WorldWideScience

Sample records for situ soil heating

  1. Demonstration testing and evaluation of in situ heating of soil

    International Nuclear Information System (INIS)

    1995-01-01

    This document describes the Quality Assurance Project Plan (QAPP) for IITRI Project C06787 entitled open-quotes Demonstration Testing and Evaluation of In Situ Heating of Soilclose quotes. A work plan for the above mentioned work was previously submitted. This QAPP describes the sampling and analysis of soil core-samples obtained from the K-25 Site (Oak Ridge Gaseous Diffusion Plant) where an in-situ heating and soil decontamination demonstration experiment will be performed. Soil samples taken before and after the experiment will be analyzed for selected volatile organic compounds. The Work Plan mentioned above provides a complete description of the demonstration site, the soil sampling plan, test plan, etc

  2. Demonstration testing and evaluation of in situ soil heating

    International Nuclear Information System (INIS)

    Sresty, G.C.

    1994-01-01

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the '70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid '80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern

  3. Demonstration testing and evaluation of in situ soil heating. Revision 1, Demonstration system design

    International Nuclear Information System (INIS)

    Dev, H.

    1994-01-01

    Over the last nine years IIT Research Institute (IITRI) has been developing and testing the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. The vaporized contaminants, water vapor and air are recovered from the heated zone by means of a vacuum manifold system which collects gases from below surface as well as from the soil surface. A vapor barrier is used to prevent fugitive emissions of the contaminants and to control air infiltration to minimize dilution of the contaminant gases and vapors. The recovered gases and vapors are conveyed to an on site vapor treatment system for the clean up of the vent gases. Electrical energy is applied to the soil by forming an array of electrodes in the soil which are electrically interconnected and supplied with power. The electrodes are placed in drilled bore holes which are made through the contaminated zone. There are two versions of the in situ heating and soil treatment process: the f irst version is called the In Situ Radio Frequency (RF) Soil Decontamination Process and the second version is called the In Situ Electromagnetic (EM) Soil Decontamination Process. The first version, the RF Process is capable of heating the soil in a temperature range of 100 degrees to 400 degrees C. The soil temperature in the second version, the EM Process, is limited to the boiling point of water under native conditions. Thus the soil will be heated to a temperature of about 85 degrees to 95 degrees C. In this project IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site due to the fact that most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 degrees to 95 degrees C

  4. Demonstration, testing, and evaluation of in situ heating of soil. Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-04-05

    This document is a final reports in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating.

  5. Demonstration, testing, and evaluation of in situ heating of soil. Volume 1, Final report

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-01-01

    This document is a final reports in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating

  6. Demonstration testing and evaluation of in situ soil heating. Revision 1, Demonstration system design

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.

    1994-08-16

    Over the last nine years IIT Research Institute (IITRI) has been developing and testing the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. The vaporized contaminants, water vapor and air are recovered from the heated zone by means of a vacuum manifold system which collects gases from below surface as well as from the soil surface. A vapor barrier is used to prevent fugitive emissions of the contaminants and to control air infiltration to minimize dilution of the contaminant gases and vapors. The recovered gases and vapors are conveyed to an on site vapor treatment system for the clean up of the vent gases. Electrical energy is applied to the soil by forming an array of electrodes in the soil which are electrically interconnected and supplied with power. The electrodes are placed in drilled bore holes which are made through the contaminated zone. There are two versions of the in situ heating and soil treatment process: the f irst version is called the In Situ Radio Frequency (RF) Soil Decontamination Process and the second version is called the In Situ Electromagnetic (EM) Soil Decontamination Process. The first version, the RF Process is capable of heating the soil in a temperature range of 100{degrees} to 400{degrees}C. The soil temperature in the second version, the EM Process, is limited to the boiling point of water under native conditions. Thus the soil will be heated to a temperature of about 85{degrees} to 95{degrees}C. In this project IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site due to the fact that most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85{degrees} to 95{degrees}C.

  7. Demonstration testing and evaluation of in situ soil heating. Health and safety plan (Revision 2)

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.

    1994-12-28

    This document is the Health and Safety Plan (HASP) for the demonstration of IITRI`s EM Treatment Technology. In this process, soil is heated in situ by means of electrical energy for the removal of hazardous organic contaminants. This process will be demonstrated on a small plot of contaminated soil located in the Pit Area of Classified Burial Ground K-1070-D, K-25 Site, Oak Ridge, TN. The purpose of the demonstration is to remove organic contaminants present in the soil by heating to a temperature range of 85{degrees} to 95{degrees}C. The soil will be heated in situ by applying 60-Hz AC power to an array of electrodes placed in boreholes drilled through the soil. In this section a brief description of the process is given along with a description of the site and a listing of the contaminants found in the area.

  8. Demonstration testing and evaluation of in situ soil heating. Health and safety plan (Revision 2)

    International Nuclear Information System (INIS)

    Dev, H.

    1994-01-01

    This document is the Health and Safety Plan (HASP) for the demonstration of IITRI's EM Treatment Technology. In this process, soil is heated in situ by means of electrical energy for the removal of hazardous organic contaminants. This process will be demonstrated on a small plot of contaminated soil located in the Pit Area of Classified Burial Ground K-1070-D, K-25 Site, Oak Ridge, TN. The purpose of the demonstration is to remove organic contaminants present in the soil by heating to a temperature range of 85 degrees to 95 degrees C. The soil will be heated in situ by applying 60-Hz AC power to an array of electrodes placed in boreholes drilled through the soil. In this section a brief description of the process is given along with a description of the site and a listing of the contaminants found in the area

  9. Demonstration, testing, & evaluation of in situ heating of soil. Draft final report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-02-12

    This document is a draft final report (Volume 1) for US DOE contract entitled, {open_quotes}Demonstration Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120{degrees} to 130{degrees}C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow.

  10. Demonstration, testing, ampersand evaluation of in situ heating of soil. Draft final report, Volume I

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-01-01

    This document is a draft final report (Volume 1) for US DOE contract entitled, open-quotes Demonstration Testing and Evaluation of In Situ Soil Heating,close quotes Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120 degrees to 130 degrees C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow

  11. Demonstration testing and evaluation of in situ soil heating. Treatability study work plan, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Sresty, G.C.

    1994-07-07

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the `70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid `80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern.

  12. Demonstration testing and evaluation of in situ soil heating. Treatability study work plan (Revision 2)

    International Nuclear Information System (INIS)

    Sresty, G.C.

    1994-01-01

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 degrees to 95 degrees C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern. This document is a Treatability Study Work Plan for the demonstration program. The document contains a description of the proposed treatability study, background of the EM heating process, description of the field equipment, and demonstration test design

  13. Management Plan: Demonstration testing and evaluation of in situ soil heating

    International Nuclear Information System (INIS)

    Dev, H.

    1993-01-01

    In this project IITRI will demonstrate an in situ soil heating technology for the removal of hazardous organic contaminants present in the soil. In Situ heating will be accomplished by the application of 60 Hz AC power to the soil. The soil will be heated to a temperature of about 90 degree C. This technology is suited for the removal of those organic compounds which have a normal boiling point in the range of 100 degree to 210 degree C, or else for those which exhibit a pure component vapor pressure of at least 10 mm Hg in the 90 degree to 100 degree C temperature range. For example, perchloroethylene, dichlorobenzene, trichlorobenzene, etc. may be removed by in situ AC heating. It is planned to demonstrate the technology by heating approximately 400 tons of soil in the K-1070 Classified Burial Ground located at DOE's K-25 Site located in Oak Ridge, TN. It is estimated that the heating portion of the demonstration will take approximately 3 weeks at an average power input rate of 150 to 175 kill. IITRI expects to spend considerable time in the front end reviewing site characteristics, preparing detail design, developing Health and Safety Plans and other documents needed to obtain regulatory approval for the demonstration, arranging for site sampling, infrastructure development and document preparation. It is anticipated that site activities will begin in approximately 5 to 6 months. This contract was signed on September 30, 1993. IITRI started work on it in October 1993. It is planned to complete the demonstration and submit approved final reports by September 30, 1994. This project has 12 tasks and four major milestones. The major milestones and their planned completion dates are presented

  14. Demonstration, testing, & evaluation of in situ heating of soil. Draft final report, Volume II: Appendices A to E

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-02-12

    This document is a draft final report for US DOE contract entitled, {open_quotes}Demonstration Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report This document is Volume II, containing appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120{degrees}to 130{degrees}C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow.

  15. Demonstration, testing, ampersand evaluation of in situ heating of soil. Draft final report, Volume II: Appendices A to E

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Saboto, W.

    1996-01-01

    This document is a draft final report for US DOE contract entitled, open-quotes Demonstration Testing and Evaluation of In Situ Soil Heating,close quotes Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report This document is Volume II, containing appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120 degrees to 130 degrees C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow

  16. Demonstration, testing, and evaluation of in situ heating of soil. Final report, Volume 2, Appendices A to E

    International Nuclear Information System (INIS)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-01-01

    This is a final report presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOC's and other organic chemicals. Although it may be applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by air flow

  17. Demonstration, testing, and evaluation of in situ heating of soil. Final report, Volume 2, Appendices A to E

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.; Enk, J.; Jones, D.; Sabato, W.

    1996-04-05

    This is a final report presented in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOC`s and other organic chemicals. Although it may be applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by air flow.

  18. Bioventing in the subarctic: Field scale implementation of soil heating to allow in situ vadose zone biodegradation throughout the year

    International Nuclear Information System (INIS)

    Oram, D.E.; Winters, A.T.; Winsor, T.R.

    1994-01-01

    Bioventing is a technique of in situ bioremediation of contaminants in unsaturated zone soils that has advantages over other technologies such as soil vapor extraction. At locations where off-gas treatment would be required, bioventing can be a more cost-effective method of remediation. Using bioventing to remediate petroleum hydrocarbons in the vadose zone soils in extremely cold climates may be augmented by heating the subsurface soils. The US Air Force has conducted a bioventing feasibility study at Eielson Air Force Base since 1991. The feasibility study evaluated different methods of heating soils to maintain biodegradation rates through the winter. Results from this study were used to optimize the design of a full-scale bioventing system that incorporated a soil heating system. The system installed consists of the typical components of a bioventing system including an air injection blower, a system to distribute air in the vadose zone, and a monitoring system. To maintain biodegradation at a constant rate throughout the year, soil heating and temperature monitoring systems were also installed. Results to date indicate that summer soil temperatures and biodegradation of hydrocarbons have been maintained through the winter

  19. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    Science.gov (United States)

    Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  20. In situ radio-frequency heating for soil remediation at a former service station: case study and general aspects

    Energy Technology Data Exchange (ETDEWEB)

    Huon, G.; Simpson, T.; Maini, G. [Ecologia Environmental Solutions Ltd., Sittingbourne, Kent (United Kingdom); Holzer, F.; Kopinke, F.D.; Roland, U. [Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Leipzig (Germany); Will, F. [Total UK, Watford (United Kingdom)

    2012-08-15

    In situ radio-frequency heating (ISRFH) was successfully applied during remediation of a former petrol station. Using a three-electrode array in combination with extraction wells for soil vapor extraction (SVE), pollution consisting mainly of benzene, toluene, ethylbenzene, xylenes, and mineral oil hydrocarbons (in total about 1100 kg) was eliminated from a chalk soil in the unsaturated zone. Specially designed rod electrodes allowed selective heating of a volume of approximately 480 m{sup 3}, at a defined depth, to a mean temperature of about 50 C. The heating drastically increased the extraction rates. After switching off ISRFH, SVE remained highly efficient for some weeks due to the heat-retaining properties of the soil. Comparison of an optimized regime of ISRFH/SVE with conventional ''cold'' SVE showed a reduction of remediation time by about 80 % while keeping the total energy consumption almost constant. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Influence of in situ steam formation by radio frequency heating on thermodesorption of hydrocarbons from contaminated soil.

    Science.gov (United States)

    Roland, Ulf; Bergmann, Sabine; Holzer, Frank; Kopinke, Frank-Dieter

    2010-12-15

    Thermal desorption of a wide spectrum of organic contaminants, initiated by radio frequency (RF) heating, was studied at laboratory and pilot-plant scales for an artificially contaminated soil and for an originally contaminated soil from an industrial site. Up to 100 °C, moderate desorption rates were observed for light aromatics such as toluene, chlorobenzene, and ethylbenzene. Desorption of the less volatile contaminants was greatly enhanced above 100 °C, when fast evaporation of soil-water produced steam for hydrocarbon stripping (steam-distillation, desorption rates increased by more than 1 order of magnitude). For hydrocarbons with low water solubility (e.g., aliphatic hydrocarbons), the temperature increase above 100 °C after desiccation of soil again led to a significant increase of the removal rates, thus showing the impact of hydrocarbon partial pressure. RF heating was shown to be an appropriate option for thermally enhanced soil vapor extraction, leading to efficient cleaning of contaminated soils.

  2. Preliminary analysis of NAPL behavior in soil-heated vapor extraction for in-situ environmental restoration

    International Nuclear Information System (INIS)

    Webb, S.W.; Phelan, J.M.

    1995-01-01

    Simulations of soil-heated vapor extraction have been performed to evaluate the NAPL removal performance as a function of borehole vacuum. The possibility of loss of NAPL containment, or NAPL migration into the unheated soil, is also evaluated in the simulations. A practical warning sign indicating migration of NAPL into the unheated zone is discussed

  3. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils.

    Science.gov (United States)

    Ranc, Bérénice; Faure, Pierre; Croze, Véronique; Lorgeoux, Catherine; Simonnot, Marie-Odile

    2017-04-01

    Thermal treatments prior or during chemical oxidation of aged polycyclic aromatic hydrocarbon (PAH)-contaminated soils have already shown their ability to increase oxidation effectiveness. However, they were never compared on the same soil. Furthermore, oxygenated polycyclic aromatic hydrocarbons (O-PACs), by-products of PAH oxidation which may be more toxic and mobile than the parent PAHs, were very little monitored. In this study, two aged PAH-contaminated soils were heated prior (60 or 90 °C under Ar for 1 week) or during oxidation (60 °C for 1 week) with permanganate and persulfate, and 11 O-PACs were monitored in addition to the 16 US Environmental Protection Agency (US EPA) PAHs. Oxidant doses were based on the stoichiometric oxidant demand of the extractable organic fraction of soils by using organic solvents, which is more representative of the actual contamination than only the 16 US EPA PAHs. Higher temperatures actually resulted in more pollutant degradation. Two treatments were about three times more effective than the others: soil heating to 60 °C during persulfate oxidation and soil preheating to 90 °C followed by permanganate oxidation. The results of this study showed that persulfate effectiveness was largely due to its thermal activation, whereas permanganate was more sensitive to PAH availability than persulfate. The technical feasibility of these two treatments will soon be field-tested in the unsaturated zone of one of the studied aged PAH-contaminated soils.

  4. In-situ vitrification of soil

    International Nuclear Information System (INIS)

    Buelt, J.L.; Brouns, R.A.; Bonner, W.F.

    1982-01-01

    A method of vitrifying soil at or below a soil surface location. Two or more conductive electrodes are inserted into the soil for heating of the soil mass between them to a temperature above its melting temperature. Materials in the soil, such as buried radioactive waste, can thereby be effectively immobilized. (author)

  5. In situ soil remediation using electrokinetics

    International Nuclear Information System (INIS)

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-11-01

    Electrokinetics is emerging as a promising technology for in situ soil remediation. This technique is especially attractive for Superfund sites and government operations which contain large volumes of contaminated soil. The approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The transport mechanisms include electroosmosis, electromigration, and electrophoresis. The feasibility of using electrokinetics to move radioactive 137 Cs and 60 Co at the Hanford Site in Richland, Washington, is discussed. A closed cell is used to provide in situ measurements of 137 Cs and 60 Co movement in Hanford soil. Preliminary results of ionic movement, along with the corresponding current response, are presented

  6. Stabilization of contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.

    1984-01-01

    In Situ Vitrification is an emerging technology developed by Pacific Northwest Laboratory for potential in-place immobilization of radioactive wastes. The contaminated soil is stabilized and converted to an inert glass form. This conversion is accomplished by inserting electrodes in the soil and establishing an electric current between the electrodes. The electrical energy causes a joule heating effect that melts the soil during processing. Any contaminants released from the melt are collected and routed to an off-gas treatment system. A stable and durable glass block is produced which chemically and physically encapsulates any residual waste components. In situ vitrification has been developed for the potential application to radioactive wastes, specifically, contaminated soil sites; however, it could possibly be applied to hazardous chemical and buried munitions waste sites. The technology has been developed and demonstrated to date through a series of 21 engineering-scale tests [producing 50 to 1000 kg (100 to 2000 lb) blocks] and seven pilot-scale tests [producing 9000 kg (20,000 lb) blocks], the most recent of which illustrated treatment of actual radioactively contaminated soil. Testing with some organic materials has shown relatively complete thermal destruction and incineration. Further experiments have documented the insensitivity of in situ vitrification to soil characteristics such as fusion temperature, specific heat, thermal conductivity, electrical resistivity, and moisture content. Soil inclusions such as metals, cements, ceramics, and combustibles normally present only minor process limitations. Costs for hazardous waste applications are estimated to be less than $175/m 3 ($5.00/ft 3 ) of material vitrified. For many applications, in situ vitrification can provide a cost-effective alternative to other disposal options. 13 references, 4 figures, 1 table

  7. Six phase soil heating. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    Six Phase Soil Heating (SPSH) was developed to remediate soils contaminated with volatile and semi-volatile organic compounds. SPSH is designed to enhance the removal of contaminates from the subsurface during soil vapor extraction. The innovation combines an emerging technology, six-phase electric heating, with a baseline technology, soil vapor extraction, to produce a more efficient in situ remediation systems for difficult soil and/or contaminate applications. This document describes the technology and reports on field demonstrations conducted at Savannah River and the Hanford Reservation

  8. An Expert support model for ex situ soil remediation

    NARCIS (Netherlands)

    Okx, J.P.; Frankhuizen, E.M.; Wit, de J.C.; Pijls, C.G.J.M.; Stein, A.

    2000-01-01

    This paper presents an expert support model recombining knowledge and experience obtained during ex situ soil remediation. To solve soil remediation problems, an inter-disciplinary approach is required. Responsibilities during the soil remediation process, however, are increasingly decentralised,

  9. Enhanced ex-situ bioremediation of soil contaminated with ...

    African Journals Online (AJOL)

    contaminated soil. Thus, the objective of this study was to investigate the feasibility and effectiveness of using electrical biostimulation processes to enhance ex-situ bioremediation of soils contaminated with organic pollutants. The effect of ...

  10. Electrode design for soil decontamination with Radio-Frequency heating

    Energy Technology Data Exchange (ETDEWEB)

    Roland, U.; Holzer, F.; Kraus, M.; Trommler, U.; Kopinke, F.D. [Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Leipzig (Germany)

    2011-10-15

    Radio-frequency heating to enhance soil decontamination requires adjusted solutions for the electrode design depending on scale and remediation technique. Parallel plate electrodes provide widely homogeneous field and temperature distributions and are, therefore, most suitable for supporting biodegradation processes. For thermally enhanced soil vapor extraction, certain temperature gradients can be accepted and, therefore, the less-demanding geometry of rod-shaped electrodes is usually applied. For electrode lengths of some meters, a design with an air gap has to be used in order to focus heating to the desired depth. Perforated rod electrodes may be simultaneously employed as extraction wells. Placing an oxidation catalyst in situ within the electrodes is an option for handling of highly loaded air flows. Coaxial antenna may be utilized to selectively heat soil compartments far from the surface of the soil. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. An expert support model for in situ soil remediation

    NARCIS (Netherlands)

    Okx, J.P.; Stein, A.

    2000-01-01

    This article presents an expert support model for in situ soil remediation. It combines knowledge and experiences obtained from previous in situ soil remediations. The aim of this model is to optimise knowledge transfer among the various parties involved in contaminated site management. Structured

  12. In-situ measurements of soil-water conductivity

    International Nuclear Information System (INIS)

    Murphy, C.E.

    1978-01-01

    Radionuclides and other environmentally important materials often move in association with water. In terrestrial ecosystems, the storage and movement of water in the soil is of prime importance to the hydrologic cycle of the ecosystem. The soil-water conductivity (the rate at which water moves through the soil) is a necessary input to models of soil-water movement. In situ techniques for measurement of soil-water conductivity have the advantage of averaging soil-water properties over larger areas than most laboratory methods. The in situ techniques also cause minimum disturbance of the soil under investigation. Results of measurements using a period of soil-water drainage after initial wetting indicate that soil-water conductivity and its variation with soil-water content can be determined with reasonable accuracy for the plot where the measurements were made. Further investigations are being carried out to look at variability between plots within a soil type

  13. Mercury speciation during in situ thermal desorption in soil

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Min, E-mail: cmpark80@gmail.com; Katz, Lynn E.; Liljestrand, Howard M.

    2015-12-30

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg{sup 0} gas until the temperature reached 358.15 K. • Phase change of HgCl{sub 2(s)} completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg{sup 0}) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  14. Mercury speciation during in situ thermal desorption in soil

    International Nuclear Information System (INIS)

    Park, Chang Min; Katz, Lynn E.; Liljestrand, Howard M.

    2015-01-01

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg"0 gas until the temperature reached 358.15 K. • Phase change of HgCl_2_(_s_) completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg"0) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  15. Remediation of hydrocarbon-contaminated soils by ex situ microwave treatment: technical, energy and economic considerations.

    Science.gov (United States)

    Falciglia, P P; Vagliasindi, F G A

    2014-01-01

    In this study, the remediation of diesel-polluted soils was investigated by simulating an ex situ microwave (MW) heating treatment under different conditions, including soil moisture, operating power and heating duration. Based on experimental data, a technical, energy and economic assessment for the optimization of full-scale remediation activities was carried out. Main results show that the operating power applied significantly influences the contaminant removal kinetics and the moisture content in soil has a major effect on the final temperature reachable during MW heating. The first-order kinetic model showed an excellent correlation (r2 > 0.976) with the experimental data for residual concentration at all operating powers and for all soil moistures tested. Excellent contaminant removal values up to 94.8% were observed for wet soils at power higher than 600 W for heating duration longer than 30 min. The use of MW heating with respect to a conventional ex situ thermal desorption treatment could significantly decrease the energy consumption needed for the removal of hydrocarbon contaminants from soils. Therefore, the MW treatment could represent a suitable cost-effective alternative to the conventional thermal treatment for the remediation of hydrocarbon-polluted soil.

  16. In situ heat treatment process utilizing a closed loop heating system

    Science.gov (United States)

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  17. Three-dimensional model of heat transport during In Situ Vitrification with melting and cool down

    International Nuclear Information System (INIS)

    Hawkes, G.L.

    1993-01-01

    A potential technology for permanent remediation of buried wastes is the In Situ Vitrification (ISV) process. This process uses electrical resistance heating to melt waste and contaminated soil in place to produce a durable, glasslike material that encapsulates and immobilizes buried wastes. The magnitude of the resulting electrical resistance heating is sufficient to cause soil melting. As the molten region grows, surface heat losses cause the soil near the surface to re solidify. This paper presents numerical results obtained by considering heat transport and melting when solving the conservation of mass and energy equations using finite element methods. A local heat source is calculated by solving the electric field equation and calculating a Joule Heat source term. The model considered is a three-dimensional model of the electrodes and surrounding soil. Also included in the model is subsidence; where the surface of the melted soil subsides due to the change in density when the soil melts. A power vs. time profile is implemented for typical ISV experiments. The model agrees well with experimental data for melt volume and melt shape

  18. In situ bioventing in deep soils at arid sites

    International Nuclear Information System (INIS)

    Frishmuth, R.A.; Ratz, J.W.; Blicker, B.R.; Hall, J.F.; Downey, D.C.

    1995-01-01

    In situ bioventing has been shown to be a cost-effective remedial alternative for vadose zone soils. The success of the technology relies on the ability of indigenous soil microorganisms to utilize petroleum hydrocarbon contaminants as a primary metabolic substrate. Soil microbial populations are typically elevated in shallow soils due to an abundance of naturally occurring substrates and nutrients, but may be limited at greater depths due to a lack of these constituents. Therefore, the effectiveness of in situ bioventing is questionable in contaminated soil zones that extend far below the ground surface. Also, because the soil microbial population relies on soil moisture to sustain hydrocarbon degradation, the viability of bioventing is questionable in arid climates, where the soil moisture content is suspected to be minimal

  19. In-Situ Bioremediation of Perchlorate in Groundwater and Soil

    OpenAIRE

    Jin, Liyan

    2012-01-01

    Historical, uncontrolled disposal practices have made perchlorate a significant threat to drinking water supplies in the United States. In-situ bioremediation (ISB) technologies are cost effective and provide an environmental friendly solution for treating contaminated groundwater and soil. In situ bioremediation was considered as an option for treatment of perchlorate in groundwater and soil in Lockheed Martin Corporation's Beaumont Site 2 (Beaumont, CA). Based on the perchlorate distribu...

  20. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  1. A comparison of different methods for in-situ determination of heat losses form district heating pipes

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Benny [Technical Univ. of Denmark, Dept. of Energy Engineering (Denmark)

    1996-11-01

    A comparison of different methods for in-situ determination of heat losses has been carried out on a 273 mm transmission line in Copenhagen. Instrumentation includes temperature sensors, heat flux meters and an infrared camera. The methods differ with regard to time consumption and costs of applying the specific method, demand on accuracy of temperature measurements, sensitivity to computational parameters, e.g. the thermal conductivity of the soil, response to transients in water temperature and the ground, and steady state assumptions in the model used in the interpretation of the measurements. Several of the applied methods work well. (au)

  2. Tomographic Heating Holder for In Situ TEM

    DEFF Research Database (Denmark)

    Gontard, Lionel C.; Dunin-Borkowski, Rafal E.; Fernández, Asunción

    2014-01-01

    distributions and changes in active surface area are quantified from tilt series of images acquired after subjecting the specimens to increasing temperatures. The porosity of the alumina support and the sintering mechanisms of the catalysts are shown to depend on distance from the heating filament....

  3. Susceptibility of ectomycorrhizal fungi to soil heating.

    Science.gov (United States)

    Kipfer, Tabea; Egli, Simon; Ghazoul, Jaboury; Moser, Barbara; Wohlgemuth, Thomas

    2010-01-01

    Ectomycorrhizal (EcM) fungi are an important biotic factor for successful tree recruitment because they enhance plant growth and alleviate drought stress of their hosts. Thus, EcM propagules are expected to be a key factor for forest regeneration after major disturbance events such as stand-replacing forest fires. Yet the susceptibility of soil-borne EcM fungi to heat is unclear. In this study, we investigated the heat tolerance of EcM fungi of Scots pine (Pinus sylvestris L., Pinaceae). Soil samples of three soil depths were heated to the temperature of 45, 60 and 70 °C, respectively, and surviving EcM fungi were assessed by a bioassay using Scots pine as an experimental host plant. EcM species were identified by a combination of morphotyping and sequencing of the ITS region. We found that mean number of species per sample was reduced by the 60 and 70 °C treatment, but not by the 45 °C treatment. Species composition changed due to heat. While some EcM fungi species did not survive heating, the majority of species was also found in the heated samples. The most frequent species in the heat treatment were Rhizopogon roseolus, Cenococcum geophilum and several unidentified species. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. Treatment of heavy metal contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Hansen, J.E.

    1991-01-01

    Contaminated soil site remediation objectives call for the destruction, removal, and/or immobilization of contaminant species. Destruction is applicable to hazardous compounds (e.g., hazardous organics such as PCBs; hazardous inorganics such as cyanide); however, it is not applicable to hazardous elements such as the heavy metals. Removal and/or immobilization are typical objectives for heavy metal contaminants present in soil. Many technologies have been developed specifically to meet these needs. One such technology is In Situ Vitrification (ISV), an innovative mobile, onsite, in situ solids remediation technology that has been available on a commercial basis for about two years. ISV holds potential for the safe and permanent treatment/remediation of previously disposed or current process solids waste (e.g., soil, sludge, sediment, tailings) contaminated with hazardous chemical and/or radioactive materials. This paper focuses on the application of ISV to heavy metal-contaminated soils

  5. Recent developments for in situ treatment of metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Metals contamination is a common problem at hazardous waste sites. This report assists the remedy selection process by providing information on four in situ technologies for treating soil contaminated with metals. The four approaches are electrokinetic remediation, phytoremediation, soil flushing, and solidification/stabilization. Electrokinetic remediation separates contaminants from soil through selective migration upon application of an electric current. Phytoremediation is an emerging technology that uses plants to isolate or stabilize contaminants. Soil flushing techniques promote mobility and migration of metals by solubilizing contaminants so that they can be recovered. Two types of in situ solidification/stabilization (S/S) techniques are discussed, one based on addition of reagents and the other based on the use of energy. The report discusses different techniques currently in practice or under development, identifies vendors and summarizes performance data, and discusses technology attributes that should be considered during early screening of potential remedies. 8 refs., 9 figs., 9 tabs., 2 apps.

  6. Soil heating and impact of prescribed burning

    Science.gov (United States)

    Stoof, Cathelijne

    2016-04-01

    Prescribed burning is highly uncommon in the Netherlands, where wildfire awareness is increasing but its risk management does not yet include fuel management strategies. A major exception is on two military bases, that need to burn their fields in winter and spring to prevent wildfires during summer shooting practice. Research on these very frequent burns has so far been limited to effects on biodiversity, yet site managers and policy makers have questions regarding the soil temperatures reached during these burns because of potential impact on soil properties and soil dwelling fauna. In March 2015, I therefore measured soil and litter temperatures under heath and grass vegetation during a prescribed burn on military terrain in the Netherlands. Soil and litter moisture were sampled pre- and post-fire, ash was collected, and fireline intensity was estimated from flame length. While standing vegetation was dry (0.13 g water/g biomass for grass and 0.6 g/g for heather), soil and litter were moist (0.21 cm3/cm3 and 1.6 g/g, respectively). Soil heating was therefore very limited, with maximum soil temperature at the soil-litter interface remaining being as low as 6.5 to 11.5°C, and litter temperatures reaching a maximum of 77.5°C at the top of the litter layer. As a result, any changes in physical properties like soil organic matter content and bulk density were not significant. These results are a first step towards a database of soil heating in relation to fuel load and fire intensity in this temperate country, which is not only valuable to increase understanding of the relationships between fire intensity and severity, but also instrumental in the policy debate regarding the sustainability of prescribed burns.

  7. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    Science.gov (United States)

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  8. In situ vadose zone remediation of petroleum-contaminated soils

    International Nuclear Information System (INIS)

    Greacen, J.R.; Finkel, D.J.

    1991-01-01

    This paper discusses a pilot-scale system treating vadose zone soils contaminated with petroleum products constructed and operated at a former petroleum bulk storage terminal in New England. A site investigation following decommissioning activities identified more than 100,000 yds of soil at the site contaminated by both No. 2 fuel oil and gasoline. Soil cleanup criteria of 50 ppm TPH and 0.25 ppm BTEX were established. A pilot-scale treatment unit with dimensions of 125 ft x 125 ft x 6 ft was constructed to evaluate the potential for in situ treatment of vadose zone soils. Contaminant levels in pilot cell soils ranged from 0 to 5,250 ppm TPH and 0.0 to 4.2 ppm BTEX. Two soil treatment methods n the pilot system were implemented; venting to treat the lighter petroleum fractions and bioremediation to treat the nonvolatile petroleum constituents. Seven soil gas probes were installed to monitor pressure and soil gas vapor concentrations in the subsurface. Changes in soil gas oxygen and carbon dioxide concentrations were used as an indirect measure of enhanced bioremediation of pilot cell soils. After operating the system for a period of 2.5 months, soil BTEX concentrations were reduced to concentrations below the remediation criteria for the site

  9. Engineering-scale tests of in situ vitrification to PCB and radioactive contaminated soils

    International Nuclear Information System (INIS)

    Liikala, S.C.

    1991-01-01

    In Situ Vitrification (ISV) is a thermal treatment technology applicable to the remediation of hazardous chemical and radioactive contaminated soil and sludge sites. The ISV process utilizes electricity, through joule heating, to melt contaminated soil and form an inert glass and microcrystalline residual product. Applications of ISV to polychlorinated biphenyls (PCBs) and radionuclides have been demonstrated at engineering-scale in numerous tests (1,2,3). An updated evaluation of ISV applicability to treatment of PCBs and radionuclides, and recent test results are presented herein

  10. In situ vitrification and the effects of soil additives

    International Nuclear Information System (INIS)

    Piepel, G.F.; Shade, J.W.

    1992-01-01

    This paper presents a case study involving in situ vitrification (ISV), a process for immobilizing chemical or nuclear wastes in soil by melting-dissolving the contaminated soil into a glass block. One goal of the study was to investigate how viscosity and electrical conductivity were affected by mixing CaO and Na 2 O with soil. A three-component constrained-region mixture experiment design was generated and the viscosity and electrical conductivity data collected. Several second-order mixture models were considered, and the Box-Cox transformation technique was applied to select property transformations. The fitted models were used to produce contour and component effects plots

  11. In situ conversion process utilizing a closed loop heating system

    Science.gov (United States)

    Sandberg, Chester Ledlie [Palo Alto, CA; Fowler, Thomas David [Houston, TX; Vinegar, Harold J [Bellaire, TX; Schoeber, Willen Jan Antoon Henri

    2009-08-18

    An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

  12. Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter.

    Science.gov (United States)

    Piccolo, Alessandro; Spaccini, Riccardo; Nebbioso, Antonio; Mazzei, Pierluigi

    2011-08-01

    Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.

  13. Impedance matching of a coaxial antenna for microwave in-situ processing of polluted soils.

    Science.gov (United States)

    Pauli, Mario; Kayser, Thorsten; Wiesbeck, Werner; Komarov, Vyacheslav

    2011-01-01

    The present paper is focused on the minimization of return loss of a slotted coaxial radiator proposed for a decontamination system for soils contaminated by volatile or semi-volatile organic compounds such as oils or fuels. The antenna upgrade is achieved by coating it with a 5 mm thick Teflon layer. The electromagnetic characteristics reflection coefficient and power density distribution around the antenna surrounded by soils with different moisture levels are analyzed numerically. Simplified analytical approaches are employed to accelerate the optimization of the given antenna for microwave heating systems. The improved antenna design shows a good matching of the antenna to the surrounding soil with varying moisture levels. This ensures a high efficiency of the proposed in-situ soil decontamination system.

  14. In situ vitrification: Test results for a contaminated soil melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Bonner, W.F.

