde for thermal conductivity measurements in situ

    Energy Technology Data Exchange (ETDEWEB)

    Oelsner, C; Leischner, H; Pischel, S

    1968-01-01

    For the measurement of the thermal conductivity of the formations surrounding a borehole, a sonde having variable diameter (consisting of an inflatable rubber cylinder with heating wires embedded in its wall) is described. The conditions for the usual sonde made of metal are no longer fulfilled, but the solution to the problem of determining the thermal conductivity from the temperature rise is given, based on an approach by Carslaw and Jaeger, which contains the Bessel functions of the second kind. It is shown that a simpler solution for large values of time can be obtained through the Laplace transformation, and the necessary series developments for computer application are also given. The sonde and the necessary measuring circuitry are described. Tests measurements have indicated that the thermal conductivity can be determined with this sonde with a precision of + 10%.

  10. In situ performance curves measurements of large pumps

    International Nuclear Information System (INIS)

    Anton, A

    2010-01-01

    The complex energetic system on the river Lotru in Romania comprises of a series of lakes and pumping stations and a major hydroelectric power plant: Lotru-Ciunget. All the efforts have been oriented towards the maintenance of the Pelton turbines and very little attention has been directed to the pumps. In the system, there are three large pumping stations and only in the last 5 years, the pump performances have become a concern. The performances where determined using portable ultrasonic flow meters, a Yates meter, precision manometers and appropriate electrical equipment for power measurement (Power Analiser - NORMA D4000 LEM). The measurements are not supposed to interfere with the normal operation so only a limited number of tests could be performed. Based on those tests, portions of the test curves have been measured and represented in specific diagrams.

  11. In situ performance curves measurements of large pumps

    Science.gov (United States)

    Anton, A.

    2010-08-01

    The complex energetic system on the river Lotru in Romania comprises of a series of lakes and pumping stations and a major hydroelectric power plant: Lotru-Ciunget. All the efforts have been oriented towards the maintenance of the Pelton turbines and very little attention has been directed to the pumps. In the system, there are three large pumping stations and only in the last 5 years, the pump performances have become a concern. The performances where determined using portable ultrasonic flow meters, a Yates meter, precision manometers and appropriate electrical equipment for power measurement (Power Analiser - NORMA D4000 LEM). The measurements are not supposed to interfere with the normal operation so only a limited number of tests could be performed. Based on those tests, portions of the test curves have been measured and represented in specific diagrams.

  12. Measurement of net nitrogen and phosphorus mineralization in wetland soils using a modification of the resin-core technique

    Science.gov (United States)

    Noe, Gregory B.

    2011-01-01

    A modification of the resin-core method was developed and tested for measuring in situ soil N and P net mineralization rates in wetland soils where temporal variation in bidirectional vertical water movement and saturation can complicate measurement. The modified design includes three mixed-bed ion-exchange resin bags located above and three resin bags located below soil incubating inside a core tube. The two inner resin bags adjacent to the soil capture NH4+, NO3-, and soluble reactive phosphorus (SRP) transported out of the soil during incubation; the two outer resin bags remove inorganic nutrients transported into the modified resin core; and the two middle resin bags serve as quality-control checks on the function of the inner and outer resin bags. Modified resin cores were incubated monthly for a year along the hydrogeomorphic gradient through a floodplain wetland. Only small amounts of NH4+, NO3-, and SRP were found in the two middle resin bags, indicating that the modified resin-core design was effective. Soil moisture and pH inside the modified resin cores typically tracked changes in the surrounding soil abiotic environment. In contrast, use of the closed polyethylene bag method provided substantially different net P and N mineralization rates than modified resin cores and did not track changes in soil moisture or pH. Net ammonification, nitrifi cation, N mineralization, and P mineralization rates measured using modified resin cores varied through space and time associated with hydrologic, geomorphic, and climatic gradients in the floodplain wetland. The modified resin-core technique successfully characterized spatiotemporal variation of net mineralization fluxes in situ and is a viable technique for assessing soil nutrient availability and developing ecosystem budgets.

  13. Atrazine distribution measured in soil and leachate following infiltration conditions.

    Science.gov (United States)

    Neurath, Susan K; Sadeghi, Ali M; Shirmohammadi, Adel; Isensee, Allan R; Torrents, Alba

    2004-01-01

    Atrazine transport through packed 10 cm soil columns representative of the 0-10 cm soil horizon was observed by measuring the atrazine recovery in the total leachate volume, and upper and lower soil layers following infiltration of 7.5 cm water using a mechanical vacuum extractor (MVE). Measured recoveries were analyzed to understand the influence of infiltration rate and delay time on atrazine transport and distribution in the column. Four time periods (0.28, 0.8, 1.8, and 5.5 h) representing very high to moderate infiltration rates (26.8, 9.4, 4.2, and 1.4 cm/h) were used. Replicate soil columns were tested immediately and following a 2-d delay after atrazine application. Results indicate atrazine recovery in leachate was independent of infiltration rate, but significantly lower for infiltration following a 2-d delay. Atrazine distribution in the 0-1 and 9-10 cm soil layers was affected by both infiltration rate and delay. These results are in contrast with previous field and laboratory studies that suggest that atrazine recovery in the leachate increases with increasing infiltration rate. It appears that the difference in atrazine recovery measured using the MVE and other leaching experiments using intact soil cores from this field site and the rain simulation equipment probably illustrates the effect of infiltrating water interacting with the atrazine present on the soil surface. This work suggests that atrazine mobilization from the soil surface is also dependent on interactions of the infiltrating water with the soil surface, in addition to the rate of infiltration through the surface soil.

  14. Assessment of in situ immobilization of Lead (Pb) and Arsenic (As) in contaminated soils with phosphate and iron: solubility and bioaccessibility

    NARCIS (Netherlands)

    Cui, Y.S.; Du, X.; Weng, L.P.; Riemsdijk, van W.H.

    2010-01-01

    The effect of in situ immobilization of lead (Pb) and arsenic (As) in soil with respectively phosphate and iron is well recognized. However, studies on combined Pb and As-contaminated soil are fewer, and assessment of the effectiveness of the immobilization on mobility and bioaccessibility is also

  15. Impact of Soil Conservation Measures on Erosion Control and Soil Quality

    International Nuclear Information System (INIS)

    2011-10-01

    This publication summarises the lessons learnt from a FAO/IAEA coordinated research project on the impact of soil conservation measures on erosion control and soil quality over a five-year period across a wide geographic area and range of environments. It demonstrates the new trends in the use of fallout radionuclide-based techniques as powerful tools to assess the effectiveness of soil conservation measures. As a comprehensive reference material it will support IAEA Member States in the use of these techniques to identify practices that can enhance sustainable agriculture and minimize land degradation.

  16. Reliable cost effective technique for in situ ground stress measurements in deep gold mines.

    CSIR Research Space (South Africa)

    Stacey, TR

    1995-07-01

    Full Text Available on these requirements, an in situ stress measurement technique which will be practically applicable in the deep gold mines, has been developed conceptually. Referring to the figure on the following page, this method involves: • a borehole-based system, using... level mines have not been developed. 2 This is some of the background to the present SIMRAC research project, the title ofwhich is “Reliable cost effective technique for in-situ ground stress measurements in deep gold mines”. A copy of the research...

  17. Cataclastic effects in rock salt laboratory and in situ measurements

    International Nuclear Information System (INIS)

    Gramberg, J.; Roest, J.P.A.

    1984-01-01

    The aim of the research is the determination of eventual cataclastic effects in environmental rock salt of a heated part of a vertical deep test bore hole, a model for HLW disposal. Known cataclastic systems from hard rock mining and rock salt mines will form the starting point for the explanation of convergence of underground cavity walls. In rock salt, however, different elements seem to prevail: crystal plasticity and micro-cataclasis. The environmental measurements at the deep bore hole have to be carried out from a distance. To this end the acoustic micro-seismic method will be a suitable one. The appropriate equipment for micro-seismic cross hole measurement is designed, constructed and tested in the laboratory as well as underground. Acoustic velocity data form a crucial point. A micro-seismic acoustic P-wave model, adapted to the process of structural changes, is developed. P-wave velocity measurements in rock salt cubes in the laboratory are described. An underground cross hole measurement in the wall of a gallery with semi-circular section is treated and analysed. A conclusion was that, in this case, no macro-cataclasis (systematic large fractures) will be involved in the process of gallery convergence, but that the mechanism proved to be a combination of crystal plasticity and micro-cataclasis. The same mechanism might be expected to be present in the environmental rock salt of the HLW-disposal deep bore hole. As a result this environmental rock salt might be expected to be impermeable. A plan for the application of the developed equipment during the heating test on the ECN-deep-bore-hole is shown. A theory on ''disking'' or ''rim cracks'' is presented in an annex

  18. A noncontact laser system for measuring soil surface topography

    International Nuclear Information System (INIS)

    Huang, C.; White, I.; Thwaite, E.G.; Bendeli, A.

    1988-01-01

    Soil surface topography profoundly influences runoff hydrodynamics, soil erosion, and surface retention of water. Here we describe an optical noncontact system for measuring soil surface topography. Soil elevation is measured by projecting a laser beam onto the surface and detecting the position of the interception point. The optical axis of the detection system is oriented at a small angle to the incident beam. A low-power HeNe (Helium-Neon) laser is used as the laser source, a photodiode array is used as the laser image detector and an ordinary 35-mm single lens reflex camera provides the optical system to focus the laser image onto the diode array. A wide spectrum of measurement ranges (R) and resolutions are selectable, from 1 mm to 1 m. These are determined by the laser-camera distance and angle, the focal length of the lens, and the sensing length of the diode array and the number of elements (N) contained in the array. The resolution of the system is approximately R/2N. We show for the system used here that this resolution is approximately 0.2%. In the configuration selected, elevation changes of 0.16 mm could be detected over a surface elevation range of 87 mm. The sampling rate of the system is 1000 Hz, which permits soil surfaces to be measured at speeds of up to 1 m s −1 with measurements taken at 1-mm spacing. Measurements of individual raindrop impacts on the soil and of soil surfaces before and after rain show the versatility of the laser surface profiler, which has applications in studies of erosion processes, surface storage and soil trafficability

  19. Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ

    International Nuclear Information System (INIS)

    Regonne, Raïssa Kom; Martin, Florence; Mbawala, Augustin; Ngassoum, Martin Benoît; Jouanneau, Yves

    2013-01-01

    Efficient bioremediation of PAH-contaminated sites is limited by the hydrophobic character and poor bioavailability of pollutants. In this study, stable isotope probing (SIP) was implemented to track bacteria that can degrade PAHs adsorbed on hydrophobic sorbents. Temperate and tropical soils were incubated with 13 C-labeled phenanthrene, supplied by spiking or coated onto membranes. Phenanthrene mineralization was faster in microcosms with PAH-coated membranes than in microcosms containing spiked soil. Upon incubation with temperate soil, phenanthrene degraders found in the biofilms that formed on coated membranes were mainly identified as Sphingomonadaceae and Actinobacteria. In the tropical soil, uncultured Rhodocyclaceae dominated degraders bound to membranes. Accordingly, ring-hydroxylating dioxygenase sequences recovered from this soil matched PAH-specific dioxygenase genes recently found in Rhodocyclaceae. Hence, our SIP approach allowed the detection of novel degraders, mostly uncultured, which differ from those detected after soil spiking, but might play a key role in the bioremediation of PAH-polluted soils. -- Highlights: •Soil bacteria with the ability to degrade sorbent-bound PAHs were investigated. •In soil, membrane-bound phenanthrene was readily mineralized. •PAH degraders found in biofilms were different in temperate and tropical soils. •Uncultured Rhodocyclaceae were dominant phenanthrene degraders in the tropical soil. •PAH-specific ring-hydroxylating dioxygenase sequences were identified in soil DNA. -- Bacteria able to degrade PAHs bound to a hydrophobic sorbent were mainly identified as uncultured Rhodocyclaceae and Sphingomonadaceae in polluted soils from tropical and temperate area, respectively

  20. Simple and fast technique to measure CO2 profiles in soil

    International Nuclear Information System (INIS)

    Fang, C.; Moncrieff, J.B.

