WorldWideScience

Sample records for situ soil treatment

  1. Treatment of heavy metal contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Hansen, J.E.

    1991-01-01

    Contaminated soil site remediation objectives call for the destruction, removal, and/or immobilization of contaminant species. Destruction is applicable to hazardous compounds (e.g., hazardous organics such as PCBs; hazardous inorganics such as cyanide); however, it is not applicable to hazardous elements such as the heavy metals. Removal and/or immobilization are typical objectives for heavy metal contaminants present in soil. Many technologies have been developed specifically to meet these needs. One such technology is In Situ Vitrification (ISV), an innovative mobile, onsite, in situ solids remediation technology that has been available on a commercial basis for about two years. ISV holds potential for the safe and permanent treatment/remediation of previously disposed or current process solids waste (e.g., soil, sludge, sediment, tailings) contaminated with hazardous chemical and/or radioactive materials. This paper focuses on the application of ISV to heavy metal-contaminated soils

  2. Recent developments for in situ treatment of metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Metals contamination is a common problem at hazardous waste sites. This report assists the remedy selection process by providing information on four in situ technologies for treating soil contaminated with metals. The four approaches are electrokinetic remediation, phytoremediation, soil flushing, and solidification/stabilization. Electrokinetic remediation separates contaminants from soil through selective migration upon application of an electric current. Phytoremediation is an emerging technology that uses plants to isolate or stabilize contaminants. Soil flushing techniques promote mobility and migration of metals by solubilizing contaminants so that they can be recovered. Two types of in situ solidification/stabilization (S/S) techniques are discussed, one based on addition of reagents and the other based on the use of energy. The report discusses different techniques currently in practice or under development, identifies vendors and summarizes performance data, and discusses technology attributes that should be considered during early screening of potential remedies. 8 refs., 9 figs., 9 tabs., 2 apps.

  3. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    Science.gov (United States)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  4. Process, engineering and design aspects of contaminated soil bioremediation. Pt. 1 In situ treatments

    International Nuclear Information System (INIS)

    De Fraja Frangipane, E.; Andreottola, G.; Tatano, F.

    1995-01-01

    The present paper is an up-to-date overview of contaminated soil bioremediation techniques, which are analyzed in detail with regard to main process, engineering and design aspects. General biochemical/kinetic aspects of bioremediation of contaminated soil, and in situ treatments, are discussed in this part one

  5. Remediation of hydrocarbon-contaminated soils by ex situ microwave treatment: technical, energy and economic considerations.

    Science.gov (United States)

    Falciglia, P P; Vagliasindi, F G A

    2014-01-01

    In this study, the remediation of diesel-polluted soils was investigated by simulating an ex situ microwave (MW) heating treatment under different conditions, including soil moisture, operating power and heating duration. Based on experimental data, a technical, energy and economic assessment for the optimization of full-scale remediation activities was carried out. Main results show that the operating power applied significantly influences the contaminant removal kinetics and the moisture content in soil has a major effect on the final temperature reachable during MW heating. The first-order kinetic model showed an excellent correlation (r2 > 0.976) with the experimental data for residual concentration at all operating powers and for all soil moistures tested. Excellent contaminant removal values up to 94.8% were observed for wet soils at power higher than 600 W for heating duration longer than 30 min. The use of MW heating with respect to a conventional ex situ thermal desorption treatment could significantly decrease the energy consumption needed for the removal of hydrocarbon contaminants from soils. Therefore, the MW treatment could represent a suitable cost-effective alternative to the conventional thermal treatment for the remediation of hydrocarbon-polluted soil.

  6. Laboratory evaluation of the in situ chemical treatment approach to soil and groundwater remediation

    International Nuclear Information System (INIS)

    Thorton, E.C.; Trader, D.E.

    1993-10-01

    Results of initial proof of principle laboratory testing activities successfully demonstrated the viability of the in situ chemical treatment approach for remediation of soil and groundwater contaminated by hexavalent chromium. Testing activities currently in progress further indicate that soils contaminated with hexavalent chromium and uranium at concentrations of several hundred parts per million can be successfully treated with 100 ppM hydrogen sulfide gas mixtures. Greater than 90% immobilization of hexavalent chromium and 50% immobilization of uranium have been achieved in these tests after a treatment period of one day. Activities associated with further development and implementation of the in situ chemical treatment approach include conducting additional bench scale tests with contaminated geomedia, and undertaking scale-up laboratory tests and a field demonstration. This report discusses the testing and further development of this process

  7. In situ treatment of soil contaminated with PAHs and phenols

    International Nuclear Information System (INIS)

    Sresty, G.; Dev, H.; Chang, J.; Houthoofd, J.

    1992-01-01

    The wood preserving industry uses more pesticides than any other industry worldwide. The major chemicals used are creosote, pentachlorophenol, and CCA (copper, chrome and arsenate). It is reported that between 415 to 550 creosoting operations within the United States consume approximately 454,000 metric tons of creosote annually. When properly used and disposed off, creosote does not appear to significantly threaten human health. However, due to improper disposal and spillage at old facilities, creosote and other wood preserving chemicals have found their way into surface soils. Active wood preserving sites generate an estimated 840 to 1530 dry metric tons of hazardous contaminated sludge annually, which is classified as KOOL. Creosote, obtained from coal tar, contains a large number of chemical components. The three main families of compounds represented in creosote are: polycyclic aromatic hydrocarbons (PAH), phenolic, and heterocyclic compounds. Creosote is composed of approximately 85% PAHs, 10% phenolic compounds and 5% heterocyclic compounds. There are approximately a total of 17 PAHs present in creosote. The four most prominent compounds belonging to the PAH family are naphthalene, 2-methylnaphthalene, phenanthrene, and anthracene. These four compounds represent approximately 52% of the total PAHs present in creosote. There are approximately 12 different phenolic compounds present in creosote among which phenol is the most abundant, representing 20% of the total phenolics. In addition, the various isomers of cresol represent about 20% and pentachlorophenol (PCP) represents 10% of the total phenolics. There are approximately 13 different heterocyclic compounds are the most abundant, representing approximately 70% of the total heterocyclics. All of these compounds possess toxic properties and some of them, for example, PCP, when subjected to high temperature environments are suspected precursors in the formation of dioxins

  8. Biological in situ treatment of soil contaminated with petroleum - Laboratory scale simulations

    International Nuclear Information System (INIS)

    Palvall, B.

    1997-06-01

    Laboratory scale simulations of biological in situ treatment of soil contaminated with petroleum compounds have been made in order to get a practical concept in the general case. The work was divided into seven distinct parts. Characterisation, leaching tests and introductory microbiological investigations were followed by experiments in suspended phases and in situ simulations of solid phase reactors. For the suspensions, ratios L/S 3/1 and shaking for a couple of hours were enough to detach organic compounds in colloid or dissolved form. When testing for a time of one month anaerobic environment and cold temperatures of 4 centigrade as well gave acceptable reductions of the actual pollution levels. The range of variation in the soil tests performed showed that at least triple samples are needed to get satisfactory statistical reliability. It was shown that adequate experimental controls demand very high concentrations of e.g. sodium azide when dealing with soil samples. For triple samples in suspended phase without inoculation the weight ratios of oxygen consumption/biological degradation of aliphatic compounds were 2.41 to 2.96. For the complex overall reduction no exact rate constants could be found. The reduction of hydrocarbons were in the interval 27 to 95 % in suspension tests. Solid phase simulations with maximum water saturation showed the highest degree of reduction of hydrocarbons when using dissolved peroxide of hydrogen as electron acceptor while the effect of an active sludge reactor in series was little - reductions of aliphatic compounds were between 21 and 33 % and of aromatic compounds between 32 and 65 %. The influence of different contents of water was greater than adding inoculum or shaking the soil at different intervals in the unsaturated cylinders. The starting level of hydrocarbons was 2400 mg/kg dry weight soil and the end analyses were made after 100 days. The reduction was between 32 and 80 %. 82 refs

  9. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactor integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.

  10. Groundbreaking technology: in-situ anaerobic bioremediation for treatment of contaminated soil and groundwater

    International Nuclear Information System (INIS)

    Fernandes, K.A.

    2002-01-01

    Anaerobic in-situ bioremediation is a technique often used to cleanse contaminated soil and groundwater. 'Anaerobic in-situ bioremediation' is a phrase with distinct terms all having relevance in the application of this technique. Anaerobic implies the absence of dissolved oxygen, while 'in-situ' simply means that the environmental cleansing occurs with out removing, displacing, or significantly disturbing the specimen or surrounding area. 'Bioremediation' is a term used to describe the biological use of microbes or plants to detoxify the environment. In order to properly implement this complex process, one must have an understanding of microbiology, biochemistry, genetics, metabolic processes, and structure and function of natural microbial communities. (author)

  11. Ex situ bioremediation of mineral oil in soils: Aerated pile treatment. Final report

    International Nuclear Information System (INIS)

    Graves, D.

    1998-04-01

    Under a contract with Southern Company Services, a pilot-scale evaluation of mineral oil biodegradation was conducted at Plant Mitchell. The evaluation consisted of two demonstrations to examine land treatment and aerated pile treatment of soil contaminated with the mineral insulating oil used in electrical transformers. Treatment of mineral oil contaminated soil is problematic in the State of Georgia and throughout the US because current practice is to excavate and landfill the contaminated soil. In many cases, the cost associated with these activities far exceeds the environmental risk of mineral oil in soil. This project was designed to evaluate the performance of bioremediation for the treatment of mineral oil in soil. Testing was carried out in a demonstration facility prepared by Georgia Power Company. The facility consisted of 12 independent treatment cells constructed on a concrete pad and covered with a roof

  12. X-231B technology demonstration for in situ treatment of contaminated soil: Laboratory evaluation of chemical oxidation using hydrogen peroxide

    International Nuclear Information System (INIS)

    Gates, D.D.; Siegrist, R.L.

    1993-09-01

    Treatability studies were conducted as part of a comprehensive research project initiated to demonstrate as well as evaluate in situ treatment technologies for volatile organic compounds (VOCs) and radioactive substances in wet, slowly permeable soils. The site of interest for this project was the X-231B Oil Biodegradation unit at the Portsmouth Gaseous Diffusion Plant, a US Department of Energy (DOE) facility in southern Ohio. This report describes the treatability studies that investigated the feasibility of the application of low-strength hydrogen peroxide (H 2 O 2 ) solutions to treat trichloroethylene (TCE)-contaminated soil

  13. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus.

    Science.gov (United States)

    Moldes, Ana Belén; Paradelo, Remigio; Rubinos, David; Devesa-Rey, Rosa; Cruz, José Manuel; Barral, María Teresa

    2011-09-14

    The utilization of biosurfactants for the bioremediation of contaminated soil is not yet well established, because of the high production cost of biosurfactants. Consequently, it is interesting to look for new biosurfactants that can be produced at a large scale, and it can be employed for the bioremediation of contaminated sites. In this work, biosurfactants from Lactobacillus pentosus growing in hemicellulosic sugars solutions, with a similar composition of sugars found in trimming vine shoot hydrolysates, were employed in the bioremediation of soil contaminated with octane. It was observed that the presence of biosurfactant from L. pentosus accelerated the biodegradation of octane in soil. After 15 days of treatment, biosurfactants from L. pentosus reduced the concentration of octane in the soil to 58.6 and 62.8%, for soil charged with 700 and 70,000 mg/kg of hydrocarbon, respectively, whereas after 30 days of treatment, 76% of octane in soil was biodegraded in both cases. In the absence of biosurfactant and after 15 days of incubation, only 1.2 and 24% of octane was biodegraded in soil charged with 700 and 70,000 mg/kg of octane, respectively. Thus, the use of biosurfactants from L. pentosus, as part of a well-designed bioremediation process, can provide mechanisms to mobilize the target contaminants from the soil surface to make them more available to the microbial population.

  14. In-situ treatment of PCP contaminated soil by electrokinetics-Fenton-biodegradation process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.C.C.; Chen Jenteh [Inst. of Environmental Engineering, National Sun Yat-Sen Univ., Kaohsiung (Taiwan)

    2001-07-01

    This laboratory investigation was conducted to evaluate the treatment efficiency of a process combining electrokinetic remediation (EK), Fenton process, and biodegradation for treating a pentachlorophenol (PCP) contaminated soil. For EK-Fenton experiments, the results have indicated that an increase of treatment time (e.g., from 10 to 15 days) would substantially increase the overall treatment (i.e., removal and destruction) efficiency of PCP. Only a limited increase of the treatment efficiency would be found if the concentration of FeSO{sub 4} was increased from 0.0196M to 0.098M. When scrap iron power was employed as the catalyst, the residual PCP concentration for soil near the anode end was found to be lower than that of 0.0196M FeSO{sub 4}. But its overall treatment efficiency was only 56.58%, which is lower than 68.34% obtained by using 0.0196M FeSO{sub 4} and 0.35% H{sub 2}O{sub 2}. When H{sub 2}O{sub 2} concentration was further increased to 3.5%, an overall treatment efficiency of 79.77% would be obtained when 0.0196M FeSO{sub 4} was used. When treated by EK-biodegradation process with phenol enrichment bacteria, the overall treatment efficiency of PCP was as low as 25.67%. If PCP contaminated soil was pre-treated by EK-Fenton process and followed by EK-biodegradation, an overall treatment efficiency of 100% was found to be achievable. (orig.)

  15. Design and evaluation of in situ biorestoration methods for the treatment of sludges and soils at waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Berry-Spark, K L; Barker, J F; Mayfield, C I

    1990-12-31

    In-situ methods for treatment of waste sludges hold great promise for efficient remediation of sludge at waste disposal sites, such as the diverse and complex sludges from the O.E. MacDougall site near Brockville, Ontario. This report presents results of laboratory testing of natural bioremediation techniques using six representative soils and sludges obtained from the MacDougall site. Four of six samples contained concentrations of hydrocarbons typical of petroleum products and solvents. The report includes descriptions of the characterisation of the organic chemistry and microbial populations of the soils, as well as of the experiments conducted under aerobic, methane oxidising, anaerobic-denitrifying, sulphate reducing, and methanogenic conditions.

  16. X-231B technology demonstration for in situ treatment of contaminated soil: Technology evaluation and screening

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Morris, M.I.; Donaldson, T.L.; Palumbo, A.V.; Herbes, S.E.; Jenkins, R.A.; Morrissey, C.M.; Harris, M.T.

    1993-08-01

    The Portsmouth Gaseous Diffusion Plant (Ports) is located approximately 70 miles south of Columbus in southern Ohio. Among the several waste management units on the facility, the X-231B unit consists of two adjacent oil biodegradation plots. The plots encompass ∼ 0.8 acres and were reportedly used from 1976 to 1983 for the treatment and disposal of waste oils and degreasing solvents, some containing uranium-235 and technetium-99. The X-231B unit is a regulated solid waste management unit (SWMU) under the Resource Conservation and Recovery Act (RCRA). The X-231B unit is also a designated SWMU located within Quadrant I of the site as defined in an ongoing RCRA Facilities Investigation and Corrective Measures Study (RFI/CMS). Before implementing one or more Technology Demonstration Project must be completed. The principal goal of this project was to elect and successfully demonstrate one ore more technologies for effective treatment of the contaminated soils associated with the X-231B unit at PORTS. The project was divided into two major phases. Phase 1 involved a technology evaluation and screening process. The second phase (i.e., Phase 2) was to involve field demonstration, testing and evaluation of the technology(s) selected during Phase 1. This report presents the methods, results, and conclusions of the technology evaluation and screening portion of the project

  17. Biostimulation proved to be the most efficient method in the comparison of in situ soil remediation treatments after a simulated oil spill accident.

    Science.gov (United States)

    Simpanen, Suvi; Dahl, Mari; Gerlach, Magdalena; Mikkonen, Anu; Malk, Vuokko; Mikola, Juha; Romantschuk, Martin

    2016-12-01

    The use of in situ techniques in soil remediation is still rare in Finland and most other European countries due to the uncertainty of the effectiveness of the techniques especially in cold regions and also due to their potential side effects on the environment. In this study, we compared the biostimulation, chemical oxidation, and natural attenuation treatments in natural conditions and pilot scale during a 16-month experiment. A real fuel spill accident was used as a model for experiment setup and soil contamination. We found that biostimulation significantly decreased the contaminant leachate into the water, including also the non-aqueous phase liquid (NAPL). The total NAPL leachate was 19 % lower in the biostimulation treatment that in the untreated soil and 34 % lower in the biostimulation than oxidation treatment. Soil bacterial growth and community changes were first observed due to the increased carbon content via oil amendment and later due to the enhanced nutrient content via biostimulation. Overall, the most effective treatment for fresh contaminated soil was biostimulation, which enhanced the biodegradation of easily available oil in the mobile phase and consequently reduced contaminant leakage through the soil. The chemical oxidation did not enhance soil cleanup and resulted in the mobilization of contaminants. Our results suggest that biostimulation can decrease or even prevent oil migration in recently contaminated areas and can thus be considered as a potentially safe in situ treatment also in groundwater areas.

  18. In situ solidification/stabilization pilot study for the treatment of coal tar contaminated soils and river sediments

    International Nuclear Information System (INIS)

    Lawson, M.A.; Venn, J.G.; Pugh, L.B.; Vallis, T.

    1996-01-01

    Coal tar contamination was encountered at a former coal gasification site in soils below the groundwater table, and in the sediments of the adjacent river. Ex situ remediation techniques at this site would be costly because of the need to dewater the impacted media. In situ solidification/stabilization was tested to evaluate its effectiveness. Treatability testing was performed to evaluate a Portland cement/fly ash binder system with added stabilizing agents. Results were sufficiently promising to warrant pilot testing. Grout containing Portland cement, fly ash, organically modified clay, and granular activated carbon was pilot tested at the site. Test specimens were collected and tested to evaluate durability, compressive strength, and permeability. The samples were extracted by several methods and analyzed to measure the leachable concentrations of organic compounds and metals. Results indicated acceptable physical characteristics. Leachable concentrations of most polynuclear aromatic compounds were decreased

  19. Remediation in Situ of Hydrocarbons by Combined Treatment in a Contaminated Alluvial Soil due to an Accidental Spill of LNAPL

    Directory of Open Access Journals (Sweden)

    Ettore Trulli

    2016-10-01

    Full Text Available Soil contamination represents an environmental issue which has become extremely important in the last decades due to the diffusion of industrial activities. Accidents during transport of dangerous materials and fuels may cause severe pollution. The present paper describes the criteria of the actions which were operated to remediate the potential risk and observed negative effects on groundwater and soil originating from an accidental spill of diesel fuel from a tank truck. With the aim to evaluate the quality of the involved environmental matrices in the “emergency” phase, in the following “safety” operation and during the remediation action, a specific survey on hydrocarbons, light and heavy, was carried out in the sand deposits soil. Elaboration of collected data allows us to observe the movement of pollutants in the unsaturated soil. The remediation action was finalized to improve the groundwater and soil quality. The former was treated by a so called “pump and treat” system coupled with air sparging. A train of three different technologies was applied to the unsaturated soil in a sequential process: soil vapour extraction, bioventing and enhanced bioremediation. Results showed that the application of sequential remediation treatments allowed us to obtain a state of quality in unsaturated soil and groundwater as required by Italian law.

  20. In-Situ Bioremediation of Perchlorate in Groundwater and Soil

    OpenAIRE

    Jin, Liyan

    2012-01-01

    Historical, uncontrolled disposal practices have made perchlorate a significant threat to drinking water supplies in the United States. In-situ bioremediation (ISB) technologies are cost effective and provide an environmental friendly solution for treating contaminated groundwater and soil. In situ bioremediation was considered as an option for treatment of perchlorate in groundwater and soil in Lockheed Martin Corporation's Beaumont Site 2 (Beaumont, CA). Based on the perchlorate distribu...

  1. In situ soil remediation using electrokinetics

    International Nuclear Information System (INIS)

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-11-01

    Electrokinetics is emerging as a promising technology for in situ soil remediation. This technique is especially attractive for Superfund sites and government operations which contain large volumes of contaminated soil. The approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The transport mechanisms include electroosmosis, electromigration, and electrophoresis. The feasibility of using electrokinetics to move radioactive 137 Cs and 60 Co at the Hanford Site in Richland, Washington, is discussed. A closed cell is used to provide in situ measurements of 137 Cs and 60 Co movement in Hanford soil. Preliminary results of ionic movement, along with the corresponding current response, are presented

  2. Demonstration testing and evaluation of in situ soil heating

    International Nuclear Information System (INIS)

    Sresty, G.C.

    1994-01-01

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the '70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid '80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern

  3. In situ vadose zone remediation of petroleum-contaminated soils

    International Nuclear Information System (INIS)

    Greacen, J.R.; Finkel, D.J.

    1991-01-01

    This paper discusses a pilot-scale system treating vadose zone soils contaminated with petroleum products constructed and operated at a former petroleum bulk storage terminal in New England. A site investigation following decommissioning activities identified more than 100,000 yds of soil at the site contaminated by both No. 2 fuel oil and gasoline. Soil cleanup criteria of 50 ppm TPH and 0.25 ppm BTEX were established. A pilot-scale treatment unit with dimensions of 125 ft x 125 ft x 6 ft was constructed to evaluate the potential for in situ treatment of vadose zone soils. Contaminant levels in pilot cell soils ranged from 0 to 5,250 ppm TPH and 0.0 to 4.2 ppm BTEX. Two soil treatment methods n the pilot system were implemented; venting to treat the lighter petroleum fractions and bioremediation to treat the nonvolatile petroleum constituents. Seven soil gas probes were installed to monitor pressure and soil gas vapor concentrations in the subsurface. Changes in soil gas oxygen and carbon dioxide concentrations were used as an indirect measure of enhanced bioremediation of pilot cell soils. After operating the system for a period of 2.5 months, soil BTEX concentrations were reduced to concentrations below the remediation criteria for the site

  4. Combined in-situ and ex-situ bioremediation of petroleum hydrocarbon contaminated soils by closed-loop soil vapor extraction and air injection

    International Nuclear Information System (INIS)

    Hu, S.S.; Buckler, M.J.

    1993-01-01

    Treatment and restoration of petroleum hydrocarbon contaminated soils at a bulk petroleum above-ground storage tank (AST) site in Michigan is being conducted through in-situ and ex-situ closed-loop soil vapor extraction (SVE), soil vapor treatment, and treated air injection (AI) processes. The soil vapor extraction process applies a vacuum through the petroleum hydrocarbon affected soils in the ex-situ bio-remediation pile (bio-pile) and along the perimeter of excavated area (in-situ area) to remove the volatile or light petroleum hydrocarbons. This process also draws ambient air into the ex-situ bio-pile and in-situ vadose zone soil along the perimeter of excavated area to enhance biodegradation of light and heavy petroleum hydrocarbons in the soil. The extracted soil vapor is treated using a custom-designed air bio-remediation filter (bio-filter) to degrade the petroleum hydrocarbon compounds in the soil vapor extraction air streams. The treated air is then injected into a flush grade soil bed in the backfill area to perform final polishing of the air stream, and to form a closed-loop air flow with the soil vapor extraction perforated pipes along the perimeter of the excavated area

  5. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF DINOSEB-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY REPORT

    Science.gov (United States)

    This report summarizes the findings of an evaluation of the J.R. Simplot Ex-Situ Bioremediation Technology on the degradation of dinoseb (2-set-butyl-4,6-dinitrophenol) an agricultural herbicide. This technology was developed by the J.R. Simplot Company (Simplot) to biologically ...

  6. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF TNT-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the findings of the second evaluation of the J.R. Simplot Ex-situ Bioremediation Technology also known as the Simplot Anaerobic Bioremediation (SABRE™) process. This technology was developed by the J.R. Simplot Company to biologically degrade nitroaromatic...

  7. Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter.

    Science.gov (United States)

    Piccolo, Alessandro; Spaccini, Riccardo; Nebbioso, Antonio; Mazzei, Pierluigi

    2011-08-01

    Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.

  8. Stabilization of contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.

    1984-01-01

    In Situ Vitrification is an emerging technology developed by Pacific Northwest Laboratory for potential in-place immobilization of radioactive wastes. The contaminated soil is stabilized and converted to an inert glass form. This conversion is accomplished by inserting electrodes in the soil and establishing an electric current between the electrodes. The electrical energy causes a joule heating effect that melts the soil during processing. Any contaminants released from the melt are collected and routed to an off-gas treatment system. A stable and durable glass block is produced which chemically and physically encapsulates any residual waste components. In situ vitrification has been developed for the potential application to radioactive wastes, specifically, contaminated soil sites; however, it could possibly be applied to hazardous chemical and buried munitions waste sites. The technology has been developed and demonstrated to date through a series of 21 engineering-scale tests [producing 50 to 1000 kg (100 to 2000 lb) blocks] and seven pilot-scale tests [producing 9000 kg (20,000 lb) blocks], the most recent of which illustrated treatment of actual radioactively contaminated soil. Testing with some organic materials has shown relatively complete thermal destruction and incineration. Further experiments have documented the insensitivity of in situ vitrification to soil characteristics such as fusion temperature, specific heat, thermal conductivity, electrical resistivity, and moisture content. Soil inclusions such as metals, cements, ceramics, and combustibles normally present only minor process limitations. Costs for hazardous waste applications are estimated to be less than $175/m 3 ($5.00/ft 3 ) of material vitrified. For many applications, in situ vitrification can provide a cost-effective alternative to other disposal options. 13 references, 4 figures, 1 table

  9. An Expert support model for ex situ soil remediation

    NARCIS (Netherlands)

    Okx, J.P.; Frankhuizen, E.M.; Wit, de J.C.; Pijls, C.G.J.M.; Stein, A.

    2000-01-01

    This paper presents an expert support model recombining knowledge and experience obtained during ex situ soil remediation. To solve soil remediation problems, an inter-disciplinary approach is required. Responsibilities during the soil remediation process, however, are increasingly decentralised,

  10. An overview of in situ waste treatment technologies

    International Nuclear Information System (INIS)

    Walker, S.; Hyde, R.A.; Piper, R.B.; Roy, M.W.

    1992-01-01

    In situ technologies are becoming an attractive remedial alternative for eliminating environmental problems. In situ treatments typically reduce risks and costs associated with retrieving, packaging, and storing or disposing-waste and are generally preferred over ex situ treatments. Each in situ technology has specific applications, and, in order to provide the most economical and practical solution to a waste problem, these applications must be understood. This paper presents an overview of thirty different in situ remedial technologies for buried wastes or contaminated soil areas. The objective of this paper is to familiarize those involved in waste remediation activities with available and emerging in situ technologies so that they may consider these options in the remediation of hazardous and/or radioactive waste sites. Several types of in situ technologies are discussed, including biological treatments, containment technologies, physical/chemical treatments, solidification/stabilization technologies, and thermal treatments. Each category of in situ technology is briefly examined in this paper. Specific treatments belonging to these categories are also reviewed. Much of the information on in situ treatment technologies in this paper was obtained directly from vendors and universities and this information has not been verified

  11. In situ enhanced soil mixing. Innovative technology summary report

    International Nuclear Information System (INIS)

    1996-02-01

    In Situ Enhanced Soil Mixing (ISESM) is a treatment technology that has been demonstrated and deployed to remediate soils contaminated with volatile organic compounds (VOCs). The technology has been developed by industry and has been demonstrated with the assistance of the U.S. Department of Energy's Office of Science and Technology and the Office of Environmental Restoration. The technology is particularly suited to shallow applications, above the water table, but can be used at greater depths. ISESM technologies demonstrated for this project include: (1) Soil mixing with vapor extraction combined with ambient air injection. [Contaminated soil is mixed with ambient air to vaporize volatile organic compounds (VOCs). The mixing auger is moved up and down to assist in removal of contaminated vapors. The vapors are collected in a shroud covering the treatment area and run through a treatment unit containing a carbon filter or a catalytic oxidation unit with a wet scrubber system and a high efficiency particulate air (HEPA) filter.] (2) soil mixing with vapor extraction combined with hot air injection [This process is the same as the ambient air injection except that hot air or steam is injected.] (3) soil mixing with hydrogen peroxide injection [Contaminated soil is mixed with ambient air that contains a mist of diluted hydrogen peroxide (H 2 O 2 ) solution. The H 2 O 2 solution chemically oxidizes the VOCs to carbon dioxide (CO 2 ) and water.] (4) soil mixing with grout injection for solidification/stabilization [Contaminated soil is mixed as a cement grout is injected under pressure to solidify and immobilize the contaminated soil in a concrete-like form.] The soils are mixed with a single-blade auger or with a combination of augers ranging in diameter from 3 to 12 feet

  12. Ex-situ bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    Minier, M.R.

    1994-01-01

    The use of stress acclimated bacteria and nutrient supplements to enhance the biodegradation of petroleum contaminated soil can be a cost effective and reliable treatment technology to reduce organic contaminant levels to below established by local, state, and federal regulatory clean-up criteria. This paper will summarize the results of a field study in which 12,000 yds 3 of petroleum contaminated soil was successfully treated via ex-situ bioremediation and through management of macro and micronutrient concentrations, as well as, other site specific environmental factors that are essential for optimizing microbial growth

  13. X-231B technology demonstration for in situ treatment of contaminated soil: Contaminant characterization and three dimensional spatial modeling

    International Nuclear Information System (INIS)

    West, O.R.; Siegrist, R.L.; Mitchell, T.J.; Pickering, D.A.; Muhr, C.A.; Greene, D.W.; Jenkins, R.A.

    1993-11-01

    Fine-textured soils and sediments contaminated by trichloroethylene (TCE) and other chlorinated organics present a serious environmental restoration challenge at US Department of Energy (DOE) sites. DOE and Martin Marietta Energy Systems, Inc. initiated a research and demonstration project at Oak Ridge National Laboratory. The goal of the project was to demonstrate a process for closure and environmental restoration of the X-231B Solid Waste Management Unit at the DOE Portsmouth Gaseous Diffusion Plant. The X-231B Unit was used from 1976 to 1983 as a land disposal site for waste oils and solvents. Silt and clay deposits beneath the unit were contaminated with volatile organic compounds and low levels of radioactive substances. The shallow groundwater was also contaminated, and some contaminants were at levels well above drinking water standards. This document begins with a summary of the subsurface physical and contaminant characteristics obtained from investigative studies conducted at the X-231B Unit prior to January 1992 (Sect. 2). This is then followed by a description of the sample collection and analysis methods used during the baseline sampling conducted in January 1992 (Sect. 3). The results of this sampling event were used to develop spatial models for VOC contaminant distribution within the X-231B Unit

  14. Using in situ bioventing to minimize soil vapor extraction costs

    International Nuclear Information System (INIS)

    Downey, D.C.; Frishmuth, R.A.; Archabal, S.R.; Pluhar, C.J.; Blystone, P.G.; Miller, R.N.

    1995-01-01

    Gasoline-contaminated soils may be difficult to remediate with bioventing because high concentrations of gasoline vapors become mobile when air is injected into the soil. Because outward vapor migration is often unacceptable on small commercial sites, soil vapor extraction (SVE) or innovative bioventing techniques are required to control vapors and to increase soil gas oxygen levels to stimulate hydrocarbon biodegradation. Combinations of SVE, off-gas treatment, and bioventing have been used to reduce the costs normally associated with remediation of gasoline-contaminated sites. At Site 1, low rates of pulsed air injection were used to provide oxygen while minimizing vapor migration. At Site 2, a period of high-rate SVE and off-gas treatment was followed by long-term air injection. Site 3 used an innovative approach that combined regenerative resin for ex situ vapor treatment with in situ bioventing to reduce the overall cost of site remediation. At each of these Air Force sites, bioventing provided cost savings when compared to more traditional SVE methods

  15. In situ gas treatment technology demonstration test plan

    International Nuclear Information System (INIS)

    Thornton, E.C.; Miller, R.D.

    1996-01-01

    This document defines the objectives and requirements associated with undertaking a field demonstration of an in situ gas treatment appoach to remediation chromate-contaminated soil. The major tasks presented in this plan include the design and development of the surface gas treatment system, performance of permitting activities, and completion of site preparation and field testing activities

  16. A combined process coupling phytoremediation and in situ flushing for removal of arsenic in contaminated soil.

    Science.gov (United States)

    Yan, Xiulan; Liu, Qiuxin; Wang, Jianyi; Liao, Xiaoyong

    2017-07-01

    Phytoremediation and soil washing are both potentially useful for remediating arsenic (As)-contaminated soils. We evaluated the effectiveness of a combined process coupling phytoremediation and in situ soil flushing for removal of As in contaminated soil through a pilot study. The results showed that growing Pteris vittata L. (P.v.) accompanied by soil flushing of phosphate (P.v./Flushing treatment) could significantly decrease the total As concentration of soil over a 37day flushing period compared with the single flushing (Flushing treatment). The P.v./Flushing treatment removed 54.04% of soil As from contaminated soil compared to 47.16% in Flushing treatment, suggesting that the growth of P. vittata was beneficial for promoting the removal efficiency. We analyzed the As fractionation in soil and As concentration in soil solution to reveal the mechanism behind this combined process. Results showed that comparing with the control treatment, the percent of labile arsenate fraction significantly increased by 17% under P.v./Flushing treatment. As concentration in soil solution remained a high lever during the middle and later periods (51.26-56.22mg/L), which was significantly higher than the Flushing treatment. Although soil flushing of phosphate for more than a month, P. vittata still had good accumulation and transfer capacity of As of the soil. The results of the research revealed that combination of phytoremediation and in situ soil flushing is available to remediate As-contaminated soils. Copyright © 2016. Published by Elsevier B.V.

  17. Enhanced ex-situ bioremediation of soil contaminated with ...

    African Journals Online (AJOL)

    contaminated soil. Thus, the objective of this study was to investigate the feasibility and effectiveness of using electrical biostimulation processes to enhance ex-situ bioremediation of soils contaminated with organic pollutants. The effect of ...

  18. Demonstration testing and evaluation of in situ soil heating. Revision 1, Demonstration system design

    International Nuclear Information System (INIS)

    Dev, H.

    1994-01-01

    Over the last nine years IIT Research Institute (IITRI) has been developing and testing the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. The vaporized contaminants, water vapor and air are recovered from the heated zone by means of a vacuum manifold system which collects gases from below surface as well as from the soil surface. A vapor barrier is used to prevent fugitive emissions of the contaminants and to control air infiltration to minimize dilution of the contaminant gases and vapors. The recovered gases and vapors are conveyed to an on site vapor treatment system for the clean up of the vent gases. Electrical energy is applied to the soil by forming an array of electrodes in the soil which are electrically interconnected and supplied with power. The electrodes are placed in drilled bore holes which are made through the contaminated zone. There are two versions of the in situ heating and soil treatment process: the f irst version is called the In Situ Radio Frequency (RF) Soil Decontamination Process and the second version is called the In Situ Electromagnetic (EM) Soil Decontamination Process. The first version, the RF Process is capable of heating the soil in a temperature range of 100 degrees to 400 degrees C. The soil temperature in the second version, the EM Process, is limited to the boiling point of water under native conditions. Thus the soil will be heated to a temperature of about 85 degrees to 95 degrees C. In this project IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site due to the fact that most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 degrees to 95 degrees C

  19. Treatment of hazardous metals by in situ vitrification

    International Nuclear Information System (INIS)

    Koegler, S.S.; Buelt, J.L.

    1989-02-01

    Soils contaminated with hazardous metals are a significant problem to many Defense Program sites. Contaminated soils have ranked high in assessments of research and development needs conducted by the Hazardous Waste Remedial Action Program (HAZWRAP) in FY 1988 and FY 1989. In situ vitrification (ISV) is an innovative technology suitable for stabilizing soils contaminated with radionuclides and hazardous materials. Since ISV treats the material in place, it avoids costly and hazardous preprocessing exhumation of waste. In situ vitrification was originally developed for immobilizing radioactive (primarily transuranic) soil constituents. Tests indicate that it is highly useful also for treating other soil contaminants, including hazardous metals. The ISV process produces an environmentally acceptable, highly durable glasslike product. In addition, ISV includes an efficient off-gas treatment system that eliminates noxious gaseous emissions and generates minimal hazardous byproducts. This document reviews the Technical Basis of this technology. 5 refs., 7 figs., 2 tabs

  20. Assessment of in situ and ex situ phytorestoration with grass mixtures in soils polluted with nickel, copper, and arsenic

    Science.gov (United States)

    Zacarías Salinas, Montserrat; Beltrán Villavicencio, Margarita; Bustillos, Luis Gilberto Torres; González Aragón, Abelardo

    This work shows a study of in situ and ex situ phytoextraction as a polishing step in the treatment of an industrial urban soil polluted with nickel, arsenic and copper. The soil was previously washed, and phytoextraction was performed by application of a mixture of grass (Festuca rubra, Cynodon dactylon, Lolium multiforum, Pennisetum). The soil had initial heavy metals concentrations of 131 ppm for Ni, 717 for As and 2734 for Cu (mg of metal/kg of dry soil). After seeding and emerging of grass, vegetal and soil samples were taken monthly during 4 months. Biomass generation, and concentration of Ni, As and Cu in vegetal tissue and soil were determined for every sample. Plants biomass growth in ex situ process was inhibited by 37% when compared with blank soil. Grass showed remarkable phytoextraction capability in situ, it produced 38 g of biomass every 15 days (wet weight) during a period of 3 months, but then declined in the fourth month. Concentrations of metals in grass biomass were up to 83 mg Ni/kg, 649 mg As/kg and 305 mg Cu/kg dry weight. Metal reduction of 49% for Ni, and 35% for Cu and As was observed at rhizospheric soil.

  1. An expert support model for in situ soil remediation

    NARCIS (Netherlands)

    Okx, J.P.; Stein, A.

    2000-01-01

    This article presents an expert support model for in situ soil remediation. It combines knowledge and experiences obtained from previous in situ soil remediations. The aim of this model is to optimise knowledge transfer among the various parties involved in contaminated site management. Structured

  2. In-situ measurements of soil-water conductivity

    International Nuclear Information System (INIS)

    Murphy, C.E.

    1978-01-01

    Radionuclides and other environmentally important materials often move in association with water. In terrestrial ecosystems, the storage and movement of water in the soil is of prime importance to the hydrologic cycle of the ecosystem. The soil-water conductivity (the rate at which water moves through the soil) is a necessary input to models of soil-water movement. In situ techniques for measurement of soil-water conductivity have the advantage of averaging soil-water properties over larger areas than most laboratory methods. The in situ techniques also cause minimum disturbance of the soil under investigation. Results of measurements using a period of soil-water drainage after initial wetting indicate that soil-water conductivity and its variation with soil-water content can be determined with reasonable accuracy for the plot where the measurements were made. Further investigations are being carried out to look at variability between plots within a soil type

  3. Enhancement of in situ Remediation of Hydrocarbon Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.

    2006-07-01

    Approximately 750 000 sites of contaminated land exist across Europe. The harmful chemicals found in Finnish soils include heavy metals, oil products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorophenols, and pesticides. Petroleum and petroleum products enter soil from ruptured oil pipelines, land disposal of refinery products, leaking storage tanks and through accidents. PAH contamination is caused by the spills of coal tar and creosote from coal gasification and wood treatment sites in addition to oil spills. Cleanup of soil by bioremediation is cheaper than by chemical and physical processes. However, the cleaning capacity of natural attenuation and in situ bioremediation is limited. The purpose of this thesis was to find feasible options to enhance in situ remediation of hydrocarbon contaminants. The aims were to increase the bioavailability of the contaminants and microbial activity at the subsurface in order to achieve higher contaminant removal efficiency than by intrinsic biodegradation alone. Enhancement of microbial activity and decrease of soil toxicity during remediation were estimated by using several biological assays. The performance of these assays was compared in order to find suitable indicators to follow the progress of remediation. Phytoremediation and chemical oxidation are promising in situ techniques to increase the degradation of hydrocarbons in soil. Phytoremediation is plant-enhanced decontamination of soil and water. Degradation of hydrocarbons is enhanced in the root zone by increased microbial activity and through the detoxifying enzymes of plants themselves. Chemical oxidation of contaminants by Fenton's reaction can produce degradation products which are more biodegradable than the parent compounds. Fenton's reaction and its modifications apply solutions of hydrogen peroxide and iron for the oxidation of organic chemicals. The cost of oxidation can be reduced by aiming at partial instead of full

  4. Hydrogen peroxide treatment of TCE contaminated soil

    International Nuclear Information System (INIS)

    Hurst, D.H.; Robinson, K.G.; Siegrist, R.L.

    1993-01-01

    Solvent contaminated soils are ubiquitous in the industrial world and represent a significant environmental hazard due to their persistence and potentially negative impacts on human health and the environment. Environmental regulations favor treatment of soils with options which reduce the volume and toxicity of contaminants in place. One such treatment option is the in-situ application of hydrogen peroxide to soils contaminated with chlorinated solvents such as trichloroethylene (TCE). This study investigated hydrogen peroxide mass loading rates on removal of TCE from soils of varying organic matter content. Batch experiments conducted on contaminated loam samples using GC headspace analysis showed up to 80% TCE removal upon peroxide treatment. Column experiments conducted on sandy loam soils with high organic matter content showed only 25% TCE removal, even at hydrogen peroxide additions of 25 g peroxide per kg soil

  5. Feasibility testing of in situ vitrification of uranium-contaminated soils

    International Nuclear Information System (INIS)

    Ikuse, H.; Tsuchino, S.; Tasaka, H.; Timmerman, C.L.

    1989-01-01

    Process feasibility studies using in situ vitrification (ISV) were successfully performed on two different uranium-contaminated wastes. In situ vitrification is a thermal treatment process that converts contaminated soils into durable glass and crystalline form. Of the two different wastes, one waste was uranium mill tailings, while the other was uranium-contaminated soils which had high water contents. Analyses of the data from the two tests are presented

  6. Chelator induced phytoextraction and in situ soil washing of Cu

    International Nuclear Information System (INIS)

    Kos, Bostjan; Lestan, Domen

    2004-01-01

    In a soil column experiment, we investigated the effect of 5 mmol kg -1 soil addition of citric acid, ethylenediamine tetraacetate (EDTA), diethylenetriamine-pentaacetate (DTPA) and [S,S]-stereoisomer of ethylenediamine-disuccinate (EDDS) on phytoextraction of Cu from a vineyard soil with 162.6 mg kg -1 Cu, into the test plant Brassica rapa var. pekinensis. We also examined the use of a horizontal permeable barrier, composed of layers of nutrient enriched sawdust and apatite, for reduction of chelator induced Cu leaching. The addition of all chelators, except citric acid, enhanced Cu mobility and caused leaching of 19.5-23% of initial total Cu from the soil column. However, Cu plant uptake did not increase accordingly; the most effective was the EDDS treatment, in which plant Cu concentration reached 37.8±1.3 mg kg -1 Cu and increased by 3.3-times over the control treatment. The addition of none of the chelators in the concentration range from 5 to 15 mmol kg -1 exerted any toxic effect on respiratory soil microorganisms. When EDDS was applied into the columns with horizontal permeable barriers, only 0.53±0.32% of the initial total Cu was leached. Cu (36.7%) was washed from the 18 cm soil layer above the barrier and accumulated in the barrier. Our results indicate that rather than for a reduction of Cu leaching during rather ineffective chelate induced Cu phytoextraction, horizontal permeable barriers could be more effective in a new remediation technique of controlled in situ soil washing of Cu with biodegradable chelates

  7. APPLICATION STRATEGIES AND DESIGN CRITERIA FOR IN SITU BIOREMEDIATION OF SOIL AND GROUNDWATER IMPACTED BY PAHS

    Science.gov (United States)

    Biotreatability studies conducted in our laboratory used soils from two former wood-treatment facilities to evaluate the use of in situ bioventing and biosparging applications for their potential ability to remediate soil and groundwater containing creosote. The combination of ph...

  8. Soil treatment technologies combined

    International Nuclear Information System (INIS)

    Davis, K.J.; Russell, D.J.

    1993-01-01

    The Superfund Amendments and Reauthorization Act (SARA) presents a legislative mandate to select effective and long-term remediation options. SARA has spurred the development of innovative technologies and other remedial alternatives that can be applied to the diverse contaminated media at hazardous waste sites. Even though many treatment technologies have been investigated for use at hazardous waste sites, only a few have been used successfully. Soil vapor extraction and soil composting have achieved cleanup goals at sites with soils contaminated with solvents, aromatic hydrocarbons and petroleum derivatives. With the increased use of innovative on-site technologies, the integration of multiple technologies to remediate sites with complex contaminants becomes a viable and cost-effective remedial alternative. Soil vapor extraction and composting have been applied successfully as individual technologies at hazardous waste sites. An integration of these two technologies also has been used to remediate a complex contaminated site

  9. In-situ stabilization of mixed waste contaminated soil

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Cline, S.R.; Gilliam, T.M.; Conner, J.R.

    1993-01-01

    A full-scale field demonstration was conducted to evaluate in for stabilizing an inactive RCRA land treatment site at a DOE facility in Ohio. Subsurface silt and clay deposits were contaminated principally with up to 500 mg/kg of trichloroethylene and other halocarbons, but also trace to low levels of Pb, Cr, 235 U, and 99 Tc. In situ solidification was studied in three, 3.1 m diameter by 4.6 m deep columns. During mixing, a cement-based grout was injected and any missions from the mixed region were captured in a shroud and treated by filtration and carbon adsorption. During in situ processing, operation and performance parameters were measured, and soil cores were obtained from a solidified column 15 months later. Despite previous site-specific treatability experience, there were difficulties in selecting a grout with the requisite treatment agents amenable to subsurface injection and at a volume adequate for distribution throughout the mixed region while minimizing volume expansion. observations during the demonstration revealed that in situ solidification was rapidly accomplished (e.g., >90 m 3 /d) with limited emissions of volatile organics (i.e., -6 cm/s vs. 10 -8 cm/s). Leaching tests performed on the treated samples revealed non-detectable to acceptably low concentrations of all target contaminants

  10. In situ bioventing in deep soils at arid sites

    International Nuclear Information System (INIS)

    Frishmuth, R.A.; Ratz, J.W.; Blicker, B.R.; Hall, J.F.; Downey, D.C.

    1995-01-01

    In situ bioventing has been shown to be a cost-effective remedial alternative for vadose zone soils. The success of the technology relies on the ability of indigenous soil microorganisms to utilize petroleum hydrocarbon contaminants as a primary metabolic substrate. Soil microbial populations are typically elevated in shallow soils due to an abundance of naturally occurring substrates and nutrients, but may be limited at greater depths due to a lack of these constituents. Therefore, the effectiveness of in situ bioventing is questionable in contaminated soil zones that extend far below the ground surface. Also, because the soil microbial population relies on soil moisture to sustain hydrocarbon degradation, the viability of bioventing is questionable in arid climates, where the soil moisture content is suspected to be minimal

  11. Mercury speciation during in situ thermal desorption in soil

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Min, E-mail: cmpark80@gmail.com; Katz, Lynn E.; Liljestrand, Howard M.

    2015-12-30

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg{sup 0} gas until the temperature reached 358.15 K. • Phase change of HgCl{sub 2(s)} completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg{sup 0}) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  12. Mercury speciation during in situ thermal desorption in soil

    International Nuclear Information System (INIS)

    Park, Chang Min; Katz, Lynn E.; Liljestrand, Howard M.

    2015-01-01

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg"0 gas until the temperature reached 358.15 K. • Phase change of HgCl_2_(_s_) completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg"0) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  13. In-situ vitrification of soil

    International Nuclear Information System (INIS)

    Buelt, J.L.; Brouns, R.A.; Bonner, W.F.

    1982-01-01

    A method of vitrifying soil at or below a soil surface location. Two or more conductive electrodes are inserted into the soil for heating of the soil mass between them to a temperature above its melting temperature. Materials in the soil, such as buried radioactive waste, can thereby be effectively immobilized. (author)

  14. Demonstration testing and evaluation of in situ heating of soil

    International Nuclear Information System (INIS)

    1995-01-01

    This document describes the Quality Assurance Project Plan (QAPP) for IITRI Project C06787 entitled open-quotes Demonstration Testing and Evaluation of In Situ Heating of Soilclose quotes. A work plan for the above mentioned work was previously submitted. This QAPP describes the sampling and analysis of soil core-samples obtained from the K-25 Site (Oak Ridge Gaseous Diffusion Plant) where an in-situ heating and soil decontamination demonstration experiment will be performed. Soil samples taken before and after the experiment will be analyzed for selected volatile organic compounds. The Work Plan mentioned above provides a complete description of the demonstration site, the soil sampling plan, test plan, etc

  15. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  16. Demonstration testing and evaluation of in situ soil heating. Revision 1, Demonstration system design

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.

    1994-08-16

    Over the last nine years IIT Research Institute (IITRI) has been developing and testing the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. The vaporized contaminants, water vapor and air are recovered from the heated zone by means of a vacuum manifold system which collects gases from below surface as well as from the soil surface. A vapor barrier is used to prevent fugitive emissions of the contaminants and to control air infiltration to minimize dilution of the contaminant gases and vapors. The recovered gases and vapors are conveyed to an on site vapor treatment system for the clean up of the vent gases. Electrical energy is applied to the soil by forming an array of electrodes in the soil which are electrically interconnected and supplied with power. The electrodes are placed in drilled bore holes which are made through the contaminated zone. There are two versions of the in situ heating and soil treatment process: the f irst version is called the In Situ Radio Frequency (RF) Soil Decontamination Process and the second version is called the In Situ Electromagnetic (EM) Soil Decontamination Process. The first version, the RF Process is capable of heating the soil in a temperature range of 100{degrees} to 400{degrees}C. The soil temperature in the second version, the EM Process, is limited to the boiling point of water under native conditions. Thus the soil will be heated to a temperature of about 85{degrees} to 95{degrees}C. In this project IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site due to the fact that most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85{degrees} to 95{degrees}C.

  17. Demonstration testing and evaluation of in situ soil heating. Health and safety plan (Revision 2)

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.

    1994-12-28

    This document is the Health and Safety Plan (HASP) for the demonstration of IITRI`s EM Treatment Technology. In this process, soil is heated in situ by means of electrical energy for the removal of hazardous organic contaminants. This process will be demonstrated on a small plot of contaminated soil located in the Pit Area of Classified Burial Ground K-1070-D, K-25 Site, Oak Ridge, TN. The purpose of the demonstration is to remove organic contaminants present in the soil by heating to a temperature range of 85{degrees} to 95{degrees}C. The soil will be heated in situ by applying 60-Hz AC power to an array of electrodes placed in boreholes drilled through the soil. In this section a brief description of the process is given along with a description of the site and a listing of the contaminants found in the area.

  18. Demonstration testing and evaluation of in situ soil heating. Health and safety plan (Revision 2)

    International Nuclear Information System (INIS)

    Dev, H.

    1994-01-01

    This document is the Health and Safety Plan (HASP) for the demonstration of IITRI's EM Treatment Technology. In this process, soil is heated in situ by means of electrical energy for the removal of hazardous organic contaminants. This process will be demonstrated on a small plot of contaminated soil located in the Pit Area of Classified Burial Ground K-1070-D, K-25 Site, Oak Ridge, TN. The purpose of the demonstration is to remove organic contaminants present in the soil by heating to a temperature range of 85 degrees to 95 degrees C. The soil will be heated in situ by applying 60-Hz AC power to an array of electrodes placed in boreholes drilled through the soil. In this section a brief description of the process is given along with a description of the site and a listing of the contaminants found in the area

  19. In situ vitrification: An innovative thermal treatment technology

    International Nuclear Information System (INIS)

    Fitzpatrick, V.F.; Timmerman, C.L.; Buelt, J.L.

    1987-03-01

    In situ vitrification is a thermal treatment process that converts contaminated soil into a chemically inert, stable glass and crystalline product. A square array of four electrodes are inserted into the ground to the desired treatment depth. Because the soil is not electrically conductive once the moisture has been driven off, a conductive mixture of flaked graphite and glass frit is placed among the electrodes to act as the starter path. An electrical potential is applied to the electrodes, which establishes an electrical current in the starter path. The resultant power heats the starter path and surrounding soil up to 3600 0 F, well above the initial melting temperature or fusion temperature of soils. The normal fusion temperature of soil ranges between 2000 and 2500 0 F. The graphite starter path is eventually consumed by oxidation, and the current is transferred to the molten soil, which is now electrically conductive. As the vitrified zone grows, it incorporates nonvolatile elements and destroys organic components by pyrolysis. The pyrolyzed byproducts migrate to the surface of the vitrified zone, where they combust in the presence of oxygen. A hood placed over the processing area provides confinement for the combustion gases, and the gases are drawn into the off-gas treatment system

  20. In Situ Earthworm Breeding to Improve Soil Aggregation, Chemical Properties, and Enzyme Activity in Papayas

    Directory of Open Access Journals (Sweden)

    Huimin Xiang

    2018-04-01

    Full Text Available The long-term use of mineral fertilizers has decreased the soil fertility in papaya (Carica papaya L. orchards in South China. In situ earthworm breeding is a new sustainable practice for improving soil fertility. A field experiment was conducted to compare the effects of four treatments consisting of the control (C, chemical fertilizer (F, compost (O, and in situ earthworm breeding (E on soil physico-chemical properties and soil enzyme activity in a papaya orchard. The results showed that soil chemical properties, such as pH, soil organic matter (SOM, total nitrogen (TN, available nitrogen (AN, and total phosphorus (TP were significantly improved with the E treatment but declined with the F treatment. On 31 October 2008, the SOM and TN with the O and E treatments were increased by 26.3% and 15.1%, respectively, and by 32.5% and 20.6% compared with the F treatment. Furthermore, the O and E treatments significantly increased the activity of soil urease and sucrase. Over the whole growing season, soil urease activity was 34.4%~40.4% and 51.1%~58.7% higher with the O and E treatments, respectively, than that with the C treatment. Additionally, the activity of soil sucrase with the E treatment was always the greatest of the four treatments, whereas the F treatment decreased soil catalase activity. On 11 June 2008 and 3 July 2008, the activity of soil catalase with the F treatment was decreased by 19.4% and 32.0% compared with C. Soil bulk density with the four treatments was in the order of O ≤ E < F < C. The O- and E-treated soil bulk density was significantly lower than that of the F-treated soil. Soil porosity was in the order of C < F < E < O. Soil porosity with the O and E treatments was 6.0% and 4.7% higher, respectively, than that with the F treatment. Meanwhile, the chemical fertilizer applications significantly influenced the mean weight diameter (MWD of the aggregate and proportion of different size aggregate fractions. The E treatment

  1. Demonstration testing and evaluation of in situ soil heating. Treatability study work plan, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Sresty, G.C.

    1994-07-07

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the `70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid `80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern.

  2. In situ vitrification and the effects of soil additives

    International Nuclear Information System (INIS)

    Piepel, G.F.; Shade, J.W.

    1992-01-01

    This paper presents a case study involving in situ vitrification (ISV), a process for immobilizing chemical or nuclear wastes in soil by melting-dissolving the contaminated soil into a glass block. One goal of the study was to investigate how viscosity and electrical conductivity were affected by mixing CaO and Na 2 O with soil. A three-component constrained-region mixture experiment design was generated and the viscosity and electrical conductivity data collected. Several second-order mixture models were considered, and the Box-Cox transformation technique was applied to select property transformations. The fitted models were used to produce contour and component effects plots

  3. Soil treatment engineering

    Science.gov (United States)

    Ivica, Kisic; Zeljka, Zgorelec; Aleksandra, Percin

    2017-10-01

    Soil is loose skin of the Earth, located between the lithosphere and atmosphere, which originated from parent material under the influence of pedogenetic processes. As a conditionally renewable natural resource, soil has a decisive influence on sustainable development of global economy, especially on sustainable agriculture and environmental protection. In recent decades, a growing interest prevails for non-production soil functions, primarily those relating to environmental protection. It especially refers to protection of natural resources whose quality depends directly on soil and soil management. Soil contamination is one of the most dangerous forms of soil degradation with the consequences that are reflected in virtually the entire biosphere, primarily at heterotrophic organisms, and also at mankind as a food consumer. Contamination is correlated with the degree of industrialization and intensity of agrochemical usage. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The negative effects caused by pollution are undeniable: reduced agricultural productivity, polluted water sources and raw materials for food are only a few of the effects of soil degradation, while almost all human diseases (excluding AIDS) may be partly related to the transport of contaminants, in the food chain or the air, to the final recipients - people, plants and animals. The remediation of contaminated soil is a relatively new scientific field which is strongly developing in the last 30 years and becoming a more important subject. In order to achieve quality remediation of contaminated soil it is very important to conduct an inventory as accurately as possible, that is, to determine the current state of soil contamination.

  4. Demonstration testing and evaluation of in situ soil heating. Treatability study work plan (Revision 2)

    International Nuclear Information System (INIS)

    Sresty, G.C.

    1994-01-01

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 degrees to 95 degrees C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern. This document is a Treatability Study Work Plan for the demonstration program. The document contains a description of the proposed treatability study, background of the EM heating process, description of the field equipment, and demonstration test design

  5. In situ vitrification: Test results for a contaminated soil melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Bonner, W.F.

    1989-04-01

    Pacific Northwest Laboratory (PNL) is developing in situ vitrification (ISV), a remedial action process for treating contaminated soils. In situ vitrification is a thermal treatment process that converts contaminated soil into a chemically inert and stable glass and crystalline product. Figure 1 depicts the process. A square array of four molybdenum/graphite electrodes is inserted into the ground to the desired treatment depth. Because soil is not electrically conductive when the moisture has been driven off, a conductive mixture of flaked graphite and glass frit is placed between the pairs of electrodes as a starter path. An electrical potential is applied to the electrodes to establish an electric current in the starter path. The resultant power heats the starter path and surrounding soil to 2000 degree C, well above the initial soil-melting temperature of 1100 to 1400 degree C. The graphite starter path is eventually consumed by oxidation, and the current is transferred to the molten soil, which is electrically conductive. As the molten or vitrified zone grows, it incorporates radionuclides and nonvolatile hazardous elements, such as heavy metals, and destroys organic components by pyrolysis. The pyrolyzed byproducts migrate to the surface of the vitrified zone, where they burn in the presence of oxygen. A hood placed over the area being vitrified directs the gaseous effluents to an off-gas treatment system. 5 refs., 1 fig., 1 tab

  6. In situ neutron moisture meter calibration in lateritic soils

    International Nuclear Information System (INIS)

    Ruprecht, J.K.; Schofield, N.J.