    1989-04-01

    Pacific Northwest Laboratory (PNL) is developing in situ vitrification (ISV), a remedial action process for treating contaminated soils. In situ vitrification is a thermal treatment process that converts contaminated soil into a chemically inert and stable glass and crystalline product. Figure 1 depicts the process. A square array of four molybdenum/graphite electrodes is inserted into the ground to the desired treatment depth. Because soil is not electrically conductive when the moisture has been driven off, a conductive mixture of flaked graphite and glass frit is placed between the pairs of electrodes as a starter path. An electrical potential is applied to the electrodes to establish an electric current in the starter path. The resultant power heats the starter path and surrounding soil to 2000 degree C, well above the initial soil-melting temperature of 1100 to 1400 degree C. The graphite starter path is eventually consumed by oxidation, and the current is transferred to the molten soil, which is electrically conductive. As the molten or vitrified zone grows, it incorporates radionuclides and nonvolatile hazardous elements, such as heavy metals, and destroys organic components by pyrolysis. The pyrolyzed byproducts migrate to the surface of the vitrified zone, where they burn in the presence of oxygen. A hood placed over the area being vitrified directs the gaseous effluents to an off-gas treatment system. 5 refs., 1 fig., 1 tab

  15. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  16. In situ neutron moisture meter calibration in lateritic soils

    International Nuclear Information System (INIS)

    Ruprecht, J.K.; Schofield, N.J.

    1990-01-01

    An in situ calibration procedure for complex lateritic soils of the jarrah forest of Western Australia is described. The calibration is based on non-destructive sampling of each access tube and on a regression of change in water content on change in neutron count ratio at 'wet' and 'dry' times of the year. Calibration equations with adequate precision were produced. However, there were high residual errors in the calibration equations which were due to a number of factors including soil water variability, the presence of a duricrust layer, soil sampling of gravelly soils and the variability of the cement slurry annulus surrounding each access tube. The calibration equations derived did not compare well with those from other studies in south-west Western Australia, but there was reasonable agreement with the general equations obtained by the Institute of Hydrology, U.K. 15 refs., 6 figs., 2 tabs

  17. Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility

    DEFF Research Database (Denmark)

    Couto, Nazare; Fritt-Rasmussen, Janne; Jensen, Pernille Erland

    2014-01-01

    A 168-day period field study, carried out in Sisimiut, Greenland, assessed the potential to enhance soil remediation with the surplus heating from an incineration facility. This approach searches a feasible ex situ remediation process that could be extended throughout the year with low costs. Ind...

  18. In-situ vitrification of radioactively contaminated soils: summary paper

    International Nuclear Information System (INIS)

    Buelt, J.L.; Fitzpatrick, V.F.

    1987-01-01

    The in-situ vitrification (ISV) process is a new technology that has been developed from its conceptual phase through selected field-scale application tests during the last six years. In situ vitrification converts contaminated soils and waste inclusions into a durable glass and crystalline waste form by in-place melting. Electrodes are inserted into the soil to be treated and an electrical current is passed through the soil to be treated and an electrical current is passed through the soil to melt it. After cooling, the process fixes (TRU) and fission product radionuclides making them relatively nonleachable, resistant to intrusion, and nondispersible when intentionally disturbed. Another application considered for isolation of radioactively contaminated soils, but not yet developed, is the generation of impermeable barrier walls to prevent ground water seepage into a site. The barrier technique could also be used over the surface of an existing disposal site to deter plant and animal intrusion. The development units have been extensively tested with many types of soils and waste inclusions such as concrete, buried metals, sealed containers, organic chemicals with high boiling points such as polychlorinated biphenyls, and inorganic chemicals, including toxic heavy metals, nitrates, and sulfates. Nitrates and organics are destroyed, while heavy metals and fluorides are retained to a high percentage within the molten soil during processing. At $200 to $300/m 3 for radioactive waste, the process is economically competitive with many alternative remediation processes. The ISV process has been developed to the point where it is ready for large-scale field testing at an actual TRU-contaminated soil site. 5 references, 2 figures, 2 tables

  19. Ex-situ bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    Minier, M.R.

    1994-01-01

    The use of stress acclimated bacteria and nutrient supplements to enhance the biodegradation of petroleum contaminated soil can be a cost effective and reliable treatment technology to reduce organic contaminant levels to below established by local, state, and federal regulatory clean-up criteria. This paper will summarize the results of a field study in which 12,000 yds 3 of petroleum contaminated soil was successfully treated via ex-situ bioremediation and through management of macro and micronutrient concentrations, as well as, other site specific environmental factors that are essential for optimizing microbial growth

  20. In situ enhanced soil mixing. Innovative technology summary report

    International Nuclear Information System (INIS)

    1996-02-01

    In Situ Enhanced Soil Mixing (ISESM) is a treatment technology that has been demonstrated and deployed to remediate soils contaminated with volatile organic compounds (VOCs). The technology has been developed by industry and has been demonstrated with the assistance of the U.S. Department of Energy's Office of Science and Technology and the Office of Environmental Restoration. The technology is particularly suited to shallow applications, above the water table, but can be used at greater depths. ISESM technologies demonstrated for this project include: (1) Soil mixing with vapor extraction combined with ambient air injection. [Contaminated soil is mixed with ambient air to vaporize volatile organic compounds (VOCs). The mixing auger is moved up and down to assist in removal of contaminated vapors. The vapors are collected in a shroud covering the treatment area and run through a treatment unit containing a carbon filter or a catalytic oxidation unit with a wet scrubber system and a high efficiency particulate air (HEPA) filter.] (2) soil mixing with vapor extraction combined with hot air injection [This process is the same as the ambient air injection except that hot air or steam is injected.] (3) soil mixing with hydrogen peroxide injection [Contaminated soil is mixed with ambient air that contains a mist of diluted hydrogen peroxide (H 2 O 2 ) solution. The H 2 O 2 solution chemically oxidizes the VOCs to carbon dioxide (CO 2 ) and water.] (4) soil mixing with grout injection for solidification/stabilization [Contaminated soil is mixed as a cement grout is injected under pressure to solidify and immobilize the contaminated soil in a concrete-like form.] The soils are mixed with a single-blade auger or with a combination of augers ranging in diameter from 3 to 12 feet

  1. Cost studies of thermally enhanced in situ soil remediation technologies

    International Nuclear Information System (INIS)

    Bremser, J.; Booth, S.R.

    1996-05-01

    This report describes five thermally enhanced technologies that may be used to remediate contaminated soil and water resources. The standard methods of treating these contaminated areas are Soil Vapor Extraction (SVE), Excavate ampersand Treat (E ampersand T), and Pump ampersand Treat (P ampersand T). Depending on the conditions at a given site, one or more of these conventional alternatives may be employed; however, several new thermally enhanced technologies for soil decontamination are emerging. These technologies are still in demonstration programs which generally are showing great success at achieving the expected remediation results. The cost savings reported in this work assume that the technologies will ultimately perform as anticipated by their developers in a normal environmental restoration work environment. The five technologies analyzed in this report are Low Frequency Heating (LF or Ohmic, both 3 and 6 phase AC), Dynamic Underground Stripping (DUS), Radio Frequency Heating (RF), Radio Frequency Heating using Dipole Antennae (RFD), and Thermally Enhanced Vapor Extraction System (TEVES). In all of these technologies the introduction of heat to the formation raises vapor pressures accelerating contaminant evaporation rates and increases soil permeability raising diffusion rates of contaminants. The physical process enhancements resulting from temperature elevations permit a greater percentage of volatile organic compound (VOC) or semi- volatile organic compound (SVOC) contaminants to be driven out of the soils for treatment or capture in a much shorter time period. This report presents the results of cost-comparative studies between these new thermally enhanced technologies and the conventional technologies, as applied to five specific scenarios

  2. Combining different frequencies for electrical heating of saturated and unsaturated soil zones

    Energy Technology Data Exchange (ETDEWEB)

    Roland, U.; Holzer, F.; Kopinke, F.D. [Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Leipzig (Germany)

    2011-10-15

    In situ electrical heating of soil was studied applying different frequencies: low-frequency energy for resistive heating and radio-frequency energy for dielectric heating. Steep temperature gradients were observed for each heating mode under the condition of the coexistence of saturated and unsaturated soil zones. By combining the two heating modes, this undesired effect can be avoided, thus allowing efficient soil remediation especially when organic phases are accumulated at the capillary fringe. A parallel application of both frequencies was demonstrated as the most suitable method to reduce temperature gradients. By using electronic filters, both electric fields can be established by only one electrode array. This innovative concept is especially applicable for optimizing thermal remediation of light non-aqueous phase liquid contaminations or realizing thermally-enhanced electrokinetic removal of heavy metals. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Inducing in situ, nonlinear soil response applying an active source

    Science.gov (United States)

    Johnson, P.A.; Bodin, P.; Gomberg, J.; Pearce, F.; Lawrence, Z.; Menq, F.-Y.

    2009-01-01

    [1] It is well known that soil sites have a profound effect on ground motion during large earthquakes. The complex structure of soil deposits and the highly nonlinear constitutive behavior of soils largely control nonlinear site response at soil sites. Measurements of nonlinear soil response under natural conditions are critical to advancing our understanding of soil behavior during earthquakes. Many factors limit the use of earthquake observations to estimate nonlinear site response such that quantitative characterization of nonlinear behavior relies almost exclusively on laboratory experiments and modeling of wave propagation. Here we introduce a new method for in situ characterization of the nonlinear behavior of a natural soil formation using measurements obtained immediately adjacent to a large vibrator source. To our knowledge, we are the first group to propose and test such an approach. Employing a large, surface vibrator as a source, we measure the nonlinear behavior of the soil by incrementally increasing the source amplitude over a range of frequencies and monitoring changes in the output spectra. We apply a homodyne algorithm for measuring spectral amplitudes, which provides robust signal-to-noise ratios at the frequencies of interest. Spectral ratios are computed between the receivers and the source as well as receiver pairs located in an array adjacent to the source, providing the means to separate source and near-source nonlinearity from pervasive nonlinearity in the soil column. We find clear evidence of nonlinearity in significant decreases in the frequency of peak spectral ratios, corresponding to material softening with amplitude, observed across the array as the source amplitude is increased. The observed peak shifts are consistent with laboratory measurements of soil nonlinearity. Our results provide constraints for future numerical modeling studies of strong ground motion during earthquakes.

  4. In-situ thermoelectrochemistry working with heated electrodes

    CERN Document Server

    Gründler, Peter

    2015-01-01

    This book represents the first rigorous treatment of thermoelectrochemistry, providing an overview that will stimulate electrochemists to develop and apply modern thermoelectrochemical methods. While classical static approaches are also covered, the emphasis lies on methods that make it possible to independently vary temperature such as in-situ heating of electrodes by means of electric current, microwaves or lasers. For the first time, "hot-wire electrochemistry" is examined in detail. The theoretical background presented addresses all aspects of temperature impacts in the context of electroc

  5. Using in situ bioventing to minimize soil vapor extraction costs

    International Nuclear Information System (INIS)

    Downey, D.C.; Frishmuth, R.A.; Archabal, S.R.; Pluhar, C.J.; Blystone, P.G.; Miller, R.N.

    1995-01-01

    Gasoline-contaminated soils may be difficult to remediate with bioventing because high concentrations of gasoline vapors become mobile when air is injected into the soil. Because outward vapor migration is often unacceptable on small commercial sites, soil vapor extraction (SVE) or innovative bioventing techniques are required to control vapors and to increase soil gas oxygen levels to stimulate hydrocarbon biodegradation. Combinations of SVE, off-gas treatment, and bioventing have been used to reduce the costs normally associated with remediation of gasoline-contaminated sites. At Site 1, low rates of pulsed air injection were used to provide oxygen while minimizing vapor migration. At Site 2, a period of high-rate SVE and off-gas treatment was followed by long-term air injection. Site 3 used an innovative approach that combined regenerative resin for ex situ vapor treatment with in situ bioventing to reduce the overall cost of site remediation. At each of these Air Force sites, bioventing provided cost savings when compared to more traditional SVE methods

  6. Combined in-situ and ex-situ bioremediation of petroleum hydrocarbon contaminated soils by closed-loop soil vapor extraction and air injection

    International Nuclear Information System (INIS)

    Hu, S.S.; Buckler, M.J.

    1993-01-01

    Treatment and restoration of petroleum hydrocarbon contaminated soils at a bulk petroleum above-ground storage tank (AST) site in Michigan is being conducted through in-situ and ex-situ closed-loop soil vapor extraction (SVE), soil vapor treatment, and treated air injection (AI) processes. The soil vapor extraction process applies a vacuum through the petroleum hydrocarbon affected soils in the ex-situ bio-remediation pile (bio-pile) and along the perimeter of excavated area (in-situ area) to remove the volatile or light petroleum hydrocarbons. This process also draws ambient air into the ex-situ bio-pile and in-situ vadose zone soil along the perimeter of excavated area to enhance biodegradation of light and heavy petroleum hydrocarbons in the soil. The extracted soil vapor is treated using a custom-designed air bio-remediation filter (bio-filter) to degrade the petroleum hydrocarbon compounds in the soil vapor extraction air streams. The treated air is then injected into a flush grade soil bed in the backfill area to perform final polishing of the air stream, and to form a closed-loop air flow with the soil vapor extraction perforated pipes along the perimeter of the excavated area

  7. Characterization of vitrified soil produced by in situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Lokken, R.O.

    1984-01-01

    Radioactive or other hazardous wastes buried at waste disposal sites may require further stabilization to secure the isolation of these wastes from the environment. One method of waste stabilization being developed is in situ vitrification. This process involves the in-place melting of buried wastes and the surrounding soil to produce a glass and crystalline waste form. Engineering-scale and pilot-scale demonstrations of this concept with soil contaminated with nonradioactive, hazardous species (Cs, Sr, Ru, Pb, Cd, etc.) were performed. These demonstrations provided information on species migration, crystalline-phase formation, and waste form durability. In addition to the nonradioactive tests, a crucible-scale melt of soil spiked with radioactive uranium, plutonium, and cesium was leach tested. The results show that hazardous waste components are retained in the product. The durability of the waste form in both the vitreous and the crystalline phases is similar to that of Pyrex glass

  8. Characterization of vitrified soil produced by in-situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Lokken, R.O.

    1983-01-01

    Radioactive or other hazardous wastes buried at waste-disposal sites may require further stabilization to secure the isolation of these wastes from the environment. One method of waste stabilization being developed is in-situ vitrification. This process involves the in-place melting of buried wastes and the surrounding soil to produce a glass and crystalline waste form. Engineering-scale and pilot-scale demonstrations of this concept with soil contaminated with nonradioactive, hazardous species (Cs, Sr, Ru, Pb, Cd, etc.) were performed. These demonstrations provided information on species migration, crystalline phase formation, and waste form durability. In addition to the nonradioactive tests, a crucible-scale melt of soil spiked with radioactive uranium, plutonium, and cesium was leach tested. The results show that hazardous waste components are retained in the product. The durability of the waste form in both the vitreous and crystalline phases is similar to that of pyrex glass

  9. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Directory of Open Access Journals (Sweden)

    M. S. Demyan

    2013-05-01

    Full Text Available An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS is being proposed to rapidly characterize soil organic matter (SOM to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2 in order to relate evolved gas (i.e., CO2 to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i the Static Fertilization Experiment, Bad Lauchstädt (Chernozem, from treatments of farmyard manure (FYM, mineral fertilizer (NPK, their combination (FYM + NPK and control without fertilizer inputs; (ii Kraichgau; and (iii Swabian Alb (Cambisols areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM, sand and stable aggregates (Sa + A, silt and clay (Si + C, and NaOCl oxidized Si + C (rSOC to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm−1 being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min−1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max. Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the

  10. In-situ remediation system for groundwater and soils

    Science.gov (United States)

    Corey, John C.; Kaback, Dawn S.; Looney, Brian B.

    1993-01-01

    A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.

  11. Enhancement of in situ Remediation of Hydrocarbon Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.

    2006-07-01

    Approximately 750 000 sites of contaminated land exist across Europe. The harmful chemicals found in Finnish soils include heavy metals, oil products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorophenols, and pesticides. Petroleum and petroleum products enter soil from ruptured oil pipelines, land disposal of refinery products, leaking storage tanks and through accidents. PAH contamination is caused by the spills of coal tar and creosote from coal gasification and wood treatment sites in addition to oil spills. Cleanup of soil by bioremediation is cheaper than by chemical and physical processes. However, the cleaning capacity of natural attenuation and in situ bioremediation is limited. The purpose of this thesis was to find feasible options to enhance in situ remediation of hydrocarbon contaminants. The aims were to increase the bioavailability of the contaminants and microbial activity at the subsurface in order to achieve higher contaminant removal efficiency than by intrinsic biodegradation alone. Enhancement of microbial activity and decrease of soil toxicity during remediation were estimated by using several biological assays. The performance of these assays was compared in order to find suitable indicators to follow the progress of remediation. Phytoremediation and chemical oxidation are promising in situ techniques to increase the degradation of hydrocarbons in soil. Phytoremediation is plant-enhanced decontamination of soil and water. Degradation of hydrocarbons is enhanced in the root zone by increased microbial activity and through the detoxifying enzymes of plants themselves. Chemical oxidation of contaminants by Fenton's reaction can produce degradation products which are more biodegradable than the parent compounds. Fenton's reaction and its modifications apply solutions of hydrogen peroxide and iron for the oxidation of organic chemicals. The cost of oxidation can be reduced by aiming at partial instead of full

  12. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.; Wang, Lixin; Parkes, Stephen; Strauss, Josiah; McCabe, Matthew; Evans, Jason P.; Griffiths, Alan D.

    2015-01-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  13. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  14. Chelator induced phytoextraction and in situ soil washing of Cu

    International Nuclear Information System (INIS)

    Kos, Bostjan; Lestan, Domen

    2004-01-01

    In a soil column experiment, we investigated the effect of 5 mmol kg -1 soil addition of citric acid, ethylenediamine tetraacetate (EDTA), diethylenetriamine-pentaacetate (DTPA) and [S,S]-stereoisomer of ethylenediamine-disuccinate (EDDS) on phytoextraction of Cu from a vineyard soil with 162.6 mg kg -1 Cu, into the test plant Brassica rapa var. pekinensis. We also examined the use of a horizontal permeable barrier, composed of layers of nutrient enriched sawdust and apatite, for reduction of chelator induced Cu leaching. The addition of all chelators, except citric acid, enhanced Cu mobility and caused leaching of 19.5-23% of initial total Cu from the soil column. However, Cu plant uptake did not increase accordingly; the most effective was the EDDS treatment, in which plant Cu concentration reached 37.8±1.3 mg kg -1 Cu and increased by 3.3-times over the control treatment. The addition of none of the chelators in the concentration range from 5 to 15 mmol kg -1 exerted any toxic effect on respiratory soil microorganisms. When EDDS was applied into the columns with horizontal permeable barriers, only 0.53±0.32% of the initial total Cu was leached. Cu (36.7%) was washed from the 18 cm soil layer above the barrier and accumulated in the barrier. Our results indicate that rather than for a reduction of Cu leaching during rather ineffective chelate induced Cu phytoextraction, horizontal permeable barriers could be more effective in a new remediation technique of controlled in situ soil washing of Cu with biodegradable chelates

  15. In situ construction of horizontal soil containment barrier at Fernald

    International Nuclear Information System (INIS)

    Ridenour, D.; Pettit, P.J.; Walker, J.

    1995-01-01

    An innovative method of placing soil barriers to contain vertical flow is being prepared for demonstration by the Fernald Environmental Restoration Management Corporation (FERMCO), working in conjunction with the Department of Energy Office of Technology Development (DOE/OTD) and two principle subcontractors. The method employs proven directional drilling techniques, jet grouting technology and unique placement tooling to form horizontal soil barriers in situ. This is done without disturbance to existing land disposed wastes. This paper is a summary report on the current state of that demonstration, including: a discussion of the construction methods, the results of the initial tool tests, an overview of the Fernald site conditions and, the resulting path of tooling development for the second phase of tool testing

  16. In situ oil burning in the marshland environment : soil temperatures resulting from crude oil and diesel fuel burns

    International Nuclear Information System (INIS)

    Bryner, N.P.; Walton, W.D.; Twilley, W.H.; Roadarmel, G.; Mendelssohn, I.A.; Lin, Q.; Mullin, J.V.

    2001-01-01

    The unique challenge associated with oil spill cleanups in sensitive marsh environments was discussed. Mechanical recovery of crude or refined hydrocarbons in wetlands may cause more damage to the marsh than the oil itself. This study evaluated whether in situ burning of oiled marshlands would provide a less damaging alternative than mechanical recovery. This was done through a series of 6 crude oil and 5 diesel fuel burns conducted in a test tank to examine the impact of intentional burning of oil spilled in a wetlands environment. There are several factors which may influence how well such an environment would recover from an in situ oil burn, such as plant species, fuel type and load, water level, soil type, and burn duration. This paper focused on soil, air and water temperatures, as well as total heat fluxes that resulted when 3 plant species were exposed to full-scale in situ burns that were created by burning diesel fuel and crude oil. The soil temperatures were monitored during the test burn at three different soil/water elevations for 700 second burn exposures. A total of 184 plant sods were harvested from marshlands in southern Louisiana and were subjected to the burning fuel. They were instrumental in characterizing the thermal and chemical stress that occur during an in-situ burn. The plants were inserted into the test tanks at various water and soil depths. The results indicated that diesel fuel and crude oil burns produced similar soil temperature profiles at each of three plant sod elevations. Although in-situ burning did not appear to remediate oil that had penetrated into the soil, it did effectively remove floating oil from the water surface, thereby preventing it from potentially contaminating adjacent habitats and penetrating the soil when the water recedes. The regrowth and recovery of the plants will be described in a separate report. 25 refs., 7 tabs., 15 figs

  17. Improved Understanding of In Situ Chemical Oxidation Soil Reactivity

    Science.gov (United States)

    2007-12-01

    followed by a mixture of nitric and perchloric acids . This sequence uses precise heat ramping and holding cycles which takes the sample to dryness...release different kinds of products (e.g., benzenepolycarboxylic acids , phenolic acids , and fatty acids ) with varying resistance to the attack of... oxalate might be the only organic product in the oxidation of humic and non-humic soils by permanganate or even hydrogen peroxide (Harada and Inoko

  18. On the in situ aqueous alteration of soils on Mars

    Science.gov (United States)

    Amundson, Ronald; Ewing, Stephanie; Dietrich, William; Sutter, Brad; Owen, Justine; Chadwick, Oliver; Nishiizumi, Kunihiko; Walvoord, Michelle; McKay, Christopher

    2008-08-01

    Early (>3 Gy) wetter climate conditions on Mars have been proposed, and it is thus likely that pedogenic processes have occurred there at some point in the past. Soil and rock chemistry of the Martian landing sites were evaluated to test the hypothesis that in situ aqueous alteration and downward movement of solutes have been among the processes that have transformed these portions of the Mars regolith. A geochemical mass balance shows that Martian soils at three landing sites have lost significant quantities of major rock-forming elements and have gained elements that are likely present as soluble ions. The loss of elements is interpreted to have occurred during an earlier stage(s) of weathering that may have been accompanied by the downward transport of weathering products, and the salts are interpreted to be emplaced later in a drier Mars history. Chemical differences exist among the sites, indicating regional differences in soil composition. Shallow soil profile excavations at Gusev crater are consistent with late stage downward migration of salts, implying the presence of small amounts of liquid water even in relatively recent Martian history. While the mechanisms for chemical weathering and salt additions on Mars remain unclear, the soil chemistry appears to record a decline in leaching efficiency. A deep sedimentary exposure at Endurance crater contains complex depth profiles of SO 4, Cl, and Br, trends generally consistent with downward aqueous transport accompanied by drying. While no model for the origin of Martian soils can be fully constrained with the currently available data, a pedogenic origin is consistent with observed Martian geology and geochemistry, and provides a testable hypothesis that can be evaluated with present and future data from the Mars surface.

  19. Subseabed Disposal Program In-Situ Heat Transfer Experiment (ISHTE)

    International Nuclear Information System (INIS)

    Percival, C.M.

    1983-05-01

    A heat transfer experiment is being developed in support of the Subseabed Disposal Program. The primary objectives of this experiment are: to provide information on the in situ response of seabed sediment to localized heating; to provide an opportunity to evaluate theoretical models of the response and to observe any unanticipated phenomena which may occur; and to develop and demonstrate the technology necessary to perform waste isolation oriented experiments on the seafloor at depths up to 6000 m. As presently envisaged, the heat transfer experiment will be conducted at a location in the central North Pacific though it could be performed anywhere that the ocean bottom is of the type deemed suitable for the disposal of nuclear waste material. The experiment will be conducted of the seafloor from a recoverable space-frame platform at a depth of approximately 6000 m. A 400-W isotopic heat source will be implanted in the illite sediment and the subsequent response of the sediment to the induced thermal field evaluated. After remote initiation of the experiment, a permanent record of the data obtained will be recorded on board the platform, with selected information transmitted to a surface vessel by acoustic telemetry. The experiment will be operational for one year, after which the entire platform will be recovered. Current plans call for the deployment of the experiment in 1986. Specific activities which will be pursued during the course of the experiment include: measurement of the thermal field; determination of the effective thermal conductivity of the sediment; measurement of pore pressure; evaluation of radionuclide migration processes; pore water sampling; sediment chemistry studies; sediment shear strength measurements; and coring operations in the immediate vicinity of the experiment for postexperiment analysis

  20. In-situ stabilization of mixed waste contaminated soil

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Cline, S.R.; Gilliam, T.M.; Conner, J.R.

    1993-01-01

    A full-scale field demonstration was conducted to evaluate in for stabilizing an inactive RCRA land treatment site at a DOE facility in Ohio. Subsurface silt and clay deposits were contaminated principally with up to 500 mg/kg of trichloroethylene and other halocarbons, but also trace to low levels of Pb, Cr, 235 U, and 99 Tc. In situ solidification was studied in three, 3.1 m diameter by 4.6 m deep columns. During mixing, a cement-based grout was injected and any missions from the mixed region were captured in a shroud and treated by filtration and carbon adsorption. During in situ processing, operation and performance parameters were measured, and soil cores were obtained from a solidified column 15 months later. Despite previous site-specific treatability experience, there were difficulties in selecting a grout with the requisite treatment agents amenable to subsurface injection and at a volume adequate for distribution throughout the mixed region while minimizing volume expansion. observations during the demonstration revealed that in situ solidification was rapidly accomplished (e.g., >90 m 3 /d) with limited emissions of volatile organics (i.e., -6 cm/s vs. 10 -8 cm/s). Leaching tests performed on the treated samples revealed non-detectable to acceptably low concentrations of all target contaminants

  1. Assessment of in situ and ex situ phytorestoration with grass mixtures in soils polluted with nickel, copper, and arsenic

    Science.gov (United States)

    Zacarías Salinas, Montserrat; Beltrán Villavicencio, Margarita; Bustillos, Luis Gilberto Torres; González Aragón, Abelardo

    This work shows a study of in situ and ex situ phytoextraction as a polishing step in the treatment of an industrial urban soil polluted with nickel, arsenic and copper. The soil was previously washed, and phytoextraction was performed by application of a mixture of grass (Festuca rubra, Cynodon dactylon, Lolium multiforum, Pennisetum). The soil had initial heavy metals concentrations of 131 ppm for Ni, 717 for As and 2734 for Cu (mg of metal/kg of dry soil). After seeding and emerging of grass, vegetal and soil samples were taken monthly during 4 months. Biomass generation, and concentration of Ni, As and Cu in vegetal tissue and soil were determined for every sample. Plants biomass growth in ex situ process was inhibited by 37% when compared with blank soil. Grass showed remarkable phytoextraction capability in situ, it produced 38 g of biomass every 15 days (wet weight) during a period of 3 months, but then declined in the fourth month. Concentrations of metals in grass biomass were up to 83 mg Ni/kg, 649 mg As/kg and 305 mg Cu/kg dry weight. Metal reduction of 49% for Ni, and 35% for Cu and As was observed at rhizospheric soil.

  2. Gas injection to inhibit migration during an in situ heat treatment process

    Science.gov (United States)

    Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  3. Development and application of soil coupled heat pump

    Science.gov (United States)

    Liu, Lu

    2017-05-01

    Soil coupled heat pump technology is a new clean heating mode, is the world's most energy efficient heating one of the ways. And because of the use of renewable geothermal resources with high heating performance so more and more people's attention. Although the use of soil-coupled heat pumps has been in use for more than 50 years (the first application in the United States), the market penetration of this technology is still in its infancy. This paper will focus on the development, characteristics and application of the coupled heat pump.

  4. Effects of heat-activated persulfate oxidation on soil microorganisms

    DEFF Research Database (Denmark)

    Tsitonaki, Aikaterini; Smets, Barth F.; Bjerg, Poul Løgstrup

    2008-01-01

    /L). The results emphasize the necessity of using multiple toxicity assays and indigenous cultures in order to realistically assess the potential effects of in situ chemical oxidation on soil microorganisms. A comparison to other studies suggests that the effects of activated persulfate on soil microorganisms...

  5. Resistive heating enhanced soil vapor extraction of chlorinated solvents from trichloroethylene contaminated silty, low permeable soil

    NARCIS (Netherlands)

    Zutphen, M. van; Heron, G.; Enfield, C.G.; Christensen, T.H.

    1998-01-01

    A 2D-laboratory box experiment (12 x 56 x 116 cm) was conducted to simulate the enhancement of soil vapor extraction by the application of low frequency electrical heating Uoule heating) for the remediation of a low permeable, silty soil contaminated with trichloroethylene. Joule heating enlarged

  6. Soil heat flux measurements in an open forest

    NARCIS (Netherlands)

    vanderMeulen, MJW; Klaassen, W; Kiely, G

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  7. Soil Heat Flux Measurements in an Open Forest

    NARCIS (Netherlands)

    Meulen, M.W.J. van der; Klaassen, W.

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  8. In situ gamma-ray spectrometric measurements of uranium in phosphates soil

    International Nuclear Information System (INIS)

    Lavi, N.; Ne'eman, E.; Brenner, S.; Haquin, G.; Nir-El, Y.

    1997-01-01

    Abstract Radioactivity concentration of 238 U in a phosphate ores quarry was measured in situ. Independently, soil samples collected in the site were measured in the laboratory. It was disclosed that radon emanation from the soil lowers in situ results that are derived from radon daughters. Uranium concentration was found to be 121.6±1.9 mg kg -1 (authors)

  9. Six-phase soil heating accelerates VOC extraction from clay soil

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Roberts, J.S.; Bergsman, T.M.; Caley, S.M.; Heath, W.O.; Miller, M.C.; Moss, R.W.; Schalla, R.; Jarosch, T.R.; Eddy-Dilek, C.A.

    1994-08-01

    Six-Phase Soil Heating (SPSH) was demonstrated as a viable technology for heating low permeability soils containing volatile organic contaminants. Testing was performed as part of the Volatile Organic Compounds in Non-Arid Soils Integrated Demonstration (VOC Non-Arid ID) at the Savannah River Site. The soil at the integrated demonstration site is contaminated with perchloroethylene (PCE) and trichloroethylene (TCE); the highest soil contamination occurs in clay-rich zones that are ineffectively treated by conventional soil vapor extraction due to the very low permeability of the clay. The SPSH demonstration sought to heat the clay zone and enhance the performance of conventional soil vapor extraction. Thermocouples at thirty locations quantified the areal and vertical heating within the treated zone. Soil samples were collected before and after heating to quantify the efficacy of heat-enhanced vapor extraction of PCE and TCE from the clay soil. Samples were taken (essentially every foot) from six wells prior to heating and adjacent to these wells after heating. Results show that contaminant removal from the clay zone was 99.7% (median) within the electrode array. Outside the array where the soil was heated, but to only 50 degrees C, the removal efficiency was 93%, showing that heating accelerated the removal of VOCs from the clay soil. The accelerated remediation resulted from effective heating of the contaminated clay zone by SPSH. The temperature of the clay zone increased to 100 degrees C after 8 days of heating and was maintained near 100 degrees C for 17 days. Electrical heating removed 19,000 gal of water from the soil as steam, with peak removal rate of 1,500 gpd of condensed steam

  10. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    Science.gov (United States)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  11. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    Science.gov (United States)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  12. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Science.gov (United States)

    Demyan, M. S.; Rasche, F.; Schütt, M.; Smirnova, N.; Schulz, E.; Cadisch, G.

    2013-05-01

    An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA) in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS) is being proposed to rapidly characterize soil organic matter (SOM) to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2) in order to relate evolved gas (i.e., CO2) to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i) the Static Fertilization Experiment, Bad Lauchstädt (Chernozem), from treatments of farmyard manure (FYM), mineral fertilizer (NPK), their combination (FYM + NPK) and control without fertilizer inputs; (ii) Kraichgau; and (iii) Swabian Alb (Cambisols) areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM), sand and stable aggregates (Sa + A), silt and clay (Si + C), and NaOCl oxidized Si + C (rSOC) to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm-1) being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min-1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS) for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max). Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the Chernozem

  13. ATLAS IV in situ heating test in Boom Clay

    International Nuclear Information System (INIS)

    Chen, Guangjing; Li, Xiangling; Verstricht, Jan; Sillen, Xavier

    2012-01-01

    Document available in extended abstract form only. The small scale in-situ ATLAS (Admissible Thermal Loading for Argillaceous Storage) tests are performed to assess the hydro-mechanical effects of a thermal transient on the host Boom clay at the HADES underground research facility in Mol, Belgium. The initial test set-up, consisting of a heater borehole and two observation boreholes, was installed in 1991-1992. The first test (later named 'ATLAS I') was then performed from July 1993 to June 1996; during this time, the heater dissipated a constant power of 900 W. During the second phase ('ATLAS II'), the heating power was doubled (1800 W) and maintained constant from June 1996 to May 1997. This was followed by shutdown and natural cooling starting from June 1997 on. To broaden the THM characterization of the Boom clay at a larger scale and at different temperature levels, the test set-up was extended in 2006 by drilling two additional instrumented boreholes (AT97E and AT98E). The heater was switched on again from April 2007 to April 2008 with a stepwise power increase, followed by an instantaneous shutdown. This phase is called 'ATLAS III'. The above tests have provided a large set of good quality and well documented data on temperature, pore water pressure and total stress; these data allowed to make several interesting observations regarding the thermal anisotropy and THM coupling in the Boom clay. The straightforward geometry and well defined boundary conditions of the tests facilitate the comparison between measurement and numerical modeling studies. Based on the three dimensional coupled THM modeling of the ATLAS III test, the good agreement between measurement and numerical modeling of temperature and pore water pressure yields a set of THM parameters and confirms the thermo-mechanical anisotropy of the Boom clay. To get a better insight in the anisotropic THM behavior of the Boom clay, a new upward instrumented borehole was drilled above the ATLAS heater at

  14. Soil Water Measurement Using Actively Heated Fiber Optics at Field Scale.

    Science.gov (United States)

    Vidana Gamage, Duminda N; Biswas, Asim; Strachan, Ian B; Adamchuk, Viacheslav I

    2018-04-06

    Several studies have demonstrated the potential of actively heated fiber optics (AHFO) to measure soil water content (SWC) at high spatial and temporal resolutions. This study tested the feasibility of the AHFO technique to measure soil water in the surface soil of a crop grown field over a growing season using an in-situ calibration approach. Heat pulses of five minutes duration were applied at a rate of 7.28 W m -1 along eighteen fiber optic cable transects installed at three depths (0.05, 0.10 and 0.20 m) at six-hour intervals. Cumulative temperature increase (T cum ) during heat pulses was calculated at locations along the cable. While predicting commercial sensor measurements, the AHFO showed root mean square errors (RMSE) of 2.8, 3.7 and 3.7% for 0.05, 0.10 and 0.20 m depths, respectively. Further, the coefficients of determination (R²) for depth specific relationships were 0.87 (0.05 m depth), 0.46 (0.10 m depth), 0.86 (0.20 m depth) and 0.66 (all depths combined). This study showed a great potential of the AHFO technique to measure soil water at high spatial resolutions (<1 m) and to monitor soil water dynamics of surface soil in a crop grown field over a cropping season with a reasonable compromise between accuracy and practicality.