    1998-01-01

    We describe a simple method for sampling soil gas at different profile depths and analyzing CO 2 concentration in the gas sample. Soil gas samples were taken on the soil surface from each chosen depth through a gas circulation system and analyzed in situ with an infrared gas analyzer. The method is suitable for quickly handling a large number of soil gas samples in the field. (author)

  1. IN SITU NON-INVASIVE SOIL CARBON ANALYSIS: SAMPLE SIZE AND GEOSTATISTICAL CONSIDERATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    WIELOPOLSKI, L.

    2005-04-01

    be sampled. It is highly desirable to assess properly the sampled volume for reporting the absolute value of the measured carbon. At the same time, increasing the number of detectors surrounding the NG can reduce error propagation. In the present work, only the volume irradiated by the neutrons was estimated. It should be pointed that the carbon yield is also affected by the neutron energy spectrum that changes with depth. Thus, all these considerations must be considered carefully when evaluating the detectors' configuration and the resulting counting efficiency. In summary, INS system is a novel approach for non-destructive carbon analysis in soil with very unique features. It should contribute in assessing soil carbon inventories and assist in understanding belowground carbon processes. The complexity of carbon distribution in soil requires a special attention when calibrating the INS system, and a consensus developed on the most favorable way to report carbon abundance. Clearly, this will affect the calibration procedures.

  2. Evaluation of in situ remediation methods in soils contaminated with organic pollutants

    OpenAIRE

    Simpanen, Suvi

    2016-01-01

    Soil contamination is a result of human activities that allow hazardous substances to accumulate in soil and thereby to increase the risk to the environment or to human health. There is an estimate of over 2.5 million contaminated sites in Europe and nearly 24 000 of these are in Finland. The most common soil contaminants are oil hydrocarbons and metals. The main anthropogenic activities that contribute to soil contamination include fuel distribution and storage, industrial activity, waste tr...

  3. Bioavailability-Based In Situ Remediation To Meet Future Lead (Pb) Standards in Urban Soils and Gardens.

    Science.gov (United States)

    Henry, Heather; Naujokas, Marisa F; Attanayake, Chammi; Basta, Nicholas T; Cheng, Zhongqi; Hettiarachchi, Ganga M; Maddaloni, Mark; Schadt, Christopher; Scheckel, Kirk G

    2015-08-04

    Recently the Centers for Disease Control and Prevention lowered the blood Pb reference value to 5 μg/dL. The lower reference value combined with increased repurposing of postindustrial lands are heightening concerns and driving interest in reducing soil Pb exposures. As a result, regulatory decision makers may lower residential soil screening levels (SSLs), used in setting Pb cleanup levels, to levels that may be difficult to achieve, especially in urban areas. This paper discusses challenges in remediation and bioavailability assessments of Pb in urban soils in the context of lower SSLs and identifies research needs to better address those challenges. Although in situ remediation with phosphate amendments is a viable option, the scope of the problem and conditions in urban settings may necessitate that SSLs be based on bioavailable rather than total Pb concentrations. However, variability in soil composition can influence bioavailability testing and soil amendment effectiveness. More data are urgently needed to better understand this variability and increase confidence in using these approaches in risk-based decision making, particularly in urban areas.

  4. In situ measurement of ash content by neutron activation analysis

    International Nuclear Information System (INIS)

    Chrusciel, E.; Palka, K.; Makhabane, J.L.

    1991-01-01

    The paper presents the results of spectrometric neutron activation logging. A scintillation spectrometer with the source-to-detector spacing of 1.5 m, together with a Po-Be neutron source, with the yield of about 10 7 n/s, were used to measure the intensity of gamma rays in two energy windows during continuous logging. The first energy window of 300 keV width was centered at the 843 keV energy and the second - of 500 keV width at 1779 keV. For ash content varying between 5-35 wt % the mean standard deviation was 2.5 wt %. (author). 22 refs, 6 figs, 1 tab

  5. The Effect of Equilibration Time and Tubing Material on Soil Gas Measurements

    Science.gov (United States)

    The collection of soil vapor samples representative of in-situ conditions presents challenges associated with the unavoidable disturbance of the subsurface and potential losses to the atmosphere. This article evaluates the effects of two variables that influence the concentration...

  6. Vertical profile measurements of soil air suggest immobilization of gaseous elemental mercury in mineral soil.

    Science.gov (United States)

    Obrist, Daniel; Pokharel, Ashok K; Moore, Christopher

    2014-02-18

    Evasion of gaseous elemental Hg (Hg(0)g) from soil surfaces is an important source of atmospheric Hg, but the volatility and solid-gas phase partitioning of Hg(0) within soils is poorly understood. We developed a novel system to continuously measure Hg(0)g concentrations in soil pores at multiple depths and locations, and present a total of 297 days of measurements spanning 14 months in two forests in the Sierra Nevada mountains, California, U.S. Temporal patterns showed consistent pore Hg(0)g concentrations below levels measured in the atmosphere (termed Hg(0)g immobilization), ranging from 66 to 94% below atmospheric concentrations throughout multiple seasons. The lowest pore Hg(0)g concentrations were observed in the deepest soil layers (40 cm), but significant immobilization was already present in the top 7 cm. In the absence of sinks or sources, pore Hg(0)g levels would be in equilibrium with atmospheric concentrations due to the porous nature of the soil matrix and gas diffusion. Therefore, we explain decreases in pore Hg(0)g in mineral soils below atmospheric concentrations--or below levels found in upper soils as observed in previous studies--with the presence of an Hg(0)g sink in mineral soils possibly related to Hg(0)g oxidation or other processes such as sorption or dissolution in soil water. Surface chamber measurements showing daytime Hg(0)g emissions and nighttime Hg(0)g deposition indicate that near-surface layers likely dominate net atmospheric Hg(0)g exchange resulting in typical diurnal cycles due to photochemcial reduction at the surface and possibly Hg(0)g evasion from litter layers. In contrast, mineral soils seem to be decoupled from this surface exchange, showing consistent Hg(0)g uptake and downward redistribution--although our calculations indicate these fluxes to be minor compared to other mass fluxes. A major implication is that once Hg is incorporated into mineral soils, it may be unlikely subjected to renewed Hg(0)g re-emission from

  7. Continuous measurements of soil radon under regular field conditions

    International Nuclear Information System (INIS)

    Font, LL

    1999-01-01

    Continuous soil radon measurements were performed in the frame of an European Community-radon network using the Clipperton II detector. It has been found that in some periods, soil radon levels obtained with one Clipperton II probe are very different from those obtained with another probe placed at the same depth but a short distance apart. It has been also found that the response of the probes to a sudden change of radon concentration is controlled by the diffusion process along the bottom tube of the probe. Therefore, this study shows that the experimental data can be attributed to the natural behaviour of soil radon

  8. Contribution of soil electric resistivity measurements to the studies on soil/grapevine water relations

    Directory of Open Access Journals (Sweden)

    Etienne Goulet

    2006-06-01

    Full Text Available The classical techniques that allow to quantify the soil water status such as the gravimetric method or the use of neutrons probes do not give access to the volume of soil explored by the plant root system. On the contrary, electric tomography can be used to have a global vision on the water exchange area between soil and plant. The measurement of soil electric resistivity, as a non destructive, spatially integrative technique, has recently been introduced into viticulture. The use of performing equipment and adapted software allows for rapid data processing and gives the possibility to spatialize the variations of soil texture or humidity in two or three dimensions. Soil electric resistivity has been tested for the last three years at the Experimental Unit on Grapevine and Vine, INRA, Angers, France, to study the water supply to the vine in different “terroir” conditions. Resistivity measurements were carried out with the resistivity meter Syscal R1+ (Iris Instruments, France equipped with 21 electrodes. Those electrodes were lined up on the soil surface in a direction perpendiculary to 5 grapevine rows with an electrode spacing of 0.5 m. and a dipole-dipole arrangement. Resistivity measurements were performed on the same place at different times in order to study soil moisture variations. This experimental set up has permitted to visualise the soil stratification and individualize some positive electric anomalies corresponding to preferential drying ; this desiccation could be attributed to grapevine root activity. The soil bulk subject to the water up-take could be defined more precisely and in some types of soil, available water may even be quantified. Terroir effect on grapevine root activity has also been shown up on two different experimental parcels through electric tomography and first results indicate that it is possible to monitor the effects of soil management (inter-row grassing or different rootstocks on the water supply to the

  9. Direct in situ measurement of Carbon Allocation to Mycorrhizal Fungi in a California Mixed-Conifer Forest

    Science.gov (United States)

    Allen, M.

    2012-04-01

    Mycorrhizal fungi consume fixed C in ecosystems in exchange for soil resources. We used sensor and observation platforms belowground to quantify belowground dynamics in a California mixed-conifer ecosystem. We directly observed growth and mortality of mycorrhizal fungi in situ on a daily basis using an automated minirhizotron. We measured soil CO2, T and soil moisture at 5-min intervals into the soil profile. These data are coupled with sensors measuring eddy flux of water and CO2, sapflow for water fluxes and C fixation activity, and photographs for leaf phenology. We used DayCent modeling for net primary productivity (NPP) and measured NPP of rhizomorphs, and fungal hyphae. In an arbuscular mycorrhizal (AM) meadow, NPP was 141g/m2/y, with a productivity of fine root NPP of 76.5g C/m2/y, an estimated 10 percent of which is AM fungal C (7.7 g/m2/y). Extramatrical AM hyphal peak standing crop was 4.4g/m2, with a lifespan of 46 days, with active hyphae persisting for 240 days per year. The extramatrical AM fungal hyphal C was 22.9g/m2/y, for a total net allocation to AM fungi of 30.5 C/m2/y, or 22 percent of the estimated NPP. In the ectomycorrhizal (EM) forest, root standing crop (200g C/m2/y) and rhizomorph (2mg C/m2/y) was 33 percent of the NPP (600g C/m2/y). EM fungal hyphae standing crop was 18g/m2/y, with a 48day lifespan, persisting throughout the year, or 59 g C/m2/y. EM root tips and rhizomorph life spans were nearly a year. Assuming that EM fungi represent 40 percent of the fine root EM NPP (of 200g C/m2/y) or 80g C/m2/y, most of the rhizomorph (in the mineral soil) mass being EM (or 2mg C), and 57 percent of the soil fungal NPP or 80 g C/m2/y, then the EM NPP is 139 C/m2/y, or 23 percent of the estimated NPP (600g C/m2/y). As an independent check on the allocation of C, we applied the Hobbie and Hobbie isotopic fractionation d15N model to C allocation. Using d15N of Chantarellus sp. (10.6) and Rhizopogon sp. (9.1), with a leaf d15N of -4.9, we estimated

  10. In-situ soil loss monitoring in a small Mediterranean catchment to assess the siltation risk of a limno-reservoir

    Science.gov (United States)

    Molina-Navarro, E.; Bienes-Allas, R.; Martínez-Pérez, S.; Sastre-Merlín, A.