    1990-01-01

    An in situ calibration procedure for complex lateritic soils of the jarrah forest of Western Australia is described. The calibration is based on non-destructive sampling of each access tube and on a regression of change in water content on change in neutron count ratio at 'wet' and 'dry' times of the year. Calibration equations with adequate precision were produced. However, there were high residual errors in the calibration equations which were due to a number of factors including soil water variability, the presence of a duricrust layer, soil sampling of gravelly soils and the variability of the cement slurry annulus surrounding each access tube. The calibration equations derived did not compare well with those from other studies in south-west Western Australia, but there was reasonable agreement with the general equations obtained by the Institute of Hydrology, U.K. 15 refs., 6 figs., 2 tabs

  7. Engineering-scale tests of in situ vitrification to PCB and radioactive contaminated soils

    International Nuclear Information System (INIS)

    Liikala, S.C.

    1991-01-01

    In Situ Vitrification (ISV) is a thermal treatment technology applicable to the remediation of hazardous chemical and radioactive contaminated soil and sludge sites. The ISV process utilizes electricity, through joule heating, to melt contaminated soil and form an inert glass and microcrystalline residual product. Applications of ISV to polychlorinated biphenyls (PCBs) and radionuclides have been demonstrated at engineering-scale in numerous tests (1,2,3). An updated evaluation of ISV applicability to treatment of PCBs and radionuclides, and recent test results are presented herein

  8. In-situ vitrification of radioactively contaminated soils: summary paper

    International Nuclear Information System (INIS)

    Buelt, J.L.; Fitzpatrick, V.F.

    1987-01-01

    The in-situ vitrification (ISV) process is a new technology that has been developed from its conceptual phase through selected field-scale application tests during the last six years. In situ vitrification converts contaminated soils and waste inclusions into a durable glass and crystalline waste form by in-place melting. Electrodes are inserted into the soil to be treated and an electrical current is passed through the soil to be treated and an electrical current is passed through the soil to melt it. After cooling, the process fixes (TRU) and fission product radionuclides making them relatively nonleachable, resistant to intrusion, and nondispersible when intentionally disturbed. Another application considered for isolation of radioactively contaminated soils, but not yet developed, is the generation of impermeable barrier walls to prevent ground water seepage into a site. The barrier technique could also be used over the surface of an existing disposal site to deter plant and animal intrusion. The development units have been extensively tested with many types of soils and waste inclusions such as concrete, buried metals, sealed containers, organic chemicals with high boiling points such as polychlorinated biphenyls, and inorganic chemicals, including toxic heavy metals, nitrates, and sulfates. Nitrates and organics are destroyed, while heavy metals and fluorides are retained to a high percentage within the molten soil during processing. At $200 to $300/m 3 for radioactive waste, the process is economically competitive with many alternative remediation processes. The ISV process has been developed to the point where it is ready for large-scale field testing at an actual TRU-contaminated soil site. 5 references, 2 figures, 2 tables

  9. Inducing in situ, nonlinear soil response applying an active source

    Science.gov (United States)

    Johnson, P.A.; Bodin, P.; Gomberg, J.; Pearce, F.; Lawrence, Z.; Menq, F.-Y.

    2009-01-01

    [1] It is well known that soil sites have a profound effect on ground motion during large earthquakes. The complex structure of soil deposits and the highly nonlinear constitutive behavior of soils largely control nonlinear site response at soil sites. Measurements of nonlinear soil response under natural conditions are critical to advancing our understanding of soil behavior during earthquakes. Many factors limit the use of earthquake observations to estimate nonlinear site response such that quantitative characterization of nonlinear behavior relies almost exclusively on laboratory experiments and modeling of wave propagation. Here we introduce a new method for in situ characterization of the nonlinear behavior of a natural soil formation using measurements obtained immediately adjacent to a large vibrator source. To our knowledge, we are the first group to propose and test such an approach. Employing a large, surface vibrator as a source, we measure the nonlinear behavior of the soil by incrementally increasing the source amplitude over a range of frequencies and monitoring changes in the output spectra. We apply a homodyne algorithm for measuring spectral amplitudes, which provides robust signal-to-noise ratios at the frequencies of interest. Spectral ratios are computed between the receivers and the source as well as receiver pairs located in an array adjacent to the source, providing the means to separate source and near-source nonlinearity from pervasive nonlinearity in the soil column. We find clear evidence of nonlinearity in significant decreases in the frequency of peak spectral ratios, corresponding to material softening with amplitude, observed across the array as the source amplitude is increased. The observed peak shifts are consistent with laboratory measurements of soil nonlinearity. Our results provide constraints for future numerical modeling studies of strong ground motion during earthquakes.

  10. In-situ bioremediation: Or how to get nutrients to all the contaminated soil

    International Nuclear Information System (INIS)

    Jackson, D.S.; Scovazzo, P.

    1994-01-01

    Petroleum contamination is a pervasive environmental problem. Bioremediation is winning favor primarily because the soil may be treated on site and systems can be installed to operate without interfering with facility activities. Although bioremediation has been utilized for many years, its acceptance as a cost-effective approach is only now being realized. KEMRON applied in-situ bioremediation at a retired rail yard which had maintained a diesel locomotive refueling station supplied by two 20,000 gallon above ground storage tanks. Contamination originated from both spillage at the pumps and leaking fuel distribution lines. The contamination spread over a 3 acre area from the surface to a depth of up to 20 feet. Levels of diesel contamination found in the soil ranged from less than a 100 ppm to more than 25,000 ppm. The volume of soil which ultimately required treatment was more than 60,000 cubic yards. Several remedial options were examined including excavation and disposal. Excavation was rejected because it would have been cost prohibitive due to the random distribution of the contaminated soil. In-situ Bioremediation was selected as the only alternative which could successfully treat all the contaminated soils. This paper focuses on how KEMRON solved four major problems which would have prevented a successful remediation project. These problems were: soil compaction, random distribution of contaminated soils, potential free product, and extremely high levels of dissolved iron in the groundwater

  11. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments.

    Science.gov (United States)

    Lee, Sang-Hwan; Lee, Jin-Soo; Choi, Youn Jeong; Kim, Jeong-Gyu

    2009-11-01

    Chemical stabilization is an in situ remediation method that uses inexpensive amendments to reduce contaminant availability in polluted soil. We tested the effects of several amendments (limestone, red-mud, and furnace slag) on the extractability of heavy metals, microbial activities, phytoavailability of soil metals (assessed using lettuce, Lactuca sativa L.), and availability of heavy metals in ingested soil to the human gastrointestinal system (assessed using the physiologically based extraction test). The application of soil amendments significantly decreased the amount of soluble and extractable heavy metals in the soil (p<0.05). The decreased extractable metal content of soil was accompanied by increased microbial activity and decreased plant uptake of heavy metals. Soil microbial activities (soil respiration, urease, and dehydrogenase activity) significantly increased in limestone and red-mud-amended soils. Red-mud was the most effective treatment in decreasing heavy-metal concentrations in lettuce. Compared to non-amended control soil, lettuce uptake of Cd, Pb, and Zn was reduced 86%, 58%, and 73%, respectively, by the addition of red-mud.

  12. In situ assessment of phytotechnologies for multicontaminated soil management.

    Science.gov (United States)

    Ouvrard, S; Barnier, C; Bauda, P; Beguiristain, T; Biache, C; Bonnard, M; Caupert, C; Cébron, A; Cortet, J; Cotelle, S; Dazy, M; Faure, P; Masfaraud, J F; Nahmani, J; Palais, F; Poupin, P; Raoult, N; Vasseur, P; Morel, J L; Leyval, C

    2011-01-01

    Due to human activities, large volumes of soils are contaminated with organic pollutants such as polycyclic aromatic hydrocarbons, and very often by metallic pollutants as well. Multipolluted soils are therefore a key concern for remediation. This work presents a long-term evaluation of the fate and environmental impact of the organic and metallic contaminants of an industrially polluted soil under natural and plant-assisted conditions. A field trial was followed for four years according to six treatments in four replicates: unplanted, planted with alfalfa with or without mycorrhizal inoculation, planted with Noccaea caerulescens, naturally colonized by indigenous plants, and thermally treated soil planted with alfalfa. Leaching water volumes and composition, PAH concentrations in soil and solutions, soil fauna and microbial diversity, soil and solution toxicity using standardized bioassays, plant biomass, mycorrhizal colonization, were monitored. Results showed that plant cover alone did not affect total contaminant concentrations in soil. However, it was most efficient in improving the contamination impact on the environment and in increasing the biological diversity. Leaching water quality remained an issue because of its high toxicity shown by micro-algae testing. In this matter, prior treatment of the soil by thermal desorption proved to be the only effective treatment.

  13. Characterization of vitrified soil produced by in situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Lokken, R.O.

    1984-01-01

    Radioactive or other hazardous wastes buried at waste disposal sites may require further stabilization to secure the isolation of these wastes from the environment. One method of waste stabilization being developed is in situ vitrification. This process involves the in-place melting of buried wastes and the surrounding soil to produce a glass and crystalline waste form. Engineering-scale and pilot-scale demonstrations of this concept with soil contaminated with nonradioactive, hazardous species (Cs, Sr, Ru, Pb, Cd, etc.) were performed. These demonstrations provided information on species migration, crystalline-phase formation, and waste form durability. In addition to the nonradioactive tests, a crucible-scale melt of soil spiked with radioactive uranium, plutonium, and cesium was leach tested. The results show that hazardous waste components are retained in the product. The durability of the waste form in both the vitreous and the crystalline phases is similar to that of Pyrex glass

  14. Characterization of vitrified soil produced by in-situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Lokken, R.O.

    1983-01-01

    Radioactive or other hazardous wastes buried at waste-disposal sites may require further stabilization to secure the isolation of these wastes from the environment. One method of waste stabilization being developed is in-situ vitrification. This process involves the in-place melting of buried wastes and the surrounding soil to produce a glass and crystalline waste form. Engineering-scale and pilot-scale demonstrations of this concept with soil contaminated with nonradioactive, hazardous species (Cs, Sr, Ru, Pb, Cd, etc.) were performed. These demonstrations provided information on species migration, crystalline phase formation, and waste form durability. In addition to the nonradioactive tests, a crucible-scale melt of soil spiked with radioactive uranium, plutonium, and cesium was leach tested. The results show that hazardous waste components are retained in the product. The durability of the waste form in both the vitreous and crystalline phases is similar to that of pyrex glass

  15. In-situ remediation system for groundwater and soils

    Science.gov (United States)

    Corey, John C.; Kaback, Dawn S.; Looney, Brian B.

    1993-01-01

    A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.

  16. In situ treatment of VOCs by recirculation technologies

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Webb, O.F.; Ally, M.R.; Sanford, W.E.; Kearl, P.M.; Zutman, J.L.

    1993-06-01

    The project described herein was conducted by Oak Ridge National Laboratory (ORNL) to identify processes and technologies developed in Germany that appeared to have near-term potential for enhancing the cleanup of volatile organic compound (VOC) contaminated soil and groundwater at DOE sites. Members of the ORNL research team identified and evaluated selected German technologies developed at or in association with the University of Karlsruhe (UoK) for in situ treatment of VOC contaminated soils and groundwater. Project activities included contacts with researchers within three departments of the UoK (i.e., Applied Geology, Hydromechanics, and Soil and Foundation Engineering) during fall 1991 and subsequent visits to UoK and private industry collaborators during February 1992. Subsequent analyses consisted of engineering computations, groundwater flow modeling, and treatment process modeling. As a result of these project efforts, two processes were identified as having near-term potential for DOE: (1) the vacuum vaporizer well/groundwater recirculation well and (2) the porous pipe/horizontal well. This document was prepared to summarize the methods and results of the assessment activities completed during the initial year of the project. The project is still ongoing, so not all facets of the effort are completely described in this document. Recommendations for laboratory and field experiments are provided

  17. In situ treatment of VOCs by recirculation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Siegrist, R.L.; Webb, O.F.; Ally, M.R.; Sanford, W.E. [Oak Ridge National Lab., TN (US); Kearl, P.M.; Zutman, J.L. [Oak Ridge National Lab., Grand Junction, CO (US)

    1993-06-01

    The project described herein was conducted by Oak Ridge National Laboratory (ORNL) to identify processes and technologies developed in Germany that appeared to have near-term potential for enhancing the cleanup of volatile organic compound (VOC) contaminated soil and groundwater at DOE sites. Members of the ORNL research team identified and evaluated selected German technologies developed at or in association with the University of Karlsruhe (UoK) for in situ treatment of VOC contaminated soils and groundwater. Project activities included contacts with researchers within three departments of the UoK (i.e., Applied Geology, Hydromechanics, and Soil and Foundation Engineering) during fall 1991 and subsequent visits to UoK and private industry collaborators during February 1992. Subsequent analyses consisted of engineering computations, groundwater flow modeling, and treatment process modeling. As a result of these project efforts, two processes were identified as having near-term potential for DOE: (1) the vacuum vaporizer well/groundwater recirculation well and (2) the porous pipe/horizontal well. This document was prepared to summarize the methods and results of the assessment activities completed during the initial year of the project. The project is still ongoing, so not all facets of the effort are completely described in this document. Recommendations for laboratory and field experiments are provided.

  18. Soil surface stabilization using an in situ plutonium coating techniuqe at the Nevada Test Site

    International Nuclear Information System (INIS)

    Lew, J.; Snipes, R.; Tamura, T.

    1996-01-01

    The Hazardous Waste Remedial Actions Program (HAZWRAP), in collaboration with the University of Nevada at Reno (UNR), has developed and is investigating an in situ plutonium treatment for soils at the Nevada Test Site (NTS). The concept, conceived by Dr. T. Tamura and refined at HAZWRAP, was developed during the Nevada Applied Ecology Program investigation. In analyzing for plutonium in soils, it was noted that the alpha emanation of plutonium was greatly attenuated if traces of iron or manganese oxides were present in the final electroplating stage. The technique would reduce resuspension of alpha particles into the air by coating the contaminants in soils in situ with an environmentally compatible, durable, and nontoxic material. The coating materials (calcium hydroxide, ferrous sulfate) reduce resuspension by providing a cementitious barrier against radiation penetration while retaining soil porosity. This technique not only stabilizes plutonium-contaminated soils, but also provides an additional protection from worker exposure to radiation during remediation activities. Additionally, the coating would decrease the water solubility of the contaminant and, thus, reduce its migration through soil and uptake by plants

  19. Pilot-scale feasibility of petroleum hydrocarbon-contaminated soil in situ bioremediation

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Walker, A.B.

    1995-01-01

    An environmental project was conducted to evaluate in situ bioremediation of petroleum hydrocarbon-contaminated soils on Kwajalein Island, a US Army Kwajalein Atoll base in the Republic of the Marshall Islands. Results of laboratory column studies determined that nutrient loadings stimulated biodegradation rates and that bioremediation of hydrocarbon-contaminated soils at Kwajalein was possible using indigenous microbes. The column studies were followed by an ∼10-month on-site demonstration at Kwajalein to further evaluate in situ bioremediation and to determine design and operating conditions necessary to optimize the process. The demonstration site contained low levels of total petroleum hydrocarbons (diesel fuel) in the soil near the ground surface, with concentrations increasing to ∼10,000 mg/kg in the soil near the groundwater. The demonstration utilized 12 in situ plots to evaluate the effects of various combinations of water, air, and nutrient additions on both the microbial population and the hydrocarbon concentration within the treatment plots as a function of depth from the ground surface

  20. Application of in situ vitrification in the soil subsurface: Engineering-scale testing

    International Nuclear Information System (INIS)

    Luey, J.; Seiler, D.K.

    1995-03-01

    Engineering-scale testing to evaluate the initiation and propagation of the in situ vitrification (ISV) process in the soil subsurface has been completed. Application of ISV in the soil subsurface both increases the applicable treatment depth (beyond a demonstrated 5 m) and allows treatment of local contamination, such as liquid seepage trenches (found on many US Department of Energy sites) that were designed to remove contamination at the bottom of the trench. The following observations and conclusions resulted from the test data: the ISV process can be initiated in the soil subsurface and propagated in both vertical directions, with the downward direction providing greater ease of operation; energy efficiency to process a kilogram of soil was 20% better than for an ISV melt initiated at the soil surface, increased efficiency was attributed to insulation from the soil overburden; the feasibility of initiating the process with a planar starter path was confirmed, thus increasing the number of options for initiating the process in the field; soil subsidence was pronounced and requires attention before field demonstration of subsurface ISV. Further field work at pilot-scale is recommended for this new ISV application. The key step will be the placement of starter material at depth to initiate the process

  1. In situ construction of horizontal soil containment barrier at Fernald

    International Nuclear Information System (INIS)

    Ridenour, D.; Pettit, P.J.; Walker, J.

    1995-01-01

    An innovative method of placing soil barriers to contain vertical flow is being prepared for demonstration by the Fernald Environmental Restoration Management Corporation (FERMCO), working in conjunction with the Department of Energy Office of Technology Development (DOE/OTD) and two principle subcontractors. The method employs proven directional drilling techniques, jet grouting technology and unique placement tooling to form horizontal soil barriers in situ. This is done without disturbance to existing land disposed wastes. This paper is a summary report on the current state of that demonstration, including: a discussion of the construction methods, the results of the initial tool tests, an overview of the Fernald site conditions and, the resulting path of tooling development for the second phase of tool testing

  2. On the in situ aqueous alteration of soils on Mars

    Science.gov (United States)

    Amundson, Ronald; Ewing, Stephanie; Dietrich, William; Sutter, Brad; Owen, Justine; Chadwick, Oliver; Nishiizumi, Kunihiko; Walvoord, Michelle; McKay, Christopher

    2008-08-01

    Early (>3 Gy) wetter climate conditions on Mars have been proposed, and it is thus likely that pedogenic processes have occurred there at some point in the past. Soil and rock chemistry of the Martian landing sites were evaluated to test the hypothesis that in situ aqueous alteration and downward movement of solutes have been among the processes that have transformed these portions of the Mars regolith. A geochemical mass balance shows that Martian soils at three landing sites have lost significant quantities of major rock-forming elements and have gained elements that are likely present as soluble ions. The loss of elements is interpreted to have occurred during an earlier stage(s) of weathering that may have been accompanied by the downward transport of weathering products, and the salts are interpreted to be emplaced later in a drier Mars history. Chemical differences exist among the sites, indicating regional differences in soil composition. Shallow soil profile excavations at Gusev crater are consistent with late stage downward migration of salts, implying the presence of small amounts of liquid water even in relatively recent Martian history. While the mechanisms for chemical weathering and salt additions on Mars remain unclear, the soil chemistry appears to record a decline in leaching efficiency. A deep sedimentary exposure at Endurance crater contains complex depth profiles of SO 4, Cl, and Br, trends generally consistent with downward aqueous transport accompanied by drying. While no model for the origin of Martian soils can be fully constrained with the currently available data, a pedogenic origin is consistent with observed Martian geology and geochemistry, and provides a testable hypothesis that can be evaluated with present and future data from the Mars surface.

  3. Assessment of the availability of As and Pb in soils after in situ stabilization.

    Science.gov (United States)

    Zhang, Wanying; Yang, Jie; Li, Zhongyuan; Zhou, Dongmei; Dang, Fei

    2017-10-01

    The in situ stabilization has been widely used to remediate metal-contaminated soil. However, the long-term retaining performance of heavy metals and the associated risk after in situ stabilization remains unclear and has evoked amounting concerns. Here, Pb- or As-contaminated soil was stabilized by a commercial amendment. The availability of Pb and As after in situ stabilization were estimated by ten different in vitro chemical extractions and DGT technique. After amendment application, a significant decline in extractable Pb or As was observed in treatments of Milli-Q water, 0.01 M CaCl 2 , 0.1 M NaNO 3 , 0.05 M (NH 4 ) 2 SO 4 , and 0.43 M HOAc. Potential available metal(loid)s determined by DGT also showed remarkable reduction. Meanwhile, the results of in vivo uptake assays demonstrated that Pb concentrations in shoots of ryegrass Lolium perenne L. declined to 12% of the control samples, comparable to the extraction ratio of 0.1 M NaNO 3 (15.8%) and 0.05 M (NH 4 ) 2 SO 4 (17.3%). For As-contaminated soil, 0.43 M HOAC provided a better estimation of relative phytoavailability (64.6 vs. 65.4% in ryegrass) compared to other extraction methods. We propose that 0.1 M NaNO 3 or 0.05 M (NH 4 ) 2 SO 4 for Pb and 0.43 M HOAc for As may serve as surrogate measures to estimate the lability of metal(loid)s after soil remediation of the tested contaminated soils. Further studies over a wider range of soil types and amendments are necessary to validate extraction methods.

  4. In situ bio-remediation of contaminated soil in a uranium deposit

    International Nuclear Information System (INIS)

    Groudev, St.; Spasova, I.; Nicolova, M.; Georgiev, P.

    2005-01-01

    The uranium deposit Curilo, located in Western Bulgaria, for a long period of time was a site of intensive mining activities including both the open-pit and underground techniques as well as in situ leaching of uranium. The mining operations were ended in 1990 but until now both the surface and ground waters and soils within and near the deposit are heavily polluted with radionuclides (mainly uranium and radium) and heavy metals (mainly copper, zinc and cadmium). Laboratory experiments carried out with soil samples from the deposit revealed that an efficient removal of the above-mentioned contaminants was achieved by their solubilizing and washing the soil profile by means of acidified water solutions. The solubilization was connected with the activity of the indigenous soil microflora, mainly with the activity of some acidophilic chemo-litho-trophic bacteria. It was possible to enhance considerably this activity by suitable changes in the levels of some essential environmental factors such as pH and water, oxygen and nutrient contents in the soil. Such treatment was successfully applied also under real field conditions in the deposit. The effluents from the soil profile during the operation above-mentioned contained the pollutants as well as other heavy metals such as iron and manganese dissolved from the soil in concentrations usually higher than the relevant permissible levels for waters intended for use in the agriculture and/or industry. For that reason, these effluents were efficiently cleaned up by means of a natural wetland located near the treated soil. However, such treatment as any other method for treatment of polluted waters is connected with additional costs which increase the total costs for the soil cleanup. A possible way to avoid or at least largely to facilitate the cleanup of the soil effluents is to apply a biotechnological method in which the soil contaminants solubilized in the upper soil layers (mainly in the horizon A) are transferred into

  5. Transformation of natural ferrihydrite aged in situ in As, Cr and Cu contaminated soil studied by reduction kinetics

    DEFF Research Database (Denmark)

    Nielsen, Sanne Skov; Kjeldsen, Peter; Hansen, Hans Christian Bruun

    2014-01-01

    following 4 yr of in situ burial at a contaminated site was examined in samples of impure (Si-bearing) ferrihydrite in soil heavily polluted with As, Cr and Cu. The samples are so-called iron water treatment residues (Fe-WTR) precipitated from anoxic groundwater during aeration. The extent of transformation...

  6. [Improving Agricultural Safety of Soils Contaminated with Polycyclic Aromatic Hydrocarbons by In Situ Bioremediation].

    Science.gov (United States)

    Jiao, Hai-huan; Pan, Jian-gang; Xu, Shena-jun; Bai, Zhi-hui; Wang, Dong; Huang, Zhan-bin

    2015-08-01

    In order to reduce the risk of enrichment of polycyclic aromatic hydrocarbons (PAHs) in crops, reduce the potential hazards of food-sourced PAHs to human and increase the agricultural safety of PAHs contaminated soils, the bio-augmented removal of polycyclic aromatic hydrocarbons (PAHs) was investigated through in situ remediation by introducing Rhodobacter sphaeroides (RS) into the agricultural soil contaminated by PAHs. The 50-times diluted RS was sprayed on leaf surface (in area B) or irrigated to roots (in area D). The treatment of spraying water of the equal amount was taken as the control (A) and the wheat field without any treatment as the blank (CK). Treatments were conducted since wheat seeding. Soil and wheat samples were collected in the mature period to analyze the changes of community structure of the soil microorganisms and the concentration of PAHs in soils and investigate the strengthening and restoration effects of RS on PAHs contaminated soils. Compared to the CK Area, the areas B and D revealed that the variation ratio of phospholipid fatty acids (PLFAs) that were the biomarker of soil microorganisms was 29.6%, and the ratio of total PAHs removed was increased 1.59 times and 1.68 times, respectively. The dry weight of wheat grain of 50 spikes was increased by 8.95% and 12.5%, respectively, and the enrichment factor of total PAHs was decreased by 58.9% and 62.2% respectively in the wheat grains. All the results suggested that RS reduced enrichment of PAHs in wheat grains and increased wheat yield, which had great exploitation and utilization potentiality in repairing and improving the agricultural safety of the soils contaminated with PHAs.

  7. In situ gamma-ray spectrometric measurements of uranium in phosphates soil

    International Nuclear Information System (INIS)

    Lavi, N.; Ne'eman, E.; Brenner, S.; Haquin, G.; Nir-El, Y.

    1997-01-01

    Abstract Radioactivity concentration of 238 U in a phosphate ores quarry was measured in situ. Independently, soil samples collected in the site were measured in the laboratory. It was disclosed that radon emanation from the soil lowers in situ results that are derived from radon daughters. Uranium concentration was found to be 121.6±1.9 mg kg -1 (authors)

  8. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil.

    Science.gov (United States)

    Ángeles, Martínez-Toledo; Refugio, Rodríguez-Vázquez

    2013-01-01

    In situ biosurfactant (rhamnolipid) production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus), P. putida addition, and addition of both (P. putida and nutrients). The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils) supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH) was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil.

  9. Cost studies of thermally enhanced in situ soil remediation technologies

    International Nuclear Information System (INIS)

    Bremser, J.; Booth, S.R.

    1996-05-01

    This report describes five thermally enhanced technologies that may be used to remediate contaminated soil and water resources. The standard methods of treating these contaminated areas are Soil Vapor Extraction (SVE), Excavate ampersand Treat (E ampersand T), and Pump ampersand Treat (P ampersand T). Depending on the conditions at a given site, one or more of these conventional alternatives may be employed; however, several new thermally enhanced technologies for soil decontamination are emerging. These technologies are still in demonstration programs which generally are showing great success at achieving the expected remediation results. The cost savings reported in this work assume that the technologies will ultimately perform as anticipated by their developers in a normal environmental restoration work environment. The five technologies analyzed in this report are Low Frequency Heating (LF or Ohmic, both 3 and 6 phase AC), Dynamic Underground Stripping (DUS), Radio Frequency Heating (RF), Radio Frequency Heating using Dipole Antennae (RFD), and Thermally Enhanced Vapor Extraction System (TEVES). In all of these technologies the introduction of heat to the formation raises vapor pressures accelerating contaminant evaporation rates and increases soil permeability raising diffusion rates of contaminants. The physical process enhancements resulting from temperature elevations permit a greater percentage of volatile organic compound (VOC) or semi- volatile organic compound (SVOC) contaminants to be driven out of the soils for treatment or capture in a much shorter time period. This report presents the results of cost-comparative studies between these new thermally enhanced technologies and the conventional technologies, as applied to five specific scenarios

  10. Enrichment planting without soil treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hagner, Mats

    1998-12-31

    Where enrichment planting had been carried out with either of the two species Picea abies and Pinus contorta, the survival of the planted seedlings was at least as good as after planting in a normal clear cut area treated with soil scarification. This was in spite of the fact that the seedlings were placed shallow in the humus layer without any soil treatment. However, they were sheltered from insects by treatment before planting. Where enrichment planting was carried out with Pinus sylvestris the survival in dense forest was poor, but in open forest the survival was good. The growth of planted seedlings was enhanced by traditional clearing and soil treatment. However, this was for Pinus sylvestris not enough to compensate for the loss of time, 1-2 years, caused by arrangement of soil scarification. The growth of seedlings planted under crown cover was directly related to basal area of retained trees. However, the variation in height growth among individual seedlings was very big, which meant that some seedlings grow well also under a fairly dense forest cover. The pioneer species Pinus sylvestris reacted more strongly to basal area of retained trees than did the shade tolerant species Picea abies. Enrichment planting seems to be a necessary tool for preserving volume productivity, at places where fairly intensive harvest of mature trees has been carried out in stands of ordinary forest type in central Sweden. If double seedlings, with one Picea abies and one Pinus sylvestris, are used, the probability for long term establishment is enhanced 13 refs, 20 figs, 4 tabs

  11. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Directory of Open Access Journals (Sweden)

    M. S. Demyan

    2013-05-01

    Full Text Available An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS is being proposed to rapidly characterize soil organic matter (SOM to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2 in order to relate evolved gas (i.e., CO2 to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i the Static Fertilization Experiment, Bad Lauchstädt (Chernozem, from treatments of farmyard manure (FYM, mineral fertilizer (NPK, their combination (FYM + NPK and control without fertilizer inputs; (ii Kraichgau; and (iii Swabian Alb (Cambisols areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM, sand and stable aggregates (Sa + A, silt and clay (Si + C, and NaOCl oxidized Si + C (rSOC to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm−1 being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min−1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max. Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the

  12. Deep soil mixing for reagent delivery and contaminant treatment

    International Nuclear Information System (INIS)

    Korte, N.; Gardner, F.G.; Cline, S.R.; West, O.R.

    1997-01-01

    Deep soil mixing was evaluated for treating clay soils contaminated with TCE and its byproducts at the Department of Energy's Kansas City Plant. The objective of the project was to evaluate the extent of limitations posed by the stiff, silty-clay soil. Three treatment approaches were tested. The first was vapor stripping. In contrast to previous work, however, laboratory treatability studies indicated that mixing saturated, clay soil was not efficient unless powdered lime was added. Thus, powder injection of lime was attempted in conjunction with the mixing/stripping operation. In separate treatment cells, potassium permanganate solution was mixed with the soil as a means of destroying contaminants in situ. Finally, microbial treatment was studied in a third treatment zone. The clay soil caused operational problems such as breakage of the shroud seal and frequent reagent blowouts. Nevertheless, treatment efficiencies of more than 70% were achieved in the saturated zone with chemical oxidation. Although expensive ($1128/yd 3 ), there are few alternatives for soils of this type

  13. A New Technique for Deep in situ Measurements of the Soil Water Retention Behaviour

    DEFF Research Database (Denmark)

    Rocchi, Irene; Gragnano, Carmine Gerardo; Govoni, Laura

    2018-01-01

    In situ measurements of soil suction and water content in deep soil layers still represent an experimental challenge. Mostly developed within agriculture related disciplines, field techniques for the identification of soil retention behaviour have been so far employed in the geotechnical context ...

  14. Superfund Innovative Technology Evaluation - Demonstration Bulletin: In-Situ Soil Stabilization

    Science.gov (United States)

    In-situ stabilization technology immobilizes organics and inorganic compounds in wet or dry soils by using reagents (additives) to polymerize with the soils and sludges producing a cement-like mass. Two basic components of this technology are the Geo-Con/DSM Deep Soil Mixing Sy...

  15. Retrieval/ex situ thermal treatment scoring interaction report

    Energy Technology Data Exchange (ETDEWEB)

    Raivo, B.D.; Richardson, J.G.

    1993-11-01

    A retrieval/ex situ thermal treatment technology process for the Idaho National Engineering Laboratory transuranic waste pits and trenches is present. A system performance score is calculated, and assumptions, requirements, and reference baseline technologies for all subelements are included.

  16. In situ immobilisation of toxic metals in soil using Maifan stone and illite/smectite clay.

    Science.gov (United States)

    Ou, Jieyong; Li, Hong; Yan, Zengguang; Zhou, Youya; Bai, Liping; Zhang, Chaoyan; Wang, Xuedong; Chen, Guikui

    2018-03-15

    Clay minerals have been proposed as amendments for remediating metal-contaminated soils owing to their abundant reserves, high performance, simplicity of use and low cost. Two novel clay minerals, Maifan stone and illite/smectite clay, were examined in the in situ immobilisation of soil metals. The application of 0.5% Maifan stone or illite/smectite clay to field soils significantly decreased the fractions of diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Ni, Cr, Zn, Cu and Pb. Furthermore, reductions of 35.4% and 7.0% in the DTPA-extractable fraction of Cd were obtained with the Maifan stone and illite/smectite clay treatments, respectively, which also significantly reduced the uptake of Cd, Ni, Cr, Zn, Cu and Pb in the edible parts of Brassica rapa subspecies pekinensis, Brassica campestris and Spinacia oleracea. Quantitatively, the Maifan stone treatment reduced the metal uptake in B. rapa ssp. Pekinensis, B. campestris and S. oleracea from 11.6% to 62.2%, 4.6% to 41.8% and 11.3% to 58.2%, respectively, whereas illite/smectite clay produced reductions of 8.5% to 62.8% and 4.2% to 37.6% in the metal uptake in B. rapa ssp. Pekinensis and B. campestris, respectively. Therefore, both Maifan stone and illite/smectite clay are promising amendments for contaminated soil remediation.

  17. Immobilization of radioactive strontium in contaminated soils by phosphate treatment

    International Nuclear Information System (INIS)

    Kim, K.H.; Ammons, J.T.

    1990-01-01

    The feasibility of in situ phosphate- and metal- (calcium, aluminum, and iron) solution treatment for 90 Sr immobilization was investigated. Batch and column experiments were performed to find optimum conditions for coprecipitation of 90 Sr with Ca-, Al-, and Fe-phosphate compounds in contaminated soils. Separate columns were packed with artificially 85 Sr-contaminated acid soil as well as 90 Sr-contaminated soil from the Oak Ridge Reservation. After metal-phosphate treatment, the columns were then leached successively with either tapwater or 0.001 M CaCl 2 solution. Most of the 85 Sr coprecipitated with the metal phosphate compounds. Immobilization of 85 Sr and 90 Sr was affected by such factors as solution pH, metal and phosphate concentration, metal-to-phosphate ratio, and soil characteristics. Equilibration time after treatments also affected 85 Sr immobilization. Many technology aspects still need to be investigated before field applications are feasible, but these experiments indicate that phosphate-based in situ immobilization should prevent groundwater contamination and will be useful as a treatment technology for 90 Sr-contaminated sites. 15 refs., 3 figs., 1 tab

  18. Process for in-situ biodegradation of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Ely, D.L.; Heffner, D.A.

    1991-01-01

    This patent describes an in situ process for biodegrading hydrocarbons by drawing oxygen into an undisturbed hydrocarbon contaminated zone in a fluid permeable soil. It comprises: establishing a borehole extending from the earth's surface through a hydrocarbon contaminated zone having hydrocarbon degrading microbes therein; lining the borehole with a fluid impermeable liner coaxially spaced and sealingly connected to the inside surface of the borehole and extending from the earth's surface to the hydrocarbon-contaminated zone; the liner including a fluid permeable portion extending from the lower end thereof and through at least a portion of the hydrocarbon contaminated zone, fluidly connecting a source of negative pressure to the fluid impermeable line; evacuating gas from the borehole through the fluid permeable portion of the liner at a rate sufficient to draw air from the earth's surface into the hydrocarbon containing zone; and adjusting the flow rate of the evacuated gas so that the amount of hydrocarbon biodegradation therein is within 50% of the maximum hydrocarbon biodegradation rate as detected by the volume of carbon dioxide in the evacuated gas

  19. In situ chemical fixation of arsenic-contaminated soils: Anexperimental study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Donahoe, Rona J.; Redwine, James C.

    2007-03-27

    This paper reports the results of an experimentalstudytesting a low-cost in situ chemical fixation method designed to reclaimarsenic-contaminated subsurface soils. Subsurface soils from severalindustrial sites in southeastern U.S. were contaminated with arsenicthrough heavy application of herbicide containing arsenic trioxide. Themean concentrations of environmentally available arsenic in soilscollected from the two study sites, FW and BH, are 325 mg/kg and 900mg/kg, respectively. The soils are sandy loams with varying mineralogicaland organic contents. The previous study [Yang L, Donahoe RJ. The form,distribution and mobility of arsenic in soils contaminated by arsenictrioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341]indicated that a large portion of the arsenic in both soils is associatedwith amorphous aluminum and iron oxyhydroxides and shows very slowrelease against leaching by synthetic precipitation. The soil's amorphousaluminum and iron oxyhydroxides content was found to have the mostsignificant effect on its ability to retain arsenic.Based on thisobservation, contaminated soils were reacted with different treatmentsolutions in an effort to promote the formation of insolublearsenic-bearing phases and thereby decrease the leachability of arsenic.Ferrous sulfate, potassium permanganate and calcium carbonate were usedas the reagents for the chemical fixation solutions evaluated in threesets of batch experiments: (1) FeSO4; (2) FeSO4 and KMnO4; (3) FeSO4,KMnO4 and CaCO3. The optimum treatment solutions for each soil wereidentified based on the mobility of arsenic during sequential leaching oftreated and untreated soils using the fluids described in EPA Method 1311[USEPA. Method 1311: toxicity characteristic leaching procedure. Testmethods for evaluating solid waste, physical/chemical methods. 3rd ed.Washington, DC: U.S. Environmental Protection Agency, Office of SolidWaste. U.S. Government Printing Office; 1992]toxic characteristicsleaching

  20. In situ measurements reveal extremely low pH in soil

    DEFF Research Database (Denmark)

    Nielsen, Knud Erik; Loibide, Amaia Irixar; Nielsen, Lars Peter

    2017-01-01

    We measured pH in situ in the top organic soil horizons in heathland and pine forest and found values between 2.6 and 3.2. This was 0.5e0.8 units lower than concurrent laboratory pH measurements of the same soil, which raises questions about the interpretation of pH measurements. We propose that ...... that the higher pH recorded by standard laboratory methods may be due to buffering ions from soil biota released from drying, grinding and rewetting of soil samples, whereas the in situ pH reflects the correct level of acidification....

  1. Biofilm treatment of soil for waste containment and remediation

    International Nuclear Information System (INIS)

    Turner, J.P.; Dennis, M.L.; Osman, Y.A.; Chase, J.; Bulla, L.A.

    1997-01-01

    This paper examines the potential for creating low-permeability reactive barriers for waste treatment and containment by treating soils with Beijerinckia indica, a bacterium which produces an exopolysaccharide film. The biofilm adheres to soil particles and causes a decrease in soil hydraulic conductivity. In addition, B. Indica biodegrades a variety of polycyclic aromatic hydrocarbons and chemical carcinogens. The combination of low soil hydraulic conductivity and biodegradation capabilities creates the potential for constructing reactive biofilm barriers from soil and bacteria. A laboratory study was conducted to evaluate the effects of B. Indica on the hydraulic conductivity of a silty sand. Soil specimens were molded with a bacterial and nutrient solution, compacted at optimum moisture content, permeated with a nutrient solution, and tested for k sat using a flexible-wall permeameter. Saturated hydraulic conductivity (k sat ) was reduced from 1 x 10 -5 cm/sec to 2 x 10 -8 cm/sec: by biofilm treatment. Permeation with saline, acidic, and basic solutions following formation of a biofilm was found to have negligible effect on the reduced k sat , for up to three pore volumes of flow. Applications of biofilm treatment for creating low-permeability reactive barriers are discussed, including compacted liners for bottom barriers and caps and creation of vertical barriers by in situ treatment

  2. The treatment of in situ breast cancer

    International Nuclear Information System (INIS)

    Fentiman, I.S.

    1989-01-01

    Carcinoma in situ is the earliest histologically recognisable form of malignancy and as such provides an opportunity to treat the disease in a curative way. The two major variants, ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) will be considered separately as the two conditions have divergent natural histories. DCIS is increasing in incidence since microcalcification may be detected radiologically in the screening of asymptomatic women. The extent of microcalcification may not indicate the extent of disease. It has yet to be determined whether there is a difference in behaviour of the tumour forming and the asymptomatic types of DCIS. After a biopsy has shown DCIS there will be residual DCIS at the biopsy site in one-third of patients, and multifocal DCIS in another third. A coexistent infiltrating carcinoma may be present in up to 16%. Due to sampling problems areas of invasion may be missed. Axillary nodal metastases are found in only 1% of patients with histological DCIS. Radical surgery by total or modified mastectomy is almost curative, but 3% of patients will die of metastases. Taking results of uncontrolled trials, local relapse rates are as follows: excision alone 50%, wide excision 30%, wide excision plus radiotherapy 20%. Two prospective trials are underway run by the EORTC and NSABP in which patients with DCIS are treated by wide excision with or without external radiotherapy. LCIS is usually an incidental finding with a bilateral predisposition to subsequent infiltrating carcinomas. Curative procedures such as bilateral mastectomy with reconstruction may represent overtreatment. A systemic rather than local approach would seem appropriate and a trial is now underway run by the EORTC in which patients with histologically confirmed LCIS are randomised to observation alone or to receive tamoxifen 20 mg daily for 5 years. (orig./MG)

  3. In situ stabilization of trace metals in a copper-contaminated soil using P-spiked Linz-Donawitz slag.

    Science.gov (United States)

    Negim, Osama; Mench, Michel; Bes, Clémence; Motelica-Heino, Mikael; Amin, Fouad; Huneau, Frédéric; Le Coustumer, Philippe

    2012-03-01

    A former wood exploitation revealing high Cu and As concentration of the soils served as a case study for assisted phytoextraction. P-spiked Linz-Donawitz (LD) slag was used as a soil additive to improve physico-chemical soil properties and in situ stabilize Cu and other trace metals in a sandy Cu-contaminated soil (630 mg kg⁻¹ soil). The LD slag was incorporated into the contaminated soil to consist four treatments: 0% (T1), 1% (T2), 2% (T3), and 4% (T4). A similar uncontaminated soil was used as a control (CTRL). After a 1-month reaction period, potted soils were used for a 2-week growth experiment with dwarf beans. Soil pH increased with the incorporation rate of LD slag. Similarly the soil electrical conductivity (EC, in millisiemens per centimetre) is ameliorated. Bean plants grown on the untreated soil (T1) showed a high phytotoxicity. All incorporation rates of LD slag increased the root and shoot dry weight yields compared to the T1. The foliar Ca concentration of beans was enhanced for all LD slag-amended soil, while the foliar Mg, K, and P concentrations were not increased. Foliar Cu, Zn, and Cr concentrations of beans decreased with the LD slag incorporation rate. P-spiked LD slag incorporation into polluted soil allow the bean growth and foliar Ca concentration, but also to reduce foliar Cu concentration below its upper critical value avoiding an excessive soil EC and Zn deficiency. This dual effect can be of interest for soil remediation at larger scale.

  4. A novel phytoremediation technology shown to remediate petroleum hydrocarbons from soils in situ

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.D.; Yu, X.M.; Gerhardt, K.; Glick, B.; Greenberg, B [Waterloo Environmental Biotechnology Inc., Hamilton, ON (Canada); Waterloo Univ., ON (Canada). Dept. of Biology

    2009-04-01

    This article described a newly developed, advanced microbe-enhanced phytoremediation system that can be used to remediate lands polluted by hydrocarbons, salts and metals. The technology uses 3 complementary processes to achieve effective remediation of strongly bound persistent organic pollutants (POPs) from soil. The remediation process involves physical soil treatment, photochemical photooxidation, microbial remediation and growth of plants treated with plant growth promoting rhizobacteria (PGPR). The PGPR-enhanced phytoremediation system (PEPS) alleviates plant stress and increases biodegradation activities, thereby accelerating plant growth in the presence of POPs or poor soils. The PEPS has been used successfully to remove petroleum hydrocarbons (PHCs) from impacted soils in situ at several sites across Canada. Studies have shown that the PHCs are degraded in the rhizosphere. This article also presented a summary of the work conducted at 3 sites in Alberta. It took only 2 years to remediate the 3 sites to levels required for site closure under Alberta Tier 1 guidelines. It was concluded that PEPS is equally effective for total PHC and Fraction 3 CCME hydrocarbons. 1 tab., 3 figs.

  5. Large-scale experience with biological treatment of contaminated soil

    International Nuclear Information System (INIS)

    Schulz-Berendt, V.; Poetzsch, E.

    1995-01-01

    The efficiency of biological methods for the cleanup of soil contaminated with total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAH) was demonstrated by a large-scale example in which 38,000 tons of TPH- and PAH-polluted soil was treated onsite with the TERRAFERM reg-sign degradation system to reach the target values of 300 mg/kg TPH and 5 mg/kg PAH. Detection of the ecotoxicological potential (Microtox reg-sign assay) showed a significant decrease during the remediation. Low concentrations of PAH in the ground were treated by an in situ technology. The in situ treatment was combined with mechanical measures (slurry wall) to prevent the contamination from dispersing from the site

  6. A simplified in-situ electrochemical decontamination of lead from polluted soil (abstract)

    International Nuclear Information System (INIS)

    Ansari, T.M.; Ahmad, I.; Khan, Q.M.; Chaudhry, A.H.

    2011-01-01

    This paper reports a simplified In-Situ electrochemical method for remediation of field soil contaminated with lead. A series of electrochemical decontamination experiments including variable conditions such as operating duration and application of enhancement reagent were performed to demonstrate the efficiency of lead removal from spiked and polluted soil samples collected from Lahore, Pakistan. The results showed that the efficiency of lead removal from the contaminated soil increased with increasing the operating duration under a set of experimental conditions. The reagent used as complexing and solubilizing agent i.e. EDTA was found to be efficient in removing lead from the polluted soil. After 15 days duration, 85 % lead removal efficiency was observed in spiked soil under enhanced conditions , however, 63 % lead removal was achieved from the polluted soil samples by the simplified In-situ electrochemical decontamination method. The method is simple, rapid, cheaper and suitable for soil remediation purposes. (author)

  7. Comparative review of techniques used for in situ remediation of contaminated soils

    International Nuclear Information System (INIS)

    Escusol Tomey, M.; Rodriguez Abad, R.

    2014-01-01

    Soil pollution may influence the geotechnical parameters of the soil itself, properties such as solid particle density or water within its pores. It may also vary its friction angle, modify its structure and texture, or change the properties of its constitutive minerals due to the inclusion of polluting components. For these reasons, soil decontamination is an important factor to consider in geotechnics. This work focuses on those soil decontamination techniques carried out in situ, since they allow to eliminate soil pollutants in a less invasive way than confinement, containment or ex situ remediation techniques, causing a minor soil alteration and, therefore, affecting less to its mechanical properties. These factors should be taken into account when carrying out a geotechnical performance on a previously decontaminated soil. (Author)

  8. Electrokinetic treatment of contaminated soils, sludges, and lagoons

    International Nuclear Information System (INIS)

    Wittle, J.K.; Pamukcu, S.

    1993-04-01

    The electrokinetic process is an emerging technology for in-situ soil decontamination, in which chemical species, both ionic and nonionic are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. Electrokinetics refer to movement of water, ions and charged particles relative to one another under the action of an applied direct current electric field. In a porous compact matrix of surface charged particles such as soil, the ion containing pore fluid may be made to flow to collection sites under the applied field. This report describes the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentration of a selected heavy metal salt solution or an organic compound. Metals, surrogate radio nuclides and organic compounds evaluated in the program were representatives of those found at a majority of DOE sites. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. The best removals, from about 85 to 95% were achieved at the anode side of the soil specimens. Transient pH change had an effect on the metal movement via transient creation of different metal species with different ionic mobilities, as well as changing of the surface characteristics of the soil medium

  9. Electrokinetic treatment of contaminated soils, sludges, and lagoons. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wittle, J.K. [Electro-Petroleum, Inc., Wayne, PA (United States); Pamukcu, S. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Civil Engineering

    1993-04-01

    The electrokinetic process is an emerging technology for in-situ soil decontamination, in which chemical species, both ionic and nonionic are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. Electrokinetics refer to movement of water, ions and charged particles relative to one another under the action of an applied direct current electric field. In a porous compact matrix of surface charged particles such as soil, the ion containing pore fluid may be made to flow to collection sites under the applied field. This report describes the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentration of a selected heavy metal salt solution or an organic compound. Metals, surrogate radio nuclides and organic compounds evaluated in the program were representatives of those found at a majority of DOE sites. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. The best removals, from about 85 to 95% were achieved at the anode side of the soil specimens. Transient pH change had an effect on the metal movement via transient creation of different metal species with different ionic mobilities, as well as changing of the surface characteristics of the soil medium.

  10. In situ measurement of some soil properties in paddy soil using visible and near-infrared spectroscopy.

    Directory of Open Access Journals (Sweden)

    Ji Wenjun

    Full Text Available In situ measurements with visible and near-infrared spectroscopy (vis-NIR provide an efficient way for acquiring soil information of paddy soils in the short time gap between the harvest and following rotation. The aim of this study was to evaluate its feasibility to predict a series of soil properties including organic matter (OM, organic carbon (OC, total nitrogen (TN, available nitrogen (AN, available phosphorus (AP, available potassium (AK and pH of paddy soils in Zhejiang province, China. Firstly, the linear partial least squares regression (PLSR was performed on the in situ spectra and the predictions were compared to those with laboratory-based recorded spectra. Then, the non-linear least-square support vector machine (LS-SVM algorithm was carried out aiming to extract more useful information from the in situ spectra and improve predictions. Results show that in terms of OC, OM, TN, AN and pH, (i the predictions were worse using in situ spectra compared to laboratory-based spectra with PLSR algorithm (ii the prediction accuracy using LS-SVM (R2>0.75, RPD>1.90 was obviously improved with in situ vis-NIR spectra compared to PLSR algorithm, and comparable or even better than results generated using laboratory-based spectra with PLSR; (iii in terms of AP and AK, poor predictions were obtained with in situ spectra (R2<0.5, RPD<1.50 either using PLSR or LS-SVM. The results highlight the use of LS-SVM for in situ vis-NIR spectroscopic estimation of soil properties of paddy soils.

  11. Treatment options for carcinoma in situ testis

    DEFF Research Database (Denmark)

    Mortensen, M S; Gundgaard, M.G.; Daugaard, G

    2011-01-01

    countries only offer this to high-risk patients. The treatment options range from orchidectomy and chemotherapy to radiotherapy and in rare cases surveillance. Results of the different treatment strategies are presented in this review. The optimal radiation dose is still not clarified. Most patients have...

  12. Fate of triclocarban during soil aquifer treatment: Soil column studies

    KAUST Repository

    Essandoh, H. M K; Tizaoui, Chedly; Mohamed, Mostafa H A; Amy, Gary L.; Brdjanovic, Damir

    2010-01-01

    There are current concerns about the presence of persistent chemicals in recharge water used in soil aquifer treatment systems. Triclocarban (TCC) has been reported as a persistent, high production volume chemical with the potential to bioaccumulate

  13. Comparison of in situ gamma soil analysis and soil sampling data for mapping 241Am and 239Pu soil concentrations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kirby, J.A.; Anspaugh, L.R.; Phelps, P.L.; Huckabay, G.W.; Markwell, F.; Barnes, M.

    1976-01-01

    Soil sampling and in situ 241 Am-gamma counting with an array of four high purity, planar, Ge detectors are compared as means of determining soil concentration contours of plutonium and their associated uncertainties. Results of this survey, which covered an area of approximately 300,000 m 2 , indicate that with one-third the number of sampling locations, the in situ gamma survey provided soil concentration contours with confidence intervals that were about one-third as wide as those obtained with soil sampling. The methods of the survey are described and a discussion of advantages and limitations of both methods is given

  14. Comparison of in situ gamma soil analysis and soil sampling data for mapping 241Am and 239Pu soil concentrations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kirby, J.A.; Anspaugh, L.R.; Phelps, P.L.; Huckabay, G.W.; Markwell, F.R.; Barnes, M.G.

    1977-01-01

    Soil sampling and in situ 241 Am-gamma counting with an array of four high-purity, planar, Ge detectors are compared as means of determining soil concentration contours of plutonium and their associated uncertainties. Results of this survey, which covered an area of approximately 300,000 m 2 , indicate that with one-third the number of sampling locations, the in situ gamma survey provided soil concentration contours with confidence intervals that were about one-third as wide as those obtained with soil sampling. The methods of the survey are described and a discussion of advantages and limitations of both methods is given

  15. Chemical treatments of soil to decrease radiostrontium leachability

    International Nuclear Information System (INIS)

    Spalding, B.P.

    1980-01-01

    The ready leachability of radiostrontium from radioactive waste is one of the most salient problems with shallow-land burial as a disposal method. The continuous leaching of buried waste at the Oak Ridge National Laboratory, for periods up to thirty years, has led to contamination of significant volumes of soil with 90 Sr. The goal of the present investigation was to evaluate methods to effect the in situ fixation or decrease the leachability of 90 Sr from soil. Small columns of three soils, collected from the solid waste disposal areas at ORNL, were labelled with 85 Sr as a convenient tracer for 90 Sr. After this labelling but prior to leaching, the soil columns were percolated with equivalent amounts of sodium salt solutions of hydroxide, fluoride, carbonate, phosphate, silicate, or aluminate. Leaching was then initiated with 0.1 N CaCl 2 (calcium chloride), and fractions of the leachate were analyzed for 85 Sr. The CaCl 2 solution was selected to qualitatively simulate groundwater which contains Ca as the dominant dissolved cation. With two soils which were high in indigenous exchangeable Ca, only 30 to 35% of the 85 Sr could be leached from the carbonate-treated columns. Presumably, the 85 Sr was coprecipitated with the nascent CaCO 3 formed during this treatment. In contrast, greater than 98% of the 85 Sr was readily leached from all untreated soils. Other anions fixed variable but generally less 85 Sr than the carbonate treatment. Thus, sodium carbonate appears to have potential application to immobilize 90 Sr in situ in contaminated soil

  16. Effects of Triton X-100 and Quillaya Saponin on the ex situ bioremediation of a chronically polychlorobiphenyl-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Fava, F.; Di Gioia, D. [Bologna Univ. (Italy). Dept. of Applied Chemistry and Material Science

    1998-12-31

    The possibility of enhancing the ex situ bioremediation of a chronically polychlorinated biphenyl (PCB)-contaminated soil by using Triton X-100 or Quillaya Saponin, a synthetic and a biogenic surfactant, respectively, was studied. The soil, which contained about 350 mg/kg of PCBs and indigenous aerobic bacteria capable of growing on biphenyl or on monochlorobenzoic acids, was amended with inorganic nutrients and biphenyl, saturated with water and treated in aerobic batch slurry- and fixed-phase reactors. Triton X-100 and Quillays Saponin were added to the reactors at a final concentration of 10 g/l at the 42nd day of treatment, and at the 43rd and 100th day, respectively. Triton X-100 was not metabolised by the soil microflora and it exerted inhibitory effects on the indigenous bacteria. Quillaya Saponin, on the contrary, was readily metabolised by the soil microflora. Under slurry-phase conditions, Triton X-100 negatively influenced the soil bioremediation process by affecting the availability of the chlorobenzoic acid degrading indigenous bacteria, wheres Quillays Saponin slightly enhanced the biological degradation and dechlorination of the soil PCBs. In the fixed-phase reactors, where both the surfactant availability and the mixing of the soil were lower, Triton X-100 did not exert inhibitory effects on the soil biomass and enhanced significantly the soil PCB depletion, whereas Quillays Saponin did not influence the bioremediation process. (orig.)

  17. Demonstration, testing, & evaluation of in situ heating of soil. Draft final report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-02-12

    This document is a draft final report (Volume 1) for US DOE contract entitled, {open_quotes}Demonstration Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120{degrees} to 130{degrees}C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow.

  18. Demonstration, testing, ampersand evaluation of in situ heating of soil. Draft final report, Volume I

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-01-01

    This document is a draft final report (Volume 1) for US DOE contract entitled, open-quotes Demonstration Testing and Evaluation of In Situ Soil Heating,close quotes Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120 degrees to 130 degrees C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow

  19. Effective soil-stiffness validation : Shaker excitation of an in-situ monopile foundation

    NARCIS (Netherlands)

    Versteijlen, W.G.; Renting, F.W.; van der Valk, P. L.C.; van Dalen, K.N.; Metrikine, A.

    2017-01-01

    In an attempt to decrease the modelling uncertainty associated with the soil-structure interaction of large-diameter monopile foundations, a hydraulic shaker was used to excite a real-sized, in-situ monopile foundation in stiff, sandy soil in a near-shore wind farm. The response in terms of

  20. Quantitative comparison of in situ soil CO2 flux measurement methods

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose

    2002-01-01

    Development of reliable regional or global carbon budgets requires accurate measurement of soil CO2 flux. We conducted laboratory and field studies to determine the accuracy and comparability of methods commonly used to measure in situ soil CO2 fluxes. Methods compared included CO2...

  1. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil

    Directory of Open Access Journals (Sweden)

    Martínez-Toledo Ángeles

    2013-01-01

    Full Text Available In situ biosurfactant (rhamnolipid production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus, P. putida addition, and addition of both (P. putida and nutrients. The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p < 0.019 between TPH concentration (mg/kg and surface tension (mN/m, When both bacteria and nutrients were involved, TPH levels were lowered to 33.7%, and biosurfactant production and surface tension were 2.03 mg/kg and 67.3 mN/m, respectively. In irradiated soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p < 0.009 was observed. When the nutrients and P. putida were added, TPH removal was 61.1%, 1.85 mg/kg of biosurfactants were produced, and the surface tension was 55.6 mN/m. In summary, in irradiated and non-irradiated soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil.

  2. A new in-situ method to determine the apparent gas diffusion coefficient of soils

    Science.gov (United States)

    Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin

    2015-04-01

    Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.

  3. Demonstration, testing, and evaluation of in situ heating of soil. Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-04-05

    This document is a final reports in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating.

  4. Demonstration, testing, and evaluation of in situ heating of soil. Volume 1, Final report

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-01-01

    This document is a final reports in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating

  5. Visualization of Enzyme Activities in Earthworm Biopores by In Situ Soil Zymography.

    Science.gov (United States)

    Razavi, Bahar S; Hoang, Duyen; Kuzyakov, Yakov

    2017-01-01

    Earthworms produce biopores with strongly increased microbial and enzyme activities and consequently they form microbial hotspots in soil. In extremely dynamic microhabitats and hotspots such as earthworm biopores, the in situ enzyme activities are a footprint of process rates and complex biotic interactions. The effect of earthworms on enzyme activities inside biopores, relative to earthworm-free soil, can be visualized by in situ soil zymography. Here, we describe the details of the approach and discuss its advantages and limitations. Direct zymography provides high spatial resolution for quantitative images of enzyme activities in biopores.

  6. Biological Treatment of Petroleum in Radiologically Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    BERRY, CHRISTOPHER

    2005-11-14

    This chapter describes ex situ bioremediation of the petroleum portion of radiologically co-contaminated soils using microorganisms isolated from a waste site and innovative bioreactor technology. Microorganisms first isolated and screened in the laboratory for bioremediation of petroleum were eventually used to treat soils in a bioreactor. The bioreactor treated soils contaminated with over 20,000 mg/kg total petroleum hydrocarbon and reduced the levels to less than 100 mg/kg in 22 months. After treatment, the soils were permanently disposed as low-level radiological waste. The petroleum and radiologically contaminated soil (PRCS) bioreactor operated using bioventing to control the supply of oxygen (air) to the soil being treated. The system treated 3.67 tons of PCRS amended with weathered compost, ammonium nitrate, fertilizer, and water. In addition, a consortium of microbes (patent pending) isolated at the Savannah River National Laboratory from a petroleum-contaminated site was added to the PRCS system. During operation, degradation of petroleum waste was accounted for through monitoring of carbon dioxide levels in the system effluent. The project demonstrated that co-contaminated soils could be successfully treated through bioventing and bioaugmentation to remove petroleum contamination to levels below 100 mg/kg while protecting workers and the environment from radiological contamination.