  15. A New Technique for Deep in situ Measurements of the Soil Water Retention Behaviour

    DEFF Research Database (Denmark)

    Rocchi, Irene; Gragnano, Carmine Gerardo; Govoni, Laura

    2018-01-01

    In situ measurements of soil suction and water content in deep soil layers still represent an experimental challenge. Mostly developed within agriculture related disciplines, field techniques for the identification of soil retention behaviour have been so far employed in the geotechnical context ...

  16. Superfund Innovative Technology Evaluation - Demonstration Bulletin: In-Situ Soil Stabilization

    Science.gov (United States)

    In-situ stabilization technology immobilizes organics and inorganic compounds in wet or dry soils by using reagents (additives) to polymerize with the soils and sludges producing a cement-like mass. Two basic components of this technology are the Geo-Con/DSM Deep Soil Mixing Sy...

  17. Fate of TCE in heated Fort Lewis soil.

    Science.gov (United States)

    Costanza, Jed; Fletcher, Kelly E; Löffler, Frank E; Pennell, Kurt D

    2009-02-01

    This study explores the transformation of trichloroethene (TCE) caused by heating contaminated soil and groundwater samples obtained from the East Gate Disposal Yard (EGDY) located in Fort Lewis, WA. After field samples transferring into glass ampules and introducing 1.5 micromol of TCE, the sealed ampules were incubated at temperatures of 25, 50, and 95 degrees C for periods of up to 95.5 days. Although TCE was completely transformed into cis-1,2-dichloroethene (cis-DCE) after 42 days at 25 degrees C by microbial activity, this transformation was not observed at 50 or 95 degrees C. Chloride levels increased after 42 days at 25 degrees C corresponding to the mass of TCE transformed to cis-DCE, were constant at 50 degrees C, and increased at 95 degrees C yielding a TCE degradation half-life of 1.6-1.9 years. These findings indicate that indigenous microbes contribute to the partial dechlorination of TCE to cis-DCE at temperatures of less than 50 degrees C, whereas interphase mass transfer and physical recovery of TCE will predominate over in situ degradation processes at temperatures of greater than 50 degrees C during thermal treatment at the EGDY site.

  18. In Situ Warming and Soil Venting to Enhance the Biodegradation of JP-4 in Cold Climates: A Critical Study and Analysis

    Science.gov (United States)

    1995-12-01

    1178-1180 (1991). Atlas , Ronald M. and Richard Bartha . Microbial Ecology : Fundamentals and Applications. 3d ed. Redwood City CA: The Benjamin/Cummings...technique called bioventing. In cold climates, in situ bioremediation is limited to the summer when soil temperatures are sufficient to support microbial ...actively warmed the soil -- warm water circulation and heat tape; the other passively warmed the plot with insulatory covers. Microbial respiration (02

  19. Soil heating in chaparral fires: effects on soil properties, plant nutrients, erosion, and runoff

    Science.gov (United States)

    Leonard F. DeBano; Raymond M. Rice; Conrad C. Eugene

    1979-01-01

    This state-of-the-art report summarizes what is known about the effects of heat on soil during chaparral fires. It reviews the literature on the effects of such fires on soil properties, availabilty and loss of plant nutrients, soil wettability, erosion, and surface runoff. And it reports new data collected during recent prescribed burns and a wildfire in southern...

  20. Process for in-situ biodegradation of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Ely, D.L.; Heffner, D.A.

    1991-01-01

    This patent describes an in situ process for biodegrading hydrocarbons by drawing oxygen into an undisturbed hydrocarbon contaminated zone in a fluid permeable soil. It comprises: establishing a borehole extending from the earth's surface through a hydrocarbon contaminated zone having hydrocarbon degrading microbes therein; lining the borehole with a fluid impermeable liner coaxially spaced and sealingly connected to the inside surface of the borehole and extending from the earth's surface to the hydrocarbon-contaminated zone; the liner including a fluid permeable portion extending from the lower end thereof and through at least a portion of the hydrocarbon contaminated zone, fluidly connecting a source of negative pressure to the fluid impermeable line; evacuating gas from the borehole through the fluid permeable portion of the liner at a rate sufficient to draw air from the earth's surface into the hydrocarbon containing zone; and adjusting the flow rate of the evacuated gas so that the amount of hydrocarbon biodegradation therein is within 50% of the maximum hydrocarbon biodegradation rate as detected by the volume of carbon dioxide in the evacuated gas

  1. Feasibility of soil moisture monitoring with heated fiber optics

    NARCIS (Netherlands)

    Sayde, C.; Gregory, C.; Gil-Rodriguez, M.; Tufillaro, N.; Tyler, S.; Van de Giesen, N.C.; English, M.; Cuenca, R.; Selker, J.S.

    2010-01-01

    Accurate methods are needed to measure changing soil water content from meter to kilometer scales. Laboratory results demonstrate the feasibility of the heat pulse method implemented with fiber optic temperature sensing to obtain accurate distributed measurements of soil water content. A fiber optic

  2. A non-equilibrium model for soil heating and moisture transport during extreme surface heating: The soil (heat-moisture-vapor) HMV-Model Version

    Science.gov (United States)

    William Massman

    2015-01-01

    Increased use of prescribed fire by land managers and the increasing likelihood of wildfires due to climate change require an improved modeling capability of extreme heating of soils during fires. This issue is addressed here by developing and testing the soil (heat-moisture-vapor) HMVmodel, a 1-D (one-dimensional) non-equilibrium (liquid- vapor phase change)...

  3. In situ measurements reveal extremely low pH in soil

    DEFF Research Database (Denmark)

    Nielsen, Knud Erik; Loibide, Amaia Irixar; Nielsen, Lars Peter

    2017-01-01

    We measured pH in situ in the top organic soil horizons in heathland and pine forest and found values between 2.6 and 3.2. This was 0.5e0.8 units lower than concurrent laboratory pH measurements of the same soil, which raises questions about the interpretation of pH measurements. We propose that ...... that the higher pH recorded by standard laboratory methods may be due to buffering ions from soil biota released from drying, grinding and rewetting of soil samples, whereas the in situ pH reflects the correct level of acidification....

  4. Soil physical properties regulate lethal heating during burning of woody residues

    Science.gov (United States)

    Matt Busse; Carol Shestak; Ken Hubbert; Eric Knapp

    2010-01-01

    Temperatures well in excess of the lethal threshold for roots (60°C) have been measured in forest soils when woody fuels are burned. Whether this heat pulse is strongly moderated by soil moisture or soil texture is not fully understood, however. We measured soil heat profi les during 60 experimental burns, identifying changes in maximum soil temperature and heat...

  5. A combined process coupling phytoremediation and in situ flushing for removal of arsenic in contaminated soil.

    Science.gov (United States)

    Yan, Xiulan; Liu, Qiuxin; Wang, Jianyi; Liao, Xiaoyong

    2017-07-01

    Phytoremediation and soil washing are both potentially useful for remediating arsenic (As)-contaminated soils. We evaluated the effectiveness of a combined process coupling phytoremediation and in situ soil flushing for removal of As in contaminated soil through a pilot study. The results showed that growing Pteris vittata L. (P.v.) accompanied by soil flushing of phosphate (P.v./Flushing treatment) could significantly decrease the total As concentration of soil over a 37day flushing period compared with the single flushing (Flushing treatment). The P.v./Flushing treatment removed 54.04% of soil As from contaminated soil compared to 47.16% in Flushing treatment, suggesting that the growth of P. vittata was beneficial for promoting the removal efficiency. We analyzed the As fractionation in soil and As concentration in soil solution to reveal the mechanism behind this combined process. Results showed that comparing with the control treatment, the percent of labile arsenate fraction significantly increased by 17% under P.v./Flushing treatment. As concentration in soil solution remained a high lever during the middle and later periods (51.26-56.22mg/L), which was significantly higher than the Flushing treatment. Although soil flushing of phosphate for more than a month, P. vittata still had good accumulation and transfer capacity of As of the soil. The results of the research revealed that combination of phytoremediation and in situ soil flushing is available to remediate As-contaminated soils. Copyright © 2016. Published by Elsevier B.V.

  6. An exploration of unsaturated zone during in-situ heating test in sedimentary soft rocks

    International Nuclear Information System (INIS)

    Kubota, Kenji; Suzuki, Koichi; Ikenoya, Takafumi; Takakura, Nozomu; Tani, Kazuo

    2011-01-01

    In-situ heating test has been conducted to evaluate the influence of high temperature in an underground facility at a depth of 50 m. Resistivity monitoring is thought to be effective to map the extent of the high temperature and unsaturated zone. So we have conducted resistivity tomography during the heating test. As a result, the resistivity of the rock mass around the heating well was decreased and this area was gradually expanded from the heated area during the heating. This suggests that high temperature zone is detected by resistivity tomography. The results also suggested that resistivity was increased by unsaturation of rock mass around the heating well. (author)

  7. Feasibility testing of in situ vitrification of uranium-contaminated soils

    International Nuclear Information System (INIS)

    Ikuse, H.; Tsuchino, S.; Tasaka, H.; Timmerman, C.L.

    1989-01-01

    Process feasibility studies using in situ vitrification (ISV) were successfully performed on two different uranium-contaminated wastes. In situ vitrification is a thermal treatment process that converts contaminated soils into durable glass and crystalline form. Of the two different wastes, one waste was uranium mill tailings, while the other was uranium-contaminated soils which had high water contents. Analyses of the data from the two tests are presented

  8. A simplified in-situ electrochemical decontamination of lead from polluted soil (abstract)

    International Nuclear Information System (INIS)

    Ansari, T.M.; Ahmad, I.; Khan, Q.M.; Chaudhry, A.H.

    2011-01-01

    This paper reports a simplified In-Situ electrochemical method for remediation of field soil contaminated with lead. A series of electrochemical decontamination experiments including variable conditions such as operating duration and application of enhancement reagent were performed to demonstrate the efficiency of lead removal from spiked and polluted soil samples collected from Lahore, Pakistan. The results showed that the efficiency of lead removal from the contaminated soil increased with increasing the operating duration under a set of experimental conditions. The reagent used as complexing and solubilizing agent i.e. EDTA was found to be efficient in removing lead from the polluted soil. After 15 days duration, 85 % lead removal efficiency was observed in spiked soil under enhanced conditions , however, 63 % lead removal was achieved from the polluted soil samples by the simplified In-situ electrochemical decontamination method. The method is simple, rapid, cheaper and suitable for soil remediation purposes. (author)

  9. Comparative review of techniques used for in situ remediation of contaminated soils

    International Nuclear Information System (INIS)

    Escusol Tomey, M.; Rodriguez Abad, R.

    2014-01-01

    Soil pollution may influence the geotechnical parameters of the soil itself, properties such as solid particle density or water within its pores. It may also vary its friction angle, modify its structure and texture, or change the properties of its constitutive minerals due to the inclusion of polluting components. For these reasons, soil decontamination is an important factor to consider in geotechnics. This work focuses on those soil decontamination techniques carried out in situ, since they allow to eliminate soil pollutants in a less invasive way than confinement, containment or ex situ remediation techniques, causing a minor soil alteration and, therefore, affecting less to its mechanical properties. These factors should be taken into account when carrying out a geotechnical performance on a previously decontaminated soil. (Author)

  10. The Impacts of Heating Strategy on Soil Moisture Estimation Using Actively Heated Fiber Optics.

    Science.gov (United States)

    Dong, Jianzhi; Agliata, Rosa; Steele-Dunne, Susan; Hoes, Olivier; Bogaard, Thom; Greco, Roberto; van de Giesen, Nick

    2017-09-13

    Several recent studies have highlighted the potential of Actively Heated Fiber Optics (AHFO) for high resolution soil moisture mapping. In AHFO, the soil moisture can be calculated from the cumulative temperature ( T cum ), the maximum temperature ( T max ), or the soil thermal conductivity determined from the cooling phase after heating ( λ ). This study investigates the performance of the T cum , T max and λ methods for different heating strategies, i.e., differences in the duration and input power of the applied heat pulse. The aim is to compare the three approaches and to determine which is best suited to field applications where the power supply is limited. Results show that increasing the input power of the heat pulses makes it easier to differentiate between dry and wet soil conditions, which leads to an improved accuracy. Results suggest that if the power supply is limited, the heating strength is insufficient for the λ method to yield accurate estimates. Generally, the T cum and T max methods have similar accuracy. If the input power is limited, increasing the heat pulse duration can improve the accuracy of the AHFO method for both of these techniques. In particular, extending the heating duration can significantly increase the sensitivity of T cum to soil moisture. Hence, the T cum method is recommended when the input power is limited. Finally, results also show that up to 50% of the cable temperature change during the heat pulse can be attributed to soil background temperature, i.e., soil temperature changed by the net solar radiation. A method is proposed to correct this background temperature change. Without correction, soil moisture information can be completely masked by the background temperature error.

  11. In situ measurement of some soil properties in paddy soil using visible and near-infrared spectroscopy.

    Directory of Open Access Journals (Sweden)

    Ji Wenjun

    Full Text Available In situ measurements with visible and near-infrared spectroscopy (vis-NIR provide an efficient way for acquiring soil information of paddy soils in the short time gap between the harvest and following rotation. The aim of this study was to evaluate its feasibility to predict a series of soil properties including organic matter (OM, organic carbon (OC, total nitrogen (TN, available nitrogen (AN, available phosphorus (AP, available potassium (AK and pH of paddy soils in Zhejiang province, China. Firstly, the linear partial least squares regression (PLSR was performed on the in situ spectra and the predictions were compared to those with laboratory-based recorded spectra. Then, the non-linear least-square support vector machine (LS-SVM algorithm was carried out aiming to extract more useful information from the in situ spectra and improve predictions. Results show that in terms of OC, OM, TN, AN and pH, (i the predictions were worse using in situ spectra compared to laboratory-based spectra with PLSR algorithm (ii the prediction accuracy using LS-SVM (R2>0.75, RPD>1.90 was obviously improved with in situ vis-NIR spectra compared to PLSR algorithm, and comparable or even better than results generated using laboratory-based spectra with PLSR; (iii in terms of AP and AK, poor predictions were obtained with in situ spectra (R2<0.5, RPD<1.50 either using PLSR or LS-SVM. The results highlight the use of LS-SVM for in situ vis-NIR spectroscopic estimation of soil properties of paddy soils.

  12. On parameterization of heat conduction in coupled soil water and heat flow modelling

    Czech Academy of Sciences Publication Activity Database

    Votrubová, J.; Dohnal, M.; Vogel, T.; Tesař, Miroslav

    2012-01-01

    Roč. 7, č. 4 (2012), s. 125-137 ISSN 1801-5395 R&D Projects: GA ČR GA205/08/1174 Institutional research plan: CEZ:AV0Z20600510 Keywords : advective heat flux * dual-permeability model * soil heat transport * soil thermal conductivity * surface energy balance Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.333, year: 2012

  13. Comparison of in situ gamma soil analysis and soil sampling data for mapping 241Am and 239Pu soil concentrations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kirby, J.A.; Anspaugh, L.R.; Phelps, P.L.; Huckabay, G.W.; Markwell, F.; Barnes, M.

    1976-01-01

    Soil sampling and in situ 241 Am-gamma counting with an array of four high purity, planar, Ge detectors are compared as means of determining soil concentration contours of plutonium and their associated uncertainties. Results of this survey, which covered an area of approximately 300,000 m 2 , indicate that with one-third the number of sampling locations, the in situ gamma survey provided soil concentration contours with confidence intervals that were about one-third as wide as those obtained with soil sampling. The methods of the survey are described and a discussion of advantages and limitations of both methods is given

  14. Comparison of in situ gamma soil analysis and soil sampling data for mapping 241Am and 239Pu soil concentrations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kirby, J.A.; Anspaugh, L.R.; Phelps, P.L.; Huckabay, G.W.; Markwell, F.R.; Barnes, M.G.

    1977-01-01

    Soil sampling and in situ 241 Am-gamma counting with an array of four high-purity, planar, Ge detectors are compared as means of determining soil concentration contours of plutonium and their associated uncertainties. Results of this survey, which covered an area of approximately 300,000 m 2 , indicate that with one-third the number of sampling locations, the in situ gamma survey provided soil concentration contours with confidence intervals that were about one-third as wide as those obtained with soil sampling. The methods of the survey are described and a discussion of advantages and limitations of both methods is given

  15. Effective soil-stiffness validation : Shaker excitation of an in-situ monopile foundation

    NARCIS (Netherlands)

    Versteijlen, W.G.; Renting, F.W.; van der Valk, P. L.C.; van Dalen, K.N.; Metrikine, A.

    2017-01-01

    In an attempt to decrease the modelling uncertainty associated with the soil-structure interaction of large-diameter monopile foundations, a hydraulic shaker was used to excite a real-sized, in-situ monopile foundation in stiff, sandy soil in a near-shore wind farm. The response in terms of

  16. Process, engineering and design aspects of contaminated soil bioremediation. Pt. 1 In situ treatments

    International Nuclear Information System (INIS)

    De Fraja Frangipane, E.; Andreottola, G.; Tatano, F.

    1995-01-01

    The present paper is an up-to-date overview of contaminated soil bioremediation techniques, which are analyzed in detail with regard to main process, engineering and design aspects. General biochemical/kinetic aspects of bioremediation of contaminated soil, and in situ treatments, are discussed in this part one

  17. APPLICATION STRATEGIES AND DESIGN CRITERIA FOR IN SITU BIOREMEDIATION OF SOIL AND GROUNDWATER IMPACTED BY PAHS

    Science.gov (United States)

    Biotreatability studies conducted in our laboratory used soils from two former wood-treatment facilities to evaluate the use of in situ bioventing and biosparging applications for their potential ability to remediate soil and groundwater containing creosote. The combination of ph...

  18. Quantitative comparison of in situ soil CO2 flux measurement methods

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose

    2002-01-01

    Development of reliable regional or global carbon budgets requires accurate measurement of soil CO2 flux. We conducted laboratory and field studies to determine the accuracy and comparability of methods commonly used to measure in situ soil CO2 fluxes. Methods compared included CO2...

  19. A new in-situ method to determine the apparent gas diffusion coefficient of soils

    Science.gov (United States)

    Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin

    2015-04-01

    Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.

  20. Visualization of Enzyme Activities in Earthworm Biopores by In Situ Soil Zymography.

    Science.gov (United States)

    Razavi, Bahar S; Hoang, Duyen; Kuzyakov, Yakov

    2017-01-01

    Earthworms produce biopores with strongly increased microbial and enzyme activities and consequently they form microbial hotspots in soil. In extremely dynamic microhabitats and hotspots such as earthworm biopores, the in situ enzyme activities are a footprint of process rates and complex biotic interactions. The effect of earthworms on enzyme activities inside biopores, relative to earthworm-free soil, can be visualized by in situ soil zymography. Here, we describe the details of the approach and discuss its advantages and limitations. Direct zymography provides high spatial resolution for quantitative images of enzyme activities in biopores.

  1. In-situ spectrometry of {sup 137}Cs in the soil by unfolding method

    Energy Technology Data Exchange (ETDEWEB)

    Fueloep, M; Ragan, P [Inst. of Preventive and Clinical Medicine, 833301 Bratislava (Slovakia); Krnac, S [Slovak Technical Univ., Bratislava (Slovakia)

    1996-12-31

    This contribution is aimed to the possibility of improving the in-situ gamma spectrometry to be independent on a knowledge about a depth distribution of {sup 137}Cs in soil and sufficiently sensitive for the measurement of the post-Chernobyl {sup 137}Cs at present, as well. The depth distribution of {sup 137}Cs averaged over a large area of soil is obtained by unfolding of the detector responses to primary and in soil forward scattered photons. The proposed method employs detector with and without collimator. The {sup 137}Cs distributions obtained in-situ measurements are analysed, and comparisons are made to the results obtained with soil sampling and with standard in-situ spectrometry, as well. 5 figs., 1 tab., 4 refs.

  2. In-situ spectrometry of 137Cs in the soil by unfolding method

    International Nuclear Information System (INIS)

    Fueloep, M.; Ragan, P.; Krnac, S.

    1995-01-01

    This contribution is aimed to the possibility of improving the in-situ gamma spectrometry to be independent on a knowledge about a depth distribution of 137 Cs in soil and sufficiently sensitive for the measurement of the post-Chernobyl 137 Cs at present, as well. The depth distribution of 137 Cs averaged over a large area of soil is obtained by unfolding of the detector responses to primary and in soil forward scattered photons. The proposed method employs detector with and without collimator. The 137 Cs distributions obtained in-situ measurements are analysed, and comparisons are made to the results obtained with soil sampling and with standard in-situ spectrometry, as well. 5 figs., 1 tab., 4 refs

  3. Rapid in situ assessment for predicting soil quality using an algae-soaked disc seeding assay.

    Science.gov (United States)

    Nam, Sun-Hwa; Moon, Jongmin; Kim, Shin Woong; Kim, Hakyeong; Jeong, Seung-Woo; An, Youn-Joo

    2017-11-16

    The soil quality of remediated land is altered and this land consequently exerts unexpected biological effects on terrestrial organisms. Therefore, field evaluation of such land should be conducted using biological indicators. Algae are a promising new biological indicator since they are a food source for organisms in higher soil trophic levels and easily sampled from the soil. Field evaluation of soil characteristics is preferred to be testing in laboratory conditions because many biological effects cannot be duplicated during laboratory evaluations. Herein, we describe a convenient and rapid algae-soaked disc seeding assay for assessing soil quality in the field based on soil algae. The collection of algae is easy and rapid and the method predicts the short-term quality of contaminated, remediated, and amended farm and paddy soils. The algae-soaked disc seeding assay is yet to be extensively evaluated, and the method cannot be applied to loamy sand soil in in situ evaluations. The algae-soaked disc seeding assay is recommended for prediction of soil quality in in situ evaluations because it reflects all variations in the environment. The algae-soaked disc seeding assay will help to develop management strategies for in situ evaluation.

  4. In situ subsoil stress-strain behaviour in relation to soil precompression stress

    DEFF Research Database (Denmark)

    Keller, T; Arvidsson, J; Schjønning, Per

    2012-01-01

    is assumed to be elastic and reversible as long as [sigma] work examined soil stress-strain behavior as measured in situ during wheeling experiments and related it to the stress-strain behavior and [sigma]pc measured on soil cores in uniaxial compression tests in the laboratory. The data......Soil compaction negatively influences many important soil functions, including crop growth. Compaction occurs when the applied stress, [sigma], overcomes the soil strength. Soil strength in relation to compaction is typically expressed by the soil precompression stress, [sigma]pc. Deformation...... analyzed were from a large number of wheeling experiments carried out in Sweden and Denmark on soils with a wide range of texture. Contradicting the concept of precompression stress, we observed residual strain, [Latin Small Letter Open E]res, at [sigma

  5. Polluted soils with heavy metals. Stabilization by magnesium oxide. Ex-situ and in-situ testings; Suelos contaminados con metales pesados. Estabilizacion con oxido de magnesio. Ensayos ex situ-in situ

    Energy Technology Data Exchange (ETDEWEB)

    Cenoz, S.; Hernandez, J.; Gangutia, N.

    2004-07-01

    This work describes the use of Low-Grade MgO as a stabiliser agent for polluted soil reclaim. Low-Grade MgO may be an economically feasible alternative in the stabilisation of heavy metals from heavily contaminated soils. The effectiveness of Low-Grade MgO has been studied in three ex-situ stabilisation of heavily polluted soils contaminated by the flue-dust of pyrite roasting. LG-MgO provides an alkali reservoir guaranteeing long-term stabilisation without varying the pH conditions. The success of the ex-situ stabilisation was corroborated with the analysis of heavy metals in the leachates collected from the landfill o ver a long period of time. The study also includes the results obtained in an in-situ pilot scale stabilisation of contaminated soil. (Author) 17 refs.

  6. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization.

    Science.gov (United States)

    Zhai, Xiuqing; Li, Zhongwu; Huang, Bin; Luo, Ninglin; Huang, Mei; Zhang, Qiu; Zeng, Guangming

    2018-09-01

    The remediation of heavy metal-contaminated soils is a great challenge for global environmental sciences and engineering. To control the ecological risks of heavy metal-contaminated soil more effectively, the present study focused on the combination of soil washing (with FeCl 3 ) and in situ immobilization (with lime, biochar, and black carbon). The results showed that the removal rate of Cd, Pb, Zn, and Cu was 62.9%, 52.1%, 30.0%, and 16.7%, respectively, when washed with FeCl 3 . After the combined remediation (immobilization with 1% (w/w) lime), the contaminated soils showed 36.5%, 73.6%, 70.9%, and 53.4% reductions in the bioavailability of Cd, Cu, Pb, and Zn (extracted with 0.11M acetic acid), respectively, than those of the soils washed with FeCl 3 only. However, the immobilization with 1% (w/w) biochar or 1% (w/w) carbon black after washing exhibited low effects on stabilizing the metals. The differences in effects between the immobilization with lime, biochar, and carbon black indicated that the soil pH had a significant influence on the lability of heavy metals during the combined remediation process. The activity of the soil enzymes (urease, sucrase, and catalase) showed that the addition of all the materials, including lime, biochar, and carbon black, exhibited positive effects on microbial remediation after soil washing. Furthermore, lime was the most effective material, indicating that low soil pH and high acid-soluble metal concentrations might restrain the activity of soil enzymes. Soil pH and nutrition were the major considerations for microbial remediation during the combined remediation. These findings suggest that the combination of soil washing and in situ immobilization is an effective method to amend the soils contaminated with multiple heavy metals. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Sour gas injection for use with in situ heat treatment

    Science.gov (United States)

    Fowler, Thomas David [Houston, TX

    2009-11-03

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

  8. In situ assessment of phytotechnologies for multicontaminated soil management.

    Science.gov (United States)

    Ouvrard, S; Barnier, C; Bauda, P; Beguiristain, T; Biache, C; Bonnard, M; Caupert, C; Cébron, A; Cortet, J; Cotelle, S; Dazy, M; Faure, P; Masfaraud, J F; Nahmani, J; Palais, F; Poupin, P; Raoult, N; Vasseur, P; Morel, J L; Leyval, C

    2011-01-01

    Due to human activities, large volumes of soils are contaminated with organic pollutants such as polycyclic aromatic hydrocarbons, and very often by metallic pollutants as well. Multipolluted soils are therefore a key concern for remediation. This work presents a long-term evaluation of the fate and environmental impact of the organic and metallic contaminants of an industrially polluted soil under natural and plant-assisted conditions. A field trial was followed for four years according to six treatments in four replicates: unplanted, planted with alfalfa with or without mycorrhizal inoculation, planted with Noccaea caerulescens, naturally colonized by indigenous plants, and thermally treated soil planted with alfalfa. Leaching water volumes and composition, PAH concentrations in soil and solutions, soil fauna and microbial diversity, soil and solution toxicity using standardized bioassays, plant biomass, mycorrhizal colonization, were monitored. Results showed that plant cover alone did not affect total contaminant concentrations in soil. However, it was most efficient in improving the contamination impact on the environment and in increasing the biological diversity. Leaching water quality remained an issue because of its high toxicity shown by micro-algae testing. In this matter, prior treatment of the soil by thermal desorption proved to be the only effective treatment.

  9. Estimating cumulative soil accumulation rates with in situ-produced cosmogenic nuclide depth profiles

    International Nuclear Information System (INIS)

    Phillips, William M.

    2000-01-01

    A numerical model relating spatially averaged rates of cumulative soil accumulation and hillslope erosion to cosmogenic nuclide distribution in depth profiles is presented. Model predictions are compared with cosmogenic 21 Ne and AMS radiocarbon data from soils of the Pajarito Plateau, New Mexico. Rates of soil accumulation and hillslope erosion estimated by cosmogenic 21 Ne are significantly lower than rates indicated by radiocarbon and regional soil-geomorphic studies. The low apparent cosmogenic erosion rates are artifacts of high nuclide inheritance in cumulative soil parent material produced from erosion of old soils on hillslopes. In addition, 21 Ne profiles produced under conditions of rapid accumulation (>0.1 cm/a) are difficult to distinguish from bioturbated soil profiles. Modeling indicates that while 10 Be profiles will share this problem, both bioturbation and anomalous inheritance can be identified with measurement of in situ-produced 14 C

  10. An in situ method for real-time monitoring of soil gas diffusivity

    Science.gov (United States)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect

  11. In situ formation of magnetite reactive barriers in soil for waste stabilization

    Science.gov (United States)

    Moore, Robert C.

    2003-01-01

    Reactive barriers containing magnetite and methods for making magnetite reactive barriers in situ in soil for sequestering soil contaminants including actinides and heavy metals, organic materials, iodine and technetium are disclosed. According to one embodiment, a two-step reagent introduction into soil takes place. In the first step, free oxygen is removed from the soil by separately injecting into the soil aqueous solutions of iron (II) salt, for example FeCl.sub.2, and base, for example NaOH or NH.sub.3 in about a 1:1 volume ratio. Then, in the second step, similar reagents are injected a second time (however, according to about a 1:2 volume ratio, iron to salt) to form magnetite. The magnetite formation is facilitated, in part, due to slow intrusion of oxygen into the soil from the surface. The invention techniques are suited to injection of reagents into soil in proximity to a contamination plume or source allowing in situ formation of the reactive barrier at the location of waste or hazardous material. Mixing of reagents to form. precipitate is mediated and enhanced through movement of reagents in soil as a result of phenomena including capillary action, movement of groundwater, soil washing and reagent injection pressure.

  12. Groundbreaking technology: in-situ anaerobic bioremediation for treatment of contaminated soil and groundwater

    International Nuclear Information System (INIS)

    Fernandes, K.A.

    2002-01-01

    Anaerobic in-situ bioremediation is a technique often used to cleanse contaminated soil and groundwater. 'Anaerobic in-situ bioremediation' is a phrase with distinct terms all having relevance in the application of this technique. Anaerobic implies the absence of dissolved oxygen, while 'in-situ' simply means that the environmental cleansing occurs with out removing, displacing, or significantly disturbing the specimen or surrounding area. 'Bioremediation' is a term used to describe the biological use of microbes or plants to detoxify the environment. In order to properly implement this complex process, one must have an understanding of microbiology, biochemistry, genetics, metabolic processes, and structure and function of natural microbial communities. (author)

  13. enhanced ex-situ bioremediation of soil contaminated

    African Journals Online (AJOL)

    user

    refinery waste effluent having total organic compound (TOC) as model organic pollutant. .... the surface layer using white tissue paper. A soil .... the electrical stimulation of microbial PCB degradation in ... decrease of toxicity for bacterial action.

  14. An optical technique to measure distortion in heat-treated parts in-situ

    Science.gov (United States)

    Sciammarella, Federico; Nash, Phillip

    2005-05-01

    Improvements in the properties of aluminum alloys have made them more popular for structural applications. Using the different heat treatments that are available, aluminum alloys can have a wide variation in properties for different types of applications. The appropriate heat treatments of these alloys are vital in providing the properties needed for their particular applications. Moreover, understanding the effects of heat treatments that may cause distortion to a part is critical. Most of the work carried out in this field is in the form of pre- and post-treatment analysis of a part. In this study, in-situ measurements of the distortions that a heat-treated part undergoes when subjected to rapid heating to temperatures near melting followed by slow cooling were carried out. A numerical model was built to simulate the experiment and the results are compared. This study will provide much-needed insight into the complex occurrences that aluminum parts undergo during heat treatment.

  15. Ground source heat pump performance in case of high humidity soil and yearly balanced heat transfer

    International Nuclear Information System (INIS)

    Schibuola, Luigi; Tambani, Chiara; Zarrella, Angelo; Scarpa, Massimiliano

    2013-01-01

    Highlights: • GSHPs are simulated in case of humid soil and yearly balanced heat transfer. • Humid soil and yearly balanced heat transfer imply higher compactness of GSHPs. • Resulting GSHPs are compared with other traditional and innovative HVAC systems. • GSHPs score best, especially in case of inverter-driven compressors. - Abstract: Ground source heat pump (GSHP) systems are spreading also in Southern Europe, due to their high energy efficiency both in heating and in cooling mode. Moreover, they are particularly suitable in historical cities because of difficulties in the integration of heating/cooling systems into buildings subjected to historical preservation regulations. In these cases, GSHP systems, especially the ones provided with borehole heat exchangers, are a suitable solution instead of gas boilers, air-cooled chillers or cooling towers. In humid soils, GSHP systems are even more interesting because of their enhanced performance due to higher values of soil thermal conductivity and capacity. In this paper, GSHP systems operating under these boundary conditions are analyzed through a specific case study set in Venice and related to the restoration of an historical building. With this analysis the relevant influences of soil thermal conductivity and yearly balanced heat transfer in the design of the borehole field are shown. In particular, the paper shows the possibility to achieve higher compactness of the borehole field footprint area when yearly balanced heat transfer in the borehole field is expected. Then, the second set of results contained in the paper shows how GSHP systems designed for high humidity soils and yearly balanced heat loads at the ground side, even if characterized by a compact footprint area, may still ensure better performance than other available and more common technologies such as boilers, air-cooled chillers, chillers coupled with cooling towers and heat pumps and chillers coupled with lagoon water. As a consequence

  16. An analysis on remediation characteristics of soils contaminated with Co for in-situ application

    International Nuclear Information System (INIS)

    Kim, K. N.; Won, H. J.; Kweun, H. S.; Shon, J. S.; Oh, W. J.

    1999-01-01

    The solvent flushing apparatus for in-situ soil remediation was designed. After the soil around nuclear facilities was sampled and compulsorily contaminated by Co solution, the remediation characteristics by solvent flushing were analyzed. Meanwhile, the nonequilibrium sorption code was developed for modelling of the soil remediation by solvent flushing, and input parameters needed for modelling were measured by laboratory experiment. Experimental results are as follows: The soil around nuclear facilities belongs to Silt Loam including a lot of silt and sand. When water was used as a solvent, the higher was the hydraulic conductivity, the higher the efficiency of soil remediation was. The values calculated by the nonequilibrium sorption code agreed with experimental values more exactly than the values calculated by the equilibrium sorption code. When citric acid was used as a solvent, the soil remediation efficiency by citric acid showed 1.65 times that by water

  17. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    Science.gov (United States)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  18. USE OF PELTIER COOLERS AS SOIL HEAT FLUX TRANSDUCERS.

    Science.gov (United States)

    Weaver, H.L.; Campbell, G.S.