    2012-04-01

    The existence of large reservoirs under Mediterranean climate causes some negative impacts. The construction of small dams in the riverine zone of these reservoirs is an innovative idea designed to counteract some of those impacts, generating a body of water with a constant level which we have termed "limno-reservoirs". Pareja Limno-reservoir, located in the influence area of the Entrepeñas Reservoir (Guadalajara) is among the first limno-reservoirs built in Spain, and the first having a double function: environmental and recreational. The limno-reservoir basin (85.5 Km2) enjoys a Mediterranean climate, however, cold temperatures prevail in winter and maximum annual variation may be around 50 °C. Average annual precipitation is 600 mm, with high variability too. Most of the basin is dominated by a high limestone plateau, while a more erodible lithology surfaces in the hillsides of the Ompólveda River and its tributaries. These characteristics make the basin representative of central Spain. Despite the unquestionable interest of the initiative, it construction has raised some issues about its environmental viability. One of them is related to its siltation risk, as the area shows signs of high erosion rates that have been contrasted in previous empirical studies. An in-situ soil loss monitoring network has been installed in order to determine the soil loss and deposition rates in the limno-reservoir basin (85.5 km2). It includes 15 sampling plots for inter-rill erosion and 8 for sedimentation, each one containing 16 erosion sticks. Rill erosion was studied monitoring 8 rills with a needle micro-profiler, quantifying the sediment deposition in their terminal zone with sticks. These control points have been located in places where the soil type, land use and slope present are representative of the basin, in order to extrapolate the results to similar areas. In-situ monitoring has been performed for three years, starting in 2009 and carrying out sampling every 3

  11. Measured soil water concentrations of cadmium and zinc in plant pots and estimated leaching outflows from contaminated soils

    DEFF Research Database (Denmark)

    Holm, P.E.; Christensen, T.H.

    1998-01-01

    Soil water concentrations of cadmium and zinc were measured in plant pots with 15 contaminated soils which differed in origin, texture, pH (5.1-7.8) and concentrations of cadmium (0.2-17 mg Cd kg(-1)) and zinc (36-1300 mg Zn kg(-1)). The soil waters contained total concentrations of 0.5 to 17 mu g...... to 0.1% per year of the total soil content of cadmium and zinc. The measured soil water concentrations of cadmium and zinc did not correlate linearly with the corresponding soil concentrations but correlated fairly well with concentrations measured in Ca(NO(3))(2) extracts of the soils and with soil...... water concentrations estimated from soil concentrations and pH. Such concentration estimates may be useful for estimating amounts of cadmium and zinc being leached from soils....

  12. A single well pumping and recovery test to measure in situ acrotelm transmissivity in raised bogs

    NARCIS (Netherlands)

    Schaaf, van der S.

    2004-01-01

    A quasi-steady-state single pit pumping and recovery test to measure in situ the transmissivity of the highly permeable upper layer of raised bogs, the acrotelm, is described and discussed. The basic concept is the expanding depression cone during both pumping and recovery. It is shown that applying

  13. Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques.

    NARCIS (Netherlands)

    Unsworth, Emily R; Warnken, Kent W; Zhang, Hao; Davison, William; Black, Frank; Buffle, Jacques; Cao, Jun; Cleven, Rob; Galceran, Josep; Gunkel, Peggy; Kalis, Erwin; Kistler, David; Leeuwen, Herman P van; Martin, Michel; Noël, Stéphane; Nur, Yusuf; Odzak, Niksa; Puy, Jaume; Riemsdijk, Willem van; Sigg, Laura; Temminghoff, Erwin; Tercier-Waeber, Mary-Lou; Toepperwien, Stefanie; Town, Raewyn M; Weng, Liping; Xue, Hanbin

    2006-01-01

    Measurements of trace metal species in situ in a softwater river, a hardwater lake, and a hardwater stream were compared to the equilibrium distribution of species calculated using two models, WHAM 6, incorporating humic ion binding model VI and visual MINTEQ incorporating NICA-Donnan. Diffusive

  14. Straylight measurements in laser in situ keratomileusis and laser-assisted subepithelial keratectomy for myopia

    NARCIS (Netherlands)

    Lapid-Gortzak, Ruth; van der Linden, Jan Willem; van der Meulen, Ivanka; Nieuwendaal, Carla; van den Berg, Tom

    2010-01-01

    PURPOSE: To compare straylight values before and 3 months after laser in situ keratomileusis (LASIK) and laser-assisted subepithelial keratectomy (LASEK) and to analyze the causes of any change. SETTING: Private refractive surgery clinic, Driebergen, The Netherlands. METHODS: Straylight was measured

  15. Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Ali, Syed Talat; Møller, Per

    2010-01-01

    The temperature is a very important operating parameter for all types of fuel cells. In the present work distributed in situ temperature measurements are presented on a polybenzimidazole based high temperature PEM fuel cell (HT-PEM). A total of 16 T-type thermocouples were embedded on both the an...

  16. Hazards and preventive measures of well deviation in well construction of in-situ leaching

    International Nuclear Information System (INIS)

    Zou Wenjie; Chen Shihe

    2006-01-01

    Whether the in-situ leaching method is successful depends on the quality of borehole engineering to a great extent. There are lots of factors that affect the quality, and the well deviation is one of notable problems. The hazards and causes of the well deviation are analyzed. The preventive measures and the methods of rectifying the deviation are put forward. (authors)

  17. In-situ measurement of the electrical conductivity of aluminum oxide in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; White, D.P.; Snead, L.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    A collaborative DOE/Monbusho irradiation experiment has been completed which measured the in-situ electrical resistivity of 12 different grades of aluminum oxide during HFIR neutron irradiation at 450{degrees}C. No evidence for bulk RIED was observed following irradiation to a maximum dose of 3 dpa with an applied dc electric field of 200 V/mm.

  18. A gamma-source method of measuring soil moisture

    International Nuclear Information System (INIS)

    Al-Jeboori, M.A.; Ameen, I.A.

    1986-01-01

    Water content in soil column was measured using NaI scintillation detector 5 mci Cs-137 as a gamma source. The measurements were done with a back scatter gauge, restricted with scattering angle less to than /2 overcome the effect of soil type. A 3 cm air gap was maintained between the front of the detector and the wall of the soil container in order to increase the counting rate. The distance between the center of the source and the center of the back scattering detector was 14 cm. The accuracy of the measurements was 0.63. For comparision, a direct rays method was used to measure the soil moisture. The results gave an error of 0.65. Results of the two methods were compared with the gravimetric method which gave an error of 0.18 g/g and 0.17 g/g for direct and back method respectively. The quick direct method was used to determine the gravimetric and volumetric percentage constants, and were found to be 1.62 and 0.865 respectively. The method then used to measure the water content in the layers of soil column.(6 tabs., 4 figs., 12 refs.)

  19. Utilizing The Synergy of Airborne Backscatter Lidar and In-Situ Measurements for Evaluating CALIPSO

    Directory of Open Access Journals (Sweden)

    Tsekeri Alexandra

    2016-01-01

    Full Text Available Airborne campaigns dedicated to satellite validation are crucial for the effective global aerosol monitoring. CALIPSO is currently the only active remote sensing satellite mission, acquiring the vertical profiles of the aerosol backscatter and extinction coefficients. Here we present a method for CALIPSO evaluation from combining lidar and in-situ airborne measurements. The limitations of the method have to do mainly with the in-situ instrumentation capabilities and the hydration modelling. We also discuss the future implementation of our method in the ICE-D campaign (Cape Verde, August 2015.

  20. Design and evaluation of in situ biorestoration methods for the treatment of sludges and soils at waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Berry-Spark, K L; Barker, J F; Mayfield, C I

    1990-12-31

    In-situ methods for treatment of waste sludges hold great promise for efficient remediation of sludge at waste disposal sites, such as the diverse and complex sludges from the O.E. MacDougall site near Brockville, Ontario. This report presents results of laboratory testing of natural bioremediation techniques using six representative soils and sludges obtained from the MacDougall site. Four of six samples contained concentrations of hydrocarbons typical of petroleum products and solvents. The report includes descriptions of the characterisation of the organic chemistry and microbial populations of the soils, as well as of the experiments conducted under aerobic, methane oxidising, anaerobic-denitrifying, sulphate reducing, and methanogenic conditions.

  1. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available The integration of bioventing (BV and soil vapor extraction (SVE appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5% of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  2. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  3. Paloma: In-Situ Measurement of the Isotopic Composition of Mars Atmosphere

    Science.gov (United States)

    Jambon, A.; Quemerais, E.; Chassiefiere, E.; Berthelier, J. J.; Agrinier, P.; Cartigny, P.; Javoy, M.; Moreira, M.; Sabroux, J. -C.; Sarda, P.; Pineau, J. -F.

    2000-07-01

    Scientific objectives for an atmospheric analysis of Mars are presented in the DREAM project. Among the information presently available most are fragmentary or limited in their precision for both major element (H, C, O, N) and noble gas isotopes. These data are necessary for the understanding and modelling of Mars atmospheric formation and evolution, and consequently for other planets, particularly the Earth. To fulfill the above requirements, two approaches can be envisonned: 1) analysis of a returned sample (DREAM project) or 2) in situ analysis, e.g. PALOMA project presented here. Among the advantages of in situ analysis, we notice: the minimal terrestrial contamination, the unlimited availability of gas to be analyzed and the possibility of multiple analyses (replicates, daynight... ). Difficulties specific to in situ analyses are of a very different kind to those of returned samples. In situ analysis could also be viewed as a preparation to future analysis of returned samples. Finally, some of the measurements will not be possible on Earth: for instance, radon and its short lived decay products, will provide complementary information to 4-He analysis and can only be obtained in situ, independently of analytical capabilities.

  4. Electronic Nose Technology to Measure Soil Microbial Activity and Classify Soil Metabolic Status

    OpenAIRE

    Fabrizio De Cesare; Elena Di Mattia; Simone Pantalei; Emiliano Zampetti; Vittorio Vinciguerra; Antonella Macagnano

    2011-01-01

    The electronic nose (E-nose) is a sensing technology that has been widely used to monitor environments in the last decade. In the present study, the capability of an E-nose, in combination with biochemical and microbiological techniques, of both detecting the microbial activity and estimating the metabolic status of soil ecosystems, was tested by measuring on one side respiration, enzyme activities and growth of bacteria in natural but simplified soil ecosystems over 23 days of incubation thr...

  5. Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ

    Energy Technology Data Exchange (ETDEWEB)

    Regonne, Raïssa Kom [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France); Laboratoire de Substances Actives et Pollution, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Martin, Florence [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France); Mbawala, Augustin [Laboratoire de Microbiologie, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Ngassoum, Martin Benoît [Laboratoire de Substances Actives et Pollution, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Jouanneau, Yves [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France)

    2013-09-15

    Efficient bioremediation of PAH-contaminated sites is limited by the hydrophobic character and poor bioavailability of pollutants. In this study, stable isotope probing (SIP) was implemented to track bacteria that can degrade PAHs adsorbed on hydrophobic sorbents. Temperate and tropical soils were incubated with {sup 13}C-labeled phenanthrene, supplied by spiking or coated onto membranes. Phenanthrene mineralization was faster in microcosms with PAH-coated membranes than in microcosms containing spiked soil. Upon incubation with temperate soil, phenanthrene degraders found in the biofilms that formed on coated membranes were mainly identified as Sphingomonadaceae and Actinobacteria. In the tropical soil, uncultured Rhodocyclaceae dominated degraders bound to membranes. Accordingly, ring-hydroxylating dioxygenase sequences recovered from this soil matched PAH-specific dioxygenase genes recently found in Rhodocyclaceae. Hence, our SIP approach allowed the detection of novel degraders, mostly uncultured, which differ from those detected after soil spiking, but might play a key role in the bioremediation of PAH-polluted soils. -- Highlights: •Soil bacteria with the ability to degrade sorbent-bound PAHs were investigated. •In soil, membrane-bound phenanthrene was readily mineralized. •PAH degraders found in biofilms were different in temperate and tropical soils. •Uncultured Rhodocyclaceae were dominant phenanthrene degraders in the tropical soil. •PAH-specific ring-hydroxylating dioxygenase sequences were identified in soil DNA. -- Bacteria able to degrade PAHs bound to a hydrophobic sorbent were mainly identified as uncultured Rhodocyclaceae and Sphingomonadaceae in polluted soils from tropical and temperate area, respectively.

  6. In situ mechanical TEM: seeing and measuring under stress with electrons

    International Nuclear Information System (INIS)

    Legros, M.