  7. The application of in situ air sparging as an innovative soils and ground water remediation technology

    International Nuclear Information System (INIS)

    Marley, M.C.; Hazebrouck, D.J.; Walsh, M.T.

    1992-01-01

    Vapor extraction (soil venting) has been demonstrated to be a successful and cost-effective remediation technology for removing VOCs from the vadose (unsaturated) zone. However, in many cases, seasonal water table fluctuations, drawdown associated with pump-and-treat remediation techniques, and spills involving dense, non-aqueous phase liquids (DNAPLS) create contaminated soil below the water table. Vapor extraction alone is not considered to be an optimal remediation technology to address this type of contamination. An innovative approach to saturated zone remediation is the use of sparging (injection) wells to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below the areas of contamination. The contaminants dissolved in the ground water and sorbed onto soil particles partition into the advective air phase, effectively simulating an in situ air-stripping system. The stripped contaminants are transported in the gas phase to the vadose zone, within the radius of influence of a vapor extraction and vapor treatment system. In situ air sparging is a complex multifluid phase process, which has been applied successfully in Europe since the mid-1980s. To date, site-specific pilot tests have been used to design air-sparging systems. Research is currently underway to develop better engineering design methodologies for the process. Major design parameters to be considered include contaminant type, gas injection pressures and flow rates, site geology, bubble size, injection interval (areal and vertical) and the equipment specifications. Correct design and operation of this technology has been demonstrated to achieve ground water cleanup of VOC contamination to low part-per-billion levels

  8. In-situ spectrometry of {sup 137}Cs in the soil by unfolding method

    Energy Technology Data Exchange (ETDEWEB)

    Fueloep, M; Ragan, P [Inst. of Preventive and Clinical Medicine, 833301 Bratislava (Slovakia); Krnac, S [Slovak Technical Univ., Bratislava (Slovakia)

    1996-12-31

    This contribution is aimed to the possibility of improving the in-situ gamma spectrometry to be independent on a knowledge about a depth distribution of {sup 137}Cs in soil and sufficiently sensitive for the measurement of the post-Chernobyl {sup 137}Cs at present, as well. The depth distribution of {sup 137}Cs averaged over a large area of soil is obtained by unfolding of the detector responses to primary and in soil forward scattered photons. The proposed method employs detector with and without collimator. The {sup 137}Cs distributions obtained in-situ measurements are analysed, and comparisons are made to the results obtained with soil sampling and with standard in-situ spectrometry, as well. 5 figs., 1 tab., 4 refs.

  9. In-situ spectrometry of 137Cs in the soil by unfolding method

    International Nuclear Information System (INIS)

    Fueloep, M.; Ragan, P.; Krnac, S.

    1995-01-01

    This contribution is aimed to the possibility of improving the in-situ gamma spectrometry to be independent on a knowledge about a depth distribution of 137 Cs in soil and sufficiently sensitive for the measurement of the post-Chernobyl 137 Cs at present, as well. The depth distribution of 137 Cs averaged over a large area of soil is obtained by unfolding of the detector responses to primary and in soil forward scattered photons. The proposed method employs detector with and without collimator. The 137 Cs distributions obtained in-situ measurements are analysed, and comparisons are made to the results obtained with soil sampling and with standard in-situ spectrometry, as well. 5 figs., 1 tab., 4 refs

  10. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Science.gov (United States)

    Demyan, M. S.; Rasche, F.; Schütt, M.; Smirnova, N.; Schulz, E.; Cadisch, G.

    2013-05-01

    An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA) in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS) is being proposed to rapidly characterize soil organic matter (SOM) to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2) in order to relate evolved gas (i.e., CO2) to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i) the Static Fertilization Experiment, Bad Lauchstädt (Chernozem), from treatments of farmyard manure (FYM), mineral fertilizer (NPK), their combination (FYM + NPK) and control without fertilizer inputs; (ii) Kraichgau; and (iii) Swabian Alb (Cambisols) areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM), sand and stable aggregates (Sa + A), silt and clay (Si + C), and NaOCl oxidized Si + C (rSOC) to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm-1) being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min-1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS) for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max). Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the Chernozem

  11. Rapid in situ assessment for predicting soil quality using an algae-soaked disc seeding assay.

    Science.gov (United States)

    Nam, Sun-Hwa; Moon, Jongmin; Kim, Shin Woong; Kim, Hakyeong; Jeong, Seung-Woo; An, Youn-Joo

    2017-11-16

    The soil quality of remediated land is altered and this land consequently exerts unexpected biological effects on terrestrial organisms. Therefore, field evaluation of such land should be conducted using biological indicators. Algae are a promising new biological indicator since they are a food source for organisms in higher soil trophic levels and easily sampled from the soil. Field evaluation of soil characteristics is preferred to be testing in laboratory conditions because many biological effects cannot be duplicated during laboratory evaluations. Herein, we describe a convenient and rapid algae-soaked disc seeding assay for assessing soil quality in the field based on soil algae. The collection of algae is easy and rapid and the method predicts the short-term quality of contaminated, remediated, and amended farm and paddy soils. The algae-soaked disc seeding assay is yet to be extensively evaluated, and the method cannot be applied to loamy sand soil in in situ evaluations. The algae-soaked disc seeding assay is recommended for prediction of soil quality in in situ evaluations because it reflects all variations in the environment. The algae-soaked disc seeding assay will help to develop management strategies for in situ evaluation.

  12. Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons.

    Science.gov (United States)

    Huguenot, David; Mousset, Emmanuel; van Hullebusch, Eric D; Oturan, Mehmet A

    2015-04-15

    In order to improve the efficiency of soil washing treatment of hydrocarbon contaminated soils, an innovative combination of this soil treatment technique with an electrochemical advanced oxidation process (i.e. electro-Fenton (EF)) has been proposed. An ex situ soil column washing experiment was performed on a genuinely diesel-contaminated soil. The washing solution was enriched with surfactant Tween 80 at different concentrations, higher than the critical micellar concentration (CMC). The impact of soil washing was evaluated on the hydrocarbons concentration in the leachates collected at the bottom of the soil columns. These eluates were then studied for their degradation potential by EF treatment. Results showed that a concentration of 5% of Tween 80 was required to enhance hydrocarbons extraction from the soil. Even with this Tween 80 concentration, the efficiency of the treatment remained very low (only 1% after 24 h of washing). Electrochemical treatments performed thereafter with EF on the collected eluates revealed that the quasi-complete mineralization (>99.5%) of the hydrocarbons was achieved within 32 h according to a linear kinetic trend. Toxicity was higher than in the initial solution and reached 95% of inhibition of Vibrio fischeri bacteria measured by Microtox method, demonstrating the presence of remaining toxic compounds even after the complete degradation. Finally, the biodegradability (BOD₅/COD ratio) reached a maximum of 20% after 20 h of EF treatment, which is not enough to implement a combined treatment with a biological treatment process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. In situ pilot test for bioremediation of energetic compound-contaminated soil at a former military demolition range site.

    Science.gov (United States)

    Jugnia, Louis B; Manno, Dominic; Drouin, Karine; Hendry, Meghan

    2018-05-04

    Bioremediation was performed in situ at a former military range site to assess the performance of native bacteria in degrading hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitrotoluene (2,4-DNT). The fate of these pollutants in soil and soil pore water was investigated as influenced by waste glycerol amendment to the soil. Following waste glycerol application, there was an accumulation of organic carbon that promoted microbial activity, converting organic carbon into acetate and propionate, which are intermediate compounds in anaerobic processes. This augmentation of anaerobic activity strongly correlated to a noticeable reduction in RDX concentrations in the amended soil. Changes in concentrations of RDX in pore water were similar to those observed in the soil suggesting that RDX leaching from the soil matrix, and treatment with waste glycerol, contributed to the enhanced removal of RDX from the water and soil. This was not the case with 2,4-DNT, which was neither found in pore water nor affected by the waste glycerol treatment. Results from saturated conditions and Synthetic Precipitation Leaching Procedure testing, to investigate the environmental fate of 2,4-DNT, indicated that 2,4-DNT found on site was relatively inert and was likely to remain in its current state on the site.

  14. In situ subsoil stress-strain behaviour in relation to soil precompression stress

    DEFF Research Database (Denmark)

    Keller, T; Arvidsson, J; Schjønning, Per

    2012-01-01

    is assumed to be elastic and reversible as long as [sigma] work examined soil stress-strain behavior as measured in situ during wheeling experiments and related it to the stress-strain behavior and [sigma]pc measured on soil cores in uniaxial compression tests in the laboratory. The data......Soil compaction negatively influences many important soil functions, including crop growth. Compaction occurs when the applied stress, [sigma], overcomes the soil strength. Soil strength in relation to compaction is typically expressed by the soil precompression stress, [sigma]pc. Deformation...... analyzed were from a large number of wheeling experiments carried out in Sweden and Denmark on soils with a wide range of texture. Contradicting the concept of precompression stress, we observed residual strain, [Latin Small Letter Open E]res, at [sigma

  15. Bioventing in the subarctic: Field scale implementation of soil heating to allow in situ vadose zone biodegradation throughout the year

    International Nuclear Information System (INIS)

    Oram, D.E.; Winters, A.T.; Winsor, T.R.

    1994-01-01

    Bioventing is a technique of in situ bioremediation of contaminants in unsaturated zone soils that has advantages over other technologies such as soil vapor extraction. At locations where off-gas treatment would be required, bioventing can be a more cost-effective method of remediation. Using bioventing to remediate petroleum hydrocarbons in the vadose zone soils in extremely cold climates may be augmented by heating the subsurface soils. The US Air Force has conducted a bioventing feasibility study at Eielson Air Force Base since 1991. The feasibility study evaluated different methods of heating soils to maintain biodegradation rates through the winter. Results from this study were used to optimize the design of a full-scale bioventing system that incorporated a soil heating system. The system installed consists of the typical components of a bioventing system including an air injection blower, a system to distribute air in the vadose zone, and a monitoring system. To maintain biodegradation at a constant rate throughout the year, soil heating and temperature monitoring systems were also installed. Results to date indicate that summer soil temperatures and biodegradation of hydrocarbons have been maintained through the winter

  16. Polluted soils with heavy metals. Stabilization by magnesium oxide. Ex-situ and in-situ testings; Suelos contaminados con metales pesados. Estabilizacion con oxido de magnesio. Ensayos ex situ-in situ

    Energy Technology Data Exchange (ETDEWEB)

    Cenoz, S.; Hernandez, J.; Gangutia, N.

    2004-07-01

    This work describes the use of Low-Grade MgO as a stabiliser agent for polluted soil reclaim. Low-Grade MgO may be an economically feasible alternative in the stabilisation of heavy metals from heavily contaminated soils. The effectiveness of Low-Grade MgO has been studied in three ex-situ stabilisation of heavily polluted soils contaminated by the flue-dust of pyrite roasting. LG-MgO provides an alkali reservoir guaranteeing long-term stabilisation without varying the pH conditions. The success of the ex-situ stabilisation was corroborated with the analysis of heavy metals in the leachates collected from the landfill o ver a long period of time. The study also includes the results obtained in an in-situ pilot scale stabilisation of contaminated soil. (Author) 17 refs.

  17. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization.

    Science.gov (United States)

    Zhai, Xiuqing; Li, Zhongwu; Huang, Bin; Luo, Ninglin; Huang, Mei; Zhang, Qiu; Zeng, Guangming

    2018-09-01

    The remediation of heavy metal-contaminated soils is a great challenge for global environmental sciences and engineering. To control the ecological risks of heavy metal-contaminated soil more effectively, the present study focused on the combination of soil washing (with FeCl 3 ) and in situ immobilization (with lime, biochar, and black carbon). The results showed that the removal rate of Cd, Pb, Zn, and Cu was 62.9%, 52.1%, 30.0%, and 16.7%, respectively, when washed with FeCl 3 . After the combined remediation (immobilization with 1% (w/w) lime), the contaminated soils showed 36.5%, 73.6%, 70.9%, and 53.4% reductions in the bioavailability of Cd, Cu, Pb, and Zn (extracted with 0.11M acetic acid), respectively, than those of the soils washed with FeCl 3 only. However, the immobilization with 1% (w/w) biochar or 1% (w/w) carbon black after washing exhibited low effects on stabilizing the metals. The differences in effects between the immobilization with lime, biochar, and carbon black indicated that the soil pH had a significant influence on the lability of heavy metals during the combined remediation process. The activity of the soil enzymes (urease, sucrase, and catalase) showed that the addition of all the materials, including lime, biochar, and carbon black, exhibited positive effects on microbial remediation after soil washing. Furthermore, lime was the most effective material, indicating that low soil pH and high acid-soluble metal concentrations might restrain the activity of soil enzymes. Soil pH and nutrition were the major considerations for microbial remediation during the combined remediation. These findings suggest that the combination of soil washing and in situ immobilization is an effective method to amend the soils contaminated with multiple heavy metals. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Uranium-contaminated soil pilot treatment study

    International Nuclear Information System (INIS)

    Turney, W.R.J.R.; Mason, C.F.V.; Michelotti, R.A.

    1996-01-01

    A pilot treatment study is proving to be effective for the remediation of uranium-contaminated soil from a site at the Los Alamos National Laboratory by use of a two-step, zero-discharge, 100% recycle system. Candidate uranium-contaminated soils were characterized for uranium content, uranium speciation, organic content, size fractionization, and pH. Geochemical computer codes were used to forecast possible uranium leach scenarios. Uranium contamination was not homogenous throughout the soil. In the first step, following excavation, the soil was sorted by use of the ThemoNuclean Services segmented gate system. Following the sorting, uranium-contaminated soil was remediated in a containerized vat leach process by use of sodium-bicarbonate leach solution. Leach solution containing uranium-carbonate complexes is to be treated by use of ion-exchange media and then recycled. Following the treatment process the ion exchange media will be disposed of in an approved low-level radioactive landfill. It is anticipated that treated soils will meet Department of Energy site closure guidelines, and will be given open-quotes no further actionclose quotes status. Treated soils are to be returned to the excavation site. A volume reduction of contaminated soils will successfully be achieved by the treatment process. Cost of the treatment (per cubic meter) is comparable or less than other current popular methods of uranium-contamination remediation

  19. Remediation of contaminated soil by cement treatment

    International Nuclear Information System (INIS)

    Dimovic, S.

    2004-01-01

    This manuscript presents the most applicable remedial technologies for contaminated soil with focus on cement stabilisation/solidification treatment. These technologies are examined in the light of soil contamination with depleted uranium in the large area of south Serbia,after Nato bombing 1999. (author) [sr

  20. Biological treatment: Soil impacted with crude oil

    International Nuclear Information System (INIS)

    Gilbertson, N.; Severns, J.J.

    1992-01-01

    Biological land treatment proved to be a successful way to manage contamination at a California oil and gas production property. During the project, approximately 120,000 yards of contaminated soil was treated in the treatment plots to below the cleanup goals of 1,000 milligrams per kilograms (mg/kg) total petroleum hydrocarbons. In general, remaining hydrocarbon levels in treated soil were the 200 mg/kg total petroleum hydrocarbons range or lower. Cleanup goals were achieved in less than 2 months for each lift of soil treated. The treated soil was used as fill material in the excavation. No significant odor problems occurred during the project. Groundwater monitoring confirmed that no impact to groundwater occurred due to the biological land treatment process. Design of the treatment plan and regulatory requirements are also discussed

  1. Estimating cumulative soil accumulation rates with in situ-produced cosmogenic nuclide depth profiles

    International Nuclear Information System (INIS)

    Phillips, William M.

    2000-01-01

    A numerical model relating spatially averaged rates of cumulative soil accumulation and hillslope erosion to cosmogenic nuclide distribution in depth profiles is presented. Model predictions are compared with cosmogenic 21 Ne and AMS radiocarbon data from soils of the Pajarito Plateau, New Mexico. Rates of soil accumulation and hillslope erosion estimated by cosmogenic 21 Ne are significantly lower than rates indicated by radiocarbon and regional soil-geomorphic studies. The low apparent cosmogenic erosion rates are artifacts of high nuclide inheritance in cumulative soil parent material produced from erosion of old soils on hillslopes. In addition, 21 Ne profiles produced under conditions of rapid accumulation (>0.1 cm/a) are difficult to distinguish from bioturbated soil profiles. Modeling indicates that while 10 Be profiles will share this problem, both bioturbation and anomalous inheritance can be identified with measurement of in situ-produced 14 C

  2. An in situ method for real-time monitoring of soil gas diffusivity

    Science.gov (United States)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect

  3. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime

    International Nuclear Information System (INIS)

    Denyes, Mackenzie J.; Rutter, Allison; Zeeb, Barbara A.

    2013-01-01

    The in situ use of carbon amendments such as activated carbon (AC) and biochar to minimize the bioavailability of organic contaminants is gaining in popularity. In the first in situ experiment conducted at a Canadian PCB-contaminated Brownfield site, GAC and two types of biochar were statistically equal at reducing PCB uptake into plants. PCB concentrations in Cucurbita pepo root tissue were reduced by 74%, 72% and 64%, with the addition of 2.8% GAC, Burt's biochar and BlueLeaf biochar, respectively. A complementary greenhouse study which included a bioaccumulation study of Eisenia fetida (earthworm), found mechanically mixing carbon amendments with PCB-contaminated soil (i.e. 24 h at 30 rpm) resulted in shoot, root and worm PCB concentrations 66%, 59% and 39% lower than in the manually mixed treatments (i.e. with a spade and bucket). Therefore, studies which mechanically mix carbon amendments with contaminated soil may over-estimate the short-term potential to reduce PCB bioavailability. Highlights: •Biochar and GAC reduced PCB uptake into plants and earthworms. •Biochar offered additional benefits, including increased plant and earthworm biomass. •BSAF reductions are greater when amendments are mechanically vs. manually mixed. •Mechanically mixing carbon amendments may over-estimate their remediation potential. -- In situ AC and biochar soil amendments perform equally well at reducing PCB uptake, however, laboratory-based mixing methods may exaggerate the sorptive capacities of both amendments

  4. Soil treatment to remove uranium and related mixed radioactive contaminants. Final report September 1992--October 1995

    International Nuclear Information System (INIS)

    1996-07-01

    A research and development project to remove uranium and related radioactive contaminants from soil by an ultrasonically-aided chemical leaching process began in 1993. The project objective was to develop and design, on the basis of bench-scale and pilot-scale experimental studies, a cost-effective soil decontamination process to produce a treated soil containing less than 35 pCi/g. The project, to cover a period of about thirty months, was designed to include bench-scale and pilot-scale studies to remove primarily uranium from the Incinerator Area soil, at Fernald, Ohio, as well as strontium-90, cobalt-60 and cesium-137 from a Chalk River soil, at the Chalk River Laboratories, Ontario. The project goal was to develop, design and cost estimate, on the basis of bench-scale and pilot-scale ex-situ soil treatment studies, a process to remove radionuclides form the soils to a residual level of 35 pCi/g of soil or less, and to provide a dischargeable water effluent as a result of soil leaching and a concentrate that can be recovered for reuse or solidified as a waste for disposal. In addition, a supplementary goal was to test the effectiveness of in-situ soil treatment through a field study using the Chalk River soil

  5. In situ formation of magnetite reactive barriers in soil for waste stabilization

    Science.gov (United States)

    Moore, Robert C.

    2003-01-01

    Reactive barriers containing magnetite and methods for making magnetite reactive barriers in situ in soil for sequestering soil contaminants including actinides and heavy metals, organic materials, iodine and technetium are disclosed. According to one embodiment, a two-step reagent introduction into soil takes place. In the first step, free oxygen is removed from the soil by separately injecting into the soil aqueous solutions of iron (II) salt, for example FeCl.sub.2, and base, for example NaOH or NH.sub.3 in about a 1:1 volume ratio. Then, in the second step, similar reagents are injected a second time (however, according to about a 1:2 volume ratio, iron to salt) to form magnetite. The magnetite formation is facilitated, in part, due to slow intrusion of oxygen into the soil from the surface. The invention techniques are suited to injection of reagents into soil in proximity to a contamination plume or source allowing in situ formation of the reactive barrier at the location of waste or hazardous material. Mixing of reagents to form. precipitate is mediated and enhanced through movement of reagents in soil as a result of phenomena including capillary action, movement of groundwater, soil washing and reagent injection pressure.

  6. enhanced ex-situ bioremediation of soil contaminated

    African Journals Online (AJOL)

    user

    refinery waste effluent having total organic compound (TOC) as model organic pollutant. .... the surface layer using white tissue paper. A soil .... the electrical stimulation of microbial PCB degradation in ... decrease of toxicity for bacterial action.

  7. Phosphate interference during in situ treatment for arsenic in groundwater.

    Science.gov (United States)

    Brunsting, Joseph H; McBean, Edward A

    2014-01-01

    Contamination of groundwater by arsenic is a problem in many areas of the world, particularly in West Bengal (India) and Bangladesh, where reducing conditions in groundwater are the cause. In situ treatment is a novel approach wherein, by introduction of dissolved oxygen (DO), advantages over other treatment methods can be achieved through simplicity, not using chemicals, and not requiring disposal of arsenic-rich wastes. A lab-scale test of in situ treatment by air sparging, using a solution with approximately 5.3 mg L(-1) ferrous iron and 200 μg L(-1) arsenate, showed removal of arsenate in the range of 59%. A significant obstacle exists, however, due to the interference of phosphate since phosphate competes for adsorption sites on oxidized iron precipitates. A lab-scale test including 0.5 mg L(-1) phosphate showed negligible removal of arsenate. In situ treatment by air sparging demonstrates considerable promise for removal of arsenic from groundwater where iron is present in considerable quantities and phosphates are low.

  8. Soil aquifer treatment using advanced primary effluent

    KAUST Repository

    Sharma, Saroj K.; Hussen, Mustefa; Amy, Gary L.

    2011-01-01

    Soil aquifer treatment (SAT) using primary effluent (PE) is an attractive option for wastewater treatment and reuse in many developing countries with no or minimal wastewater treatment. One of the main limitations of SAT of PE is rapid clogging of the infiltration basin due to high suspended solid concentrations. Some pre-treatment of PE before infiltration is likely to reduce this limitation, improve performance of SAT and help to implement this technology effectively. The effects of three pre-treatment options namely sedimentation (SED), coagulation (COAG) and horizontal roughing filtration (HRF) on SAT were analyzed by conducting laboratory-scale batch and soil column experiments. The sedimentation and coagulation pre-treatments led to less head loss development and reduction of clogging effect. The head loss development in soil column using PE + COAG and PE + SED was reduced by 85 and 72%, respectively, compared to PE alone without any pretreatment. The overall dissolved organic carbon (DOC) removal of pre-treatments and soil column collectively were 34, 44, 51 and 43.5% for PE without any pre-treatment, PE + SED, PE+ COAG and PE + HRF, respectively. Coagulation pre-treatment of PE was found to be the most effective option in terms of suspended solids, DOC and nitrogen removal. Sedimentation pre-treatment of PE could be attractive where land is relatively less expensive for the construction of sedimentation basins. © IWA Publishing 2011.

  9. Soil aquifer treatment using advanced primary effluent

    KAUST Repository

    Sharma, Saroj K.

    2011-08-01

    Soil aquifer treatment (SAT) using primary effluent (PE) is an attractive option for wastewater treatment and reuse in many developing countries with no or minimal wastewater treatment. One of the main limitations of SAT of PE is rapid clogging of the infiltration basin due to high suspended solid concentrations. Some pre-treatment of PE before infiltration is likely to reduce this limitation, improve performance of SAT and help to implement this technology effectively. The effects of three pre-treatment options namely sedimentation (SED), coagulation (COAG) and horizontal roughing filtration (HRF) on SAT were analyzed by conducting laboratory-scale batch and soil column experiments. The sedimentation and coagulation pre-treatments led to less head loss development and reduction of clogging effect. The head loss development in soil column using PE + COAG and PE + SED was reduced by 85 and 72%, respectively, compared to PE alone without any pretreatment. The overall dissolved organic carbon (DOC) removal of pre-treatments and soil column collectively were 34, 44, 51 and 43.5% for PE without any pre-treatment, PE + SED, PE+ COAG and PE + HRF, respectively. Coagulation pre-treatment of PE was found to be the most effective option in terms of suspended solids, DOC and nitrogen removal. Sedimentation pre-treatment of PE could be attractive where land is relatively less expensive for the construction of sedimentation basins. © IWA Publishing 2011.

  10. Delignification and Enhanced Gas Release from Soil Containing Lignocellulose by Treatment with Bacterial Lignin Degraders.

    Science.gov (United States)

    Rashid, Goran M M; Duran-Pena, Maria Jesus; Rahmanpour, Rahman; Sapsford, Devin; Bugg, Timothy D H

    2017-04-10

    The aim of the study was to isolate bacterial lignin-degrading bacteria from municipal solid waste soil, and to investigate whether they could be used to delignify lignocellulose-containing soil, and enhance methane release. A set of 20 bacterial lignin degraders, including 11 new isolates from municipal solid waste soil, were tested for delignification and phenol release in soil containing 1% pine lignocellulose. A group of 7 strains were then tested for enhancement of gas release from soil containing 1% lignocellulose in small-scale column tests. Using an aerobic pre-treatment, aerobic strains such as Pseudomonas putida showed enhanced gas release from the treated sample, but four bacterial isolates showed 5-10 fold enhancement in gas release in an in situ experiment under microanaerobic conditions: Agrobacterium sp., Lysinibacillus sphaericus, Comamonas testosteroni, and Enterobacter sp.. The results show that facultative anaerobic bacterial lignin degraders found in landfill soil can be used for in situ delignification and enhanced gas release in soil containing lignocellulose. The study demonstrates the feasibility of using an in situ bacterial treatment to enhance gas release and resource recovery from landfill soil containing lignocellulosic waste. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. An analysis on remediation characteristics of soils contaminated with Co for in-situ application

    International Nuclear Information System (INIS)

    Kim, K. N.; Won, H. J.; Kweun, H. S.; Shon, J. S.; Oh, W. J.

    1999-01-01

    The solvent flushing apparatus for in-situ soil remediation was designed. After the soil around nuclear facilities was sampled and compulsorily contaminated by Co solution, the remediation characteristics by solvent flushing were analyzed. Meanwhile, the nonequilibrium sorption code was developed for modelling of the soil remediation by solvent flushing, and input parameters needed for modelling were measured by laboratory experiment. Experimental results are as follows: The soil around nuclear facilities belongs to Silt Loam including a lot of silt and sand. When water was used as a solvent, the higher was the hydraulic conductivity, the higher the efficiency of soil remediation was. The values calculated by the nonequilibrium sorption code agreed with experimental values more exactly than the values calculated by the equilibrium sorption code. When citric acid was used as a solvent, the soil remediation efficiency by citric acid showed 1.65 times that by water

  12. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    Science.gov (United States)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  13. Towards soil property retrieval from space: Proof of concept using in situ observations

    Science.gov (United States)

    Bandara, Ranmalee; Walker, Jeffrey P.; Rüdiger, Christoph

    2014-05-01

    Soil moisture is a key variable that controls the exchange of water and energy fluxes between the land surface and the atmosphere. However, the temporal evolution of soil moisture is neither easy to measure nor monitor at large scales because of its high spatial variability. This is mainly a result of the local variation in soil properties and vegetation cover. Thus, land surface models are normally used to predict the evolution of soil moisture and yet, despite their importance, these models are based on low-resolution soil property information or typical values. Therefore, the availability of more accurate and detailed soil parameter data than are currently available is vital, if regional or global soil moisture predictions are to be made with the accuracy required for environmental applications. The proposed solution is to estimate the soil hydraulic properties via model calibration to remotely sensed soil moisture observation, with in situ observations used as a proxy in this proof of concept study. Consequently, the feasibility is assessed, and the level of accuracy that can be expected determined, for soil hydraulic property estimation of duplex soil profiles in a semi-arid environment using near-surface soil moisture observations under naturally occurring conditions. The retrieved soil hydraulic parameters were then assessed by their reliability to predict the root zone soil moisture using the Joint UK Land Environment Simulator model. When using parameters that were retrieved using soil moisture observations, the root zone soil moisture was predicted to within an accuracy of 0.04 m3/m3, which is an improvement of ∼0.025 m3/m3 on predictions that used published values or pedo-transfer functions.

  14. Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using In Situ Data

    Directory of Open Access Journals (Sweden)

    Yayong Sun

    2017-03-01

    Full Text Available The Soil Moisture Active Passive (SMAP satellite makes coincident global measurements of soil moisture using an L-band radar instrument and an L-band radiometer. It is crucial to evaluate the errors in the newest L-band SMAP satellite-derived soil moisture products, before they are routinely used in scientific research and applications. This study represents the first evaluation of the SMAP radiometer soil moisture product over China. In this paper, a preliminary evaluation was performed using sparse in situ measurements from 655 China Meteorological Administration (CMA monitoring stations between 1 April 2015 and 31 August 2016. The SMAP radiometer-derived soil moisture product was evaluated against two schemes of original soil moisture and the soil moisture anomaly in different geographical zones and land cover types. Four performance metrics, i.e., bias, root mean square error (RMSE, unbiased root mean square error (ubRMSE, and the correlation coefficient (R, were used in the accuracy evaluation. The results indicated that the SMAP radiometer-derived soil moisture product agreed relatively well with the in situ measurements, with ubRMSE values of 0.058 cm3·cm−3 and 0.039 cm3·cm−3 based on original data and anomaly data, respectively. The values of the SMAP radiometer-based soil moisture product were overestimated in wet areas, especially in the Southwest China, South China, Southeast China, East China, and Central China zones. The accuracies over croplands and in Northeast China were the worst. Soil moisture, surface roughness, and vegetation are crucial factors contributing to the error in the soil moisture product. Moreover, radio frequency interference contributes to the overestimation over the northern portion of the East China zone. This study provides guidelines for the application of the SMAP-derived soil moisture product in China and acts as a reference for improving the retrieval algorithm.

  15. Comparative review of techniques used for in situ remediation of contaminated soils; Revision comparativa de tecnicas empleadas para la descontaminacion in situ de suelos contaminados

    Energy Technology Data Exchange (ETDEWEB)

    Escusol Tomey, M.; Rodriguez Abad, R.

    2014-07-01

    Soil pollution may influence the geotechnical parameters of the soil itself, properties such as solid particle density or water within its pores. It may also vary its friction angle, modify its structure and texture, or change the properties of its constitutive minerals due to the inclusion of polluting components. For these reasons, soil decontamination is an important factor to consider in geotechnics. This work focuses on those soil decontamination techniques carried out in situ, since they allow to eliminate soil pollutants in a less invasive way than confinement, containment or ex situ remediation techniques, causing a minor soil alteration and, therefore, affecting less to its mechanical properties. These factors should be taken into account when carrying out a geotechnical performance on a previously decontaminated soil. (Author)

  16. In situ vitrification of Oak Ridge National Laboratory soil and limestone

    International Nuclear Information System (INIS)

    Carter, J.G.; Bates, S.O.; Maupin, G.D.

    1987-03-01

    Process feasibility studies were successfully performed on two different developmental scales to determine the technical application of in situ vitrification (ISV) to Oak Ridge National Laboratory (ORNL) intermediate-level waste. In the laboratory, testing was performed on crucibles containing quantities of 50% ORNL soil and 50% ORNL limestone. In the engineering-scale testing, a 1/12-scaled simulation of ORNL Trench 7 was constructed and vitrified, resulting in waste product soil and limestone concentrations of 68% and 32%, respectively. Results from the two scales of testing indicate that the ORNL intermediate-level waste sites may be successfully processed by ISV; the waste form will retain significant quantities of the cesium and strontium. Because 137 Cs is the major component of the radionuclide inventory in the ORNL seepage pits and trenches, final field process decontamination factors (i.e., off gas at the ground surface relative to the waste inventory) of 10 4 are desired to minimize activity buildup in the off-gas system. These values were realized during the engineering-scale test for both cesium and strontium. The vitrified material effectively contained 99.996% of the cesium and strontium placed in the engineering-scale test. This is equivalent to decontamination factors of greater than 10 4 . Volume reduction for the engineering-scale test was 60%. No migration of the cesium to the uncontaminated surrounding soil was detected. These favorable results indicate that, once verified in a pilot-scale test, an adequately designed ISV system could be produced to treat the ORNL seepage pits and trenches without excessive activity accumulation in the off-gas treatment system

  17. Demonstration of the SOLTECR technology for the in situ physico-chemical treatment of a site contaminated by diesel oil

    International Nuclear Information System (INIS)

    Dufresne, P.; Tellier, J.G.; Michaud, J.R.

    1997-01-01

    The remediation of a diesel oil spill at one of the Alcan plants was discussed. The hydrocarbon spill affected the groundwater in an area of more than 6,000 m 2 . Only an in-situ treatment for remediation was practical because the residual contaminated soil was located mainly under buildings and represented a volume of 3,000 m 3 . Alcan proposed the development and demonstration of the SOLTEC R in-situ physico-chemical treatment technology which consists of injecting chemicals into the soil. The chemicals are a mixture of calcium based solids with liquid and gaseous oxidizing agents. The degradation of the hydrocarbons is by oxidation and is completed in the soil in less than 24 hours after injection. Monitoring of the groundwater was conducted for one year after the completion of the soil treatment. It was concluded that the SOLTEC R process decreased and even eliminated the toxicity and geotoxicity of the diesel-contaminated soils. A volume of 3,000 m 3 of contaminated soil was treated within three months. The efficiency of hydrocarbon destruction was more than 95 per cent. 3 refs., 1 tab

  18. Blending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yijian Zeng

    2016-03-01

    Full Text Available The inter-comparison of different soil moisture (SM products over the Tibetan Plateau (TP reveals the inconsistency among different SM products, when compared to in situ measurement. It highlights the need to constrain the model simulated SM with the in situ measured data climatology. In this study, the in situ soil moisture networks, combined with the classification of climate zones over the TP, were used to produce the in situ measured SM climatology at the plateau scale. The generated TP scale in situ SM climatology was then used to scale the model-simulated SM data, which was subsequently used to scale the SM satellite observations. The climatology-scaled satellite and model-simulated SM were then blended objectively, by applying the triple collocation and least squares method. The final blended SM can replicate the SM dynamics across different climatic zones, from sub-humid regions to semi-arid and arid regions over the TP. This demonstrates the need to constrain the model-simulated SM estimates with the in situ measurements before their further applications in scaling climatology of SM satellite products.

  19. Automated Quality Control of in Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products

    Science.gov (United States)

    Ek, M. B.; Xia, Y.; Ford, T.; Wu, Y.; Quiring, S. M.

    2015-12-01

    The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable due to the diversity of climatological conditions, land cover, soil texture, and topographies of the stations and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy and imprecision in the data set can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure the data is of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System phase 2 (NLDAS-2) Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20 cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and West Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1,200 NASMD stations in the near future.

  20. Ex situ bioremediation of oil-contaminated soil.

    Science.gov (United States)

    Lin, Ta-Chen; Pan, Po-Tsen; Cheng, Sheng-Shung

    2010-04-15

    An innovative bioprocess method, Systematic Environmental Molecular Bioremediation Technology (SEMBT) that combines bioaugmentation and biostimulation with a molecular monitoring microarray biochip, was developed as an integrated bioremediation technology to treat S- and T-series biopiles by using the landfarming operation and reseeding process to enhance the bioremediation efficiency. After 28 days of the bioremediation process, diesel oil (TPH(C10-C28)) and fuel oil (TPH(C10-C40)) were degraded up to approximately 70% and 63% respectively in the S-series biopiles. When the bioaugmentation and biostimulation were applied in the beginning of bioremediation, the microbial concentration increased from approximately 10(5) to 10(6) CFU/g dry soil along with the TPH biodegradation. Analysis of microbial diversity in the contaminated soils by microarray biochips revealed that Acinetobacter sp. and Pseudomonas aeruginosa were the predominant groups in indigenous consortia, while the augmented consortia were Gordonia alkanivorans and Rhodococcus erythropolis in both series of biopiles during bioremediation. Microbial respiration as influenced by the microbial activity reflected directly the active microbial population and indirectly the biodegradation of TPH. Field experimental results showed that the residual TPH concentration in the complex biopile was reduced to less than 500 mg TPH/kg dry soil. The above results demonstrated that the SEMBT technology is a feasible alternative to bioremediate the oil-contaminated soil. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  1. In-Situ Electrokinetic Remediation for Metal Contaminated Soils

    Science.gov (United States)

    2001-03-01

    phytoremediation , and electrokinetic extraction. The US Army Environmental Center (USAEC) and Engineer Research and Development Center (ERDC...California (CA) List Metals: Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury , molybdenum, nickel, selenium...Comparison Technologies with which electrokinetic remediation must compete are "Dig and Haul", Soil Washing, and Phytoremediation . "Dig and haul

  2. SUMMARY PAPER: IN SITU BIOREMEDIATION OF CONTAMINATED VADOSE ZONE SOIL

    Science.gov (United States)

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of Issue Papers and Briefing Documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. In an attem...

  3. Case studies illustrating in-situ remediation methods for soil and groundwater contaminated with petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert A.; Lance, P.E.; Downs, A.; Kier, Brian P. [EMCON Northwest Inc., Portland, OR (United States)

    1993-12-31

    Four case studies of successful in-situ remediation are summarized illustrating cost-effective methods to remediate soil and groundwater contaminated with volatile and non-volatile petrochemicals. Each site is in a different geologic environment with varying soil types and with and without groundwater impact. The methods described include vadose zone vapor extraction, high-vacuum vapor extraction combined with groundwater tab.le depression, air sparging with groundwater recovery and vapor extraction, and bio remediation of saturated zone soils using inorganic nutrient and oxygen addition

  4. Case studies illustrating in-situ remediation methods for soil and groundwater contaminated with petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert A; Lance, P E; Downs, A; Kier, Brian P [EMCON Northwest Inc., Portland, OR (United States)

    1994-12-31

    Four case studies of successful in-situ remediation are summarized illustrating cost-effective methods to remediate soil and groundwater contaminated with volatile and non-volatile petrochemicals. Each site is in a different geologic environment with varying soil types and with and without groundwater impact. The methods described include vadose zone vapor extraction, high-vacuum vapor extraction combined with groundwater tab.le depression, air sparging with groundwater recovery and vapor extraction, and bio remediation of saturated zone soils using inorganic nutrient and oxygen addition

  5. Geotechnical Parameters of Alluvial Soils from in-situ Tests

    Science.gov (United States)

    Młynarek, Zbigniew; Stefaniak, Katarzyna; Wierzbicki, Jedrzej

    2012-10-01

    The article concentrates on the identification of geotechnical parameters of alluvial soil represented by silts found near Poznan and Elblag. Strength and deformation parameters of the subsoil tested were identified by the CPTU (static penetration) and SDMT (dilatometric) methods, as well as by the vane test (VT). Geotechnical parameters of the subsoil were analysed with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. The article includes an analysis of the overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 9 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the Nkt coefficient, which might be used to identify the undrained shear strength of both sediments tested. On the basis of a detailed analysis of changes in terms of the constrained oedometric modulus M0, the relations between the said modulus, the liquidity index and the OCR value were identified. Mayne's formula (1995) was used to determine the M0 modulus from the CPTU test. The usefullness of the sediments found near Poznan as an earth construction material was analysed after their structure had been destroyed and compacted with a Proctor apparatus. In cases of samples characterised by different water content and soil particle density, the analysis of changes in terms of cohesion and the internal friction angle proved that these parameters are influenced by the soil phase composition (Fig. 18 and 19). On the basis of the tests, it was concluded that the most desirable shear strength parameters are achieved when the silt is compacted below the optimum water content.

  6. Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater

    Science.gov (United States)

    Turick, Charles E.; Apel, William W.

    1997-10-28

    A method of reducing the concentration of Cr(VI) in a liquid aqueous residue comprises the steps of providing anaerobic Cr(VI) reducing bacteria, mixing the liquid aqueous residue with a nutrient medium to form a mixture, and contacting the mixture with the anaerobic Cr(VI) reducing bacteria such that Cr(VI) is reduced to Cr(III). The anaerobic Cr(VI) reducing bacteria appear to be ubiquitous in soil and can be selected by collecting a soil sample, diluting the soil sample with a sterile diluent to form a diluted sample, mixing the diluted sample with an effective amount of a nutrient medium and an effective amount of Cr(VI) to form a mixture, and incubating the mixture in the substantial absence of oxygen such that growth of Cr(VI) sensitive microorganisms is inhibited and growth of the anaerobic Cr(VI) reducing bacteria is stimulated. A method of in situ bioremediation of Cr(VI) contaminated soil and/or groundwater is also disclosed.

  7. Ex situ remediation of polluted soils by absorptive polymers, and a comparison of slurry and two-phase partitioning bioreactors for ultimate contaminant degradation

    Energy Technology Data Exchange (ETDEWEB)

    Tomei, M. Concetta, E-mail: tomei@irsa.cnr.it [Water Research Institute, C.N.R., Via Salaria km 29.300, Monterotondo Scalo, 00015 Rome (Italy); Mosca Angelucci, Domenica [Water Research Institute, C.N.R., Via Salaria km 29.300, Monterotondo Scalo, 00015 Rome (Italy); Annesini, M. Cristina [Department of Chemical Engineering Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome (Italy); Daugulis, Andrew J. [Department of Chemical Engineering, Queen' s University, Kingston, Ontario, Canada K7L 3N6 (Canada)

    2013-11-15

    Highlights: • We investigate absorptive polymers for ex-situ soil bioremediation. • We compare the performance of the novel technology with a slurry bioreactor. • The polymer is very effective in decontaminating the soil (77% removal in 4 h). • The polymer is readily regenerated in a two phase partitioning bioreactor. -- Abstract: The present study has provided a comparison between a conventional ex situ method for the treatment of contaminated soil, a soil slurry bioreactor, with a novel technology in which a contaminant is rapidly and effectively removed from the soil by means of absorptive polymer beads, which are then added to a two-phase partitioning bioreactor (TPPB) for biodegradation of the target molecule. 4-nitrophenol (4NP) was selected as a model contaminant, being representative of a large class of xenobiotics, and the DuPont thermoplastic Hytrel™ 8206 was utilized for its extraction from soil over ranges of soil contamination level, soil moisture content, and polymer:soil ratios. Since the polymers were able to rapidly (up to 77% and 85% in 4 and 24 h respectively) and selectively remove the contaminant, the soil retained its nutrient and microflora content, which is in contrast to soil washing which can remove these valuable soil resources. After 4 h of reaction time, the TPPB system demonstrated removal efficiency four times higher (77% vs 20%) than the slurry system, with expected concomitant savings in time and energy. A volumetric removal rate of 75 mg4NP h{sup −1} L{sup −1} was obtained in the TPPB, significantly greater than the value of 1.7 obtained in the slurry bioreactor. The polymers were readily regenerated for subsequent reuse, demonstrating the versatility of the polymer-based soil treatment technology.

  8. Visualization of enzyme activities inside earthworm biopores by in situ soil zymography

    Science.gov (United States)

    Thu Duyen Hoang, Thi; Razavi, Bahar. S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Earthworms can strongly activate microorganisms, increase microbial and enzyme activities and consequently the turnover of native soil organic matter. In extremely dynamic microhabitats and hotspots as biopores made by earthworms, the in situ enzyme activities are a footprint of complex biotic interactions. The effect of earthworms on the alteration of enzyme activities inside biopores and the difference between bio-pores and earthworm-free soil was visualized by in situ soil zymography (Spohn and Kuzyakov, 2014). For the first time, we prepared quantitative imaging of enzyme activities in biopores. Furthermore, we developed the zymography technique by direct application of a substrate saturated membrane to the soil to obtain better spatial resolution. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). Simultaneously, maize seed was sown in the soil. Control soil box with maize and without earthworm was prepared in the same way. After two weeks when bio-pore systems were formed by earthworm, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine aminopeptidase) and phosphatase. Followed by non-destructive zymography, biopore samples and control soil were destructively collected to assay enzyme kinetics by fluorogenically labeled substrates method. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. These differences were further confirmed by fluorimetric microplate enzyme assay detected significant difference of Vmax in four above mentioned enzymes. Vmax of β-glucosidase, chitinase, xylanase and phosphatase in biopores is 68%, 108%, 50% and 49% higher than that of control soil. However, no difference in cellobiohydrolase and leucine aminopeptidase kinetics between biopores and control soil were detected. This indicated little effect of earthworms on protein and cellulose transformation in soil

  9. Potential of activated carbon to recover randomly-methylated-β-cyclodextrin solution from washing water originating from in situ soil flushing.

    Science.gov (United States)

    Sniegowski, K; Vanhecke, M; D'Huys, P-J; Braeken, L

    2014-07-01

    Despite the overall high efficacy of cyclodextrins to accelerate the treatment of soil aquifer remediation by in-situ soil flushing, the use in practice remains limited because of the high costs of cyclodextrin and high concentrations needed to significantly reduce the treatment time. The current study tested the potential of activated carbon to treat washing water originating from soil flushing in order to selectively separate hydrocarbon contaminants from washing water containing cyclodextrin and subsequently reuse the cyclodextrin solution for reinfiltration. A high recovery of the cyclodextrin from the washing water would reduce the costs and would make the technique economically feasible for soil remediation. This study aimed to investigate whether cyclodextrin can pass through the activated carbon filter without reducing the cyclodextrin concentration when the contaminated washing water is treated and whether the presence of cyclodextrin negatively affects the purification potential of activated carbon to remove the organic pollutants from the pumped soil water. Lab-scale column experiments showed that with the appropriate activated carbon 100% of cyclodextrin (randomly-methylated-β-cyclodextrin) can be recovered from the washing water and that the effect on the efficiency of activated carbon to remove the hydrocarbon contaminants remains limited. These results show that additional field tests are useful to make in-situ soil flushing with cyclodextrin both a technical and an economical interesting technique. These results might stimulate the application of cyclodextrin in soil treatment technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Ex situ remediation of polluted soils by absorptive polymers, and a comparison of slurry and two-phase partitioning bioreactors for ultimate contaminant degradation.

    Science.gov (United States)

    Tomei, M Concetta; Mosca Angelucci, Domenica; Annesini, M Cristina; Daugulis, Andrew J

    2013-11-15

    The present study has provided a comparison between a conventional ex situ method for the treatment of contaminated soil, a soil slurry bioreactor, with a novel technology in which a contaminant is rapidly and effectively removed from the soil by means of absorptive polymer beads, which are then added to a two-phase partitioning bioreactor (TPPB) for biodegradation of the target molecule. 4-nitrophenol (4NP) was selected as a model contaminant, being representative of a large class of xenobiotics, and the DuPont thermoplastic Hytrel™ 8206 was utilized for its extraction from soil over ranges of soil contamination level, soil moisture content, and polymer:soil ratios. Since the polymers were able to rapidly (up to 77% and 85% in 4 and 24h respectively) and selectively remove the contaminant, the soil retained its nutrient and microflora content, which is in contrast to soil washing which can remove these valuable soil resources. After 4h of reaction time, the TPPB system demonstrated removal efficiency four times higher (77% vs 20%) than the slurry system, with expected concomitant savings in time and energy. A volumetric removal rate of 75 mg4NPh(-1) L(-1) was obtained in the TPPB, significantly greater than the value of 1.7 obtained in the slurry bioreactor. The polymers were readily regenerated for subsequent reuse, demonstrating the versatility of the polymer-based soil treatment technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Jeffrey [ORNL; Brooks, J Renee [U.S. Environmental Protection Agency, Corvallis, OR; Dragila, Maria [Oregon State University, Corvallis; Meinzer, Rick [USDA Forest Service

    2011-01-01

    Nocturnal increases in water potential ( ) and water content (WC) in the upper soil profile are often attributed to root water efflux into the soil, a process termed hydraulic lift or hydraulic redistribution (HR). We have previously reported HR values up to ~0.29 mm day-1 in the upper soil for a seasonally dry old-growth ponderosa pine site. However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the diurnal patterns in WC, confounding efforts to determine the actual magnitude of HR. In this study, we estimated liquid (Jl) and vapor (Jv) soil water fluxes and their impacts on quantifying HR in situ by applying existing data sets of , WC, temperature (T) and soil physical properties to soil water transport equations. Under moist conditions, Jl between layers was estimated to be larger than necessary to account for measured nocturnal increases in WC of upper soil layers. However, as soil drying progressed unsaturated hydraulic conductivity declined rapidly such that Jl was irrelevant (< 2E-06 cm hr-1 at 0-60 cm depths) to total water flux by early August. In surface soil at depths above 15 cm, large T fluctuations can impact Jv leading to uncertainty concerning the role, if any, of HR in nocturnal WC dynamics. Vapor flux was estimated to be the highest at the shallowest depths measured (20 - 30 cm) where it could contribute up to 40% of hourly increases in nocturnal soil moisture depending on thermal conditions. While both HR and net soil water flux between adjacent layers contribute to WC in the 15-65 cm soil layer, HR was the dominant process and accounted for at least 80% of the diurnal increases in WC. While the absolute magnitude of HR is not easily quantified, total diurnal fluctuations in upper soil water content can be quantified and modeled, and remain highly applicable for establishing the magnitude and temporal dynamics of total ecosystem water flux.

  12. Improved Understanding of In Situ Chemical Oxidation Soil Reactivity

    Science.gov (United States)

    2007-12-01

    followed by a mixture of nitric and perchloric acids . This sequence uses precise heat ramping and holding cycles which takes the sample to dryness...release different kinds of products (e.g., benzenepolycarboxylic acids , phenolic acids , and fatty acids ) with varying resistance to the attack of... oxalate might be the only organic product in the oxidation of humic and non-humic soils by permanganate or even hydrogen peroxide (Harada and Inoko

  13. Floristic diversity of the soil weed seed bank in a rice-growing area of Brazil: in situ and ex situ evaluation

    Directory of Open Access Journals (Sweden)

    Mário Luiz Ribeiro Mesquita

    2013-09-01

    Full Text Available The objective of this study was to compare the ex situ and in situ floristic diversity of the soil weed seed bank of a rice field in northeastern Brazil. In a rice field in the county of Bacabal, located in the state of Maranhão, thirty 25-m² plots were laid out. From 15 plots, soil samples (6/plot; n = 90 were taken with a soil probe (25 × 16 × 3 cm and placed in aluminum trays in the greenhouse. From the remaining 15 plots, weed samples (6/plot; n = 90 were taken with the same soil probe. The number of seeds was estimated by germination. We evaluated the numbers of species and individuals, as well as the density, frequency, abundance and importance value (IV for each species. Diversity was computed by the Shannon index (H'. We recorded 13,892 individuals (among 20 families, 40 genera and 60 species, of which 11,530 (among 50 species germinated ex situ and 2,362 (among 34 species germinated in situ. The family Cyperaceae had the highest number of species (16, followed by Poaceae (10. The dominant species, in situ and ex situ, were Schoenoplectus juncoides (IV=47.4% and Ludwigia octovalvis (IV=34.8%, respectively. Floristic diversity was higher ex situ (H'=2.66. The information obtained here could help determine the infestation potential of these species, which could lead to improved management strategies.

  14. In situ air sparging for bioremediation of groundwater and soils

    International Nuclear Information System (INIS)

    Lord, D.; Lei, J.; Chapdelaine, M.C.; Sansregret, J.L.; Cyr, B.

    1995-01-01

    Activities at a former petroleum products depot resulted in the hydrocarbon contamination of soil and groundwater over a 30,000-m 2 area. Site remediation activities consisted of three phases: site-specific characterization and treatability study, pilot-scale testing, and full-scale bioremediation. During Phase 1, a series of site/soil/waste characterizations was undertaken to ascertain the degree of site contamination and to determine soil physical/chemical and microbiological characteristics. Treatability studies were carried out to simulate an air sparging process in laboratory-scale columns. Results indicated 42% mineral oil and grease removal and 94% benzene, toluene, ethylbenzene, and xylenes (BTEX) removal over an 8-week period. The removal rate was higher in the unsaturated zone than in the saturated zone. Phase 2 involved pilot-scale testing over a 550-m 2 area. The radius of influence of the air sparge points was evaluated through measurements of dissolved oxygen concentrations in the groundwater and of groundwater mounding. A full-scale air sparging system (Phase 3) was installed on site and has been operational since early 1994. Physical/chemical and microbiological parameters, and contaminants were analyzed to evaluate the system performance

  15. Soil washing and post-wash biological treatment of petroleum hydrocarbon contaminated soils

    OpenAIRE

    Bhandari, Alok

    1992-01-01

    A laboratory scale study was conducted to investigate the treatability of petroleum contaminated soils by soil washing and subsequent biological treatment of the different soil fractions. In addition to soils obtained from contaminated sites, studies were also performed on soils contaminated in the laboratory. Soil washing was performed using a bench-scale soil washing system. Washing was carried out with simultaneous fractionation of the bulk soil into sand, silt and clay fractions. Cl...

  16. An Operational In Situ Soil Moisture & Soil Temperature Monitoring Network for West Wales, UK: The WSMN Network.

    Science.gov (United States)

    Petropoulos, George P; McCalmont, Jon P

    2017-06-23

    This paper describes a soil moisture dataset that has been collecting ground measurements of soil moisture, soil temperature and related parameters for west Wales, United Kingdom. Already acquired in situ data have been archived to the autonomous Wales Soil Moisture Network (WSMN) since its foundation in July 2011. The sites from which measurements are being collected represent a range of conditions typical of the Welsh environment, with climate ranging from oceanic to temperate and a range of the most typical land use/cover types found in Wales. At present, WSMN consists of a total of nine monitoring sites across the area with a concentration of sites in three sub-areas around the region of Aberystwyth located in Mid-Wales. The dataset of composed of 0-5 (or 0-10) cm soil moisture, soil temperature, precipitation, and other ancillary data. WSMN data are provided openly to the public via the International Soil Moisture Network (ISMN) platform. At present, WSMN is also rapidly expanding thanks to funding obtained recently which allows more monitoring sites to be added to the network to the wider community interested in using its data.

  17. Fate of triclocarban during soil aquifer treatment: Soil column studies

    KAUST Repository

    Essandoh, H. M K

    2010-04-01

    There are current concerns about the presence of persistent chemicals in recharge water used in soil aquifer treatment systems. Triclocarban (TCC) has been reported as a persistent, high production volume chemical with the potential to bioaccumulate in the environment. It is also known to have adverse effects such as toxicity and suspected endocrine disruption. This study was carried out to study the fate of TCC in soil aquifer treatment (SAT) through laboratory simulations in a soil column. The system performance was evaluated with regards to TCC influent concentration, sand (column) depth, and residence time. Results obtained confirmed the ability of SAT to reduce TCC concentrations in wastewater. Sorption and biodegradation were responsible for TCC removal, the latter mechanism however being unsustainable. The removal efficiency was found to be dependent on concentration and decreased over time and increased with column depth. Within the duration of the experimental run, TCC negatively impacted on treatment performance through a reduction in COD removals observed in the column. © IWA Publishing 2010.

  18. Assessing the small-strain soil stiffness for offshore wind turbines based on in situ seismic measurements

    NARCIS (Netherlands)

    Versteijlen, W.G.; Van Dalen, K.N.; Metrikine, A.; Hamre, L.

    2014-01-01

    In this contribution, in situ seismic measurements are used to derive the small-strain shear modulus of soil as input for two soil-structure interaction (SSI) models to assess the initial soil stiffness for offshore wind turbine foundations. This stiffness has a defining influence on the first

  19. Implementation of in situ vitrification technology for remediation of Oak Ridge contaminated soil sites: Past results and future plans

    International Nuclear Information System (INIS)

    Tixier, J.S.; Powell, T.D.; Spalding, B.P.; Jacobs, G.K.

    1993-02-01

    In situ vitrification is a thermal treatment technology being developed for remediation of contaminated soils. The process transforms easily leached, contaminated soils into a durable, leach-resistant. vitreous and crystalline monolith. This paper presents the results of the recent highly successful ISV demonstration conducted jointly by PNL and ORNL on a tracer-level quantity of radioactive sludge in a model trench at ORNL. A retention of 90 r in the vitreous and crystalline product of greater than 99.9999% was measured with a reduction in potential environmental mobility of more than two orders of magnitude. The paper also presents the current plans for continued collaboration on a two-setting treatability test on one portion of an old seepage pit at ORNL

  20. INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL

    Science.gov (United States)

    An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The p...

  1. Evaluation of in situ capping with clean soils to control phosphate release from sediments

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Di [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Ding, Shiming, E-mail: smding@niglas.ac.cn [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Sun, Qin [College of Environmental Science and Engineering, Hohai University, Nanjing (China); Zhong, Jicheng [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Wu, Wei; Jia, Fei [College of Environmental Science and Engineering, Hohai University, Nanjing (China)

    2012-11-01

    Evaluation of in situ capping with clean soils to control phosphate release from the sediments of a eutrophic bay in Lake Taihu was performed after 18 months of capping. The concentrations of dissolved reactive phosphate (DRP) in pore waters and DRP resupply from native sediments and capped sediments were determined using high-resolution dialysis (HR-Peeper) and a Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) technique. The adsorption isotherm of these sediments was further investigated using a modified Langmuir model. The results showed low concentrations of DRP in pore waters with a low resupply from the sediments for sustaining pore water DRP concentration after capping. The calculated flux to the overlying water following the capping treatment was approximately half of that for the native sediments, implying that the capping reduced the release of phosphate from the sediments. The low resupply of the sediments after capping was further demonstrated by larger partitioning coefficient (K{sub p}) values and greater adsorption capacity (Q{sub max}) values, while zero equilibrium concentrations (EPC{sub 0}s) were similar to those in native sediments. The larger K{sub p} and Q{sub max} were attributed to higher active Fe and Al introduced by the capping, indicating that the binding of phosphate onto the active Fe and Al played a critical role in reducing the internal loading of phosphorous. Highlights: Black-Right-Pointing-Pointer Evaluation of capping with soils was performed through high-resolution sampling. Black-Right-Pointing-Pointer Capping decreased the concentrations of DRP in pore waters and its release to waters. Black-Right-Pointing-Pointer Capping decreased the resupply of pore water DRP from the sediments. Black-Right-Pointing-Pointer Capped sediments had stronger abilities to adsorb and retain P. Black-Right-Pointing-Pointer Active Fe and Al introduced by capping played a critical role.