    1985-01-01

    Peltier coolers were modified and calibrated to serve as soil heat flux transducers. The modification was to fill their interiors with epoxy. The average calibration constant on 21 units was 13. 6 plus or minus 0. 8 kW m** minus **2 V** minus **1 at 20 degree C. This sensitivity is about eight times that of the two thermopile transducers with which comparisons were made. The thermal conductivity of the Peltier cooler transducers was 0. 4 W m** minus **1 degree C** minus **1, which is comparable to that of dry soil.

  19. Towards soil property retrieval from space: Proof of concept using in situ observations

    Science.gov (United States)

    Bandara, Ranmalee; Walker, Jeffrey P.; Rüdiger, Christoph

    2014-05-01

    Soil moisture is a key variable that controls the exchange of water and energy fluxes between the land surface and the atmosphere. However, the temporal evolution of soil moisture is neither easy to measure nor monitor at large scales because of its high spatial variability. This is mainly a result of the local variation in soil properties and vegetation cover. Thus, land surface models are normally used to predict the evolution of soil moisture and yet, despite their importance, these models are based on low-resolution soil property information or typical values. Therefore, the availability of more accurate and detailed soil parameter data than are currently available is vital, if regional or global soil moisture predictions are to be made with the accuracy required for environmental applications. The proposed solution is to estimate the soil hydraulic properties via model calibration to remotely sensed soil moisture observation, with in situ observations used as a proxy in this proof of concept study. Consequently, the feasibility is assessed, and the level of accuracy that can be expected determined, for soil hydraulic property estimation of duplex soil profiles in a semi-arid environment using near-surface soil moisture observations under naturally occurring conditions. The retrieved soil hydraulic parameters were then assessed by their reliability to predict the root zone soil moisture using the Joint UK Land Environment Simulator model. When using parameters that were retrieved using soil moisture observations, the root zone soil moisture was predicted to within an accuracy of 0.04 m3/m3, which is an improvement of ∼0.025 m3/m3 on predictions that used published values or pedo-transfer functions.

  20. Quantitative thermography and methods for in-situ determination of heat losses from district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, B. [ed.

    1996-11-01

    The course and seminar summarizing application of infrared thermography in district heating systems control gathered Danish specialists with 5 contributions on the subject. Maintenance of the heat distribution pipelines and thermographic inspection of the systems are essential in order to avoid heat losses. (EG)

  1. Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using In Situ Data

    Directory of Open Access Journals (Sweden)

    Yayong Sun

    2017-03-01

    Full Text Available The Soil Moisture Active Passive (SMAP satellite makes coincident global measurements of soil moisture using an L-band radar instrument and an L-band radiometer. It is crucial to evaluate the errors in the newest L-band SMAP satellite-derived soil moisture products, before they are routinely used in scientific research and applications. This study represents the first evaluation of the SMAP radiometer soil moisture product over China. In this paper, a preliminary evaluation was performed using sparse in situ measurements from 655 China Meteorological Administration (CMA monitoring stations between 1 April 2015 and 31 August 2016. The SMAP radiometer-derived soil moisture product was evaluated against two schemes of original soil moisture and the soil moisture anomaly in different geographical zones and land cover types. Four performance metrics, i.e., bias, root mean square error (RMSE, unbiased root mean square error (ubRMSE, and the correlation coefficient (R, were used in the accuracy evaluation. The results indicated that the SMAP radiometer-derived soil moisture product agreed relatively well with the in situ measurements, with ubRMSE values of 0.058 cm3·cm−3 and 0.039 cm3·cm−3 based on original data and anomaly data, respectively. The values of the SMAP radiometer-based soil moisture product were overestimated in wet areas, especially in the Southwest China, South China, Southeast China, East China, and Central China zones. The accuracies over croplands and in Northeast China were the worst. Soil moisture, surface roughness, and vegetation are crucial factors contributing to the error in the soil moisture product. Moreover, radio frequency interference contributes to the overestimation over the northern portion of the East China zone. This study provides guidelines for the application of the SMAP-derived soil moisture product in China and acts as a reference for improving the retrieval algorithm.

  2. Comparative review of techniques used for in situ remediation of contaminated soils; Revision comparativa de tecnicas empleadas para la descontaminacion in situ de suelos contaminados

    Energy Technology Data Exchange (ETDEWEB)

    Escusol Tomey, M.; Rodriguez Abad, R.

    2014-07-01

    Soil pollution may influence the geotechnical parameters of the soil itself, properties such as solid particle density or water within its pores. It may also vary its friction angle, modify its structure and texture, or change the properties of its constitutive minerals due to the inclusion of polluting components. For these reasons, soil decontamination is an important factor to consider in geotechnics. This work focuses on those soil decontamination techniques carried out in situ, since they allow to eliminate soil pollutants in a less invasive way than confinement, containment or ex situ remediation techniques, causing a minor soil alteration and, therefore, affecting less to its mechanical properties. These factors should be taken into account when carrying out a geotechnical performance on a previously decontaminated soil. (Author)

  3. Blending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yijian Zeng

    2016-03-01

    Full Text Available The inter-comparison of different soil moisture (SM products over the Tibetan Plateau (TP reveals the inconsistency among different SM products, when compared to in situ measurement. It highlights the need to constrain the model simulated SM with the in situ measured data climatology. In this study, the in situ soil moisture networks, combined with the classification of climate zones over the TP, were used to produce the in situ measured SM climatology at the plateau scale. The generated TP scale in situ SM climatology was then used to scale the model-simulated SM data, which was subsequently used to scale the SM satellite observations. The climatology-scaled satellite and model-simulated SM were then blended objectively, by applying the triple collocation and least squares method. The final blended SM can replicate the SM dynamics across different climatic zones, from sub-humid regions to semi-arid and arid regions over the TP. This demonstrates the need to constrain the model-simulated SM estimates with the in situ measurements before their further applications in scaling climatology of SM satellite products.

  4. Automated Quality Control of in Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products

    Science.gov (United States)

    Ek, M. B.; Xia, Y.; Ford, T.; Wu, Y.; Quiring, S. M.

    2015-12-01

    The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable due to the diversity of climatological conditions, land cover, soil texture, and topographies of the stations and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy and imprecision in the data set can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure the data is of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System phase 2 (NLDAS-2) Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20 cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and West Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1,200 NASMD stations in the near future.

  5. Ex situ bioremediation of oil-contaminated soil.

    Science.gov (United States)

    Lin, Ta-Chen; Pan, Po-Tsen; Cheng, Sheng-Shung

    2010-04-15

    An innovative bioprocess method, Systematic Environmental Molecular Bioremediation Technology (SEMBT) that combines bioaugmentation and biostimulation with a molecular monitoring microarray biochip, was developed as an integrated bioremediation technology to treat S- and T-series biopiles by using the landfarming operation and reseeding process to enhance the bioremediation efficiency. After 28 days of the bioremediation process, diesel oil (TPH(C10-C28)) and fuel oil (TPH(C10-C40)) were degraded up to approximately 70% and 63% respectively in the S-series biopiles. When the bioaugmentation and biostimulation were applied in the beginning of bioremediation, the microbial concentration increased from approximately 10(5) to 10(6) CFU/g dry soil along with the TPH biodegradation. Analysis of microbial diversity in the contaminated soils by microarray biochips revealed that Acinetobacter sp. and Pseudomonas aeruginosa were the predominant groups in indigenous consortia, while the augmented consortia were Gordonia alkanivorans and Rhodococcus erythropolis in both series of biopiles during bioremediation. Microbial respiration as influenced by the microbial activity reflected directly the active microbial population and indirectly the biodegradation of TPH. Field experimental results showed that the residual TPH concentration in the complex biopile was reduced to less than 500 mg TPH/kg dry soil. The above results demonstrated that the SEMBT technology is a feasible alternative to bioremediate the oil-contaminated soil. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  6. In-Situ Electrokinetic Remediation for Metal Contaminated Soils

    Science.gov (United States)

    2001-03-01

    phytoremediation , and electrokinetic extraction. The US Army Environmental Center (USAEC) and Engineer Research and Development Center (ERDC...California (CA) List Metals: Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury , molybdenum, nickel, selenium...Comparison Technologies with which electrokinetic remediation must compete are "Dig and Haul", Soil Washing, and Phytoremediation . "Dig and haul

  7. SUMMARY PAPER: IN SITU BIOREMEDIATION OF CONTAMINATED VADOSE ZONE SOIL

    Science.gov (United States)

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of Issue Papers and Briefing Documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. In an attem...

  8. Case studies illustrating in-situ remediation methods for soil and groundwater contaminated with petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert A.; Lance, P.E.; Downs, A.; Kier, Brian P. [EMCON Northwest Inc., Portland, OR (United States)

    1993-12-31

    Four case studies of successful in-situ remediation are summarized illustrating cost-effective methods to remediate soil and groundwater contaminated with volatile and non-volatile petrochemicals. Each site is in a different geologic environment with varying soil types and with and without groundwater impact. The methods described include vadose zone vapor extraction, high-vacuum vapor extraction combined with groundwater tab.le depression, air sparging with groundwater recovery and vapor extraction, and bio remediation of saturated zone soils using inorganic nutrient and oxygen addition

  9. Case studies illustrating in-situ remediation methods for soil and groundwater contaminated with petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert A; Lance, P E; Downs, A; Kier, Brian P [EMCON Northwest Inc., Portland, OR (United States)

    1994-12-31

    Four case studies of successful in-situ remediation are summarized illustrating cost-effective methods to remediate soil and groundwater contaminated with volatile and non-volatile petrochemicals. Each site is in a different geologic environment with varying soil types and with and without groundwater impact. The methods described include vadose zone vapor extraction, high-vacuum vapor extraction combined with groundwater tab.le depression, air sparging with groundwater recovery and vapor extraction, and bio remediation of saturated zone soils using inorganic nutrient and oxygen addition

  10. Geotechnical Parameters of Alluvial Soils from in-situ Tests

    Science.gov (United States)

    Młynarek, Zbigniew; Stefaniak, Katarzyna; Wierzbicki, Jedrzej

    2012-10-01

    The article concentrates on the identification of geotechnical parameters of alluvial soil represented by silts found near Poznan and Elblag. Strength and deformation parameters of the subsoil tested were identified by the CPTU (static penetration) and SDMT (dilatometric) methods, as well as by the vane test (VT). Geotechnical parameters of the subsoil were analysed with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. The article includes an analysis of the overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 9 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the Nkt coefficient, which might be used to identify the undrained shear strength of both sediments tested. On the basis of a detailed analysis of changes in terms of the constrained oedometric modulus M0, the relations between the said modulus, the liquidity index and the OCR value were identified. Mayne's formula (1995) was used to determine the M0 modulus from the CPTU test. The usefullness of the sediments found near Poznan as an earth construction material was analysed after their structure had been destroyed and compacted with a Proctor apparatus. In cases of samples characterised by different water content and soil particle density, the analysis of changes in terms of cohesion and the internal friction angle proved that these parameters are influenced by the soil phase composition (Fig. 18 and 19). On the basis of the tests, it was concluded that the most desirable shear strength parameters are achieved when the silt is compacted below the optimum water content.

  11. Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater

    Science.gov (United States)

    Turick, Charles E.; Apel, William W.

    1997-10-28

    A method of reducing the concentration of Cr(VI) in a liquid aqueous residue comprises the steps of providing anaerobic Cr(VI) reducing bacteria, mixing the liquid aqueous residue with a nutrient medium to form a mixture, and contacting the mixture with the anaerobic Cr(VI) reducing bacteria such that Cr(VI) is reduced to Cr(III). The anaerobic Cr(VI) reducing bacteria appear to be ubiquitous in soil and can be selected by collecting a soil sample, diluting the soil sample with a sterile diluent to form a diluted sample, mixing the diluted sample with an effective amount of a nutrient medium and an effective amount of Cr(VI) to form a mixture, and incubating the mixture in the substantial absence of oxygen such that growth of Cr(VI) sensitive microorganisms is inhibited and growth of the anaerobic Cr(VI) reducing bacteria is stimulated. A method of in situ bioremediation of Cr(VI) contaminated soil and/or groundwater is also disclosed.

  12. Visualization of enzyme activities inside earthworm biopores by in situ soil zymography

    Science.gov (United States)

    Thu Duyen Hoang, Thi; Razavi, Bahar. S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Earthworms can strongly activate microorganisms, increase microbial and enzyme activities and consequently the turnover of native soil organic matter. In extremely dynamic microhabitats and hotspots as biopores made by earthworms, the in situ enzyme activities are a footprint of complex biotic interactions. The effect of earthworms on the alteration of enzyme activities inside biopores and the difference between bio-pores and earthworm-free soil was visualized by in situ soil zymography (Spohn and Kuzyakov, 2014). For the first time, we prepared quantitative imaging of enzyme activities in biopores. Furthermore, we developed the zymography technique by direct application of a substrate saturated membrane to the soil to obtain better spatial resolution. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). Simultaneously, maize seed was sown in the soil. Control soil box with maize and without earthworm was prepared in the same way. After two weeks when bio-pore systems were formed by earthworm, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine aminopeptidase) and phosphatase. Followed by non-destructive zymography, biopore samples and control soil were destructively collected to assay enzyme kinetics by fluorogenically labeled substrates method. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. These differences were further confirmed by fluorimetric microplate enzyme assay detected significant difference of Vmax in four above mentioned enzymes. Vmax of β-glucosidase, chitinase, xylanase and phosphatase in biopores is 68%, 108%, 50% and 49% higher than that of control soil. However, no difference in cellobiohydrolase and leucine aminopeptidase kinetics between biopores and control soil were detected. This indicated little effect of earthworms on protein and cellulose transformation in soil

  13. In-situ bioremediation: Or how to get nutrients to all the contaminated soil

    International Nuclear Information System (INIS)

    Jackson, D.S.; Scovazzo, P.

    1994-01-01

    Petroleum contamination is a pervasive environmental problem. Bioremediation is winning favor primarily because the soil may be treated on site and systems can be installed to operate without interfering with facility activities. Although bioremediation has been utilized for many years, its acceptance as a cost-effective approach is only now being realized. KEMRON applied in-situ bioremediation at a retired rail yard which had maintained a diesel locomotive refueling station supplied by two 20,000 gallon above ground storage tanks. Contamination originated from both spillage at the pumps and leaking fuel distribution lines. The contamination spread over a 3 acre area from the surface to a depth of up to 20 feet. Levels of diesel contamination found in the soil ranged from less than a 100 ppm to more than 25,000 ppm. The volume of soil which ultimately required treatment was more than 60,000 cubic yards. Several remedial options were examined including excavation and disposal. Excavation was rejected because it would have been cost prohibitive due to the random distribution of the contaminated soil. In-situ Bioremediation was selected as the only alternative which could successfully treat all the contaminated soils. This paper focuses on how KEMRON solved four major problems which would have prevented a successful remediation project. These problems were: soil compaction, random distribution of contaminated soils, potential free product, and extremely high levels of dissolved iron in the groundwater

  14. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments.

    Science.gov (United States)

    Lee, Sang-Hwan; Lee, Jin-Soo; Choi, Youn Jeong; Kim, Jeong-Gyu

    2009-11-01

    Chemical stabilization is an in situ remediation method that uses inexpensive amendments to reduce contaminant availability in polluted soil. We tested the effects of several amendments (limestone, red-mud, and furnace slag) on the extractability of heavy metals, microbial activities, phytoavailability of soil metals (assessed using lettuce, Lactuca sativa L.), and availability of heavy metals in ingested soil to the human gastrointestinal system (assessed using the physiologically based extraction test). The application of soil amendments significantly decreased the amount of soluble and extractable heavy metals in the soil (p<0.05). The decreased extractable metal content of soil was accompanied by increased microbial activity and decreased plant uptake of heavy metals. Soil microbial activities (soil respiration, urease, and dehydrogenase activity) significantly increased in limestone and red-mud-amended soils. Red-mud was the most effective treatment in decreasing heavy-metal concentrations in lettuce. Compared to non-amended control soil, lettuce uptake of Cd, Pb, and Zn was reduced 86%, 58%, and 73%, respectively, by the addition of red-mud.

  15. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Jeffrey [ORNL; Brooks, J Renee [U.S. Environmental Protection Agency, Corvallis, OR; Dragila, Maria [Oregon State University, Corvallis; Meinzer, Rick [USDA Forest Service

    2011-01-01

    Nocturnal increases in water potential ( ) and water content (WC) in the upper soil profile are often attributed to root water efflux into the soil, a process termed hydraulic lift or hydraulic redistribution (HR). We have previously reported HR values up to ~0.29 mm day-1 in the upper soil for a seasonally dry old-growth ponderosa pine site. However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the diurnal patterns in WC, confounding efforts to determine the actual magnitude of HR. In this study, we estimated liquid (Jl) and vapor (Jv) soil water fluxes and their impacts on quantifying HR in situ by applying existing data sets of , WC, temperature (T) and soil physical properties to soil water transport equations. Under moist conditions, Jl between layers was estimated to be larger than necessary to account for measured nocturnal increases in WC of upper soil layers. However, as soil drying progressed unsaturated hydraulic conductivity declined rapidly such that Jl was irrelevant (< 2E-06 cm hr-1 at 0-60 cm depths) to total water flux by early August. In surface soil at depths above 15 cm, large T fluctuations can impact Jv leading to uncertainty concerning the role, if any, of HR in nocturnal WC dynamics. Vapor flux was estimated to be the highest at the shallowest depths measured (20 - 30 cm) where it could contribute up to 40% of hourly increases in nocturnal soil moisture depending on thermal conditions. While both HR and net soil water flux between adjacent layers contribute to WC in the 15-65 cm soil layer, HR was the dominant process and accounted for at least 80% of the diurnal increases in WC. While the absolute magnitude of HR is not easily quantified, total diurnal fluctuations in upper soil water content can be quantified and modeled, and remain highly applicable for establishing the magnitude and temporal dynamics of total ecosystem water flux.

  16. Floristic diversity of the soil weed seed bank in a rice-growing area of Brazil: in situ and ex situ evaluation

    Directory of Open Access Journals (Sweden)

    Mário Luiz Ribeiro Mesquita

    2013-09-01

    Full Text Available The objective of this study was to compare the ex situ and in situ floristic diversity of the soil weed seed bank of a rice field in northeastern Brazil. In a rice field in the county of Bacabal, located in the state of Maranhão, thirty 25-m² plots were laid out. From 15 plots, soil samples (6/plot; n = 90 were taken with a soil probe (25 × 16 × 3 cm and placed in aluminum trays in the greenhouse. From the remaining 15 plots, weed samples (6/plot; n = 90 were taken with the same soil probe. The number of seeds was estimated by germination. We evaluated the numbers of species and individuals, as well as the density, frequency, abundance and importance value (IV for each species. Diversity was computed by the Shannon index (H'. We recorded 13,892 individuals (among 20 families, 40 genera and 60 species, of which 11,530 (among 50 species germinated ex situ and 2,362 (among 34 species germinated in situ. The family Cyperaceae had the highest number of species (16, followed by Poaceae (10. The dominant species, in situ and ex situ, were Schoenoplectus juncoides (IV=47.4% and Ludwigia octovalvis (IV=34.8%, respectively. Floristic diversity was higher ex situ (H'=2.66. The information obtained here could help determine the infestation potential of these species, which could lead to improved management strategies.

  17. In situ air sparging for bioremediation of groundwater and soils

    International Nuclear Information System (INIS)

    Lord, D.; Lei, J.; Chapdelaine, M.C.; Sansregret, J.L.; Cyr, B.

    1995-01-01

    Activities at a former petroleum products depot resulted in the hydrocarbon contamination of soil and groundwater over a 30,000-m 2 area. Site remediation activities consisted of three phases: site-specific characterization and treatability study, pilot-scale testing, and full-scale bioremediation. During Phase 1, a series of site/soil/waste characterizations was undertaken to ascertain the degree of site contamination and to determine soil physical/chemical and microbiological characteristics. Treatability studies were carried out to simulate an air sparging process in laboratory-scale columns. Results indicated 42% mineral oil and grease removal and 94% benzene, toluene, ethylbenzene, and xylenes (BTEX) removal over an 8-week period. The removal rate was higher in the unsaturated zone than in the saturated zone. Phase 2 involved pilot-scale testing over a 550-m 2 area. The radius of influence of the air sparge points was evaluated through measurements of dissolved oxygen concentrations in the groundwater and of groundwater mounding. A full-scale air sparging system (Phase 3) was installed on site and has been operational since early 1994. Physical/chemical and microbiological parameters, and contaminants were analyzed to evaluate the system performance

  18. A combined model of heat and mass transfer for the in situ extraction of volatile water from lunar regolith

    Science.gov (United States)

    Reiss, P.

    2018-05-01

    Chemical analysis of lunar soil samples often involves thermal processing to extract their volatile constituents, such as loosely adsorbed water. For the characterization of volatiles and their bonding mechanisms it is important to determine their desorption temperature. However, due to the low thermal diffusivity of lunar regolith, it might be difficult to reach a uniform heat distribution in a sample that is larger than only a few particles. Furthermore, the mass transport through such a sample is restricted, which might lead to a significant delay between actual desorption and measurable outgassing of volatiles from the sample. The entire volatiles extraction process depends on the dynamically changing heat and mass transfer within the sample, and is influenced by physical parameters such as porosity, tortuosity, gas density, temperature and pressure. To correctly interpret measurements of the extracted volatiles, it is important to understand the interaction between heat transfer, sorption, and gas transfer through the sample. The present paper discusses the molecular kinetics and mechanisms that are involved in the thermal extraction process and presents a combined parametrical computation model to simulate this process. The influence of water content on the gas diffusivity and thermal diffusivity is discussed and the issue of possible resorption of desorbed molecules within the sample is addressed. Based on the multi-physical computation model, a case study for the ProSPA instrument for in situ analysis of lunar volatiles is presented, which predicts relevant dynamic process parameters, such as gas pressure and process duration.

  19. An Operational In Situ Soil Moisture & Soil Temperature Monitoring Network for West Wales, UK: The WSMN Network.

    Science.gov (United States)

    Petropoulos, George P; McCalmont, Jon P

    2017-06-23

    This paper describes a soil moisture dataset that has been collecting ground measurements of soil moisture, soil temperature and related parameters for west Wales, United Kingdom. Already acquired in situ data have been archived to the autonomous Wales Soil Moisture Network (WSMN) since its foundation in July 2011. The sites from which measurements are being collected represent a range of conditions typical of the Welsh environment, with climate ranging from oceanic to temperate and a range of the most typical land use/cover types found in Wales. At present, WSMN consists of a total of nine monitoring sites across the area with a concentration of sites in three sub-areas around the region of Aberystwyth located in Mid-Wales. The dataset of composed of 0-5 (or 0-10) cm soil moisture, soil temperature, precipitation, and other ancillary data. WSMN data are provided openly to the public via the International Soil Moisture Network (ISMN) platform. At present, WSMN is also rapidly expanding thanks to funding obtained recently which allows more monitoring sites to be added to the network to the wider community interested in using its data.

  20. Qualification, commissioning and in situ monitoring of high heat flux plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France)], E-mail: frederic.escourbiac@cea.fr; Durocher, A.; Grosman, A.; Cismondi, F.; Courtois, X.; Farjon, J.L.; Schlosser, J. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France); Merola, M.; Tivey, R. [ITER Team, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France)

    2007-10-15

    Up-to-date development of actively cooled high heat flux (HHF) plasma facing components (PFC) prototypes only allows reduced margins with regards to the ITER thermal requirements. Additionally, perfect quality cannot be ensured along series manufacturing: the presence of flaws which impair the heat transfer capability of the component, in particular at the interface armour/heat sink appears to be statistically unavoidable. In order to ensure a successful series production, a qualification methodology of actively cooled high heat flux plasma facing components is proposed. Secondly, advanced non-destructive techniques developed for HHF PFC commissioning are detailed with definition of acceptance criteria. Finally, innovative diagnostics for in situ monitoring during plasma operations or tokamak shutdowns are investigated in order to prevent immediate damage (safety monitoring); or evaluate component degradation (health monitoring). This work takes into account the relevance to Tore Supra, and is applied to W7X and ITER Divertor HHF PFC.

  1. Qualification, commissioning and in situ monitoring of high heat flux plasma facing components

    International Nuclear Information System (INIS)

    Escourbiac, F.; Durocher, A.; Grosman, A.; Cismondi, F.; Courtois, X.; Farjon, J.L.; Schlosser, J.; Merola, M.; Tivey, R.

    2007-01-01

    Up-to-date development of actively cooled high heat flux (HHF) plasma facing components (PFC) prototypes only allows reduced margins with regards to the ITER thermal requirements. Additionally, perfect quality cannot be ensured along series manufacturing: the presence of flaws which impair the heat transfer capability of the component, in particular at the interface armour/heat sink appears to be statistically unavoidable. In order to ensure a successful series production, a qualification methodology of actively cooled high heat flux plasma facing components is proposed. Secondly, advanced non-destructive techniques developed for HHF PFC commissioning are detailed with definition of acceptance criteria. Finally, innovative diagnostics for in situ monitoring during plasma operations or tokamak shutdowns are investigated in order to prevent immediate damage (safety monitoring); or evaluate component degradation (health monitoring). This work takes into account the relevance to Tore Supra, and is applied to W7X and ITER Divertor HHF PFC

  2. Assessing the small-strain soil stiffness for offshore wind turbines based on in situ seismic measurements

    NARCIS (Netherlands)

    Versteijlen, W.G.; Van Dalen, K.N.; Metrikine, A.; Hamre, L.

    2014-01-01

    In this contribution, in situ seismic measurements are used to derive the small-strain shear modulus of soil as input for two soil-structure interaction (SSI) models to assess the initial soil stiffness for offshore wind turbine foundations. This stiffness has a defining influence on the first

  3. Soil surface stabilization using an in situ plutonium coating techniuqe at the Nevada Test Site

    International Nuclear Information System (INIS)

    Lew, J.; Snipes, R.; Tamura, T.

    1996-01-01

    The Hazardous Waste Remedial Actions Program (HAZWRAP), in collaboration with the University of Nevada at Reno (UNR), has developed and is investigating an in situ plutonium treatment for soils at the Nevada Test Site (NTS). The concept, conceived by Dr. T. Tamura and refined at HAZWRAP, was developed during the Nevada Applied Ecology Program investigation. In analyzing for plutonium in soils, it was noted that the alpha emanation of plutonium was greatly attenuated if traces of iron or manganese oxides were present in the final electroplating stage. The technique would reduce resuspension of alpha particles into the air by coating the contaminants in soils in situ with an environmentally compatible, durable, and nontoxic material. The coating materials (calcium hydroxide, ferrous sulfate) reduce resuspension by providing a cementitious barrier against radiation penetration while retaining soil porosity. This technique not only stabilizes plutonium-contaminated soils, but also provides an additional protection from worker exposure to radiation during remediation activities. Additionally, the coating would decrease the water solubility of the contaminant and, thus, reduce its migration through soil and uptake by plants

  4. The ISHTE [In-Situ Heat Transfer Experiment] lander: Final report

    International Nuclear Information System (INIS)

    Olson, L.O.; Harrison, J.G.

    1986-12-01

    This report describes the design and development of a sea floor lander constructed to support the In-Situ Heat Transfer Experiment (ISHTE). The work entailed fabricating and testing a steel space frame that would support and accurately position delicate instruments which would monitor a heat source driven into the sediments of the deep ocean. This lander is capable of being (1) transported from Seattle to Hawaii and back several times; (2) deployed from a ship at sea; (3) operated on the sea floor to field delicate experimental equipment; and (4) recovered for retrofit to support a one-year experiment on the sea floor

  5. Pilot-scale feasibility of petroleum hydrocarbon-contaminated soil in situ bioremediation

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Walker, A.B.

    1995-01-01

    An environmental project was conducted to evaluate in situ bioremediation of petroleum hydrocarbon-contaminated soils on Kwajalein Island, a US Army Kwajalein Atoll base in the Republic of the Marshall Islands. Results of laboratory column studies determined that nutrient loadings stimulated biodegradation rates and that bioremediation of hydrocarbon-contaminated soils at Kwajalein was possible using indigenous microbes. The column studies were followed by an ∼10-month on-site demonstration at Kwajalein to further evaluate in situ bioremediation and to determine design and operating conditions necessary to optimize the process. The demonstration site contained low levels of total petroleum hydrocarbons (diesel fuel) in the soil near the ground surface, with concentrations increasing to ∼10,000 mg/kg in the soil near the groundwater. The demonstration utilized 12 in situ plots to evaluate the effects of various combinations of water, air, and nutrient additions on both the microbial population and the hydrocarbon concentration within the treatment plots as a function of depth from the ground surface

  6. In Situ Earthworm Breeding to Improve Soil Aggregation, Chemical Properties, and Enzyme Activity in Papayas

    Directory of Open Access Journals (Sweden)

    Huimin Xiang

    2018-04-01

    Full Text Available The long-term use of mineral fertilizers has decreased the soil fertility in papaya (Carica papaya L. orchards in South China. In situ earthworm breeding is a new sustainable practice for improving soil fertility. A field experiment was conducted to compare the effects of four treatments consisting of the control (C, chemical fertilizer (F, compost (O, and in situ earthworm breeding (E on soil physico-chemical properties and soil enzyme activity in a papaya orchard. The results showed that soil chemical properties, such as pH, soil organic matter (SOM, total nitrogen (TN, available nitrogen (AN, and total phosphorus (TP were significantly improved with the E treatment but declined with the F treatment. On 31 October 2008, the SOM and TN with the O and E treatments were increased by 26.3% and 15.1%, respectively, and by 32.5% and 20.6% compared with the F treatment. Furthermore, the O and E treatments significantly increased the activity of soil urease and sucrase. Over the whole growing season, soil urease activity was 34.4%~40.4% and 51.1%~58.7% higher with the O and E treatments, respectively, than that with the C treatment. Additionally, the activity of soil sucrase with the E treatment was always the greatest of the four treatments, whereas the F treatment decreased soil catalase activity. On 11 June 2008 and 3 July 2008, the activity of soil catalase with the F treatment was decreased by 19.4% and 32.0% compared with C. Soil bulk density with the four treatments was in the order of O ≤ E < F < C. The O- and E-treated soil bulk density was significantly lower than that of the F-treated soil. Soil porosity was in the order of C < F < E < O. Soil porosity with the O and E treatments was 6.0% and 4.7% higher, respectively, than that with the F treatment. Meanwhile, the chemical fertilizer applications significantly influenced the mean weight diameter (MWD of the aggregate and proportion of different size aggregate fractions. The E treatment

  7. In situ vitrification: Test results for a contaminated soil-melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Timmerman, C.L.; Westsik, J.H. Jr.

    1989-10-01

    In situ vitrification (ISV) is being developed at Pacific Northwest Laboratory for the Department of Energy to stabilize soils and sludges that are contaminated with radioactive and hazardous chemical wastes. ISV is a process that immobilizes contaminated soil in place by converting it to a durable glass and crystalline product similar to obsidian and basalt. In June 1987, a large-scale test of the process was completed at a transuranic-contaminated soil site. The test constituted the first full-scale demonstration of ISV at an actual site. This paper summarizes the results of that test and describes the potential adaptation of the process to radioactive and hazardous chemical waste-contaminated soils. 15 refs., 9 figs., 3 tabs

  8. In Situ Vitrification: Recent test results for a contaminated soil melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Timmerman, C.L.; Westsik, J.H. Jr.

    1988-06-01

    In Situ Vitrification (ISV) is being developed at Pacific Northwest Laboratory for the Department of Energy and other clients for the stabilization of soils and sludges contaminated with radioactive and hazardous chemical wastes. ISV is a process that immobilizes contaminated soil in place by converting it to a durable glass and crystalline product that is similar to obsidian. In June 1987, a large-scale test of the process was completed at a transuranic- contaminated soil site. This constituted the first full-scale demonstration of the ISV process at an actual site. This paper summarizes the preliminary results of this test and describes the processes' potential adaptation to radioactive and hazardous chemical waste contaminated soils. 10 refs., 10 figs

  9. Strip-drains for in situ clean up of contaminated fine-grained soils

    International Nuclear Information System (INIS)

    Bowders, J.J.; Gabr, M.A.

    1995-01-01

    Methods for in situ remediation of contaminated soils, such as bioremediation, vacuum/air stripping and soil flushing have been found to be less effective under fine-grained soil conditions. To enhance the performance of these techniques, it was proposed that strip-drains or wick drains also known as prefabricated vertical (PV) drains be used. The research objective was to determine the feasibility of using PV drains to enhance the soil flushing process. Bench top and intermediate-scale laboratory experiments were conducted. An overview of the work, results and future considerations were presented. Results indicated that the technology is feasible. A preliminary model for the technology to be used in any field situation was developed. The model is currently being tested with data from physical experiments on both intermediate and field tests. 5 figs

  10. Integration of pneumatic fracturing and in situ vitrification in the soil subsurface

    International Nuclear Information System (INIS)

    Luey, J.; Seiler, D.K.; Schuring, J.R.

    1995-02-01

    Pacific Northwest Laboratory is evaluating ways to increase the applicability of the in situ vitrification (ISV) process at hazardous and radioactive waste sites. One innovation is the placement of a conductive material that will facilitate initiating the ISV process at a target depth. A series of laboratory tests performed at the New Jersey Institute of Technology (NJIT) assessed the feasibility of pneumatic fracturing (PF) in the highly permeable soils of the Hanford Site. The NJIT tests included an analysis of Hanford soils, a series of PF injection tests, and a parametric analysis to determine how soil properties affect the PF process. Results suggest that the PF process can be applied to Hanford soils and that dry medium (e.g., conductive material such as graphite flake) can be injected into the fracture. This paper describes the laboratory testing performed at NJIT, its results, and the application of those results to plans for a field demonstration at Hanford

  11. IN-SITU MEASURING METHOD OF RADON AND THORON DIFFUSION COEFFICIENT IN SOIL

    Directory of Open Access Journals (Sweden)

    V.S. Yakovleva

    2014-06-01

    Full Text Available A simple and valid in-situ measurement method of effective diffusion coefficient of radon and thoron in soil and other porous materials was designed. The analysis of numerical investigation of radon and thoron transport in upper layers of soil revealed that thoron flux density from the earth surface does not depend on soil gas advective velocity and varies only with diffusion coefficient changes. This result showed the advantages of thoron using versus radon using in the suggested method. The comparison of the new method with existing ones previously developed. The method could be helpful for solving of problems of radon mass-transport in porous media and gaseous exchange between soil and atmosphere.