    2014-01-01

    From the first observation of moving dislocations in 1956 to the latest developments of piezo-actuated sample holders and direct electron sensing cameras in modern transmission electron microscopes (TEM), in situ mechanical testing has brought an unequaled view of the involved mechanisms during the plastic deformation of materials. Although MEMS-based or load-cell equipped holders provide an almost direct measure of these quantities, deriving stress and strain from in situ TEM experiments has an extensive history. Nowadays, the realization of a complete mechanical test while observing the evolution of a dislocation structure is possible, and it constitutes the perfect combination to explore size effects in plasticity. New cameras, data acquisition rates and intrinsic image-related techniques, such as holography, should extend the efficiency and capabilities of in situ deformation inside a TEM. (author)

  7. Effect of in situ soil amendments on arsenic uptake in successive harvests of ryegrass (Lolium perenne cv Elka) grown in amended As-polluted soils

    International Nuclear Information System (INIS)

    Hartley, William; Lepp, Nicholas W.

    2008-01-01

    Several iron-bearing additives, selected for their potential ability to adsorb anions, were evaluated for their effectiveness in attenuation of arsenic (As) in three soils with different sources of contamination. Amendments used were lime, goethite (α-FeOOH) (crystallised iron oxide) and three iron-bearing additives, iron grit, Fe II and Fe III sulphates plus lime, applied at 1% w/w. Sequential extraction schemes conducted on amended soils determined As, Cu, Zn and Ni fractionation. Plant growth trials using perennial ryegrass (Lolium perenne var. Elka) assessed shoot As uptake. This was grown in the contaminated soils for 4 months, during which time grass shoots were successively harvested every 3 weeks. Goethite increased biomass yields, but clear differences were observed in As transfer rates with the various iron oxides. In conclusion, whilst Fe-oxides may be effective in situ amendments, reducing As bioavailability, their effects on plant growth require careful consideration. Soil-plant transfer of As was not completely halted by any amendment. - Arsenic attenuation is illustrated using Fe-based amendments, their efficacy providing different indicators of success

  8. Leaf Cutter Ant (Atta cephalotes) Soil Modification and In Situ CO2 Gas Dynamics in a Neotropical Wet Forest

    Science.gov (United States)

    Fernandez Bou, A. S.; Carrasquillo Quintana, O.; Dierick, D.; Harmon, T. C.; Johnson, S.; Schwendenmann, L.; Zelikova, T. J.

    2016-12-01

    The goal of this work is to advance our understanding of soil carbon cycling in highly productive neotropical wet forests. More specifically, we are investigating the influence of leaf cutter ants (LCA) on soil CO2 gas dynamics in primary and secondary forest soils at La Selva Biological Station, Costa Rica. LCA are the dominant herbivore in tropical Americas, responsible for as much as 50% of the total herbivory. Their presence is increasing and their range is expanding because of forest fragmentation and other human impacts. We installed gas sampling wells in LCA (Atta cephalotes) nest and control sites (non-nests in the same soil and forest settings). The experimental design encompassed land cover (primary and secondary forest) and soil type (residual and alluvial). We collected gas samples monthly over an 18-month period. Several of the LCA nests were abandoned during this period. Nevertheless, we continued to sample these sites for LCA legacy effects. In several of the sites, we also installed sensors to continuously monitor soil moisture content, temperature, and CO2 levels. Within the 18-month period we conducted a 2-month field campaign to collect soil and nest vent CO2 efflux data from 3 of the nest-control pairs. Integrating the various data sets, we observed that for most of the sites nest and control soils behaved similarly during the tropical dry season. However, during the wet season gas well CO2 concentrations increased in the control sites while levels in the nests remained at dry season levels. This outcome suggests that ants modify soil gas transport properties (e.g., tortuosity). In situ time series and efflux sampling campaign data corroborated these findings. Abandoned nest CO2 levels were similar to those of the active nests, supporting the notion of a legacy effect from LCA manipulations. For this work, the period of abandonment was relatively short (several months to 1 year maximum), which appears to be insufficient for estimating the

  9. The environmental radiation monitoring system and in-situ measurements for early notification and OIL (Operational Intervention Levels) calculations

    Energy Technology Data Exchange (ETDEWEB)

    Haquin, G.; Ne`eman, E.; Brenner, S.; Lavi, N. [Tel Aviv Univ. (Israel). Sackler School of Medicine. Inst. for Environmental Research

    1997-12-31

    The efficiency of the environmental radiation monitoring, low level laboratory and in-situ gamma-ray spectrometry are evaluated as the systems for early notification and for determination of dose rate in air, surface contamination and activity concentration in food during emergencies for Operational Intervention Levels (OIL) recalculation.The National Environmental Radiation Monitoring System has proved its efficiency in the early detection of unregistered radiography work. A mobile station of the network can be used for absorbed dose rate measurement during emergencies in contaminated areas. The calibrated in-situ gamma-ray spectrometry system in an open phosphate ore mine has showed the efficiency of this technique for fast and accurate determination of soil activity concentration. The calibration for an uniform depth distribution can be easily mathematically converted to an exponential depth distribution in cases of radioactive material fallout 7 refs., 3 figs., 1 tab.; e-mail: envirad at post.tau.ac.il; env{sub r}ad at netvision,net.il

  10. Evaluation of meat and bone meal combustion residue as lead immobilizing material for in situ remediation of polluted aqueous solutions and soils: "chemical and ecotoxicological studies".

    Science.gov (United States)

    Deydier, E; Guilet, R; Cren, S; Pereas, V; Mouchet, F; Gauthier, L

    2007-07-19

    As a result of bovine spongiform encephalopathy (BSE) crisis, meat and bone meal (MBM) production can no longer be used to feed cattle and must be safely disposed of or transformed. MBM specific incineration remains an alternative that could offer the opportunity to achieve both thermal valorization and solid waste recovery as ashes are calcium phosphate-rich material. The aim of this work is to evaluate ashes efficiency for in situ remediation of lead-contaminated aqueous solutions and soils, and to assess the bioavailability of lead using two biological models, amphibian Xenopus laevis larvae and Nicotiana tabaccum tobacco plant. With the amphibian model, no toxic or genotoxic effects of ashes are observed with concentrations from 0.1 to 5 g of ashes/L. If toxic and genotoxic effects of lead appear at concentration higher than 1 mg Pb/L (1 ppm), addition of only 100 mg of ashes/L neutralizes lead toxicity even with lead concentration up to 10 ppm. Chemical investigations (kinetics and X-ray diffraction (XRD) analysis) reveals that lead is quickly immobilized as pyromorphite [Pb10(PO4)6(OH)2] and lead carbonate dihydrate [PbCO(3).2H2O]. Tobacco experiments are realized on contaminated soils with 50, 100, 2000 and 10000 ppm of lead with and without ashes amendment (35.3g ashes/kg of soil). Tobacco measurements show that plant elongation is bigger in an ashes-amended soil contaminated with 10000 ppm of lead than on the reference soil alone. Tobacco model points out that ashes present two beneficial actions as they do not only neutralize lead toxicity but also act as a fertilizer.

  11. Field instruments for real time in-situ crude oil concentration measurements

    International Nuclear Information System (INIS)

    Fuller, C.B.; Bonner, J.S.; Page, C.A.; Arrambide, G.; Sterling, M.C.Jr.; Ojo, T.O.

    2003-01-01

    Accidental oil spills, contaminant release during resuspension, storms, and harmful algal blooms are all episodic events that can effect coastal margins. It is important to quantitatively describe water and ecological quality evolution and predict the impact to these areas by such events, but traditional sampling methods miss environmental activity during cyclical events. This paper presents a new sampling approach that involves continuous, real-time in-situ monitoring to provide data for development of comprehensive modeling protocols. It gives spill response coordinators greater assurance in making decisions using the latest visualization tools which are based on a good understanding of the physical processes at work in pulsed events. Five sensors for rapid monitoring of crude oil concentrations in aquatic systems were described. The in-situ and ex-situ sensors can measure plume transport and estimate polycyclic aromatic hydrocarbon exposure concentrations to assess risk of toxicity. A brief description and evaluation of the following 5 sensors was provided: the LISST-100 by Sequoia Instrument, a submersible multi-angle laser scattering instrument; the AU-10 field fluorometer by Turner Designs, an ex-situ single wavelength fluorometer; the Flashlamp by WET Labs Inc., an in-situ single wavelength fluorometer; and, the ECO-FL3 and SAFire by WET Labs Inc., two in-situ multiple wavelength fluorometers. These instruments were used to analyze crude oil emissions of various concentrations. All of the instruments followed a linear response within the tested concentration range. At the lowest concentrations the LISST-100 was not as effective as the fluorometers because of limited particle volume for scatter. For the AU-10 field fluorometer, the highest concentrations tested were above the measurement range of the instrument. 6 refs., 5 figs

  12. Method for in situ carbon deposition measurement for solid oxide fuel cells

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2014-01-01

    Previous methods to measure carbon deposition in solid oxide fuel cell (SOFC) anodes do not permit simultaneous electrochemical measurements. Electrochemical measurements supplemented with carbon deposition quantities create the opportunity to further understand how carbon affects SOFC performance and electrochemical impedance spectra (EIS). In this work, a method for measuring carbon in situ, named here as the quantification of gasified carbon (QGC), was developed. TGA experiments showed that carbon with a 100 h residence time in the SOFC was >99.8% gasified. Comparison of carbon mass measurements between the TGA and QGC show good agreement. In situ measurements of carbon deposition in SOFCs at varying molar steam/carbon ratios were performed to further validate the QGC method, and suppression of carbon deposition with increasing steam concentration was observed, in agreement with previous studies. The technique can be used to investigate in situ carbon deposition and gasification behavior simultaneously with electrochemical measurements for a variety of fuels and operating conditions, such as determining conditions under which incipient carbon deposition is reversible.

  13. Matrix diffusion studies by electrical conductivity methods. Comparison between laboratory and in-situ measurements

    International Nuclear Information System (INIS)

    Ohlsson, Y.; Neretnieks, I.

    1998-01-01

    Traditional laboratory diffusion experiments in rock material are time consuming, and quite small samples are generally used. Electrical conductivity measurements, on the other hand, provide a fast means for examining transport properties in rock and allow measurements on larger samples as well. Laboratory measurements using electrical conductivity give results that compare well to those from traditional diffusion experiments. The measurement of the electrical resistivity in the rock surrounding a borehole is a standard method for the detection of water conducting fractures. If these data could be correlated to matrix diffusion properties, in-situ diffusion data from large areas could be obtained. This would be valuable because it would make it possible to obtain data very early in future investigations of potentially suitable sites for a repository. This study compares laboratory electrical conductivity measurements with in-situ resistivity measurements from a borehole at Aespoe. The laboratory samples consist mainly of Aespoe diorite and fine-grained granite and the rock surrounding the borehole of Aespoe diorite, Smaaland granite and fine-grained granite. The comparison shows good agreement between laboratory measurements and in-situ data

  14. Investigation of potential for occurrence of molten soil displacement events during in situ vitrification of combustible wastes

    International Nuclear Information System (INIS)

    Roberts, J.S.; Strachan, C.W.; Luey, J.

    1993-02-01

    Computer simulations are used to investigate the application of in situ vitrification (ISV) for processing contaminated soil containing high loadings of solid, compressible waste material, typical of landfills and solid waste trenches. Specifically, these simulations predict whether significant displacement of molten soil, due to large, 1 to 2 m diameter, gas bubbles rising up through the ISV melt, are likely to occur during processing of combustible waste-loaded sites. These bubbles are believed to originate from high-pressure regions below the melt caused by vaporization of water and gases generated by the combustion, volatilization, or pyrolyzation of combustible materials in the waste. Simulations were run using the TOUGH2 computer code to predict pressures underneath the ISV melt TOUGH2 is an unsaturated groundwater modeling code capable of treating non-isothermal problems. These simulations include moving melt front and simple pyrolysis models and investigate how the gas pressure in the soil below the melt is affected by melt progression rate, soil permeability, combustible and impermeable material loading. The following, conclusions have been drawn based on the TOUGH2 simulations

  15. Continuous measurements of H2 and CO deposition onto soil: a laboratory soil chamber experiment

    Science.gov (United States)

    Ghosh, P.; Eiler, J.; Smith, N. V.; Thrift-Viveros, D. L.