  2. Evaluation of in situ capping with clean soils to control phosphate release from sediments

    International Nuclear Information System (INIS)

    Xu, Di; Ding, Shiming; Sun, Qin; Zhong, Jicheng; Wu, Wei; Jia, Fei

    2012-01-01

    Evaluation of in situ capping with clean soils to control phosphate release from the sediments of a eutrophic bay in Lake Taihu was performed after 18 months of capping. The concentrations of dissolved reactive phosphate (DRP) in pore waters and DRP resupply from native sediments and capped sediments were determined using high-resolution dialysis (HR-Peeper) and a Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) technique. The adsorption isotherm of these sediments was further investigated using a modified Langmuir model. The results showed low concentrations of DRP in pore waters with a low resupply from the sediments for sustaining pore water DRP concentration after capping. The calculated flux to the overlying water following the capping treatment was approximately half of that for the native sediments, implying that the capping reduced the release of phosphate from the sediments. The low resupply of the sediments after capping was further demonstrated by larger partitioning coefficient (K p ) values and greater adsorption capacity (Q max ) values, while zero equilibrium concentrations (EPC 0 s) were similar to those in native sediments. The larger K p and Q max were attributed to higher active Fe and Al introduced by the capping, indicating that the binding of phosphate onto the active Fe and Al played a critical role in reducing the internal loading of phosphorous. Highlights: ► Evaluation of capping with soils was performed through high-resolution sampling. ► Capping decreased the concentrations of DRP in pore waters and its release to waters. ► Capping decreased the resupply of pore water DRP from the sediments. ► Capped sediments had stronger abilities to adsorb and retain P. ► Active Fe and Al introduced by capping played a critical role.

  3. In situ vitrification: Test results for a contaminated soil-melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Timmerman, C.L.; Westsik, J.H. Jr.

    1989-10-01

    In situ vitrification (ISV) is being developed at Pacific Northwest Laboratory for the Department of Energy to stabilize soils and sludges that are contaminated with radioactive and hazardous chemical wastes. ISV is a process that immobilizes contaminated soil in place by converting it to a durable glass and crystalline product similar to obsidian and basalt. In June 1987, a large-scale test of the process was completed at a transuranic-contaminated soil site. The test constituted the first full-scale demonstration of ISV at an actual site. This paper summarizes the results of that test and describes the potential adaptation of the process to radioactive and hazardous chemical waste-contaminated soils. 15 refs., 9 figs., 3 tabs

  4. Impedance matching of a coaxial antenna for microwave in-situ processing of polluted soils.

    Science.gov (United States)

    Pauli, Mario; Kayser, Thorsten; Wiesbeck, Werner; Komarov, Vyacheslav

    2011-01-01

    The present paper is focused on the minimization of return loss of a slotted coaxial radiator proposed for a decontamination system for soils contaminated by volatile or semi-volatile organic compounds such as oils or fuels. The antenna upgrade is achieved by coating it with a 5 mm thick Teflon layer. The electromagnetic characteristics reflection coefficient and power density distribution around the antenna surrounded by soils with different moisture levels are analyzed numerically. Simplified analytical approaches are employed to accelerate the optimization of the given antenna for microwave heating systems. The improved antenna design shows a good matching of the antenna to the surrounding soil with varying moisture levels. This ensures a high efficiency of the proposed in-situ soil decontamination system.

  5. In Situ Vitrification: Recent test results for a contaminated soil melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Timmerman, C.L.; Westsik, J.H. Jr.

    1988-06-01

    In Situ Vitrification (ISV) is being developed at Pacific Northwest Laboratory for the Department of Energy and other clients for the stabilization of soils and sludges contaminated with radioactive and hazardous chemical wastes. ISV is a process that immobilizes contaminated soil in place by converting it to a durable glass and crystalline product that is similar to obsidian. In June 1987, a large-scale test of the process was completed at a transuranic- contaminated soil site. This constituted the first full-scale demonstration of the ISV process at an actual site. This paper summarizes the preliminary results of this test and describes the processes' potential adaptation to radioactive and hazardous chemical waste contaminated soils. 10 refs., 10 figs

  6. Strip-drains for in situ clean up of contaminated fine-grained soils

    International Nuclear Information System (INIS)

    Bowders, J.J.; Gabr, M.A.

    1995-01-01

    Methods for in situ remediation of contaminated soils, such as bioremediation, vacuum/air stripping and soil flushing have been found to be less effective under fine-grained soil conditions. To enhance the performance of these techniques, it was proposed that strip-drains or wick drains also known as prefabricated vertical (PV) drains be used. The research objective was to determine the feasibility of using PV drains to enhance the soil flushing process. Bench top and intermediate-scale laboratory experiments were conducted. An overview of the work, results and future considerations were presented. Results indicated that the technology is feasible. A preliminary model for the technology to be used in any field situation was developed. The model is currently being tested with data from physical experiments on both intermediate and field tests. 5 figs

  7. Integration of pneumatic fracturing and in situ vitrification in the soil subsurface

    International Nuclear Information System (INIS)

    Luey, J.; Seiler, D.K.; Schuring, J.R.

    1995-02-01

    Pacific Northwest Laboratory is evaluating ways to increase the applicability of the in situ vitrification (ISV) process at hazardous and radioactive waste sites. One innovation is the placement of a conductive material that will facilitate initiating the ISV process at a target depth. A series of laboratory tests performed at the New Jersey Institute of Technology (NJIT) assessed the feasibility of pneumatic fracturing (PF) in the highly permeable soils of the Hanford Site. The NJIT tests included an analysis of Hanford soils, a series of PF injection tests, and a parametric analysis to determine how soil properties affect the PF process. Results suggest that the PF process can be applied to Hanford soils and that dry medium (e.g., conductive material such as graphite flake) can be injected into the fracture. This paper describes the laboratory testing performed at NJIT, its results, and the application of those results to plans for a field demonstration at Hanford

  8. IN-SITU MEASURING METHOD OF RADON AND THORON DIFFUSION COEFFICIENT IN SOIL

    Directory of Open Access Journals (Sweden)

    V.S. Yakovleva

    2014-06-01

    Full Text Available A simple and valid in-situ measurement method of effective diffusion coefficient of radon and thoron in soil and other porous materials was designed. The analysis of numerical investigation of radon and thoron transport in upper layers of soil revealed that thoron flux density from the earth surface does not depend on soil gas advective velocity and varies only with diffusion coefficient changes. This result showed the advantages of thoron using versus radon using in the suggested method. The comparison of the new method with existing ones previously developed. The method could be helpful for solving of problems of radon mass-transport in porous media and gaseous exchange between soil and atmosphere.

  9. In situ vadose zone bioremediation of soil contaminated with nonvolatile hydrocarbons

    International Nuclear Information System (INIS)

    Hogg, D.S.; Burden, R.J.; Riddell, P.J.

    1992-01-01

    In situ bioremediation has been successfully carried out on petroleum hydrocarbon-contaminated soil at a decommissioned bulk storage terminal in New Zealand. The site soils were contaminated mainly with diesel fuel and spent oil at concentrations ranging up to 95,000 mg/kg of total recoverable petroleum hydrocarbons. The in situ remediation system combines an enhanced bioremediation with vapor extraction and is installed almost entirely below grade, thereby allowing above ground activities to continue unimpeded. Laboratory-scale feasibility testing indicated that although appreciable volatilization of low molecular weight components would occur initially, biodegradation would be the primary mechanism by which contaminated soil would be remediated. During the remedial design phase, preliminary field testing was conducted to evaluate the optimum spacing for extraction wells and inlet vents. A pilot-scale system was installed in a 15-m by 35-m area of the site in June 1989 and operated for approximately 1 year. Soil monitoring performed approximately every 3 months indicated an overall reduction in soil petroleum hydrocarbon concentrations of 87% for the period from June 1989 to May 1991

  10. In Situ Modular Waste Retrieval and Treatment System

    International Nuclear Information System (INIS)

    Walker, M.S.

    1996-10-01

    As part of the Comprehensive Environmental Response, Compensation, and Liability Act process from remediation of Waste Area Grouping (WAG 6) at ORNL, a public meeting was held for the Proposed Plan. It was recognized that contaminant releases from WAG 6 posed minimal potential risk to the public and the environment. The US DOE in conjunction with the US EPA and the TDEC agreed to defer remedial action at WAG 6 until higher risk release sites were first remediated. This report presents the results of a conceptual design for an In Situ Modular Retrieval and Treatment System able to excavate, shred, and process buried waste on site, with minimum disturbance and distribution of dust and debris. the system would bring appropriate levels of treatment to the waste then encapsulate and leave it in place. The system would be applicable to areas in which waste was disposed in long trenches

  11. Mapping of depleted uranium with in situ spectrometry and soil samples

    International Nuclear Information System (INIS)

    Shebell, P.; Reginatto, M.; Monetti, M.; Faller, S.; Davis, L.

    1999-01-01

    Depleted uranium (DU) has been developed in the past two decades as a highly effective material for armor penetrating rounds and vehicle shielding. There is now a growing interest in the defense community to determine the presence and extent of DU contamination quickly and with a minimum amount of intrusive sampling. We report on a new approach using deconvolution techniques to quantitatively map DU contamination in surface soil. This approach combines data from soil samples with data from in situ gamma-ray spectrometry measurements to produce an accurate and detailed map of DU contamination. Results of a field survey at the Aberdeen Proving Ground are presented. (author)

  12. Soil treatment technologies: Comparison of field experiences

    International Nuclear Information System (INIS)

    Hodges, H.I.; Jackson, D.W.; Kline, K.

    1992-01-01

    A number of on-site soil treatment technologies are available for closure of oil-field waste pits, leaking underground storage tank (LUST) sites, and general hydrocarbon contamination. This paper will contrast Separation Systems Consultants, Inc.'s (SSCI's) field experiences with the following soil restoration techniques: (1) Land Treatment using indigenous microbes; (2) Land Farming using commercial microbes; (3) Low Temperature Thermal Treatment; (4) Solidification. The technologies will be contrasted in terms of regulatory constraints and requirements, key set-up and maintenance consideration, selection factors. Included in the regulatory contrast is the authors' perception of regulatory attitudes toward the techniques. Because this paper is based on actual field experience and projects, the practical aspects of making the technologies work is emphasized

  13. ''In situ'' investigations of the radioactive fissionable element infiltration and retention in different soils

    International Nuclear Information System (INIS)

    Oncescu, M.; Danis, A.; Sahagia, M.; Negrescu, C.; Bobe, M.; Balanescu, P.; Burcescu, M.; Tautu, N.

    1980-01-01

    ''In situ'' investigations of the natural and forced infiltration and retention of the fissionable elements from a liquid residue in several natural compacted soils and compacted clays are presented. The velocities and flow rates for different stages of the residue infiltration are determined. The retention of the fissionable elements by variation of the fissionable element concentration with the distance from the place of the residue depot is investigated. (author)

  14. Gas injection to inhibit migration during an in situ heat treatment process

    Science.gov (United States)

    Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  15. Petroleum Contaminated Soil Treatment Using Surfactant and Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Ilza Lobo

    2010-12-01

    Full Text Available The process of washing soil with surfactants, sodium lauryl ether sulphate (LESS and sodium lauryl sulphate (SDS was combined with chemical oxidation using hydrogen peroxide, with a view to in situ remediation of clay soil contaminated with hydrocarbons oil. The evaluation of the efficiency of the procedure was the removal of polyaromatic hydrocarbons and the comparison of physical and chemical characteristics of contaminated soil and uncontaminated from the same region. The combination of these two techniques, soil washing and application of an oxidizing agent, presented as a process of effective remediation for soils contaminated with petroleum products in subtropical regions.

  16. In situ semi-quantitative analysis of polluted soils by laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Ismaël, Amina; Bousquet, Bruno; Michel-Le Pierrès, Karine; Travaillé, Grégoire; Canioni, Lionel; Roy, Stéphane

    2011-05-01

    Time-saving, low-cost analyses of soil contamination are required to ensure fast and efficient pollution removal and remedial operations. In this work, laser-induced breakdown spectroscopy (LIBS) has been successfully applied to in situ analyses of polluted soils, providing direct semi-quantitative information about the extent of pollution. A field campaign has been carried out in Brittany (France) on a site presenting high levels of heavy metal concentrations. Results on iron as a major component as well as on lead and copper as minor components are reported. Soil samples were dried and prepared as pressed pellets to minimize the effects of moisture and density on the results. LIBS analyses were performed with a Nd:YAG laser operating at 1064 nm, 60 mJ per 10 ns pulse, at a repetition rate of 10 Hz with a diameter of 500 μm on the sample surface. Good correlations were obtained between the LIBS signals and the values of concentrations deduced from inductively coupled plasma atomic emission spectroscopy (ICP-AES). This result proves that LIBS is an efficient method for optimizing sampling operations. Indeed, "LIBS maps" were established directly on-site, providing valuable assistance in optimizing the selection of the most relevant samples for future expensive and time-consuming laboratory analysis and avoiding useless analyses of very similar samples. Finally, it is emphasized that in situ LIBS is not described here as an alternative quantitative analytical method to the usual laboratory measurements but simply as an efficient time-saving tool to optimize sampling operations and to drastically reduce the number of soil samples to be analyzed, thus reducing costs. The detection limits of 200 ppm for lead and 80 ppm for copper reported here are compatible with the thresholds of toxicity; thus, this in situ LIBS campaign was fully validated for these two elements. Consequently, further experiments are planned to extend this study to other chemical elements and other

  17. Management Plan: Demonstration testing and evaluation of in situ soil heating

    International Nuclear Information System (INIS)

    Dev, H.

    1993-01-01

    In this project IITRI will demonstrate an in situ soil heating technology for the removal of hazardous organic contaminants present in the soil. In Situ heating will be accomplished by the application of 60 Hz AC power to the soil. The soil will be heated to a temperature of about 90 degree C. This technology is suited for the removal of those organic compounds which have a normal boiling point in the range of 100 degree to 210 degree C, or else for those which exhibit a pure component vapor pressure of at least 10 mm Hg in the 90 degree to 100 degree C temperature range. For example, perchloroethylene, dichlorobenzene, trichlorobenzene, etc. may be removed by in situ AC heating. It is planned to demonstrate the technology by heating approximately 400 tons of soil in the K-1070 Classified Burial Ground located at DOE's K-25 Site located in Oak Ridge, TN. It is estimated that the heating portion of the demonstration will take approximately 3 weeks at an average power input rate of 150 to 175 kill. IITRI expects to spend considerable time in the front end reviewing site characteristics, preparing detail design, developing Health and Safety Plans and other documents needed to obtain regulatory approval for the demonstration, arranging for site sampling, infrastructure development and document preparation. It is anticipated that site activities will begin in approximately 5 to 6 months. This contract was signed on September 30, 1993. IITRI started work on it in October 1993. It is planned to complete the demonstration and submit approved final reports by September 30, 1994. This project has 12 tasks and four major milestones. The major milestones and their planned completion dates are presented

  18. The production and degradation of trichloroacetic acid in soil: Results from in situ soil column experiments

    Czech Academy of Sciences Publication Activity Database

    Heal, M. R.; Dickey, C. A.; Heal, K.V.; Stidson, R.T.; Matucha, Miroslav; Cape, J. N.

    2010-01-01

    Roč. 79, č. 4 (2010), s. 401-407 ISSN 0045-6535 Institutional research plan: CEZ:AV0Z50380511 Keywords : Trichloroacetic acid * TCA * Soil lysimeter Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 3.155, year: 2010

  19. Guide to treatment technology for contaminated soils

    International Nuclear Information System (INIS)

    Tran, H.; Aylward, R.

    1992-01-01

    This document is a guide for the screening of alternative treatment technologies for contaminated soils. The contents of this guide are organized into: 1. Introduction, II. Utilizing the table, III. Tables: Contamination Versus Technology, TV. Contaminant Waste Groups, and V. References. The four Contaminations Versus Technology tables are designed to identify the effectiveness and/or potential applicability of technologies to some or all compounds within specific waste groups. The tables also present limitations and special use considerations for the particular treatment technology. The phase of development of the technology is also included in the table. The phases are: Available, Innovative, and Emerging technologies. The technologies presented in this guide are organized according to the method of treatment. The four (4) treatment methods are Biological, Solidification/Stabilization, Thermal, and Chemical/Physical Treatment. There are several processing methods; some are well developed and proven, and others are in the development stage

  20. Ecotoxicological evaluation of in situ bioremediation of soils contaminated by the explosive 2,4,6-trinitrotoluene (TNT)

    International Nuclear Information System (INIS)

    Frische, Tobias

    2003-01-01

    The luminescent bacteria assay, using soil leachates, was the most sensitive toxicity indicator. - To evaluate the environmental relevance of in situ bioremediation of contaminated soils, effective and reliable monitoring approaches are of special importance. The presented study was conducted as part of a research project investigating in situ bioremediation of topsoils contaminated by the explosive 2,4,6-trinitrotoluene (TNT). Changes in soil toxicity within different experimental fields at a former ordnance factory were evaluated using a battery of five bioassays (plant growth, Collembola reproduction, soil respiration, luminescent bacteria acute toxicity and mutagenicity test) in combination to chemical contaminant analysis. Resulting data reveal clear differences in sensitivities between methods with the luminescent bacteria assay performed with soil leachates as most sensitive toxicity indicator. Complete test battery results are presented in so-called soil toxicity profiles to visualise and facilitate the interpretation of data. Both biological and chemical monitoring results indicate a reduction of soil toxicity within 17 months of remediation

  1. Soil weed seed bank in situ and ex situ at a smallholder field in Maranhão State, northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Mário Luiz Ribeiro Mesquita

    2014-11-01

    Full Text Available The objective of this research was to assess the density, floristic composition,  phytosociology and diversity of a soil weed seed bank ex situ by germination in a greenhouse and in situ by weed sampling on a smallholder corn field located in Lago Verde County, Maranhão State. Fifteen pairs of 25 m2 plots were designated. In half of these plots, 90 soil samples were collected with an open metal template measuring 25 x 16 x 3 cm and placed in a greenhouse to germinate. In the other half, 90 weed samples were collected using the same metal template. We recorded a total of 1,998 individuals from 40 species, 31 genera and 16 families, from which 659 individuals germinated in situ and 1,339 exsitu. Density was higher ex situ, with 372 plants m-2. The Cyperaceae family had the highest floristic richness with nine species, followed by the Poaceae with six. The dominant species based on the Importance Value Index were Lindernia crustacea (IVI 27.7% in situ and Scleria lithosperma (IVI 37.0% ex situ. Floristic diversity was higher ex situ, with H’ = 2.66 nats ind-1. These results could help predict infestation potential and could lead to improved weed management strategies in corn-growing areas on smallholdings in Maranhão State, northeastern Brazil.

  2. In situ mapping of radionuclides in subsurface and surface soils: 1994 Summary report

    International Nuclear Information System (INIS)

    Schilk, A.J.; Hubbard, C.W.; Knopf, M.A.; Abel, K.H.

    1995-04-01

    Uranium production and support facilities at several DOE sites occasionally caused local contamination of some surface and subsurface soils. The thorough cleanup of these sites is a major public concern and a high priority for the US Department of Energy, but before any effective remedial protocols can be established, the three-dimensional distributions of target contaminants must be characterized. Traditional means of measuring radionuclide activities in soil are cumbersome, expensive, time-consuming, and often do not accurately reflect conditions over very large areas. New technologies must be developed, or existing ones improved, to allow cheaper, faster, and safer characterization of radionuclides in soils at these sites. The Pacific Northwest Laboratory (PNL) was tasked with adapting, developing, and demonstrating technologies to measure uranium in surface and subsurface soils. In partial completion of this effort, PNL developed an improved in situ gamma-ray spectrometry system to satisfy the technical requirements. This document summarizes fiscal-year 1994 efforts at PNL to fulfill requirements for TTP number-sign 321103 (project number-sign 19307). These requirements included (a) developing a user-friendly software package for reducing field-acquired gamma-ray spectra, (b) constructing an improved data-acquisition hardware system for use with high-purity germanium detectors, (c) ensuring readiness to conduct field mapping exercises as specified by the sponsor, (d) evaluating the in situ gamma-ray spectrometer for the determination of uranium depth distribution, and (e) documenting these efforts

  3. Forty years of 9Sr in situ migration: importance of soil characterization in modeling transport phenomena

    International Nuclear Information System (INIS)

    Fernandez, J.M.; Piault, E.; Macouillard, D.; Juncos, C.

    2006-01-01

    In 1960 experiments were carried out on the transfer of 9 Sr between soil, grapes and wine. The experiments were conducted in situ on a piece of land limited by two control strips. The 9 Sr migration over the last 40 years was studied by performing radiological and physico-chemical characterizations of the soil on eight 70 cm deep cores. The vertical migration modeling of 9 Sr required the definition of a triple layer conceptual model integrating the rainwater infiltration at constant flux as the only external factor of influence. Afterwards the importance of a detailed soil characterization for modeling was discussed and satisfactory simulation of the 9 Sr vertical transport was obtained and showed a calculated migration rate of about 1.0 cm year -1 in full agreement with the in situ measured values. The discussion was regarding some of the key parameters such as granulometry, organic matter content (in the Van Genuchten parameter determination), Kd and the efficient rainwater infiltration. Besides the experimental data, simplifying assumptions in modeling such as water-soil redistribution calculation and factual discontinuities in conceptual model were examined

  4. NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS: PRINCIPLE AND RESULTS

    International Nuclear Information System (INIS)

    WIELOPOLSKI, L.; MITRA, S.; HENDREY, G.; ROGERS, H.; TORBERT, A.; PRIOR, S.

    2003-01-01

    Global warming is promoted by anthropogenic CO 2 emissions into the atmosphere, while at the same time it is partially mitigated by carbon sequestration by terrestrial ecosystems. However, improvement in the understanding and monitoring of below ground carbon processes is essential for evaluating strategies for carbon sequestration including quantification of carbon stores for credits. A system for non-destructive in situ carbon monitoring in soil, based on inelastic neutron scattering (INS), is described. The system can be operated in stationary or scanning mode and measures soil to depth of approximately 30 cm. There is a good agreement between results obtained from INS and standard chemical analysis of soil cores collected from the same study site

  5. Hot water extraction with in situ wet oxidation: Kinetics of PAHs removal from soil

    International Nuclear Information System (INIS)

    Dadkhah, Ali A.; Akgerman, Aydin

    2006-01-01

    Finding environmentally friendly and cost-effective methods to remediate soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is currently a major concern of researchers. In this study, a series of small-scale semi-continuous extractions - with and without in situ wet oxidation - were performed on soils polluted with PAHs, using subcritical water (i.e. liquid water at high temperatures and pressures, but below the critical point) as the removal agent. Experiments were performed in a 300 mL reactor using an aged soil sample. To find the desorption isotherms and oxidation reaction rates, semi-continuous experiments with residence times of 1 and 2 h were performed using aged soil at 250 deg. C and hydrogen peroxide as oxidizing agent. In all combined extraction and oxidation flow experiments, PAHs in the remaining soil after the experiments were almost undetectable. In combined extraction and oxidation no PAHs could be detected in the liquid phase after the first 30 min of the experiments. Based on these results, extraction with hot water, if combined with oxidation, should reduce the cost of remediation and can be used as a feasible alternative technique for remediating contaminated soils and sediments

  6. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  7. Off-gas treatment and characterization for a radioactive in situ vitrification test

    International Nuclear Information System (INIS)

    Oma, K.H.; Timmerman, C.L.

    1985-01-01

    Effluents released to the off gas during the in situ vitrification (ISV) of a test site have been characterized. The site consisted of a 19 L waste package of soil containing 600 nCi/g transuranic and 30,000 nCi/g mixed fission products surrounded by uncontaminated soil. Radioactive isotopes present in the package were 241 Am, /sup 238/239/Pu, 137 Cs, 106 Ru, 90 Sr, and 60 Co. The ISV process melted the waste package and surrounding soil and immobilized the radionuclides in place, producing a durable, 8.6 metric ton glass and crystalline monolith. The test successfully demonstrated that the process provides containment of radioactive material. No release to the environment was detected during processing or cooldown. Due to the high temperatures during processing, some gases were released into the off-gas hood that was placed over the test site. The hood was maintained at a light negative pressure to contain any volatile or entrained material during processing. Gases passed from the hood to an off-gas treatment system where they were treated using a venturi-ejector scrubber, a tandem nozzle gas cleaner scrubber followed by a condenser, heater, and two stages of HEPA filters. The off-gas treatment system is located in the semi-trailer to allow transport of the process to other potential test sites. Retention of all radionuclides by the vitrified zone was greater than 99%. Soil-to-off-gas decontamination factors (DFs) for transuranic elements averaged greater than 4000 and for fission products, DFs ranged from 130 for 137 Cs to 3100 for 90 Sr

  8. Off-gas treatment and characterization for a radioactive in situ vitrification test

    International Nuclear Information System (INIS)

    Oma, K.H.; Timmerman, C.L.

    1984-08-01

    Effluents released to the off gas during the in situ vitrification (ISV) of a test site have been characterized by Pacific Northwest Laboratory. The site consisted of a 19 L waste package of soil containing 600 nCi/g transuranic and 30,000 nCi/g mixed fission products surrounded by uncontaminated soil. Radioactive isotopes present in the package were 241 Am, 238 / 239 Pu, 137 Cs, 106 Ru, 90 Sr, and 60 Co. The ISV process melted the waste package and surrounding soil and immobilized the radionuclides in place, producing a durable, 8.6 metric ton glass and crystalline monolith. The test successfully demonstrated that the process provides containment of radioactive material. No release to the environment was detected during processing of cooldown. Due to the high temperature during processing, some gases were released into the off-gas hood that was over the test site. The hood was maintained at a slight negative pressure to contain any volatile or entrained material during processing. Gases passed from the hood to an off-gas treatment system where they were treated using a venturi-ejector scrubber, a tandem nozzle gas cleaner scrubber followed by a condenser, heater, and two stages of HEPA filters. The off-gas treatment system is located in the semi-trailer to allow transport of the process to other potential test sites. Retention of all radionuclides by the vitrified zone was greater than 99%. Soil-to-off-gas decontamination factors (DFs) for transuranic elements averaged greater than 4000 and for fission products, DFs ranged from 130 for 137 Cs to 3100 for 90 Sr. 7 references, 15 figures, 4 tables

  9. Demonstration, testing, & evaluation of in situ heating of soil. Draft final report, Volume II: Appendices A to E

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-02-12

    This document is a draft final report for US DOE contract entitled, {open_quotes}Demonstration Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report This document is Volume II, containing appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120{degrees}to 130{degrees}C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow.

  10. Demonstration, testing, ampersand evaluation of in situ heating of soil. Draft final report, Volume II: Appendices A to E

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-01-01

    This document is a draft final report for US DOE contract entitled, open-quotes Demonstration Testing and Evaluation of In Situ Soil Heating,close quotes Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report This document is Volume II, containing appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120 degrees to 130 degrees C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow

  11. An automated, noncontact laser profile meter for measuring soil roughness in situ

    International Nuclear Information System (INIS)

    Bertuzzi, P.; Caussignac, J.M.; Stengel, P.; Morel, G.; Lorendeau, J.Y.; Pelloux, G.

    1990-01-01

    This paper describes a new optical technique for measuring in situ soil surface roughness profiles using a laser profile meter. The described method uses a low-power HeNe (helium-neon) laser as a laser source and a matrix-array detector, as the laser image. The matrix-array detector gives a defect-of-focus laser image of the soil. Soil elevation is measured by projecting a laser beam normally onto the soil surface and measuring the ratio (Ir/It) on the matrix-array detector between the referenced intensity of the return Laser beam (Ir), measured by the central cell of the detector and the total intensity (It), measured by all the cells of the detector. The measured profile leads to 1001 sampled values (volt, range 0 to 10 V) of the surface height profile, at a constant increment of 0.002 m, registered automatically on a microcomputer. A calibration is made in the laboratory in order to convert the electrical measurements into elevation data. The method is universal and can be adapted to different scales of soil surface roughness. Changing the scale is done by changing the lens. Tests were carried out to improve this method for field use and to compare this technique with a method of reference. This technique is considerably quicker and causes no disturbance to the soil. The accuracy on height measurement depends on the choice of the lens. The small focal lens is convenient for smooth soil surfaces. The accuracy on height measurement is less than 0.75 mm. The wide focal lens is convenient for rough soil surfaces. The accuracy on height measurement is estimated at about 1.0 to 1.5 mm

  12. Water storage change estimation from in situ shrinkage measurements of clay soils

    Directory of Open Access Journals (Sweden)

    B. te Brake

    2013-05-01

    Full Text Available The objective of this study is to assess the applicability of clay soil elevation change measurements to estimate soil water storage changes, using a simplified approach. We measured moisture contents in aggregates by EC-5 sensors, and in multiple aggregate and inter-aggregate spaces (bulk soil by CS616 sensors. In a long dry period, the assumption of constant isotropic shrinkage proved invalid and a soil moisture dependant geometry factor was applied. The relative overestimation made by assuming constant isotropic shrinkage in the linear (basic shrinkage phase was 26.4% (17.5 mm for the actively shrinking layer between 0 and 60 cm. Aggregate-scale water storage and volume change revealed a linear relation for layers ≥ 30 cm depth. The range of basic shrinkage in the bulk soil was limited by delayed drying of deep soil layers, and maximum water loss in the structural shrinkage phase was 40% of total water loss in the 0–60 cm layer, and over 60% in deeper layers. In the dry period, fitted slopes of the ΔV–ΔW relationship ranged from 0.41 to 0.56 (EC-5 and 0.42 to 0.55 (CS616. Under a dynamic drying and wetting regime, slopes ranged from 0.21 to 0.38 (EC-5 and 0.22 to 0.36 (CS616. Alternating shrinkage and incomplete swelling resulted in limited volume change relative to water storage change. The slope of the ΔV–ΔW relationship depended on the drying regime, measurement scale and combined effect of different soil layers. Therefore, solely relying on surface level elevation changes to infer soil water storage changes will lead to large underestimations. Recent and future developments might provide a basis for application of shrinkage relations to field situations, but in situ observations will be required to do so.

  13. In Situ Catalytic Groundwater Treatment Using Palladium Catalysts and Horizontal Flow Treatment Wells

    Science.gov (United States)

    2008-01-01

    may enter the soil , and subsequently the groundwater, along any portion of this unlined channel. The area south of the buildings has not been...the 1960s in the northwestern corner of Site 19, and an estimated 250,000 gallons of JP-4 jet fuel were released. Soil was excavated and...16,000 Pd catalyst treatment system $61,000 Pd catalyst with eggshell coating (20 kg @ $245 per lb) $11,000 Skid-mounted reactor system and

  14. Remediation of PCB-contaminated soils. Risk analysis of biological in situ processes

    Energy Technology Data Exchange (ETDEWEB)

    Rein, Arno

    2006-12-08

    Biological in situ measures can be efficient and cost effective options for the remediation of contaminated sites. However, the accepted application requires a detailed and reliable analysis of potential impacts. An important objective is to quantify the potential of contaminant degradation and metabolite formation. This thesis addresses a quantitative multimedia risk assessment. Methodologies and tools were developed for this objective and applied to evaluate in situ bioremediation of soils contaminated with polychlorinated biphenyls (PCBs). Soil bacteria in conjunction with plant roots were addressed (rhizoremediation) with a focus on the use of genetically modified microorganisms (GMOs). PCBs are known to be harmful compounds that are ubiquitously distributed in the environment. PCB contaminations in soil and groundwater were identified as important problems. 209 different congeners are sterically possible, but not all are of environmental significance. PCB congeners of concern were evaluated with respect to their potential toxicity, environmental occurrence and mobility. For this objective, congener specific data on the toxicity potential and the frequency in environmental matrices were collected. To quantify the mobility potential, multimedia modelling was performed applying deterministic and probabilistic procedures. 56 PCB congeners of concern were evaluated, and multimedia risk assessments of PCB-contaminated soils should concentrate on this group. Kinetics parameters were specified for degradation experiments with individual PCB congeners in solution and different bacterial strains. These laboratory assays were performed with wild-type Burkholderia sp. strain LB400 and the genetically modified Pseudomonas fluorescens strains F113pcb and F113L::1180. The F113 derivatives demonstrated a good survival ability in willow (Salix sp.) rhizosphere (mesocosm experiments). Therefore, and due to high depletion rates, rhizoremediation with F113L::1180 and willow

  15. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    Science.gov (United States)

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  16. Wood-derived-biochar combined with compost or iron grit for in situ stabilization of Cd, Pb, and Zn in a contaminated soil.

    Science.gov (United States)

    Oustriere, Nadège; Marchand, Lilian; Rosette, Gabriel; Friesl-Hanl, Wolfgang; Mench, Michel

    2017-03-01

    In situ stabilization of Cd, Pb, and Zn in an Austrian agricultural soil contaminated by atmospheric depositions from a smelter plant was assessed with a pine bark chip-derived biochar, alone and in combination with either compost or iron grit. Biochar amendment was also trialed in an uncontaminated soil to detect any detrimental effect. The pot experiment consisted in ten soil treatments (% w/w): untreated contaminated soil (Unt); Unt soil amended with biochar alone (1%: B1; 2.5%: B2.5) and in combination: B1 and B2.5 + 5% compost (B1C and B2.5C), B1 and B2.5 + 1% iron grit (B1Z and B2.5Z); uncontaminated soil (Ctrl); Ctrl soil amended with 1 or 2.5% biochar (CtrlB1, CtrlB2.5). After a 3-month reaction period, the soil pore water (SPW) was sampled in potted soils and dwarf beans were grown for a 2-week period. The SPW Cd, Pb, and Zn concentrations decreased in all amended-contaminated soils. The biochar effects increased with its addition rate and its combination with either compost or iron grit. Shoot Cd and Zn removals by beans were reduced and shoot Cd, Pb, and Zn concentrations decreased to common values in all amended soils except the B1 soil. Decreases in the SPW Cd/Pb/Zn concentrations did not improve the root and shoot yields of plants as compared to the Ctrl soil.

  17. Use of in-situ Dual Vacuum Extraction trademark for remediation of soil and ground water

    International Nuclear Information System (INIS)

    Dodson, M.E.; Trowbridge, B.E.; Ott, D.

    1994-01-01

    Dual Vacuum Extraction trademark provides a rapid and cost-effective method of remediating soil and ground water contaminated with volatile organic compounds. The system involves the removal of both water and vapors through the same borehole by use of entrainment. This technology provides for the remediation of the vadose zone, capillary fringe, smear zone, and existing water table. The effectiveness of this technology is shown in a case study. A release from an underground storage tank was responsible for a hydrocarbon plume spreading over approximately 50,000 ft 2 . The release produced vadose-zone contamination in the silty and sandy clays from 10 to 30 ft below ground surface (bgs) with total petroleum hydrocarbon (TPH) concentrations up to 1,400 mg/kg. In addition, a layer of free-floating liquid hydrocarbon was present on a shallow aquifer located at 25 ft bgs in thicknesses ranging from 0.5 to 3.0 ft. An in-situ dual-extraction system was installed to remediate the soils and ground water to levels as required by the Los Angeles Regional Water Quality Control Board (RWQCB). The system operated 24 hr a day, with an operating efficiency of over 99%. After 196 days (28 weeks), over 17,000 lb of hydrocarbons had been extracted from the soils. Seven confirmatory soil borings in the area of highest initial hydrocarbon concentrations indicated that TPH and benzene, toluene, ethylbenzene, xylene (BTEX) concentrations had decreased over 99% from initial soil concentrations

  18. Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils

    International Nuclear Information System (INIS)

    Heiser, J.; Fuhrmann, M.

    1997-09-01

    This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex

  19. Demonstration of in situ-constructed horizontal soil containment barrier at Fernald

    International Nuclear Information System (INIS)

    Pettit, P.J.; Ridenour, D.; Walker, J.; Saugier, K.

    1994-01-01

    A new design of jet grouting tool that can be guided by horizontal well casings and that operates in the horizontal plane has been used for the in situ placement of grout and construction of a prototype horizontal barrier that is free of windows. Jet grouting techniques have been advanced to permit construction of horizontal barriers underneath contaminated soil without having to excavate or disturb the waste. The paper describes progress on the Fernald Environmental Restoration Management Corporation (FERMCO) In Situ Land Containment Project which is sponsored by the US Department of Energy's (DOE) Office of Technology Development (OTD) for DOE's Fernald Environmental Management Project (FEMP). The Fernald project is to demonstrate a novel, enabling technology for the controlled underground placement of horizontal panels of grout, and the joining of adjacent panels to construct practical, extensive barriers. Construction strategy, equipment mechanics and operating details of this new method are described

  20. In situ phytoremediation of a soil historically contaminated by metals, hydrocarbons and polychlorobiphenyls.

    Science.gov (United States)

    Doni, S; Macci, C; Peruzzi, E; Arenella, M; Ceccanti, B; Masciandaro, G

    2012-05-01

    In the past several years, industrial and agricultural activities have led to serious environmental pollution, resulting in a large number of contaminated sites. As a result, much recent research activity has focused on the application of bioremediation technologies as an environmentally friendly and economically feasible means for decontamination of polluted soil. In this study horse manure and Populus nigra (var. italica) (HM + P treatment) have been used, at real scale level, as an approach for bioremediation of a soil historically contaminated by metals (Pb, Cr, Cd, Zn, Cu and Ni) and organic contaminants, such as polychlorobiphenyls and petroleum hydrocarbon. After one year, the HM + P phytotreatment was effective in the reclamation of the polluted soil from both organic and inorganic contaminants. A reduction of about 80% in total petroleum hydrocarbon (TPH), and 60% in polychlorobiphenyls (PCBs) and total metals was observed in the HM + P treatment. In contrast, in the horse manure (HM) treatment, used as control, a reduction of only about 30% of TPH was obtained. In order to assess both effectiveness and evolution of the remediation system to a biologically active soil ecosystem, together with the pollution parameters, the parameters describing the evolution of the soil functionality (enzymatic activities and protein SDS-PAGE pattern) were investigated. A stimulation of the metabolic soil processes (increase in dehydrogenase activity) was observed in the HM + P compared to the HM treatment. Finally, preliminary protein SDS-PAGE results have permitted the identification of proteins that have been recovered in the HM + P soil with respect to the HM; this may become a basic tool for improving the biogeochemical status of soil during the decontamination through the identification of microbial populations that are active in soil decontamination.

  1. A new separation and treatment method for soil and groundwater restoration

    Energy Technology Data Exchange (ETDEWEB)

    Hitchens, G.D. [Lynntech, Inc., College Station, TX (United States)

    1997-10-01

    Soil and groundwater contamination by organic compounds is a widespread environmental pollution problem. In many cases, contaminated soil is excavated and transported to a landfill or is incinerated to remove contaminants. These remediation practices are expensive, environmentally disruptive, require extensive permitting, and only move contamination from one location to another. Onsite and in situ treatment techniques offer a safer, more cost-effective, and permanent solution. Many soil and groundwater contaminants are highly volatile, enabling the use of methods such as in situ vacuum extraction and air injection for their removal. However, these methods are often difficult to use because of slow volatilization rates and the lack of effective methods to treat the extracted hazardous material. This Phase I Small Business Innovation Research program focuses on developing an in situ soil and groundwater remediation technique that is effective against volatile as well as nonvolatile compounds and that will shorten treatment times. The technique forms the basis of a new catalytic process to degrade extracted contaminants onsite. Key hardware elements on which the new technique is based have been proven in preliminary research. The method has a high potential for public and regulatory acceptance because of its low environment impact.

  2. A new separation and treatment method for soil and groundwater restoration

    International Nuclear Information System (INIS)

    Hitchens, G.D.

    1997-01-01

    Soil and groundwater contamination by organic compounds is a widespread environmental pollution problem. In many cases, contaminated soil is excavated and transported to a landfill or is incinerated to remove contaminants. These remediation practices are expensive, environmentally disruptive, require extensive permitting, and only move contamination from one location to another. Onsite and in situ treatment techniques offer a safer, more cost-effective, and permanent solution. Many soil and groundwater contaminants are highly volatile, enabling the use of methods such as in situ vacuum extraction and air injection for their removal. However, these methods are often difficult to use because of slow volatilization rates and the lack of effective methods to treat the extracted hazardous material. This Phase I Small Business Innovation Research program focuses on developing an in situ soil and groundwater remediation technique that is effective against volatile as well as nonvolatile compounds and that will shorten treatment times. The technique forms the basis of a new catalytic process to degrade extracted contaminants onsite. Key hardware elements on which the new technique is based have been proven in preliminary research. The method has a high potential for public and regulatory acceptance because of its low environment impact

  3. In situ determination of soil carbon pool by inelastic neutron scattering: Comparison with dry combustion

    International Nuclear Information System (INIS)

    Wielopolski, L.; Mitra, S.; Chatterjee, A.; Lal, R.

    2011-01-01

    There is a well-documented need for new in situ technologies for elemental analysis of soil, particularly for carbon (C), that overcome the limitations of the currently established chemical method by dry combustion (DC). In this work, we evaluated the concordance between the new INS (inelastic neutron scattering) technology and the DC method. The comparisons were carried out in the high C content (30-40%) organic soils of Willard, Ohio (4 sites), in natural forest in Willard, Ohio (1 site), and in a watershed pasture, with an ∼ 10 o slope, in Coshocton, Ohio (5 sites). In addition to these stationary measurements, the organic soil and the pasture were continuously scanned with the inelastic neutron scattering (INS) system to obtain the transects mean C value. Both types of measurements, INS and DC, registered a decline in the surface density of C along transects in the watershed and in the organic soil. Similarly, both recorded a drop in C in the organic soil of about 0.16%. In the pastureland, declines in C levels of 0.08% and 0.10% were observed, respectively, by DC and INS. Combining the results from the three sites yielded a very satisfactory correlation between the INS- and DC-responses, with a regression coefficient, r 2 , value of about 0.99. This suggests the possibility of establishing a universal regression line for various soil types. In addition, we demonstrated the ability of INS to measure the mean value over transect. In organic soil the mean value of an INS scan agreed, ∼ 0.5%, with the mean values of the DC analysis, whereas large discrepancy between these two was recorded in the pastureland. Overall, the various trends observed in C measurements by INS concurred with those determined by the DC method, so enhancing the confidence in the new INS technology.

  4. Soil aquifer treatment of artificial wastewater under saturated conditions

    KAUST Repository

    Essandoh, H. M K; Tizaoui, Chedly; Mohamed, Mostafa H A; Amy, Gary L.; Brdjanovic, Damir

    2011-01-01

    A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen

  5. Ex-situ bioremediation of Brazilian soil contaminated with plasticizers process wastes

    Directory of Open Access Journals (Sweden)

    I. D. Ferreira

    2012-03-01

    Full Text Available The aim of this research was to evaluate the bioremediation of a soil contaminated with wastes from a plasticizers industry, located in São Paulo, Brazil. A 100-kg soil sample containing alcohols, adipates and phthalates was treated in an aerobic slurry-phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry (11gVSS kg-1 dry soil, during 120 days. The soil pH and temperature were not corrected during bioremediation; soil humidity was corrected weekly to maintain 40%. The biodegradation of the pollutants followed first-order kinetics; the removal efficiencies were above 61% and, among the analyzed plasticizers, adipate was removed to below the detection limit. Biological molecular analysis during bioremediation revealed a significant change in the dominant populations initially present in the reactor.

  6. Aerobic De-Epoxydation of Trichothecene Mycotoxins by a Soil Bacterial Consortium Isolated Using In Situ Soil Enrichment

    Directory of Open Access Journals (Sweden)

    Wei-Jie He

    2016-09-01

    Full Text Available Globally, the trichothecene mycotoxins deoxynivalenol (DON and nivalenol (NIV are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON. Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5–10 and temperatures (20–37 °C values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase, as higher concentrations of DON were used in the subculture media, from 0 to 500 μg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation.

  7. Revamping of entisol soil physical characteristics with compost treatment

    Science.gov (United States)

    Sumono; Loka, S. P.; Nasution, D. L. S.

    2018-02-01

    Physical characteristic of Entisol soil is an important factor for the growth of plant. The aim of this research was to know the effect of compost application on physical characteristics of Entisol soil. The research method used was experimental method with 6 (six) treatments and 3 replications of which K1 = 10 kg Entisol soil without compost, K2 = 9 Kg Entisol soil with 1 kg compost, K3 = 8 kg Entisol soil with 2 kg compost, K4 = 7 kg Entisol soilwith3 kg compost, K5 = 6 kg Entisol soil with 4 kg compost and K6 = 5 kg Entisol soil with 5 kg compost. The observed parameters were soil texture, soil organic matter, soil thickness, porosity, soil pore size, soil permeability and water availability. The results showed that the Entisol soil texture was loamy sand texture, the value of soil organic matter ranged from 0.74% to 4.69%, soil thickness ranged from 13.83 to 20.16 cm, porosity ranged from16% to 37%, soil pore size ranged from 2.859 to 5.493 µm, permeability ranged from 1.24 to 5.64 cm/hour and water availability ranged from 6.67% to 9.12% by each treatment.

  8. In Situ Chemical Reduction (ISCR) for Removal of Persistent Pesticides; focus on kepone in tropical soils

    OpenAIRE

    Mouvet , Christophe; Bristeau , Sébastien; Amalric , Laurence; Dictor , Marie Christine; Mercier , Anne; Thannberger , Laurent; Mueller , Jim; Valkenburg , John; Seech , Alan; Przepiora , Andrezej; Molin , Josephine; Bucci , Edson Marcus

    2011-01-01

    Background/Objectives. The global use of organochlorine pesticides (OCPs) such as Lindane, DDT, Dieldrin, Kepone, Chlordane and Toxaphene has resulted in long-term soil impacts at many sites. Given the potential risks to human health and the environment, some OCP-impacted sites require treatment. In certain cases, the "dig-and-dump" approach is not practical due to magnitude of the problem, access issues, and/or resource constraints. Here "bioremediation" can be used to treat the soil on site...

  9. Radionuclide containment in soil by phosphate treatment

    International Nuclear Information System (INIS)

    Lee, S.Y.; Francis, C.W.; Timpson, M.E.; Elless, M.P.

    1995-01-01

    Radionuclide transport from a contaminant source to groundwater and surface water is a common problem faced by most US Department of Energy (DOE) facilities. Containment of the radionuclide plume, including strontium-90 and uranium, is possible using phosphate treatment as a chemical stabilizer. Such a chemical process occurs in soils under natural environmental conditions. Therefore, the concept of phosphate amendment for radiostrontium and uranium immobilization is already a proven principle. In this presentation, results of bench-scale experiments and the concept of a field-scale demonstration are discussed. The phosphate treatment is possible at the source or near the advancing contaminant plume. Cleanup is still the ideal concept; however, containment through stabilization is a more practical and costeffective concept that should be examined by DOE Environmental Restoration programs

  10. Demonstration, testing, and evaluation of in situ heating of soil. Final report, Volume 2, Appendices A to E

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-01-01

    This is a final report presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOC's and other organic chemicals. Although it may be applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by air flow

  11. Demonstration, testing, and evaluation of in situ heating of soil. Final report, Volume 2, Appendices A to E

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-04-05

    This is a final report presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOC`s and other organic chemicals. Although it may be applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by air flow.

  12. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection

    Science.gov (United States)

    Mojarro, Angel; Ruvkun, Gary; Zuber, Maria T.; Carr, Christopher E.

    2017-08-01

    Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars.

  13. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection.

    Science.gov (United States)

    Mojarro, Angel; Ruvkun, Gary; Zuber, Maria T; Carr, Christopher E

    2017-08-01

    Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars. Key Words: Life-detection instruments-Nucleic acids-Mars-Panspermia. Astrobiology 17, 747-760.

  14. In-situ Mass Distribution Quotient (iMDQ) - A New Factor to Compare Bioavailability of Pesticides in Soils?

    Science.gov (United States)

    Schroll, R.; Folberth, C.; Scherb, H.; Suhadolc, M.; Munch, J. C.

    2009-04-01

    Aim of this work was the development of a new non-biological factor to determine microbial in-situ bioavailability of chemicals in soils. Pesticide residues were extracted from ten highly different agricultural soils that had been incubated with the 14C-herbicide isoproturon (IPU) under comparable soil conditions (water tension - 15 kPa; soil density 1.3 g cm 3). Two different pesticide extraction approaches were compared: (i) 14C-Pesticide residues were measured in the pore water (PW) which was extracted from soil by centrifugation; (ii) 14C-Pesticide residues were extracted from soil samples with an excess of water (EEW). We introduce the pesticide's in-situ mass distribution quotient (iMDQ) as a measure for pesticide bioavailability, which is calculated as a quotient of adsorbed and dissolved chemical amounts for both approaches (iMDQPW, iMDQEEW). Pesticide mineralization in soils served as a reference for real microbial availability. A highly significant correlation between iMDQPW and mineralization showed that pore water extraction is adequate to assess IPU bioavailability. In contrast, no correlation exists between IPU mineralization and its extractability from soil with an excess of water. Therefore, it can be concluded that soil equilibration at comparable conditions and subsequent pore water extraction is vital for a isoproturon bioavailability ranking of soils.

  15. In situ oil burning in the marshland environment : soil temperatures resulting from crude oil and diesel fuel burns

    International Nuclear Information System (INIS)

    Bryner, N.P.; Walton, W.D.; Twilley, W.H.; Roadarmel, G.; Mendelssohn, I.A.; Lin, Q.; Mullin, J.V.

    2001-01-01

    The unique challenge associated with oil spill cleanups in sensitive marsh environments was discussed. Mechanical recovery of crude or refined hydrocarbons in wetlands may cause more damage to the marsh than the oil itself. This study evaluated whether in situ burning of oiled marshlands would provide a less damaging alternative than mechanical recovery. This was done through a series of 6 crude oil and 5 diesel fuel burns conducted in a test tank to examine the impact of intentional burning of oil spilled in a wetlands environment. There are several factors which may influence how well such an environment would recover from an in situ oil burn, such as plant species, fuel type and load, water level, soil type, and burn duration. This paper focused on soil, air and water temperatures, as well as total heat fluxes that resulted when 3 plant species were exposed to full-scale in situ burns that were created by burning diesel fuel and crude oil. The soil temperatures were monitored during the test burn at three different soil/water elevations for 700 second burn exposures. A total of 184 plant sods were harvested from marshlands in southern Louisiana and were subjected to the burning fuel. They were instrumental in characterizing the thermal and chemical stress that occur during an in-situ burn. The plants were inserted into the test tanks at various water and soil depths. The results indicated that diesel fuel and crude oil burns produced similar soil temperature profiles at each of three plant sod elevations. Although in-situ burning did not appear to remediate oil that had penetrated into the soil, it did effectively remove floating oil from the water surface, thereby preventing it from potentially contaminating adjacent habitats and penetrating the soil when the water recedes. The regrowth and recovery of the plants will be described in a separate report. 25 refs., 7 tabs., 15 figs

  16. Impact of pre-treatment technologies on soil aquifer treatment

    Directory of Open Access Journals (Sweden)

    A. Besançon

    2017-03-01

    Full Text Available This study investigates the impact of pre-treatment options on the performances of soil columns simulating soil aquifer treatment (SAT. For this purpose a conventional activated sludge (CAS process, a membrane bioreactor (MBR and vertical flow reed beds were used as single units or in combination before SAT. The influent and effluent from each treatment train were monitored over three successive 6-month periods, corresponding to changes in the operational conditions of the MBR and CAS units from 6 days' sludge retention time (SRT to 12 and 20 days. All the columns acted as efficient polishing steps for solids and bacteria. The column receiving effluent from the CAS system running at 6 days' SRT also presented high total nitrogen and total phosphorus removals, but this column was also associated with the lowest infiltration rates over that period. While the quality of the effluent from the column following the CAS process increased over 18 months of operation, the effluent quality of the columns receiving MBR effluent degraded. No correlations were found between variations in SRT of the MBR and CAS processes and the columns' performances. Overall, all columns, except the one receiving CAS effluent, underwent a reduction in infiltration rate over 18 months.

  17. Soil treatment to remove uranium and related mixed radioactive heavy metal contaminants. Ninth quarterly technical and financial progress report, January 1, 1995--March 31, 1995

    International Nuclear Information System (INIS)

    1995-05-01

    The objective of this project is to design and develop a physico-chemical treatment process for the removal of uranium and heavy metals from contaminated soil to achieve target contamination levels below 35 pCi/g of soil and a target for non-radioactive heavy metals below concentration levels permissible for release of the soil. The work will involve bench-scale and pilot-scale tests, using chelation-flotation, chemical leaching and ultrasonic leaching techniques, in conjunction with cross-flow microfiltration and filter-press operations. The effectiveness of an integrated process to treat leachates generated from soil processing will be demonstrated. Process flow-sheets suitable for in-situ and ex-situ applications will be developed and preliminary costs will be provided for the soil and leachate treatment technologies. In accordance with 10CFR 600.31 (d)(i), an extension of the project period including final report submission to 31 July 1995 was made in anticipation of potential delays in receiving Fernald soil samples at Chalk River Laboratories for the planned pilot-scale verification tests. Ex-situ pilot-scale soil decontamination and leachate treatment tests using Chalk River Chemical Pit soil are nearing completion. Soil decontamination tests using Fernald Incinerator Area soil originally scheduled for February 1995 was postponed to May 1995 as result of unexpected delays in the preparation of two drums of soils (∼416 kg) by FERMCO and paperwork required to arrange for export/import licenses

  18. Portable gamma spectrometry: measuring soil erosion in-situ at four Critical Zone Observatories in P. R. China

    Science.gov (United States)

    Sanderson, N. K.; Green, S. M.; Chen, Z.; Wang, J.; Wang, Y.; Wang, R.; Yu, K.; Tu, C.; Jia, X.; Li, G.; Peng, X.; Quine, T. A.

    2017-12-01

    Detecting patterns of soil erosion, redistribution, and/soil nutrient loss is important for long-term soil conservation and agricultural sustainability. Caesium-137 (137Cs) and other fallout radionuclide inventories have been used over the the last 50 years to track soil erosion, transport and deposition on a catchment scale, and have been shown to be useful for informing models of temporal/spatial soil redistribution. Traditional sampling methods usually involves coring, grinding, sieving, sub-sampling and laboratory analysis using HPGe detectors, all of which can be costly and time consuming. In-situ measurements can provide a mechanism for assessment of 137Cs over larger areas that integrate the spatial variability, and expand turnover of analyses. Here, we assess the applicability of an in-situ approach based on radionuclide principles, and provide a comparison of the two approaches: laboratory vs. in-situ. The UK-China Critical Zone Observatory (CZO) programme provides an ideal research platform to assess the in-situ approach to measuring soil erosion: using a portable gamma spectrometer to determine 137Cs inventories. Four extensive field slope surveys were conducted in the CZO's, which covers four ecosystem types in China: karst, red soil, peri-urban, and loess plateau. In each CZO, 3-6 plots were measured along 2 slope transects, with 3 replicated 1 hour counts of 137Cs in each plot. In addition, 137Cs soil depth and bulk density profiles were also sampled for each plot, and lab-derived inventories calculated using traditional methods for comparison. Accurately and rapidly measuring 137Cs inventories using a portable field detector allows for a greater coverage of sampling locations and the potential for small-scale spatial integration, as well as the ability to re-visit sites over time and continually adapt and improve soil erosion/redistribution models, thus more effectively targeting areas of interest with reduced cost and time constraints.

  19. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer, E-mail: odahan@bgu.ac.il; Ronen, Zeev, E-mail: zeevrone@bgu.ac.il

    2017-02-15

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10{sup 5} to 10{sup 7} copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  20. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    International Nuclear Information System (INIS)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-01-01

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10"5 to 10"7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  1. Removal of oxyfluorfen from ex-situ soil washing fluids using electrolysis with diamond anodes.

    Science.gov (United States)

    dos Santos, Elisama Vieira; Sáez, Cristina; Martínez-Huitle, Carlos Alberto; Cañizares, Pablo; Rodrigo, Manuel Andres

    2016-04-15

    In this research, firstly, the treatment of soil spiked with oxyfluorfen was studied using a surfactant-aided soil-washing (SASW) process. After that, the electrochemical treatment of the washing liquid using boron doped diamond (BDD) anodes was performed. Results clearly demonstrate that SASW is a very efficient approach in the treatment of soil, removing the pesticide completely by using dosages below 5 g of sodium dodecyl sulfate (SDS) per Kg of soil. After that, complete mineralization of organic matter (oxyflourfen, SDS and by-products) was attained (100% of total organic carbon and chemical oxygen demand removals) when the washing liquids were electrolyzed using BDD anodes, but the removal rate depends on the size of the particles in solution. Electrolysis of soil washing fluids occurs via the reduction in size of micelles until their complete depletion. Lower concentrations of intermediates are produced (sulfate, chlorine, 4-(trifluoromethyl)-phenol and ortho-nitrophenol) during BDD-electrolyzes. Finally, it is important to indicate that, sulfate (coming from SDS) and chlorine (coming from oxyfluorfen) ions play an important role during the electrochemical organic matter removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Comparing the ensemble and extended Kalman filters for in situ soil moisture assimilation with contrasting conditions

    Directory of Open Access Journals (Sweden)

    D. Fairbairn

    2015-12-01

    Full Text Available Two data assimilation (DA methods are compared for their ability to produce an accurate soil moisture analysis using the Météo-France land surface model: (i SEKF, a simplified extended Kalman filter, which uses a climatological background-error covariance, and (ii EnSRF, the ensemble square root filter, which uses an ensemble background-error covariance and approximates random rainfall errors stochastically. In situ soil moisture observations at 5 cm depth are assimilated into the surface layer and 30 cm deep observations are used to evaluate the root-zone analysis on 12 sites in south-western France (SMOSMANIA network. These sites differ in terms of climate and soil texture. The two methods perform similarly and improve on the open loop. Both methods suffer from incorrect linear assumptions which are particularly degrading to the analysis during water-stressed conditions: the EnSRF by a dry bias and the SEKF by an over-sensitivity of the model Jacobian between the surface and the root-zone layers. These problems are less severe for the sites with wetter climates. A simple bias correction technique is tested on the EnSRF. Although this reduces the bias, it modifies the soil moisture fluxes and suppresses the ensemble spread, which degrades the analysis performance. However, the EnSRF flow-dependent background-error covariance evidently captures seasonal variability in the soil moisture errors and should exploit planned improvements in the model physics. Synthetic twin experiments demonstrate that when there is only a random component in the precipitation forcing errors, the correct stochastic representation of these errors enables the EnSRF to perform better than the SEKF. It might therefore be possible for the EnSRF to perform better than the SEKF with real data, if the rainfall uncertainty was accurately captured. However, the simple rainfall error model is not advantageous in our real experiments. More realistic rainfall error models are

  3. The use of in-situ dual vacuum extraction for remediation of soil and groundwater

    International Nuclear Information System (INIS)

    Trowbridge, B.E.; Ott, D.E.