  12. Assessment of the availability of As and Pb in soils after in situ stabilization.

    Science.gov (United States)

    Zhang, Wanying; Yang, Jie; Li, Zhongyuan; Zhou, Dongmei; Dang, Fei

    2017-10-01

    The in situ stabilization has been widely used to remediate metal-contaminated soil. However, the long-term retaining performance of heavy metals and the associated risk after in situ stabilization remains unclear and has evoked amounting concerns. Here, Pb- or As-contaminated soil was stabilized by a commercial amendment. The availability of Pb and As after in situ stabilization were estimated by ten different in vitro chemical extractions and DGT technique. After amendment application, a significant decline in extractable Pb or As was observed in treatments of Milli-Q water, 0.01 M CaCl 2 , 0.1 M NaNO 3 , 0.05 M (NH 4 ) 2 SO 4 , and 0.43 M HOAc. Potential available metal(loid)s determined by DGT also showed remarkable reduction. Meanwhile, the results of in vivo uptake assays demonstrated that Pb concentrations in shoots of ryegrass Lolium perenne L. declined to 12% of the control samples, comparable to the extraction ratio of 0.1 M NaNO 3 (15.8%) and 0.05 M (NH 4 ) 2 SO 4 (17.3%). For As-contaminated soil, 0.43 M HOAC provided a better estimation of relative phytoavailability (64.6 vs. 65.4% in ryegrass) compared to other extraction methods. We propose that 0.1 M NaNO 3 or 0.05 M (NH 4 ) 2 SO 4 for Pb and 0.43 M HOAc for As may serve as surrogate measures to estimate the lability of metal(loid)s after soil remediation of the tested contaminated soils. Further studies over a wider range of soil types and amendments are necessary to validate extraction methods.

  13. Regolith Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    Science.gov (United States)

    Hogue, Michael D.; Meuller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    This NIAC project investigated an innovative approach to provide heat shield protection to spacecraft after launch and prior to each EDL thus potentially realizing significant launch mass savings. Heat shields fabricated in situ can provide a thermal-protection system for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Regolith has extremely good insulating properties and the silicates it contains can be used in the fabrication and molding of thermal-protection materials. Such in situ developed heat shields have been suggested before by Lewis. Prior research efforts have shown that regolith properties can be compatible with very-high temperature resistance. Our project team is highly experienced in regolith processing and thermal protection systems (TPS). Routine access to space and return from any planetary surface requires dealing with heat loads experienced by the spacecraft during reentry. Our team addresses some of the key issues with the EDL of human-scale missions through a highly innovative investigation of heat shields that can be fabricated in space by using local resources on asteroids and moons. Most space missions are one-way trips, dedicated to placing an asset in space for economical or scientific gain. However, for human missions, a very-reliable heat-shield system is necessary to protect the crew from the intense heat experienced at very high entry velocities of approximately 11 km/s at approximately Mach 33 (Apollo). For a human mission to Mars, the return problem is even more difficult, with predicted velocities of up to 14 km/s, at approximately Mach 42 at the Earth-atmosphere entry. In addition to human return, it is very likely that future space-travel architecture will include returning cargo to the Earth, either for scientific purposes or for commercial reasons

  14. In situ vadose zone bioremediation of soil contaminated with nonvolatile hydrocarbons

    International Nuclear Information System (INIS)

    Hogg, D.S.; Burden, R.J.; Riddell, P.J.

    1992-01-01

    In situ bioremediation has been successfully carried out on petroleum hydrocarbon-contaminated soil at a decommissioned bulk storage terminal in New Zealand. The site soils were contaminated mainly with diesel fuel and spent oil at concentrations ranging up to 95,000 mg/kg of total recoverable petroleum hydrocarbons. The in situ remediation system combines an enhanced bioremediation with vapor extraction and is installed almost entirely below grade, thereby allowing above ground activities to continue unimpeded. Laboratory-scale feasibility testing indicated that although appreciable volatilization of low molecular weight components would occur initially, biodegradation would be the primary mechanism by which contaminated soil would be remediated. During the remedial design phase, preliminary field testing was conducted to evaluate the optimum spacing for extraction wells and inlet vents. A pilot-scale system was installed in a 15-m by 35-m area of the site in June 1989 and operated for approximately 1 year. Soil monitoring performed approximately every 3 months indicated an overall reduction in soil petroleum hydrocarbon concentrations of 87% for the period from June 1989 to May 1991

  15. Mapping of depleted uranium with in situ spectrometry and soil samples

    International Nuclear Information System (INIS)

    Shebell, P.; Reginatto, M.; Monetti, M.; Faller, S.; Davis, L.

    1999-01-01

    Depleted uranium (DU) has been developed in the past two decades as a highly effective material for armor penetrating rounds and vehicle shielding. There is now a growing interest in the defense community to determine the presence and extent of DU contamination quickly and with a minimum amount of intrusive sampling. We report on a new approach using deconvolution techniques to quantitatively map DU contamination in surface soil. This approach combines data from soil samples with data from in situ gamma-ray spectrometry measurements to produce an accurate and detailed map of DU contamination. Results of a field survey at the Aberdeen Proving Ground are presented. (author)

  16. Laboratory evaluation of the in situ chemical treatment approach to soil and groundwater remediation

    International Nuclear Information System (INIS)

    Thorton, E.C.; Trader, D.E.

    1993-10-01

    Results of initial proof of principle laboratory testing activities successfully demonstrated the viability of the in situ chemical treatment approach for remediation of soil and groundwater contaminated by hexavalent chromium. Testing activities currently in progress further indicate that soils contaminated with hexavalent chromium and uranium at concentrations of several hundred parts per million can be successfully treated with 100 ppM hydrogen sulfide gas mixtures. Greater than 90% immobilization of hexavalent chromium and 50% immobilization of uranium have been achieved in these tests after a treatment period of one day. Activities associated with further development and implementation of the in situ chemical treatment approach include conducting additional bench scale tests with contaminated geomedia, and undertaking scale-up laboratory tests and a field demonstration. This report discusses the testing and further development of this process

  17. ''In situ'' investigations of the radioactive fissionable element infiltration and retention in different soils

    International Nuclear Information System (INIS)

    Oncescu, M.; Danis, A.; Sahagia, M.; Negrescu, C.; Bobe, M.; Balanescu, P.; Burcescu, M.; Tautu, N.

    1980-01-01

    ''In situ'' investigations of the natural and forced infiltration and retention of the fissionable elements from a liquid residue in several natural compacted soils and compacted clays are presented. The velocities and flow rates for different stages of the residue infiltration are determined. The retention of the fissionable elements by variation of the fissionable element concentration with the distance from the place of the residue depot is investigated. (author)

  18. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  19. In situ treatment of soil contaminated with PAHs and phenols

    International Nuclear Information System (INIS)

    Sresty, G.; Dev, H.; Chang, J.; Houthoofd, J.

    1992-01-01

    The wood preserving industry uses more pesticides than any other industry worldwide. The major chemicals used are creosote, pentachlorophenol, and CCA (copper, chrome and arsenate). It is reported that between 415 to 550 creosoting operations within the United States consume approximately 454,000 metric tons of creosote annually. When properly used and disposed off, creosote does not appear to significantly threaten human health. However, due to improper disposal and spillage at old facilities, creosote and other wood preserving chemicals have found their way into surface soils. Active wood preserving sites generate an estimated 840 to 1530 dry metric tons of hazardous contaminated sludge annually, which is classified as KOOL. Creosote, obtained from coal tar, contains a large number of chemical components. The three main families of compounds represented in creosote are: polycyclic aromatic hydrocarbons (PAH), phenolic, and heterocyclic compounds. Creosote is composed of approximately 85% PAHs, 10% phenolic compounds and 5% heterocyclic compounds. There are approximately a total of 17 PAHs present in creosote. The four most prominent compounds belonging to the PAH family are naphthalene, 2-methylnaphthalene, phenanthrene, and anthracene. These four compounds represent approximately 52% of the total PAHs present in creosote. There are approximately 12 different phenolic compounds present in creosote among which phenol is the most abundant, representing 20% of the total phenolics. In addition, the various isomers of cresol represent about 20% and pentachlorophenol (PCP) represents 10% of the total phenolics. There are approximately 13 different heterocyclic compounds are the most abundant, representing approximately 70% of the total heterocyclics. All of these compounds possess toxic properties and some of them, for example, PCP, when subjected to high temperature environments are suspected precursors in the formation of dioxins

  20. Soil temperature distribution around a U-tube heat exchanger in a multi-function ground source heat pump system

    International Nuclear Information System (INIS)

    Li Shuhong; Yang Weihua; Zhang Xiaosong

    2009-01-01

    The imbalance of heat extracted from the earth by the underground heat exchangers in winter and ejected into it in summer is expected to affect the long term performance of conventional ground source heat pump (GSHP) in territories with a cold winter and a warm summer such as the middle and downstream areas of the Yangtze River in China. This paper presents a new multi-function ground source heat pump (MFGSHP) system which supplies hot water as well as space cooling/heating to mitigate the soil imbalance of the extracted and ejected heat by a ground source heat pump system. The heat transfer characteristic is studied and the soil temperature around the underground heat exchangers are simulated under a typical climatic condition of the Yangtze River. A three-dimensional model was constructed with the commercial computational fluid dynamics software FLUENT based on the inner heat source theory. Temperature distribution and variation trend of a tube cluster of the underground heat exchanger are simulated for the long term performance. The results show that the soil temperature around the underground tube keeps increasing due to the surplus heat ejected into the earth in summer, which deteriorates the system performance and may lead to the eventual system deterioration. The simulation shows that MFGSHP can effectively alleviate the temperature rise by balancing the heat ejected to/extracted from underground by the conventional ground source heat pump system. The new system also improves the energy efficiency.

  1. Heat transfer Effect by soil temperature changes under shallow groundwater in the Mu Us desert, Northern China

    Science.gov (United States)

    Qiao, X.; Lu, R.; Donghui, C.

    2015-12-01

    Soil temperature change is principle elements to biological growth, soil freeze or thawing process. A situ field was conducted in the Mu Us desert of Wushen Qi County, Inner Mongolia, to mainly monitor soil temperature, moisture content and groundwater level. The unconfined aquifer constituted by Quaternary fine eolian sand, groundwater level is 125cm. This paper, choosing date from May 1, 2013 to April 30, 2014, soil day temperature is conducted by 3:00, 6:00,till 24:00, vertical spacing including 2cm,5 cm、10 cm、15 cm、20 cm, 75cm,125cm,which its symbol is T10, T15, T20, T75, T125 respectively. Here, surface layer temperature TS calculated by soil temperature of 2-5cm depth. Due to only 5 minutes interval, this state was taken as a state one. (1) soil temperature has mixture change on surface layer and its temperature different is over 35 ℃. (2) Surface layer temperature changes of every month have three stages and its conducted heat, which calculated between TS and T10. Since TS exceeds T10 and heat transfer direction is from surface to underground in May, June and July 2013, even heat transfer amounts reduced by participation in July. However, TS is inferior to T10 and conduced heat direction reverse in August till to February 2014.Continually conduced heat start to next circulation and then it's heat direction from surface to underground due to TS exceeds T10 again in March and April 2014. (3) Temperature changes of phreatic water table every month have also three stages and its conducted heat which calculated between T75 and T125, heat transfer direction from unsaturated zone to saturated zone due to T75 exceeds T125 from May till middle September 2013. However, T75 is inferior to T125 and heat direction reverse from late September 2013 till May 2014, but conduced heat direction starts to change from unsaturated zone to saturated zone again in early April 2014.The result can imply shallow gruondwater has some contribution to surface layer temperature in

  2. Application of in situ vitrification in the soil subsurface: Engineering-scale testing

    International Nuclear Information System (INIS)

    Luey, J.; Seiler, D.K.

    1995-03-01

    Engineering-scale testing to evaluate the initiation and propagation of the in situ vitrification (ISV) process in the soil subsurface has been completed. Application of ISV in the soil subsurface both increases the applicable treatment depth (beyond a demonstrated 5 m) and allows treatment of local contamination, such as liquid seepage trenches (found on many US Department of Energy sites) that were designed to remove contamination at the bottom of the trench. The following observations and conclusions resulted from the test data: the ISV process can be initiated in the soil subsurface and propagated in both vertical directions, with the downward direction providing greater ease of operation; energy efficiency to process a kilogram of soil was 20% better than for an ISV melt initiated at the soil surface, increased efficiency was attributed to insulation from the soil overburden; the feasibility of initiating the process with a planar starter path was confirmed, thus increasing the number of options for initiating the process in the field; soil subsidence was pronounced and requires attention before field demonstration of subsurface ISV. Further field work at pilot-scale is recommended for this new ISV application. The key step will be the placement of starter material at depth to initiate the process

  3. Crystallization of TiO2 Nanotubes by In Situ Heating TEM

    KAUST Repository

    Casu, Alberto

    2018-01-15

    The thermally-induced crystallization of anodically grown TiO2 amorphous nanotubes has been studied so far under ambient pressure conditions by techniques such as differential scanning calorimetry and in situ X-ray diffraction, then looking at the overall response of several thousands of nanotubes in a carpet arrangement. Here we report a study of this phenomenon based on an in situ transmission electron microscopy approach that uses a twofold strategy. First, a group of some tens of TiO2 amorphous nanotubes was heated looking at their electron diffraction pattern change versus temperature, in order to determine both the initial temperature of crystallization and the corresponding crystalline phases. Second, the experiment was repeated on groups of few nanotubes, imaging their structural evolution in the direct space by spherical aberration-corrected high resolution transmission electron microscopy. These studies showed that, differently from what happens under ambient pressure conditions, under the microscope’s high vacuum (p < 10−5 Pa) the crystallization of TiO2 amorphous nanotubes starts from local small seeds of rutile and brookite, which then grow up with the increasing temperature. Besides, the crystallization started at different temperatures, namely 450 and 380 °C, when the in situ heating was performed irradiating the sample with electron beam energy of 120 or 300 keV, respectively. This difference is due to atomic knock-on effects induced by the electron beam with diverse energy.

  4. In situ semi-quantitative analysis of polluted soils by laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Ismaël, Amina; Bousquet, Bruno; Michel-Le Pierrès, Karine; Travaillé, Grégoire; Canioni, Lionel; Roy, Stéphane

    2011-05-01

    Time-saving, low-cost analyses of soil contamination are required to ensure fast and efficient pollution removal and remedial operations. In this work, laser-induced breakdown spectroscopy (LIBS) has been successfully applied to in situ analyses of polluted soils, providing direct semi-quantitative information about the extent of pollution. A field campaign has been carried out in Brittany (France) on a site presenting high levels of heavy metal concentrations. Results on iron as a major component as well as on lead and copper as minor components are reported. Soil samples were dried and prepared as pressed pellets to minimize the effects of moisture and density on the results. LIBS analyses were performed with a Nd:YAG laser operating at 1064 nm, 60 mJ per 10 ns pulse, at a repetition rate of 10 Hz with a diameter of 500 μm on the sample surface. Good correlations were obtained between the LIBS signals and the values of concentrations deduced from inductively coupled plasma atomic emission spectroscopy (ICP-AES). This result proves that LIBS is an efficient method for optimizing sampling operations. Indeed, "LIBS maps" were established directly on-site, providing valuable assistance in optimizing the selection of the most relevant samples for future expensive and time-consuming laboratory analysis and avoiding useless analyses of very similar samples. Finally, it is emphasized that in situ LIBS is not described here as an alternative quantitative analytical method to the usual laboratory measurements but simply as an efficient time-saving tool to optimize sampling operations and to drastically reduce the number of soil samples to be analyzed, thus reducing costs. The detection limits of 200 ppm for lead and 80 ppm for copper reported here are compatible with the thresholds of toxicity; thus, this in situ LIBS campaign was fully validated for these two elements. Consequently, further experiments are planned to extend this study to other chemical elements and other

  5. Soil heating during burning of forest slash piles and wood piles

    Science.gov (United States)

    Matt D. Busse; Carol J. Shestak; Ken R. Hubbert

    2013-01-01

    Pile burning of conifer slash is a common fuel reduction practice in forests of the western United States that has a direct, yet poorly quantified effect on soil heating. To address this knowledge gap, we measured the heat pulse beneath hand-built piles ranging widely in fuel composition and pile size in sandy-textured soils of the Lake Tahoe Basin. The soil heat pulse...

  6. The production and degradation of trichloroacetic acid in soil: Results from in situ soil column experiments

    Czech Academy of Sciences Publication Activity Database

    Heal, M. R.; Dickey, C. A.; Heal, K.V.; Stidson, R.T.; Matucha, Miroslav; Cape, J. N.

    2010-01-01

    Roč. 79, č. 4 (2010), s. 401-407 ISSN 0045-6535 Institutional research plan: CEZ:AV0Z50380511 Keywords : Trichloroacetic acid * TCA * Soil lysimeter Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 3.155, year: 2010

  7. Ecotoxicological evaluation of in situ bioremediation of soils contaminated by the explosive 2,4,6-trinitrotoluene (TNT)

    International Nuclear Information System (INIS)

    Frische, Tobias

    2003-01-01

    The luminescent bacteria assay, using soil leachates, was the most sensitive toxicity indicator. - To evaluate the environmental relevance of in situ bioremediation of contaminated soils, effective and reliable monitoring approaches are of special importance. The presented study was conducted as part of a research project investigating in situ bioremediation of topsoils contaminated by the explosive 2,4,6-trinitrotoluene (TNT). Changes in soil toxicity within different experimental fields at a former ordnance factory were evaluated using a battery of five bioassays (plant growth, Collembola reproduction, soil respiration, luminescent bacteria acute toxicity and mutagenicity test) in combination to chemical contaminant analysis. Resulting data reveal clear differences in sensitivities between methods with the luminescent bacteria assay performed with soil leachates as most sensitive toxicity indicator. Complete test battery results are presented in so-called soil toxicity profiles to visualise and facilitate the interpretation of data. Both biological and chemical monitoring results indicate a reduction of soil toxicity within 17 months of remediation

  8. Soil weed seed bank in situ and ex situ at a smallholder field in Maranhão State, northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Mário Luiz Ribeiro Mesquita

    2014-11-01

    Full Text Available The objective of this research was to assess the density, floristic composition,  phytosociology and diversity of a soil weed seed bank ex situ by germination in a greenhouse and in situ by weed sampling on a smallholder corn field located in Lago Verde County, Maranhão State. Fifteen pairs of 25 m2 plots were designated. In half of these plots, 90 soil samples were collected with an open metal template measuring 25 x 16 x 3 cm and placed in a greenhouse to germinate. In the other half, 90 weed samples were collected using the same metal template. We recorded a total of 1,998 individuals from 40 species, 31 genera and 16 families, from which 659 individuals germinated in situ and 1,339 exsitu. Density was higher ex situ, with 372 plants m-2. The Cyperaceae family had the highest floristic richness with nine species, followed by the Poaceae with six. The dominant species based on the Importance Value Index were Lindernia crustacea (IVI 27.7% in situ and Scleria lithosperma (IVI 37.0% ex situ. Floristic diversity was higher ex situ, with H’ = 2.66 nats ind-1. These results could help predict infestation potential and could lead to improved weed management strategies in corn-growing areas on smallholdings in Maranhão State, northeastern Brazil.

  9. In situ mapping of radionuclides in subsurface and surface soils: 1994 Summary report

    International Nuclear Information System (INIS)

    Schilk, A.J.; Hubbard, C.W.; Knopf, M.A.; Abel, K.H.

    1995-04-01

    Uranium production and support facilities at several DOE sites occasionally caused local contamination of some surface and subsurface soils. The thorough cleanup of these sites is a major public concern and a high priority for the US Department of Energy, but before any effective remedial protocols can be established, the three-dimensional distributions of target contaminants must be characterized. Traditional means of measuring radionuclide activities in soil are cumbersome, expensive, time-consuming, and often do not accurately reflect conditions over very large areas. New technologies must be developed, or existing ones improved, to allow cheaper, faster, and safer characterization of radionuclides in soils at these sites. The Pacific Northwest Laboratory (PNL) was tasked with adapting, developing, and demonstrating technologies to measure uranium in surface and subsurface soils. In partial completion of this effort, PNL developed an improved in situ gamma-ray spectrometry system to satisfy the technical requirements. This document summarizes fiscal-year 1994 efforts at PNL to fulfill requirements for TTP number-sign 321103 (project number-sign 19307). These requirements included (a) developing a user-friendly software package for reducing field-acquired gamma-ray spectra, (b) constructing an improved data-acquisition hardware system for use with high-purity germanium detectors, (c) ensuring readiness to conduct field mapping exercises as specified by the sponsor, (d) evaluating the in situ gamma-ray spectrometer for the determination of uranium depth distribution, and (e) documenting these efforts

  10. Forty years of 9Sr in situ migration: importance of soil characterization in modeling transport phenomena

    International Nuclear Information System (INIS)

    Fernandez, J.M.; Piault, E.; Macouillard, D.; Juncos, C.

    2006-01-01

    In 1960 experiments were carried out on the transfer of 9 Sr between soil, grapes and wine. The experiments were conducted in situ on a piece of land limited by two control strips. The 9 Sr migration over the last 40 years was studied by performing radiological and physico-chemical characterizations of the soil on eight 70 cm deep cores. The vertical migration modeling of 9 Sr required the definition of a triple layer conceptual model integrating the rainwater infiltration at constant flux as the only external factor of influence. Afterwards the importance of a detailed soil characterization for modeling was discussed and satisfactory simulation of the 9 Sr vertical transport was obtained and showed a calculated migration rate of about 1.0 cm year -1 in full agreement with the in situ measured values. The discussion was regarding some of the key parameters such as granulometry, organic matter content (in the Van Genuchten parameter determination), Kd and the efficient rainwater infiltration. Besides the experimental data, simplifying assumptions in modeling such as water-soil redistribution calculation and factual discontinuities in conceptual model were examined

  11. In situ bio-remediation of contaminated soil in a uranium deposit

    International Nuclear Information System (INIS)

    Groudev, St.; Spasova, I.; Nicolova, M.; Georgiev, P.

    2005-01-01

    The uranium deposit Curilo, located in Western Bulgaria, for a long period of time was a site of intensive mining activities including both the open-pit and underground techniques as well as in situ leaching of uranium. The mining operations were ended in 1990 but until now both the surface and ground waters and soils within and near the deposit are heavily polluted with radionuclides (mainly uranium and radium) and heavy metals (mainly copper, zinc and cadmium). Laboratory experiments carried out with soil samples from the deposit revealed that an efficient removal of the above-mentioned contaminants was achieved by their solubilizing and washing the soil profile by means of acidified water solutions. The solubilization was connected with the activity of the indigenous soil microflora, mainly with the activity of some acidophilic chemo-litho-trophic bacteria. It was possible to enhance considerably this activity by suitable changes in the levels of some essential environmental factors such as pH and water, oxygen and nutrient contents in the soil. Such treatment was successfully applied also under real field conditions in the deposit. The effluents from the soil profile during the operation above-mentioned contained the pollutants as well as other heavy metals such as iron and manganese dissolved from the soil in concentrations usually higher than the relevant permissible levels for waters intended for use in the agriculture and/or industry. For that reason, these effluents were efficiently cleaned up by means of a natural wetland located near the treated soil. However, such treatment as any other method for treatment of polluted waters is connected with additional costs which increase the total costs for the soil cleanup. A possible way to avoid or at least largely to facilitate the cleanup of the soil effluents is to apply a biotechnological method in which the soil contaminants solubilized in the upper soil layers (mainly in the horizon A) are transferred into

  12. NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS: PRINCIPLE AND RESULTS

    International Nuclear Information System (INIS)

    WIELOPOLSKI, L.; MITRA, S.; HENDREY, G.; ROGERS, H.; TORBERT, A.; PRIOR, S.

    2003-01-01

    Global warming is promoted by anthropogenic CO 2 emissions into the atmosphere, while at the same time it is partially mitigated by carbon sequestration by terrestrial ecosystems. However, improvement in the understanding and monitoring of below ground carbon processes is essential for evaluating strategies for carbon sequestration including quantification of carbon stores for credits. A system for non-destructive in situ carbon monitoring in soil, based on inelastic neutron scattering (INS), is described. The system can be operated in stationary or scanning mode and measures soil to depth of approximately 30 cm. There is a good agreement between results obtained from INS and standard chemical analysis of soil cores collected from the same study site

  13. Hot water extraction with in situ wet oxidation: Kinetics of PAHs removal from soil

    International Nuclear Information System (INIS)

    Dadkhah, Ali A.; Akgerman, Aydin

    2006-01-01

    Finding environmentally friendly and cost-effective methods to remediate soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is currently a major concern of researchers. In this study, a series of small-scale semi-continuous extractions - with and without in situ wet oxidation - were performed on soils polluted with PAHs, using subcritical water (i.e. liquid water at high temperatures and pressures, but below the critical point) as the removal agent. Experiments were performed in a 300 mL reactor using an aged soil sample. To find the desorption isotherms and oxidation reaction rates, semi-continuous experiments with residence times of 1 and 2 h were performed using aged soil at 250 deg. C and hydrogen peroxide as oxidizing agent. In all combined extraction and oxidation flow experiments, PAHs in the remaining soil after the experiments were almost undetectable. In combined extraction and oxidation no PAHs could be detected in the liquid phase after the first 30 min of the experiments. Based on these results, extraction with hot water, if combined with oxidation, should reduce the cost of remediation and can be used as a feasible alternative technique for remediating contaminated soils and sediments

  14. Induction heating to trigger the nickel surface modification by in situ generated 4-carboxybenzene diazonium

    Science.gov (United States)

    Arrotin, Bastien; Jacques, Amory; Devillers, Sébastien; Delhalle, Joseph; Mekhalif, Zineb

    2016-05-01

    Nickel is commonly used in numerous applications and is one of the few materials that present strong ferromagnetic properties. These make it a suitable material for induction heating which can be used to activate the grafting of organic species such as diazonium salts onto the material. Diazonium compounds are often used for the modification of metals and alloys thanks to their easy chemical reduction onto the substrates and the possibility to apply a one-step in situ generation process of the diazonium species. This work focuses on the grafting of 4-aminocarboxybenzene on nickel substrates in the context of a spontaneous grafting conducted either at room temperature or by thermal assistance through conventional heating and induction heating. These modifications are also carried out with the goal of maintaining the oxides layer as much as possible unaffected. The benefits of using induction heating with respect to conventional heating are an increase of the grafting rate, a better control of the reaction and a slighter impact on the oxides layer.

  15. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    Science.gov (United States)

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  16. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  17. In situ heating test in Callovo-Oxfordian clay-stone: measurement and interpretation

    International Nuclear Information System (INIS)

    Conil, N.; Armand, G.; De La Vaissiere, R.; Morel, J.; Garitte, B.; Jobmann, M.; Jellouli, M.; Filippi, M.

    2012-01-01

    Document available in extended abstract form only. To study the thermo -hydro-mechanical effects of the early thermal phase on the clay host rock of a deep repository, Andra has performed a new in-situ heating test called TED experiment. This experiment is the second one being carried out in the Meuse/Haute-Marne Underground Research Laboratory The aim of the TED experiment is to measure the evolution of the temperature; deformation and pore pressure fields around several heaters and to back-analyse the thermo-hydro-mechanical properties of the rock. The TED experiment was also designed to estimate the overpressure generated by heat in the zero flux plan between several heaters and to study the evolution of the damaged zone due to heat. Analysis of the experimental results will help in calibrating numerical models which will be applied to the disposal cell cases. The test set-up consists of three boreholes containing the heaters and twenty one instrumented observation boreholes. Each heater is 4 m long and may generate a power of 1500 W. The distance between each heater is about 2.6 m, which is close to the ratio of the disposal cell geometry concept. The surrounding boreholes were strategically located to follow the anisotropic THM behavior of the clay-stone. There are twelve pore pressure measurement boreholes (a total of eighteen piezometers), nine temperature measurement boreholes (108 temperature sensors) and 2 strain measurement boreholes. In order to optimize the inverse problem analysis, special attention has been paid to the reduction of uncertainties regarding the sensors location in the boreholes. Possible sensors location errors were indeed found to be a problematic issue for analysis and parameter determination in the previous thermal experiment ([1]). The central heater was activated on January 25, 2010 starting with a relatively low heating power of 150 W, then the heating power was increased to 300 W and finally to 600 W. Each step was about four

  18. An automated, noncontact laser profile meter for measuring soil roughness in situ

    International Nuclear Information System (INIS)

    Bertuzzi, P.; Caussignac, J.M.; Stengel, P.; Morel, G.; Lorendeau, J.Y.; Pelloux, G.

    1990-01-01

    This paper describes a new optical technique for measuring in situ soil surface roughness profiles using a laser profile meter. The described method uses a low-power HeNe (helium-neon) laser as a laser source and a matrix-array detector, as the laser image. The matrix-array detector gives a defect-of-focus laser image of the soil. Soil elevation is measured by projecting a laser beam normally onto the soil surface and measuring the ratio (Ir/It) on the matrix-array detector between the referenced intensity of the return Laser beam (Ir), measured by the central cell of the detector and the total intensity (It), measured by all the cells of the detector. The measured profile leads to 1001 sampled values (volt, range 0 to 10 V) of the surface height profile, at a constant increment of 0.002 m, registered automatically on a microcomputer. A calibration is made in the laboratory in order to convert the electrical measurements into elevation data. The method is universal and can be adapted to different scales of soil surface roughness. Changing the scale is done by changing the lens. Tests were carried out to improve this method for field use and to compare this technique with a method of reference. This technique is considerably quicker and causes no disturbance to the soil. The accuracy on height measurement depends on the choice of the lens. The small focal lens is convenient for smooth soil surfaces. The accuracy on height measurement is less than 0.75 mm. The wide focal lens is convenient for rough soil surfaces. The accuracy on height measurement is estimated at about 1.0 to 1.5 mm

  19. Water storage change estimation from in situ shrinkage measurements of clay soils

    Directory of Open Access Journals (Sweden)

    B. te Brake

    2013-05-01

    Full Text Available The objective of this study is to assess the applicability of clay soil elevation change measurements to estimate soil water storage changes, using a simplified approach. We measured moisture contents in aggregates by EC-5 sensors, and in multiple aggregate and inter-aggregate spaces (bulk soil by CS616 sensors. In a long dry period, the assumption of constant isotropic shrinkage proved invalid and a soil moisture dependant geometry factor was applied. The relative overestimation made by assuming constant isotropic shrinkage in the linear (basic shrinkage phase was 26.4% (17.5 mm for the actively shrinking layer between 0 and 60 cm. Aggregate-scale water storage and volume change revealed a linear relation for layers ≥ 30 cm depth. The range of basic shrinkage in the bulk soil was limited by delayed drying of deep soil layers, and maximum water loss in the structural shrinkage phase was 40% of total water loss in the 0–60 cm layer, and over 60% in deeper layers. In the dry period, fitted slopes of the ΔV–ΔW relationship ranged from 0.41 to 0.56 (EC-5 and 0.42 to 0.55 (CS616. Under a dynamic drying and wetting regime, slopes ranged from 0.21 to 0.38 (EC-5 and 0.22 to 0.36 (CS616. Alternating shrinkage and incomplete swelling resulted in limited volume change relative to water storage change. The slope of the ΔV–ΔW relationship depended on the drying regime, measurement scale and combined effect of different soil layers. Therefore, solely relying on surface level elevation changes to infer soil water storage changes will lead to large underestimations. Recent and future developments might provide a basis for application of shrinkage relations to field situations, but in situ observations will be required to do so.

  20. [Improving Agricultural Safety of Soils Contaminated with Polycyclic Aromatic Hydrocarbons by In Situ Bioremediation].

    Science.gov (United States)

    Jiao, Hai-huan; Pan, Jian-gang; Xu, Shena-jun; Bai, Zhi-hui; Wang, Dong; Huang, Zhan-bin

    2015-08-01

    In order to reduce the risk of enrichment of polycyclic aromatic hydrocarbons (PAHs) in crops, reduce the potential hazards of food-sourced PAHs to human and increase the agricultural safety of PAHs contaminated soils, the bio-augmented removal of polycyclic aromatic hydrocarbons (PAHs) was investigated through in situ remediation by introducing Rhodobacter sphaeroides (RS) into the agricultural soil contaminated by PAHs. The 50-times diluted RS was sprayed on leaf surface (in area B) or irrigated to roots (in area D). The treatment of spraying water of the equal amount was taken as the control (A) and the wheat field without any treatment as the blank (CK). Treatments were conducted since wheat seeding. Soil and wheat samples were collected in the mature period to analyze the changes of community structure of the soil microorganisms and the concentration of PAHs in soils and investigate the strengthening and restoration effects of RS on PAHs contaminated soils. Compared to the CK Area, the areas B and D revealed that the variation ratio of phospholipid fatty acids (PLFAs) that were the biomarker of soil microorganisms was 29.6%, and the ratio of total PAHs removed was increased 1.59 times and 1.68 times, respectively. The dry weight of wheat grain of 50 spikes was increased by 8.95% and 12.5%, respectively, and the enrichment factor of total PAHs was decreased by 58.9% and 62.2% respectively in the wheat grains. All the results suggested that RS reduced enrichment of PAHs in wheat grains and increased wheat yield, which had great exploitation and utilization potentiality in repairing and improving the agricultural safety of the soils contaminated with PHAs.

  1. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactor integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.

  2. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants

    OpenAIRE

    Buchner, Othmar; STOLL, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2014-01-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, R hododendron ferrugineum, S enecio incanus and R anunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv/Fm), which rem...

  3. Remediation of PCB-contaminated soils. Risk analysis of biological in situ processes

    Energy Technology Data Exchange (ETDEWEB)

    Rein, Arno

    2006-12-08

    Biological in situ measures can be efficient and cost effective options for the remediation of contaminated sites. However, the accepted application requires a detailed and reliable analysis of potential impacts. An important objective is to quantify the potential of contaminant degradation and metabolite formation. This thesis addresses a quantitative multimedia risk assessment. Methodologies and tools were developed for this objective and applied to evaluate in situ bioremediation of soils contaminated with polychlorinated biphenyls (PCBs). Soil bacteria in conjunction with plant roots were addressed (rhizoremediation) with a focus on the use of genetically modified microorganisms (GMOs). PCBs are known to be harmful compounds that are ubiquitously distributed in the environment. PCB contaminations in soil and groundwater were identified as important problems. 209 different congeners are sterically possible, but not all are of environmental significance. PCB congeners of concern were evaluated with respect to their potential toxicity, environmental occurrence and mobility. For this objective, congener specific data on the toxicity potential and the frequency in environmental matrices were collected. To quantify the mobility potential, multimedia modelling was performed applying deterministic and probabilistic procedures. 56 PCB congeners of concern were evaluated, and multimedia risk assessments of PCB-contaminated soils should concentrate on this group. Kinetics parameters were specified for degradation experiments with individual PCB congeners in solution and different bacterial strains. These laboratory assays were performed with wild-type Burkholderia sp. strain LB400 and the genetically modified Pseudomonas fluorescens strains F113pcb and F113L::1180. The F113 derivatives demonstrated a good survival ability in willow (Salix sp.) rhizosphere (mesocosm experiments). Therefore, and due to high depletion rates, rhizoremediation with F113L::1180 and willow

  4. Biological in situ treatment of soil contaminated with petroleum - Laboratory scale simulations

    International Nuclear Information System (INIS)

    Palvall, B.