    2004-12-01

    Hydrogen uptake in soil is the largest single component of the global budget of atmospheric H2, and is the most important parameter for predicting changes in atmospheric concentration with future changing sources (anthropogenic and otherwise). The rate of hydrogen uptake rate by soil is highly uncertain [1]. As a component of the global budget, it is simply estimated as the difference among estimates for other recognized sources and sinks, assuming the atmosphere is presently in steady state. Previous field chamber experiments [2] show that H2 deposition velocity varies complexly with soil moisture level, and possibly with soil organic content and temperature. We present here results of controlled soil chamber experiments on 3 different soil blocks (each ~20 x ~20 x ~21 cm) with a controlled range of moisture contents. All three soils are arid to semi arid, fine grained, and have organic contents of 10-15%. A positive air pressure (slightly higher than atmospheric pressure) and constant temperature and relative humidity was maintained inside the 10.7 liter, leak-tight plexiglass chamber, and a stream of synthetic air with known H2 concentration was continuously bled into the chamber through a needle valve and mass flow meter. H2, CO and CO2 concentrations were continuously analyzed in the stream of gas exiting the chamber, using a TA 3000 automated Hg-HgO reduced gas analyzer and a LI-820 CO2 gas analyzer. Our experimental protocol involved waiting until concentrations of analyte gases in the exiting gas stream reached a steady state, and documenting how that steady state varied with various soil properties and the rate at which gases were delivered to the chamber. The rate constants for H2 and CO consumption in the chamber were measured at several soil moisture contents. The calculated deposition velocities of H2 and CO into the soil are positively correlated with steady-state concentrations, with slopes and curvatures that vary with soil type and moisture level

  16. Optimum method to determine radioactivity in large tracts of land. In-situ gamma spectroscopy or sampling followed by laboratory measurement

    International Nuclear Information System (INIS)

    Bronson, Frazier

    2008-01-01

    In the process of decommissioning contaminated facilities, and in the conduct of normal operations involving radioactive material, it is frequently required to show that large areas of land are not contaminated, or if contaminated that the amount is below an acceptable level. However, it is quite rare for the radioactivity in the soil to be uniformly distributed. Rather it is generally in a few isolated and probably unknown locations. One way to ascertain the status of the land concentration is to take soil samples for subsequent measurement in the laboratory. Another way is to use in-situ gamma spectroscopy. In both cases, the non-uniform distribution of radioactivity can greatly compromise the accuracy of the assay, and makes uncertainty estimates much more complicated than simple propagation of counting statistics. This paper examines the process of determining the best way to estimate the activity on the tract of land, and gives quantitative estimates of measurement uncertainty for various conditions of radioactivity. When the distribution of radioactivity in the soil is not homogeneous, the sampling uncertainty is likely to be larger than the in-situ measurement uncertainty. (author)

  17. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)--a field experiment.

    Science.gov (United States)

    Beškoski, Vladimir P; Gojgić-Cvijović, Gordana; Milić, Jelena; Ilić, Mila; Miletić, Srdjan; Solević, Tatjana; Vrvić, Miroslav M

    2011-03-01

    Mazut (heavy residual fuel oil)-polluted soil was exposed to bioremediation in an ex situ field-scale (600 m(3)) study. Re-inoculation was performed periodically with biomasses of microbial consortia isolated from the mazut-contaminated soil. Biostimulation was conducted by adding nutritional elements (N, P and K). The biopile (depth 0.4m) was comprised of mechanically mixed polluted soil with softwood sawdust and crude river sand. Aeration was improved by systematic mixing. The biopile was protected from direct external influences by a polyethylene cover. Part (10 m(3)) of the material prepared for bioremediation was set aside uninoculated, and maintained as an untreated control pile (CP). Biostimulation and re-inoculation with zymogenous microorganisms increased the number of hydrocarbon degraders after 50 d by more than 20 times in the treated soil. During the 5 months, the total petroleum hydrocarbon (TPH) content of the contaminated soil was reduced to 6% of the initial value, from 5.2 to 0.3 g kg(-1) dry matter, while TPH reduced to only 90% of the initial value in the CP. After 150 d there were 96%, 97% and 83% reductions for the aliphatic, aromatic, and nitrogen-sulphur-oxygen and asphaltene fractions, respectively. The isoprenoids, pristane and phytane, were more than 55% biodegraded, which indicated that they are not suitable biomarkers for following bioremediation. According to the available data, this is the first field-scale study of the bioremediation of mazut and mazut sediment-polluted soil, and the efficiency achieved was far above that described in the literature to date for heavy fuel oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. In situ recording of particle network formation in liquids by ion conductivity measurements.

    Science.gov (United States)

    Pfaffenhuber, Christian; Sörgel, Seniz; Weichert, Katja; Bele, Marjan; Mundinger, Tabea; Göbel, Marcus; Maier, Joachim

    2011-09-21

    The formation of fractal silica networks from a colloidal initial state was followed in situ by ion conductivity measurements. The underlying effect is a high interfacial lithium ion conductivity arising when silica particles are brought into contact with Li salt-containing liquid electrolytes. The experimental results were modeled using Monte Carlo simulations and tested using confocal fluorescence laser microscopy and ζ-potential measurements.

  19. Spectral induced polarization (SIP) measurement of NAPL contaminated soils

    Science.gov (United States)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2010-12-01

    The potential applicability of spectral induce polarization (SIP) as a tool to map NAPLs (non aqueous phase liquids) contaminants at the subsurface lead researchers to investigate the electric signature of those contaminant on the spectral response. However, and despite the cumulative efforts, the effect of NAPL on the electrical properties of soil, and the mechanisms that control this effect are largely unknown. In this work a novel experiment is designed to further examine the effect of NAPL on the electrical properties of partially saturated soil. The measurement system that used is the ZEL-SIP04 impedance meter developed at the Forschungszentrum Julich, Germany. The system accurately (nominal phase precision of 0.1 mrad below 1 kHz) measures the phase and the amplitude of a material possessing a very low polarization (such as soil). The sample holder has a dimension of 60 cm long and 4.6 cm in diameter. Current and potential electrodes were made of brass, and while the current electrodes were inserted in full into the soil, the contact between the potential electrode and the soil was made through an Agarose bridge. Two types of soils were used: clean quartz sand, and a mixture of sand with clean Bentonite. Each soil (sandy or clayey) was mixed with water to get saturation degree of 30%. Following the mixture with water, NAPL was added and the composite were mixed again. Packing was done by adding and compressing small portions of the soil to the column. A triplicate of each mixture was made with a good reproducible bulk density. Both for the sandy and clayey soils, the results indicate that additions of NAPL decrease the real part of the complex resistivity. Additionally, for the sandy soil this process is time depended, and that a further decrease in resistivity develops over time. The results are analyzed considering geometrical factors: while the NAPL is electrically insulator, addition of NAPL to the soil is expected to increase the connectivity of the

  20. Effects of moisture content and redox potential on in situ K d values for radioiodine in soil

    International Nuclear Information System (INIS)

    Ashworth, D.J.; Shaw, G.

    2006-01-01

    The soil solid-liquid distribution coefficient (K d ) value is of great significance in understanding and modelling the environmental behaviour of soil contaminants. For many years, the batch sorption technique has been used for the determination of such values. Here, we propose an alternative 'mini-column' approach in which somewhat more realistic soil conditions are maintained. In particular, this approach allows for determination of radionuclide K d values under realistic soil moisture contents and in a system in which time-dependent processes such as changes in redox potential can take place. Data obtained for radioactive iodine (a key radionuclide in the consideration of radioactive waste disposal) are presented and indicate that soil moisture content, particularly in conjunction with soil redox potential (through water-logging of the soil), has a marked effect on measured K d values. The results indicate the advantages and potential usefulness of the mini-column approach in assessing the environmental behaviour of radioactive, and other, soil contaminants

  1. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus.

    Science.gov (United States)

    Moldes, Ana Belén; Paradelo, Remigio; Rubinos, David; Devesa-Rey, Rosa; Cruz, José Manuel; Barral, María Teresa

    2011-09-14

    The utilization of biosurfactants for the bioremediation of contaminated soil is not yet well established, because of the high production cost of biosurfactants. Consequently, it is interesting to look for new biosurfactants that can be produced at a large scale, and it can be employed for the bioremediation of contaminated sites. In this work, biosurfactants from Lactobacillus pentosus growing in hemicellulosic sugars solutions, with a similar composition of sugars found in trimming vine shoot hydrolysates, were employed in the bioremediation of soil contaminated with octane. It was observed that the presence of biosurfactant from L. pentosus accelerated the biodegradation of octane in soil. After 15 days of treatment, biosurfactants from L. pentosus reduced the concentration of octane in the soil to 58.6 and 62.8%, for soil charged with 700 and 70,000 mg/kg of hydrocarbon, respectively, whereas after 30 days of treatment, 76% of octane in soil was biodegraded in both cases. In the absence of biosurfactant and after 15 days of incubation, only 1.2 and 24% of octane was biodegraded in soil charged with 700 and 70,000 mg/kg of octane, respectively. Thus, the use of biosurfactants from L. pentosus, as part of a well-designed bioremediation process, can provide mechanisms to mobilize the target contaminants from the soil surface to make them more available to the microbial population.

  2. Upscaling In Situ Soil Moisture Observations To Pixel Averages With Spatio-Temporal Geostatistics

    NARCIS (Netherlands)

    Wang, Jianghao; Ge, Yong; Heuvelink, Gerard B.M.; Zhou, Chenghu

    2015-01-01

    Validation of satellite-based soil moisture products is necessary to provide users with an assessment of their accuracy and reliability and to ensure quality of information. A key step in the validation process is to upscale point-scale, ground-based soil moisture observations to satellite-scale

  3. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Science.gov (United States)

    Jeffrey M. Warren; J. Renée Brooks; Maria I. Dragila; Frederick C. Meinzer

    2011-01-01

    Nocturnal increases in water potential and water content in the upper soil profile are often attributed to root water efflux, a process termed hydraulic redistribution (HR). However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the daily recovery in water content, confounding efforts to determine the actual...

  4. In situ measurements and transmission electron microscopy of carbon nanotube field-effect transistors

    International Nuclear Information System (INIS)

    Kim, Taekyung; Kim, Seongwon; Olson, Eric; Zuo Jianmin

    2008-01-01

    We present the design and operation of a transmission electron microscopy (TEM)-compatible carbon nanotube (CNT) field-effect transistor (FET). The device is configured with microfabricated slits, which allows direct observation of CNTs in a FET using TEM and measurement of electrical transport while inside the TEM. As demonstrations of the device architecture, two examples are presented. The first example is an in situ electrical transport measurement of a bundle of carbon nanotubes. The second example is a study of electron beam radiation effect on CNT bundles using a 200 keV electron beam. In situ electrical transport measurement during the beam irradiation shows a signature of wall- or tube-breakdown. Stepwise current drops were observed when a high intensity electron beam was used to cut individual CNT bundles in a device with multiple bundles

  5. Underwater in situ measurements of radionuclides in selected submarine groundwater springs, Mediterranean sea

    International Nuclear Information System (INIS)

    Tsabaris, C.; Scholten, J.; Karageorgis, A. P.; Comanducci, J. F.; Georgopoulos, D.; Liong Wee Kwong, L.; Patiris, D. L.; Papathanassiou, E.