    1992-01-01

    Dual Extraction provides a rapid and cost-effective method of remediating soil and groundwater impacted by volatile organic compounds (VOC's). Dual Extraction is the removal of both water and vapors through the same borehole using entrainment. This technology provides for the remediation of the vadose zone, capillary fringe, smear zone, and existing water table. The effectiveness of this technology is shown in a case study. A release from an Underground Storage Tank (UST) was responsible for a hydrocarbon plume spreading over approximately 50,000 square feet. The release produced vadose zone contamination in the silty and sandy clays from 10 - 30 feet below ground surface with TPH concentrations up to 1,400 mg/kg. A layer of free floating liquid hydrocarbon was present on a shallow aquifer located at 30 feet bgs in thicknesses ranging from 0.5 feet to 3.0 feet. An in-situ dual-extraction system was installed to remediate the soils and groundwater to levels as required by the Los Angeles Regional Water Quality Control Board (RWQCB). The system operated 24 hours/day for 196 days with an operating efficiency of over 99%. After 196 days, over 17,000 pounds of hydrocarbons had been extracted from the soils. Seven confirmatory soil borings were advanced in the area of highest initial hydrocarbon concentrations and indicated that TPH and BTEX concentrations had decreased over 99% from initial soil concentrations. Three confirmatory groundwater samples were obtained from monitoring wells initially exhibiting up to 3 feet of floating product. Confirmatory samples exhibited non-detectable (ND) concentrations of TPH and BTEX. Based upon the positive confirmatory results, site closure was obtained from the RWQCB in May of 1991. In only 28 weeks of operation, the groundwater contamination was reduced from free floating product to non-detectable concentrations of TPH using Dual Vacuum Extraction

  4. Comparison of in situ DGT measurement with ex situ methods for predicting cadmium bioavailability in soils with combined pollution to biotas.

    Science.gov (United States)

    Wang, Peifang; Liu, Cui; Yao, Yu; Wang, Chao; Wang, Teng; Yuan, Ye; Hou, Jun

    2017-05-01

    To assess the capabilities of the different techniques in predicting Cadmium (Cd) bioavailability in Cd-contaminated soils with the addition of Zn, one in situ technique (diffusive gradients in thin films; DGT) was compared with soil solution concentration and four widely used single-step extraction methods (acetic acid, EDTA, sodium acetate and CaCl 2 ). Wheat and maize were selected as tested species. The results demonstrated that single Cd-polluted soils inhibited the growth of wheat and maize significantly compared with control plants; the shoot and root biomasses of the plants both dropped significantly (P 0.9) between Cd concentrations in two plants and Cd bioavailability indicated by each method in soils. Consequently, the results indicated that the DGT technique could be regarded as a good predictor of Cd bioavailability to plants, comparable to soil solution concentration and the four single-step extraction methods. Because the DGT technique can offer in situ data, it is expected to be widely used in more areas.

  5. Soil treatment by vibroflottation – Application to protection structures of DjenDjen port, Jijel, Algeria

    Directory of Open Access Journals (Sweden)

    KHELALFA HOUSSAM

    2016-12-01

    Full Text Available Soil treatment by vibroflotation is a recent technique for improving soil with poor geo-mechanical properties. In addition, this treatment minimizes the risk of liquefaction and the instability of the caisson. This work allows us to establish a two-dimensional numerical simulation of a real vibroflotation test, based on our model and our hypothesis of modeling this mechanism in finite elements. On the other hand, the work consists in making a two-dimensional numerical study of the stability of the caisson carried out on the treated soil, in order to verify its influence on the stability of the structure. The calculation results will be compared with in-situ measurements to validate the numerical model.

  6. Study of Ground Treatment on Improvement of Pile Foundation Response in Liquefiable Soils

    Directory of Open Access Journals (Sweden)

    Chen Yulong

    2016-05-01

    Full Text Available In light of the disastrous the 2011 Tohoku Pacific Earthquake, the government of Japan has conducted studies to revise the seismic design code, and elevated peak ground accelerations have been adopted. Consequently, revisions on existing design to comply with the updated code are required for public projects that are still undergoing. The design safety needs to be reassessed, and implementation of strengthening measures is required if deemed necessary. For liquefaction countermeasures, ground treatment techniques that could increase the density of soils are often the preferable alternatives. The treatment usually increases the in-situ SPT-N or CPT-qc values, which in turn would increase the resistance of soil against liquefaction. For many public infrastructures in Japan supported by bored piles embedded partly or entirely in sandy soils, reevaluation of design safety against soil liquefaction would be required. In an assessment of possible retrofitting countermeasures for an infrastructure foundation, ground treatment has been considered. In this case study, effect of ground treatment on response of piles in liquefiable soils was investigated with numerical analyses using FLAC. Results provide insights into this ground treatment effect and useful information for consideration in future design or decision making.

  7. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p bioremediation.

  8. Calibration of HPGe detector for in situ measurements of 137Cs in soil by 'peak to valley' method

    International Nuclear Information System (INIS)

    Fueloep, M.

    2000-01-01

    The contamination of soil with gamma-ray emitters can be measured in two ways: soil sampling method and in situ spectrometry of the ambient gamma-ray radiation. The conventional soil sampling method has two disadvantages: samples may not be representative for a large areas and determination of the depth distribution of radionuclide requires the measurement of several samples taken from different depths. In situ measurement of a radionuclide activity in soil is more sensitive and provides more representative data than data obtained by soil sample collection and subsequent laboratory analysis. In emergency situations time to assess the contamination is critical. For rapid assessment of the deposited activity direct measurement of ambient gamma-ray radiation are used. In order to obtain accurate measurements of radionuclides in the soil, the detector should be placed on relatively even and open terrain. It is our customary practice to place the detector 1 m above the soil surface. At this height, a tripod-mounted detector can be handled easily and still provide a radius of view for gamma emitting sources out to about 10 m. The 'field of view' actually varies, being somewhat larger for higher sources. Depending upon source energy, the detector effectively sees down to a depth of 15-30 cm. Commonly used method for field gamma spectrometry is method by Beck (1). The most important disadvantages of in situ spectrometry by Beck are that the accuracy of the analysis depends on a separate knowledge of the radioactivity distribution with soil depth. This information can be obtained by calculations using data from in situ measurements and energy dependence of absorption and scattering of photons in soil and track length distribution of photons in soil (2). A method of in situ measurements of 137 Cs in soil where radionuclide distribution in soil profile is calculated by unfolding of detector responses in the full energy peak net area at 0.662 MeV and in the valley under the

  9. Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering

    Directory of Open Access Journals (Sweden)

    Ilhan Chang

    2016-03-01

    Full Text Available Soil treatment and improvement is commonly performed in the field of geotechnical engineering. Methods and materials to achieve this such as soil stabilization and mixing with cementitious binders have been utilized in engineered soil applications since the beginning of human civilization. Demand for environment-friendly and sustainable alternatives is currently rising. Since cement, the most commonly applied and effective soil treatment material, is responsible for heavy greenhouse gas emissions, alternatives such as geosynthetics, chemical polymers, geopolymers, microbial induction, and biopolymers are being actively studied. This study provides an overall review of the recent applications of biopolymers in geotechnical engineering. Biopolymers are microbially induced polymers that are high-tensile, innocuous, and eco-friendly. Soil–biopolymer interactions and related soil strengthening mechanisms are discussed in the context of recent experimental and microscopic studies. In addition, the economic feasibility of biopolymer implementation in the field is analyzed in comparison to ordinary cement, from environmental perspectives. Findings from this study demonstrate that biopolymers have strong potential to replace cement as a soil treatment material within the context of environment-friendly construction and development. Moreover, continuing research is suggested to ensure performance in terms of practical implementation, reliability, and durability of in situ biopolymer applications for geotechnical engineering purposes.

  10. Use of in situ volumetric water content at field capacity to improve prediction of soil water retention properties

    OpenAIRE

    Al Majou , Hassan; Bruand , Ary; Duval , Odile

    2008-01-01

    International audience; Use of in situ volumetric water content at field capacity to improve prediction of soil water retention properties. Most pedotransfer functions (PTFs) developed over the last three decades to generate water retention characteristics use soil texture, bulk density and organic carbon content as predictors. Despite of the high number of PTFs published, most being class- or continuous-PTFs, accuracy of prediction remains limited. In this study, we compared the performance ...

  11. Grey water treatment by the slanted soil system with unsorted soil media.

    Science.gov (United States)

    Ushijima, Ken; Tanaka, Erina; Suzuki, Laís Yuko; Hijikata, Nowaki; Funamizu, Naoyuki; Ito, Ryusei

    2015-01-01

    This study evaluated the performance of unsorted soil media in the slanted soil treatment system, in terms of removal efficiency in suspended solids (SS), chemical oxygen demand (COD), linear alkylbenzene sulphonate (LAS) and Escherichia coli, and lifetime until clogging occurs. Unsorted soil performed longer lifetime until clogging than sorted fine soil. Removal of SS, COD, and LAS also performed same or better level in unsorted soil than fine soil. As reaction coefficients of COD and LAS were described as a function of the hydraulic loading rate, we can design a slanted soil system according to the expected hydraulic loading rate and the targeted level of COD or LAS in effluent. Regarding bacteria removal, unsorted soil performed sufficient reduction of E. coli for 5 weeks; however, the removal process occurred throughout all four chambers, while that of fine soil occurred in one to two chambers.

  12. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Wang Quanying; Wu Danya

    2009-01-01

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm -1 of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  13. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhou Dongmei, E-mail: dmzhou@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Wang Quanying; Wu Danya [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-30

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm{sup -1} of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  14. Investigation of electric fields for low-temperature treatment of soils and liquids

    International Nuclear Information System (INIS)

    Heath, W.O.; Goheen, S.C.; Miller, M.C.; Richardson, R.L.

    1992-02-01

    Work was performed to assess the feasibility of an in situ technology for decomposing and removing hazardous organic waste compounds from soils. The technology is based on conductive soil heating and partial electrical discharges (corona) combined with soil-vapor extraction. A pilot-scale facility was developed and used to evaluate the ability to heat and dry soils using polyphase electricity applied through inserted pipes. Uniform heating (100 ± 2 degrees C) and drying to 1.2-wt % moisture were observed. Heating and resultant in situ steam formation have been demonstrated in previous studies to be effective in removing volatile and semivolatile compounds. Corona reactors were constructed to investigate decomposition of organic compounds by oxidants produced in a point-to-liquid corona discharge in ambient air at room temperature and pressure. Point-to-liquid corona was found to be capable of destroying a wide variety of organics, including three aromatics, two polyaromatics, a pcp, a pcb, an alkane, an alkene, an amide, a complexant, a chelator, and an organic dye. Tests with trichloroethylene demonstrated a decontamination factor of 2 x 10 5 (equal to a destruction efficiency of 99.999995%) and nearly complete (99.7%) mineralization, with the main byproduct being aqueous chloride ions. Real-time data on the decolorization kinetics of aqueous methylene blue were obtained using in situ probe colorimetry. Reaction rates were directly proportional to the amount of unreacted dye present and the square of electrode current. Other exploratory tests were performed to investigate concepts for generating ac corona discharges in soil and the ability of those discharges to decompose adsorbed organic compounds. All findings are discussed in relation to a conceptual soil-treatment scenario that includes a description of the basic hardware requirements

  15. Granulometry and moisture influence for in situ soil analysis by portable EDXRF

    International Nuclear Information System (INIS)

    Melquiades, Fabio L.; Bastos, Rodrigo O.; Biase, Gabriel E.V.; Parreira, Paulo S.; Appoloni, Carlos R.

    2010-01-01

    Full text: The objective of this work was to verify the granulometry and the moisture influence in results when soils and sediment samples are measured for identification and quantification of metal, on field, employing a portable Energy Dispersive X-Ray Fluorescence (PXRF) equipment. Calibration curves, calculated using 5 reference samples, were used for sensitivity determination. A sediment Standard Reference Material from IAEA was used to certificate the sensitivity values. The PXRF-LFNA02 equipment, consisting of an Ag mini X-ray Tube and a Si-PIN detector, was employed to accomplish the measurements. Soil samples were collected and dried for 24 h at 60 deg C before granulometry tests. Three grounding procedures were analyzed for granulometry influence evaluation: samples without any grounding; grounded for one minute using a porcelain mortar and pestle set, but without sieving; and grounded for one minute using a porcelain mortar and pestle set, and sieved (smaller than 125 mum particle size). The obtained concentration values for Ti, Fe and Zr, are equivalent for the samples grounded for one minute and the samples grounded and sieved. This result indicates that, for in situ analysis of this soil, it is sufficient to ground the dried sample before to measure. Moisture tests were performed by sampling the soil in situ and leaving the samples on aluminum recipients in open air, at sun, for distinct times, from 0 up to 2h. A reference sample, dried for 24h at 60 deg C, was measured as well in order to compare the results. The concentration values obtained for the samples dried during 30 minutes or 120 minutes at sun are equivalent. On the other hand, the concentration values obtained for the samples dried during 24 h are higher than the values obtained for the same samples dried at sun. Moisture influences the concentrations values in around 20%. Some considerations are performed indicating a methodology for correction of this factor by using the background under

  16. Granulometry and moisture influence for in situ soil analysis by portable EDXRF

    Energy Technology Data Exchange (ETDEWEB)

    Melquiades, Fabio L.; Bastos, Rodrigo O.; Biase, Gabriel E.V. [Universidade Estadual do Centro Oeste (UNICENTRO), Guarapuava, PR (Brazil). Dept. de Fisica; Parreira, Paulo S.; Appoloni, Carlos R. [Universidade Estadual de Londrina (DF/UEL), PR (Brazil). Dept. de Fisica

    2010-07-01

    Full text: The objective of this work was to verify the granulometry and the moisture influence in results when soils and sediment samples are measured for identification and quantification of metal, on field, employing a portable Energy Dispersive X-Ray Fluorescence (PXRF) equipment. Calibration curves, calculated using 5 reference samples, were used for sensitivity determination. A sediment Standard Reference Material from IAEA was used to certificate the sensitivity values. The PXRF-LFNA02 equipment, consisting of an Ag mini X-ray Tube and a Si-PIN detector, was employed to accomplish the measurements. Soil samples were collected and dried for 24 h at 60 deg C before granulometry tests. Three grounding procedures were analyzed for granulometry influence evaluation: samples without any grounding; grounded for one minute using a porcelain mortar and pestle set, but without sieving; and grounded for one minute using a porcelain mortar and pestle set, and sieved (smaller than 125 mum particle size). The obtained concentration values for Ti, Fe and Zr, are equivalent for the samples grounded for one minute and the samples grounded and sieved. This result indicates that, for in situ analysis of this soil, it is sufficient to ground the dried sample before to measure. Moisture tests were performed by sampling the soil in situ and leaving the samples on aluminum recipients in open air, at sun, for distinct times, from 0 up to 2h. A reference sample, dried for 24h at 60 deg C, was measured as well in order to compare the results. The concentration values obtained for the samples dried during 30 minutes or 120 minutes at sun are equivalent. On the other hand, the concentration values obtained for the samples dried during 24 h are higher than the values obtained for the same samples dried at sun. Moisture influences the concentrations values in around 20%. Some considerations are performed indicating a methodology for correction of this factor by using the background under

  17. Validation of remotely-sensed soil moisture in the absence of in situ soil moisture: the case of the Yankin Basin, a tributary of the Niger River basin

    CSIR Research Space (South Africa)

    Badou, DF

    2017-10-01

    Full Text Available of remotely-sensed soil moisture is therefore promising. However, considering the limitations of remote sensing data, there is a need to check their validity prior to their utilization for impact studies. This in turn poses a problem in the absence of in situ...

  18. Application of an in-situ soil sampler for assessing subsurface biogeochemical dynamics in a diesel-contaminated coastal site during soil flushing operations.

    Science.gov (United States)

    Kwon, Man Jae; O'Loughlin, Edward J; Ham, Baknoon; Hwang, Yunho; Shim, Moojoon; Lee, Soonjae

    2018-01-15

    Subsurface biogeochemistry and contaminant dynamics during the remediation of diesel-contamination by in-situ soil flushing were investigated at a site located in a coastal region. An in-situ sampler containing diesel-contaminated soils separated into two size fractions (fraction were much higher than those in the fraction. Increases in soil TPH in DH1 were consistent with the expected outcomes following well pumping and surfactant injection used to enhance TPH extraction. However, the number of diesel-degrading microorganisms decreased after surfactant injection. 16S-rRNA gene-based analysis also showed that the community composition and diversity depended on both particle size and diesel contamination. The multidisciplinary approach to the contaminated site assessments showed that soil flushing with surfactant enhanced diesel extraction, but negatively impacted in-situ diesel biodegradation as well as groundwater quality. The results also suggest that the in-situ sampler can be an effective monitoring tool for subsurface biogeochemistry as well as contaminant dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. An optode sensor array for long term in situ Oxygen measurements in soil and sediment

    DEFF Research Database (Denmark)

    Rickelt, Lars F; Jensen, Louise Askær; Walpersdorf, Eva Christine

    2013-01-01

    Long-term measurements of molecular oxygen (O2) dynamics in wetlands are highly relevant for understanding the eff ects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We construc......Long-term measurements of molecular oxygen (O2) dynamics in wetlands are highly relevant for understanding the eff ects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We...... constructed an O2 optode sensor array for long-term in situ measurements in soil and sediment. Th e new device consists of a 1.3-m-long, cylindrical, spear-shaped rod equipped with 10 sensor spots along the shaft . Each spot contains a thermocouple fi xed with a robust fi beroptic O2 optode made...... characteristics of the sensor array system are presented along with a novel approach for temperature compensation of O2 optodes. During in situ application over several months in a peat bog, we used the new device to document pronounced variations in O2 distribution aft er marked shift s in water level. Th e...

  20. Treatment of chromium contaminated soil using bioremediation

    Science.gov (United States)

    Purwanti, Ipung Fitri; Putri, Tesya Paramita; Kurniawan, Setyo Budi

    2017-11-01

    Chromium contamination in soil occurs due to the disposal of chromium industrial wastewater or sludge that excess the quality standard. Chromium concentration in soil is ranged between 1 to 300 mg/kg while the maximum health standard is 2.5 mg/kg. Bioremediation is one of technology that could be used for remediating heavy metal contamination in soil. Bacteria have an ability to remove heavy metal from soil. One bacteria species that capable to remove chromium from soil is Bacillus subtilis. The aim of this research was to know the chromium removal percentage in contaminated soil by Bacillus subtilis. Artificial chromium contaminated soil was used by mixing 425gram sand and chromium trichloride solution. Concentration of chromium added into the spiked soil were 50, 75, and 100 mg/L. During 14 days, pH, soil temperature and soil moisture were tested. Initial and final number of bacterial colony and chromium concentration analysed. The result showed that the highest percentage of chromium removal was 11% at a chromium concentration of 75 mg/L

  1. Multi-time scale analysis of the spatial representativeness of in situ soil moisture data within satellite footprints

    Science.gov (United States)

    We conduct a novel comprehensive investigation that seeks to prove the connection between spatial and time scales in surface soil moisture (SM) within the satellite footprint (~50 km). Modeled and measured point series at Yanco and Little Washita in situ networks are first decomposed into anomalies ...

  2. In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils.

    Science.gov (United States)

    Kim, Shin Woong; Chae, Yooeun; Moon, Jongmin; Kim, Dokyung; Cui, Rongxue; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-02-15

    Soils contaminated with heavy metals have been reused for agricultural, building, and industrial uses following remediation. This study assesses plant growth and bioaccumulation of heavy metals following remediation of industrially contaminated soil. The soil was collected from a field site near a nonferrous smelter and was subjected to laboratory- and field-scale studies. Soil from the contaminated site was remediated by washing with acid or mixed with soil taken from a distant uncontaminated site. The activities of various soil exoenzymes, the rate of plant growth, and the bioaccumulations of six heavy metals were measured to assess the efficacy of these bioremediation techniques. Growth of rice (Oryza sativa) was unaffected in acid-washed soil or the amended soil compared to untreated soil from the contaminated site. The levels of heavy metals in the rice kernels remained within safe limits in treated and untreated soils. Rice, sorghum (Sorghum bicolor), and wheat (Triticum aestivum) cultivated in the same soils in the laboratory showed similar growth rates. Soil exoenzyme activities and crop productivity were not affected by soil treatment in field experiments. In conclusion, treatment of industrially contaminated soil by acid washing or amendment did not adversely affect plant productivity or lead to increased bioaccumulation of heavy metals in rice.

  3. In situ stabilization remediation of cadmium contaminated soils of wastewater irrigation region using sepiolite.

    Science.gov (United States)

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Wang, Lin; Lin, Dasong; Liang, Xuefeng; Shi, Xin

    2012-01-01

    The effects of immobilization remediation of Cd-contaminated soils using sepiolite on soil pH, enzyme activities and microbial communities, TCLP-Cd (toxicity characteristic leaching procedure-Cd) concentration, and spinach (Spinacia oleracea) growth and Cd uptake and accumulation were investigated. Results showed that the addition of sepiolite could increase soil pH, while the TCLP-Cd concentration in soil was decreased with increasing sepiolite. The changes of soil enzyme activities and bacteria number indicated that a certain metabolic recovery occurred after the sepiolite treatments, and spinach shoot biomass increased by 58.5%-65.5% in comparison with the control group when the concentration of sepiolite was < or = 10 g/kg. However, the Cd concentrations in the shoots and roots of spinach decreased with an increase in the rate of sepiolite, experiencing 38.4%-59.1% and 12.6%-43.6% reduction, respectively, in contrast to the control. The results indicated that sepiolite has the potential for success on a field scale in reducing Cd entry into the food chain.

  4. Bamboo leaf ash as the stabilizer for soft soil treatment

    Science.gov (United States)

    Rahman, A. S. A.; Jais, I. B. M.; Sidek, N.; Ahmad, J.; Rosli, M. I. F.

    2018-04-01

    Soft soil is a type of soil that have the size of particle less than 0.063mm. The strength of the soft soil does not fulfil the requirement for construction. The present of soft soil at the construction site always give a lot of problems and issues to geotechnical sector. Soil settlement is one of the problems that related to soft soil. The determination of the soft soil physical characteristics will provide a detail description on its characteristic. Soft soil need to be treated in order to gain the standard strength for construction. One of the method to strengthen the soft soil is by using pozzolanic material as a treatment method for soft soil. Furthermore bamboo leaf ash is one of the newly founded materials that contain pozzolanic material. Any material that consist of Silicon Dioxide (SiO2) as the main component and followed by Aluminium Oxide (Al2O3) and Iron Oxide (Fe2O3) are consider as pozzolanic material. Bamboo leaf ash is mix with the cement as the treatment material. Bamboo leaf ash will react with the cement to produce additional cement binder. Thus, it will increase the soil strength and will ease the geotechnical sector to achieve high quality of construction product.

  5. The performance of blended conventional and novel binders in the in-situ stabilisation/solidification of a contaminated site soil.

    Science.gov (United States)

    Wang, Fei; Wang, Hailing; Jin, Fei; Al-Tabbaa, Abir

    2015-03-21

    This paper presents an investigation of the effects of novel binders and pH values on the effectiveness of the in-situ stabilisation/solidification technique in treating heavy metals and organic contaminated soils after 1.5-year treatment. To evaluate the performance of different binders, made ground soils of SMiRT site, upto 5 m depth, were stabilised/solidified with the triple auger system and cores were taken for laboratory testing after treatment. Twenty four different binders were used including Portland cement (PC), ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA), MgO and zeolite. Unconfined compressive strength (UCS), leachate pH and the leachability of heavy metals and total organics were applied to study the behaviours of binders in treating site soils. Under various contaminant level and binder level, the results show that UCS values were 22-3476 kPa, the leachability of the total organics was in the range of 22-241 mg/l and the heavy metals was in the range of 0.002-0.225 mg/l. In addition, the combination of GGBS and MgO at a ratio of 9:1 shows better immobilisation efficiency in treating heavy metals and organic contaminated soils after 1.5-year treatment, and the binding mechanisms under different binders were also discussed in this paper. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. In situ olive mill residual co-composting for soil organic fertility restoration and by-product sustainable reuse

    Directory of Open Access Journals (Sweden)

    Teresa Casacchia

    2012-06-01

    Full Text Available The addition of organic matter in the form of compost improves overall physical, chemical and biological properties of soils but, to be really sustainable, the composting process should be carried out using the by-products available in situ. Two different soils of a Mediterranean olive orchard, one managed traditionally (NAS and the other amended with compost (AS, were investigated in a two-year experiment. Increases in total organic matter, total nitrogen and pH, were detected in AS if compared to NAS. Significant increases in total and specific microbial counts were observed in AS, with a clear amelioration of microbiological soil quality. The results demonstrated that soil amendment using compost deriving from olive mill by-products can be an important agricultural practice for supporting and stimulating soil microorganisms and, at the same time, for re-using these byproducts, so avoiding their negative environmental impact.

  7. Thermal treatment of petroleum contaminated soils - A case study

    International Nuclear Information System (INIS)

    Bubier, T.W.; Bilello. C.M.

    1993-01-01

    Thermal treatment is a cost-effective treatment method for removing chemicals from contaminated soils. However, detailed applicability studies are lacking. The goals of this paper are to (1) present the results of a thermal treatment study and (2) discuss the specific elements which must be evaluated prior to determining whether thermal treatment is a feasible option for a remediation project. Results of data collected during a pilot study involving thermal treatment of petroleum contaminated soils at a Marine Terminal are presented. The pilot study consisted of thermally treating the C8 through C40 + (gasoline, kerosene, diesel, motor oil, bunker fuel, etc.) hydrocarbon contaminated soils at treatment temperatures ranging from 250 degrees Fahrenheit (degree F) up to 550 degrees F. The low-temperature thermal treatment unit consisted of a rotary kiln with a temperature capacity of approximately 600 degrees F, a baghouse, and a catalytic oxidizer. The soil was monitored for concentrations of petroleum hydrocarbons and volatile organic compounds before and after treatment. The results of the pilot study were used to determine if thermal treatment technology is a cost-efficient and effective option of remediating the estimated 300,000 tons of petroleum contaminated soil to acceptable cleanup levels. The low-temperature thermal treatment pilot study was effective in desorbing the short chain hydrocarbons (gasoline and diesel) but was not effective in desorbing the long-chain petroleum hydrocarbons, such as motor oils and bunker fuels, from the soil. This was primarily due to the boiling points of motor oil and bunker fuels which were higher than the temperature capacity of the pilot study treatment equipment. Additional factors that influenced the effectiveness of the desorption process included configuration of the treatment equipment, soil moisture content, soil particle size, and type and concentration of petroleum hydrocarbons

  8. In situ phytoremediation of PAH-contaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (Festuca arundinacea Schreb.) and associated soil microbial activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingming; Fu, Dengqiang; Teng, Ying; Shen, Yuanyuan; Luo, Yongming; Li, Zhengao [Chinese Academy of Sciences, Nanjing (China). Key Laboratory of Soil Environment and Pollution Remediation; Christie, Peter [Agri-Food and Biosciences Institute, Belfast (United Kingdom). Agri-Environment Branch

    2011-09-15

    Purpose: A 7-month field experiment was conducted to investigate the polycyclic aromatic hydrocarbon (PAH) remediation potential of two plant species and changes in counts of soil PAH-degrading bacteria and microbial activity. Materials and methods: Alfalfa and tall fescue were grown in monoculture and intercropped for 7 months in contaminated field soil. Soil and plant samples were analyzed for PAHs. Plant biomass, densities of PAH-degradation soil bacteria, soil microbial biomass C and N, enzyme activities, and the physiological profile of the soil microbial community were determined. Results and discussion: Average removal percentage of total PAHs in intercropping (30.5%) was significantly higher than in monoculture (19.9%) or unplanted soil (-0.6%). About 7.5% of 3-ring, 12.3% of 4-ring, and 17.2% of 5(+6)-ring PAHs were removed from the soil by alfalfa, with corresponding values of 25.1%, 10.4%, and 30.1% for tall fescue. Intercropping significantly enhanced the remediation efficiency. About 18.9% of 3-ring, 30.9% of 4-ring, and 33.4% of 5(+6)-ring PAHs were removed by the intercropping system. Higher counts of soil culturable PAH-degrading bacteria and elevated microbial biomass and enzyme activities were found after intercropping. Soil from intercropping showed significantly higher (p < 0.05) average well-color development obtained by the BIOLOG Ecoplate assay and Shannon-Weaver index compared with monoculture. Conclusions: Cropping promoted the dissipation of soil PAHs. Tall fescue gave greater removal of soil PAHs than alfalfa, and intercropping was more effective than monoculture. Intercropping of alfalfa and tall fescue may be a promising in situ bioremediation strategy for PAH-contaminated soils. (orig.)

  9. Evaluation of the optimal strategy for ex situ bioremediation of diesel oil-contaminated soil.

    Science.gov (United States)

    Lin, Ta-Chen; Pan, Po-Tsen; Young, Chiu-Chung; Chang, Jo-Shu; Chang, Tsung-Chung; Cheng, Sheng-Shung

    2011-11-01

    Bioaugmentation and biostimulation have been widely applied in the remediation of oil contamination. However, ambiguous results have been reported. It is important to reveal the controlling factors on the field for optimal selection of remediation strategy. In this study, an integrated field landfarming technique was carried out to assess the relative effectiveness of five biological approaches on diesel degradation. The limiting factors during the degradation process were discussed. A total of five treatments were tested, including conventional landfarming, nutrient enhancement (NE), biosurfactant addition (BS), bioaugmentation (BA), and combination of bioaugmentation and biosurfactant addition (BAS). The consortium consisted of four diesel-degrading bacteria strains. Rhamnolipid was used as the biosurfactant. The diesel concentration, bacterial population, evolution of CO(2), and bacterial community in the soil were periodically measured. The best overall degradation efficiency was achieved by BAS treatment (90 ± 2%), followed by BA (86 ± 2%), NE (84 ± 3%), BS (78 ± 3%), and conventional landfarming (68 ± 3%). In the early stage, the total petroleum hydrocarbon was degraded 10 times faster than the degradation rates measured during the period from day 30 to 100. At the later stage, the degradation rates were similar among treatments. In the conventional landfarming, contaminated soil contained bacteria ready for diesel degradation. The availability of hydrocarbon was likely the limiting factor in the beginning of the degradation process. At the later stage, the degradation was likely limited by desorption and mass transfer of hydrocarbon in the soil matrix.

  10. Soil respiration in a long-term tillage treatment experiment

    Science.gov (United States)

    Gelybó, Györgyi; Birkás, Márta; Dencsö, Márton; Horel, Ágota; Kása, Ilona; Tóth, Eszter

    2016-04-01

    Regular soil CO2 efflux measurements have been carried out at Józsefmajor longterm tillage experimental site in 2014 and 2015 with static chamber technique in no-till and ploughing plots in seven spatial replicates. The trial was established in 2002 on a loamy chernozem soil at the experimental site of the Szent István University nearby the city Hatvan, northern Hungary. At the site sunflower (Helianthus A.) and wheat (Triticum A.) was grown in 2014 and 2015, respectively. Ancillary measurements carried out at the site included weather parameters, soil water content, soil temperature. The aim of the investigation was to detect the effect of soil disturbance and soil tillage treatments on soil CO2 emission in agricultural ecosystems. Soil respiration measurements were carried out every week during the vegetation period and campaign measurements were performed scheduled to tillage application. In this latter case, measurements were carried out 1, 2, 3, 4, 6, 12, 18, 24, 48, 72, 96, 120 hours and 7 days after tillage operation. Results showed that during the vegetation season in the majority of measurement occasions emission was higher in the no-till plots. These differences; however were not found to be statistically significant. Due to the short term effect of tillage treatment, emissions increased following tillage treatment in the ploughed plots. Soil water content was also examined as main driver of soil CO2 fluxes. Soil water content sharply decreases in the surface layer (5-10 cm depth) after tillage treatment indicating a fast drying due to soil disturbance. This effect slowly attenuated and eventually extincted in approx. two weeks. CO2 emission measurements were associated with high uncertainties as a result of the measurement technique. Our further aim is to reduce this uncertainty using independent measurement techniques on the field.

  11. Treatment of gas from an in situ conversion process

    Science.gov (United States)

    Diaz, Zaida [Katy, TX; Del Paggio, Alan Anthony [Spring, TX; Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX

    2011-12-06

    A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

  12. Laboratory and field evaluation of the gas treatment approach for insitu remediation of chromate-contaminated soils

    International Nuclear Information System (INIS)

    Thornton, E.C.; Jackson, R.L.

    1994-04-01

    Laboratory scale soil treatment tests have been conducted as part of an effort to develop and implement an in situ chemical treatment approach to the remediation of chromate-contaminated soils through the use of reactive gases. These tests involved three different soil samples that were contaminated with Cr(VI) at the 200 ppM level. Treatment of the contaminated soils was performed by passing 100 ppM and 2000 ppM concentrations of hydrogen sulfide in nitrogen through soil columns until a S:Cr mole ratio of 10:1 was achieved. The treated soils were then leached with groundwater or deionized water and analyzed to assess the extent of chromium immobilization. Test results indicate >90% immobilization of chromium and demonstrate that the treatment process is irreversible. Ongoing developmental efforts are being directed towards the demonstration and evaluation of the gas treatment approach in a field test at a chromate-contaminated site. Major planned activities associated with this demonstration include laboratory testing of waste site soil samples, design of the treatment system and injection/extraction well network, geotechnical and geochemical characterization of the test site, and identification and resolution of regulatory and safety requirements

  13. Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation.

    Science.gov (United States)

    Rehman, Muhammad Zia-ur; Rizwan, Muhammad; Ghafoor, Abdul; Naeem, Asif; Ali, Shafaqat; Sabir, Muhammad; Qayyum, Muhammad Farooq

    2015-11-01

    Cadmium (Cd) toxicity is a widespread problem in crops grown on contaminated soils, and little information is available on the role of inorganic amendments in Cd immobilization, uptake, and tolerance in crops especially under filed conditions. The effect of three amendments, monoammonium phosphate (MAP), gypsum, and elemental sulfur (S), on Cd immobilization in soil and uptake in wheat and rice plants, under rotation, were investigated under field conditions receiving raw city effluent since >20 years and contaminated with Cd. Three levels of each treatment, 0.2, 0.4, and 0.8% by weight, were applied at the start of the experiment, and wheat was sown in the field. After wheat harvesting, rice was sown in the same field without application of amendments. Both crops were harvested at physiological maturity, and data regarding grain yield, straw biomass, Cd concentrations, and uptake in grain and straw, and bioavailable Cd in soil and soil pH were recorded. Both MAP and gypsum application increased grain yield and biomass of wheat and rice, while S application did not increase the yield of both crops. MAP and gypsum amendments decreased gain and straw Cd concentrations and uptake in both crops, while S application increased Cd concentrations in these parts which were correlated with soil bioavailable Cd. We conclude that MAP and gypsum amendments could be used to decrease Cd uptake by plants receiving raw city effluents, and gypsum might be a better amendment for in situ immobilization of Cd due to its low cost and frequent availability.

  14. Electrokinetic treatment of firing ranges containing tungsten-contaminated soils

    International Nuclear Information System (INIS)

    Braida, Washington; Christodoulatos, Christos; Ogundipe, Adebayo; Dermatas, Dimitris; O'Connor, Gregory

    2007-01-01

    Tungsten-based alloys and composites are being used and new formulations are being considered for use in the manufacturing of different types of ammunition. The use of tungsten heavy alloys (WHA) in new munitions systems and tungsten composites in small caliber ammunition could potentially release substantial amounts of this element into the environment. Although tungsten is widely used in industrial and military applications, tungsten's potential environmental and health impacts have not been thoroughly addressed. This necessitates the research and development of remedial technologies to contain and/or remove tungsten from soils that may serve as a source for water contamination. The current work investigates the feasibility of using electrokinetics for the remediation of tungsten-contaminated soils in the presence of other heavy metals of concern such as Cu and Pb with aim to removing W from the soil while stabilizing in situ, Pb and Cu

  15. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction

    International Nuclear Information System (INIS)

    Beesley, Luke; Moreno-Jimenez, Eduardo; Clemente, Rafael; Lepp, Nicholas; Dickinson, Nicholas

    2010-01-01

    Three methods for predicting element mobility in soils have been applied to an iron-rich soil, contaminated with arsenic, cadmium and zinc. Soils were collected from 0 to 30 cm, 30 to 70 cm and 70 to 100 cm depths in the field and soil pore water was collected at different depths from an adjacent 100 cm deep trench. Sequential extraction and a column leaching test in the laboratory were compared to element concentrations in pore water sampled directly from the field. Arsenic showed low extractability, low leachability and occurred at low concentrations in pore water samples. Cadmium and zinc were more labile and present in higher concentrations in pore water, increasing with soil depth. Pore water sampling gave the best indication of short term element mobility when field conditions were taken into account, but further extraction and leaching procedures produced a fuller picture of element dynamics, revealing highly labile Cd deep in the soil profile. - Mobility of arsenic, cadmium and zinc in a polluted soil can be realistically interpreted by in-situ soil pore water sampling.

  16. Application of the biological forced air soil treatment (BIOFAST trademark) technology to diesel contaminated soil

    International Nuclear Information System (INIS)

    Lyons, K.A.; Leavitt, M.E.; Graves, D.A.; Stanish, S.M.

    1993-01-01

    A subsurface Biological Forced Air Soil Treatment (BIOFAST trademark) system was constructed at the Yellow Freight System, Inc. (Yellow Freight) New Haven facility in Connecticut as a means of expediting the remediation of soils impacted by a diesel fuel release. Prior to beginning construction activities the soils were evaluated for the feasibility of bioremediation based on soil characteristics including contaminant degrading bacteria, moisture content, and pH. Based on results of stimulant tests with oxygen and nutrients, the addition of fertilizer during the construction of the cell was recommended. Following the removal of underground storage tanks, the bioremediation cell was constructed by lining the enlarged excavation with high density polyethylene (HDPE) and backfilling alternating layers of nutrient-laden soil and pea gravel. Passive and active soil vapor extraction (SVE) piping was included in the gravel layers and connected to a blower and vapor treatment unit, operated intermittently to supply oxygen to the subsurface cell. Operating data have indicated that the bacteria are generating elevated levels of CO 2 , and the SVE unit is evacuating the accumulated CO 2 from the soils and replacing it with fresh air. These data suggest that the bioremediation process is active in the soils. Soil samples collected from within the soil pit subsequent to installation and again after 10 months of operation indicate that TPH concentrations have decreased by as much as 50%

  17. In Situ Remediation Integrated Program. In situ physical/chemical treatment technologies for remediation of contaminated sites: Applicability, developing status, and research needs

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Gates, D.D.; West, O.R.; Liang, L.; Donaldson, T.L.; Webb, O.F.; Corder, S.L.; Dickerson, K.S.

    1994-06-01

    The U.S. Department of Energy (DOE) In Situ Remediation Integrated Program (ISR IP) was established in June 1991 to facilitate the development and implementation of in situ remediation technologies for environmental restoration within the DOE complex. Within the ISR IP, four subareas of research have been identified: (1) in situ containment, (2) in situ physical/chemical treatment (ISPCT), (3) in situ bioremediation, and (4) subsurface manipulation/electrokinetics. Although set out as individual focus areas, these four are interrelated, and successful developments in one will often necessitate successful developments in another. In situ remediation technologies are increasingly being sought for environmental restoration due to the potential advantages that in situ technologies can offer as opposed to more traditional ex situ technologies. These advantages include limited site disruption, lower cost, reduced worker exposure, and treatment at depth under structures. While in situ remediation technologies can offer great advantages, many technology gaps exist in their application. This document presents an overview of ISPCT technologies and describes their applicability to DOE-complex needs, their development status, and relevant ongoing research. It also highlights research needs that the ISR IP should consider when making funding decisions

  18. In situ heat treatment process utilizing a closed loop heating system

    Science.gov (United States)

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  19. Using in situ pore water concentrations to estimate the phytotoxicity of nicosulfuron in soils to corn (Zea mays L.).

    Science.gov (United States)

    Liu, Kailin; Cao, Zhengya; Pan, Xiong; Yu, Yunlong

    2012-08-01

    The phytotoxicity of an herbicide in soil is typically dependent on the soil characteristics. To obtain a comparable value of the concentration that inhibits growth by 50% (IC50), 0.01 M CaCl(2) , excess pore water (EPW) and in situ pore water (IPW) were used to extract the bioavailable fraction of nicosulfuron from five different soils to estimate the nicosulfuron phytotoxicity to corn (Zea mays L.). The results indicated that the phytotoxicity of nicosulfuron in soils to corn depended on the soil type, and the IC50 values calculated based on the amended concentration of nicosulfuron ranged from 0.77 to 9.77 mg/kg among the five tested soils. The range of variation in IC50 values for nicosulfuron was smaller when the concentrations of nicosulfuron extracted with 0.01 M CaCl(2) and EPW were used instead of the amended concentration. No significant difference was observed among the IC50 values calculated from the IPW concentrations of nicosulfuron in the five tested soils, suggesting that the concentration of nicosulfuron in IPW could be used to estimate the phytotoxicity of residual nicosulfuron in soils. Copyright © 2012 SETAC.

  20. Land Use History Shifts In Situ Fungal and Bacterial Successions following Wheat Straw Input into the Soil.

    Directory of Open Access Journals (Sweden)

    Vincent Tardy

    Full Text Available Soil microbial communities undergo rapid shifts following modifications in environmental conditions. Although microbial diversity changes may alter soil functioning, the in situ temporal dynamics of microbial diversity is poorly documented. Here, we investigated the response of fungal and bacterial diversity to wheat straw input in a 12-months field experiment and explored whether this response depended on the soil management history (grassland vs. cropland. Seasonal climatic fluctuations had no effect on the diversity of soil communities. Contrastingly fungi and bacteria responded strongly to wheat regardless of the soil history. After straw incorporation, diversity decreased due to the temporary dominance of a subset of copiotrophic populations. While fungi responded as quickly as bacteria, the resilience of fungal diversity lasted much longer, indicating that the relative involvement of each community might change as decomposition progressed. Soil history did not affect the response patterns, but determined the identity of some of the populations stimulated. Most strikingly, the bacteria Burkholderia, Lysobacter and fungi Rhizopus, Fusarium were selectively stimulated. Given the ecological importance of these microbial groups as decomposers and/or plant pathogens, such regulation of the composition of microbial successions by soil history may have important consequences in terms of soil carbon turnover and crop health.

  1. Field test for treatment verification of an in-situ enhanced bioremediation study

    International Nuclear Information System (INIS)

    Taur, C.K.; Chang, S.C.

    1995-01-01

    Due to a leakage from a 12-inch pressurized diesel steel pipe four years ago, an area of approximately 30,000 square meters was contaminated. A pilot study applying the technology of in-situ enhanced bioremediation was conducted. In the study, a field test kit and on-site monitoring equipment were applied for site characterization and treatment verification. Physically, the enhanced bioremediation study consisted of an air extraction and air supply system, and a nutrition supply network. Certain consistent sampling methodology was employed. Progress was verified by daily monitoring and monthly verification. The objective of this study was to evaluate the capabilities of indigenous microorganisms to biodegrade the petroleum hydrocarbons with provision of oxygen and nutrients. Nine extraction wells and eight air sparging wells were installed. The air sparging wells injected the air into geoformation and the extraction wells provided the underground air circulation. The soil samples were obtained monthly for treatment verification by a Minuteman drilling machine with 2.5-foot-long hollow-stem augers. The samples were analyzed on site for TPH-diesel concentration by a field test kit manufactured by HNU-Hanby, Houston, Texas. The analytical results from the field test kit were compared with the results from an environmental laboratory. The TVPH concentrations of the air extracted from the vadose zone by a vacuum blower and the extraction wells were routinely monitored by a Foxboro FID and Cosmos XP-311A combustible air detector. The daily monitoring of TVPH concentrations provided the reliable data for assessing the remedial progress

  2. In situ stabilization of mixed radioactive waste storage tanks and contaminated soil areas

    International Nuclear Information System (INIS)

    Matthern, G.E.; Meservey, R.H.

    1997-01-01

    Within the Department of Energy (DOE) Complex, there are a number of small (<50,000 gallons) underground Storage tanks containing mixed waste materials. The radioactive content of wastes eliminates the feasibility for hazardous waste treatment in accordance with previously prescribed Resource Conservation and Recovery Act (RCRA) technologies. As a result, DOE is funding in situ stabilization technology development for these tanks, Some of this development work has been done at the Idaho National Engineering and Environmental Laboratory (INEEL) and the initial efforts there were concentrated on the stabilization of the contents of the Test Area North (TAN) V-9 Tank. This is a 400 gallon underground tank filled with about 320 gallons of liquids and silty sediments. Sampling data indicates that approximately 50 wt% of the tank contents is aqueous-phase liquids. The vertically oriented cylindrical tank has a conical bottom and a chordal baffle that separates the tank inlet from its outlet. Access to the tank is through a six inch diameter access pipe on top of the tank. Because of the high volume, and the high concentration of aqueous-phase materials, Tank V-9 stabilization efforts have focussed on applying in situ agitation with dry feed addition to stabilize its contents. Materials selected for dry feed addition to this tank include a mixture of Aquaset IIH, and Type I/II Portland cement. This paper describes the results of proof-of-concept tests performed on full scale mockups of the Tank V-9. This proof-of-concept test were used to set operating parameters for in situ mixing, as well as evaluate how variations in Aquaset IIH/Portland cement ratio and sediment to liquid volume affected mixing of the tank

  3. Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2010-11-01

    Full Text Available The SMOSMANIA soil moisture network in Southwestern France is used to evaluate modelled and remotely sensed soil moisture products. The surface soil moisture (SSM measured in situ at 5 cm permits to evaluate SSM from the SIM operational hydrometeorological model of Météo-France and to perform a cross-evaluation of the normalised SSM estimates derived from coarse-resolution (25 km active microwave observations from the ASCAT scatterometer instrument (C-band, onboard METOP, issued by EUMETSAT and resampled to the Discrete Global Grid (DGG, 12.5 km gridspacing by TU-Wien (Vienna University of Technology over a two year period (2007–2008. A downscaled ASCAT product at one kilometre scale is evaluated as well, together with operational soil moisture products of two meteorological services, namely the ALADIN numerical weather prediction model (NWP and the Integrated Forecasting System (IFS analysis of Météo-France and ECMWF, respectively. In addition to the operational SSM analysis of ECMWF, a second analysis using a simplified extended Kalman filter and assimilating the ASCAT SSM estimates is tested. The ECMWF SSM estimates correlate better with the in situ observations than the Météo-France products. This may be due to the higher ability of the multi-layer land surface model used at ECMWF to represent the soil moisture profile. However, the SSM derived from SIM corresponds to a thin soil surface layer and presents good correlations with ASCAT SSM estimates for the very first centimetres of soil. At ECMWF, the use of a new data assimilation technique, which is able to use the ASCAT SSM, improves the SSM and the root-zone soil moisture analyses.

  4. Comparison of in-situ gamma ray spectrometry measurements with conventional methods in determination natural and artificial nuclides in soil

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Doubal, A. W.

    2010-12-01

    Two nuclear analytical techniques (In-Situ Gamma ray spectrometry and laboratory gamma ray spectrometry) for determination of natural and artificial radionuclides in soil have been validated. The first technique depends on determination of radioactivity content of representative samples of the studied soil after laboratory preparation, while the second technique is based on direct determination of radioactivity content of soil using in-situ gamma-ray spectrometer. Analytical validation parameter such as detection limits, repeatability, reproducibility in addition to measurement uncertainties were estimated and compared for both techniques. Comparison results have shown that the determination of radioactivity in soil should apply the two techniques together where each of techniques is characterized by its low detection limit and uncertainty suitable for defined application of measurement. Radioactive isotopes in various locations were determined using the two methods by measuring 40 k, 238 U,and 137 Cs. The results showed that there are differences in attenuation factors due to soil moisture content differences; wet weight corrections should be applied when the two techniques are compared. (author)

  5. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals.

    Science.gov (United States)

    Song, Biao; Zeng, Guangming; Gong, Jilai; Liang, Jie; Xu, Piao; Liu, Zhifeng; Zhang, Yi; Zhang, Chen; Cheng, Min; Liu, Yang; Ye, Shujing; Yi, Huan; Ren, Xiaoya

    2017-08-01

    Soil and sediment contamination has become a critical issue worldwide due to its great harm to the ecological environment and public health. In recent years, many remediation technologies including physical, chemical, biological, and combined methods have been proposed and adopted for the purpose of solving the problems of soil and sediment contamination. However, current research on evaluation methods for assessing these remediation technologies is scattered and lacks valid and integrated evaluation methods for assessing the remediation effectiveness. This paper provides a comprehensive review with an environmental perspective on the evaluation methods for assessing the effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. The review systematically summarizes recent exploration and attempts of the remediation effectiveness assessment based on the content of pollutants, soil and sediment characteristics, and ecological risks. Moreover, limitations and future research needs of the practical assessment are discussed. These limitations are not conducive to the implementation of the abatement and control programs for soil and sediment contamination. Therefore, more attention should be paid to the evaluation methods for assessing the remediation effectiveness while developing new in situ remediation technologies in future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A new method for the determination of radionuclide distribution in the soil by in situ gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Zombori, P.; Andrasi, A.; Nemeth, I.

    1992-06-01

    A method was searched for to estimate the penetration characteristics of fallout radioactivity, using only spectral information obtained by in situ spectrometric measurements, and avoiding the need for long and tiresome sampling and sample analysis procedures. To speed up the analysis for depth distribution determination of fallout radioactivity in soil, an instrumental method based on the shape of spectra was developed. The ratio of peak to valley (the region between the photopeak and Compton edge) depends on the penetration of radionuclides in soil, providing an estimation of depth profile. These ratios were calculated and the method was tested by actual measurements. (R.P.) 7 refs.; 14 figs.; 2 tabs

  7. Determination of 228Th, 226Ra and 40K in Soil Using In-Situ GammaSpectrometer

    International Nuclear Information System (INIS)

    Bunawas; Wahyudi; Syarbaini; Untara

    2000-01-01

    Determination of natural radionuclide in latosol soil at six locationsaround PPTN Serpong by using Inspector portable gamma spectrometer with highpurity Germanium detector (HPGe) which has 26% relative efficiency had beenobtained. Radionuclides data of 228 Th, 226 Ra and 40 K were obtained in4 hours, shorter than laboratories analysis which needed 3 weeks. Thedifferences between in-situ measurement and laboratory were 3.6% to 56.2% forsix conditions of soil measured. According to the specific activity dataanalysis using statistic hypothesis, the result shows that the activity of 228 Th and 226 Ra are independent on location, but 40 K is dependent onlocation. (author)

  8. Development of in situ vitrification for remediation of ORNL contaminated soils

    International Nuclear Information System (INIS)

    Tixier, J.S.; Spalding, B.P.

    1994-08-01

    A full-scale field treatability study of in situ vitrification (ISV) is underway at the Oak Ridge National Laboratory (ORNL) for the remediation of radioactive liquid waste seepage pits and trenches that received over one million curies of mixed fission products (mostly 137 Cs and 90 Sr) during the 1950s and 1960s. The treatability study is being conducted on a portion of the original seepage pit and will support an Interim Record of Decision (IROD) for closure of one or more of the seven seepage pits and trenches in early fiscal year (FY) 1996. Mr treatability study will establish ft technical performance of ISV for remediation of the contaminated soil sites. Melt operations at ORNL are expected to begin in early FY 1994. This paper presents the latest accomplishments of the project in preparation for the field testing. Discussion centers on the results of a parametric crucible melt study, a description of the site characterization efforts, and the salient features of a new hood design

  9. [Differential Effect and Mechanism of in situ Immobilization of Cadmium Contamination in Soil Using Diatomite Produced from Different Areas].

    Science.gov (United States)

    Zhu, Jian; Wang, Ping; Lin, Yan; Lei, Ming-jing; Chen, Yang

    2016-02-15

    In order to understand the difference of in situ immobilization effect and mechanism of Cd contamination in soil using diatomite produced from different areas, the test was conducted using diatomite produced from Yunnan Tengchong, Jilin Linjiang, Zhejiang Shengzhou and Henan Xinyang of China as modifiers to immobilize cadmium contamination in simulated soil. The results indicated that the diatomite from all the four producing areas could effectively immobilize available Cd in soil, decreasing the available Cd content in soil by 27.7%, 28.5%, 30.1% and 57.2%, respectively when the adding concentration was 30 g x kg(-1). Their ability for immobilizing available Cd in soil followed the sequence of Henan Xinyang > Zhejiang Shengzhou > Jilin Linjiang > Yunnan Tengchong. It was also found that the physical and chemical properties of diatomite played a main role in soil cadmium immobilization, lower bulk density, larger specific surface area, more micro pores and wider distribution range of aperture were more favorable for available Cd immobilization. The results also showed that, the diatomite could control Cd contamination by changing soil physical and chemical properties, among these properties, pH and organic matter content were the key factors, increasing soil pH value and organic matter content was favorable for available cadmium immobilization, while the soil water content had little effect on available cadmium immobilization. The control of soil cadmium contamination by using diatomite to change cation exchange capacity was limited by time in some degree. The diatomite produced from Henan Xinyang, Zhejiang Shengzhou and Yunnan Tengchong increased the soil pH value and organic matter content, and was favorable for available Cd immobilization, while the diatomite from Jilin Linjiang showed converse effect.

  10. Modelling of 90Sr in-situ migration: models comparison and coupled soil characterisation

    International Nuclear Information System (INIS)

    Piault, E.; van Dorpe, F.; Cartalade, A.; Beaucaire, C.; Fernandez, J.M.

    2005-01-01

    Full text of publication follows: In 1960, the Institute of Nuclear Protection and Safety of the French Atomic Energy Commission (CEA/IPSN) had launched a research program to quantify the soil-plant transfer of 90 Sr (transfer between soils, grapes and wine). The studies were conducted in-situ with the help of the National Institute for Agronomic Research (INRA) on an experimental site of Mediterranean type. The experiments consisted in contaminating with soluble strontium salt solutions (SrCl 2 ) a 400 m 2 (10 m x 40 m) piece of land bordered by two uncontaminated strip used as blanks. Prior to planting, the superficial layer of the contaminated plot had then been ploughed in order to homogenize the contamination on a depth of about 10 cm. Over time, the radionuclide was transported from the surface layer to the underground layers of the plot due to climatic factors. The 90 Sr migration over the last 40 years was studied owing eight 70 cm deep cores to perform a radiological and physico-chemical characterization of the soil. The vertical migration modelling of 90 Sr required the definition of a triple layers model whose the only external factor of influence considered is the rainwater infiltration at constant flux. Simulations were made using the code PORFLOW and also the code CAST3M, developed by CEA. These codes solve calculations of flows in unsaturated porous media taking into account the sorption/desorption phenomena of chemical species and radioactive decay. To complete the study an estimation of 90 Sr K d sorption coefficient (used by transfer models) using ion-exchange model was carried out for each layers. The dependence of 90 Sr K d on competitor cations present in fluids is analysed. The study shows that the agreement between the experimental and simulated results is acceptable if the characterization steps, including sampling are properly undertaken. The necessity to characterize the site according to needs of numerical modelling, in an iterative cycle

  11. Quality Improvement of the Satellite Soil Moisture Products by Fusing In Situ and GNSS-R Observation

    Science.gov (United States)

    Yuan, Q.; Xu, H.; Li, T.; Shen, H.; Zhang, L.

    2017-12-01

    Soil moisture plays a fundamental role in the hydrological cycle as well as in the energy partitioning. On this basis, it is of great concern to derive a long-term soil moisture time series on a global scale and monitor its temporal and spatial variations for practical applications. Although passive and active microwave satellites have been shown to provide useful retrievals of near-surface soil moisture at regional and global scales, the limitations in retrieval accuracy prevent them from high-quality applications in specific areas. On the other hand, measuring soil moisture straightly through in situdevices, such as soil moisture probes, is high accuracy, but is not able to derive global soil moisture maps. Recently, the ground-based GNSS-R method is emerging in monitoring near-surface soil moisture variations but still over limited spatial scales. In this paper, a multi-source data fusion method was applied to synthesize regional high-quality soil moisture products from 2015 to 2017 in western parts of the continental United States. Firstly, we put all the three soil moisture datasets into the generalized regression neural network (GRNN) model. The input signals of the model are SMOS and SMAP satellite-derived passive level 3 soil moisture daily products combined with date and latitude and longitude information, while the in situ measured and GNSS-R retrieved soil moisture are used as target. Finally, we apply the model to all the soil moisture time series in the experiment area and obtain two high-quality regional soil moisture products for SMOS and SMAP, respectively. The results before fusion show that the correlation coefficients between site-specific soil moisture and satellite-derived soil moisture are 0.39 for SMOS and 0.27 for SMAP and that unbiased root-mean-square errors (ubRMSE) are 0.113 for SMOS and 0.128 for SMAP, respectively. After applying the GRNN-R, the model fitted correlation coefficients have reached 0.72 for SMOS and 0.75 for SMAP and the

  12. In situ remediation and phytotoxicity assessment of lead-contaminated soil by biochar-supported nHAP.

    Science.gov (United States)

    Yang, Zhangmei; Fang, Zhanqiang; Tsang, Pokeung Eric; Fang, Jianzhang; Zhao, Dongye

    2016-11-01

    In this study, a kind of biochar-supported nano-hydroxyapatite (nHAP@BC) material was used in in-situ remediation of lead-contaminated soil. Column experiments were performed to compare the mobility of nHAP@BC and Bare-nHAP. The immobilization, accumulation and toxic effects of Pb in the after-amended soil were assessed by the in vitro toxicity tests and pot experiments. The column experiments showed a significant improvement in the mobility of nHAP@BC. The immobilization rate of Pb in the soil was 74.8% after nHAP@BC remediation. Sequential extraction procedures revealed that the residual fraction of Pb increased by 66.6% after nHAP@BC remediation, which greatly reduced the bioavailability of Pb in the soil. In addition, pot experiments indicated that nHAP@BC could effectively reduce the upward translocation capacity of Pb in a soil-plant system. The concentration of Pb in the aerial part of the cabbage mustard was 0.1 mg/kg, which is lower than the tolerance limit (0.3 mg/kg). nHAP@BC can remediate Pb-contaminated soil effectively, which can restore soil quality for planting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A treatment of expansive soil using different additives

    Directory of Open Access Journals (Sweden)

    Bestun J. Nareeman

    2010-11-01

    Full Text Available There are many factors that govern the expansion behavior of soil. The primary factors are a change in water contentand the amount and type of clay size particles in the soil. Other important factors affecting the expansion behavior include the typeof soil (natural or fill, condition of the soil in terms of dry density and moisture content, magnitude of the surcharge pressure,and amount of no expansive material such as gravel or cobble size particles.In this paper, a swelling soil from the site Hamamuk earth dam, which is located in Koya town north of Iraq, is treated by fourtypes of additives; cement, steel fibers, gasoline fuel and injection by cement grout.The treatment of the expansive soil with 5 % of cement or steel fibers or the injection with cement grout revealed a betterimprovement while 4 % of gasoline oil is sufficient to reveal the optimum treatment by this material. The angle of internal friction is notaffected by the treatment while the cohesion between particles is slightly affected by these additives due to a change in the adhesionbetween the additive and soil particles.