    1997-06-01

    Laboratory scale simulations of biological in situ treatment of soil contaminated with petroleum compounds have been made in order to get a practical concept in the general case. The work was divided into seven distinct parts. Characterisation, leaching tests and introductory microbiological investigations were followed by experiments in suspended phases and in situ simulations of solid phase reactors. For the suspensions, ratios L/S 3/1 and shaking for a couple of hours were enough to detach organic compounds in colloid or dissolved form. When testing for a time of one month anaerobic environment and cold temperatures of 4 centigrade as well gave acceptable reductions of the actual pollution levels. The range of variation in the soil tests performed showed that at least triple samples are needed to get satisfactory statistical reliability. It was shown that adequate experimental controls demand very high concentrations of e.g. sodium azide when dealing with soil samples. For triple samples in suspended phase without inoculation the weight ratios of oxygen consumption/biological degradation of aliphatic compounds were 2.41 to 2.96. For the complex overall reduction no exact rate constants could be found. The reduction of hydrocarbons were in the interval 27 to 95 % in suspension tests. Solid phase simulations with maximum water saturation showed the highest degree of reduction of hydrocarbons when using dissolved peroxide of hydrogen as electron acceptor while the effect of an active sludge reactor in series was little - reductions of aliphatic compounds were between 21 and 33 % and of aromatic compounds between 32 and 65 %. The influence of different contents of water was greater than adding inoculum or shaking the soil at different intervals in the unsaturated cylinders. The starting level of hydrocarbons was 2400 mg/kg dry weight soil and the end analyses were made after 100 days. The reduction was between 32 and 80 %. 82 refs

  5. Use of in-situ Dual Vacuum Extraction trademark for remediation of soil and ground water

    International Nuclear Information System (INIS)

    Dodson, M.E.; Trowbridge, B.E.; Ott, D.

    1994-01-01

    Dual Vacuum Extraction trademark provides a rapid and cost-effective method of remediating soil and ground water contaminated with volatile organic compounds. The system involves the removal of both water and vapors through the same borehole by use of entrainment. This technology provides for the remediation of the vadose zone, capillary fringe, smear zone, and existing water table. The effectiveness of this technology is shown in a case study. A release from an underground storage tank was responsible for a hydrocarbon plume spreading over approximately 50,000 ft 2 . The release produced vadose-zone contamination in the silty and sandy clays from 10 to 30 ft below ground surface (bgs) with total petroleum hydrocarbon (TPH) concentrations up to 1,400 mg/kg. In addition, a layer of free-floating liquid hydrocarbon was present on a shallow aquifer located at 25 ft bgs in thicknesses ranging from 0.5 to 3.0 ft. An in-situ dual-extraction system was installed to remediate the soils and ground water to levels as required by the Los Angeles Regional Water Quality Control Board (RWQCB). The system operated 24 hr a day, with an operating efficiency of over 99%. After 196 days (28 weeks), over 17,000 lb of hydrocarbons had been extracted from the soils. Seven confirmatory soil borings in the area of highest initial hydrocarbon concentrations indicated that TPH and benzene, toluene, ethylbenzene, xylene (BTEX) concentrations had decreased over 99% from initial soil concentrations

  6. Pretest parametric calculations for the heated pillar experiment in the WIPP In-Situ Experimental Area

    International Nuclear Information System (INIS)

    Branstetter, L.J.

    1983-03-01

    Results are presented for a pretest parametric study of several configurations and heat loads for the heated pillar experiment (Room H) in the Waste Isolation Pilot Plant (WIPP) In Situ Experimental Area. The purpose of this study is to serve as a basis for selection of a final experiment geometry and heat load. The experiment consists of a pillar of undisturbed rock salt surrounded by an excavated annular room. The pillar surface is covered by a blanket heat source which is externally insulated. A total of five thermal and ten structural calculations are described in a four to five year experimental time frame. Results are presented which include relevant temperature-time histories, deformations, rock salt stress component and effective stress profiles, and maximum stresses in anhydrite layers which are in close proximity to the room. Also included are predicted contours of a conservative post-processed measure of potential salt failure. Observed displacement histories are seen to be highly dependent on pillar and room height, but insensitive to other geometrical variations. The use of a tensile cutoff across slidelines is seen to produce more accurate predictions of anhydrite maximum stress, but to have little effect on rock salt stresses. The potential for salt failure is seen to be small in each case for the time frame of interest, and is only seen at longer times in the center of the room floor

  7. Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils

    International Nuclear Information System (INIS)

    Heiser, J.; Fuhrmann, M.

    1997-09-01

    This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex

  8. Demonstration of in situ-constructed horizontal soil containment barrier at Fernald

    International Nuclear Information System (INIS)

    Pettit, P.J.; Ridenour, D.; Walker, J.; Saugier, K.

    1994-01-01

    A new design of jet grouting tool that can be guided by horizontal well casings and that operates in the horizontal plane has been used for the in situ placement of grout and construction of a prototype horizontal barrier that is free of windows. Jet grouting techniques have been advanced to permit construction of horizontal barriers underneath contaminated soil without having to excavate or disturb the waste. The paper describes progress on the Fernald Environmental Restoration Management Corporation (FERMCO) In Situ Land Containment Project which is sponsored by the US Department of Energy's (DOE) Office of Technology Development (OTD) for DOE's Fernald Environmental Management Project (FEMP). The Fernald project is to demonstrate a novel, enabling technology for the controlled underground placement of horizontal panels of grout, and the joining of adjacent panels to construct practical, extensive barriers. Construction strategy, equipment mechanics and operating details of this new method are described

  9. Heat pulse probe measurements of soil water evaporation in a corn field

    Science.gov (United States)

    Latent heat fluxes from cropped fields consist of soil water evaporation and plant transpiration. It is difficult to accurately separate evapotranspiration into evaporation and transpiration. Heat pulse probes have been used to measure bare field subsurface soil water evaporation, however, the appl...

  10. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were ... mate source of energy for all physical and bio- logical processes ... May) account for major thunderstorm activity in the state and winter ...

  11. In situ determination of soil carbon pool by inelastic neutron scattering: Comparison with dry combustion

    International Nuclear Information System (INIS)

    Wielopolski, L.; Mitra, S.; Chatterjee, A.; Lal, R.

    2011-01-01

    There is a well-documented need for new in situ technologies for elemental analysis of soil, particularly for carbon (C), that overcome the limitations of the currently established chemical method by dry combustion (DC). In this work, we evaluated the concordance between the new INS (inelastic neutron scattering) technology and the DC method. The comparisons were carried out in the high C content (30-40%) organic soils of Willard, Ohio (4 sites), in natural forest in Willard, Ohio (1 site), and in a watershed pasture, with an ∼ 10 o slope, in Coshocton, Ohio (5 sites). In addition to these stationary measurements, the organic soil and the pasture were continuously scanned with the inelastic neutron scattering (INS) system to obtain the transects mean C value. Both types of measurements, INS and DC, registered a decline in the surface density of C along transects in the watershed and in the organic soil. Similarly, both recorded a drop in C in the organic soil of about 0.16%. In the pastureland, declines in C levels of 0.08% and 0.10% were observed, respectively, by DC and INS. Combining the results from the three sites yielded a very satisfactory correlation between the INS- and DC-responses, with a regression coefficient, r 2 , value of about 0.99. This suggests the possibility of establishing a universal regression line for various soil types. In addition, we demonstrated the ability of INS to measure the mean value over transect. In organic soil the mean value of an INS scan agreed, ∼ 0.5%, with the mean values of the DC analysis, whereas large discrepancy between these two was recorded in the pastureland. Overall, the various trends observed in C measurements by INS concurred with those determined by the DC method, so enhancing the confidence in the new INS technology.

  12. Spectral estimates of net radiation and soil heat flux

    International Nuclear Information System (INIS)

    Daughtry, C.S.T.; Kustas, W.P.; Moran, M.S.; Pinter, P.J. Jr.; Jackson, R.D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.

    1990-01-01

    Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under non advective conditions

  13. Soil warming for utilization and dissipation of waste heat from power generation in Pennsylvania

    International Nuclear Information System (INIS)

    DeWalle, D.R.

    1977-01-01

    The purpose of this paper is to describe the Penn State research project, which studies the soil warming by circulation of heated power plant discharge water through a buried pipe network. Waste heat can be utilized by soil warming for increased crop growth in open fields with proper selection of crops and cropping systems. Dissipation of waste heat from a buried pipe network can be predicted using either of two steady-state conduction equations tested. Accurate predictions are dependent upon estimates of the pipe outer-surface temperatures, soil surface temperatures in heated soil and soil thermal conductivity. The effect of economic optimization on soil-warming land area requirements for a 1500 MWe power plant in Pennsylvania is presented. (M.S.)

  14. Soil heating during the complete combustion of mega-logs and broadcast burning in central Oregon USA pumice soils

    Science.gov (United States)

    Jane E. Smith; Ariel D. Cowan; Stephen A. Fitzgerald

    2016-01-01

    The environmental effect of extreme soil heating, such as occurs with the complete combustion of large downed wood during wildfires, is a post-fire management concern to forest managers. To address this knowledge gap, we stacked logs to create ‘mega-log’ burning conditions and compared the temperature, duration and penetration of the soil heat pulse in nine high...

  15. Behaviour of TEM metal grids during in-situ heating experiments.

    Science.gov (United States)

    Zhang, Zaoli; Su, Dangsheng

    2009-05-01

    The stability of Ni, Cu, Mo and Au transmission electron microscope (TEM) grids coated with ultra-thin amorphous carbon (alpha-C) or silicon monoxide film is examined by in-situ heating up to a temperature in the range 500-850 degrees C in a transmission electron microscope. It is demonstrated that some grids can generate nano-particles either due to the surface diffusion of metal atoms on amorphous film or due to the metal evaporation/redeposition. The emergence of nano-particles can complicate experimental observations, particularly in in-situ heating studies of dynamic behaviours of nano-materials in TEM. The most widely used Cu grid covered with amorphous carbon is unstable, and numerous Cu nano-particles start to form once the heating temperature reaches 600 degrees C. In the case of Ni grid covered with alpha-C film, a large number of Ni nano-crystals occur immediately when the temperature approaches 600 degrees C, accompanied by the graphitization of amorphous carbon. In contrast, both Mo and Au grids covered with alpha-C film exhibit good stability at elevated temperature, for instance, up to 680 and 850 degrees C for Mo and Au, respectively, and any other metal nano-particles are detected. Cu grid covered Si monoxide thin film is stable up to 550 degrees C, but Si nano-crystals appear under intensive electron beam. The generated nano-particles are well characterized by spectroscopic techniques (EDXS/EELS) and high-resolution TEM. The mechanism of nano-particle formation is addressed based on the interactions between the metal grid and the amorphous carbon film and on the sublimation of metal.

  16. Comparison of heat transfer and soil impacts of air curtain burner burning and slash pile burning

    Science.gov (United States)

    Woongsoon Jang; Deborah S. Page-Dumroese; Han-Sup Han

    2017-01-01

    We measured soil heating and subsequent changes in soil properties between two forest residue disposal methods: slash pile burning (SPB) and air curtain burner (ACB). The ACB consumes fuels more efficiently and safely via blowing air into a burning container. Five burning trials with different fuel sizes were implemented in northern California, USA. Soil temperature...

  17. Sensible heat balance measurements of soil water evaporation beneath a maize canopy

    Science.gov (United States)

    Soil water evaporation is an important component of the water budget in a cropped field. Few methods are available for continuous and independent measurement of soil water evaporation. A sensible heat balance (SHB) approach has recently been demonstrated for continuously determining soil water evapo...

  18. Aerobic De-Epoxydation of Trichothecene Mycotoxins by a Soil Bacterial Consortium Isolated Using In Situ Soil Enrichment

    Directory of Open Access Journals (Sweden)

    Wei-Jie He

    2016-09-01

    Full Text Available Globally, the trichothecene mycotoxins deoxynivalenol (DON and nivalenol (NIV are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON. Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5–10 and temperatures (20–37 °C values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase, as higher concentrations of DON were used in the subculture media, from 0 to 500 μg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation.

  19. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection

    Science.gov (United States)

    Mojarro, Angel; Ruvkun, Gary; Zuber, Maria T.; Carr, Christopher E.

    2017-08-01

    Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars.

  20. In situ immobilisation of toxic metals in soil using Maifan stone and illite/smectite clay.

    Science.gov (United States)

    Ou, Jieyong; Li, Hong; Yan, Zengguang; Zhou, Youya; Bai, Liping; Zhang, Chaoyan; Wang, Xuedong; Chen, Guikui

    2018-03-15

    Clay minerals have been proposed as amendments for remediating metal-contaminated soils owing to their abundant reserves, high performance, simplicity of use and low cost. Two novel clay minerals, Maifan stone and illite/smectite clay, were examined in the in situ immobilisation of soil metals. The application of 0.5% Maifan stone or illite/smectite clay to field soils significantly decreased the fractions of diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Ni, Cr, Zn, Cu and Pb. Furthermore, reductions of 35.4% and 7.0% in the DTPA-extractable fraction of Cd were obtained with the Maifan stone and illite/smectite clay treatments, respectively, which also significantly reduced the uptake of Cd, Ni, Cr, Zn, Cu and Pb in the edible parts of Brassica rapa subspecies pekinensis, Brassica campestris and Spinacia oleracea. Quantitatively, the Maifan stone treatment reduced the metal uptake in B. rapa ssp. Pekinensis, B. campestris and S. oleracea from 11.6% to 62.2%, 4.6% to 41.8% and 11.3% to 58.2%, respectively, whereas illite/smectite clay produced reductions of 8.5% to 62.8% and 4.2% to 37.6% in the metal uptake in B. rapa ssp. Pekinensis and B. campestris, respectively. Therefore, both Maifan stone and illite/smectite clay are promising amendments for contaminated soil remediation.

  1. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection.

    Science.gov (United States)

    Mojarro, Angel; Ruvkun, Gary; Zuber, Maria T; Carr, Christopher E

    2017-08-01

    Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars. Key Words: Life-detection instruments-Nucleic acids-Mars-Panspermia. Astrobiology 17, 747-760.

  2. A novel phytoremediation technology shown to remediate petroleum hydrocarbons from soils in situ

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.D.; Yu, X.M.; Gerhardt, K.; Glick, B.; Greenberg, B [Waterloo Environmental Biotechnology Inc., Hamilton, ON (Canada); Waterloo Univ., ON (Canada). Dept. of Biology

    2009-04-01

    This article described a newly developed, advanced microbe-enhanced phytoremediation system that can be used to remediate lands polluted by hydrocarbons, salts and metals. The technology uses 3 complementary processes to achieve effective remediation of strongly bound persistent organic pollutants (POPs) from soil. The remediation process involves physical soil treatment, photochemical photooxidation, microbial remediation and growth of plants treated with plant growth promoting rhizobacteria (PGPR). The PGPR-enhanced phytoremediation system (PEPS) alleviates plant stress and increases biodegradation activities, thereby accelerating plant growth in the presence of POPs or poor soils. The PEPS has been used successfully to remove petroleum hydrocarbons (PHCs) from impacted soils in situ at several sites across Canada. Studies have shown that the PHCs are degraded in the rhizosphere. This article also presented a summary of the work conducted at 3 sites in Alberta. It took only 2 years to remediate the 3 sites to levels required for site closure under Alberta Tier 1 guidelines. It was concluded that PEPS is equally effective for total PHC and Fraction 3 CCME hydrocarbons. 1 tab., 3 figs.

  3. Nanocalorimeter platform for in situ specific heat measurements and x-ray diffraction at low temperature

    Science.gov (United States)

    Willa, K.; Diao, Z.; Campanini, D.; Welp, U.; Divan, R.; Hudl, M.; Islam, Z.; Kwok, W.-K.; Rydh, A.

    2017-12-01

    Recent advances in electronics and nanofabrication have enabled membrane-based nanocalorimetry for measurements of the specific heat of microgram-sized samples. We have integrated a nanocalorimeter platform into a 4.5 T split-pair vertical-field magnet to allow for the simultaneous measurement of the specific heat and x-ray scattering in magnetic fields and at temperatures as low as 4 K. This multi-modal approach empowers researchers to directly correlate scattering experiments with insights from thermodynamic properties including structural, electronic, orbital, and magnetic phase transitions. The use of a nanocalorimeter sample platform enables numerous technical advantages: precise measurement and control of the sample temperature, quantification of beam heating effects, fast and precise positioning of the sample in the x-ray beam, and fast acquisition of x-ray scans over a wide temperature range without the need for time-consuming re-centering and re-alignment. Furthermore, on an YBa2Cu3O7-δ crystal and a copper foil, we demonstrate a novel approach to x-ray absorption spectroscopy by monitoring the change in sample temperature as a function of incident photon energy. Finally, we illustrate the new insights that can be gained from in situ structural and thermodynamic measurements by investigating the superheated state occurring at the first-order magneto-elastic phase transition of Fe2P, a material that is of interest for magnetocaloric applications.

  4. In-situ imaging of tungsten surface modification under ITER-like transient heat loads

    Directory of Open Access Journals (Sweden)

    A.A. Vasilyev

    2017-08-01

    Full Text Available Experimental research on behavior of rolled tungsten plates under intense transient heat loads generated by a powerful (a total power of up to 7 MW long-pulse (0.1–0.3ms electron beam with full irradiation area of 2 cm2 was carried out. Imaging of the sample by the fast CCD cameras in the NIR range and with illumination by the 532nm continuous-wave laser was applied for in-situ surface diagnostics during exposure. In these experiments tungsten plates were exposed to heat loads 0.5–1MJ/m2 with a heat flux factor (Fhf close to and above the melting threshold of tungsten at initial room temperature. Crack formation and crack propagation under the surface layer were observed during multiple exposures. Overheated areas with excessive temperature over surrounding surface of about 500K were found on severely damaged samples more than 5ms after beam ending. The application of laser illumination enables to detect areas of intense tungsten melting near crack edges and crack intersections.

  5. In situ chemical fixation of arsenic-contaminated soils: Anexperimental study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Donahoe, Rona J.; Redwine, James C.

    2007-03-27

    This paper reports the results of an experimentalstudytesting a low-cost in situ chemical fixation method designed to reclaimarsenic-contaminated subsurface soils. Subsurface soils from severalindustrial sites in southeastern U.S. were contaminated with arsenicthrough heavy application of herbicide containing arsenic trioxide. Themean concentrations of environmentally available arsenic in soilscollected from the two study sites, FW and BH, are 325 mg/kg and 900mg/kg, respectively. The soils are sandy loams with varying mineralogicaland organic contents. The previous study [Yang L, Donahoe RJ. The form,distribution and mobility of arsenic in soils contaminated by arsenictrioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341]indicated that a large portion of the arsenic in both soils is associatedwith amorphous aluminum and iron oxyhydroxides and shows very slowrelease against leaching by synthetic precipitation. The soil's amorphousaluminum and iron oxyhydroxides content was found to have the mostsignificant effect on its ability to retain arsenic.Based on thisobservation, contaminated soils were reacted with different treatmentsolutions in an effort to promote the formation of insolublearsenic-bearing phases and thereby decrease the leachability of arsenic.Ferrous sulfate, potassium permanganate and calcium carbonate were usedas the reagents for the chemical fixation solutions evaluated in threesets of batch experiments: (1) FeSO4; (2) FeSO4 and KMnO4; (3) FeSO4,KMnO4 and CaCO3. The optimum treatment solutions for each soil wereidentified based on the mobility of arsenic during sequential leaching oftreated and untreated soils using the fluids described in EPA Method 1311[USEPA. Method 1311: toxicity characteristic leaching procedure. Testmethods for evaluating solid waste, physical/chemical methods. 3rd ed.Washington, DC: U.S. Environmental Protection Agency, Office of SolidWaste. U.S. Government Printing Office; 1992]toxic characteristicsleaching

  6. In-situ Mass Distribution Quotient (iMDQ) - A New Factor to Compare Bioavailability of Pesticides in Soils?

    Science.gov (United States)

    Schroll, R.; Folberth, C.; Scherb, H.; Suhadolc, M.; Munch, J. C.

    2009-04-01

    Aim of this work was the development of a new non-biological factor to determine microbial in-situ bioavailability of chemicals in soils. Pesticide residues were extracted from ten highly different agricultural soils that had been incubated with the 14C-herbicide isoproturon (IPU) under comparable soil conditions (water tension - 15 kPa; soil density 1.3 g cm 3). Two different pesticide extraction approaches were compared: (i) 14C-Pesticide residues were measured in the pore water (PW) which was extracted from soil by centrifugation; (ii) 14C-Pesticide residues were extracted from soil samples with an excess of water (EEW). We introduce the pesticide's in-situ mass distribution quotient (iMDQ) as a measure for pesticide bioavailability, which is calculated as a quotient of adsorbed and dissolved chemical amounts for both approaches (iMDQPW, iMDQEEW). Pesticide mineralization in soils served as a reference for real microbial availability. A highly significant correlation between iMDQPW and mineralization showed that pore water extraction is adequate to assess IPU bioavailability. In contrast, no correlation exists between IPU mineralization and its extractability from soil with an excess of water. Therefore, it can be concluded that soil equilibration at comparable conditions and subsequent pore water extraction is vital for a isoproturon bioavailability ranking of soils.

  7. Pysical Properties of Soil with Addition of Sewage Dried with Heated Edible Oil

    OpenAIRE

    大坪, 政美; 中司, 敬; 中園, 修三; 中園, 英司; 徳留, 斉将

    2000-01-01

    The present study investigates the water holding capacity, density, permeability, and swelling properties of the soil samples mixed with the sewage that was dried with heated edible oil. For comparison similar experiments were conducted for the soil samples mixed with sun-dried sewage and sewage compost. The water holding capacity was higher for the soil samples with oil-dried and sun-dried sewage addition than for those with sewage-compost addition. For statically compacted soil samples, wit...

  8. Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Seneviratne, Sonia I.

    2016-03-01

    The severe 2010 heat wave in western Russia was found to be influenced by anthropogenic climate change. Additionally, soil moisture-temperature feedbacks were deemed important for the buildup of the exceptionally high temperatures. We quantify the relative role of both factors by applying the probabilistic event attribution framework and analyze ensemble simulations to distinguish the effect of climate change and the 2010 soil moisture conditions for annual maximum temperatures. The dry 2010 soil moisture alone has increased the risk of a severe heat wave in western Russia sixfold, while climate change from 1960 to 2000 has approximately tripled it. The combined effect of climate change and 2010 soil moisture yields a 13 times higher heat wave risk. We conclude that internal climate variability causing the dry 2010 soil moisture conditions formed a necessary basis for the extreme heat wave.

  9. Soil heating during wildfires and prescribed burns: a global evaluation based on existing and new data

    Science.gov (United States)

    Doerr, Stefan; Santin, Cristina; Reardon, James; Mataix-Solera, Jorge; Stoof, Cathelijne; Bryant, Rob; Miesel, Jessica; Badia, David

    2017-04-01

    Heat transfer from the combustion of ground fuels and soil organic matter during vegetation fires can cause substantial changes to the physical, chemical and biological characteristics of soils. Numerous studies have investigated the effects of wildfires and prescribed burns on soil properties based either on field samples or using laboratory experiments. Critical thresholds for changes in soil properties, however, have been determined largely based on laboratory heating experimentation. These experimental approaches have been criticized for being inadequate for reflecting the actual heating patterns soil experienced in vegetation fires, which remain poorly understood. To address this research gap, this study reviews existing and evaluates new field data on key soil heating parameters determined during wildfires and prescribed burns from a wide range of environments. The results highlight the high spatial and temporal variability in soil heating patters not only between, but also within fires. Most wildfires and prescribed burns are associated with heat pulses that are much shorter than those typically applied in laboratory studies, which can lead to erroneous conclusions when results from laboratory studies are used to predict fire impacts on soils in the field.

  10. Geothermal waste heat utilization from in situ thermal bitumen recovery operations.

    Science.gov (United States)

    Nakevska, Nevenka; Schincariol, Robert A; Dehkordi, S Emad; Cheadle, Burns A

    2015-01-01

    In situ thermal methods for bitumen extraction introduce a tremendous amount of energy into the reservoirs raising ambient temperatures of 13 °C to as high as 200 °C at the steam chamber edge and 50 °C along the reservoir edge. In essence these operations have unintentionally acted as underground thermal energy storage systems which can be recovered after completion of bitumen extraction activities. Groundwater flow and heat transport models of the Cold Lake, Alberta, reservoir, coupled with a borehole heat exchanger (BHE) model, allowed for investigating the use of closed-loop geothermal systems for energy recovery. Three types of BHEs (single U-tube, double U-tube, coaxial) were tested and analyzed by comparing outlet temperatures and corresponding heat extraction rates. Initial one year continuous operation simulations show that the double U-tube configuration had the best performance producing an average temperature difference of 5.7 °C, and an average heat extraction of 41 W/m. Given the top of the reservoir is at a depth of 400 m, polyethylene piping provided for larger extraction gains over more thermally conductive steel piping. Thirty year operation simulations illustrate that allowing 6 month cyclic recovery periods only increases the loop temperature gain by a factor of 1.2 over continuous operation. Due to the wide spacing of existing boreholes and reservoir depth, only a small fraction of the energy is efficiently recovered. Drilling additional boreholes between existing wells would increase energy extraction. In areas with shallower bitumen deposits such as the Athabasca region, i.e. 65 to 115 m deep, BHE efficiencies should be larger. © 2014, National Ground Water Association.

  11. Challenges in land model representation of heat transfer in snow and frozen soils

    Science.gov (United States)

    Musselman, K. N.; Clark, M. P.; Nijssen, B.; Arnold, J.

    2017-12-01

    Accurate model simulations of soil thermal and moisture states are critical for realistic estimates of exchanges of energy, water, and biogeochemical fluxes at the land-atmosphere interface. In cold regions, seasonal snow-cover and organic soils form insulating barriers, modifying the heat and moisture exchange that would otherwise occur between mineral soils and the atmosphere. The thermal properties of these media are highly dynamic functions of mass, water and ice content. Land surface models vary in their representation of snow and soil processes, and thus in the treatment of insulation and heat exchange. For some models, recent development efforts have improved representation of heat transfer in cold regions, such as with multi-layer snow treatment, inclusion of soil freezing and organic soil properties, yet model deficiencies remain prevalent. We evaluate models that participated in the Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) experiment for proficiency in simulating heat transfer between the soil through the snowpack to the atmosphere. Using soil observations from cold region sites and a controlled experiment with Structure for Unifying Multiple Modeling Alternatives (SUMMA), we explore the impact of snow and soil model decisions and parameter values on heat transfer model skill. Specifically, we use SUMMA to mimic the spread of behaviors exhibited by the models that participated in PLUMBER. The experiment allows us to isolate relationships between model skill and process representation. The results are aimed to better understand existing model challenges and identify potential advances for cold region models.

  12. Permafrost thawing in organic Arctic soils accelerated by ground heat production

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Matthiesen, Henning; Møller, Anders Bjørn

    2015-01-01

    Decomposition of organic carbon from thawing permafrost soils and the resulting release of carbon to the atmosphere are considered to represent a potentially critical global-scale feedback on climate change1, 2. The accompanying heat production from microbial metabolism of organic material has been...... recognized as a potential positive-feedback mechanism that would enhance permafrost thawing and the release of carbon3, 4. This internal heat production is poorly understood, however, and the strength of this effect remains unclear3. Here, we have quantified the variability of heat production in contrasting...... organic permafrost soils across Greenland and tested the hypothesis that these soils produce enough heat to reach a tipping point after which internal heat production can accelerate the decomposition processes. Results show that the impact of climate changes on natural organic soils can be accelerated...

  13. Portable gamma spectrometry: measuring soil erosion in-situ at four Critical Zone Observatories in P. R. China

    Science.gov (United States)

    Sanderson, N. K.; Green, S. M.; Chen, Z.; Wang, J.; Wang, Y.; Wang, R.; Yu, K.; Tu, C.; Jia, X.; Li, G.; Peng, X.; Quine, T. A.

    2017-12-01

    Detecting patterns of soil erosion, redistribution, and/soil nutrient loss is important for long-term soil conservation and agricultural sustainability. Caesium-137 (137Cs) and other fallout radionuclide inventories have been used over the the last 50 years to track soil erosion, transport and deposition on a catchment scale, and have been shown to be useful for informing models of temporal/spatial soil redistribution. Traditional sampling methods usually involves coring, grinding, sieving, sub-sampling and laboratory analysis using HPGe detectors, all of which can be costly and time consuming. In-situ measurements can provide a mechanism for assessment of 137Cs over larger areas that integrate the spatial variability, and expand turnover of analyses. Here, we assess the applicability of an in-situ approach based on radionuclide principles, and provide a comparison of the two approaches: laboratory vs. in-situ. The UK-China Critical Zone Observatory (CZO) programme provides an ideal research platform to assess the in-situ approach to measuring soil erosion: using a portable gamma spectrometer to determine 137Cs inventories. Four extensive field slope surveys were conducted in the CZO's, which covers four ecosystem types in China: karst, red soil, peri-urban, and loess plateau. In each CZO, 3-6 plots were measured along 2 slope transects, with 3 replicated 1 hour counts of 137Cs in each plot. In addition, 137Cs soil depth and bulk density profiles were also sampled for each plot, and lab-derived inventories calculated using traditional methods for comparison. Accurately and rapidly measuring 137Cs inventories using a portable field detector allows for a greater coverage of sampling locations and the potential for small-scale spatial integration, as well as the ability to re-visit sites over time and continually adapt and improve soil erosion/redistribution models, thus more effectively targeting areas of interest with reduced cost and time constraints.

  14. The application of in situ air sparging as an innovative soils and ground water remediation technology

    International Nuclear Information System (INIS)

    Marley, M.C.; Hazebrouck, D.J.; Walsh, M.T.

    1992-01-01

    Vapor extraction (soil venting) has been demonstrated to be a successful and cost-effective remediation technology for removing VOCs from the vadose (unsaturated) zone. However, in many cases, seasonal water table fluctuations, drawdown associated with pump-and-treat remediation techniques, and spills involving dense, non-aqueous phase liquids (DNAPLS) create contaminated soil below the water table. Vapor extraction alone is not considered to be an optimal remediation technology to address this type of contamination. An innovative approach to saturated zone remediation is the use of sparging (injection) wells to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below the areas of contamination. The contaminants dissolved in the ground water and sorbed onto soil particles partition into the advective air phase, effectively simulating an in situ air-stripping system. The stripped contaminants are transported in the gas phase to the vadose zone, within the radius of influence of a vapor extraction and vapor treatment system. In situ air sparging is a complex multifluid phase process, which has been applied successfully in Europe since the mid-1980s. To date, site-specific pilot tests have been used to design air-sparging systems. Research is currently underway to develop better engineering design methodologies for the process. Major design parameters to be considered include contaminant type, gas injection pressures and flow rates, site geology, bubble size, injection interval (areal and vertical) and the equipment specifications. Correct design and operation of this technology has been demonstrated to achieve ground water cleanup of VOC contamination to low part-per-billion levels

  15. Comparing the ensemble and extended Kalman filters for in situ soil moisture assimilation with contrasting conditions

    Directory of Open Access Journals (Sweden)

    D. Fairbairn

    2015-12-01

    Full Text Available Two data assimilation (DA methods are compared for their ability to produce an accurate soil moisture analysis using the Météo-France land surface model: (i SEKF, a simplified extended Kalman filter, which uses a climatological background-error covariance, and (ii EnSRF, the ensemble square root filter, which uses an ensemble background-error covariance and approximates random rainfall errors stochastically. In situ soil moisture observations at 5 cm depth are assimilated into the surface layer and 30 cm deep observations are used to evaluate the root-zone analysis on 12 sites in south-western France (SMOSMANIA network. These sites differ in terms of climate and soil texture. The two methods perform similarly and improve on the open loop. Both methods suffer from incorrect linear assumptions which are particularly degrading to the analysis during water-stressed conditions: the EnSRF by a dry bias and the SEKF by an over-sensitivity of the model Jacobian between the surface and the root-zone layers. These problems are less severe for the sites with wetter climates. A simple bias correction technique is tested on the EnSRF. Although this reduces the bias, it modifies the soil moisture fluxes and suppresses the ensemble spread, which degrades the analysis performance. However, the EnSRF flow-dependent background-error covariance evidently captures seasonal variability in the soil moisture errors and should exploit planned improvements in the model physics. Synthetic twin experiments demonstrate that when there is only a random component in the precipitation forcing errors, the correct stochastic representation of these errors enables the EnSRF to perform better than the SEKF. It might therefore be possible for the EnSRF to perform better than the SEKF with real data, if the rainfall uncertainty was accurately captured. However, the simple rainfall error model is not advantageous in our real experiments. More realistic rainfall error models are

  16. The use of in-situ dual vacuum extraction for remediation of soil and groundwater

    International Nuclear Information System (INIS)

    Trowbridge, B.E.; Ott, D.E.

    1992-01-01

    Dual Extraction provides a rapid and cost-effective method of remediating soil and groundwater impacted by volatile organic compounds (VOC's). Dual Extraction is the removal of both water and vapors through the same borehole using entrainment. This technology provides for the remediation of the vadose zone, capillary fringe, smear zone, and existing water table. The effectiveness of this technology is shown in a case study. A release from an Underground Storage Tank (UST) was responsible for a hydrocarbon plume spreading over approximately 50,000 square feet. The release produced vadose zone contamination in the silty and sandy clays from 10 - 30 feet below ground surface with TPH concentrations up to 1,400 mg/kg. A layer of free floating liquid hydrocarbon was present on a shallow aquifer located at 30 feet bgs in thicknesses ranging from 0.5 feet to 3.0 feet. An in-situ dual-extraction system was installed to remediate the soils and groundwater to levels as required by the Los Angeles Regional Water Quality Control Board (RWQCB). The system operated 24 hours/day for 196 days with an operating efficiency of over 99%. After 196 days, over 17,000 pounds of hydrocarbons had been extracted from the soils. Seven confirmatory soil borings were advanced in the area of highest initial hydrocarbon concentrations and indicated that TPH and BTEX concentrations had decreased over 99% from initial soil concentrations. Three confirmatory groundwater samples were obtained from monitoring wells initially exhibiting up to 3 feet of floating product. Confirmatory samples exhibited non-detectable (ND) concentrations of TPH and BTEX. Based upon the positive confirmatory results, site closure was obtained from the RWQCB in May of 1991. In only 28 weeks of operation, the groundwater contamination was reduced from free floating product to non-detectable concentrations of TPH using Dual Vacuum Extraction

  17. Comparison of in situ DGT measurement with ex situ methods for predicting cadmium bioavailability in soils with combined pollution to biotas.

    Science.gov (United States)

    Wang, Peifang; Liu, Cui; Yao, Yu; Wang, Chao; Wang, Teng; Yuan, Ye; Hou, Jun

    2017-05-01

    To assess the capabilities of the different techniques in predicting Cadmium (Cd) bioavailability in Cd-contaminated soils with the addition of Zn, one in situ technique (diffusive gradients in thin films; DGT) was compared with soil solution concentration and four widely used single-step extraction methods (acetic acid, EDTA, sodium acetate and CaCl 2 ). Wheat and maize were selected as tested species. The results demonstrated that single Cd-polluted soils inhibited the growth of wheat and maize significantly compared with control plants; the shoot and root biomasses of the plants both dropped significantly (P 0.9) between Cd concentrations in two plants and Cd bioavailability indicated by each method in soils. Consequently, the results indicated that the DGT technique could be regarded as a good predictor of Cd bioavailability to plants, comparable to soil solution concentration and the four single-step extraction methods. Because the DGT technique can offer in situ data, it is expected to be widely used in more areas.