    2010-01-01

    The application of the in situ measurement system 'KATERINA' for monitoring of radon progenies in submarine groundwater discharge (SGD) was investigated at different locations in the Mediterranean Sea (Chalkida, Stoupa, Korfos and Cabbe). At Chalkida and Stoupa radon progenies concentration exhibited almost constant values of 1.2±0.1 and 2.5±0.2 Bq l -1 , respectively. At Korfos these activities ranged between 1.4±0.1 and 2.3±0.2 Bq l -1 exhibiting inverse relationship with salinity. At Cabbe the in situ measured data were compared with radon measurements obtained by liquid scintillation counter. The system also resolved radon progeny variations of SGD on time scales above 1 h. The radioactivity levels of radon progenies from all sites were found considerably lower (approximately 2 orders of magnitude) than the commonly accepted limits for radon in drinking water. (authors)

  6. Combining Space-Based and In-Situ Measurements to Track Flooding in Thailand

    Science.gov (United States)

    Chien, Steve; Doubleday, Joshua; Mclaren, David; Tran, Daniel; Tanpipat, Veerachai; Chitradon, Royal; Boonya-aaroonnet, Surajate; Thanapakpawin, Porranee; Khunboa, Chatchai; Leelapatra, Watis; hide

    2011-01-01

    We describe efforts to integrate in-situ sensing, space-borne sensing, hydrological modeling, active control of sensing, and automatic data product generation to enhance monitoring and management of flooding. In our approach, broad coverage sensors and missions such as MODIS, TRMM, and weather satellite information and in-situ weather and river gauging information are all inputs to track flooding via river basin and sub-basin hydrological models. While these inputs can provide significant information as to the major flooding, targetable space measurements can provide better spatial resolution measurements of flooding extent. In order to leverage such assets we automatically task observations in response to automated analysis indications of major flooding. These new measurements are automatically processed and assimilated with the other flooding data. We describe our ongoing efforts to deploy this system to track major flooding events in Thailand.

  7. A computer program (COSTUM) to calculate confidence intervals for in situ stress measurements. V. 1

    International Nuclear Information System (INIS)

    Dzik, E.J.; Walker, J.R.; Martin, C.D.

    1989-03-01

    The state of in situ stress is one of the parameters required both for the design and analysis of underground excavations and for the evaluation of numerical models used to simulate underground conditions. To account for the variability and uncertainty of in situ stress measurements, it is desirable to apply confidence limits to measured stresses. Several measurements of the state of stress along a borehole are often made to estimate the average state of stress at a point. Since stress is a tensor, calculating the mean stress and confidence limits using scalar techniques is inappropriate as well as incorrect. A computer program has been written to calculate and present the mean principle stresses and the confidence limits for the magnitudes and directions of the mean principle stresses. This report describes the computer program, COSTUM

  8. Improved design and in-situ measurements of new beam position monitors for Indus-2

    Science.gov (United States)

    Kumar, M.; Babbar, L. K.; Holikatti, A. C.; Yadav, S.; Tyagi, Y.; Puntambekar, T. A.; Senecha, V. K.

    2018-01-01

    Beam position monitors (BPM) are important diagnostic devices used in particle accelerators to monitor position of the beam for various applications. Improved version of button electrode BPM has been designed using CST Studio Suite for Indus-2 ring. The new BPMs are designed to replace old BPMs which were designed and installed more than 12 years back. The improved BPMs have higher transfer impedance, resonance free output signal, equal sensitivity in horizontal and vertical planes and fast decaying wakefield as compared to old BPMs. The new BPMs have been calibrated using coaxial wire method. Measurement of transfer impedance and time domain signals has also been performed in-situ with electron beam during Indus-2 operation. The calibration and beam based measurements results showed close agreement with the design parameters. This paper presents design, electromagnetic simulations, calibration result and in-situ beam based measurements of newly designed BPMs.

  9. Ex situ bioremediation of mineral oil in soils: Aerated pile treatment. Final report

    International Nuclear Information System (INIS)

    Graves, D.

    1998-04-01

    Under a contract with Southern Company Services, a pilot-scale evaluation of mineral oil biodegradation was conducted at Plant Mitchell. The evaluation consisted of two demonstrations to examine land treatment and aerated pile treatment of soil contaminated with the mineral insulating oil used in electrical transformers. Treatment of mineral oil contaminated soil is problematic in the State of Georgia and throughout the US because current practice is to excavate and landfill the contaminated soil. In many cases, the cost associated with these activities far exceeds the environmental risk of mineral oil in soil. This project was designed to evaluate the performance of bioremediation for the treatment of mineral oil in soil. Testing was carried out in a demonstration facility prepared by Georgia Power Company. The facility consisted of 12 independent treatment cells constructed on a concrete pad and covered with a roof

  10. In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil.

    Science.gov (United States)

    Cui, Hongbiao; Fan, Yuchao; Yang, John; Xu, Lei; Zhou, Jing; Zhu, Zhenqiu

    2016-10-01

    Phytoremediation is a potential cost-effective technology for remediating heavy metal-contaminated soils. In this study, we evaluated the biomass and accumulation of copper (Cu) and cadmium (Cd) of plant species grown in a contaminated acidic soil treated with limestone. Five species produced biomass in the order: Pennisetum sinese > Elsholtzia splendens > Vetiveria zizanioides > Setaria pumila > Sedum plumbizincicola. Over one growing season, the best accumulators for Cu and Cd were Pennisetum sinese and Sedum plumbizincicola, respectively. Overall, Pennisetum sinese was the best species for Cu and Cd removal when biomass was considered. However, Elsholtzia splendens soil had the highest enzyme activities and microbial populations, while the biological properties in Pennisetum sinese soil were moderately enhanced. Results would provide valuable insights for phytoremediation of metal-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Ex-situ bioremediation of Brazilian soil contaminated with plasticizers process wastes

    Directory of Open Access Journals (Sweden)

    I. D. Ferreira

    2012-03-01

    Full Text Available The aim of this research was to evaluate the bioremediation of a soil contaminated with wastes from a plasticizers industry, located in São Paulo, Brazil. A 100-kg soil sample containing alcohols, adipates and phthalates was treated in an aerobic slurry-phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry (11gVSS kg-1 dry soil, during 120 days. The soil pH and temperature were not corrected during bioremediation; soil humidity was corrected weekly to maintain 40%. The biodegradation of the pollutants followed first-order kinetics; the removal efficiencies were above 61% and, among the analyzed plasticizers, adipate was removed to below the detection limit. Biological molecular analysis during bioremediation revealed a significant change in the dominant populations initially present in the reactor.

  12. Measurements of flux and isotopic composition of soil carbon dioxide

    International Nuclear Information System (INIS)

    Gorczyca, Z.; Rozanski, K.; Kuc, T.

    2002-01-01

    The flux and isotope composition of soil CO 2 has been regularly measured at three sites located in the southern Poland, during the time period: January 1998 - October 2000. They represent typical ecosystems appearing in central Europe: (i) mixed forest; (ii) cultivated agricultural field; (iii) grassland. To monitor the flux and isotopic composition of soil CO 2 , a method based on the inverted cup principle was adopted. The flux of soil CO 2 reveals distinct seasonal fluctuations, with maximum values up to ca. 25 mmol/m 2 /h during sommer months and around ten times lower values during winter time. Also significant differences among the monitored sites were detected, the flux density of this gas being highest for the mixed forest site and ca. two times lower for the cultivated grassland. Carbon-13 content of the soil CO 2 reveals little seasonal variability, with δ 13 C values essentially reflecting the isotopic composition of the soil organic matter and the vegetation type. The carbon-14 content of soil CO 2 flux also reveals slight seasonality, with lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values were recorded at depth. (author)

  13. Validation of a coupled FE-BE model of a masonry building with in-situ measurements

    NARCIS (Netherlands)

    Tsouvalas, A.; De Oliveira Barbosa, J.M.; Lourens, E.

    2017-01-01

    Earthquakes induced by the gas extraction is a problem of serious concern in the northern part of The Netherlands. The earthquakes recorded to date can be classified as minor based on their maximum local magnitude (ML=3.6). However, (i) their shallow focus, (ii) the special in-situ soft soil

  14. In-situ measurements of the secondary electron yield in an accelerator environment: Instrumentation and methods

    International Nuclear Information System (INIS)

    Hartung, W.H.; Asner, D.M.; Conway, J.V.; Dennett, C.A.; Greenwald, S.; Kim, J.-S.; Li, Y.; Moore, T.P.; Omanovic, V.; Palmer, M.A.; Strohman, C.R.

    2015-01-01

    The performance of a particle accelerator can be limited by the build-up of an electron cloud (EC) in the vacuum chamber. Secondary electron emission from the chamber walls can contribute to EC growth. An apparatus for in-situ measurements of the secondary electron yield (SEY) in the Cornell Electron Storage Ring (CESR) was developed in connection with EC studies for the CESR Test Accelerator program. The CESR in-situ system, in operation since 2010, allows for SEY measurements as a function of incident electron energy and angle on samples that are exposed to the accelerator environment, typically 5.3 GeV counter-rotating beams of electrons and positrons. The system was designed for periodic measurements to observe beam conditioning of the SEY with discrimination between exposure to direct photons from synchrotron radiation versus scattered photons and cloud electrons. The samples can be exchanged without venting the CESR vacuum chamber. Measurements have been done on metal surfaces and EC-mitigation coatings. The in-situ SEY apparatus and improvements to the measurement tools and techniques are described

  15. In-situ measurements of the secondary electron yield in an accelerator environment: Instrumentation and methods

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, W.H., E-mail: wh29@cornell.edu; Asner, D.M.; Conway, J.V.; Dennett, C.A.; Greenwald, S.; Kim, J.-S.; Li, Y.; Moore, T.P.; Omanovic, V.; Palmer, M.A.; Strohman, C.R.

    2015-05-21

    The performance of a particle accelerator can be limited by the build-up of an electron cloud (EC) in the vacuum chamber. Secondary electron emission from the chamber walls can contribute to EC growth. An apparatus for in-situ measurements of the secondary electron yield (SEY) in the Cornell Electron Storage Ring (CESR) was developed in connection with EC studies for the CESR Test Accelerator program. The CESR in-situ system, in operation since 2010, allows for SEY measurements as a function of incident electron energy and angle on samples that are exposed to the accelerator environment, typically 5.3 GeV counter-rotating beams of electrons and positrons. The system was designed for periodic measurements to observe beam conditioning of the SEY with discrimination between exposure to direct photons from synchrotron radiation versus scattered photons and cloud electrons. The samples can be exchanged without venting the CESR vacuum chamber. Measurements have been done on metal surfaces and EC-mitigation coatings. The in-situ SEY apparatus and improvements to the measurement tools and techniques are described.

  16. In situ measurement on TSV-Cu deformation with hotplate system based on sheet resistance

    Science.gov (United States)

    Sun, Yunna; Wang, Bo; Wang, Huiying; Wu, Kaifeng; Yang, Shengyong; Wang, Yan; Ding, Guifu

    2017-12-01

    The in situ measurement of TSVs deformation at different temperature is meaningful for learning more about the thermal deformation schemes of 3D TSVs in the microelectronic devices. An efficient and smart hotplate based on sheet resistance is designed for offering more heat, producing a uniform temperature distribution, relieving thermal stress and heat concentration issues, and reducing room space, which was optimized by the finite element method (FEM). The fabricated hotplate is efficient and smart (2.5 cm  ×  2.0 cm  ×  0.5 cm) enough to be located in the limited space during measuring. The thermal infrared imager was employed as the temperature sensor for monitoring the temperature distribution of TSVs sample. The 3D profilometry was adopted as the observer for TSVs profiles survey. The in situ 2D top surface profiles and 3D displacement profiles of TSVs sample at the different temperature were measured by 3D profilometer. The in situ average relative deformation and effective plastic deformation of the TSV sample were measured. With optical measurement method, 3D profilometry, the TSV sample can be tested repeatedly.