  14. Development of the integrated in situ Lasagna process

    International Nuclear Information System (INIS)

    Ho, S.; Athmer, C.; Sheridan, P.

    1995-01-01

    Contamination in deep, low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in uniform delivery of treatment reagents have rendered existing in-situ methods such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites

  15. DOE In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1993-01-01

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified

  16. Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilisation

    International Nuclear Information System (INIS)

    Bes, C.; Mench, M.

    2008-01-01

    Five organic matters, three phosphate compounds, zerovalent iron grit (ZVIG, 2% by soil weight), two alkaline compounds, and two commercial formulations were incorporated, singly and some combined with ZVIG, into a highly Cu-contaminated topsoil (Soil P7, 2600 mg Cu kg -1 ) from a wood treatment facility. Formulations and two composts were also singly incorporated into a slightly Cu-contaminated topsoil (Soil P10, 118 mg Cu kg -1 ) from the facility surrounding. This aimed to reduce the labile pool of Cu and its accumulation in beans cultivated on potted soils in a climatic chamber. Lowest Cu concentration in soil solution occurred in P7 soils amended with activated carbon (5%) and ZVIG, singly and combined. Basic slag (3.9%) and compost of sewage sludge (5%) combined with ZVIG promoted shoot production and limited foliar Cu accumulation. For amended P10 soils, no changes occurred in soil solution and foliar Cu concentrations, but one compost increased shoot production. - Three soil amendments, iron grit with compost, calcium oxide, and basic slags, decreased the phytotoxicity of a Cu-contaminated soil

  17. Electrochemically induced reactions in soils - a new approach to the in-situ remediation of contaminated soils?

    Energy Technology Data Exchange (ETDEWEB)

    Rahner, D.; Ludwig, G.; Roehrs, J. [Dresden Univ. of Technology, Inst. of Physical Chemistry and Electrochemistry (Germany); Neumann, V.; Nitsche, C.; Guderitz, I. [Soil and Groundwater Lab. GmbH, Dresden (Germany)

    2001-07-01

    Electrochemical reactions can be induced in soils if the soil matrix contains particles or films with electronic conducting properties ('microconductors'). In these cases the wet soil may act as a 'diluted' electrochemical solid bed reactor. A discussion of this reaction principle within the soil matrix will be presented here. It will be shown, that under certain conditions immobile organic contaminants may be converted. (orig.)

  18. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies

  19. PROTOCOL FOR DETERMINING BIOAVAILABILITY AND BIOKINETICS OF ORGANIC POLLUTANTS IN DISPERSED, COMPACTED AND INTACT SOIL SYSTEMS TO ENHANCE IN SITU BIOREMEDIATION

    Science.gov (United States)

    The development of effective in situ and on-site bioremediation technologies can facilitate the cleanup of chemically-contaminated soil sites. Knowledge of biodegradation kinetics and bioavailability of organic pollutants can facilitate decisions on the efficacy of in situ and o...

  20. [In situ aortofemoral reconstructions in surgical treatment of infected aortofemoral grafts].

    Science.gov (United States)

    Badretdinov, I A; Pokrovsky, A V

    2015-01-01

    The article presents a review of literature sources covering possibilities of peiforming in situ aortofemoral reconstructions in surgical treatment of infected aortofemoral grafts. This methodology makes it possible to improve the outcomes of treatment for paraprosthetic infection at the expense of decreasing lethality and morbidity, increasing parameters of patency of grafts and lower limb salvage in the remote postoperative period. Mention should be made that in situ secondary aortofemoral reconstructions are fraught with danger of relapsing paraprosthetic infection, therefore many publications are dedicated to search for prostheses most resistant to infection. The article also presents the results of works devoted to the use of various types of prostheses for in situ secondary aortofemoral reconstructions: prostheses made of polytetrafluoroethylene (PTFE), synthetic grafts saturated with various antibacterial drugs and gelatine, cadaveric allografts, synthetic prostheses treated with silver ions, autovenous conduits based on the femoral and popliteal veins.

  1. DEVELOPMENT OF BIOAVAILABILITY AND BIOKINETICS DETERMINATION METHODS FOR ORGANIC POLLUTANTS IN SOIL TO ENHANCE IN-SITU AND ON-SITE BIOREMEDIATION

    Science.gov (United States)

    Determination of biodegradation rates of organics in soil slurry and compacted soil systems is essential for evaluating the efficacy of bioremediation for treatment of contaminated soils. In this paper, a systematic protocol has been developed for evaluating bioknetic and transp...

  2. Analysis of the existing correlations of effective friction angle for eastern piedmont soils of Bogota from in situ tests

    Directory of Open Access Journals (Sweden)

    July E. Carmona-Álvarez

    2015-07-01

    Full Text Available To estimate the effective friction angle of soil from in situ test is a complicated job, due to high rates of strain existing in this kind of tests, which tend to be too invasive and disturb the vicinities of test depth, even the sample that eventually is taken at the site. Likewise, the most of the correlations found in the current bibliography to obtain the effective friction angle using field tests, have been developed for soils from different regions. For that reason when are implemented on tropical soils present high scatter, to compare the field parameter values with real results obtained at the lab. This research aims to use in situ tests define through of analysis of different correlations, which fits adequately to the specific conditions of the piedmont soils of Bogota. For the present study will be utilized data from SPT (widely used in Colombia and SPT-T (never before conducted in the country, carried out considering the appropriated norms to each test, taking in account to SPT-T, doesn’t exist local standard governing such tests. The correlations for field procedures of the tests implemented were for effective confining and energy transference of the SPT hammer, since the state-of-the-art mentions it as the most affect the reliability of the final results. The final results show the tendency of the methodologies used to obtain the correlation, in relation with the real value of effective friction angle from of lab tests.

  3. Water storage change estimation from in situ shrinkage measurements of clay soils

    NARCIS (Netherlands)

    Brake, te B.; Ploeg, van der M.J.; Rooij, de G.H.

    2012-01-01

    Water storage in the unsaturated zone is a major determinant of the hydrological behaviour of the soil, but methods to quantify soil water storage are limited. The objective of this study is to assess the applicability of clay soil surface elevation change measurements to estimate soil water storage

  4. Sensing soil properties in the laboratory, in situ, and on-Line: A review

    NARCIS (Netherlands)

    Kuang, B.; Mahmood, H.S.; Quraishi, Z.; Hoogmoed, W.B.; Mouazen, A.M.; Henten, van E.

    2012-01-01

    Since both the spatial and vertical heterogeneities in soil properties have an impact on crop growth and yield, accurate characterization of soil properties at high sampling resolution is a preliminary step in successful management of soil-water-plant system. Conventional soil sampling and analyses

  5. Advances in treatment methods for uranium contaminated soil and water

    International Nuclear Information System (INIS)

    Navratil, J.D.

    2002-01-01

    Water and soil contaminated with actinides, such as uranium and plutonium, are an environmental concern at most U.S. Department of Energy sites, as well as other locations in the world. Remediation actions are on going at many sites, and plans for cleanup are underway at other locations. This paper will review work underway at Clemson University in the area of treatment and remediation of soil and water contaminated with actinide elements. (author)

  6. Transport of Pathogen Surrogates in Soil Treatment Units: Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Morales

    2014-04-01

    Full Text Available Segmented mesocosms (n = 3 packed with sand, sandy loam or clay loam soil were used to determine the effect of soil texture and depth on transport of two septic tank effluent (STE-borne microbial pathogen surrogates—green fluorescent protein-labeled E. coli (GFPE and MS-2 coliphage—in soil treatment units. HYDRUS 2D/3D software was used to model the transport of these microbes from the infiltrative surface. Mesocosms were spiked with GFPE and MS-2 coliphage at 105 cfu/mL STE and 105–106 pfu/mL STE, respectively. In all soils, removal rates were >99.99% at 25 cm. The transport simulation compared (1 optimization; and (2 trial-and-error modeling approaches. Only slight differences between the transport parameters were observed between these approaches. Treating both the die-off rates and attachment/detachment rates as variables resulted in an overall better model fit, particularly for the tailing phase of the experiments. Independent of the fitting procedure, attachment rates computed by the model were higher in sandy and sandy loam soils than clay, which was attributed to unsaturated flow conditions at lower water content in the coarser-textured soils. Early breakthrough of the bacteria and virus indicated the presence of preferential flow in the system in the structured clay loam soil, resulting in faster movement of water and microbes through the soil relative to a conservative tracer (bromide.

  7. In situ technologies for the remediation of contaminated sites. Part 8: Biological treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemi, M. (URS Consultants, Inc., Long Beach, CA (USA))

    1988-04-01

    The paper discusses the in-situ technique of biodegradation for removal of organic compounds, including hydrocarbons and polychlorinated biphenyls, from contaminated soils. Biodegradation involves growing microorganisms in the soil which consume the waste, breaking it down into less harmful end products. Enhancing the biological activity may require pH adjustment or the addition of supplementary nutrients such as nitrogen, phosphorous, trace metals and organic carbon. This is potentially an effective, low cost, and safe method for soil and groundwater decontamination, but has yet to be demonstrated for large sites. Detox Industries of Houston, Texas, has selected and bred a bank of 200 naturally occurring, nonpathogenic soil microorganisms for degrading such substances as polychlorinated biphenyls, pentachlorophenol, and creosote. At one site, 1200 cubic yards of soil experienced a 90 percent reduction in contamination (with methylene chloride, n-butyl alcohol, dimethylaniline, and acetone) over 3 years. Costs are site- specific, but is usually 30 to 60 percent less than carbon adsorption or air stripping methods. Advantages are ease, safety, and cost. Limitations include difficulty to monitor and control, lack of experience and test data, and inapplicability of the technique where contaminants are refractory or are present at toxic levels. 11 refs., 1 fig.

  8. Examining the Suitability of a Sparse In Situ Soil Moisture Monitoring Network for Assimilation into a Spatially Distributed Hydrologic Model

    Science.gov (United States)

    De Vleeschouwer, N.; Verhoest, N.; Pauwels, V. R. N.

    2015-12-01

    The continuous monitoring of soil moisture in a permanent network can yield an interesting data product for use in hydrological data assimilation. Major advantages of in situ observations compared to remote sensing products are the potential vertical extent of the measurements, the finer temporal resolution of the observation time series, the smaller impact of land cover variability on the observation bias, etc. However, two major disadvantages are the typical small integration volume of in situ measurements and the often large spacing between monitoring locations. This causes only a small part of the modelling domain to be directly observed. Furthermore, the spatial configuration of the monitoring network is typically temporally non-dynamic. Therefore two questions can be raised. Do spatially sparse in situ soil moisture observations contain a sufficient data representativeness to successfully assimilate them into the largely unobserved spatial extent of a distributed hydrological model? And if so, how is this assimilation best performed? Consequently two important factors that can influence the success of assimilating in situ monitored soil moisture are the spatial configuration of the monitoring network and the applied assimilation algorithm. In this research the influence of those factors is examined by means of synthetic data-assimilation experiments. The study area is the ± 100 km² catchment of the Bellebeek in Flanders, Belgium. The influence of the spatial configuration is examined by varying the amount of locations and their position in the landscape. The latter is performed using several techniques including temporal stability analysis and clustering. Furthermore the observation depth is considered by comparing assimilation of surface layer (5 cm) and deeper layer (50 cm) observations. The impact of the assimilation algorithm is assessed by comparing the performance obtained with two well-known algorithms: Newtonian nudging and the Ensemble Kalman

  9. Assessing the small-strain soil stiffness for offshore wind turbines based on in situ seismic measurements

    International Nuclear Information System (INIS)

    Versteijlen, W G; Van Dalen, K N; Metrikine, A V; Hamre, L

    2014-01-01

    The fundamental natural frequency as measured on installed offshore wind turbines is significantly higher than its designed value, and it is expected that the explanation for this can be found in the currently adopted modeling of soil-structure interaction. The small-strain soil stiffness is an important design parameter, as it has a defining influence on the first natural frequency of these structures. In this contribution, in situ seismic measurements are used to derive the small-strain shear modulus of soil as input for 3D soil-structure interaction models to assess the initial soil stiffness at small strains for offshore wind turbine foundations. A linear elastic finite element model of a half-space of solids attached to a pile is used to derive an equivalent first mode shape of the foundation. The second model extends the first one by introducing contact elements between pile and soil, to take possible slip and gap-forming into account. The deflections derived with the 3D models are smaller than those derived with the p- y curve design code. This higher stiffness is in line with the higher measured natural frequencies. Finally a method is suggested to translate the response of 3D models into 1D engineering models of a beam laterally supported by uncoupled distributed springs

  10. Development of a low-cost soil moisture sensor for in-situ data collection by citizen scientists

    Science.gov (United States)

    Rajasekaran, E.; Jeyaram, R.; Lohrli, C.; Das, N.; Podest, E.; Hovhannesian, H.; Fairbanks, G.

    2017-12-01

    Soil moisture (SM) is identified as an Essential Climate Variable and it exerts a strong influence on agriculture, hydrology and land-atmosphere interaction. The aim of this project is to develop an affordable (low-cost), durable, and user-friendly, sensor and an associated mobile app to measure in-situ soil moisture by the citizen scientists or any K-12 students. The sensor essentially measures the electrical resistance between two metallic rods and the resistance is converted into SM based on soil specific calibration equations. The sensor is controlled by a micro-controller (Arduino) and a mobile app (available both for iOS and Android) reads the resistance from the micro-controller and converts it into SM for the soil type selected by the user. Extensive laboratory tests are currently being carried out to standardize the sensor and to calibrate the sensor for various soil types. The sensor will also be tested during field campaigns and recalibrated for field conditions. In addition to the development of the sensor and the mobile app, supporting documentation and videos are also being developed that show the step-by-step process of building the sensor from scratch and measurement protocols. Initial laboratory calibration and validation of the prototype suggested that the sensor is able to satisfactorily measure SM for sand, loam, sandy loam, sandy clay loam type of soils. The affordable and simple sensor will help citizen scientists to understand the dynamics of SM at their site and the in-situ data will further be utilized for validation of the satellite observations from the SMAP mission.

  11. Innovative in situ treatment approach for DOE Savannah River Site Sanitary Landfill

    International Nuclear Information System (INIS)

    Knapp, J.; Suer, A.

    1994-01-01

    Pursuant to a settlement agreement reached between the US Department of Energy (DOE) and the South Carolina Department of Health and Environmental Control (SCDHEC), the Sanitary Landfill at the Savannah River Site will be closed. This paper addresses the approach used to select the innovative in situ treatment alternative for the groundwater and the vadose zone associated with the landfill

  12. Sour gas injection for use with in situ heat treatment

    Science.gov (United States)

    Fowler, Thomas David [Houston, TX

    2009-11-03

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

  13. Radiolytic treatment of dioxin contaminated soils

    International Nuclear Information System (INIS)

    Gray, K.A.; Hilarides, R.J.

    1995-01-01

    Recent work in our laboratory has demonstrated that γ-radiolysis is a feasible method by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can be converted to products of negligible toxicity. In the presence of 25% water, 2.5% non-ionic surfactant and at a dose of 800 kGy greater than 98% destruction was achieved in a standard soil artificially contaminated with 100 ppb TCDD. By-product analysis has illustrated that the destruction occurs via step-wise reductive dechlorination producing a suite of lesser chlorinated dioxins. These results in combination with scavenger studies, target theory calculations and yields indicate that direct radiation effects account for the major route of destruction. Radiolysis has also been conducted on a real soil contaminated with TCDD and other chlorinated aromatic compounds verifying the results of model studies. Based on the data of these experiments some designs of batch gamma systems are considered and a discussion of estimated capital and operating costs associated with γ-radiolysis is presented. Given the high costs of the alternatives (i.e. incineration), radiolysis appears to be not only technically feasible, but it may also be economically competitive. (author)

  14. Assessment of in situ immobilization of Lead (Pb) and Arsenic (As) in contaminated soils with phosphate and iron: solubility and bioaccessibility

    NARCIS (Netherlands)

    Cui, Y.S.; Du, X.; Weng, L.P.; Riemsdijk, van W.H.

    2010-01-01

    The effect of in situ immobilization of lead (Pb) and arsenic (As) in soil with respectively phosphate and iron is well recognized. However, studies on combined Pb and As-contaminated soil are fewer, and assessment of the effectiveness of the immobilization on mobility and bioaccessibility is also

  15. Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ

    International Nuclear Information System (INIS)

    Regonne, Raïssa Kom; Martin, Florence; Mbawala, Augustin; Ngassoum, Martin Benoît; Jouanneau, Yves

    2013-01-01

    Efficient bioremediation of PAH-contaminated sites is limited by the hydrophobic character and poor bioavailability of pollutants. In this study, stable isotope probing (SIP) was implemented to track bacteria that can degrade PAHs adsorbed on hydrophobic sorbents. Temperate and tropical soils were incubated with 13 C-labeled phenanthrene, supplied by spiking or coated onto membranes. Phenanthrene mineralization was faster in microcosms with PAH-coated membranes than in microcosms containing spiked soil. Upon incubation with temperate soil, phenanthrene degraders found in the biofilms that formed on coated membranes were mainly identified as Sphingomonadaceae and Actinobacteria. In the tropical soil, uncultured Rhodocyclaceae dominated degraders bound to membranes. Accordingly, ring-hydroxylating dioxygenase sequences recovered from this soil matched PAH-specific dioxygenase genes recently found in Rhodocyclaceae. Hence, our SIP approach allowed the detection of novel degraders, mostly uncultured, which differ from those detected after soil spiking, but might play a key role in the bioremediation of PAH-polluted soils. -- Highlights: •Soil bacteria with the ability to degrade sorbent-bound PAHs were investigated. •In soil, membrane-bound phenanthrene was readily mineralized. •PAH degraders found in biofilms were different in temperate and tropical soils. •Uncultured Rhodocyclaceae were dominant phenanthrene degraders in the tropical soil. •PAH-specific ring-hydroxylating dioxygenase sequences were identified in soil DNA. -- Bacteria able to degrade PAHs bound to a hydrophobic sorbent were mainly identified as uncultured Rhodocyclaceae and Sphingomonadaceae in polluted soils from tropical and temperate area, respectively

  16. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  17. Heavy Metal Contaminated Soil Imitation Biological Treatment Overview

    Science.gov (United States)

    Pan, Chang; Chen, Jun; Wu, Ke; Zhou, Zhongkai; Cheng, Tingting

    2018-01-01

    In this paper, the treatment methods of heavy metal pollution in soils were analyzed, the existence and transformation of heavy metals in soil were explored, and the mechanism of heavy metal absorption by plants was studied. It was concluded that the main form of plants absorb heavy metals in the soil is exchangeable. The main mechanism was that the plant cell wall can form complex with heavy metals, so that heavy metals fixed on the cell wall, and through the selective absorption of plasma membrane into the plant body. In addition, the adsorption mechanism of the adsorbed material was analyzed. According to the results of some researchers, it was found that the mechanism of adsorption of heavy metals was similar to that of plants. According to this, using adsorbent material as the main material, Imitate the principle of plant absorption of heavy metals in the soil to removing heavy metals in the soil at one-time and can be separated from the soil after adsorption to achieve permanent removal of heavy metals in the soil was feasibility.

  18. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils.

    Science.gov (United States)

    Ranc, Bérénice; Faure, Pierre; Croze, Véronique; Lorgeoux, Catherine; Simonnot, Marie-Odile

    2017-04-01

    Thermal treatments prior or during chemical oxidation of aged polycyclic aromatic hydrocarbon (PAH)-contaminated soils have already shown their ability to increase oxidation effectiveness. However, they were never compared on the same soil. Furthermore, oxygenated polycyclic aromatic hydrocarbons (O-PACs), by-products of PAH oxidation which may be more toxic and mobile than the parent PAHs, were very little monitored. In this study, two aged PAH-contaminated soils were heated prior (60 or 90 °C under Ar for 1 week) or during oxidation (60 °C for 1 week) with permanganate and persulfate, and 11 O-PACs were monitored in addition to the 16 US Environmental Protection Agency (US EPA) PAHs. Oxidant doses were based on the stoichiometric oxidant demand of the extractable organic fraction of soils by using organic solvents, which is more representative of the actual contamination than only the 16 US EPA PAHs. Higher temperatures actually resulted in more pollutant degradation. Two treatments were about three times more effective than the others: soil heating to 60 °C during persulfate oxidation and soil preheating to 90 °C followed by permanganate oxidation. The results of this study showed that persulfate effectiveness was largely due to its thermal activation, whereas permanganate was more sensitive to PAH availability than persulfate. The technical feasibility of these two treatments will soon be field-tested in the unsaturated zone of one of the studied aged PAH-contaminated soils.

  19. Evaluation of in situ remediation methods in soils contaminated with organic pollutants

    OpenAIRE

    Simpanen, Suvi

    2016-01-01

    Soil contamination is a result of human activities that allow hazardous substances to accumulate in soil and thereby to increase the risk to the environment or to human health. There is an estimate of over 2.5 million contaminated sites in Europe and nearly 24 000 of these are in Finland. The most common soil contaminants are oil hydrocarbons and metals. The main anthropogenic activities that contribute to soil contamination include fuel distribution and storage, industrial activity, waste tr...

  20. Bioavailability-Based In Situ Remediation To Meet Future Lead (Pb) Standards in Urban Soils and Gardens.

    Science.gov (United States)

    Henry, Heather; Naujokas, Marisa F; Attanayake, Chammi; Basta, Nicholas T; Cheng, Zhongqi; Hettiarachchi, Ganga M; Maddaloni, Mark; Schadt, Christopher; Scheckel, Kirk G

    2015-08-04

    Recently the Centers for Disease Control and Prevention lowered the blood Pb reference value to 5 μg/dL. The lower reference value combined with increased repurposing of postindustrial lands are heightening concerns and driving interest in reducing soil Pb exposures. As a result, regulatory decision makers may lower residential soil screening levels (SSLs), used in setting Pb cleanup levels, to levels that may be difficult to achieve, especially in urban areas. This paper discusses challenges in remediation and bioavailability assessments of Pb in urban soils in the context of lower SSLs and identifies research needs to better address those challenges. Although in situ remediation with phosphate amendments is a viable option, the scope of the problem and conditions in urban settings may necessitate that SSLs be based on bioavailable rather than total Pb concentrations. However, variability in soil composition can influence bioavailability testing and soil amendment effectiveness. More data are urgently needed to better understand this variability and increase confidence in using these approaches in risk-based decision making, particularly in urban areas.

  1. Water storage change estimation from in situ shrinkage measurements of clay soils

    NARCIS (Netherlands)

    Brake, te B.; Ploeg, van der M.J.; Rooij, de G.H.

    2013-01-01

    The objective of this study is to assess the applicability of clay soil elevation change measurements to estimate soil water storage changes, using a simplified approach. We measured moisture contents in aggregates by EC-5 sensors, and in multiple aggregate and inter-aggregate spaces (bulk soil) by

  2. Phosphorus Amendment Efficacy for In Situ Remediation of Soil Lead Depends on the Bioaccessible Method

    Science.gov (United States)

    A validated method is needed to measure reductions of in vitro bioaccessible (IVBA) Pb in urban soil remediated with amendments. This study evaluated the effect of in vitro extraction solution pH and glycine buffer on bioaccesible Pb in P-treated soils. Two Pb-contaminated soils...

  3. In-Situ Measurement of Soil Permittivity at Various Depths for the Calibration and Validation of Low-Frequency SAR Soil Moisture Models by Using GPR

    Directory of Open Access Journals (Sweden)

    Christian N. Koyama

    2017-06-01

    Full Text Available At radar frequencies below 2 GHz, the mismatch between the 5 to 15 cm sensing depth of classical time domain reflectometry (TDR probe soil moisture measurements and the radar penetration depth can easily lead to unreliable in situ data. Accurate quantitative measurements of soil water contents at various depths by classical methods are cumbersome and usually highly invasive. We propose an improved method for the estimation of vertical soil moisture profiles from multi-offset ground penetrating radar (GPR data. A semi-automated data acquisition technique allows for very fast and robust measurements in the field. Advanced common mid-point (CMP processing is applied to obtain quantitative estimates of the permittivity and depth of the reflecting soil layers. The method is validated against TDR measurements using data acquired in different environments. Depth and soil moisture contents of the reflecting layers were estimated with root mean square errors (RMSE on the order of 5 cm and 1.9 Vol.-%, respectively. Application of the proposed technique for the validation of synthetic aperture radar (SAR soil moisture estimates is demonstrated based on a case study using airborne L-band data and ground-based P-band data. For the L-band case we found good agreement between the near-surface GPR estimates and extended integral equation model (I2EM based SAR retrievals, comparable to those obtained by TDR. At the P-band, the GPR based method significantly outperformed the TDR method when using soil moisture estimates at depths below 30 cm.

  4. In situ treatment of arsenic-contaminated groundwater by air sparging.

    Science.gov (United States)

    Brunsting, Joseph H; McBean, Edward A

    2014-04-01

    Arsenic contamination of groundwater is a major problem in some areas of the world, particularly in West Bengal (India) and Bangladesh where it is caused by reducing conditions in the aquifer. In situ treatment, if it can be proven as operationally feasible, has the potential to capture some advantages over other treatment methods by being fairly simple, not using chemicals, and not necessitating disposal of arsenic-rich wastes. In this study, the potential for in situ treatment by injection of compressed air directly into the aquifer (i.e. air sparging) is assessed. An experimental apparatus was constructed to simulate conditions of arsenic-rich groundwater under anaerobic conditions, and in situ treatment by air sparging was employed. Arsenic (up to 200 μg/L) was removed to a maximum of 79% (at a local point in the apparatus) using a solution with dissolved iron and arsenic only. A static "jar" test revealed arsenic removal by co-precipitation with iron at a molar ratio of approximately 2 (iron/arsenic). This is encouraging since groundwater with relatively high amounts of dissolved iron (as compared to arsenic) therefore has a large theoretical treatment capacity for arsenic. Iron oxidation was significantly retarded at pH values below neutral. In terms of operation, analysis of experimental results shows that periodic air sparging may be feasible. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma.

    Science.gov (United States)

    Katiyar, Shefali; Pandit, Jayamanti; Mondal, Rabi S; Mishra, Anil K; Chuttani, Krishna; Aqil, Mohd; Ali, Asgar; Sultana, Yasmin

    2014-02-15

    The most important risk associated with glaucoma is the onset and progression of intraocular pressure. The objective of this study was to formulate in situ gel of chitosan nanoparticles to enhance the bioavailability and efficacy of dorzolamide in the glaucoma treatment. Optimized nanoparticles were spherical in shape (particle size: 164 nm) with a loading efficiency of 98.1%. The ex vivo release of the optimized in situ gel nanoparticle formulation showed a sustained drug release as compared to marketed formulation. The gamma scintigraphic study of prepared in situ nanoparticle gel showed good corneal retention compared to marketed formulation. HET-CAM assay of the prepared formulation scored 0.33 in 5 min which indicates the non-irritant property of the formulation. Thus in situ gel of dorzolamide hydrochloride loaded nanoparticles offers a more intensive treatment of glaucoma and a better patient compliance as it requires fewer applications per day compared to conventional eye drops. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry

    International Nuclear Information System (INIS)

    Mousset, Emmanuel; Huguenot, David; Hullebusch, Eric D. van; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A.

    2016-01-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween"® 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween"® 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R"2 > 0.975). More HPCD was recovered (89%) than Tween"® 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween"® 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (p

  7. Laboratory evaluation of the hydrogen sulfide gas treatment approach for remediation of chromate-, uranium(VI)-, and nitrate-contaminated soils

    International Nuclear Information System (INIS)

    Thornton, E.C.; Baechler, M.A.; Beck, M.A.; Amonette, J.E.

    1994-08-01

    Bench-scale soil treatment tests were conducted as part of an effort to develop and implement an in situ chemical treatment approach to the remediation of metal and radionuclide contaminated soils through the use of reactive gases. In general, > 90% immobilization of chromium and > 50% immobilization of uranium was achieved. Leach test results indicate that the treatment process is irreversible for chromium but partially reversible for uranium indicates that immobilization for this contaminant is more readily achieved in organic rich soils. This observation is ascribed to the reducing nature of organic matter. Additional tests were also conducted with soils contaminated to the 5,000 ppm level with nitrate. Nitrate was not found to interfere significantly with treatment of the contaminants. Nitrite was observed in the leachate samples obtained from tests with an organic-rich soil containing clay, however. Leachate chemistries suggested that no other significantly hazardous byproducts were generated by the treatment process and that soil alteration effects were minimal. Test results also suggest that treatment effectiveness is somewhat lower in very dry soils but still able to immobilize chromium and uranium to an acceptable degree. Results of these testing activities indicate that the concentration of hydrogen sulfide in the gas mixture is not a limited factor in treatment as long as a sufficient volume of the mixture is delivered to the soil to achieve a mole ratio of hydrogen sulfide to contaminant of at least 10

  8. Overview of a large-scale bioremediation soil treatment project

    International Nuclear Information System (INIS)

    Stechmann, R.

    1991-01-01

    How long does it take to remediate 290,000 yd 3 of impacted soil containing an average total petroleum hydrocarbon concentration of 3,000 ppm? Approximately 15 months from start to end of treatment using bioremediation. Mittelhauser was retained by the seller of the property (a major oil company) as technical manager to supervise remediation of a 45-ac parcel in the Los Angeles basin. Mittelhauser completed site characterization, negotiated clean-up levels with the regulatory agencies, and prepared the remedial action plan (RAP) with which the treatment approach was approved and permitted. The RAP outlined the excavation, treatment, and recompaction procedures for the impacted soil resulting from leakage of bunker fuel oil from a large surface impoundment. The impacted soil was treated on site in unline Land Treatment Units (LTUs) in 18-in.-thick lifts. Due to space restraints, multiple lifts site. The native microbial population was cultivated using soil stabilization mixing equipment with the application of water and agricultural grade fertilizers. Costs on this multimillion dollar project are broken down as follows: general contractor cost (47%), bioremediation subcontractor cost (35%), site characterization (10%), technical management (7%), analytical services (3%), RAP preparation and permitting (1%), and civil engineering subcontractor cost (1%). Start-up of field work could have been severely impacted by the existence of Red Fox habitation. The foxes were successfully relocated prior to start of field work

  9. Fractionation of Uranium Forms as Affected by Spiked Soil Treatment and Soil Type

    International Nuclear Information System (INIS)

    Lotfy, S.M.; Mostafa, A.Z.; Abdel-Sabour, M.F.

    2012-01-01

    In a fractionation experiment Uranium forms were compared in two soil types (Mostorud and Elgabalelasfar soil). Also, the variation of U forms due to soil treatment (spiking) were studied. In case of Mostorud soil the initial U - fractions were 45.63 % as residual form, 20.69 % organically bound 16.36 % Mn and Fe oxides bound, 9.76% Carbonate form, 7.41 % exchangeable fractions and 0.15% water soluble fractions. These fractions varied significantly when the soil was spiked with 200 mg U/Kg soil to 46.88 %, 23.19 %, 9.97 %, 16.07 %, 3.79% and 0.10% for residual, organically, Mn- Fe oxide, carbonate, exchangeable and water soluble fractions respectively. These result showed significant reduction in U-ex fraction forms and Mn- Fe bound forms with significant increase in U- carbonate form due to U application. In case of Elgabalelasfar soil, the main U - fractions were 57.42% as residual form (relatively higher residual - U form in the clayey soil) 16.10 % organically bound, 13.78% Mn and Fe oxides bound, 7.22 % Carbonate form, 5.23 % exchangeable fractions and 0.25 % water soluble fractions The application of 200 mg U/Kg soil resulted in a significant changes in U - Fractions distribution as follows : 59.26 % , 11.27 % , 19.59 % , 6.84 % , 2.90 % and 0.14 % for residual , organic , Mn- Fe oxides , carbonate, exchangeable and water soluble fractions , respectively.

  10. Fate and transport of carbamazepine in soil aquifer treatment (SAT) infiltration basin soils.

    Science.gov (United States)

    Arye, Gilboa; Dror, Ishai; Berkowitz, Brian

    2011-01-01

    The transport and fate of the pharmaceutical carbamazepine (CBZ) were investigated in the Dan Region Reclamation Project (SHAFDAN), Tel-Aviv, Israel. Soil samples were taken from seven subsections of soil profiles (150 cm) in infiltration basins of a soil aquifer treatment (SAT) system. The transport characteristics were studied from the release dynamics of soil-resident CBZ and, subsequently, from applying a pulse input of wastewater containing CBZ. In addition, a monitoring study was performed to evaluate the fate of CBZ after the SAT. Results of this study indicate adsorption, and consequently retardation, in CBZ transport through the top soil layer (0-5 cm) and to a lesser extent in the second layer (5-25 cm), but not in deeper soil layers (25-150 cm). The soluble and adsorbed fractions of CBZ obtained from the two upper soil layers comprised 45% of the total CBZ content in the entire soil profile. This behavior correlated to the higher organic matter content observed in the upper soil layers (0-25 cm). It is therefore deduced that when accounting for the full flow path of CBZ through the vadose zone to the groundwater region, the overall transport of CBZ in the SAT system is essentially conservative. The monitoring study revealed that the average concentration of CBZ decreased from 1094 ± 166 ng L⁻¹ in the recharged wastewater to 560 ± 175 ng L⁻¹ after the SAT. This reduction is explained by dilution of the recharged wastewater with resident groundwater, which may occur as it flows to active reclamation wells. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. In situ nuclear magnetic resonance response of permafrost and active layer soil in boreal and tundra ecosystems

    Directory of Open Access Journals (Sweden)

    M. A. Kass

    2017-12-01

    Full Text Available Characterization of permafrost, particularly warm and near-surface permafrost which can contain significant liquid water, is critical to understanding complex interrelationships with climate change, ecosystems, and disturbances such as wildfires. Understanding the vulnerability and resilience of permafrost requires an interdisciplinary approach, relying on (for example geophysical investigations, ecological characterization, direct observations, remote sensing, and more. As part of a multiyear investigation into the impacts of wildfires on permafrost, we have collected in situ measurements of the nuclear magnetic resonance (NMR response of the active layer and permafrost in a variety of soil conditions, types, and saturations. In this paper, we summarize the NMR data and present quantitative relationships between active layer and permafrost liquid water content and pore sizes and show the efficacy of borehole NMR (bNMR to permafrost studies. Through statistical analyses and synthetic freezing simulations, we also demonstrate that borehole NMR is sensitive to the nucleation of ice within soil pore spaces.

  12. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available The integration of bioventing (BV and soil vapor extraction (SVE appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5% of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  13. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  14. Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ

    Energy Technology Data Exchange (ETDEWEB)

    Regonne, Raïssa Kom [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France); Laboratoire de Substances Actives et Pollution, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Martin, Florence [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France); Mbawala, Augustin [Laboratoire de Microbiologie, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Ngassoum, Martin Benoît [Laboratoire de Substances Actives et Pollution, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Jouanneau, Yves [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France)

    2013-09-15

    Efficient bioremediation of PAH-contaminated sites is limited by the hydrophobic character and poor bioavailability of pollutants. In this study, stable isotope probing (SIP) was implemented to track bacteria that can degrade PAHs adsorbed on hydrophobic sorbents. Temperate and tropical soils were incubated with {sup 13}C-labeled phenanthrene, supplied by spiking or coated onto membranes. Phenanthrene mineralization was faster in microcosms with PAH-coated membranes than in microcosms containing spiked soil. Upon incubation with temperate soil, phenanthrene degraders found in the biofilms that formed on coated membranes were mainly identified as Sphingomonadaceae and Actinobacteria. In the tropical soil, uncultured Rhodocyclaceae dominated degraders bound to membranes. Accordingly, ring-hydroxylating dioxygenase sequences recovered from this soil matched PAH-specific dioxygenase genes recently found in Rhodocyclaceae. Hence, our SIP approach allowed the detection of novel degraders, mostly uncultured, which differ from those detected after soil spiking, but might play a key role in the bioremediation of PAH-polluted soils. -- Highlights: •Soil bacteria with the ability to degrade sorbent-bound PAHs were investigated. •In soil, membrane-bound phenanthrene was readily mineralized. •PAH degraders found in biofilms were different in temperate and tropical soils. •Uncultured Rhodocyclaceae were dominant phenanthrene degraders in the tropical soil. •PAH-specific ring-hydroxylating dioxygenase sequences were identified in soil DNA. -- Bacteria able to degrade PAHs bound to a hydrophobic sorbent were mainly identified as uncultured Rhodocyclaceae and Sphingomonadaceae in polluted soils from tropical and temperate area, respectively.

  15. Effect of in situ soil amendments on arsenic uptake in successive harvests of ryegrass (Lolium perenne cv Elka) grown in amended As-polluted soils

    International Nuclear Information System (INIS)

    Hartley, William; Lepp, Nicholas W.

    2008-01-01

    Several iron-bearing additives, selected for their potential ability to adsorb anions, were evaluated for their effectiveness in attenuation of arsenic (As) in three soils with different sources of contamination. Amendments used were lime, goethite (α-FeOOH) (crystallised iron oxide) and three iron-bearing additives, iron grit, Fe II and Fe III sulphates plus lime, applied at 1% w/w. Sequential extraction schemes conducted on amended soils determined As, Cu, Zn and Ni fractionation. Plant growth trials using perennial ryegrass (Lolium perenne var. Elka) assessed shoot As uptake. This was grown in the contaminated soils for 4 months, during which time grass shoots were successively harvested every 3 weeks. Goethite increased biomass yields, but clear differences were observed in As transfer rates with the various iron oxides. In conclusion, whilst Fe-oxides may be effective in situ amendments, reducing As bioavailability, their effects on plant growth require careful consideration. Soil-plant transfer of As was not completely halted by any amendment. - Arsenic attenuation is illustrated using Fe-based amendments, their efficacy providing different indicators of success

  16. Leaf Cutter Ant (Atta cephalotes) Soil Modification and In Situ CO2 Gas Dynamics in a Neotropical Wet Forest

    Science.gov (United States)

    Fernandez Bou, A. S.; Carrasquillo Quintana, O.; Dierick, D.; Harmon, T. C.; Johnson, S.; Schwendenmann, L.; Zelikova, T. J.

    2016-12-01

    The goal of this work is to advance our understanding of soil carbon cycling in highly productive neotropical wet forests. More specifically, we are investigating the influence of leaf cutter ants (LCA) on soil CO2 gas dynamics in primary and secondary forest soils at La Selva Biological Station, Costa Rica. LCA are the dominant herbivore in tropical Americas, responsible for as much as 50% of the total herbivory. Their presence is increasing and their range is expanding because of forest fragmentation and other human impacts. We installed gas sampling wells in LCA (Atta cephalotes) nest and control sites (non-nests in the same soil and forest settings). The experimental design encompassed land cover (primary and secondary forest) and soil type (residual and alluvial). We collected gas samples monthly over an 18-month period. Several of the LCA nests were abandoned during this period. Nevertheless, we continued to sample these sites for LCA legacy effects. In several of the sites, we also installed sensors to continuously monitor soil moisture content, temperature, and CO2 levels. Within the 18-month period we conducted a 2-month field campaign to collect soil and nest vent CO2 efflux data from 3 of the nest-control pairs. Integrating the various data sets, we observed that for most of the sites nest and control soils behaved similarly during the tropical dry season. However, during the wet season gas well CO2 concentrations increased in the control sites while levels in the nests remained at dry season levels. This outcome suggests that ants modify soil gas transport properties (e.g., tortuosity). In situ time series and efflux sampling campaign data corroborated these findings. Abandoned nest CO2 levels were similar to those of the active nests, supporting the notion of a legacy effect from LCA manipulations. For this work, the period of abandonment was relatively short (several months to 1 year maximum), which appears to be insufficient for estimating the

  17. Treatment of NORM contaminated soil from the oilfields.

    Science.gov (United States)

    Abdellah, W M; Al-Masri, M S

    2014-03-01

    Uncontrolled disposal of oilfield produced water in the surrounding environment could lead to soil contamination by naturally occurring radioactive materials (NORM). Large volumes of soil become highly contaminated with radium isotopes ((226)Ra and (228)Ra). In the present work, laboratory experiments have been conducted to reduce the activity concentration of (226)Ra in soil. Two techniques were used, namely mechanical separation and chemical treatment. Screening of contaminated soil using vibratory sieve shaker was performed to evaluate the feasibility of particle size separation. The fractions obtained were ranged from less than 38 μm to higher than 300 μm. The results show that (226)Ra activity concentrations vary widely from fraction to fraction. On the other hand, leaching of (226)Ra from soil by aqueous solutions (distilled water, mineral acids, alkaline medias and selective solvents) has been performed. In most cases, relatively low concentrations of radium were transferred to solutions, which indicates that only small portions of radium are present on the surface of soil particles (around 4.6%), while most radium located within soil particles; only concentrated nitric acid was most effective where 50% of (226)Ra was removed to aqueous phase. However, mechanical method was found to be easy and effective, taking into account safety procedures to be followed during the implementation of the blending and homogenization. Chemical extraction methods were found to be less effective. The results obtained in this study can be utilized to approach the final option for disposal of NORM contaminated soil in the oilfields. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A new method for the determination of radionuclide distribution in the soil by in situ gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Zombori, P.; Andrasi, A.; Nemeth, I.

    1995-01-01

    In case of major nuclear accidents when larger amount of radioactive material is released into the atmosphere vast areas can become contaminated by the nuclear fallout. The deposited radioactivity penetrates the soil in a complex manner: dry and wet deposition lead to different initial distribution patterns which are further modified by the later transport processes in the upper layers of the soil. The distribution is influenced by various factors (physico-chemical characteristics of the radioisotopes, soil type, weather conditions, environment etc.), the resulting soil profile is hardly predictable. An important lesson we learned from the Chernobyl reactor accident is the great variability of the contamination both in the extent of the deposition and in the penetration features. In recent years - following the reactor accident in Chernobyl - an increased interest for rapid methods of monitoring environmental radioactivity was expressed. The International Atomic Energy Agency initiated a research project to co-ordinate the activities carried out in various laboratories aiming at the development of rapid monitoring procedures. The Co-ordinated Research Project (CRP) G6 10 01 under the title Rapid Instrumental and Separation Methods for Monitoring Radionuclides in Food and the Environment has given a frame for 11 research programs. The Health Physics Department of the KFKI Institute for Atomic Energy Research (the former Central Research Institute for Physics) has taken a part in this CRP with a project titled: Rapid In Situ Gamma Spectrometric Determination of Fallout Radioactivity in the Environment. The main objective of our study was to find a method to estimate the penetration characteristics of the fallout radioactivity by using only spectral information obtained by the in situ spectrometric measurement thus avoiding the need for a long and tiresome sampling and sample analysis procedure

  19. Electroluminescence dependence of the simplified green light organic light emitting diodes on in situ thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Haichuan, E-mail: hcmu@ecust.edu.cn [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Rao, Lu [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Li, Weiling; Wei, Bin [Key Laboratory of Advanced Display and System Applications, Ministry of Education, School of Mechanics Engineering and Automation, Shanghai University, 149 Yanchang Road, Shanghai 200072 (China); Wang, Keke; Xie, Haifen [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2015-12-01

    Highlights: • In-situ thermal treating the organic tri-layer (CBP/CBP:Ir(ppy){sub 3}/TPBi) of the green light PHOLED under various temperatures during the organic materials evaporation. • Investigating the effect of in situ thermal treatment on the electroluminescence (EL) performance of the green light PHOLED with tri-layer structures. • Provide an easy and practical way to improve the EL performance of the OLEDs without major modification of the organic materials and OLEDs structures required. - Abstract: Simplified multilayer green light phosphorescent organic light emitting diodes (PHOLED) with the structure of ITO/MoO{sub 3}(1 nm)/CBP(20 nm)/CBP:Ir(ppy){sub 3} (1 wt%) (15 nm)/TPBi(60 nm)/LiF(0.5 nm)/Al were fabricated via thermal evaporation and in situ thermal treatment (heating the OLED substrates to certain temperatures during the thermal evaporation of the organic materials) was performed. The effect of the in situ thermal treatment on the electroluminescence (EL) performance of the PHOLED was investigated. It was found that the OLED exhibited strong EL dependence on the thermal treatment temperatures, and their current efficiency was improved with the increasing temperature from room temperature (RT) to 69 °C and deteriorated with the further increasing temperature to 105 °C. At the brightness of 1000 cd/m{sup 2}, over 80% improvement of the current efficiency at the optimal thermal treatment temperature of 69 °C (64 cd/A) was demonstrated compared to that at RT (35 cd/A). Meanwhile, the tremendous influences of the in situ thermal treatment on the morphology of the multilayer CBP/CBP:Ir(ppy){sub 3}/TPBi were also observed. At the optimal thermal treatment temperature of 69 °C, the improvement of the EL performance could be ascribed to the enhancement of the electron and hole transporting in the CBP:Ir(ppy){sub 3} emitting layer, which suppressed the triplets self-quenching interactions and promoted the charge balance and excitons formation. The

  20. Comparison of Soil Moisture in Switzerland Using In-Situ Measurements and Model Output

    Science.gov (United States)

    Mittelbach, H.; Orth, R.; Seneviratne, S. I.

    2011-01-01

    Soil moisture is an essential contributor to land surface- atmosphere interactions. In this study we evaluate the two Land surface models CLM3.5 and SIB3 regarding their performance in simulating soil moisture and its anomalies for the one year period 01.09.2009 to 31.08.2010. Four grassland sites from the SwissSMEX/- Veg project were used as reference soil moisture data. In general, both models represent the soil moisture anomalies and their distribution better than the absolute soil moisture. Furthermore, both models show a seasonal dependence of the correlation and root mean square error. In contrast to the SIB3 model, the CLM3.5 model shows stronger seasonal variation of the root mean square error and a larger interquantile range for soil moisture anomalies.

  1. Investigation of potential for occurrence of molten soil displacement events during in situ vitrification of combustible wastes

    International Nuclear Information System (INIS)

    Roberts, J.S.; Strachan, C.W.; Luey, J.

    1993-02-01

    Computer simulations are used to investigate the application of in situ vitrification (ISV) for processing contaminated soil containing high loadings of solid, compressible waste material, typical of landfills and solid waste trenches. Specifically, these simulations predict whether significant displacement of molten soil, due to large, 1 to 2 m diameter, gas bubbles rising up through the ISV melt, are likely to occur during processing of combustible waste-loaded sites. These bubbles are believed to originate from high-pressure regions below the melt caused by vaporization of water and gases generated by the combustion, volatilization, or pyrolyzation of combustible materials in the waste. Simulations were run using the TOUGH2 computer code to predict pressures underneath the ISV melt TOUGH2 is an unsaturated groundwater modeling code capable of treating non-isothermal problems. These simulations include moving melt front and simple pyrolysis models and investigate how the gas pressure in the soil below the melt is affected by melt progression rate, soil permeability, combustible and impermeable material loading. The following, conclusions have been drawn based on the TOUGH2 simulations

  2. Development and Implementation of a Low-Cost ex-situ Soil Clean-up Method for Actinide Removal at the AWE Aldermaston Site, U.K

    International Nuclear Information System (INIS)

    Agnew, K.; Purdie, P.; Agnew, K.; Cundy, A.B.; Hopkinson, L.; Croudace, I.W.; Warwick, P.E.F.

    2009-01-01

    the treatment method during summer 2008 involved ex-situ, but on-site, treatment of soil wastes in a lined steel cell, using low-cost materials (e.g. portable 12 V batteries, cast iron electrodes), over a 2 month period. The development and field-scale implementation of the remediation technique on a working nuclear site involved the development of a detailed safe system of work, with standard operating and Quality Assurance procedures, and the involvement and cooperation of a range of on-site and off-site organisations. The implications of: - the laboratory and field trial data; and - the site and regulatory requirements for the implementation of the clean-up process for the application of similar remediation or waste management methods on other nuclear sites are described and evaluated here. (authors)

  3. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)--a field experiment.

    Science.gov (United States)

    Beškoski, Vladimir P; Gojgić-Cvijović, Gordana; Milić, Jelena; Ilić, Mila; Miletić, Srdjan; Solević, Tatjana; Vrvić, Miroslav M

    2011-03-01

    Mazut (heavy residual fuel oil)-polluted soil was exposed to bioremediation in an ex situ field-scale (600 m(3)) study. Re-inoculation was performed periodically with biomasses of microbial consortia isolated from the mazut-contaminated soil. Biostimulation was conducted by adding nutritional elements (N, P and K). The biopile (depth 0.4m) was comprised of mechanically mixed polluted soil with softwood sawdust and crude river sand. Aeration was improved by systematic mixing. The biopile was protected from direct external influences by a polyethylene cover. Part (10 m(3)) of the material prepared for bioremediation was set aside uninoculated, and maintained as an untreated control pile (CP). Biostimulation and re-inoculation with zymogenous microorganisms increased the number of hydrocarbon degraders after 50 d by more than 20 times in the treated soil. During the 5 months, the total petroleum hydrocarbon (TPH) content of the contaminated soil was reduced to 6% of the initial value, from 5.2 to 0.3 g kg(-1) dry matter, while TPH reduced to only 90% of the initial value in the CP. After 150 d there were 96%, 97% and 83% reductions for the aliphatic, aromatic, and nitrogen-sulphur-oxygen and asphaltene fractions, respectively. The isoprenoids, pristane and phytane, were more than 55% biodegraded, which indicated that they are not suitable biomarkers for following bioremediation. According to the available data, this is the first field-scale study of the bioremediation of mazut and mazut sediment-polluted soil, and the efficiency achieved was far above that described in the literature to date for heavy fuel oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Allelopatic potential of weeds under the minimalization of soil treatment

    Directory of Open Access Journals (Sweden)

    Mikhail A. Mazirov

    2014-01-01

    Full Text Available The content of water-dispersible phenol substances in rhizosphere both of annual and perennial species of weeds (Cirsium arvense, Sonchus arvensis increases under soil treatment minimalization. The higher content of phenol substances of researched weeds is defined in rhizosphere of Common Couch (Agropyrum repens. The absence of intensive anthropogenic treatment of plowing layer which accumulates the significant mass of weed’s roots in the cause of much more higher allelopathic potential of some species’ of weeds. The high level of saturation by weeds in agrophytocoenosis under non-tillage soil treatment is defines the competitiveness between certain sepsis’ of weeds, especially, at the beginning of the vegetation. In this case, increasing the secretion of phenol substances is one of the physiological screenings of such competitiveness.

  5. Biological treatment of soils contaminated with hydrophobic organics using slurry- and solid-phase techniques

    Science.gov (United States)

    Cassidy, Daniel H.; Irvine, Robert L.

    1995-10-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurrying is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bio-slurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay loam contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the rate an extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies. Results showed that slurrying for 1.5 hours at a water content less than saturation markedly increased the rate and extent of contaminant biodegradation in the solid phase bioreactors compared with soil having no slurry pretreatment. Slurrying the soil at or above its saturation moisture content resulted in lengthy dewatering times which prohibited aeration, thereby delaying the onset of biological treatment in the solid phase bioreactors. Results also showed that properly operated periodic aeration can provide less volatile contaminant removal and a grater fraction of biological contaminant removal than continuous aeration.

  6. Fixed capital investments for the uranium soils integrated demonstration soil treatment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Douthat, D.M.; Armstrong, A.Q. [Oak Ridge National Lab., TN (United States); Stewart, R.N. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-05-01

    The development of a nuclear industry in the United States required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the United States Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the Uranium Soils Integrated Demonstration (USID) Program was formed to evaluate and compare the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium contaminated soils. The USID Program has five major tasks in developing and demonstrating these technologies. Each must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies developed by the USID Program. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives.

  7. Fixed capital investments for the uranium soils integrated demonstration soil treatment technologies

    International Nuclear Information System (INIS)

    Douthat, D.M.; Armstrong, A.Q.; Stewart, R.N.

    1995-05-01

    The development of a nuclear industry in the United States required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the United States Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the Uranium Soils Integrated Demonstration (USID) Program was formed to evaluate and compare the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium contaminated soils. The USID Program has five major tasks in developing and demonstrating these technologies. Each must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies developed by the USID Program. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives

  8. Measurement of in situ phosphorus availability in acidified soils using iron-infused resin.

    Czech Academy of Sciences Publication Activity Database

    Tahovská, K.; Čapek, P.; Šantrůčková, H.; Kaňa, Jiří; Kopáček, Jiří

    2016-01-01

    Roč. 47, č. 4 (2016), s. 487-494 ISSN 0010-3624 R&D Projects: GA ČR(CZ) GAP504/12/1218 Institutional support: RVO:60077344 Keywords : acidification * aluminium * forest soil * ion exchange resin * iron * phosphorus availability Subject RIV: DF - Soil Science Impact factor: 0.589, year: 2016

  9. Upscaling In Situ Soil Moisture Observations To Pixel Averages With Spatio-Temporal Geostatistics

    NARCIS (Netherlands)

    Wang, Jianghao; Ge, Yong; Heuvelink, Gerard B.M.; Zhou, Chenghu

    2015-01-01

    Validation of satellite-based soil moisture products is necessary to provide users with an assessment of their accuracy and reliability and to ensure quality of information. A key step in the validation process is to upscale point-scale, ground-based soil moisture observations to satellite-scale

  10. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Science.gov (United States)

    Jeffrey M. Warren; J. Renée Brooks; Maria I. Dragila; Frederick C. Meinzer

    2011-01-01

    Nocturnal increases in water potential and water content in the upper soil profile are often attributed to root water efflux, a process termed hydraulic redistribution (HR). However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the daily recovery in water content, confounding efforts to determine the actual...

  11. In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil.

    Science.gov (United States)

    Cui, Hongbiao; Fan, Yuchao; Yang, John; Xu, Lei; Zhou, Jing; Zhu, Zhenqiu

    2016-10-01

    Phytoremediation is a potential cost-effective technology for remediating heavy metal-contaminated soils. In this study, we evaluated the biomass and accumulation of copper (Cu) and cadmium (Cd) of plant species grown in a contaminated acidic soil treated with limestone. Five species produced biomass in the order: Pennisetum sinese > Elsholtzia splendens > Vetiveria zizanioides > Setaria pumila > Sedum plumbizincicola. Over one growing season, the best accumulators for Cu and Cd were Pennisetum sinese and Sedum plumbizincicola, respectively. Overall, Pennisetum sinese was the best species for Cu and Cd removal when biomass was considered. However, Elsholtzia splendens soil had the highest enzyme activities and microbial populations, while the biological properties in Pennisetum sinese soil were moderately enhanced. Results would provide valuable insights for phytoremediation of metal-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. DEVELOPMENT OF NEW HYPERSPECTRAL ANGLE INDEX FOR ESTIMATION OF SOIL MOISTURE USING IN SITU SPECTRAL MEASURMENTS

    Directory of Open Access Journals (Sweden)

    M. R. Mobasheri

    2013-10-01

    Full Text Available Near-surface soil moisture is one of the crucial variables in hydrological processes, which influences the exchange of water and energy fluxes at the land surface/atmosphere interface. Accurate estimate of the spatial and temporal variations of soil moisture is critical for numerous environmental studies. On the other hand, information of distributed soil moisture at large scale with reasonable spatial and temporal resolution is required for improving climatic and hydrologic modeling and prediction. The advent of hyperspectral imagery has allowed examination of continuous spectra not possible with isolated bands in multispectral imagery. In addition to high spectral resolution for individual band analyses, the contiguous narrow bands show characteristics of related absorption features, such as effects of strong absorptions on the band depths of adjacent absorptions. Our objective in this study was to develop a new spectral angle index to estimate soil moisture based on spectral region (350 and 2500 nm. In this paper, using spectral observations made by ASD Spectroradiometer for predicting soil moisture content, two soil indices were also investigated involving the Perpendicular Drought Index (PDI, NMDI (Normalized Multi-band Drought Index indices. Correlation and regression analysis showed a high relationship between PDI and the soil moisture percent (R2 = 0.9537 and NMDI (R2 = 0.9335. Furthermore, we also simulated these data according to the spectral range of some sensors such as MODIS, ASTER, ALI and ETM+. Indices relevant these sensors have high correlation with soil moisture data. Finally, we proposed a new angle index which shows significant relationship between new angle index and the soil moisture percentages (R2 = 0.9432.angle index relevant bands 3, 4, 5, 6, 7 MODIS also showing high accuracy in estimation of soil moisture (R2 = 0.719.

  13. TECHNOLOGY EVALUATION REPORT: TORONTO HARBOUR COMMISSIONERS (THC) SOIL RECYCLE TREATMENT TRAIN. Project Summary

    Science.gov (United States)

    A demonstration of the Toronto Harbour Commissioners' (THC) Soil Recycle Treatment Train was performed under the Superfund Innovative Technology Evaluation (SITE) Program at a pilot plant facility in Toronto, Ontario, Canada. The Soil Recycle Treatment Train, which consists of s...

  14. Land treatment testing of diesel contaminated soils using bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Demque, D E

    1994-01-01

    A study was carried out of degradation rates of diesel contaminated soil (10,000 ppM by weight of diesel to dry soil) under different treatment conditions and tillage rates over a 14 week testing period. A total of 10 treatment-tillage conditions were duplicated to provide confidence in the test results. Each test cell was built to contain 80 kg of contaminated soil with a drainage system. The 20 boxes were sampled on a weekly basis for the first 4 weeks, semimonthly for the following 6 weeks and at the end of 14 weeks. Each test consisted of 3 random total petroleum hydrocarbons (TPH) and 3 random BTEX samples per box. In addition, each box was monitored for leachate TPH, moisture content, microorganism concentration, and ground temperature. After the last samples were taken the underlying drainage layer was analyzed for TPH, and the boxes were checked for leaks. The tests revealed the effectiveness of the various treatment methods and tillage rates. Greatest degradation of diesel contaminated soil was obtained with the addition of nutrients and a frequent tillage rate. It was apparent that indigenous microorganisms adapted quickly to the diesel contaminant. Soil that was biostimulated with no drainage or bioaugmentation demonstrated that the addition of acclimated microorganisms had little effect on either the rate of degradation or the ultimate degradation achieved. Use of chlorine to inhibit biodegradation, allowing examination of other degradation mechanisms was effective for only ca 3 weeks, and had an adverse effect on TPH testing. 51 refs., 46 figs., 31 tabs.