  18. Effect of a controlled burn on the thermophysical properties of a dry soil using a new model of soil heat flow and a new high temperature heat flux sensor

    Science.gov (United States)

    W. J. Massman; J. M. Frank

    2004-01-01

    Some fires can be beneficial to soils but, if a fire is sufficiently intense, soil can be irreversible altered. We measured soil temperatures and heat fluxes at several soil depths before, during, and after a controlled surface burn at Manitou Experimental Forest (southern Colorado, USA) to evaluate its effects on the soil's thermophysical properties (thermal...

  19. Calibration of HPGe detector for in situ measurements of 137Cs in soil by 'peak to valley' method

    International Nuclear Information System (INIS)

    Fueloep, M.

    2000-01-01

    The contamination of soil with gamma-ray emitters can be measured in two ways: soil sampling method and in situ spectrometry of the ambient gamma-ray radiation. The conventional soil sampling method has two disadvantages: samples may not be representative for a large areas and determination of the depth distribution of radionuclide requires the measurement of several samples taken from different depths. In situ measurement of a radionuclide activity in soil is more sensitive and provides more representative data than data obtained by soil sample collection and subsequent laboratory analysis. In emergency situations time to assess the contamination is critical. For rapid assessment of the deposited activity direct measurement of ambient gamma-ray radiation are used. In order to obtain accurate measurements of radionuclides in the soil, the detector should be placed on relatively even and open terrain. It is our customary practice to place the detector 1 m above the soil surface. At this height, a tripod-mounted detector can be handled easily and still provide a radius of view for gamma emitting sources out to about 10 m. The 'field of view' actually varies, being somewhat larger for higher sources. Depending upon source energy, the detector effectively sees down to a depth of 15-30 cm. Commonly used method for field gamma spectrometry is method by Beck (1). The most important disadvantages of in situ spectrometry by Beck are that the accuracy of the analysis depends on a separate knowledge of the radioactivity distribution with soil depth. This information can be obtained by calculations using data from in situ measurements and energy dependence of absorption and scattering of photons in soil and track length distribution of photons in soil (2). A method of in situ measurements of 137 Cs in soil where radionuclide distribution in soil profile is calculated by unfolding of detector responses in the full energy peak net area at 0.662 MeV and in the valley under the

  20. Methodology for in situ synchrotron X-ray studies in the laser-heated diamond anvil cell

    DEFF Research Database (Denmark)

    Mezouar, M.; Giampaoli, R.; Garbarino, G.

    2017-01-01

    A review of some important technical challenges related to in situ diamond anvil cell laser heating experimentation at synchrotron X-ray sources is presented. The problem of potential chemical reactions between the sample and the pressure medium or the carbon from the diamond anvils is illustrated...

  1. Use of in situ volumetric water content at field capacity to improve prediction of soil water retention properties

    OpenAIRE

    Al Majou , Hassan; Bruand , Ary; Duval , Odile

    2008-01-01

    International audience; Use of in situ volumetric water content at field capacity to improve prediction of soil water retention properties. Most pedotransfer functions (PTFs) developed over the last three decades to generate water retention characteristics use soil texture, bulk density and organic carbon content as predictors. Despite of the high number of PTFs published, most being class- or continuous-PTFs, accuracy of prediction remains limited. In this study, we compared the performance ...

  2. Soil warming for utilization and dissipation of waste heat in Pennsylvania

    International Nuclear Information System (INIS)

    DeWalle, D.R.; Chapura, A.M. Jr.

    1978-01-01

    The feasibility of using soil warming for utilization and dissipation of reject heat from power plants was demonstrated in a year-long test operation of a field prototype in Pennsylvania. A parallel network of 5-mm-diam polyethylene pipes was buried at a 0.3-m depth and with 0.6-m spacing in the soil covering a 15- x 60-m area to convey hot water simulating condenser cooling water from a power plant. Crop response to the heated soil varied: Snap beans and warm season forage crops such as sudangrass responded with increased yields, while cool season forage crops experienced decreased yields. Winter wheat yields were also increased, but winter barley was winter-killed due to delayed development of cold tolerance in the warm soil. Heat dissipation from the buried pipes was primarily by thermal conduction to the soil surface. Rates of heat loss from the buried pipes were most accurately predicted using an equation that included an explicit term for heat conduction below the pipes. Estimated soil warming land area necessary to dissipate all the reject heat from a 33% efficiency, 1500-MW electrical power plant based on minimum measured summer heat loss rates was 76 km 2 compared to the economic optimum of 18.2 km 2 determined as the least-cost system

  3. In-situ TEM investigation of microstructural evolution in magnetron sputtered Al-Zr and Al-Zr-Si coatings during heat treatment

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Rechendorff, Kristian; Balogh, Zoltan Imre

    2016-01-01

    The magnetron sputtered Al–Zr and Al–Zr–Si coatings were heat treated in-situ in a transmission electron microscope as well as ex-situ to observe their annealing behaviour and phase transformations. The samples were heated up to a temperature of 550 °C and then cooled to room temperature. A layer...

  4. Effects of heating on composition, degree of darkness, and stacking nanostructure of soil humic acids

    Energy Technology Data Exchange (ETDEWEB)

    Katsumi, Naoya, E-mail: n-katsu@ishikawa-pu.ac.jp; Yonebayashi, Koyo; Okazaki, Masanori

    2016-01-15

    Wildfires and prescribed burning can affect both the quality and the quantity of organic matter in soils. In this study, we investigated qualitative and quantitative changes of soil humic substances in two different soils (an Entisol from a paddy field and an Inceptisol from a cedar forest) under several controlled heating conditions. Soil samples were heated in a muffle furnace at 200, 250, or 300 °C for 1, 3, 5, or 12 h. The humic acid and fulvic acid contents of the soil samples prior to and after heating were determined. The degree of darkness, elemental composition, carbon and nitrogen stable isotope ratios, {sup 13}C nuclear magnetic resonance spectra, and X-ray diffraction patterns of humic acids extracted from the soils before and after heating were measured. The proportion of humic acids in total carbon decreased with increasing heating time at high temperature (300 °C), but increased with increasing heating time at ≤ 250 °C. The degree of darkness of the humic acids increased with increasing heating time and temperature. During darkening, the H/C atomic ratios, the proportion of aromatic C, and the carbon and nitrogen stable isotope ratios increased, whereas the proportions of alkyl C and O-alkyl C decreased. X-ray diffraction analysis verified that a stacking nanostructure developed by heating. Changes in the chemical structure of the humic acids from the heated soils depended on the type of soil. The major structural components of the humic acids from the heated Entisol were aromatic C and carboxylic C, whereas aliphatic C, aromatic C, and carboxylic C structural components were found in the humic acids from the heated Inceptisol. These results suggest that the heat-induced changes in the chemical structure of the humic acids depended on the source plant. - Highlights: • Darkness of humic acids increased with increasing heating time and temperature. • Aromatic carbon content increased during darkening. • Carbon and nitrogen stable isotope

  5. Soil microbial community structure across a thermal gradient following a geothermal heating event.

    Science.gov (United States)

    Norris, Tracy B; Wraith, Jon M; Castenholz, Richard W; McDermott, Timothy R

    2002-12-01

    In this study microbial species diversity was assessed across a landscape in Yellowstone National Park, where an abrupt increase in soil temperature had occurred due to recent geothermal activity. Soil temperatures were measured, and samples were taken across a temperature gradient (35 to 65 degrees C at a 15-cm depth) that spanned geothermally disturbed and unimpacted soils; thermally perturbed soils were visually apparent by the occurrence of dead or dying lodgepole pine trees. Changes in soil microbial diversity across the temperature gradient were qualitatively assessed based on 16S rRNA sequence variation as detected by denaturing gradient gel electrophoresis (DGGE) using both ribosomal DNA (rDNA) and rRNA as PCR templates and primers specific for the Bacteria or Archaea domain. The impact of the major heating disturbance was apparent in that DGGE profiles from heated soils appeared less complex than those from the unaffected soils. Phylogenetic analysis of a bacterial 16S rDNA PCR clone library from a recently heated soil showed that a majority of the clones belonged to the Acidobacterium (51%) and Planctomyces (18%) divisions. Agar plate counts of soil suspensions cultured on dilute yeast extract and R2A agar media incubated at 25 or 50 degrees C revealed that thermophile populations were two to three orders of magnitude greater in the recently heated soil. A soil microcosm laboratory experiment simulated the geothermal heating event. As determined by both RNA- and DNA-based PCR coupled with DGGE, changes in community structure (marked change in the DGGE profile) of soils incubated at 50 degrees C occurred within 1 week and appeared to stabilize after 3 weeks. The results of our molecular and culture data suggest that thermophiles or thermotolerant species are randomly distributed in this area within Yellowstone National Park and that localized thermal activity selects for them.

  6. Granulometry and moisture influence for in situ soil analysis by portable EDXRF

    International Nuclear Information System (INIS)

    Melquiades, Fabio L.; Bastos, Rodrigo O.; Biase, Gabriel E.V.; Parreira, Paulo S.; Appoloni, Carlos R.

    2010-01-01

    Full text: The objective of this work was to verify the granulometry and the moisture influence in results when soils and sediment samples are measured for identification and quantification of metal, on field, employing a portable Energy Dispersive X-Ray Fluorescence (PXRF) equipment. Calibration curves, calculated using 5 reference samples, were used for sensitivity determination. A sediment Standard Reference Material from IAEA was used to certificate the sensitivity values. The PXRF-LFNA02 equipment, consisting of an Ag mini X-ray Tube and a Si-PIN detector, was employed to accomplish the measurements. Soil samples were collected and dried for 24 h at 60 deg C before granulometry tests. Three grounding procedures were analyzed for granulometry influence evaluation: samples without any grounding; grounded for one minute using a porcelain mortar and pestle set, but without sieving; and grounded for one minute using a porcelain mortar and pestle set, and sieved (smaller than 125 mum particle size). The obtained concentration values for Ti, Fe and Zr, are equivalent for the samples grounded for one minute and the samples grounded and sieved. This result indicates that, for in situ analysis of this soil, it is sufficient to ground the dried sample before to measure. Moisture tests were performed by sampling the soil in situ and leaving the samples on aluminum recipients in open air, at sun, for distinct times, from 0 up to 2h. A reference sample, dried for 24h at 60 deg C, was measured as well in order to compare the results. The concentration values obtained for the samples dried during 30 minutes or 120 minutes at sun are equivalent. On the other hand, the concentration values obtained for the samples dried during 24 h are higher than the values obtained for the same samples dried at sun. Moisture influences the concentrations values in around 20%. Some considerations are performed indicating a methodology for correction of this factor by using the background under

  7. Granulometry and moisture influence for in situ soil analysis by portable EDXRF

    Energy Technology Data Exchange (ETDEWEB)

    Melquiades, Fabio L.; Bastos, Rodrigo O.; Biase, Gabriel E.V. [Universidade Estadual do Centro Oeste (UNICENTRO), Guarapuava, PR (Brazil). Dept. de Fisica; Parreira, Paulo S.; Appoloni, Carlos R. [Universidade Estadual de Londrina (DF/UEL), PR (Brazil). Dept. de Fisica

    2010-07-01

    Full text: The objective of this work was to verify the granulometry and the moisture influence in results when soils and sediment samples are measured for identification and quantification of metal, on field, employing a portable Energy Dispersive X-Ray Fluorescence (PXRF) equipment. Calibration curves, calculated using 5 reference samples, were used for sensitivity determination. A sediment Standard Reference Material from IAEA was used to certificate the sensitivity values. The PXRF-LFNA02 equipment, consisting of an Ag mini X-ray Tube and a Si-PIN detector, was employed to accomplish the measurements. Soil samples were collected and dried for 24 h at 60 deg C before granulometry tests. Three grounding procedures were analyzed for granulometry influence evaluation: samples without any grounding; grounded for one minute using a porcelain mortar and pestle set, but without sieving; and grounded for one minute using a porcelain mortar and pestle set, and sieved (smaller than 125 mum particle size). The obtained concentration values for Ti, Fe and Zr, are equivalent for the samples grounded for one minute and the samples grounded and sieved. This result indicates that, for in situ analysis of this soil, it is sufficient to ground the dried sample before to measure. Moisture tests were performed by sampling the soil in situ and leaving the samples on aluminum recipients in open air, at sun, for distinct times, from 0 up to 2h. A reference sample, dried for 24h at 60 deg C, was measured as well in order to compare the results. The concentration values obtained for the samples dried during 30 minutes or 120 minutes at sun are equivalent. On the other hand, the concentration values obtained for the samples dried during 24 h are higher than the values obtained for the same samples dried at sun. Moisture influences the concentrations values in around 20%. Some considerations are performed indicating a methodology for correction of this factor by using the background under

  8. Validation of remotely-sensed soil moisture in the absence of in situ soil moisture: the case of the Yankin Basin, a tributary of the Niger River basin

    CSIR Research Space (South Africa)

    Badou, DF

    2017-10-01

    Full Text Available of remotely-sensed soil moisture is therefore promising. However, considering the limitations of remote sensing data, there is a need to check their validity prior to their utilization for impact studies. This in turn poses a problem in the absence of in situ...

  9. Application of an in-situ soil sampler for assessing subsurface biogeochemical dynamics in a diesel-contaminated coastal site during soil flushing operations.

    Science.gov (United States)

    Kwon, Man Jae; O'Loughlin, Edward J; Ham, Baknoon; Hwang, Yunho; Shim, Moojoon; Lee, Soonjae

    2018-01-15

    Subsurface biogeochemistry and contaminant dynamics during the remediation of diesel-contamination by in-situ soil flushing were investigated at a site located in a coastal region. An in-situ sampler containing diesel-contaminated soils separated into two size fractions (fraction were much higher than those in the fraction. Increases in soil TPH in DH1 were consistent with the expected outcomes following well pumping and surfactant injection used to enhance TPH extraction. However, the number of diesel-degrading microorganisms decreased after surfactant injection. 16S-rRNA gene-based analysis also showed that the community composition and diversity depended on both particle size and diesel contamination. The multidisciplinary approach to the contaminated site assessments showed that soil flushing with surfactant enhanced diesel extraction, but negatively impacted in-situ diesel biodegradation as well as groundwater quality. The results also suggest that the in-situ sampler can be an effective monitoring tool for subsurface biogeochemistry as well as contaminant dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Reconstruction of gap-free time series satellite observations of land surface temperature to model spectral soil thermal admittance

    NARCIS (Netherlands)

    Ghafarian Malamiri, H.R.

    2015-01-01

    The soil thermal properties (soil thermal conductivity, soil heat capacity and soil diffusivity) are the main parameters in the applications that need quantitative information on soil heat transfer. Conventionally, these properties are either measured in situ or estimated by semi-empirical models

  11. An optode sensor array for long term in situ Oxygen measurements in soil and sediment

    DEFF Research Database (Denmark)

    Rickelt, Lars F; Jensen, Louise Askær; Walpersdorf, Eva Christine

    2013-01-01

    Long-term measurements of molecular oxygen (O2) dynamics in wetlands are highly relevant for understanding the eff ects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We construc......Long-term measurements of molecular oxygen (O2) dynamics in wetlands are highly relevant for understanding the eff ects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We...... constructed an O2 optode sensor array for long-term in situ measurements in soil and sediment. Th e new device consists of a 1.3-m-long, cylindrical, spear-shaped rod equipped with 10 sensor spots along the shaft . Each spot contains a thermocouple fi xed with a robust fi beroptic O2 optode made...... characteristics of the sensor array system are presented along with a novel approach for temperature compensation of O2 optodes. During in situ application over several months in a peat bog, we used the new device to document pronounced variations in O2 distribution aft er marked shift s in water level. Th e...

  12. A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes.

    Science.gov (United States)

    Mele, Luigi; Konings, Stan; Dona, Pleun; Evertz, Francis; Mitterbauer, Christoph; Faber, Pybe; Schampers, Ruud; Jinschek, Joerg R

    2016-04-01

    The introduction of scanning/transmission electron microscopes (S/TEM) with sub-Angstrom resolution as well as fast and sensitive detection solutions support direct observation of dynamic phenomena in-situ at the atomic scale. Thereby, in-situ specimen holders play a crucial role: accurate control of the applied in-situ stimulus on the nanostructure combined with the overall system stability to assure atomic resolution are paramount for a successful in-situ S/TEM experiment. For those reasons, MEMS-based TEM sample holders are becoming one of the preferred choices, also enabling a high precision in measurements of the in-situ parameter for more reproducible data. A newly developed MEMS-based microheater is presented in combination with the new NanoEx™-i/v TEM sample holder. The concept is built on a four-point probe temperature measurement approach allowing active, accurate local temperature control as well as calorimetry. In this paper, it is shown that it provides high temperature stability up to 1,300°C with a peak temperature of 1,500°C (also working accurately in gaseous environments), high temperature measurement accuracy (in-situ S/TEM imaging experiments, but also elemental mapping at elevated temperatures using energy-dispersive X-ray spectroscopy (EDS). Moreover, it has the unique capability to enable simultaneous heating and biasing experiments. © 2016 Wiley Periodicals, Inc.

  13. Transformation of natural ferrihydrite aged in situ in As, Cr and Cu contaminated soil studied by reduction kinetics

    DEFF Research Database (Denmark)

    Nielsen, Sanne Skov; Kjeldsen, Peter; Hansen, Hans Christian Bruun

    2014-01-01

    following 4 yr of in situ burial at a contaminated site was examined in samples of impure (Si-bearing) ferrihydrite in soil heavily polluted with As, Cr and Cu. The samples are so-called iron water treatment residues (Fe-WTR) precipitated from anoxic groundwater during aeration. The extent of transformation...

  14. Multi-time scale analysis of the spatial representativeness of in situ soil moisture data within satellite footprints

    Science.gov (United States)

    We conduct a novel comprehensive investigation that seeks to prove the connection between spatial and time scales in surface soil moisture (SM) within the satellite footprint (~50 km). Modeled and measured point series at Yanco and Little Washita in situ networks are first decomposed into anomalies ...

  15. In situ stabilization of trace metals in a copper-contaminated soil using P-spiked Linz-Donawitz slag.

    Science.gov (United States)

    Negim, Osama; Mench, Michel; Bes, Clémence; Motelica-Heino, Mikael; Amin, Fouad; Huneau, Frédéric; Le Coustumer, Philippe

    2012-03-01

    A former wood exploitation revealing high Cu and As concentration of the soils served as a case study for assisted phytoextraction. P-spiked Linz-Donawitz (LD) slag was used as a soil additive to improve physico-chemical soil properties and in situ stabilize Cu and other trace metals in a sandy Cu-contaminated soil (630 mg kg⁻¹ soil). The LD slag was incorporated into the contaminated soil to consist four treatments: 0% (T1), 1% (T2), 2% (T3), and 4% (T4). A similar uncontaminated soil was used as a control (CTRL). After a 1-month reaction period, potted soils were used for a 2-week growth experiment with dwarf beans. Soil pH increased with the incorporation rate of LD slag. Similarly the soil electrical conductivity (EC, in millisiemens per centimetre) is ameliorated. Bean plants grown on the untreated soil (T1) showed a high phytotoxicity. All incorporation rates of LD slag increased the root and shoot dry weight yields compared to the T1. The foliar Ca concentration of beans was enhanced for all LD slag-amended soil, while the foliar Mg, K, and P concentrations were not increased. Foliar Cu, Zn, and Cr concentrations of beans decreased with the LD slag incorporation rate. P-spiked LD slag incorporation into polluted soil allow the bean growth and foliar Ca concentration, but also to reduce foliar Cu concentration below its upper critical value avoiding an excessive soil EC and Zn deficiency. This dual effect can be of interest for soil remediation at larger scale.

  16. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  17. Heating with ice. Efficient heating source for heat pumps. Primary source storage. Alternative to soil sensors and soil collectors; Heizen mit Eis. Effiziente Waermequelle fuer Waermepumpen. Primaerquellenspeicher, Alternative zu Erdsonden und Erdkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Tippelt, Egbert [Viessmann, Allendorf (Germany)

    2011-12-15

    For several years heat pumps have taken up a fixed place in the mix of annually installed thermal generators. Thus, in the year 2010 every tenth newly installed heater was a heat pump. A new concept for the development and utilization of natural heat now makes this technology even more attractive. From this perspective, the author of the contribution under consideration reports on a SolarEis storage. This SolarEis storage consists of a cylindrical concrete tank with two heat exchangers consiting of plastic pipes. The SolarEis storage uses outdoor air, solar radiation and soil as heat sources for brine / water heat pumps simultaneously.

  18. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants.

    Science.gov (United States)

    Buchner, Othmar; Stoll, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2015-04-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, Rhododendron ferrugineum, Senecio incanus and Ranunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv /Fm), which remained impeded for several days when plants were exposed to natural light conditions subsequently to the heat treatment. In contrast, plants exposed to heat stress under natural irradiation were able to tolerate and recover from heat stress more readily. The critical temperature threshold for chlorophyll fluorescence was higher under illumination (Tc (')) than in the dark (Tc). Heat stress caused a significant de-epoxidation of the xanthophyll cycle pigments both in the light and in the dark conditions. Total free radical scavenging activity was highest when heat stress was applied in the dark. This study demonstrates that, in the European Alps, heat waves can temporarily have a negative impact on photosynthesis and, importantly, that results obtained from experiments performed in darkness and/or on detached plant material may not reliably predict the impact of heat stress under field conditions. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  19. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil.

    Science.gov (United States)

    Ángeles, Martínez-Toledo; Refugio, Rodríguez-Vázquez

    2013-01-01

    In situ biosurfactant (rhamnolipid) production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus), P. putida addition, and addition of both (P. putida and nutrients). The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils) supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH) was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil.

  20. In situ olive mill residual co-composting for soil organic fertility restoration and by-product sustainable reuse

    Directory of Open Access Journals (Sweden)

    Teresa Casacchia

    2012-06-01

    Full Text Available The addition of organic matter in the form of compost improves overall physical, chemical and biological properties of soils but, to be really sustainable, the composting process should be carried out using the by-products available in situ. Two different soils of a Mediterranean olive orchard, one managed traditionally (NAS and the other amended with compost (AS, were investigated in a two-year experiment. Increases in total organic matter, total nitrogen and pH, were detected in AS if compared to NAS. Significant increases in total and specific microbial counts were observed in AS, with a clear amelioration of microbiological soil quality. The results demonstrated that soil amendment using compost deriving from olive mill by-products can be an important agricultural practice for supporting and stimulating soil microorganisms and, at the same time, for re-using these byproducts, so avoiding their negative environmental impact.

  1. In situ vitrification of Oak Ridge National Laboratory soil and limestone

    International Nuclear Information System (INIS)

    Carter, J.G.; Bates, S.O.; Maupin, G.D.

    1987-03-01

    Process feasibility studies were successfully performed on two different developmental scales to determine the technical application of in situ vitrification (ISV) to Oak Ridge National Laboratory (ORNL) intermediate-level waste. In the laboratory, testing was performed on crucibles containing quantities of 50% ORNL soil and 50% ORNL limestone. In the engineering-scale testing, a 1/12-scaled simulation of ORNL Trench 7 was constructed and vitrified, resulting in waste product soil and limestone concentrations of 68% and 32%, respectively. Results from the two scales of testing indicate that the ORNL intermediate-level waste sites may be successfully processed by ISV; the waste form will retain significant quantities of the cesium and strontium. Because 137 Cs is the major component of the radionuclide inventory in the ORNL seepage pits and trenches, final field process decontamination factors (i.e., off gas at the ground surface relative to the waste inventory) of 10 4 are desired to minimize activity buildup in the off-gas system. These values were realized during the engineering-scale test for both cesium and strontium. The vitrified material effectively contained 99.996% of the cesium and strontium placed in the engineering-scale test. This is equivalent to decontamination factors of greater than 10 4 . Volume reduction for the engineering-scale test was 60%. No migration of the cesium to the uncontaminated surrounding soil was detected. These favorable results indicate that, once verified in a pilot-scale test, an adequately designed ISV system could be produced to treat the ORNL seepage pits and trenches without excessive activity accumulation in the off-gas treatment system

  2. EM-SAGD/EM-GD : electromagnetic heating method : sustainable improvement of in-situ bitumen recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, B.; Diehl, D.; Huber, N.; Torlak, M.; Koolman, M. [Siemens AG, Munich (Germany)

    2010-07-01

    This paper described an electro-magnetic heating technology for the in situ recovery of bitumen. Studies have indicated that the technology promises a higher yield of bitumen with a smaller surface footprint than other bitumen production technologies. A laboratory study conducted with an inductor loop embedded in a 1 meter{sup 3} sand-box demonstrated that the technology is technically feasible. A series of field tests were then conducted by Siemens in a conductive subsurface later in Deggendorf, Germany. The field test included remotely operated surface equipment that was tested under down-scaled field conditions over a period of 6 months. New fiber optic sensors were used to obtain underground temperature readings. The field tests demonstrated a rise in temperature caused by the induction of eddy currents through electromagnetic fields in the conductive sub-surface. Results of the study will be used at an oil sands reservoir in 2011. The process can be combined with steam assisted gravity drainage (SAGD) processes. 4 refs., 7 figs.

  3. Smouldering (thermal) remediation of soil contaminated with industrial organic liquids: novel insights into heat transfer and kinetics uncovered by integrating experiments and modelling

    Science.gov (United States)

    Gerhard, J.; Zanoni, M. A. B.; Torero, J. L.

    2017-12-01

    Smouldering (i.e., flameless combustion) underpins the technology Self-sustaining Treatment for Active Remediation (STAR). STAR achieves the in situ destruction of nonaqueous phase liquids (NAPLs) by generating a self-sustained smouldering reaction that propagates through the source zone. This research explores the nature of the travelling reaction and the influence of key in situ and engineered characteristics. A novel one-dimensional numerical model was developed (in COMSOL) to simulate the smouldering remediation of bitumen-contaminated sand. This model was validated against laboratory column experiments. Achieving model validation depended on correctly simulating the energy balance at the reaction front, including properly accounting for heat transfer, smouldering kinetics, and heat losses. Heat transfer between soil and air was demonstrated to be generally not at equilibrium. Moreover, existing heat transfer correlations were found to be inappropriate for the low air flow Reynold's numbers (Re remediation systems. Therefore, a suite of experiments were conducted to generate a new heat transfer correlation, which generated correct simulations of convective heat flow through soil. Moreover, it was found that, for most cases of interest, a simple two-step pyrolysis/oxidation set of kinetic reactions was sufficient. Arrhenius parameters, calculated independently from thermogravimetric experiments, allowed the reaction kinetics to be validated in the smouldering model. Furthermore, a simple heat loss term sufficiently accounted for radial heat losses from the column. Altogether, these advances allow this simple model to reasonably predict the self-sustaining process including the peak reaction temperature, the reaction velocity, and the complete destruction of bitumen behind the front. Simulations with the validated model revealed numerous unique insights, including how the system inherently recycles energy, how air flow rate and NAPL saturation dictate contaminant

  4. In situ phytoremediation of PAH-contaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (Festuca arundinacea Schreb.) and associated soil microbial activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingming; Fu, Dengqiang; Teng, Ying; Shen, Yuanyuan; Luo, Yongming; Li, Zhengao [Chinese Academy of Sciences, Nanjing (China). Key Laboratory of Soil Environment and Pollution Remediation; Christie, Peter [Agri-Food and Biosciences Institute, Belfast (United Kingdom). Agri-Environment Branch

    2011-09-15

    Purpose: A 7-month field experiment was conducted to investigate the polycyclic aromatic hydrocarbon (PAH) remediation potential of two plant species and changes in counts of soil PAH-degrading bacteria and microbial activity. Materials and methods: Alfalfa and tall fescue were grown in monoculture and intercropped for 7 months in contaminated field soil. Soil and plant samples were analyzed for PAHs. Plant biomass, densities of PAH-degradation soil bacteria, soil microbial biomass C and N, enzyme activities, and the physiological profile of the soil microbial community were determined. Results and discussion: Average removal percentage of total PAHs in intercropping (30.5%) was significantly higher than in monoculture (19.9%) or unplanted soil (-0.6%). About 7.5% of 3-ring, 12.3% of 4-ring, and 17.2% of 5(+6)-ring PAHs were removed from the soil by alfalfa, with corresponding values of 25.1%, 10.4%, and 30.1% for tall fescue. Intercropping significantly enhanced the remediation efficiency. About 18.9% of 3-ring, 30.9% of 4-ring, and 33.4% of 5(+6)-ring PAHs were removed by the intercropping system. Higher counts of soil culturable PAH-degrading bacteria and elevated microbial biomass and enzyme activities were found after intercropping. Soil from intercropping showed significantly higher (p < 0.05) average well-color development obtained by the BIOLOG Ecoplate assay and Shannon-Weaver index compared with monoculture. Conclusions: Cropping promoted the dissipation of soil PAHs. Tall fescue gave greater removal of soil PAHs than alfalfa, and intercropping was more effective than monoculture. Intercropping of alfalfa and tall fescue may be a promising in situ bioremediation strategy for PAH-contaminated soils. (orig.)

  5. [Seasonal variation of soil heat conduction in a larch plantation and its relations to environmental factors].

    Science.gov (United States)

    Wang, Wen-Jie; Cui, Song; Liu, Wei; Zu, Yuan-Gang; Sun, Wei; Wang, Hui-Min

    2008-10-01

    Based on a 3-year (2003-2005) observation of soil heat flux (SHF) in a larch (Larix gmelinii) plantation, the characteristics of soil heat conduction in the plantation and their relationships with environment factors were analyzed. The results showed that there was an obvious seasonal variation of SHF in different years and sampling sites. The SHF was positive from April to August and mostly negative from September to next March, with an almost balance between heat income and outcome at annual scale. Solar net radiation had significant effects on the SHF and soil heat conductance (k), and an obvious time-lag effect was found, with 4-5 hours' time-lag in winter and 2-3 hours' time-lag in summer. Based on the real-time measurement of SHF and soil temperature difference at the study sites, the k value was significantly higher in early spring (P 0.05). Therefore, when we use the observation data of soil temperature from weather stations to estimate soil heat flux, the k value in spring (from March to May) could induce a bias estimation.

  6. The Influence of Heating Mains on Yeast Communities in Urban Soils

    Science.gov (United States)

    Tepeeva, A. N.; Glushakova, A. M.; Kachalkin, A. V.

    2018-04-01

    The number and species diversity of yeasts in urban soils (urbanozems) affected by heating mains and in epiphytic yeast complexes of grasses growing above them were studied. The number of yeasts in the soil reached 103-104 CFU/g; on the plants, 107 CFU/g. Significant (by an order of magnitude) increase in the total number of soil yeasts in the zone of heating mains in comparison with the surrounding soil was found in winter period. Overall, 25 species of yeasts were isolated in our study. Yeast community of studied urbanozems was dominated by the Candida sake, an eurybiont of the temperate zone and other natural ecotopes with relatively low temperatures, but its share was minimal in the zone of heating mains. In general, the structure of soil and epiphytic yeast complexes in the zones of heating mains differed from that in the surrounding area by higher species diversity and a lower share of pigmented species among the epiphytic yeasts. The study demonstrated that the number and species structure of soil yeast communities in urban soils change significantly under the influence of the temperature factor and acquire a mosaic distribution pattern.

  7. Estimating surface turbulent heat fluxes from land surface temperature and soil moisture using the particle batch smoother

    Science.gov (United States)

    Lu, Yang; Dong, Jianzhi; Steele-Dunne, Susan; van de Giesen, Nick

    2016-04-01

    This study is focused on estimating surface sensible and latent heat fluxes from land surface temperature (LST) time series and soil moisture observations. Surface turbulent heat fluxes interact with the overlying atmosphere and play a crucial role in meteorology, hydrology and other climate-related fields, but in-situ measurements are costly and difficult. It has been demonstrated that the time series of LST contains information of energy partitioning and that surface turbulent heat fluxes can be determined from assimilation of LST. These studies are mainly based on two assumptions: (1) a monthly value of bulk heat transfer coefficient under neutral conditions (CHN) which scales the sum of the fluxes, and (2) an evaporation fraction (EF) which stays constant during the near-peak hours of the day. Previous studies have applied variational and ensemble approaches to this problem. Here the newly developed particle batch smoother (PBS) algorithm is adopted to test its capability in this application. The PBS can be seen as an extension of the standard particle filter (PF) in which the states and parameters within a fix window are updated in a batch using all observations in the window. The aim of this study is two-fold. First, the PBS is used to assimilate only LST time series into the force-restore model to estimate fluxes. Second, a simple soil water transfer scheme is introduced to evaluate the benefit of assimilating soil moisture observations simultaneously. The experiments are implemented using the First ISLSCP (International Satellite Land Surface Climatology Project) (FIFE) data. It is shown that the restored LST time series using PBS agrees very well with observations, and that assimilating LST significantly improved the flux estimation at both daily and half-hourly time scales. When soil moisture is introduced to further constrain EF, the accuracy of estimated EF is greatly improved. Furthermore, the RMSEs of retrieved fluxes are effectively reduced at both

  8. Role of soil moisture vs. recent climate change for heat waves in western Russia

    Science.gov (United States)

    Hauser, Mathias; Orth, Rene; Seneviratne, Sonia

    2015-04-01

    Using the framework of event attribution, anthropogenic climate change was found to have a discernible influence on the occurence-probability of heat waves, such as the one in Russia in 2010. Soil moisture, on the other hand, is an important physical driver for heat waves as its availability has a large influence on the partitioning of the available surface net radiation into latent and sensible heat flux. The presented study investigates the relative importance of both controls, soil moisture and increasing greenhouse gas concentrations, on heat waves in the region of the 2010 Russian heat wave. This is done with a large number of ensemble members from climate simulations with and without interactive soil moisture for both, the 2000s and the 1960s. The simualtions allow to determine the occurence-probability of heat waves with and without the soil moisture-temperature feedback and to compare it to the change caused by climate change. Thereby, we expect to see the largest effect on daytime maximum temperatures (TXx) and a smaller influence of soil moisture on the mean temperatures and cold extremes.

  9. Effects of Triton X-100 and Quillaya Saponin on the ex situ bioremediation of a chronically polychlorobiphenyl-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Fava, F.; Di Gioia, D. [Bologna Univ. (Italy). Dept. of Applied Chemistry and Material Science

    1998-12-31

    The possibility of enhancing the ex situ bioremediation of a chronically polychlorinated biphenyl (PCB)-contaminated soil by using Triton X-100 or Quillaya Saponin, a synthetic and a biogenic surfactant, respectively, was studied. The soil, which contained about 350 mg/kg of PCBs and indigenous aerobic bacteria capable of growing on biphenyl or on monochlorobenzoic acids, was amended with inorganic nutrients and biphenyl, saturated with water and treated in aerobic batch slurry- and fixed-phase reactors. Triton X-100 and Quillays Saponin were added to the reactors at a final concentration of 10 g/l at the 42nd day of treatment, and at the 43rd and 100th day, respectively. Triton X-100 was not metabolised by the soil microflora and it exerted inhibitory effects on the indigenous bacteria. Quillaya Saponin, on the contrary, was readily metabolised by the soil microflora. Under slurry-phase conditions, Triton X-100 negatively influenced the soil bioremediation process by affecting the availability of the chlorobenzoic acid degrading indigenous bacteria, wheres Quillays Saponin slightly enhanced the biological degradation and dechlorination of the soil PCBs. In the fixed-phase reactors, where both the surfactant availability and the mixing of the soil were lower, Triton X-100 did not exert inhibitory effects on the soil biomass and enhanced significantly the soil PCB depletion, whereas Quillays Saponin did not influence the bioremediation process. (orig.)