  17. Early in-situ measurements program for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Wowak, W.E.

    1979-06-01

    The technical basis and description of measurements for the early in-situ measurements program at the WIPP are described and a proposed organizational structure is presented. Measurements are needed for verification of design predictions and also for a prelude to the main experiment program. The design verification measurements will be concentrated in the first shaft and the underground support and access areas. Early experiments will be concentrated in the test drifts on the storage horizons. Recommendations are made to DOE for appropriate division of responsibility among Bechtel, the technical support contractor, the instrumentation contractor, and Sandia

  18. X-231B technology demonstration for in situ treatment of contaminated soil: Technology evaluation and screening

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Morris, M.I.; Donaldson, T.L.; Palumbo, A.V.; Herbes, S.E.; Jenkins, R.A.; Morrissey, C.M.; Harris, M.T.

    1993-08-01

    The Portsmouth Gaseous Diffusion Plant (Ports) is located approximately 70 miles south of Columbus in southern Ohio. Among the several waste management units on the facility, the X-231B unit consists of two adjacent oil biodegradation plots. The plots encompass ∼ 0.8 acres and were reportedly used from 1976 to 1983 for the treatment and disposal of waste oils and degreasing solvents, some containing uranium-235 and technetium-99. The X-231B unit is a regulated solid waste management unit (SWMU) under the Resource Conservation and Recovery Act (RCRA). The X-231B unit is also a designated SWMU located within Quadrant I of the site as defined in an ongoing RCRA Facilities Investigation and Corrective Measures Study (RFI/CMS). Before implementing one or more Technology Demonstration Project must be completed. The principal goal of this project was to elect and successfully demonstrate one ore more technologies for effective treatment of the contaminated soils associated with the X-231B unit at PORTS. The project was divided into two major phases. Phase 1 involved a technology evaluation and screening process. The second phase (i.e., Phase 2) was to involve field demonstration, testing and evaluation of the technology(s) selected during Phase 1. This report presents the methods, results, and conclusions of the technology evaluation and screening portion of the project

  19. Exploratory Project: Rigid nanostructured organic polymer monolith for in situ collection and analysis of plant metabolites from soil matrices

    Energy Technology Data Exchange (ETDEWEB)

    Tharayil, Nishanth [Clemson Univ., SC (United States)

    2016-06-29

    Plant metabolites released from litter leachates and root exudates enable plants to adapt and survive in a wide range of habitats by facilitating resource foraging and plant-organismal interactions, and could influence soil carbon storage. The biological functions of these plant inputs and the organismal interactions they facilitate in soil are strictly governed by their composition and molecular identity. Our current understanding about the molecular identity of exudates is based on physiological studies that are done in soil-less axenic cultures. On the other hand, ecological studies that rely on isotope labeling to track the fluxes of carbon from plants to soil have found the complexities of soil-microbe matrices as an insurmountable barrier to undertake any meaningful molecular level characterization of plant inputs. Although it is constantly advocated to undertake a molecular level identification of the dynamicity of plant metabolites in soils, the complexity of soil system has thus far prevented any such endeavors. We developed polymeric probes through in-situ polymerization of poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) to elucidate the chemical environment of the soil to which the plant roots are exposed. Hypercrosslinking of the polymeric probes through an in-situ Friedel-Crafts alkylation significantly increased the surface area and the sorption capacity of the probes. Surface functionalization of the probes using a hybrid approach was also attempted. The efficacy of these probes was tested using batch equilibration. Scanning electron microscopy revealed extensive modification of the surface of the probes through hypercrosslinking. The probes exhibited a lower site specific sorption (slope of Freundlich adsorption isotherm close to unity) and percent recovery of the sorbed compounds from the probes were >70, indicating a predominance of reversible sorption. Further we imparted specificity to this copolymer matrix by using molecular

  20. Microwave radiometric measurements of soil moisture in Italy

    Directory of Open Access Journals (Sweden)

    G. Macelloni

    2003-01-01

    Full Text Available Within the framework of the MAP and RAPHAEL projects, airborne experimental campaigns were carried out by the IFAC group in 1999 and 2000, using a multifrequency microwave radiometer at L, C and X bands (1.4, 6.8 and 10 GHz. The aim of the experiments was to collect soil moisture and vegetation biomass information on agricultural areas to give reliable inputs to the hydrological models. It is well known that microwave emission from soil, mainly at L-band (1.4 GHz, is very well correlated to its moisture content. Two experimental areas in Italy were selected for this project: one was the Toce Valley, Domodossola, in 1999, and the other, the agricultural area of Cerbaia, close to Florence, where flights were performed in 2000. Measurements were carried out on bare soils, corn and wheat fields in different growth stages and on meadows. Ground data of soil moisture (SMC were collected by other research teams involved in the experiments. From the analysis of the data sets, it has been confirmed that L-band is well related to the SMC of a rather deep soil layer, whereas C-band is sensitive to the surface SMC and is more affected by the presence of surface roughness and vegetation, especially at high incidence angles. An algorithm for the retrieval of soil moisture, based on the sensitivity to moisture of the brightness temperature at C-band, has been tested using the collected data set. The results of the algorithm, which is able to correct for the effect of vegetation by means of the polarisation index at X-band, have been compared with soil moisture data measured on the ground. Finally, the sensitivity of emission at different frequencies to the soil moisture profile was investigated. Experimental data sets were interpreted by using the Integral Equation Model (IEM and the outputs of the model were used to train an artificial neural network to reproduce the soil moisture content at different depths. Keywords: microwave radiometry, soil moisture

  1. Dust dynamics in off-road vehicle trails: Measurements on 16 arid soil types, Nevada, USA.

    Science.gov (United States)

    Goossens, Dirk; Buck, Brenda

    2009-08-01

    Soil analyses and measurements with the Portable In Situ Wind Erosion Laboratory (PI-SWERL) were conducted on 16 soil types in an area heavily affected by off-road vehicle (ORV) driving. Measurements were performed in ORV trails as well as on undisturbed terrain to investigate how ORV driving affects the vulnerability of a soil to emit PM10 (particlestrail affects those properties of the topsoil that determine its capability to emit PM10. Also, recommendations are given for adequate management of ORV-designed areas. The type of surface (sand, silt, gravel, drainage) is a key factor with respect to dust emission in an ORV trail. Trails in sand, defined in this study as the grain size fraction 63-2000microm, show higher deflation thresholds (the critical wind condition at which wind erosion starts) than the surrounding undisturbed soil. Trails in silt (2-63microm) and in drainages, on the other hand, have lower deflation thresholds than undisturbed soil. The increase in PM10 emission resulting from the creation of a new ORV trail is much higher for surfaces with silt than for surfaces with sand. Also, the creation of a new trail in silt decreases the supply limitation in the top layer: the capacity of the reservoir of emission-available PM10 increases. For sand the situation is reversed: the supply limitation increases, and the capacity of the PM10 reservoir decreases. Finally, ORV trails are characterized by a progressive coarsening of the top layer with time, but the speed of coarsening is much lower in trails in silt than in trails in sand or in drainages. The results of this study suggest that, to minimize emissions of PM10, new ORV fields should preferably be designed on sandy terrain rather than in silt areas or in drainages.

  2. In situ phytoremediation of a soil historically contaminated by metals, hydrocarbons and polychlorobiphenyls.

    Science.gov (United States)

    Doni, S; Macci, C; Peruzzi, E; Arenella, M; Ceccanti, B; Masciandaro, G

    2012-05-01

    In the past several years, industrial and agricultural activities have led to serious environmental pollution, resulting in a large number of contaminated sites. As a result, much recent research activity has focused on the application of bioremediation technologies as an environmentally friendly and economically feasible means for decontamination of polluted soil. In this study horse manure and Populus nigra (var. italica) (HM + P treatment) have been used, at real scale level, as an approach for bioremediation of a soil historically contaminated by metals (Pb, Cr, Cd, Zn, Cu and Ni) and organic contaminants, such as polychlorobiphenyls and petroleum hydrocarbon. After one year, the HM + P phytotreatment was effective in the reclamation of the polluted soil from both organic and inorganic contaminants. A reduction of about 80% in total petroleum hydrocarbon (TPH), and 60% in polychlorobiphenyls (PCBs) and total metals was observed in the HM + P treatment. In contrast, in the horse manure (HM) treatment, used as control, a reduction of only about 30% of TPH was obtained. In order to assess both effectiveness and evolution of the remediation system to a biologically active soil ecosystem, together with the pollution parameters, the parameters describing the evolution of the soil functionality (enzymatic activities and protein SDS-PAGE pattern) were investigated. A stimulation of the metabolic soil processes (increase in dehydrogenase activity) was observed in the HM + P compared to the HM treatment. Finally, preliminary protein SDS-PAGE results have permitted the identification of proteins that have been recovered in the HM + P soil with respect to the HM; this may become a basic tool for improving the biogeochemical status of soil during the decontamination through the identification of microbial populations that are active in soil decontamination.

  3. Intercomparison of MODIS Albedo Retrievals and In Situ Measurements Across the Global FLUXNET Network

    Science.gov (United States)

    Cescatti, Alessandro; Marcolla, Barbara; Vannan, Suresh K. Santhana; Pan, Jerry Yun; Roman, Miguel O.; Yang, Xiaoyuan; Ciais, Philippe; Cook, Robert B.; Law, Beverly E.; Matteucci, Girogio; hide

    2012-01-01

    Surface albedo is a key parameter in the Earth's energy balance since it affects the amount of solar radiation directly absorbed at the planet surface. Its variability in time and space can be globally retrieved through the use of remote sensing products. To evaluate and improve the quality of satellite retrievals, careful intercomparisons with in situ measurements of surface albedo are crucial. For this purpose we compared MODIS albedo retrievals with surface measurements taken at 53 FLUXNET sites that met strict conditions of land cover homogeneity. A good agreement between mean yearly values of satellite retrievals and in situ measurements was found (R(exp 2)= 0.82). The mismatch is correlated to the spatial heterogeneity of surface albedo, stressing the relevance of land cover homogeneity when comparing point to pixel data. When the seasonal patterns of MODIS albedo is considered for different plant functional types, the match with surface observation is extremely good at all forest sites. On the contrary, in non-forest sites satellite retrievals underestimate in situ measurements across the seasonal cycle. The mismatch observed at grasslands and croplands sites is likely due to the extreme fragmentation of these landscapes, as confirmed by geostatistical attributes derived from high resolution scenes.

  4. Effects of neutron source type on soil moisture measurement

    Science.gov (United States)

    Irving Goldberg; Norman A. MacGillivray; Robert R. Ziemer

    1967-01-01

    A number of radioisotopes have recently become commercially available as alternatives to radium-225 in moisture gauging devices using alpha-neutron sources for determining soil moisture, for well logging, and for other industrial applications in which hydrogenous materials are measured.

  5. Geographical information system for radon gas from soil measurement

    International Nuclear Information System (INIS)

    Orlando, P.; Amici, M.; Altieri, A.; Massari, P.; Miccadei, E.; Onofri, A.; Orlando, C.; Paolelli, C.; Paron, P.; Perticaroli, P.; Piacentini, T.; Silvestri, C.; Minach, L.; Verdi, L.; Bertolo, A.; Trotti, F.

    2000-03-01

    The working program foresees the realization of an geographical information system for the check in field of the geological parameters and determination of uranium and radium contents in various type of rocks. It is here also pointed out a measuring method for radon concentration in soil [it

  6. Soil-Carbon Measurement System Based on Inelastic Neutron Scattering

    International Nuclear Information System (INIS)

    Orion, I.; Wielopolski, L.