  15. Exploratory Project: Rigid nanostructured organic polymer monolith for in situ collection and analysis of plant metabolites from soil matrices

    Energy Technology Data Exchange (ETDEWEB)

    Tharayil, Nishanth [Clemson Univ., SC (United States)

    2016-06-29

    Plant metabolites released from litter leachates and root exudates enable plants to adapt and survive in a wide range of habitats by facilitating resource foraging and plant-organismal interactions, and could influence soil carbon storage. The biological functions of these plant inputs and the organismal interactions they facilitate in soil are strictly governed by their composition and molecular identity. Our current understanding about the molecular identity of exudates is based on physiological studies that are done in soil-less axenic cultures. On the other hand, ecological studies that rely on isotope labeling to track the fluxes of carbon from plants to soil have found the complexities of soil-microbe matrices as an insurmountable barrier to undertake any meaningful molecular level characterization of plant inputs. Although it is constantly advocated to undertake a molecular level identification of the dynamicity of plant metabolites in soils, the complexity of soil system has thus far prevented any such endeavors. We developed polymeric probes through in-situ polymerization of poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) to elucidate the chemical environment of the soil to which the plant roots are exposed. Hypercrosslinking of the polymeric probes through an in-situ Friedel-Crafts alkylation significantly increased the surface area and the sorption capacity of the probes. Surface functionalization of the probes using a hybrid approach was also attempted. The efficacy of these probes was tested using batch equilibration. Scanning electron microscopy revealed extensive modification of the surface of the probes through hypercrosslinking. The probes exhibited a lower site specific sorption (slope of Freundlich adsorption isotherm close to unity) and percent recovery of the sorbed compounds from the probes were >70, indicating a predominance of reversible sorption. Further we imparted specificity to this copolymer matrix by using molecular

  16. Characterization of the In Situ Ecophysiology of Novel Phylotypes in Nutrient Removal Activated Sludge Treatment Plants.

    Directory of Open Access Journals (Sweden)

    Simon Jon McIlroy

    Full Text Available An in depth understanding of the ecology of activated sludge nutrient removal wastewater treatment systems requires detailed knowledge of the community composition and metabolic activities of individual members. Recent 16S rRNA gene amplicon surveys of activated sludge wastewater treatment plants with nutrient removal indicate the presence of a core set of bacterial genera. These organisms are likely responsible for the bulk of nutrient transformations underpinning the functions of these plants. While the basic activities of some of these genera in situ are known, there is little to no information for the majority. This study applied microautoradiography coupled with fluorescence in situ hybridization (MAR-FISH for the in situ characterization of selected genus-level-phylotypes for which limited physiological information is available. These included Sulfuritalea and A21b, both within the class Betaproteobacteria, as well as Kaga01, within sub-group 10 of the phylum Acidobacteria. While the Sulfuritalea spp. were observed to be metabolically versatile, the A21b and Kaga01 phylotypes appeared to be highly specialized.

  17. Use of dilute ammonia gas for treatment of 1,2,3-trichloropropane and explosives-contaminated soils.

    Science.gov (United States)

    Coyle, Charles G; Waisner, Scott A; Medina, Victor F; Griggs, Chris S

    2017-12-15

    Laboratory studies were performed to test a novel reactive gas process for in-situ treatment of soils containing halogenated propanes or explosives. A soil column study, using a 5% ammonia-in-air mixture, established that the treatment process can increase soil pH from 7.5 to 10.2. Batch reactor experiments were performed to demonstrate contaminant destruction in sealed jars exposed to ammonia. Comparison of results from batch reactors that were, and were not, exposed to ammonia demonstrated reductions in concentrations of 1,2,3-trichloropropane (TCP), 1,3-dichloropropane (1,3-DCP), 1,2-dicholoropropane (1,2-DCP) and dibromochloropropane (DBCP) that ranged from 34 to 94%. Decreases in TCP concentrations at 23° C ranged from 37 to 65%, versus 89-94% at 62° C. A spiked soil column study was also performed using the same set of contaminants. The study showed a pH penetration distance of 30 cm in a 2.5 cm diameter soil column (with a pH increase from 8 to > 10), due to treatment via 5% ammonia gas at 1 standard cubic centimeter per minute (sccm) for 7 days. Batch reactor tests using explosives contaminated soils exhibited a 97% decrease in 2,4,6-trinitrotoluene (TNT), an 83% decrease in nitrobenzene, and a 6% decrease in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). A biotransformation study was also performed to investigate whether growth of ammonia-oxidizing microorganisms could be stimulated via prolonged exposure of soil to ammonia. Over the course of the 283 day study, only a very small amount of nitrite generation was observed; indicating very limited ammonia monooxygenase activity. Overall, the data indicate that ammonia gas addition can be a viable approach for treating halogenated propanes and some types of explosives in soils. Published by Elsevier Ltd.

  18. Soil and Sediment remediation, mechanisms, technologies and applications

    NARCIS (Netherlands)

    Lens, P.N.L.; Grotenhuis, J.T.C.; Malina, G.; Tabak, H.H.

    2005-01-01

    Technologies for the treatment of soils and sediments in-situ (landfarming, bioscreens, bioventing, nutrient injection, phytoremediation) and ex-situ (landfarming, bio-heap treatment, soil suspension reactor) will be discussed. The microbiological, process technological and socio-economical aspects

  19. Localized enrichment of polycyclic aromatic hydrocarbons in soil, spruce needles, and lake sediments linked to in-situ bitumen extraction near Cold Lake, Alberta

    International Nuclear Information System (INIS)

    Korosi, J.B.; Irvine, G.; Skierszkan, E.K.; Doyle, J.R.; Kimpe, L.E.; Janvier, J.; Blais, J.M.

    2013-01-01

    The extraction of bitumen from the Alberta oil sands using in-situ technologies is expanding at a rapid rate; however, investigations into the environmental impacts of oil sands development have focused on surface mining in the Athabasca region. We measured polycyclic aromatic hydrocarbons (PAH) in soils, spruce needles, and lake sediment cores in the Cold Lake oil sands region to provide a historical and spatial perspective on PAH contamination related to in-situ extraction activities. A pronounced increase in PAH concentrations was recorded in one of two study lakes (Hilda Lake) corresponding to the onset of commercial bitumen production in ∼1985. Distance from extraction rigs was not an important predictor of PAH concentrations in soils, although two samples located near installations were elevated in alkyl PAHs. Evidence of localized PAH contamination in Hilda Lake and two soil samples suggests that continued environmental monitoring is justified to assess PAH contamination as development intensifies. -- Highlights: •In-situ bitumen extraction linked to rise in alkyl PAHs in one of two study lakes. •Alkyl PAHs elevated in two soil samples. •PAH contamination likely related to effluent sources, not atmospheric deposition. -- PAHs in sediments and soils were generally low in areas adjacent to in-situ bitumen extraction rigs in the Cold Lake Alberta oil sands, but evidence of localized contamination at some sites was evident

  20. In situ immobilization of cadmium and zinc in contaminated soils : fiction or fixation?

    NARCIS (Netherlands)

    Osté, L.

    2001-01-01

    Keywords: beringite, cadmium, DOC, DOM, earthworms, immobilization, leaching, lime, manganese oxides, metal binding, metal uptake, organic matter partitioning, pH, soil contamination, remediation, sorption, Swiss chard, zeolites, zinc.

    It is generally

  1. FLUORESCENT IN SITU HYBRIDIZATION AND MICROAUTORADIOGRAPHY APPLIED TO ECOPHYSIOLOGY IN SOIL

    Science.gov (United States)

    Soil microbial communities perform many important processes, including nutrient cycling, plant-microorganism interactions, and degradation of xenobiotics. The study of microbial communities, however, has been limited by cultural methods, which may greatly underestimate diversity....

  2. In situ vitrification of a mixed-waste contaminated soil site: The 116-B-6A crib at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Luey, J.; Koegler, S.S.; Kuhn, W.L.; Lowery, P.S.; Winkelman, R.G.

    1992-09-01

    The first large-scale mixed-waste test of in situ vitrification (ISV) has been completed. The large-scale test was conducted at an actual contaminated soil site, the 116-B-6A crib, on the Department of Energy's Hanford Site. The large-scale test was a demonstration of the ISV technology and not an interim action for the 116-B-6A crib. This demonstration has provided technical data to evaluate the ISV process for its potential in the final disposition of mixed-waste contaminated soil sites at Hanford. Because of the test's successful completion. technical data on the vitrified soil are available on how well the process incorporates transuranics and heavy metals into the waste form. how well the form resists leaching of transuranics and heavy metals. how well the process handles sites with high combustible loadings, and the important site parameters which may affect the achievable process depth. This report describes the 116-B-6A crib site, the objectives of the ISV demonstration, the results in terms of the objectives, and the overall process performance.

  3. In situ radio-frequency heating for soil remediation at a former service station: case study and general aspects

    Energy Technology Data Exchange (ETDEWEB)

    Huon, G.; Simpson, T.; Maini, G. [Ecologia Environmental Solutions Ltd., Sittingbourne, Kent (United Kingdom); Holzer, F.; Kopinke, F.D.; Roland, U. [Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Leipzig (Germany); Will, F. [Total UK, Watford (United Kingdom)

    2012-08-15

    In situ radio-frequency heating (ISRFH) was successfully applied during remediation of a former petrol station. Using a three-electrode array in combination with extraction wells for soil vapor extraction (SVE), pollution consisting mainly of benzene, toluene, ethylbenzene, xylenes, and mineral oil hydrocarbons (in total about 1100 kg) was eliminated from a chalk soil in the unsaturated zone. Specially designed rod electrodes allowed selective heating of a volume of approximately 480 m{sup 3}, at a defined depth, to a mean temperature of about 50 C. The heating drastically increased the extraction rates. After switching off ISRFH, SVE remained highly efficient for some weeks due to the heat-retaining properties of the soil. Comparison of an optimized regime of ISRFH/SVE with conventional ''cold'' SVE showed a reduction of remediation time by about 80 % while keeping the total energy consumption almost constant. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. In-situ studies of microbial CH4 oxidation efficiency in Arctic wetland soils. Applications of stable carbon isotopes

    International Nuclear Information System (INIS)

    Preuss, Inken-Marie

    2013-01-01

    Arctic wetland soils are significant sources of the climate-relevant trace gas methane (CH 4 ). The observed accelerated warming of the Arctic is expected to cause deeper permafrost thawing followed by increased carbon mineralization and CH 4 formation in water-saturated permafrost-affected tundra soils thus creating a positive feedback to climate change. Aerobic CH 4 oxidation is regarded as the key process reducing CH 4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. This study improved the in-situ quantification of microbial CH 4 oxidation efficiency in arctic wetland soils in Russia's Lena River Delta based on stable isotope signatures of CH 4 . In addition to the common practice of determining the stable isotope fractionation during oxidation, additionally the fractionation effect of diffusion, an important gas transport mechanism in tundra soils, was investigated for both saturated and unsaturated conditions. The isotopic fractionation factors α ox and α diff were used to calculate the CH 4 oxidation efficiency from the CH 4 stable isotope signatures of wet polygonal tundra soils of different hydrology. Further, the method was used to study the short-term effects of temperature increase with a climate manipulation experiment. For the first time, the stable isotope fractionation of CH 4 diffusion through water-saturated soils was determined with α diff = 1.001 ± 0.0002 (n = 3). CH 4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was α diff = 1.013 ± 0.003 (n = 18). For the studied sites the fractionation factor for diffusion under saturated conditions α diff = 1.001 seems to be of utmost importance for the quantification of the CH 4 oxidation efficiency, since most of the CH 4 is oxidized in the saturated part at the aerobic-anaerobic interface. Furthermore, it was found that α ox differs widely between sites and horizons (mean α ox = 1

  5. From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2008-12-01

    Full Text Available A long term data acquisition effort of profile soil moisture is under way in southwestern France at 13 automated weather stations. This ground network was developed in order to validate remote sensing and model soil moisture estimates. In this paper, both those in situ observations and a synthetic data set covering continental France are used to test a simple method to retrieve root zone soil moisture from a time series of surface soil moisture information. A recursive exponential filter equation using a time constant, T, is used to compute a soil water index. The Nash and Sutcliff coefficient is used as a criterion to optimise the T parameter for each ground station and for each model pixel of the synthetic data set. In general, the soil water indices derived from the surface soil moisture observations and simulations agree well with the reference root-zone soil moisture. Overall, the results show the potential of the exponential filter equation and of its recursive formulation to derive a soil water index from surface soil moisture estimates. This paper further investigates the correlation of the time scale parameter T with soil properties and climate conditions. While no significant relationship could be determined between T and the main soil properties (clay and sand fractions, bulk density and organic matter content, the modelled spatial variability and the observed inter-annual variability of T suggest that a weak climate effect may exist.

  6. Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain

    Science.gov (United States)

    Gruber, A.; Crow, W. T.; Dorigo, W. A.

    2018-02-01

    Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model-based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two-dimensional (2-D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground-based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2-D system is compared to that obtained from the 1-D assimilation of remote sensing retrievals to assess the value of ground-based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite-based surface soil moisture retrievals.

  7. Microbial Diversity in Soil Treatment Systems for Wastewater

    Science.gov (United States)

    Van Cuyk, S.; Spear, J.; Siegrist, R.; Pace, N.

    2002-05-01

    There is an increasing awareness and concern over land based wastewater system performance with respect to the removal of bacteria and virus. The goal of this work is to describe and identify the organismal composition of the microbiota in the applied wastewater effluent, the rich biomat that develops at the infiltrative surface, and in the soil percolate in order to aid in the understanding of bacterial and virus purification in soil treatment systems. The traditional reliance on pure culture techniques to describe microbiota is circumvented by the employment of a molecular approach. Microbial community characterization is underway based on cloning and sequencing of 16S rRNA genes for phylogenetic analyses, to determine the nature and quantity of microbiota that constitute these ecosystems. Knowledge of the organisms naturally present can influence the design and treatment capacity of these widely used land based systems. Laboratory, intermediate and field scale systems are currently under study. Since human pathogens are known to exist in sewage effluents, their removal in wastewater infiltration systems and within the underlying soil are in need of a more fundamental understanding. The relationship between design parameters and environmental conditions, including a microbial characterization, is essential for the prevention of contamination in groundwater sources. Preliminary results indicate the presence of uncultured organisms and phylogenetic kinds that had not been detected in these systems using other methods. Acinetobacter johnsonii and Acrobacter cryaerophilus were the two dominant species found in septic tank effluent, comprising 20% and 11% of the library respectively. In soil samples collected from the infiltrative surface of a column dosed with STE, there was no dominant bacterial species present. Percolate samples collected from the outflow of the column showed that a tuber borchii symbiont, a common soil microorganism, dominated the bacterial

  8. In Situ Warming and Soil Venting to Enhance the Biodegradation of JP-4 in Cold Climates: A Critical Study and Analysis

    Science.gov (United States)

    1995-12-01

    1178-1180 (1991). Atlas , Ronald M. and Richard Bartha . Microbial Ecology : Fundamentals and Applications. 3d ed. Redwood City CA: The Benjamin/Cummings...technique called bioventing. In cold climates, in situ bioremediation is limited to the summer when soil temperatures are sufficient to support microbial ...actively warmed the soil -- warm water circulation and heat tape; the other passively warmed the plot with insulatory covers. Microbial respiration (02

  9. Detection and Identification of potentially toxic elements in urban soil using in situ spectroscopy

    Science.gov (United States)

    Brook, Anna; Kopel, Daniella; Wittenberg, Lea

    2017-04-01

    Anthropogenic urban soils are the foundation of the urban green infrastructure, the green net quality is as good as each of its patches. In early days of pedology urban soil has been recognized with respect to contamination and the risks for human health but in study performed since the 70s, the importance of urban soil for the urban ecology became increasingly significant. Urban soils are highly disturbed land that was created by the process of urbanization. The dominant agent in the creation of urban soils is human activity which modifies the natural soil through mixing, filling or by contamination of land surfaces so as to create a layer of urban soil which can be more than 50 cm thick. The objective of this study is to determine the extent to which field spectroscopy methods can be used to extend the knowledge of toxic elements in urban soils. The majority of the studies on urban soils concentrate on identifying and mapping of known pollution mostly certain heavy metals, we are focusing on almost non disturbed soils where no direct disturbance occurred but the urban matrix inflicted on it. The elements in those soils where an-knowns features. In this study a top-down analysis is applied for detecting the presence of minerals, organic matter and pollutants in mixed soil samples. Results of the proposed top-down unmixing method suggest that the analysis is made very fast due to the simplified hierarchy which avoids the high-learning curve associated with unmixing algorithms showed that the most abundant components were coarse organic matter 12% followed by concrete dust, plastic crumbs, other man made materials, clay and other minerals. The results of the soils pH, measured electrometrically and the particle size distribution, measured by Laser diffraction, indicate there is no big different between the samples particle size distribution and the pH values of the samples but they are not significantly different from the expected, except for the OM percentage which

  10. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry.

    Science.gov (United States)

    Mousset, Emmanuel; Huguenot, David; van Hullebusch, Eric D; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween(®) 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween(®) 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R(2) > 0.975). More HPCD was recovered (89%) than Tween(®) 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween(®) 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (p

  11. An in situ study of zirconium-based conversion treatment on zinc surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, P. [Materials innovation institute (M2i), Elektronicaweg 25, 2628 XG Delft (Netherlands); Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Laha, P. [Vrije Universiteit Brussel, Department of Electrochemical and Surface Engineering, Pleinlaan 2, B-1050 Brussels (Belgium); Terryn, H. [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Vrije Universiteit Brussel, Department of Electrochemical and Surface Engineering, Pleinlaan 2, B-1050 Brussels (Belgium); Mol, J.M.C., E-mail: J.M.C.Mol@tudelft.nl [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands)

    2015-11-30

    Highlights: • We investigated the deposition mechanism of zirconium conversion layer on zinc. • In situ FTIR and electrochemical measurements are conducted. • The initial hydroxyl fraction plays an important role in the deposition process. • Deposition starts with hydroxyl removal by fluoride ions. • An increase of alkalinity adjacent to the surface promotes deposition of Zr. - Abstract: This study is focused on the deposition process of zirconium-based conversion layers on Zn surfaces. The analysis approach is based on a Kretschmann configuration in which in situ ATR-FTIR spectroscopy is combined with open circuit potential (OCP) and near surface pH measurements. Differently pretreated Zn surfaces were subjected to conversion treatments, while the Zr-based deposition mechanism was probed in situ. It was found that the initial hydroxyl fraction promotes the overall Zr conversion process as the near surface pH values are influenced by the initial hydroxyl fraction. Kinetics of the early surface activation and the subsequent Zr-based conversion process are discussed and correlated to the initial hydroxyl fractions.

  12. Regeneration strategies of polymers employed in ex-situ remediation of contaminated soil: Bioregeneration versus solvent extraction.

    Science.gov (United States)

    Mosca Angelucci, Domenica; Tomei, M Concetta

    2015-08-15

    In this study we evaluated the feasibility of two regeneration strategies of contaminated polymers employed for ex-situ soil remediation in a two-step process. Soil decontamination is achieved by sorption of the pollutants on the polymer beads, which are regenerated in a subsequent step. Tested soil was contaminated with a mixture of 4-chlorophenol and pentachlorophenol, and a commercial polymer, Hytrel, has been employed for extraction. Removal efficiencies of the polymer-soil extraction are in the range of 51-97% for a contact time ≤ 24 h. Two polymer regeneration strategies, solvent extraction and biological regeneration (realized in a two-phase partitioning bioreactor), were tested and compared. Performance was assessed in terms of removal rates and efficiencies and an economic analysis based on the operating costs has been performed. Results demonstrated the feasibility of both regeneration strategies, but the bioregeneration was advantageous in that provided the biodegradation of the contaminants desorbed from the polymer. Practically complete removal for 4-chlorophenol and up to 85% biodegradation efficiency for pentachlorophenol were achieved. Instead, in the solvent extraction, a relevant production (184-831 L kg(pol)(-1)) of a highly polluted stream to be treated or disposed of is observed. The cost analysis of the two strategies showed that the bioregeneration is much more convenient with operating costs of ∼12 €/kg(pol) i.e. more than one order of magnitude lower in comparison to ∼233 €/kg(pol) of the solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effects of in situ plasma treatment on optical and electrical properties of index-matched transparent conducting oxide layer

    International Nuclear Information System (INIS)

    Lim, Yong Hwan; Yoo, Hana; Choi, Bum Ho; Kim, Young Baek; Lee, Jong Ho; Shin, Dong Chan

    2010-01-01

    We investigated the effects of in situ plasma-treatment on optical and electrical properties of index-matched indium tin oxide (IMITO) thin film. To render the IMITO-coated surface hydrophilic and study the optical and electrical characteristics, we performed in situ oxygen plasma post-treatment without breaking vacuum. The 94.6% transmittance in the visible wavelength range (400-700 nm) increased on average to 96.4% and the maximum transmittance reached 98% over a broad wavelength range. The surface roughness and sheet resistance improved from 0.9 nm and 200 Ω/sq to 0.0905 nm and 100 Ω/sq, respectively, by in situ plasma post-treatment. We confirmed by contact angle measurement that the hydrophobic IMITO surface was altered to hydrophilic. The improved optical and electrical characteristics of in situ plasma-treated IMITO makes it adequate for high-resolution liquid crystal on silicon displays.

  14. Steam-treatment-based soil remediation promotes heat-tolerant, potentially pathogenic microbiota

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Bender, Mikkel; Ekelund, Flemming

    2014-01-01

    We investigated microbiota in surface and subsurface soil from a site, above steam-treated deep sub-soil originally contaminated with chlorinated solvents. During the steam treatment, the surface soil reached temperatures c. 30°C higher than the temperature in untreated soil; whereas the subsurfa...

  15. In situ treatment with activated carbon reduces bioaccumulation in aquatic food chains.

    Science.gov (United States)

    Kupryianchyk, D; Rakowska, M I; Roessink, I; Reichman, E P; Grotenhuis, J T C; Koelmans, A A

    2013-05-07

    In situ activated carbon (AC) amendment is a new direction in contaminated sediment management, yet its effectiveness and safety have never been tested on the level of entire food chains including fish. Here we tested the effects of three different AC treatments on hydrophobic organic chemical (HOC) concentrations in pore water, benthic invertebrates, zooplankton, and fish (Leuciscus idus melanotus). AC treatments were mixing with powdered AC (PAC), mixing with granular AC (GAC), and addition-removal of GAC (sediment stripping). The AC treatments resulted in a significant decrease in HOC concentrations in pore water, benthic invertebrates, zooplankton, macrophytes, and fish. In 6 months, PAC treatment caused a reduction of accumulation of polychlorobiphenyls (PCB) in fish by a factor of 20, bringing pollutant levels below toxic thresholds. All AC treatments supported growth of fish, but growth was inhibited in the PAC treatment, which was likely explained by reduced nutrient concentrations, resulting in lower zooplankton (i.e., food) densities for the fish. PAC treatment may be advised for sites where immediate ecosystem protection is required. GAC treatment may be equally effective in the longer term and may be adequate for vulnerable ecosystems where longer-term protection suffices.

  16. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    Science.gov (United States)

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  17. Net sulfur mineralization potential in Swedish arable soils in relation to long-term treatment history and soil properties

    DEFF Research Database (Denmark)

    Boye, Kristin; Nilsson, S Ingvar; Eriksen, Jørgen

    2009-01-01

    accumulated net S mineralization (SAccMin) and a number of soil physical and chemical properties were determined. Treatments and soil differences in SAccMin, as well as correlations with soil variables, were tested with single and multivariate analyses. Long-term FYM application resulted in a significantly (p......The long-term treatment effect (since 1957-1966) of farmyard manure (FYM) application compared with crop residue incorporation was investigated in five soils (sandy loam to silty clay) with regards to the net sulfur (S) mineralization potential. An open incubation technique was used to determine...... = 0.012) higher net S mineralization potential, although total amounts of C, N, and S were not significantly (p soils within this treatment. The measured soil variables were not significantly correlated...

  18. Waste water treatment of CO2+O2 in-situ leaching uranium

    International Nuclear Information System (INIS)

    Xu Lechang; Liu Naizhong; Du Zhiming; Wang Hongying

    2012-01-01

    An in-situ leaching uranium mine located in Northern China uses CO 2 +O 2 leaching process to leach uranium. The consumption of industrial reagent and water, and generation and discharge of waste water are minimized by comprehensive waste water treatment technology with process water recycle, reverse osmosis and natural evaporation. The process water of the mine that can be recycled and reused includes barren fluid, solution washing loaded resin, precipitating mother solution and filtered liquor of yellow cake. Solution regenerating barren resin is treated by reverse osmosis. Concentrated water from reverse osmosis and solution washing barren resin are naturally evaporated. (authors)

  19. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    Science.gov (United States)

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  20. Redox cycling-based amplifying electrochemical sensor for in situ clozapine antipsychotic treatment monitoring

    International Nuclear Information System (INIS)

    Ben-Yoav, Hadar; Winkler, Thomas E.; Kim, Eunkyoung; Chocron, Sheryl E.; Kelly, Deanna L.; Payne, Gregory F.; Ghodssi, Reza

    2014-01-01

    Highlights: • A new concept for clozapine in situ sensing with minimal pre-treatment procedures. • A catechol-chitosan redox cycling system amplifies clozapine oxidation current. • The modified amplifier signal is 3 times greater than the unmodified system. • Differentiation between clozapine and its metabolite norclozapine has been shown. • The sensor has the capability to detect clozapine in human serum. - Abstract: Schizophrenia is a lifelong mental disorder with few recent advances in treatment. Clozapine is the most effective antipsychotic for schizophrenia treatment. However, it remains underutilized since frequent blood draws are required to monitor adverse side effects, and maintain clozapine concentrations in a therapeutic range. Micro-system technology utilized towards real-time monitoring of efficacy and safety will enable personalized medicine and better use of this medication. Although work has been reported on clozapine detection using its electrochemical oxidation, no in situ monitoring of clozapine has been described. In this work, we present a new concept for clozapine in situ sensing based on amplifying its oxidation current. Specifically, we use a biofabricated catechol-modified chitosan redox cycling system to provide a significant amplification of the generated oxidizing current of clozapine through a continuous cycle of clozapine reduction followed by re-oxidation. The amplified signal has improved the signal-to-noise ratio and provided the required limit-of-detection and dynamic range for clinical applications with minimal pre-treatment procedures. The sensor reports on the functionality and sensitivity of clozapine detection between 0.1 and 10 μg/mL. The signal generated by clozapine using the catechol-modified chitosan amplifier has shown to be 3 times greater than the unmodified system. The sensor has the ability to differentiate between clozapine and its metabolite norclozapine, as well as the feasibility to detect clozapine in

  1. Phosphorus in soil treatment systems: accumulation and mobility.

    Science.gov (United States)

    Eveborn, David; Gustafsson, Jon Petter; Elmefors, Elin; Yu, Lin; Eriksson, Ann-Kristin; Ljung, Emelie; Renman, Gunno

    2014-11-01

    Septic tanks with subsequent soil treatment systems (STS) are a common treatment technique for domestic wastewater in rural areas. Phosphorus (P) leakage from such systems may pose a risk to water quality (especially if they are located relatively close to surface waters). In this study, six STS in Sweden (11-28 years old) were examined. Samples taken from the unsaturated subsoil beneath the distribution pipes were investigated by means of batch and column experiments, and accumulated phosphorus were characterized through X-ray absorption near edge structure (XANES) analysis. At all sites the wastewater had clearly influenced the soil. This was observed through decreased pH, increased amounts of oxalate extractable metals and at some sites altered P sorption properties. The amount of accumulated P in the STS were found to be between 0.32 and 0.87 kg m(-3), which in most cases was just a fraction of the estimated P load (<30%). Column studies revealed that high P concentrations (up to 6 mg L(-1)) were leached from the material when deionized water was applied. However, the response to deionized water varied between the sites. As evidenced by XANES analysis, aluminium phosphates or P adsorbed to aluminium (hydr)oxides, as well as organically bound P, were important sinks for P. Generally soils with a high content of oxalate-extractable Al were also less vulnerable to P leakage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Application of the differential soil bioreactor to in-situ biodegradation of trichloroethylene at the Savannah River Site

    International Nuclear Information System (INIS)

    Andrews, G.F.; Hansen, S.G.

    1994-01-01

    The differential soil bioreactor is a continuous-flow, laboratory treatability-study device in which groundwater, supplemented with nutrients, is recirculated through a disc of aquifer material at a rate that simulates actual groundwater flow. A high recycle ratio ensures that all bacteria in the disc are exposed to the same physiochemical environment, so rate and yield parameters needed for modeling in-situ bioremediation can, in principle, be derived directly from measurements of inlet and outlet concentrations of contaminants, nutrients and cells. Results are shown for the biodegradation of trichloroethylene by methanotrophic bacteria in sediments from the Savannah River site. The limitations of the technique for slow-flowing aquifers are discussed

  3. Interdependence of soil and agricultural practice in a two - year phytoremediation in situ experiment

    Science.gov (United States)

    Nwaichi, Eucharia; Onyeike, Eugene; Frac, Magdalena; Iwo, Godknows

    2016-04-01

    A two - year plant - based soil clean - up was carried out at a crude oil spill agricultural site in a Niger Delta community in Nigeria to access further clean - up potentials of Cymbopogon citratus. Applied diagnostic ratios identified mixed petrogenic and pyrogenic sources as the main contributors of PAHs. Up to 90.8% sequestration was obtained for carcinogenic PAHs especially Benz (a) pyrene in a 2 - phase manner. A community level approach for assessing patterns of sole carbon source utilization by mixed microbial samples was employed to differentiate spatial and temporal changes in the soil microbial communities. In relation to pollution, soil conditioning notably decreased the lag times and showed mixed effects for colour development rates, maximum absorbance and the overall community pattern. For rate and utilization of different carbon substrates in BIOLOG wells, after day 3, in comparison to control soil communities, contamination with hydrocarbons and associated types increased amines and amides consumption. Consumption of carbohydrates in all polluted and unamended regimes decreased markedlyin comparison to those cultivated with C. citratus. We found a direct relationship between cellulose breakdown, measurable with B-glucosidase activity, organic matter content and CO2 realease within all soils in the present study. Organic amendment rendered most studied contaminants unavailable for uptake in preference to inorganic fertilizer in both study years. Generally, phytoremediation improved significantly the microbial community activity and thus would promote ecosystem restoration in relation to most patronised techniques. Supplementation with required nutrients, in a long - term design would present many ecological benefits. Keywords: Agricultural soils; Recovery; Hydrocarbon pollution; Ecology; Management practice.

  4. In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination--a proof of concept study.

    Science.gov (United States)

    Liang, Chenju; Lee, I-Ling

    2008-09-10

    In situ chemical oxidation (ISCO) is considered a reliable technology to treat groundwater contaminated with high concentrations of organic contaminants. An ISCO oxidant, persulfate anion (S(2)O(8)(2-)) can be activated by ferrous ion (Fe(2+)) to generate sulfate radicals (E(o)=2.6 V), which are capable of destroying trichloroethylene (TCE). The property of polarity inhibits S(2)O(8)(2-) or sulfate radical (SO(4)(-)) from effectively oxidizing separate phase TCE, a dense non-aqueous phase liquid (DNAPL). Thus the oxidation primarily takes place in the aqueous phase where TCE is dissolved. A bench column study was conducted to demonstrate a conceptual remediation method by flushing either S(2)O(8)(2-) or Fe(2+) through a soil column, where the TCE DNAPL was present, and passing the dissolved mixture through either a Fe(2+) or S(2)O(8)(2-) fluid sparging curtain. Also, the effect of a solubility enhancing chemical, hydroxypropyl-beta-cyclodextrin (HPCD), was tested to evaluate its ability to increase the aqueous TCE concentration. Both flushing arrangements may result in similar TCE degradation efficiencies of 35% to 42% estimated by the ratio of TCE degraded/(TCE degraded+TCE remained in effluent) and degradation byproduct chloride generation rates of 4.9 to 7.6 mg Cl(-) per soil column pore volume. The addition of HPCD did greatly increase the aqueous TCE concentration. However, the TCE degradation efficiency decreased because the TCE degradation was a lower percentage of the relatively greater amount of dissolved TCE by HPCD. This conceptual treatment may serve as a reference for potential on-site application.

  5. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Alshawabkeh, Akram N.; Chen Haifeng

    2007-01-01

    Effects of sodium hypochlorite (NaClO), applied as an oxidant in catholyte, and high pH buffer solution on soil Cr removal and the functional diversity of soil microbial community during enhanced electrokinetic treatments of a chromium (Cr) contaminated red soil are evaluated. Using pH control system to maintain high alkalinity of soil together with the use of NaClO increased the electrical conductivities of soil pore liquid and electroosmotic flux compared with the control (Exp-01). The pH control and NaClO improved the removal of Cr(VI) and total Cr from the soil. The highest removal percentages of soil Cr(VI) and total Cr were 96 and 72%, respectively, in Exp-04 when the pH value of the anolyte was controlled at 10 and NaClO was added in the catholyte. The alkaline soil environment and introduction of NaClO in the soil enhanced the desorption of Cr(VI) from the soil and promoted Cr(III) oxidation to mobile Cr(VI), respectively. However, the elevated pH and introduction of NaClO in the soil, which are necessary for improving the removal efficiency of soil Cr, resulted in a significantly adverse impact on the functional diversity of soil microbial community. It suggests that to assess the negative impact of extreme conditions for enhancing the extraction efficiencies of Cr on the soil properties and function is necessary

  6. Permeation Dispersal of Treatment Agents for In Situ Remediation in Low Permeability Media: 1. Field Studies in Unconfined Test Cells

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Smuin, D.R.; Korte, N.E.; Greene, D.W.; Pickering, D.A.; Lowe, K.S.; Strong-Gunderson, J.

    2000-01-01

    Chlorocarbons like trichloroethylene (TCE) are common contaminants of concern at US Department of Energy (DOE) facilities and industrial sites across the US and abroad. These contaminants of concern are present in source areas and in soil and ground water plumes as dissolved or sorbed phase constituents as well as dense nonaqueous-phase liquids (DNAPLs). These DNAPL compounds can be released to the environment through a variety of means including leaks in storage tanks and transfer lines, spills during transportation, and land treatment of wastes. When DNAPL compounds are present in low permeability media (LPM) like silt and clay layers or deposits, there are major challenges with assessment of their behavior and implementation of effective in situ remediation technologies. This report describes a field demonstration that was conducted at the Portsmouth Gaseous Diffusion Plant (PORTS) Clean Test Site (CTS) to evaluate the feasibility of permeation and dispersal of reagents into LPM. Various reagents and tracers were injected at seven test cells primarily to evaluate the feasibility of delivery, but also to evaluate the effects of the injected reagents on LPM. The various reagents and tracers were injected at the PORTS CTS using a multi-port injection system (MPIS) developed and provided by Hayward Baker Environmental, Inc

  7. Soil nitrogen availability and in situ nitrogen uptake by Acer rubrum L. and Pinus palustris Mill. in the southeastern U.S. Coastal Plain

    Science.gov (United States)

    Plant uptake of soil organic N in addition to inorganic N could play an important role in ecosystem N cycling as well as plant nutrition. We measured in situ plant uptake of organic and inorganic N by the dominant canopy species in two contrasting temperate forest ecosystems (bottomland floodplain ...

  8. Soil microbial community responses to acid exposure and neutralization treatment.

    Science.gov (United States)

    Shin, Doyun; Lee, Yunho; Park, Jeonghyun; Moon, Hee Sun; Hyun, Sung Pil

    2017-12-15

    Changes in microbial community induced by acid shock were studied in the context of potential release of acids to the environment due to chemical accidents. The responses of microbial communities in three different soils to the exposure to sulfuric or hydrofluoric acid and to the subsequent neutralization treatment were investigated as functions of acid concentration and exposure time by using 16S-rRNA gene based pyrosequencing and DGGE (Denaturing Gradient Gel Electrophoresis). Measurements of soil pH and dissolved ion concentrations revealed that the added acids were neutralized to different degrees, depending on the mineral composition and soil texture. Hydrofluoric acid was more effectively neutralized by the soils, compared with sulfuric acid at the same normality. Gram-negative ß-Proteobacteria were shown to be the most acid-sensitive bacterial strains, while spore-forming Gram-positive Bacilli were the most acid-tolerant. The results of this study suggest that the Gram-positive to Gram-negative bacterial ratio may serve as an effective bio-indicator in assessing the impact of the acid shock on the microbial community. Neutralization treatments helped recover the ratio closer to their original values. The findings of this study show that microbial community changes as well as geochemical changes such as pH and dissolved ion concentrations need to be considered in estimating the impact of an acid spill, in selecting an optimal remediation strategy, and in deciding when to end remedial actions at the acid spill impacted site. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. In situ sampling of small volumes of soil solution using modified micro-suction cups

    NARCIS (Netherlands)

    Shen, Jianbo; Hoffland, E.

    2007-01-01

    Two modified designs of micro-pore-water samplers were tested for their capacity to collect unbiased soil solution samples containing zinc and citrate. The samplers had either ceramic or polyethersulfone (PES) suction cups. Laboratory tests of the micro-samplers were conducted using (a) standard

  10. Sound absorption coefficient in situ: an alternative for estimating soil loss factors.

    Science.gov (United States)

    Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina

    2015-01-01

    The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Biological treatment of soils contaminated with hydrophobic organics using slurry and solid phase techniques

    International Nuclear Information System (INIS)

    Cassidy, D.P.; Irvine, R.L.

    1995-01-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurry is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bioslurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay load contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the ate and extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies

  12. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski

    2012-08-01

    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  13. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xianjun, E-mail: xjxie@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China); Wang, Yanxin, E-mail: yx.wang@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China); Pi, Kunfu [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China); Liu, Chongxuan [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China)

    2015-09-15

    . - Highlights: • An in situ As removal technology based on aquifer Fe-coating has been developed. • The application of this technology obtained a high As removal efficiency. • As fixation on the Fe-coating through adsorption/co-precipitation is the treatment mechanism.

  14. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study

    International Nuclear Information System (INIS)

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-01-01

    An in situ As removal technology based on aquifer Fe-coating has been developed. • The application of this technology obtained a high As removal efficiency. • As fixation on the Fe-coating through adsorption/co-precipitation is the treatment mechanism

  15. Getting the right balance in treatment of ductal carcinoma in situ (DCIS

    Directory of Open Access Journals (Sweden)

    Ian Stuart Fentiman

    2013-12-01

    Full Text Available As a result of mammographic detection, ductal carcinoma in situ (DCIS is an increasing problem in breast clinics. Both histopathology and molecular profiling can identify subtypes likely to progress to invasive disease, but there is no subgroup with a zero likelihood of subsequent invasion. In patients with low/intermediate grade DCIS, if breast irradiation is not being carried out after free margins have been achieved the patient should be aware of the risks of withholding and the benefits and morbidity of adjuvant radiotherapy. Either tamoxifen or an aromatase inhibitor may be of value in those with low/intermediate ER+ve disease if radiotherapy is being withheld. For those patients with extensive or multicentric DCIS, mastectomy is the appropriate treatment. This is best combined with sentinel node biopsy and all such cases should be offered immediate reconstruction.----------------------------Cite this article as:Fentiman IS. Getting the right balance in treatment of ductal carcinoma in situ (DCIS. Int J Cancer Ther Oncol 2013; 1(2:01029.DOI: http://dx.doi.org/10.14319/ijcto.0102.9 

  16. In-situ γ spectrometry of the Chernobyl fallout using soil-sample independent corrections for surface roughness and migration

    International Nuclear Information System (INIS)

    Karlberg, O.

    1993-12-01

    The 661 keV gamma and 32 keV X-ray fluences from Cs-137 were measured in-situ with a Gamma-X Ge detector on different types of urban and rural surfaces. In comparison with a model calculation, the 661 keV fluence was used to estimate the surface activity assuming an ideal, infinite surface and the quotient between the 32 and 661 fluences was used to estimate the correction factors for the surfaces due to migration and surface roughness. As an alternative to the X-ray method, the use of a collimator for ordinary measurements of the 661 keV peak was analysed, and compared with the X-ray method and with measurements without a collimator. The X-ray method with the optimal soil distribution and composition gives the best results, but ordinary measurements with use of a collimator with a constant correction factor seems to be an appropriate method, when soil profiles for determination of a more exact calibration factor are not available

  17. The treatments of soil Rirang by floatation and Acid leaching

    International Nuclear Information System (INIS)

    Kosim-Affandi; Umar-Sarip; Alwi, Guswita; Sri-Sudaryanto

    2000-01-01

    The treatments of soil Rirang by floatation and acid leaching has been carried out to increase high uranium concentrates of materials, separating associated economical minerals and to reduce the gangue minerals which bothering at chemical processing. The physical treatment has been done by ore preparation and floatation using oleic acid and p ine oil , 20 % of pulp at pH 9, condition time at 5 minutes and collections of float fraction was 10 minutes. The chemical processing has been done by dynamic leaching using H 2 SO 4 100 kg/ton, MnO 2 20 kg/ton, 50 % of solid with ore size - 65 mesh, temperature at 80 o C and time of leaching was 8 hours. The result of experiments is as follows : Physical treatment by floatation shown that the concentrates of U increased at sink fraction by (1.5 - 2) times against feed sample for all the samples, and in the float fraction the recovery of molybdenite separation is 58 - 81 % and rare earths is 57 - 80 %. The result of dynamic leaching is 76 - 91 %, and recovery uranium increasing from 81.02 % (mixture samples soil before floatation) to 91.16 % ( mixture samples of float fraction)

  18. Pain, sensory disturbances and psychological distress are common sequelae after treatment of ductal carcinoma in situ

    DEFF Research Database (Denmark)

    Mertz, Birgitte Goldschmidt; Duriaud, Helle Molter; Kroman, Niels

    2017-01-01

    Sequelae such as pain, sensory disturbances and psychological distress are well known after treatment for invasive breast cancer (IBC). Patients treated for ductal carcinoma in situ (DCIS) receive a similar treatment as low-risk IBC. The aim of this cross-sectional study was to describe prevalence......: 1.1–7.0, p = 0.02) and anxiety and depression (measured by HADStotal >15 OR of 3.1 (95% CI: 1.5–6.3, p = 0.003)) were significantly associated with moderate to severe pain. Approximately one-third of the patients reported sensory disturbances such as pins and needles (32%), numbness (37......%) and painful itch (30%) and 94 women (20%) reported anxiety ≥8, 26 (6%) depression and 51 (11%) reported distress. Conclusions: This cross-sectional study showed that women treated for DCIS suffered from pain, sensory disturbances and psychological impairment and had unmet rehabilitation needs. Further...

  19. Soil behavior under earthquake loading conditions. In situ impulse test for determination of shear modulus for seismic response analyses. Progress report

    International Nuclear Information System (INIS)

    1974-06-01

    Progress is reported in the determination of the best methods of evaluation and prediction of soil behavior of potential nuclear power plant sites under seismic loading conditions. Results are reported of combined experimental and analytical studies undertaken to continue development of an in situ impulse test for determination of the soil shear modulus. Emphasis of the field work was directed toward making the field measurements at frequent depth intervals and at shear strains in the strong motion earthquake range. Emphasis of the analytical work was aimed toward supporting the field effort through processing and evaluation of the experimental test results combined with additional calculations required to gain insight into data interpretation and the in situ test setup itself. Continuing studies to evaluate free field soil behavior under earthquake loading conditions are discussed. (U.S.)

  20. In-situ active/passive bioreclamation of vadose zone soils contaminated with gasoline and waste oil using soil vapor extraction/bioventing: Laboratory pilot study to full scale site operation

    International Nuclear Information System (INIS)

    Zachary, S.P.; Everett, L.G.

    1993-01-01

    The use of soil venting to supply oxygen and remove metabolites from the biodegradation of light hydrocarbons is a cost effective in-situ remediation approach. To date, little data exists on the effective in-situ bioreclamation of vadose zone soil contaminated with waste/hydraulic oil without excavation or the addition of water or nutrients to degrade the heavy petroleum contaminants. Gasoline and waste/hydraulic oil contaminated soils below an active commercial building required an in-situ non-disruptive remediation approach. Initial soil vapor samples collected from the vadose zone revealed CO 2 concentrations in excess of 16% and O 2 concentrations of less than 1% by volume. Soil samples were collected from below the building within the contaminated vadose zone for laboratory chemical and physical analysis as well as to conduct a laboratory biotreatability study. The laboratory biotreatability study was conducted for 30 days to simulate vadose zone bioventing conditions using soil taken from the contaminated vadose zone. Results of the biotreatability study revealed that the waste oil concentrations had been reduced from 960 mg/Kg to non-detectable concentrations within 30 days and the volatile hydrocarbon content had decreased exponentially to less than 0.1% of the original concentration. Post treatability study biological enumeration revealed an increase in the microbial population of two orders of magnitude

  1. PAHs soil decontamination in two steps: desorption and electrochemical treatment.

    Science.gov (United States)

    Alcántara, M Teresa; Gómez, Jose; Pazos, Marta; Sanromán, M Angeles

    2009-07-15

    The presence of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in soils poses a potential threat to human health if exposure levels are too high. Nevertheless, the removal of these contaminants presents a challenge to scientists and engineers. The high hydrophobic nature of PAHs enables their strong sorption onto soil or sediments. Thus, the use of surfactants could favour the release of sorbed hydrophobic organic compounds from contaminated soils. In this work, five surfactants, namely Brij 35, Tergitol NP10, Tween 20, Tween 80 and Tyloxapol, are evaluated on the desorption of PAHs [benzanthracene (BzA), fluoranthene (FLU), and pyrene (PYR), single and in mixture] from a model sample such as kaolin. In all cases, the best results were obtained when Tween 80 was employed. In order to obtain the global decontamination of PAHs, their electrochemical degradation is investigated. It is concluded that the order of increasing degradation for single compounds is BzA>FLU>PYR when they are subject to the same electrochemical treatment. In addition, there is a direct relationship between the ionization potential and the electrochemical degradation of PAH.

  2. Soil aquifer treatment of artificial wastewater under saturated conditions

    KAUST Repository

    Essandoh, H. M K

    2011-05-01

    A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen and phosphate, using high strength artificial wastewater. The removal rates were determined under a combination of constant hydraulic loading rates (HLR) and variable COD concentrations as well as variable HLR under a constant COD. Within the range of COD concentrations considered (42 mg L-1-135 mg L-1) it was found that at fixed hydraulic loading rate, a decrease in the influent concentrations of dissolved organic carbon (DOC), biochemical oxygen demand (BOD), total nitrogen and phosphate improved their removal efficiencies. At the high COD concentrations applied residence times influenced the redox conditions in the soil column. Long residence times were detrimental to the removal process for COD, BOD and DOC as anoxic processes and sulphate reduction played an important role as electron acceptors. It was found that total COD mass loading within the range of 911 mg d-1-1780 mg d-1 applied as low COD wastewater infiltrated coupled with short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. The opposite was true for organic nitrogen where relatively high concentrations coupled with long residence time gave better removal efficiency. © 2011.

  3. Retention soil filter as post-treatment step to remove micropollutants from sewage treatment plant effluent

    NARCIS (Netherlands)

    Brunsch, Andrea F.; Laak, ter Thomas L.; Christoffels, Ekkehard; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.

    2018-01-01

    Retention soil filters (RSFs) are a specific form of vertical flow constructed wetlands for the treatment of rain water and/or wastewater. We have tested 3 pilot RSFs to investigate removal of dissolved organic carbon (DOC) and 14 different organic micropollutants (OMPs) from the effluent of a

  4. In situ nuclear magnetic response of permafrost and active layer soil in boreal and tundra ecosystems

    DEFF Research Database (Denmark)

    Kass, Mason Andrew; Irons, Trevor; Minsley, Burke J.

    2017-01-01

    Characterization of permafrost, particularly warm and near-surface permafrost which can contain significant liquid water, is critical to understanding complex interrelationships with climate change, ecosystems, and disturbances such as wildfires. Understanding the vulnerability and resilience...... of the nuclear magnetic resonance (NMR) response of the active layer and permafrost in a variety of soil conditions, types, and saturations. In this paper, we summarize the NMR data and present quantitative relationships between active layer and permafrost liquid water content and pore sizes and show...

  5. A New Technique for Deep in situ Measurements of the Soil Water Retention Behaviour

    DEFF Research Database (Denmark)

    Rocchi, Irene; Gragnano, Carmine Gerardo; Govoni, Laura

    2018-01-01

    to monitor shallow landslides and seasonal volume changes beneath shallow foundations, within the most superficial ground strata. In this paper, a novel installation technique is presented, discussed and assessed, which allows to extend the use of commercially available low cost and low maintenance...... to the field data. The results of this study offer a convenient starting point to accommodate important geotechnical works such as river and road embankments in the traditional monitoring of unsaturated soil variables....

  6. In situ studies of pesticides photodegradation on soils using PD-TOFMS technique

    Science.gov (United States)

    Thomas, J. P.; Bejjani, A.; Nsouli, B.; Gardon, A.; Chovelon, J. M.

    2009-01-01

    As we have demonstrated that plasma desorption time-of-flight mass spectrometry (PD-TOFMS) is well adapted to the direct characterization of pesticides adsorbed on agricultural soils the technique has been applied for the first time to the study of their evolution under sunlight-like irradiation. Two pesticides have been selected: norflurazon which is the most documentated (both from the literature and from our previous experiments) and oxyfluorfen in order to assess the capability of the technique. The photodegradation process has been investigated both for a deposit onto a metallic substrate and for a soil impregnated with the product. For norflurazon degradation parameters have been extracted from the yield variation of ions representative of the molecule and breakdown products and particularly the time required for 50% dissipation of their initial concentration (DT50 values). The comparison between deposits and soils indicates clearly that the degradation is slower in the latter case with an increase of about 3.5 for the DT50 of the molecule, and about 2 for its breakdown products. These values are in agreement with the decays of other ions. As expected, the degradation is faster when the UV of the sunlight is unfiltered, more significantly for the breakdown products. This is also observed for the oxyfluorfen deposited onto aluminium although at a lower level (twice less). The trends are only qualitative for the impregnated soil but definitely there. A discussion is presented for the interpretation of the photodegradation process in both cases together with suggestions of improvement in the data acquisition.

  7. Detector system for in-situ spectrometric analysis of 241Am and Pu in soil

    International Nuclear Information System (INIS)

    Kirby, J.A.; Anspaugh, L.R.; Phelps, P.L.; Amantrout, G.A.; Sawyer, D.

    1975-01-01

    This system for quantitative analysis of Pu in soil via 241 Am has four 2.5-mm high-purity Ge detectors of 33 cm 2 total detecting surface area. These detectors are paralleled by gating circuitry to avoid the degradation of energy resolution associated with electronic output summing. In field tests the system was approximately three times as sensitive as a 70-cm 3 Ge(Li) detector and approximately an order of magnitude more sensitive than the FIDLER system

  8. Winter survival of microbial contaminants in soil: an in situ verification.

    Science.gov (United States)

    Bucci, Antonio; Allocca, Vincenzo; Naclerio, Gino; Capobianco, Giovanni; Divino, Fabio; Fiorillo, Francesco; Celico, Fulvio

    2015-01-01

    The aim of the research was to evaluate, at site scale, the influence of freezing and freeze/thaw cycles on the survival of faecal coliforms and faecal enterococci in soil, in a climate change perspective. Before the winter period and during grazing, viable cells of faecal coliforms and faecal enterococci were detected only in the first 10 cm below ground, while, after the winter period and before the new seasonal grazing, a lower number of viable cells of both faecal indicators was detected only in some of the investigated soil profiles, and within the first 5 cm. Taking into consideration the results of specific investigations, we hypothesise that the non-uniform spatial distribution of grass roots within the studied soil can play an important role in influencing this phenomenon, while several abiotic factors do not play any significant role. Taking into account the local trend in the increase of air temperature, a different distribution of microbial pollution over time is expected in spring waters, in future climate scenarios. The progressive increase in air temperature will cause a progressive decrease in freeze/thaw cycles at higher altitudes, minimising cold shocks on microbial cells, and causing spring water pollution also during winter. Copyright © 2014. Published by Elsevier B.V.

  9. Periodically operated bioreactors for the treatment of soils and leachates

    International Nuclear Information System (INIS)

    Irvine, R.L.; Cassidy, D.P.

    1995-01-01

    Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rate and renders solid-phase bioremediation more cost effective than complete treatment in a bioslurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. Periodic aeration during solid-phase bioremediation has the potential to lower treatment costs relative to continuous aeration. A biological treatment system consisting of slurrying followed by periodic aeration in solid-phase sequencing batch reactors (SP-SBRs) was developed and tested in the laboratory using a silty loam contaminated predominantly with the plasticizer bis(2-ethylhexyl)phthalate (BEHP) or (DEHP) and a silty clay loam contaminated with diesel fuel. The first experiment evaluated the effect of water content and mixing time during slurrying on subsequent treatment in continuously aerated solid-phase bioreactors. The second experiment compared treatment of slurried soil in SP-SBRs using three different periodic aeration strategies with continuous aeration

  10. Sulfur flow in a soil-plant system-effects of long-term treatment history and soil properties

    DEFF Research Database (Denmark)

    Boye, Kristin; Eriksen, Jørgen; Nilsson, Ingvar

    2010-01-01

    deficiency, reduced biomass production and lower total S uptake by the rye grass. The isotopic measurements revealed that more than two thirds of the plant S was derived from non-labeled soil organic S, even in the + S treatment, and that all organic S pools (physically unprotected/protected and residual...... organic S) in the soil were involved in the S transformations. The long-term FYM treatment had resulted in higher S cycling rates and a slightly higher resistance to S deficiency than the CR treatment. The influence of soil type on S flow patterns was important, but probably only partly related...

  11. In situ treatment of mixed contaminants in groundwater: Review of candidate processes

    International Nuclear Information System (INIS)

    Korte, N.E.; Siegrist, R.L.; Ally, M.

    1994-10-01

    This document describes the screening and preliminary evaluation of candidate treatment for use in treating mixed contaminants volatile organic compounds (VOCs) and radionuclides in groundwater. Treating mixed contaminants presents unusual difficulties. Typically, VOCs are the most abundant contaminants, but the presence of radionuclides results in additional health concerns that must be addressed, usually by a treatment approach different from that used for VOCs. Furthermore, the presence of radionuclides may yield mixed solid wastes if the VOCs are treated by conventional means. These issues were specifically addressed in the evaluation of candidate treatment processes for testing in this program. Moreover, because no research or early development of a particular process would be performed, the technology review also focused on technologies that could be readily adapted and integrated for use with mixed contaminants. The objective is to couple emerging or available processes into treatment modules for use in situ. The three year project, to be completed in September 1996, includes a full-scale field demonstration. The findings reported in this document encompass all activities through the treatment process evaluations

  12. In situ treatment of mixed contaminants in groundwater: Review of candidate processes

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E. [ed.] [Oak Ridge National Lab., Grand Junction, CO (United States); Siegrist, R.L. [ed.] [Oak Ridge National Lab., TN (United States); Ally, M. [and others

    1994-10-01

    This document describes the screening and preliminary evaluation of candidate treatment for use in treating mixed contaminants volatile organic compounds (VOCs) and radionuclides in groundwater. Treating mixed contaminants presents unusual difficulties. Typically, VOCs are the most abundant contaminants, but the presence of radionuclides results in additional health concerns that must be addressed, usually by a treatment approach different from that used for VOCs. Furthermore, the presence of radionuclides may yield mixed solid wastes if the VOCs are treated by conventional means. These issues were specifically addressed in the evaluation of candidate treatment processes for testing in this program. Moreover, because no research or early development of a particular process would be performed, the technology review also focused on technologies that could be readily adapted and integrated for use with mixed contaminants. The objective is to couple emerging or available processes into treatment modules for use in situ. The three year project, to be completed in September 1996, includes a full-scale field demonstration. The findings reported in this document encompass all activities through the treatment process evaluations.

  13. IN SITU NON-INVASIVE SOIL CARBON ANALYSIS: SAMPLE SIZE AND GEOSTATISTICAL CONSIDERATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    WIELOPOLSKI, L.

    2005-04-01

    I discuss a new approach for quantitative carbon analysis in soil based on INS. Although this INS method is not simple, it offers critical advantages not available with other newly emerging modalities. The key advantages of the INS system include the following: (1) It is a non-destructive method, i.e., no samples of any kind are taken. A neutron generator placed above the ground irradiates the soil, stimulating carbon characteristic gamma-ray emission that is counted by a detection system also placed above the ground. (2) The INS system can undertake multielemental analysis, so expanding its usefulness. (3) It can be used either in static or scanning modes. (4) The volume sampled by the INS method is large with a large footprint; when operating in a scanning mode, the sampled volume is continuous. (5) Except for a moderate initial cost of about $100,000 for the system, no additional expenses are required for its operation over two to three years after which a NG has to be replenished with a new tube at an approximate cost of $10,000, this regardless of the number of sites analyzed. In light of these characteristics, the INS system appears invaluable for monitoring changes in the carbon content in the field. For this purpose no calibration is required; by establishing a carbon index, changes in carbon yield can be followed with time in exactly the same location, thus giving a percent change. On the other hand, with calibration, it can be used to determine the carbon stock in the ground, thus estimating the soil's carbon inventory. However, this requires revising the standard practices for deciding upon the number of sites required to attain a given confidence level, in particular for the purposes of upward scaling. Then, geostatistical considerations should be incorporated in considering properly the averaging effects of the large volumes sampled by the INS system that would require revising standard practices in the field for determining the number of spots to

  14. The use of vinasse as an amendment to ex-situ bioremediation of soil and groundwater contaminated with diesel oil

    Directory of Open Access Journals (Sweden)

    Adriano Pinto Mariano

    2009-08-01

    Full Text Available This work investigated the possibility of using vinasse as an amendment in ex-situ bioremediation processes. Groundwater and soil samples were collected at petrol stations. The soil bioremediation was simulated in Bartha biometer flasks, used to measure the microbial CO2 production, during 48 days, where vinasse was added at a concentration of 33 mL.Kg-1of soil. Biodegradation efficiency was also measured by quantifying the total petroleum hydrocarbons (TPH by gas chromatography. The groundwater bioremediation was carried out in laboratory experiments simulating aerated (bioreactors and not aerated (BOD flasks conditions. In both the cases, the concentration of vinasse was 5 % (v/v and different physicochemical parameters were evaluated during 20 days. Although an increase in the soil fertility and microbial population were obtained with the vinasse, it demonstrated not to be adequate to enhance the bioremediation efficiency of diesel oil contaminated soils. The addition of the vinasse in the contaminated groundwaters had negative effects on the biodegradation of the hydrocarbons, since vinasse, as a labile carbon source, was preferentially consumed.Este trabalho investigou a possibilidade de se usar a vinhaça como um agente estimulador de processos de biorremediação ex-situ. Amostras de água subterrânea e solo foram coletadas em três postos de combustíveis. A biorremediação do solo foi simulada em frascos de Bartha, usados para medir a produção de CO2, durante 48 dias, onde a vinhaça foi adicionada a uma concentração de 33 mL.Kg-1 de solo. A eficiência de biodegradação também foi medida pela quantificação de hidrocarbonetos totais de petróleo (TPH por cromatografia gasosa. A biorremediação da água subterrânea foi realizada em experimentos laboratoriais simulando condições aeradas (bioreatores e não aeradas (frascos de DBO. Em ambos os casos, a concentração de vinhaça foi de 5 % (v/v e diferentes parâmetros f

  15. Solidification treatment of thiophene and BTEX contaminated soils

    International Nuclear Information System (INIS)

    Zarlinski, S.J.; Kingham, N.W.; Blevins, J.

    1995-01-01

    Contamination at the McColl Superfund Site, located in Fullerton, California, is due to the disposal, in pits, of spent sulfuric acid sludge from the production of aviation fuel. A treatability study was performed to evaluate the electiveness of in situ solidification treatment of materials contaminated with high concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX), as well as thiophene and other organic compounds. The contaminated materials were extremely acidic (pH<1) and had high organic and sulfur contents of greater than 70 percent and 10 percent, respectively. A total of 150 mixtures were screened to evaluate the effectiveness of 15 reagents. Based on the preliminary screening results, six mixtures were selected as being the most effective at treating the contaminated materials. Comprehensive evaluations of the candidate mixtures included (1) quantitative glovebag volatilization studies, (2) chemical characterization of the treated materials, (3) strength characterizations at multiple cure times of up to 60 days, (4) emissions monitoring of the treated materials at cure times of 7 and 14 days, and (5) the evaluation of oxidation reagents for treatment of the thiophene contamination. The treatability study demonstrated that solidification treatment is an effective alternative for remediation of the thiophene and BTEX contaminated materials

  16. The formulation of a nasal nanoemulsion zaleplon in situ gel for the treatment of insomnia.

    Science.gov (United States)

    Hosny, Khaled Mohamed; Banjar, Zainy Mohammed

    2013-08-01

    Zaleplon is a drug used for the treatment of insomnia and is available in tablet form; however, it has two major problems. First, the drug undergoes extensive first pass metabolism, resulting in only 30% bioavailability, and second, the drug has a poor aqueous solubility, which delays the onset of action. The objective of this study is to utilise nanotechnology to formulate zaleplon into a nasal in situ nanoemulsion gel (NEG) to provide a solution for the previously mentioned problems. The solubility of zaleplon in various oils, surfactants and co-surfactants was estimated. Pseudo-ternary phase diagrams were developed and various nanoemulsion (NE) formulations were prepared; these formulations were subjected to visual characterisation, thermodynamic stability study and droplet size and conductivity measurements. Carbopol 934 was used as an in situ gelling agent. The gel strength, pH, gelation time, in vitro release and ex vivo nasal permeation were determined. The pharmacokinetic study of the NEG was carried out in rabbits. Stable NEs were successfully developed with a droplet size range of 35 to 73 nm. A NEG composed of 15% Miglyol, 30% Labrasol and 10% PEG 200 successfully provided the maximum in vitro and ex vivo permeation and enhanced the bioavailability in the rabbits by eightfold, when compared with the marketed tablets. The nasal NEG is a promising novel formula for zaleplon that has higher nasal tissue permeability and enhanced systemic bioavailability.

  17. Field demonstration of in situ treatment of buried low-level radioactive solid waste with caustic soda and soda ash to immobilize 90Sr

    International Nuclear Information System (INIS)

    Spalding, B.P.

    1984-02-01

    A low-level radioactive solid waste disposal trench was injected on four occasions with solutions of caustic soda, soda ash, caustic soda, and lime/soda ash, respectively. Because investigations had indicated that 90 Sr could be coprecipitated with soil calcium carbonate by treatment with soda ash, this demonstration was undertaken as a test of its technical feasibility. After concentrations of 90 Sr and water hardness decreased within the intratrench monitoring wells; one well at the foot of the trench decreased from over 100 to a persistent level of less than 10 kBq of 90 Sr per liter. Recharge of 90 Sr from the trench to a sump immediately below was reduced by about 90%. Water hardness and 90 Sr concentrations were strongly correlated through time within each monitoring well, indicating that 90 Sr behaved as a tracer for soil calcium and magnesium. The disappearance of 90 Sr from the trench water, therefore, was an in situ water softening. Soil samples retrieved from the trench indicated that as much as 98% of the total 90 Sr was present as a coprecipitate with calcium carbonate. The hydrologic characterization of this trench indicated an average void space of 41% and an average trench-wall hydraulic conductivity of 3.4 x 10 -7 m/s. Sampling of the trench's discharge contamination plume indicated that it had resulted from a combination of subsurface seepage and bathtub overflow during infrequent periods of intense precipitation. A generic assessment of soda ash treatment indicated that treatment would be most effective for soils of high cation exchange capacity with either low ( 80%) basic cation saturation of that cation exchange capacity

  18. The role of capital realignment versus in situ stabilization for the treatment of slipped capital femoral epiphysis.

    Science.gov (United States)

    Souder, Christopher D; Bomar, James D; Wenger, Dennis R

    2014-12-01

    Slipped capital femoral epiphysis (SCFE) can be treated by a variety of methods with the traditional method of in situ pin fixation being most commonly used. More recently, the Modified Dunn (Mod. Dunn) procedure consisting of capital realignment has been popularized as a treatment method for SCFE, particularly for more severe cases. Over the last 5 years, our institution has selectively used this method for more complex cases. The purpose of this article is to evaluate the differences between these 2 treatment methods in terms of avascular necrosis (AVN) rate, reoperation rate, and complication rate. Eighty-eight hips that were surgically treated for SCFE between July 2004 and June 2012 met our inclusion criteria. The in situ fixation group included 71 hips, whereas 17 hips were anatomically reduced with the Mod. Dunn procedure. Loder classification, severity, acuity, complication rate, and reoperation rate were determined for the 2 cohorts. The χ analysis was performed to evaluate the relationship between the treatment method and outcome. As expected, stable slips did well with in situ pinning with no cases of AVN, even in more severe slips. Ten stable slips were treated with the Mod. Dunn approach and 2 (20%) developed AVN. Unstable slips were more difficult to treat with 3 of the 7 hips stabilized in situ developing AVN (43%). Two of the 7 unstable slips treated by the Mod. Dunn procedure developed AVN (29%). The other outcomes studied (reoperation rate and complication rate) were not significantly related to the surgical treatment method (P = 0.732 and 0.261, respectively). In situ pinning remains a safe and predictable method for treatment of stable SCFE with no AVN noted, even in severe slips. Attempts to anatomically reduce stable slips led to severe AVN in 20% of cases, thus this treatment approach should be considered with caution. Treatment of unstable slips remains problematic with high AVN rates noted whether treated by in situ fixation or capital

  19. Effects of dairy manure management in annual and perennial cropping systems on soil microbial communities associated with in situ N2O fluxes

    Science.gov (United States)

    Dunfield, Kari; Thompson, Karen; Bent, Elizabeth; Abalos, Diego; Wagner-Riddle, Claudia

    2016-04-01

    Liquid dairy manure (LDM) application and ploughing events may affect soil microbial community functioning differently between perennial and annual cropping systems due to plant-specific characteristics stimulating changes in microbial community structure. Understanding how these microbial communities change in response to varied management, and how these changes relate to in situ N2O fluxes may allow the creation of predictive models for use in the development of best management practices (BMPs) to decrease nitrogen (N) losses through choice of crop, plough, and LDM practices. Our objectives were to contrast changes in the population sizes and community structures of genes associated with nitrifier (amoA, crenamoA) and denitrifier (nirK, nirS, nosZ) communities in differently managed annual and perennial fields demonstrating variation in N2O flux, and to determine if differences in these microbial communities were linked to the observed variation in N2O fluxes. Soil was sampled in 2012 and in 2014 in a 4-ha spring-applied LDM grass-legume (perennial) plot and two 4-ha corn (annual) treatments under fall or spring LDM application. Soil DNA was extracted and used to target N-cycling genes via qPCR (n=6) and for next-generation sequencing (Illumina Miseq) (n=3). Significantly higher field-scale N2O fluxes were observed in the annual plots compared to the perennial system; however N2O fluxes increased after plough down of the perennial plot. Nonmetric multidimensional scaling (NMS) indicated differences in N-cycling communities between annual and perennial cropping systems, and some communities became similar between annual and perennial plots after ploughing. Shifts in these communities demonstrated relationships with agricultural management, which were associated with differences in N2O flux. Indicator species analysis was used to identify operational taxonomic units (OTUs) most responsible for community shifts related to management. Nitrifying and denitrifying soil

  20. Simulated in situ competitive ability and survival of a representative soil yeast, Cryptococcus albidus.

    Science.gov (United States)

    Vishniac, H S

    1995-11-01

    Microcosms containing an air-dried autoclaved loamy sand (Eufala A) with low salt and organic content were inoculated with a representative (obligately aerobic, encapsulated) soil yeast, Cryptococcus albidus var. albidus (T) ATCC 10666, singly (for growth rate and survival determinations) and together with the bacterial biota native to Eufala A. The yeast competed successfully with the more rapidly growing bacteria in the presence of added water from 1% (5.7% of field capacity) to 14% (80% of field capacity) but grew for shorter times than when grown alone; times correlated with the lag phase of the bacterial biota. When well-watered (10 and 14%) competition cultures were allowed to dry and used as inoculum for subcultures, the yeast made significant growth only at 1% added water but survived at the higher moisture concentrations. The competitive ability of Cr. albidus confirms the previously reported advantages of the cryptococcal capsule in hydration and desiccation and, together with lengthy survival, suggests that the importance of such yeasts in the biogeochemistry of arid soils has been seriously underestimated.

  1. Ceriodaphnia and Chironomus in situ toxicity tests assessing the wastewater treatment efficacy of constructed wetlands

    International Nuclear Information System (INIS)

    Barjaktarovic, L.; Nix, P.; Gulley, J.

    1995-01-01

    In situ toxicity tests were designed for Ceriodaphnia dubia and Chironomus tentans as part of a larger study designed to assess the effectiveness of constructed wetlands for the treatment of wastewater produced by oil production at Suncor OSG. The artificial wetlands were 50m long by 3m wide, with three replicates of the control and the treatment. Each wetland had four sample sites equidistant along its length, creating a gradient of treatment from site A being the most toxic to site D being the least toxic. Each test was conducted twice during the summer of 1994. Both the Ceriodaphnia and Chironomus test cages were a flow through design to allow for maximal exposure to the water within the wetlands. Mortality and reproduction were used as endpoints for Ceriodaphnia, whereas mortality and growth were used as endpoints for the Chironomus test. Test durations were fifteen and ten days respectively. Chironomus had very high mortality along the entire wetlands whereas Ceriodaphnia survival and fecundity increased along the length of the treatment wetlands. Both organisms had low mortality and high growth/fecundity in the control wetlands

  2. Developing a High Fidelity Martian Soil Simulant Based on MSL Measurements: Applications for Habitability, Exploration, and In-Situ Resource Utilization

    Science.gov (United States)

    Cannon, K.; Britt, D. T.; Smith, T. M.; Fritsche, R. F.; Covey, S. D.; Batcheldor, D.; Watson, B.

    2017-12-01

    Powerful instruments, that include CheMin and SAM on the MSL Curiosity rover, have provided an unprecedented look into the mineral, chemical, and volatile composition of Martian soils. Interestingly, the bulk chemistry of the Rocknest windblown soil is a close match to similar measurements from the Spirit and Opportunity rovers, suggesting the presence of a global basaltic soil component. The Martian regolith is likely composed of this global soil mixed with locally to regionally derived components that include alteration products and evolved volcanic compositions. Without returned soil samples, researchers have relied on terrestrial simulants to address fundamental Mars science, habitability, in-situ resource utilization, and hardware for future exploration. However, these past simulants have low fidelity compared to actual Martian soils: JSC Mars-1a is an amorphous palagonitic material with spectral similarities to Martian dust, not soil, and Mojave Mars is simply a ground up terrestrial basalt chosen for its convenient location. Based on our experience creating asteroid regolith simulants, we are developing a high fidelity Martian soil simulant (Mars Global) designed ab initio to match the mineralogy, chemistry, and volatile contents of the global basaltic soil on Mars. The crystalline portion of the simulant is based on CheMin measurements of Rocknest and includes plagioclase, two pyroxenes, olivine, hematite, magnetite, anhydrite, and quartz. The amorphous portion is less well constrained, but we are re-creating it with basaltic glass, synthetic ferrihydrite, ferric sulfate, and carbonates. We also include perchlorate and nitrate salts based on evolved gas analyses from the SAM instrument. Analysis and testing of Mars Global will include physical properties (shear strength, density, internal friction angle), spectral properties, magnetic properties, and volatile release patterns. The simulant is initially being designed for NASA agricultural studies, but

  3. Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils.

    Science.gov (United States)

    Ulén, Barbro; Etana, Ararso; Lindström, Bodil

    2012-01-01

    Phosphorus (P) leaching from agricultural soils is a serious environmental concern. Application of aluminium water treatment residuals (Al-WTRs) at a rate of 20 Mg ha(-1) to clay soils from central Sweden significantly increased mean topsoil P sorption index (PSI) from 4.6 to 5.5 μmol kg(-1) soil. Mean degree of P saturation in ammonium lactate extract (DPS-AL) significantly decreased from 17 to 13%, as did plant-available P (P-AL). Concentrations of dissolved reactive P (DRP) decreased by 10-85% in leaching water with Al-WTR treatments after exposure of topsoil lysimeters to simulated rain. Soil aggregate stability (AgS) for 15 test soils rarely improved. Three soils (clay loam, silty loam and loam sand) were tested in greenhouse pot experiments. Aluminium-WTR application of 15 or 30 ton ha(-1) to loam sand and a clay loam with P-AL values of 80-100 mg kg(-1) soil significantly increased growth of Italian ryegrass when fertilised with P but did not significantly affect growth of spring barley on any soil. Al-WTR should only be applied to soils with high P fertility where improved crop production is not required.

  4. The use of sentinel lymph node biopsy in the treatment of breast ductal carcinoma in situ

    DEFF Research Database (Denmark)

    Holm-Rasmussen, Emil Villiam; Jensen, Maj Britt; Balslev, Eva

    2017-01-01

    . In the present study, the use of SLNB in patients with DCIS was evaluated nationally and compared across Danish departments. Material and methods A register-based study was conducted using the Danish Breast Cancer Group database. The use of SLNB in DCIS patients according to year of diagnosis, age at diagnosis......, size of lesion, Van Nuys classification, palpability, location and department of surgery was evaluated. The chi-squared test was used to test differences between the groups. Results Data from 2618 Danish female patients diagnosed with DCIS between 2004 and 2015 were included; 54.3% of patients......Objectives The risk of axillary metastases in breast cancer patients with only ductal carcinoma in situ (DCIS) is low. Thus, axillary staging with sentinel lymph node biopsy (SLNB) should only be used according to the current guidelines to avoid over-treatment and unnecessary morbidity...

  5. Construction of disturbed and intact soil blocks to develop percolating soil based treatment systems for dirty water from dairy farms.

    Science.gov (United States)

    Brookman, S K E; Chadwick, D R; Headon, D M

    2002-03-01

    Intact soil blocks with a surface area of 1.8 x 1.6 m, 1.0 m deep, were excavated in a coarse sandy loam. The sides of the soil blocks were supported with plywood before using hydraulic rams to force a steel cutting plate beneath them. Disturbed soil blocks of the same depth as the intact blocks were also established. Experiments were conducted to determine purification efficiencies for biological oxygen demand (BOD), molybdate reactive phosphorus (MRP), nitrate and ammonium-N after the application of dirty water. A preliminary experiment is described where a low application of dirty water was applied to the soil blocks, 2 mm day(-1). In addition, a chloride tracer was conducted for the duration of the experiment. Disturbed soil had a purification efficiency for BOD of 99% compared to 96% from intact soil (Pammonium-N were 100 and 99%, respectively, for the intact and disturbed soils. Nitrate-N concentration increased in leachate from both treatments reaching maximum concentrations of 15 and 8 mg l(-1) from disturbed and intact soils, respectively. Chloride traces for each soil block followed similar patterns with 47 and 51% loss from disturbed and intact soils, respectively.

  6. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    Science.gov (United States)

    Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  7. High-power ultrasonic treatment of contaminated soils and sediments

    International Nuclear Information System (INIS)

    Collings, A.F.; Gwan, P.B.; Sosa Pintos, A.P.

    2004-01-01

    Full text: The propagation of high-power ultrasound through a liquid can initiate the phenomenon of cavitation. This occurs with the collapse of gas bubbles formed during the rarefaction phase of the ultrasonic wave either from the dissolution of air or vaporisation of the liquid. Bubble collapse can generate localised temperatures up to 5,000 K and pressures up to 1,000 atmospheres. Solid particles in slurry have been shown to act as foci for the nucleation and collapse of bubbles. Theory and experiment have confirmed that the rupture of a bubble on a solid surface generates a high speed jet directed towards the surface. In this case, the extreme conditions generated by the non-linear shock wave produced by bubble collapse are localised on the solid surface. Since Persistent Organic Pollutants (POPs) are hydrophobic and are also readily absorbed on the surface of soil particles, the energy released by cavitation in a soil or sediment slurry is selectively directed towards them. The temperatures are sufficient to decompose these molecules. However, the extreme conditions are highly localised and the bulk solution temperature is essentially unaffected. Any decomposition products are immediately quenched and recombination reactions are avoided. Recent advances in ultrasound technology have produced commercial equipment capable of high power which has enabled us to remediate soils and sediments containing Organochlorine Pesticides (OCPs), Polyaromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs). With reductions greater than 80% within minutes, this technique shows great promise with advantages of on-site treatment and reduced operating and capital costs compared with conventional methods

  8. Salvage treatment for local or local-regional recurrence after initial breast conservation treatment with radiation for ductal carcinoma in situ

    NARCIS (Netherlands)

    Solin, Lawrence J.; Fourquet, Alain; Vicini, Frank A.; Taylor, Marie; Haffty, Bruce; Strom, Eric A.; Wai, Elaine; Pierce, Lori J.; Marks, Lawrence B.; Bartelink, Harry; Campana, Francois; McNeese, Marsha D.; Jhingran, Anuja; Olivotto, Ivo A.; Bijker, Nina; Hwang, Wei-Ting

    2005-01-01

    The present study evaluated the outcome of salvage treatment for women with local or local-regional recurrence after initial breast conservation treatment with radiation for mammographically detected ductal carcinoma in situ (DCIS; intraductal carcinoma) of the breast. The study cohort consisted of

  9. Improved design for a low temperature scanning tunneling microscope with an in situ tip treatment stage.

    Science.gov (United States)

    Kim, J-J; Joo, S H; Lee, K S; Yoo, J H; Park, M S; Kwak, J S; Lee, Jinho

    2017-04-01

    The Low Temperature Scanning Tunneling Microscope (LT-STM) is an extremely valuable tool not only in surface science but also in condensed matter physics. For years, numerous new ideas have been adopted to perfect LT-STM performances-Ultra-Low Vibration (ULV) laboratory and the rigid STM head design are among them. Here, we present three improvements for the design of the ULV laboratory and the LT-STM: tip treatment stage, sample cleaving stage, and vibration isolation system. The improved tip treatment stage enables us to perform field emission for the purpose of tip treatment in situ without exchanging samples, while our enhanced sample cleaving stage allows us to cleave samples at low temperature in a vacuum without optical access by a simple pressing motion. Our newly designed vibration isolation system provides efficient space usage while maintaining vibration isolation capability. These improvements enhance the quality of spectroscopic imaging experiments that can last for many days and provide increased data yield, which we expect can be indispensable elements in future LT-STM designs.

  10. Creation of a subsurface permeable treatment barrier using in situ redox manipulation

    International Nuclear Information System (INIS)

    Fruchter, J.S.; Cole, C.R.; Williams, M.D.

    1997-01-01

    The goal of in situ redox manipulation is to create a permeable treatment zone in the subsurface for remediating redox-sensitive contaminants in groundwater. The permeable treatment zone is created just downstream of the contaminant plume or contaminant source through the injection of reagents and/or microbial nutrients to alter the redox potential of the aquifer fluids and sediments. Contaminant plumes migrating through this manipulated zone can then be destroyed or immobilized. In a field test at the Hanford Site, ∼77,000 L of buffered sodium dithionite solution were successfully injected into the unconfined aquifer at the 100-H Area in September 1995. The target contaminant was chromate. No significant plugging of the well screen or the formation was detected during any phase of the test. Dithionite was detected in monitoring wells at least 7.5 m from the injection point. Data were obtained from all three phases of the test (i.e., injection, reaction, withdrawal). Preliminary core data show that from 60% to 100% of the available reactive iron in the targeted aquifer sediments was reduced by the injected dithionite. One year after the injection, groundwater in the treatment zone remains anoxic. Total and hexavalent chromium levels in groundwater have been reduced from a preexperiment concentration of ∼60 μg/L to below the detection limit of the analytical methods

  11. TORONTO HARBOUR COMMISSIONERS (THC) SOIL RECYCLE TREATMENT TRAIN - APPLICATIONS ANALYSIS REPORT

    Science.gov (United States)

    The Toronto Harbour Commissioners (THC) have developed a soil treatment train designed to treat inorganic and organic contaminants in soils. THC has conducted a large-scale demonstration of these technologies in an attempt to establish that contaminated soils at the Toronto Port ...

  12. In situ remediation-released zero-valent iron nanoparticles impair soil ecosystems health: A C. elegans biomarker-based risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying-Fei; Cheng, Yi-Hsien; Liao, Chung-Min, E-mail: cmliao@ntu.edu.tw

    2016-11-05

    Highlights: • Fe{sup 0} NPs induced infertility risk in C. elegans. • A C.elegans-based probabilistic risk assessment model is developed. • In situ remediation-released Fe{sup 0} NPs impair soil ecosystems health. - Abstract: There is considerable concern over the potential ecotoxicity to soil ecosystems posed by zero-valent iron nanoparticles (Fe{sup 0} NPs) released from in situ environmental remediation. However, a lack of quantitative risk assessment has hampered the development of appropriate testing methods used in environmental applications. Here we present a novel, empirical approach to assess Fe{sup 0} NPs-associated soil ecosystems health risk using the nematode Caenorhabditis elegans as a model organism. A Hill-based dose-response model describing the concentration–fertility inhibition relationships was constructed. A Weibull model was used to estimate thresholds as a guideline to protect C. elegans from infertility when exposed to waterborne or foodborne Fe{sup 0} NPs. Finally, the risk metrics, exceedance risk (ER) and risk quotient (RQ) of Fe{sup 0} NPs in various depths and distances from remediation sites can then be predicted. We showed that under 50% risk probability (ER = 0.5), upper soil layer had the highest infertility risk (95% confidence interval: 13.18–57.40%). The margins of safety and acceptable criteria for soil ecosystems health for using Fe{sup 0} NPs in field scale applications were also recommended. Results showed that RQs are larger than 1 in all soil layers when setting a stricter threshold of ∼1.02 mg L{sup −1} of Fe{sup 0} NPs. This C. elegans biomarker-based risk model affords new insights into the links between widespread use of Fe{sup 0} NPs and environmental risk assessment and offers potential environmental implications of metal-based NPs for in situ remediation.

  13. Impact of the Fenton-like treatment on the microbial community of a diesel-contaminated soil.

    Science.gov (United States)

    Polli, Flavia; Zingaretti, Daniela; Crognale, Silvia; Pesciaroli, Lorena; D'Annibale, Alessandro; Petruccioli, Maurizio; Baciocchi, Renato

    2018-01-01

    Fenton-like treatment (FLT) is an ISCO technique relying on the iron-induced H 2 O 2 activation in the presence of additives aimed at increasing the oxidant lifetime and maximizing iron solubility under natural soil pH conditions. The efficacy of FLT in the clean-up of hydrocarbon-contaminated soils is well established at the field-scale. However, a better assessment of the impact of the FLT on density, diversity and activity of the indigenous soil microbiota, might provide further insights into an optimal combination between FLT and in-situ bioremediation (ISB). The aim of this work was to assess the impacts of FLT on the microbial community of a diesel-contaminated soil collected nearby a gasoline station. Different FLT conditions were tested by varying either the H 2 O 2 concentrations (2 and 6%) or the oxidant application mode (single or double dosage). The impact of these treatments on the indigenous microbial community was assessed immediately after the Fenton-like treatment and after 30, 60 and 90 d and compared with enhanced natural attenuation (ENA). After FLT, a dramatic decrease in bacterial density, diversity and functionality was evident. Although in microcosms with double dosing at 2% H 2 O 2 a delayed recovery of the indigenous microbiota was observed as compared to those subjected to single oxidant dose, after 60 d incubation the respiration rate increased from 0.036 to 0.256 μg CCO 2 g -1 soil h -1 . Irrespective of the oxidant dose, best degradation results after 90 d incubation (around 80%) were observed with combined FLT, relying on double oxidant addition, and bioremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

  15. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    International Nuclear Information System (INIS)

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ''ideas''. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ''cradle-to-grave'' systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ''downselection'' of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW

  16. In situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type.

    Science.gov (United States)

    Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.

  17. Assessment of bioavailability of pesticides in soils and identification of pesticide degradation drivers using the in-situ Mass Distribution Quotient (iMDQ)

    Science.gov (United States)

    Folberth, Christian

    2010-05-01

    The in-situ Mass Distribution Quotient (iMDQ) has recently been shown to reliably describe the bioavailability and mineralization of the widely applied pesticide isoproturon in agricultural soils. It is determined by pore water extraction from previously incubated soil samples and subsequent assessment of the mass distribution between solid and liquid phase. The method was verified by comparing the bioavailability with co-metabolic mineralization in soils under optimum microbial soil conditions (water tension -15 kPa and bulk density 1.3 g cm-3). A comparison of the results with the chemical partitioning assessed by the Kd method has shown a higher accuracy of the new method. By combining the iMDQ/pore water extraction method with mineralization of the pesticide under optimum microbial conditions in the soils, further information about mineralization and degradation processes could be obtained or confirmed: a) Metabolically outstanding soils could be identified due to inconsistency between bioavailability and mineralization when compared to the co-metabolic soils. In a metabolically hampered soil, the mineralization was very low compared to the bioavailability and in a soil with metabolically IPU degrading microorganisms the mineralization was extremely high despite low bioavailability. b) Analysis of metabolite patterns in soil water fractions of a degradation experiment allowed for an additional identification of the metabolic status of the soil. In co-metabolic soils, the diversity of metabolites increased proportionally with the degree of mineralization of the parent compound, whereas in a metabolically hampered soil the metabolite pattern was very diverse despite low mineralization. c) A quite stable fractioning between total mineralization of the parent compound to CO2 and build-up of non-extractable bound residues was found. This is a hint that also during co-metabolic degradation that can up to now not be attributed to a certain group of microorganisms

  18. In-situ studies on the performance of landfill caps (compacted soil liners, geomembranes, geosynthetic clay liners, capillary barriers)

    International Nuclear Information System (INIS)

    Melchior, S.

    1997-01-01

    Since 1986 different types of landfill covers have been studied in-situ on the Georgswerder landfill in Hamburg, Germany. Water balance data are available for eight years. The performance of different carriers has been measured by collecting the leakage on areas ranging from 100 m 2 to 500 m 2 . Composite liners with geomembranes performed best, showing no leakage. An extended capillary barrier also performed well. The performance of compacted soil liners, however, decreased severely within five years due to desiccation, shrinkage and plant root penetration (liner leakage now ranging from 150 mm/a to 200 mm/a). About 50 % of the water that reaches the surface of the liner is leaking through it. The maximum leakage rates have increased from 2 x 10 -10 m 3 m -2 s -1 to 4 x 10 -8 m 3 m -2 s -1 . Two types of geosynthetic clay liners (GCL) have been tested for two years now with disappointing results. The GCL desiccated during the first dry summer of the study. High percolation rates through the GCL were measured during the following winter (45 mm resp. 63 mm in four months). Wetting of the GCL did not significantly reduce the percolation rates

  19. Effect of soil moisture and treatment volume on bentazone mobility in soil

    OpenAIRE

    Guimont, Sophie; Perrin-Ganier, Corinne; Real, Benoit; Schiavon, Michel

    2005-01-01

    Soil moisture affects the leaching behaviour of pesticides by inducing their physical entrapment in the soil structure. Columns containing soil aggregates were dampened to specific initial moisture levels. Bentazon was dripped onto surface aggregates in different volumes. The columns were then percolated after an equilibration period. Soil water from the columns was divided arbitrarily among mobile and immobile regions in order to describe the herbicide redistribution processes in the soil. W...

  20. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud

    International Nuclear Information System (INIS)

    Gray, C.W.; Dunham, S.J.; Dennis, P.G.; Zhao, F.J.; McGrath, S.P.

    2006-01-01

    We evaluated the effectiveness of lime and red mud (by-product of aluminium manufacturing) to reduce metal availability to Festuca rubra and to allow re-vegetation on a highly contaminated brown-field site. Application of both lime and red mud (at 3 or 5%) increased soil pH and decreased metal availability. Festuca rubra failed to establish in the control plots, but grew to a near complete vegetative cover on the amended plots. The most effective treatment in decreasing grass metal concentrations in the first year was 5% red mud, but by year two all amendments were equally effective. In an additional pot experiment, P application in combination with red mud or lime decreased the Pb concentration, but not total uptake of Pb in Festuca rubra compared to red mud alone. The results show that both red mud and lime can be used to remediate a heavily contaminated acid soil to allow re-vegetation. - Red mud was effective in immobilising heavy metals in soil

  1. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud

    Energy Technology Data Exchange (ETDEWEB)

    Gray, C.W. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Dunham, S.J. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Dennis, P.G. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Zhao, F.J. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); McGrath, S.P. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom)]. E-mail: steve.mcgrath@bbsrc.ac.uk

    2006-08-15

    We evaluated the effectiveness of lime and red mud (by-product of aluminium manufacturing) to reduce metal availability to Festuca rubra and to allow re-vegetation on a highly contaminated brown-field site. Application of both lime and red mud (at 3 or 5%) increased soil pH and decreased metal availability. Festuca rubra failed to establish in the control plots, but grew to a near complete vegetative cover on the amended plots. The most effective treatment in decreasing grass metal concentrations in the first year was 5% red mud, but by year two all amendments were equally effective. In an additional pot experiment, P application in combination with red mud or lime decreased the Pb concentration, but not total uptake of Pb in Festuca rubra compared to red mud alone. The results show that both red mud and lime can be used to remediate a heavily contaminated acid soil to allow re-vegetation. - Red mud was effective in immobilising heavy metals in soil.

  2. In-situ remediation of brine impacted soils and groundwater using hydraulic fracturing, desalinization and recharge wells

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, C. [Wiebe Environmental Services Inc., Calgary, AB (Canada); Ratiu, I. [GeoGrid Environmental Inc., Calgary, AB (Canada)

    2006-07-01

    This conference presentation focused on the in-stu remediation of brine impacted soils and groundwater using hydraulic fracturing, desalinization and recharge wells. A former oil battery was established in the 1940s, decommissioned in the late 1960s with a reclamation certificate issued in 1972. The land owner reported poor vegetative growth in the former battery area. The purpose of the study was to investigate the cause of poor growth and delineate contaminants of concern and to remediate impacted soil and groundwater associated with the former battery site. The investigation involved agrological, geophysical and hydrogeological investigation into the extent of anthropogenic impacts as well as the development of remediation options and plans to deal with issues of concern. The presentation provided the results of the investigation, options identified, and discussed limitation on salt remediation and treatment of saline soils. Other topics included hydraulic fracturing, injection wells that were installed to re-circulate treated groundwater though the salt plume, desalinization processes, and next steps. figs.

  3. In situ treatment of cyanide-contaminated groundwater by iron cyanide precipitation

    International Nuclear Information System (INIS)

    Ghosh, R.S.; Dzombak, D.A.; Luthy, R.G.; Smith, J.R.

    1999-01-01

    Groundwater contamination with cyanide is common at many former or active industrial sites. Metal-cyanide complexes typically dominate aqueous speciation of cyanide in groundwater systems, with iron-cyanide complexes often most abundant. Typically, metal-cyanide complexes behave as nonadsorbing solutes in sand-gravel aquifer systems in the neutral pH range, rendering cyanide relatively mobile in groundwater systems. Groundwater pump-and-treat systems have often been used to manage cyanide contamination in groundwater. This study examined the feasibility of using in situ precipitation of iron cyanide in a reactive barrier to attenuate the movement of cyanide in groundwater. Laboratory column experiments were performed in which cyanide solutions were passed through mixtures of sand and elemental iron filings. Removal of dissolved cyanide was evaluated in a variety of cyanide-containing influents under various flow rates and sand-to-iron weight ratios. Long-term column tests performed with various cyanide-containing influents under both oxic and anoxic conditions, at neutral pH and at flow rates typical of sand-gravel porous media, yielded effluent concentrations of total cyanide as low as 0.5 mg/L. Effluent cyanide concentrations achieved were close to the solubilities of Turnbull's blue-hydrous ferric oxide solid solutions, indicating co-precipitation of the two solids. Maximum cyanide removal efficiency was achieved with approximately 10% by weight of iron in the sand-iron mixtures; higher iron contents did not increase removal efficiency significantly. Results obtained indicate that in situ precipitation is a promising passive treatment approach for cyanide in groundwater

  4. Hydraulic performance of permeable barriers for in situ treatment of contaminated groundwater

    International Nuclear Information System (INIS)

    Smyth, D.J.A.; Shikaze, S.G.; Cherry, J.A.

    1997-01-01

    The passive interception and in situ treatment of dissolved contaminants in groundwater by permeable reactive barriers has recently gained favor at an increasing number of sites as an alternative to conventional approaches to groundwater remediation such as the pump-and-treat method. Permeable reactive barriers have two essential functions. The first is that the barriers must be installed in a position such that all of the plume passes through the reactive system. The second function is to achieve acceptable treatment of the contamination by physical, chemical or biological means within or downgradient of the barrier. In this paper, issues associated with the hydraulic performance of permeable reaction barriers are evaluated using a three-dimensional groundwater flow model. The efficiency of plume capture by permeable wall and funnel-and-gate systems is examined for some generic and for site-specific hydrogeologic systems. The results have important implications to decisions pertaining to the selection, design and installation of permeable reactive barrier systems

  5. Bioreactor configurations for ex-situ treatment of perchlorate: a review.

    Science.gov (United States)

    Sutton, Paul M

    2006-12-01

    The perchlorate anion has been detected in the drinking water of millions of people living in the United States. At perchlorate levels equal to or greater than 1 mg/L and where the water is not immediately used for household purposes, ex-situ biotreatment has been widely applied. The principal objective of this paper was to compare the technical and economic advantages and disadvantages of various bioreactor configurations in the treatment of low- and medium-strength perchlorate-contaminated aqueous streams. The ideal bioreactor configuration for this application should be able to operate efficiently while achieving a long solids retention time, be designed to promote physical-chemical adsorption in addition to biodegradation, and operate under plug-flow hydraulic conditions. To date, the granular activated carbon (GAC) or sand-media-based fluidized bed reactors (FBRs) and GAC, sand-, or plastic-media-based packed bed reactors (PBRs) have been the reactor configurations most widely applied for perchlorate treatment. Only the FBR configuration has been applied commercially. Commercial-scale cost information presented implies no economic advantage for the PBR relative to the FBR configuration. Full-scale application information provides evidence that the FBR is a good choice for treating perchlorate-contaminated aqueous streams.

  6. Conservative Treatment Seems the Best Choice in Adenocarcinoma In Situ of the Cervix Uteri.

    Science.gov (United States)

    Baalbergen, Astrid; Molijn, Anco C; Quint, Wim G V; Smedts, Frank; Helmerhorst, Theo J M

    2015-07-01

    To study diagnostic and therapeutic strategies, outcomes, and follow-up in a large series of women with adenocarcinoma in situ (AIS) of the uterine cervix and investigate if human papillomavirus (HPV) typing among women with negative cytology reports would have helped with early AIS detection. Records of 132 AIS cases diagnosed between 1989 and 2012 were retrieved. Clinical and pathological data were reviewed and analyzed. Mean age at diagnosis was 37 years. Seventy-two percent (n = 95) of all patients were asymptomatic; diagnosis was established using cytology and biopsy. Primary treatment for 124 patents was cold knife cone or loop electrosurgical excision procedure (LEEP). Positive margins were found in 18% of those women treated with CKC versus 40% in those treated with LEEP. The mean follow-up time was 62 months (range, 2-217 months; median, 46 months). Three recurrences were found after conservative treatment in 86 patients. High-risk HPV (hrHPV) positivity was detected in 115 (96%) of 120 patients, with HPV-18 being the most commonly occurring subtype (51%). There is a small risk of relapse after conservative therapy with cold knife cone or LEEP when resection margins are negative in women with AIS. Patients should be given the options of hysterectomy or conservative therapy with strict follow-up.

  7. In-situ precipitation and flocculation of iron hydroxides. A novel alternative to gel treatments

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, I.; Lakatos-Szabo, J. [Miskolch Univ. (Hungary). Research Inst. of Applied Chemistry; Kosztin, B.; Palasthy, Gy. [Hungarian Oil and Gas Company, Szolnok (Hungary)

    2002-01-01

    Development of a new well treatment method was stimulated by recognizing that some inorganic compounds, particularly Fe(III) compounds, can be transformed into gel-like precipitate by in-situ hydrolysis which is then immobilized by flocculation or spontaneous aging. These blocking materials have excellent stability under field conditions, but in case of technological failure the gel phase can easily be broken up into mobile sols. Further, the novel method is characterized by outstanding placement selectivity; self-controlling chemical mechanism and injectivity problems may not arise even in low permeable porous systems. During a field tests, extending over four years, 10 oil producing and 7 water injection wells were treated. The well responses were different: ration of the technical success was about 60%, while 40% of treatment was definitely profitable. In special reservoir blocks the injectors were simultaneously treated with the oil producing wells. The primary aim of these projects was to enhance the effect of profile correction around the producers and to improve the frontal displacement mechanism. The novel method proved to be compatible with the reservoir system and technical failure was not encountered during the past five years. The positive results contributed significantly to a recent decision of the operator that, parallel with other profile correction and water shut-off (e.g. polymer/silicate) techniques, application of the novel method will be extended to other reservoirs of the Algyo field, Hungary. (orig.)

  8. Effects of soil treatment with abattoir effluent on morphological and ...

    African Journals Online (AJOL)

    The effects of abattoir wastewater treated soil on morphological and biochemical profiles of cowpea seedlings (Vigna unguiculata) grown in gasoline polluted soil was studied. Percentage germination, shoot length, root length and leaf area of cowpea seedlings grown in gasoline treated soil decreased significantly (P ...

  9. Local Recurrences After Conservative Treatment of Ductal Carcinoma-In-Situ of the Breast Without Radiotherapy: The Effect of Age

    NARCIS (Netherlands)

    Schouten van der Velden, A.P.; Peeters, P.H.M.; Koot, V.C.M.; Hennipman, A.

    2006-01-01

    Background: The main goal in treatment of ductal carcinoma-in-situ (DCIS) of the breast is to prevent local recurrences. Radiotherapy after breast-conserving surgery has been shown to decrease the recurrence rate, although whether all patients should be treated with radiotherapy remains a topic

  10. Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil

    International Nuclear Information System (INIS)

    Ma, Fujun; Peng, Changsheng; Hou, Deyi; Wu, Bin; Zhang, Qian; Li, Fasheng; Gu, Qingbao

    2015-01-01

    Highlights: • Hg content was reduced to <1.5 mg/kg when treated at 400 °C with citric acid. • The treated soil retained most of its original soil physicochemical properties. • Proton provided by citric acid facilitates thermal removal of mercury. • This thermal treatment method is expected to reduce energy input by 35%. - Abstract: Thermal treatment is a promising technology for the remediation of mercury contaminated soils, but it often requires high energy input at heating temperatures above 600 °C, and the treated soil is not suitable for agricultural reuse. The present study developed a novel method for the thermal treatment of mercury contaminated soils with the facilitation of citric acid (CA). A CA/Hg molar ratio of 15 was adopted as the optimum dosage. The mercury concentration in soils was successfully reduced from 134 mg/kg to 1.1 mg/kg when treated at 400 °C for 60 min and the treated soil retained most of its original soil physiochemical properties. During the treatment process, CA was found to provide an acidic environment which enhanced the volatilization of mercury. This method is expected to reduce energy input by 35% comparing to the traditional thermal treatment method, and lead to agricultural soil reuse, thus providing a greener and more sustainable remediation method for treating mercury contaminated soil in future engineering applications.

  11. Ecotoxicological impact of two soil remediation treatments in Lactuca sativa seeds.

    Science.gov (United States)

    Rede, Diana; Santos, Lúcia H M L M; Ramos, Sandra; Oliva-Teles, Filipe; Antão, Cristina; Sousa, Susana R; Delerue-Matos, Cristina

    2016-09-01

    Pharmaceuticals have been identified as environmental emerging pollutants and are present in different compartments, including soils. Chemical remediation showed to be a good and suitable approach for soil remediation, though the knowledge in their impact for terrestrial organisms is still limited. Therefore, in this work, two different chemical remediation treatments (Fenton oxidation and nanoremediation) were applied to a soil contaminated with an environmental representative concentration of ibuprofen (3 ng g(-1)). The phytotoxic impact of a traditional soil remediation treatment (Fenton oxidation) and of a new and more sustainable approach for soil remediation (nanoremediation using green nano-scale zero-valent iron nanoparticles (nZVIs)) was evaluated in Lactuca sativa seeds. Percentage of seed germination, root elongation, shoot length and leaf length were considered as endpoints to assess the possible acute phytotoxicity of the soil remediation treatments as well as of the ibuprofen contaminated soil. Both chemical remediation treatments showed to have a negative impact in the germination and development of lettuce seeds, exhibiting a reduction up to 45% in the percentage of seed germination and a decrease around 80% in root elongation comparatively to the contaminated soil. These results indicate that chemical soil remediation treatments could be more prejudicial for terrestrial organisms than contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fujun [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Peng, Changsheng [The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Hou, Deyi [Geotechnical and Environmental Research Group, Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Wu, Bin; Zhang, Qian; Li, Fasheng [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Gu, Qingbao, E-mail: guqb@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China)

    2015-12-30

    Highlights: • Hg content was reduced to <1.5 mg/kg when treated at 400 °C with citric acid. • The treated soil retained most of its original soil physicochemical properties. • Proton provided by citric acid facilitates thermal removal of mercury. • This thermal treatment method is expected to reduce energy input by 35%. - Abstract: Thermal treatment is a promising technology for the remediation of mercury contaminated soils, but it often requires high energy input at heating temperatures above 600 °C, and the treated soil is not suitable for agricultural reuse. The present study developed a novel method for the thermal treatment of mercury contaminated soils with the facilitation of citric acid (CA). A CA/Hg molar ratio of 15 was adopted as the optimum dosage. The mercury concentration in soils was successfully reduced from 134 mg/kg to 1.1 mg/kg when treated at 400 °C for 60 min and the treated soil retained most of its original soil physiochemical properties. During the treatment process, CA was found to provide an acidic environment which enhanced the volatilization of mercury. This method is expected to reduce energy input by 35% comparing to the traditional thermal treatment method, and lead to agricultural soil reuse, thus providing a greener and more sustainable remediation method for treating mercury contaminated soil in future engineering applications.

  13. Treatability Study Report for In SITU Lead Immobilization Using Phosphate-Based Binders

    National Research Council Canada - National Science Library

    Bricka, R. M; Marwaha, Anirudha; Fabian, Gene L

    2008-01-01

    .... The treatability study described in this report was designed to develop the information necessary to support the immobilization of lead contaminants in soil by in situ treatment with phosphate-based binders...

  14. Augmented In Situ Subsurface Bioremediation Process™BIO-REM, Inc. - Demonstration Bulletin

    Science.gov (United States)

    The Augmented In Situ Subsurface Bioremediation Process™ developed by BIO-REM, Inc., uses microaerophilic bacteria and micronutrients (H-10) and surface tension depressants/penetrants for the treatment of hydrocarbon contaminated soils and groundwater. The bacteria utilize hydroc...

  15. Reverse osmosis treatment in CO_2 + O_2 to the application of the in-situ leaching of uranium

    International Nuclear Information System (INIS)

    Ruan Zhilong; Li Xilong; Yang Shaowu

    2014-01-01

    Advantages and disadvantages of various groundwater management methods, combined with CO_2 + O_2 characteristics of in situ leaching uranium mining process, use reverse osmosis wastewater treatment technology, has carried on the laboratory test, field condition test and industrial test. Obtained by indoor experiment and field conditions for Cl"- ion concentration variation characteristics; Reverse osmosis treatment effect of wastewater is verified by industrial test, obtained the technical parameters and consumption data, as well as the leaching liquid and adsorption tail liquid pH, SO_4"2"-; Cl"- in the plasma concentration monitoring, and further prove that the reverse osmosis treatment technology is suitable for in-situ leaching of uranium in CO_2 + O_2 in wastewater treatment. (authors)

  16. Subclinical ductal carcinoma in situ of the breast: treatment with conservative surgery and radiotherapy.

    Science.gov (United States)

    Amichetti, M; Caffo, O; Richetti, A; Zini, G; Rigon, A; Antonello, M; Roncadin, M; Coghetto, F; Valdagni, R; Fasan, S; Maluta, S; Di Marco, A; Neri, S; Vidali, C; Panizzoni, G; Aristei, C

    1999-01-01

    In spite of the fact that ductal carcinoma in situ (DCIS) of the breast is a frequently encountered clinical problem, there is no consensus about the optimal treatment of clinically occult (i.e., mammographic presentation only) DCIS. Interest in breast conservation therapy has recently increased. Few data are available in Italy on the conservative treatment with surgery and adjuvant postoperative radiotherapy. A retrospective multi-institutional study was performed in 15 Radiation Oncology Departments in northern Italy involving 112 women with subclinical DCIS of the breast treated between 1982 and 1993. Age of the patients ranged between 32 and 72 years (median, 50 years). All of them underwent conservative surgery: quadrantectomy in 89, tumorectomy in 11, and wide excision in 12 cases. The most common histologic subtype was comedocarcinoma (37%). The median pathologic size was 10 mm (range 1 to 55 mm). Axillary dissection was performed in 83 cases: all the patients were node negative. All the patients received adjunctive radiation therapy with 60Co units (77%) or 6 MV linear accelerators (23%) for a median total dose to the entire breast of 50 Gy (mean, 49.48 Gy; range, 45-60 Gy). Seventy-six cases (68%) received a boost to the tumor bed at a dose of 8-20 Gy (median 10 Gy) for a minimum tumor dose of 58 Gy. At a median follow-up of 66 months, 8 local recurrences were observed, 4 intraductal and 4 invasive. All recurrent patients had a salvage mastectomy and are alive and free of disease at this writing. The 10-year actuarial overall, cause-specific, and recurrence-free survival was of 98.8%, 100%, and 91%, respectively. The retrospective multicentric study, with a local control rate of more than 90% at 10 years with 100% cause-specific survival, showed that conservative surgery and adjuvant radiation therapy is a safe and efficacious treatment for patients with occult, non-palpable DCIS.

  17. In-situ vitrification: a large-scale prototype for immobilizing radioactively contaminated waste

    International Nuclear Information System (INIS)

    Carter, J.G.; Buelt, J.L.

    1986-03-01

    Pacific Northwest Laboratory is developing the technology of in situ vitrification, a thermal treatment process for immobilizing radioactively contaminated soil. A permanent remedial action, the process incorporates radionuclides into a glass and crystalline form. The transportable procss consists of an electrical power system to vitrify the soil, a hood to contain gaseous effluents, an off-gas treatment system and cooling system, and a process control station. Large-scale testing of the in situ vitrification process is currently underway

  18. In situ-observation of the vertical motion of soil waters by means of deuterated water using the gamma/neutron method: Laboratory and field

    International Nuclear Information System (INIS)

    Moutonnet, P.; Couchat, P.; Brissaud, F.; Puard, M.; Pappalardo, A.

    1978-01-01

    In order to study water movements in the field, the gamma/neutron method for measuring deuterated water was investigated. A laboratory device is presented which supplies measurements on 5 ml soil solution samples. A probe for in situ experiments is studied in all its performances: Background, calibration (count rate versus volumetric deuterated water content) and resolution. A dispersive transport of D 2 O pulses on soil column is presented and checked with a numerical simulation model. Then simultaneous measurement of soil water content and D 2 O concentration by neutron moisture gauge and gamma/neutron probe enable us to interpret the evolution of D 2 O pulse with an experimental field irrigation. (orig.) [de

  19. An Enzymatic Treatment of Soil-Bound Prions Effectively Inhibits Replication ▿

    Science.gov (United States)

    Saunders, Samuel E.; Bartz, Jason C.; Vercauteren, Kurt C.; Bartelt-Hunt, Shannon L.

    2011-01-01

    Chronic wasting disease (CWD) and scrapie can be transmitted through indirect environmental routes, possibly via soil, and a practical decontamination strategy for prion-contaminated soil is currently unavailable. In the laboratory, an enzymatic treatment under environmentally relevant conditions (22°C, pH 7.4) can degrade soil-bound PrPSc below the limits of Western blot detection. We developed and used a quantitative serial protein misfolding cyclic amplification (PMCA) protocol to characterize the amplification efficiency of treated soil samples relative to controls of known infectious titer. Our results suggest large (104- to >106-fold) decreases in soil-bound prion infectivity following enzyme treatment, demonstrating that a mild enzymatic treatment could effectively reduce the risk of prion disease transmission via soil or other environmental surfaces. PMID:21571886

  20. Degradability of n-alkanes during ex situ natural bioremediation of soil contaminated by heavy residual fuel oil (mazut

    Directory of Open Access Journals (Sweden)

    Ali Ramadan Mohamed Muftah

    2013-01-01

    Full Text Available It is well known that during biodegradation of oil in natural geological conditions, or oil pollutants in the environment, a degradation of hydrocarbons occurs according to the well defined sequence. For example, the major changes during the degradation process of n-alkanes occur in the second, slight and third, moderate level (on the biodegradation scale from 1 to 10. According to previous research, in the fourth, heavy level, when intensive changes of phenanthrene and its methyl isomers begin, n-alkanes have already been completely removed. In this paper, the ex situ natural bioremediation (unstimulated bioremediation, without addition of biomass, nutrient substances and biosurfactant of soil contaminated with heavy residual fuel oil (mazut was conducted during the period of 6 months. Low abundance of n-alkanes in the fraction of total saturated hydrocarbons in the initial sample (identification was possible only after concentration by urea adduction technique showed that the investigated oil pollutant was at the boundary between the third and the fourth biodegradation level. During the experiment, an intense degradation of phenanthrene and its methyl-, dimethyl-and trimethyl-isomers was not followed by the removal of the remaining n-alkanes. The abundance of n-alkanes remained at the initial low level, even at end of the experiment when the pollutant reached one of the highest biodegradation levels. These results showed that the unstimulated biodegradation of some hydrocarbons, despite of their high biodegradability, do not proceed completely to the end, even at final degradation stages. In the condition of the reduced availability of some hydrocarbons, microorganisms tend to opt for less biodegradable but more accessible hydrocarbons.

  1. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching.

    Science.gov (United States)

    Klimkova, Stepanka; Cernik, Miroslav; Lacinova, Lenka; Filip, Jan; Jancik, Dalibor; Zboril, Radek

    2011-02-01

    Acid mine water from in situ chemical leaching of uranium (Straz pod Ralskem, Czech Republic) was treated in laboratory scale experiments by zero-valent iron nanoparticles (nZVI). For the first time, nZVI were applied for the treatment of the real acid water system containing the miscellaneous mixture of pollutants, where the various removal mechanisms occur simultaneously. Toxicity of the treated saline acid water is caused by major contaminants represented by aluminum and sulphates in a high concentration, as well as by microcontaminants like As, Be, Cd, Cr, Cu, Ni, U, V, and Zn. Laboratory batch experiments proved a significant decrease in concentrations of all the monitored pollutants due to an increase in pH and a decrease in oxidation-reduction potential related to an application of nZVI. The assumed mechanisms of contaminants removal include precipitation of cations in a lower oxidation state, precipitation caused by a simple pH increase and co-precipitation with the formed iron oxyhydroxides. The possibility to control the reaction kinetics through the nature of the surface stabilizing shell (polymer vs. FeO nanolayer) is discussed as an important practical aspect. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment

    DEFF Research Database (Denmark)

    Nielsen, Sanne Skov; Petersen, L. R.; Kjeldsen, Peter

    2011-01-01

    An iron-rich water treatment residue (WTR) consisting mainly of ferrihydrite was used for immobilization of arsenic and chromium in a soil contaminated by wood preservatives. A leaching batch experiment was conducted using two soils, a highly contaminated soil (1033mgkg−1 As and 371mgkg−1 Cr....... Pore water was extracted during 3years from the amended soil and a control site. Pore water arsenic concentrations in the amended soil were more than two orders of magnitude lower than in the control for the upper samplers. An increased release of arsenic was observed during winter in both fields...

  3. Prediction of Groundwater Quality Improvement Down-Gradient of In Situ Permeable Treatment Barriers and Fully-Remediated Source Zones. ESTCP Cost and Performance Report

    National Research Council Canada - National Science Library

    Johnson, Paul C; Carlson, Pamela M; Dahlen, Paul

    2008-01-01

    In situ permeable treatment barriers (PTB) are designed so that contaminated groundwater flows through an engineered treatment zone within which contaminants are eliminated or the concentrations are significantly reduced...

  4. Solvent extraction treatment of PCB contaminated soil at Sparrevohn Long Range Radar Station, Alaska

    International Nuclear Information System (INIS)

    Weimer, L. D.

    1999-01-01

    On-site soil treatment at a long range radar station in Alaska, which was contaminated with between 50 and 350 mg/kg of polychlorinated biphenyls (PCBs) is described. The stock-piled soil was treated by the Terra Kleen Response Group, using a solvent extraction process. After the treatment, PCB concentrations in the treated soil were found to have been reduced to less than the target treatment level of 15 mg/kg. Not only was the process successful, it also saved the government about $ 1 million over what hauling and off-site treatment and disposal would have cost. 1 tab

  5. A study on the assessment of treatment technologies for efficient remediation of radioactively-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jong Soon; Shin, Seung Su; KIm, Sun Il [Chosun University, Gwangju (Korea, Republic of)

    2016-09-15

    Soil can be contaminated by radioactive materials due to nuclide leakage following unexpected situations during the decommissioning of a nuclear power plant. Soil decontamination is necessary if contaminated land is to be reused for housing or industry. The present study classifies various soil remediation technologies into biological, physics/chemical and thermal treatment and analyzes their principles and treatment materials. Among these methods, this study selects technologies and categorizes the economics, applicability and technical characteristics of each technology into three levels of high, medium and low by weighting the various factors. Based on this analysis, the most applicable soil decontamination technology was identified.

  6. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater.

    Science.gov (United States)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-02-15

    In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than -200mV. Perchlorate was reduced continuously from ∼1150mg/L at the inlet to ∼300mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10 5 to 10 7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Pyrolytic Treatment and Fertility Enhancement of Soils Contaminated with Heavy Hydrocarbons.

    Science.gov (United States)

    Vidonish, Julia E; Zygourakis, Kyriacos; Masiello, Caroline A; Gao, Xiaodong; Mathieu, Jacques; Alvarez, Pedro J J

    2016-03-01

    Pyrolysis of contaminated soils at 420 °C converted recalcitrant heavy hydrocarbons into "char" (a carbonaceous material similar to petroleum coke) and enhanced soil fertility. Pyrolytic treatment reduced total petroleum hydrocarbons (TPH) to below regulatory standards (typically hydrocarbons (PAHs) was not observed, with post-pyrolysis levels well below applicable standards. Plant growth studies showed a higher biomass production of Arabidopsis thaliana and Lactuca sativa (Simpson black-seeded lettuce) (80-900% heavier) in pyrolyzed soils than in contaminated or incinerated soils. Elemental analysis showed that pyrolyzed soils contained more carbon than incinerated soils (1.4-3.2% versus 0.3-0.4%). The stark color differences between pyrolyzed and incinerated soils suggest that the carbonaceous material produced via pyrolysis was dispersed in the form of a layer coating the soil particles. Overall, these results suggest that soil pyrolysis could be a viable thermal treatment to quickly remediate soils impacted by weathered oil while improving soil fertility, potentially enhancing revegetation.

  8. Potential use of fly ash to soil treatment in the Morava region

    Science.gov (United States)

    Bulíková, Lucia; Kresta, František; Rochovanský, Martin

    2017-09-01

    Soil treatment by binders is a standard technology and leads to optimal utilization of excavated soils in road constructions. Soil treatment is controlled in the Czech Republic by EN 14227-15 and Technical Requirement TP 94. Soil treatment using fly ash has not been performed in the Czech Republic, although there is a sufficient normative base. Fly ash produced by burning of hard coal in the Moravian region was tested as a potential binder. Fly ash samples were mixed with loess loams (CI). Tested siliceous fly ash of class F (ASTM C618) did not showed hydraulic properties but it showed positive effect on reducing maximum dry density of mixtures, increasing the IBI value (Immediate bearing index) and decreasing tendency to volume changes when the amount of fly ash was increased. The results of laboratory tests demonstrate the possibility of using fly ashes as a binder for soil treatment.

  9. Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. Climate Reference Network (USCRN) locations: Analysis and applications to AMSR-E satellite validation

    Science.gov (United States)

    Surface soil moisture is critical parameter for understanding the energy flux at the land atmosphere boundary. Weather modeling, climate prediction, and remote sensing validation are some of the applications for surface soil moisture information. The most common in situ measurement for these purpo...

  10. Investigation of the impacts of ethyl lactate based Fenton treatment on soil quality for polycyclic aromatic hydrocarbons (PAHs)-contaminated soils.

    Science.gov (United States)

    Gan, Suyin; Yap, Chiew Lin; Ng, Hoon Kiat; Venny

    2013-11-15

    This study aims to investigate the impacts of ethyl lactate (EL) based Fenton treatment on soil quality for polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. Accumulation of oxygenated-polycyclic aromatic hydrocarbons (oxy-PAHs) was observed, but quantitative measurement on the most abundant compound 9,10-anthraquinone (ATQ) showed lower accumulation of the compound than that reported for ethanol (ET) based Fenton treatment. In general, as compared to conventional water (CW) based Fenton treatment, the EL based Fenton treatment exerted either a lower or higher negative impact on soil physicochemical properties depending on the property type and shared the main disadvantage of reduced soil pH. For revegetation, EL based Fenton treatment was most appropriately adopted for soil with native pH >/~ 6.2 in order to obtain a final soil pH >/~ 4.9 subject to the soil buffering capacity. Copyright © 2013 Elsevier B.V. All rights reserve