    2002-01-01

    Increase in the atmospheric CO 2 is associated with concurrent increase in the amount of carbon sequestered in the soil. For better understanding of the carbon cycle it is imperative to establish a better and extensive database of the carbon concentrations in various soil types, in order to develop improved models for changes in the global climate. Non-invasive soil carbon measurement is based on Inelastic Neutron Scattering (INS). This method has been used successfully to measure total body carbon in human beings. The system consists of a pulsed neutron generator that is based on D-T reaction, which produces 14 MeV neutrons, a neutron flux monitoring detector and a couple of large NaI(Tl), 6'' diameter by 6'' high, spectrometers [4]. The threshold energy for INS reaction in carbon is 4.8 MeV. Following INS of 14 MeV neutrons in carbon 4.44 MeV photons are emitted and counted during a gate pulse period of 10 μsec. The repetition rate of the neutron generator is 104 pulses per sec. The gamma spectra are acquired only during the neutron generator gate pulses. The INS method for soil carbon content measurements provides a non-destructive, non-invasive tool, which can be optimized in order to develop a system for in field measurements

  7. Standard test method for measurement of soil resistivity using the two-electrode soil box method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the equipment and a procedure for the measurement of soil resistivity, for samples removed from the ground, for use in the control of corrosion of buried structures. 1.2 Procedures allow for this test method to be used n the field or in the laboratory. 1.3 The test method procedures are for the resistivity measurement of soil samples in the saturated condition and in the as-received condition. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. Soil resistivity values are reported in ohm-centimeter. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use.

  8. Using {sup 137}Cs measurements to investigate the influence of erosion and soil redistribution on soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Du, P. [School of Geography, Beijing Normal University, Beijing (China); Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building, Rennes Drive, Exeter, EX4 4RJ, Devon (United Kingdom); Walling, D.E., E-mail: d.e.walling@exeter.ac.u [Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building, Rennes Drive, Exeter, EX4 4RJ, Devon (United Kingdom)

    2011-05-15

    Information on the interaction between soil erosion and soil properties is an important requirement for sustainable management of the soil resource. The relationship between soil properties and the soil redistribution rate, reflecting both erosion and deposition, is an important indicator of this interaction. This relationship is difficult to investigate using traditional approaches to documenting soil redistribution rates involving erosion plots and predictive models. However, the use of the fallout radionuclide {sup 137}Cs to document medium-term soil redistribution rates offers a means of overcoming many of the limitations associated with traditional approaches. The study reported sought to demonstrate the potential for using {sup 137}Cs measurements to assess the influence of soil erosion and redistribution on soil properties (particle size composition, total C, macronutrients N, P, K and Mg, micronutrients Mn, Mo, Fe, Cu and Zn and other elements, including Ti and As). {sup 137}Cs measurements undertaken on 52 soil cores collected within a 7 ha cultivated field located near Colebrooke in Devon, UK were used to establish the magnitude and spatial pattern of medium-term soil redistribution rates within the field. The soil redistribution rates documented for the individual sampling points within the field ranged from an erosion rate of -12.9 t ha{sup -1} yr{sup -1} to a deposition rate of 19.2 t ha{sup -1} yr{sup -1}. Composite samples of surface soil (0-5 cm) were collected immediately adjacent to each coring point and these samples were analysed for a range of soil properties. Individual soil properties associated with these samples showed significant variability, with CV values generally lying in the range 10-30%. The relationships between the surface soil properties and the soil redistribution rate were analysed. This analysis demonstrated statistically significant relationships between some soil properties (total phosphorus, % clay, Ti and As) and the soil

  9. In situ measurements of HO{sub x} in super- and subsonic aircraft exhaust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hanisco, T F; Wennberg, P O; Cohen, R C; Anderson, J G [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry; Fahey, D W; Keim, E R; Gao, R S; Wamsley, R C; Donnelly, S G; Del Negro, L A [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; others, and

    1998-12-31

    Concentrations of HO{sub x} (OH and HO{sub 2}) have been obtained in the exhaust plumes of an Air France Concorde and a NASA ER-2 in the lower stratosphere and the NASA DC-8 in the upper troposphere using instruments aboard the NASA ER-2. These fast-time response in situ measurements are used in conjunction with simultaneous in situ measurements of other key exhaust species (NO, NO{sub 2}, NO{sub y}, H{sub 2}O, and CO) to analyze the emissions of HO{sub x} from each aircraft under a variety of conditions. The data are used to establish a general description of gas phase plume chemistry that is easily implemented in a photochemical model. This model is used to determine the amount of HO{sub x} emitted from the engines and the gas phase oxidation rates of nitrogen and sulfur species in the exhaust plumes. (author) 10 refs.

  10. In-situ gamma spectroscopic measurement of natural waters in Bulgaria

    International Nuclear Information System (INIS)

    Manushev, B.; Mandzhukov, I.; Tsankov, L.; Boshkova, T.; Gurev, V.; Mandzhukova, B.; Kozhukharov, I.; Grozev, G.

    1983-01-01

    In-situ gamma spectrometric measurements are carried out to record differences higher than the errors of measurement in the gamma-field spectra in various basins in Bulgaria - two high mountain lakes, dam and the Black sea. A standard scintillation gamma spectrometer, consisting of a scintillation detector ND-424 type, a channel analyzer NP-424 and a 128 channel Al-128 type analyzer, has been used. The sensitivity of the procedure used is sufficient to detect the transfer of nuclides by dissolution from rocks, forming the bottom and the water-collecting region of the water basin. The advancement of the experimental techniques defines the future use of the procedure. In-situ gamma spectrometric determination may be used in cases of continuous and automated control of the radiation purity of the cooling water in atomic power plants or the water basins located close to such plants and of radioactive contamination of the sea and ocean water

  11. In situ measurements of HO{sub x} in super- and subsonic aircraft exhaust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hanisco, T.F.; Wennberg, P.O.; Cohen, R.C.; Anderson, J.G. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry; Fahey, D.W.; Keim, E.R.; Gao, R.S.; Wamsley, R.C.; Donnelly, S.G.; Del Negro, L.A. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; and others

    1997-12-31

    Concentrations of HO{sub x} (OH and HO{sub 2}) have been obtained in the exhaust plumes of an Air France Concorde and a NASA ER-2 in the lower stratosphere and the NASA DC-8 in the upper troposphere using instruments aboard the NASA ER-2. These fast-time response in situ measurements are used in conjunction with simultaneous in situ measurements of other key exhaust species (NO, NO{sub 2}, NO{sub y}, H{sub 2}O, and CO) to analyze the emissions of HO{sub x} from each aircraft under a variety of conditions. The data are used to establish a general description of gas phase plume chemistry that is easily implemented in a photochemical model. This model is used to determine the amount of HO{sub x} emitted from the engines and the gas phase oxidation rates of nitrogen and sulfur species in the exhaust plumes. (author) 10 refs.

  12. In situ immobilization of cadmium and zinc in contaminated soils : fiction or fixation?

    NARCIS (Netherlands)

    Osté, L.

    2001-01-01

    Keywords: beringite, cadmium, DOC, DOM, earthworms, immobilization, leaching, lime, manganese oxides, metal binding, metal uptake, organic matter partitioning, pH, soil contamination, remediation, sorption, Swiss chard, zeolites, zinc.

    It is generally

  13. FLUORESCENT IN SITU HYBRIDIZATION AND MICROAUTORADIOGRAPHY APPLIED TO ECOPHYSIOLOGY IN SOIL

    Science.gov (United States)

    Soil microbial communities perform many important processes, including nutrient cycling, plant-microorganism interactions, and degradation of xenobiotics. The study of microbial communities, however, has been limited by cultural methods, which may greatly underestimate diversity....

  14. In situ vitrification of a mixed-waste contaminated soil site: The 116-B-6A crib at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Luey, J.; Koegler, S.S.; Kuhn, W.L.; Lowery, P.S.; Winkelman, R.G.

    1992-09-01

    The first large-scale mixed-waste test of in situ vitrification (ISV) has been completed. The large-scale test was conducted at an actual contaminated soil site, the 116-B-6A crib, on the Department of Energy's Hanford Site. The large-scale test was a demonstration of the ISV technology and not an interim action for the 116-B-6A crib. This demonstration has provided technical data to evaluate the ISV process for its potential in the final disposition of mixed-waste contaminated soil sites at Hanford. Because of the test's successful completion. technical data on the vitrified soil are available on how well the process incorporates transuranics and heavy metals into the waste form. how well the form resists leaching of transuranics and heavy metals. how well the process handles sites with high combustible loadings, and the important site parameters which may affect the achievable process depth. This report describes the 116-B-6A crib site, the objectives of the ISV demonstration, the results in terms of the objectives, and the overall process performance.

  15. In situ radio-frequency heating for soil remediation at a former service station: case study and general aspects

    Energy Technology Data Exchange (ETDEWEB)

    Huon, G.; Simpson, T.; Maini, G. [Ecologia Environmental Solutions Ltd., Sittingbourne, Kent (United Kingdom); Holzer, F.; Kopinke, F.D.; Roland, U. [Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Leipzig (Germany); Will, F. [Total UK, Watford (United Kingdom)

    2012-08-15

    In situ radio-frequency heating (ISRFH) was successfully applied during remediation of a former petrol station. Using a three-electrode array in combination with extraction wells for soil vapor extraction (SVE), pollution consisting mainly of benzene, toluene, ethylbenzene, xylenes, and mineral oil hydrocarbons (in total about 1100 kg) was eliminated from a chalk soil in the unsaturated zone. Specially designed rod electrodes allowed selective heating of a volume of approximately 480 m{sup 3}, at a defined depth, to a mean temperature of about 50 C. The heating drastically increased the extraction rates. After switching off ISRFH, SVE remained highly efficient for some weeks due to the heat-retaining properties of the soil. Comparison of an optimized regime of ISRFH/SVE with conventional ''cold'' SVE showed a reduction of remediation time by about 80 % while keeping the total energy consumption almost constant. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. In-situ studies of microbial CH4 oxidation efficiency in Arctic wetland soils. Applications of stable carbon isotopes

    International Nuclear Information System (INIS)

    Preuss, Inken-Marie

    2013-01-01

    Arctic wetland soils are significant sources of the climate-relevant trace gas methane (CH 4 ). The observed accelerated warming of the Arctic is expected to cause deeper permafrost thawing followed by increased carbon mineralization and CH 4 formation in water-saturated permafrost-affected tundra soils thus creating a positive feedback to climate change. Aerobic CH 4 oxidation is regarded as the key process reducing CH 4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. This study improved the in-situ quantification of microbial CH 4 oxidation efficiency in arctic wetland soils in Russia's Lena River Delta based on stable isotope signatures of CH 4 . In addition to the common practice of determining the stable isotope fractionation during oxidation, additionally the fractionation effect of diffusion, an important gas transport mechanism in tundra soils, was investigated for both saturated and unsaturated conditions. The isotopic fractionation factors α ox and α diff were used to calculate the CH 4 oxidation efficiency from the CH 4 stable isotope signatures of wet polygonal tundra soils of different hydrology. Further, the method was used to study the short-term effects of temperature increase with a climate manipulation experiment. For the first time, the stable isotope fractionation of CH 4 diffusion through water-saturated soils was determined with α diff = 1.001 ± 0.0002 (n = 3). CH 4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was α diff = 1.013 ± 0.003 (n = 18). For the studied sites the fractionation factor for diffusion under saturated conditions α diff = 1.001 seems to be of utmost importance for the quantification of the CH 4 oxidation efficiency, since most of the CH 4 is oxidized in the saturated part at the aerobic-anaerobic interface. Furthermore, it was found that α ox differs widely between sites and horizons (mean α ox = 1

  17. In Situ Chemical Reduction (ISCR) for Removal of Persistent Pesticides; focus on kepone in tropical soils

    OpenAIRE

    Mouvet , Christophe; Bristeau , Sébastien; Amalric , Laurence; Dictor , Marie Christine; Mercier , Anne; Thannberger , Laurent; Mueller , Jim; Valkenburg , John; Seech , Alan; Przepiora , Andrezej; Molin , Josephine; Bucci , Edson Marcus

    2011-01-01

    Background/Objectives. The global use of organochlorine p