  10. The influence of soil moisture in the unsaturated zone on the heat loss from buildings via the ground

    NARCIS (Netherlands)

    Janssen, H.; Carmeliet, J.; Hens, H.

    2002-01-01

    In calculations of building heat loss via the ground, the coupling with soil moisture transfer is generally ignored, an important hypothesis which will be falsified in this paper. Results from coupled simulations - coupled soil heat and moisture transfer equations and complete surface heat and

  11. Two-dimensional model of coupled heat and moisture transport in frost-heaving soils

    International Nuclear Information System (INIS)

    Guymon, G.L.; Berg, R.L.; Hromadka, T.V.

    1984-01-01

    A two-dimensional model of coupled heat and moisture flow in frost-heaving soils is developed based upon well known equations of heat and moisture flow in soils. Numerical solution is by the nodal domain integration method which includes the integrated finite difference and the Galerkin finite element methods. Solution of the phase change process is approximated by an isothermal approach and phenomenological equations are assumed for processes occurring in freezing or thawing zones. The model has been verified against experimental one-dimensional freezing soil column data and experimental two-dimensional soil thawing tank data as well as two-dimensional soil seepage data. The model has been applied to several simple but useful field problems such as roadway embankment freezing and frost heaving

  12. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    Science.gov (United States)

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  13. On the determination of the overall heat transmission coefficient and soil heat flux for a fog cooled, naturally ventilated greenhouse: Analysis of radiation and convection heat transfer

    International Nuclear Information System (INIS)

    Abdel-Ghany, Ahmed M.; Kozai, Toyoki

    2006-01-01

    A physical model for analyzing the radiative and convective heat transfer in a fog cooled, naturally ventilated greenhouse was developed for estimating the overall heat transmission coefficient based on the conduction, convection and thermal radiation heat transfer coefficients and for predicting the soil heat flux. The contribution of the water vapor of the inside air to the emission and absorption of thermal radiation was determined. Measurements of the outside and inside greenhouse environments to be used in the analysis were conducted around solar noon (12:19-13:00) on a hot sunny day to provide the maximum solar radiation transmission into the greenhouse. The net solar radiation flux measured at the greenhouse floor showed a reasonable agreement with the predicted value. The net fluxes were estimated around noon. The average net radiation (solar and thermal) at the soil surface was 220.0 W m -2 , the average soil heat flux was 155.0 W m -2 and the average contribution of the water vapor of the inside air to the thermal radiation was 22.0 W m -2 . The average overall heat transmission coefficient was 4.0 W m -2 C -1 and was in the range between 3.0 W m -2 C -1 and 6.0 W m -2 C -1 under the different hot summer conditions between the inside and outside of the naturally ventilated, fog cooled greenhouse

  14. Cathode-Control Alloying at an Au-ZnSe Nanowire Contact via in Situ Joule Heating

    International Nuclear Information System (INIS)

    Zeng Ya-Ping; Qu Bai-Hua; Yu Hong-Chun; Wang Yan-Guo

    2012-01-01

    Controllable interfacial alloying is achieved at a Au-ZnSe nanowire (M-S) contact via in situ Joule heating inside transmission electron microscopy (TEM). TEM inspection reveals that the Au electrode is locally molten at the M-S contact and the tip of the ZnSe nanowire is covered by the Au melting. Experimental evidences confirm that the alloying at the reversely biased M-S contact is due to the high resistance of the Schottky barrier at this M-S contact, coincident to cathode-control mode. Consequently, in situ Joule heating can be an effective method to improve the performance of nanoelectronics based on a metal-semiconductor-metal nanostructure. (cross-disciplinary physics and related areas of science and technology)

  15. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction

    International Nuclear Information System (INIS)

    Beesley, Luke; Moreno-Jimenez, Eduardo; Clemente, Rafael; Lepp, Nicholas; Dickinson, Nicholas

    2010-01-01

    Three methods for predicting element mobility in soils have been applied to an iron-rich soil, contaminated with arsenic, cadmium and zinc. Soils were collected from 0 to 30 cm, 30 to 70 cm and 70 to 100 cm depths in the field and soil pore water was collected at different depths from an adjacent 100 cm deep trench. Sequential extraction and a column leaching test in the laboratory were compared to element concentrations in pore water sampled directly from the field. Arsenic showed low extractability, low leachability and occurred at low concentrations in pore water samples. Cadmium and zinc were more labile and present in higher concentrations in pore water, increasing with soil depth. Pore water sampling gave the best indication of short term element mobility when field conditions were taken into account, but further extraction and leaching procedures produced a fuller picture of element dynamics, revealing highly labile Cd deep in the soil profile. - Mobility of arsenic, cadmium and zinc in a polluted soil can be realistically interpreted by in-situ soil pore water sampling.

  16. Role of Soil Moisture vs. Recent Climate Change for the 2010 Heat Wave in Western Russia

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Seneviratne, Sonia

    2016-04-01

    Extreme event attribution statements are often conditional on increased greenhouse gas concentrations or a particular ocean state, but not on other physical factors of the climate system. Here we extend the classical framework and assess the influence of soil moisture on a heat wave to obtain a physical attribution statement. In particular, we test the role of soil-moisture-temperature feedbacks which have been shown to be generally relevant for the build-up of exceptionally high temperatures. As a case study we investigate the severe 2010 heat wave in western Russia, which was previously found to be influenced by anthropogenic climate change. We quantify the relative role of climate change and that of soil moisture-temperature feedbacks with the event attribution framework and analyze ensemble simulations to distinguish the effect of climate change and the 2010 soil moisture conditions for annual maximum temperatures. We find that climate change from 1960 to 2000 alone has approximately tripled the risk of a severe heat wave in western Russia. The combined effect of climate change and the dry 2010 soil moisture yields a 13 times higher heat wave risk. We conclude that internal climate variability causing the dry 2010 soil moisture conditions formed the basis for this extreme heatwave.

  17. Development of an in-situ heat transfer experiment (ISHTE) for illite clays of MPG-1

    International Nuclear Information System (INIS)

    Olson, L.O.; Ewart, T.E.

    1981-01-01

    During 1979 the Applied Physics Laboratory of the University of Washington has been working on the design and development of components for an In-Situ Heat Transfer Experiment (ISHTE). The goal of the experiment is to test the validity of using laboratory experiments and analytical studies to predict the thermal response of red clay sediments in the deep ocean. All areas of the conceptual ISHTE developed during 1978 have been investigated this year at some level, with the greatest emphasis on the key components. Because the platform tracking and acoustic communication system is the most crucial component of the experiment, the major effort has been spent on developing this equipment. Hardware and software for the system are nearly operational. Some preliminary testing to evaluate transducers has been performed in Puget Sound and at shallow ocean depths. The transducers purchased initially were not adequate, but units from another company have been purchased and tested with good results. Deep ocean transponder tests will be run in the spring of 1980, and tests of the full tracking system will be conducted in July of 1980 at MPG-1. Several other hardware systems developed this year were an electric heater to simulate the isotope heatsource for system testing, the heater implantment arm, the heater's thermal sensor system, the thermal sensors for the sediment, and a 1/5 scale model of the planned ISHTE platform for visulization of component interaction. The hydrostatic corers are being designed but no construction will be started on prototypes until late 1980. No severe problems have been found thus far with the conceptualized system for the ISHTE platform, and work is progressing on building and testing all of these component systems before the seafloor platform is designed in detail. Present plans are to start designing the platform in FY 81

  18. NORDA contribution to the in-situ heat transfer experiment (ISHTE): FY84 annual report

    International Nuclear Information System (INIS)

    Valent, P.J.; Bennett, R.H.; Li, H.; Burns, J.T.

    1986-01-01

    The Subseabed Disposal Program (SDP) of the DOE, managed by Sandia National Laboratories, Albuquerque (SNLA), is studying the feasibility of disposing of high-level radioactive wastes by burial in fine-grained deep-sea sediments. The thermo-mechanical response of these sediments to the thermal gradient and temperatures generated by the decaying radionucleides in a buried waste container is being determined by the SDP-supported In Situ Heat Transfer Experiment (ISHTE). The Naval Ocean Research and Development Activity (NORDA) is responsible for the development and fielding of piezometer probes for measuring the pore water pressure gradients induced by the thermal gradient in the sediment. Pore pressure gradients measured in ISHTE will permit validation of theoretical models predicting the rate of radionucleide leakage from a buried waste container to the overlying seawater column. This report of describes the results of a laboratory simulation of ISHTE, conducted at SNLA, in which sediment cracking due to probe insertion was determined to not be a problem to the experiment. Specialized equipment developed for ISHTE, in particular a pressure transducer calibrator for ambient pressures to 69 MPa (10,000 psi), is described. Preliminary results gleaned from excess pore pressure data obtained during the ISHTE component test cruise, Sept 84, confirm that sediment cracking due to probe insertion will be slight and will have an insignificant influence on the measured excess pore pressure dissipation rates. Excess preenerated by insertion of the piezometer probes vary by a factor of two. No significant faults in the NORDA piezometer system were detected either in the laboratory stimulation or in the test in 5800 m water depth north of Hawaii

  19. Potential soil contaminant levels of polychlorinated dibenzodioxins and dibenzofurans at industrial facilities employing heat transfer operations

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.; Muhr, C.A.; Greene, D.W.

    1992-04-01

    Certain manufacturing facilities formerly used large quantities of polychlorinated biphenyl (PCB) fluids in heat transfer operations. At many of these locations, operations have also involved PCB-containing electrical equipment. Commonly, over many years of plant operations, spills and leaks have resulted in PCB soil contamination. Dioxins and furans have been associated with PCB contamination in both the technical and popular press. Consequently, the need for analyses for dioxins and furans must be evaluated at locations where soils are contaminated with PCBs. This report presents an evaluation of potential dioxin and furan soil contamination based on heat transfer operations and spills from electrical equipment. The following five scenarios were examined for dioxin and furan contamination: (1) impurities in heat transfer fluids, (2) formation during heat transfer operations, (3) pyrolysis of heat transfer fluids, (4) impurities in dielectric fluids, and (5) pyrolysis of dielectric fluids. The potential contamination with dioxins and furans was calculated and compared with a 20 ppb guideline that has been used by the Centers for Disease Control for dioxin in subsoil. The results demonstrated that dioxins are formed only under pyrolytic conditions and only from the trichlorobenzenes present in dielectric fluids. Furans are found as impurities in PCB fluids but, as with dioxins, are not formed in significant quantities except during pyrolysis. Fortunately, pyrolytic conditions involving PCB fluids and soil contamination are unlikely; therefore, analyses for dioxin and furan contamination in soils will rarely be needed.

  20. Using in situ pore water concentrations to estimate the phytotoxicity of nicosulfuron in soils to corn (Zea mays L.).

    Science.gov (United States)

    Liu, Kailin; Cao, Zhengya; Pan, Xiong; Yu, Yunlong

    2012-08-01

    The phytotoxicity of an herbicide in soil is typically dependent on the soil characteristics. To obtain a comparable value of the concentration that inhibits growth by 50% (IC50), 0.01 M CaCl(2) , excess pore water (EPW) and in situ pore water (IPW) were used to extract the bioavailable fraction of nicosulfuron from five different soils to estimate the nicosulfuron phytotoxicity to corn (Zea mays L.). The results indicated that the phytotoxicity of nicosulfuron in soils to corn depended on the soil type, and the IC50 values calculated based on the amended concentration of nicosulfuron ranged from 0.77 to 9.77 mg/kg among the five tested soils. The range of variation in IC50 values for nicosulfuron was smaller when the concentrations of nicosulfuron extracted with 0.01 M CaCl(2) and EPW were used instead of the amended concentration. No significant difference was observed among the IC50 values calculated from the IPW concentrations of nicosulfuron in the five tested soils, suggesting that the concentration of nicosulfuron in IPW could be used to estimate the phytotoxicity of residual nicosulfuron in soils. Copyright © 2012 SETAC.

  1. Land Use History Shifts In Situ Fungal and Bacterial Successions following Wheat Straw Input into the Soil.

    Directory of Open Access Journals (Sweden)

    Vincent Tardy

    Full Text Available Soil microbial communities undergo rapid shifts following modifications in environmental conditions. Although microbial diversity changes may alter soil functioning, the in situ temporal dynamics of microbial diversity is poorly documented. Here, we investigated the response of fungal and bacterial diversity to wheat straw input in a 12-months field experiment and explored whether this response depended on the soil management history (grassland vs. cropland. Seasonal climatic fluctuations had no effect on the diversity of soil communities. Contrastingly fungi and bacteria responded strongly to wheat regardless of the soil history. After straw incorporation, diversity decreased due to the temporary dominance of a subset of copiotrophic populations. While fungi responded as quickly as bacteria, the resilience of fungal diversity lasted much longer, indicating that the relative involvement of each community might change as decomposition progressed. Soil history did not affect the response patterns, but determined the identity of some of the populations stimulated. Most strikingly, the bacteria Burkholderia, Lysobacter and fungi Rhizopus, Fusarium were selectively stimulated. Given the ecological importance of these microbial groups as decomposers and/or plant pathogens, such regulation of the composition of microbial successions by soil history may have important consequences in terms of soil carbon turnover and crop health.

  2. Evaluation of in situ capping with clean soils to control phosphate release from sediments

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Di [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Ding, Shiming, E-mail: smding@niglas.ac.cn [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Sun, Qin [College of Environmental Science and Engineering, Hohai University, Nanjing (China); Zhong, Jicheng [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Wu, Wei; Jia, Fei [College of Environmental Science and Engineering, Hohai University, Nanjing (China)

    2012-11-01

    Evaluation of in situ capping with clean soils to control phosphate release from the sediments of a eutrophic bay in Lake Taihu was performed after 18 months of capping. The concentrations of dissolved reactive phosphate (DRP) in pore waters and DRP resupply from native sediments and capped sediments were determined using high-resolution dialysis (HR-Peeper) and a Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) technique. The adsorption isotherm of these sediments was further investigated using a modified Langmuir model. The results showed low concentrations of DRP in pore waters with a low resupply from the sediments for sustaining pore water DRP concentration after capping. The calculated flux to the overlying water following the capping treatment was approximately half of that for the native sediments, implying that the capping reduced the release of phosphate from the sediments. The low resupply of the sediments after capping was further demonstrated by larger partitioning coefficient (K{sub p}) values and greater adsorption capacity (Q{sub max}) values, while zero equilibrium concentrations (EPC{sub 0}s) were similar to those in native sediments. The larger K{sub p} and Q{sub max} were attributed to higher active Fe and Al introduced by the capping, indicating that the binding of phosphate onto the active Fe and Al played a critical role in reducing the internal loading of phosphorous. Highlights: Black-Right-Pointing-Pointer Evaluation of capping with soils was performed through high-resolution sampling. Black-Right-Pointing-Pointer Capping decreased the concentrations of DRP in pore waters and its release to waters. Black-Right-Pointing-Pointer Capping decreased the resupply of pore water DRP from the sediments. Black-Right-Pointing-Pointer Capped sediments had stronger abilities to adsorb and retain P. Black-Right-Pointing-Pointer Active Fe and Al introduced by capping played a critical role.

  3. Evaluation of in situ capping with clean soils to control phosphate release from sediments

    International Nuclear Information System (INIS)

    Xu, Di; Ding, Shiming; Sun, Qin; Zhong, Jicheng; Wu, Wei; Jia, Fei

    2012-01-01

    Evaluation of in situ capping with clean soils to control phosphate release from the sediments of a eutrophic bay in Lake Taihu was performed after 18 months of capping. The concentrations of dissolved reactive phosphate (DRP) in pore waters and DRP resupply from native sediments and capped sediments were determined using high-resolution dialysis (HR-Peeper) and a Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) technique. The adsorption isotherm of these sediments was further investigated using a modified Langmuir model. The results showed low concentrations of DRP in pore waters with a low resupply from the sediments for sustaining pore water DRP concentration after capping. The calculated flux to the overlying water following the capping treatment was approximately half of that for the native sediments, implying that the capping reduced the release of phosphate from the sediments. The low resupply of the sediments after capping was further demonstrated by larger partitioning coefficient (K p ) values and greater adsorption capacity (Q max ) values, while zero equilibrium concentrations (EPC 0 s) were similar to those in native sediments. The larger K p and Q max were attributed to higher active Fe and Al introduced by the capping, indicating that the binding of phosphate onto the active Fe and Al played a critical role in reducing the internal loading of phosphorous. Highlights: ► Evaluation of capping with soils was performed through high-resolution sampling. ► Capping decreased the concentrations of DRP in pore waters and its release to waters. ► Capping decreased the resupply of pore water DRP from the sediments. ► Capped sediments had stronger abilities to adsorb and retain P. ► Active Fe and Al introduced by capping played a critical role.

  4. Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2010-11-01

    Full Text Available The SMOSMANIA soil moisture network in Southwestern France is used to evaluate modelled and remotely sensed soil moisture products. The surface soil moisture (SSM measured in situ at 5 cm permits to evaluate SSM from the SIM operational hydrometeorological model of Météo-France and to perform a cross-evaluation of the normalised SSM estimates derived from coarse-resolution (25 km active microwave observations from the ASCAT scatterometer instrument (C-band, onboard METOP, issued by EUMETSAT and resampled to the Discrete Global Grid (DGG, 12.5 km gridspacing by TU-Wien (Vienna University of Technology over a two year period (2007–2008. A downscaled ASCAT product at one kilometre scale is evaluated as well, together with operational soil moisture products of two meteorological services, namely the ALADIN numerical weather prediction model (NWP and the Integrated Forecasting System (IFS analysis of Météo-France and ECMWF, respectively. In addition to the operational SSM analysis of ECMWF, a second analysis using a simplified extended Kalman filter and assimilating the ASCAT SSM estimates is tested. The ECMWF SSM estimates correlate better with the in situ observations than the Météo-France products. This may be due to the higher ability of the multi-layer land surface model used at ECMWF to represent the soil moisture profile. However, the SSM derived from SIM corresponds to a thin soil surface layer and presents good correlations with ASCAT SSM estimates for the very first centimetres of soil. At ECMWF, the use of a new data assimilation technique, which is able to use the ASCAT SSM, improves the SSM and the root-zone soil moisture analyses.

  5. Comparison of in-situ gamma ray spectrometry measurements with conventional methods in determination natural and artificial nuclides in soil

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Doubal, A. W.

    2010-12-01

    Two nuclear analytical techniques (In-Situ Gamma ray spectrometry and laboratory gamma ray spectrometry) for determination of natural and artificial radionuclides in soil have been validated. The first technique depends on determination of radioactivity content of representative samples of the studied soil after laboratory preparation, while the second technique is based on direct determination of radioactivity content of soil using in-situ gamma-ray spectrometer. Analytical validation parameter such as detection limits, repeatability, reproducibility in addition to measurement uncertainties were estimated and compared for both techniques. Comparison results have shown that the determination of radioactivity in soil should apply the two techniques together where each of techniques is characterized by its low detection limit and uncertainty suitable for defined application of measurement. Radioactive isotopes in various locations were determined using the two methods by measuring 40 k, 238 U,and 137 Cs. The results showed that there are differences in attenuation factors due to soil moisture content differences; wet weight corrections should be applied when the two techniques are compared. (author)

  6. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals.

    Science.gov (United States)

    Song, Biao; Zeng, Guangming; Gong, Jilai; Liang, Jie; Xu, Piao; Liu, Zhifeng; Zhang, Yi; Zhang, Chen; Cheng, Min; Liu, Yang; Ye, Shujing; Yi, Huan; Ren, Xiaoya

    2017-08-01

    Soil and sediment contamination has become a critical issue worldwide due to its great harm to the ecological environment and public health. In recent years, many remediation technologies including physical, chemical, biological, and combined methods have been proposed and adopted for the purpose of solving the problems of soil and sediment contamination. However, current research on evaluation methods for assessing these remediation technologies is scattered and lacks valid and integrated evaluation methods for assessing the remediation effectiveness. This paper provides a comprehensive review with an environmental perspective on the evaluation methods for assessing the effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. The review systematically summarizes recent exploration and attempts of the remediation effectiveness assessment based on the content of pollutants, soil and sediment characteristics, and ecological risks. Moreover, limitations and future research needs of the practical assessment are discussed. These limitations are not conducive to the implementation of the abatement and control programs for soil and sediment contamination. Therefore, more attention should be paid to the evaluation methods for assessing the remediation effectiveness while developing new in situ remediation technologies in future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. X-231B technology demonstration for in situ treatment of contaminated soil: Laboratory evaluation of chemical oxidation using hydrogen peroxide

    International Nuclear Information System (INIS)

    Gates, D.D.; Siegrist, R.L.

    1993-09-01

    Treatability studies were conducted as part of a comprehensive research project initiated to demonstrate as well as evaluate in situ treatment technologies for volatile organic compounds (VOCs) and radioactive substances in wet, slowly permeable soils. The site of interest for this project was the X-231B Oil Biodegradation unit at the Portsmouth Gaseous Diffusion Plant, a US Department of Energy (DOE) facility in southern Ohio. This report describes the treatability studies that investigated the feasibility of the application of low-strength hydrogen peroxide (H 2 O 2 ) solutions to treat trichloroethylene (TCE)-contaminated soil

  8. A new method for the determination of radionuclide distribution in the soil by in situ gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Zombori, P.; Andrasi, A.; Nemeth, I.

    1992-06-01

    A method was searched for to estimate the penetration characteristics of fallout radioactivity, using only spectral information obtained by in situ spectrometric measurements, and avoiding the need for long and tiresome sampling and sample analysis procedures. To speed up the analysis for depth distribution determination of fallout radioactivity in soil, an instrumental method based on the shape of spectra was developed. The ratio of peak to valley (the region between the photopeak and Compton edge) depends on the penetration of radionuclides in soil, providing an estimation of depth profile. These ratios were calculated and the method was tested by actual measurements. (R.P.) 7 refs.; 14 figs.; 2 tabs

  9. Determination of 228Th, 226Ra and 40K in Soil Using In-Situ GammaSpectrometer

    International Nuclear Information System (INIS)

    Bunawas; Wahyudi; Syarbaini; Untara

    2000-01-01

    Determination of natural radionuclide in latosol soil at six locationsaround PPTN Serpong by using Inspector portable gamma spectrometer with highpurity Germanium detector (HPGe) which has 26% relative efficiency had beenobtained. Radionuclides data of 228 Th, 226 Ra and 40 K were obtained in4 hours, shorter than laboratories analysis which needed 3 weeks. Thedifferences between in-situ measurement and laboratory were 3.6% to 56.2% forsix conditions of soil measured. According to the specific activity dataanalysis using statistic hypothesis, the result shows that the activity of 228 Th and 226 Ra are independent on location, but 40 K is dependent onlocation. (author)

  10. Development of in situ vitrification for remediation of ORNL contaminated soils

    International Nuclear Information System (INIS)

    Tixier, J.S.; Spalding, B.P.

    1994-08-01

    A full-scale field treatability study of in situ vitrification (ISV) is underway at the Oak Ridge National Laboratory (ORNL) for the remediation of radioactive liquid waste seepage pits and trenches that received over one million curies of mixed fission products (mostly 137 Cs and 90 Sr) during the 1950s and 1960s. The treatability study is being conducted on a portion of the original seepage pit and will support an Interim Record of Decision (IROD) for closure of one or more of the seven seepage pits and trenches in early fiscal year (FY) 1996. Mr treatability study will establish ft technical performance of ISV for remediation of the contaminated soil sites. Melt operations at ORNL are expected to begin in early FY 1994. This paper presents the latest accomplishments of the project in preparation for the field testing. Discussion centers on the results of a parametric crucible melt study, a description of the site characterization efforts, and the salient features of a new hood design

  11. [Differential Effect and Mechanism of in situ Immobilization of Cadmium Contamination in Soil Using Diatomite Produced from Different Areas].

    Science.gov (United States)

    Zhu, Jian; Wang, Ping; Lin, Yan; Lei, Ming-jing; Chen, Yang

    2016-02-15

    In order to understand the difference of in situ immobilization effect and mechanism of Cd contamination in soil using diatomite produced from different areas, the test was conducted using diatomite produced from Yunnan Tengchong, Jilin Linjiang, Zhejiang Shengzhou and Henan Xinyang of China as modifiers to immobilize cadmium contamination in simulated soil. The results indicated that the diatomite from all the four producing areas could effectively immobilize available Cd in soil, decreasing the available Cd content in soil by 27.7%, 28.5%, 30.1% and 57.2%, respectively when the adding concentration was 30 g x kg(-1). Their ability for immobilizing available Cd in soil followed the sequence of Henan Xinyang > Zhejiang Shengzhou > Jilin Linjiang > Yunnan Tengchong. It was also found that the physical and chemical properties of diatomite played a main role in soil cadmium immobilization, lower bulk density, larger specific surface area, more micro pores and wider distribution range of aperture were more favorable for available Cd immobilization. The results also showed that, the diatomite could control Cd contamination by changing soil physical and chemical properties, among these properties, pH and organic matter content were the key factors, increasing soil pH value and organic matter content was favorable for available cadmium immobilization, while the soil water content had little effect on available cadmium immobilization. The control of soil cadmium contamination by using diatomite to change cation exchange capacity was limited by time in some degree. The diatomite produced from Henan Xinyang, Zhejiang Shengzhou and Yunnan Tengchong increased the soil pH value and organic matter content, and was favorable for available Cd immobilization, while the diatomite from Jilin Linjiang showed converse effect.

  12. Modelling of 90Sr in-situ migration: models comparison and coupled soil characterisation

    International Nuclear Information System (INIS)

    Piault, E.; van Dorpe, F.; Cartalade, A.; Beaucaire, C.; Fernandez, J.M.

    2005-01-01

    Full text of publication follows: In 1960, the Institute of Nuclear Protection and Safety of the French Atomic Energy Commission (CEA/IPSN) had launched a research program to quantify the soil-plant transfer of 90 Sr (transfer between soils, grapes and wine). The studies were conducted in-situ with the help of the National Institute for Agronomic Research (INRA) on an experimental site of Mediterranean type. The experiments consisted in contaminating with soluble strontium salt solutions (SrCl 2 ) a 400 m 2 (10 m x 40 m) piece of land bordered by two uncontaminated strip used as blanks. Prior to planting, the superficial layer of the contaminated plot had then been ploughed in order to homogenize the contamination on a depth of about 10 cm. Over time, the radionuclide was transported from the surface layer to the underground layers of the plot due to climatic factors. The 90 Sr migration over the last 40 years was studied owing eight 70 cm deep cores to perform a radiological and physico-chemical characterization of the soil. The vertical migration modelling of 90 Sr required the definition of a triple layers model whose the only external factor of influence considered is the rainwater infiltration at constant flux. Simulations were made using the code PORFLOW and also the code CAST3M, developed by CEA. These codes solve calculations of flows in unsaturated porous media taking into account the sorption/desorption phenomena of chemical species and radioactive decay. To complete the study an estimation of 90 Sr K d sorption coefficient (used by transfer models) using ion-exchange model was carried out for each layers. The dependence of 90 Sr K d on competitor cations present in fluids is analysed. The study shows that the agreement between the experimental and simulated results is acceptable if the characterization steps, including sampling are properly undertaken. The necessity to characterize the site according to needs of numerical modelling, in an iterative cycle

  13. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development

    Science.gov (United States)

    Xu, Fei; Zhang, Yaning; Jin, Guangri; Li, Bingxi; Kim, Yong-Song; Xie, Gongnan; Fu, Zhongbin

    2018-04-01

    A three-phase model capable of predicting the heat transfer and moisture migration for soil freezing process was developed based on the Shen-Chen model and the mechanisms of heat and mass transfer in unsaturated soil freezing. The pre-melted film was taken into consideration, and the relationship between film thickness and soil temperature was used to calculate the liquid water fraction in both frozen zone and freezing fringe. The force that causes the moisture migration was calculated by the sum of several interactive forces and the suction in the pre-melted film was regarded as an interactive force between ice and water. Two kinds of resistance were regarded as a kind of body force related to the water films between the ice grains and soil grains, and a block force instead of gravity was introduced to keep balance with gravity before soil freezing. Lattice Boltzmann method was used in the simulation, and the input variables for the simulation included the size of computational domain, obstacle fraction, liquid water fraction, air fraction and soil porosity. The model is capable of predicting the water content distribution along soil depth and variations in water content and temperature during soil freezing process.

  14. Monitoring of high temperature area by resistivity tomography during in-situ heating test in sedimentary soft rocks

    International Nuclear Information System (INIS)

    Kubota, Kenji; Suzuki, Koichi; Ikenoya, Takafumi; Takakura, Nozomu; Tani, Kazuo

    2009-01-01

    One of the major issues in disposal of nuclear waste is that the long term behaviors of sedimentary soft rocks can be affected by various environmental factors such as temperature, mechanical conditions or hydraulic conditions. Therefore, it is necessary to develop a method for evaluating the long term stability of caverns in sedimentary soft rocks as subjected to changes of environment. We have conducted in-situ heating test to evaluate the influence of high temperature to the surrounding rock mass at a depth of 50 m. The well with a diameter of 30 cm and 60 cm of height, was drilled and filled with groundwater. The heater was installed in the well for heating the surrounding rock mass. During the heating, temperature and deformation around the well were measured. To evaluate the influence of heating on sedimentary soft rocks, it is important to monitor the extent of heated area. Resistivity monitoring is thought to be effective to map the extent of the high temperature area. So we have conducted resistivity tomography during the heating test. The results demonstrated that the resistivity of the rock mass around the heating well decreased and this area was gradually expanded from the heated area during the heating. The decreasing rate of resistivity on temperature is correlated to that of laboratory experimental result and existing empirical formula between aqueous solution resistivity and temperature. Resistivity is changed by many other factors, but it is expected that resistivity change by other factors is very few in this test. This suggests that high temperature area is detected and spatial distribution of temperature can be mapped by resistivity tomography. So resistivity tomography is expected to be one of the promising methods to monitor the area heated by nuclear waste. (author)

  15. Quality Improvement of the Satellite Soil Moisture Products by Fusing In Situ and GNSS-R Observation

    Science.gov (United States)

    Yuan, Q.; Xu, H.; Li, T.; Shen, H.; Zhang, L.

    2017-12-01

    Soil moisture plays a fundamental role in the hydrological cycle as well as in the energy partitioning. On this basis, it is of great concern to derive a long-term soil moisture time series on a global scale and monitor its temporal and spatial variations for practical applications. Although passive and active microwave satellites have been shown to provide useful retrievals of near-surface soil moisture at regional and global scales, the limitations in retrieval accuracy prevent them from high-quality applications in specific areas. On the other hand, measuring soil moisture straightly through in situdevices, such as soil moisture probes, is high accuracy, but is not able to derive global soil moisture maps. Recently, the ground-based GNSS-R method is emerging in monitoring near-surface soil moisture variations but still over limited spatial scales. In this paper, a multi-source data fusion method was applied to synthesize regional high-quality soil moisture products from 2015 to 2017 in western parts of the continental United States. Firstly, we put all the three soil moisture datasets into the generalized regression neural network (GRNN) model. The input signals of the model are SMOS and SMAP satellite-derived passive level 3 soil moisture daily products combined with date and latitude and longitude information, while the in situ measured and GNSS-R retrieved soil moisture are used as target. Finally, we apply the model to all the soil moisture time series in the experiment area and obtain two high-quality regional soil moisture products for SMOS and SMAP, respectively. The results before fusion show that the correlation coefficients between site-specific soil moisture and satellite-derived soil moisture are 0.39 for SMOS and 0.27 for SMAP and that unbiased root-mean-square errors (ubRMSE) are 0.113 for SMOS and 0.128 for SMAP, respectively. After applying the GRNN-R, the model fitted correlation coefficients have reached 0.72 for SMOS and 0.75 for SMAP and the

  16. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 2 - model validation

    Science.gov (United States)

    Zhang, Yaning; Xu, Fei; Li, Bingxi; Kim, Yong-Song; Zhao, Wenke; Xie, Gongnan; Fu, Zhongbin

    2018-04-01

    This study aims to validate the three-phase heat and mass transfer model developed in the first part (Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development). Experimental results from studies and experiments were used for the validation. The results showed that the correlation coefficients for the simulated and experimental water contents at different soil depths were between 0.83 and 0.92. The correlation coefficients for the simulated and experimental liquid water contents at different soil temperatures were between 0.95 and 0.99. With these high accuracies, the developed model can be well used to predict the water contents at different soil depths and temperatures.

  17. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime

    International Nuclear Information System (INIS)

    Denyes, Mackenzie J.; Rutter, Allison; Zeeb, Barbara A.

    2013-01-01

    The in situ use of carbon amendments such as activated carbon (AC) and biochar to minimize the bioavailability of organic contaminants is gaining in popularity. In the first in situ experiment conducted at a Canadian PCB-contaminated Brownfield site, GAC and two types of biochar were statistically equal at reducing PCB uptake into plants. PCB concentrations in Cucurbita pepo root tissue were reduced by 74%, 72% and 64%, with the addition of 2.8% GAC, Burt's biochar and BlueLeaf biochar, respectively. A complementary greenhouse study which included a bioaccumulation study of Eisenia fetida (earthworm), found mechanically mixing carbon amendments with PCB-contaminated soil (i.e. 24 h at 30 rpm) resulted in shoot, root and worm PCB concentrations 66%, 59% and 39% lower than in the manually mixed treatments (i.e. with a spade and bucket). Therefore, studies which mechanically mix carbon amendments with contaminated soil may over-estimate the short-term potential to reduce PCB bioavailability. Highlights: •Biochar and GAC reduced PCB uptake into plants and earthworms. •Biochar offered additional benefits, including increased plant and earthworm biomass. •BSAF reductions are greater when amendments are mechanically vs. manually mixed. •Mechanically mixing carbon amendments may over-estimate their remediation potential. -- In situ AC and biochar soil amendments perform equally well at reducing PCB uptake, however, laboratory-based mixing methods may exaggerate the sorptive capacities of both amendments

  18. In situ pilot test for bioremediation of energetic compound-contaminated soil at a former military demolition range site.

    Science.gov (United States)

    Jugnia, Louis B; Manno, Dominic; Drouin, Karine; Hendry, Meghan

    2018-05-04

    Bioremediation was performed in situ at a former military range site to assess the performance of native bacteria in degrading hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitrotoluene (2,4-DNT). The fate of these pollutants in soil and soil pore water was investigated as influenced by waste glycerol amendment to the soil. Following waste glycerol application, there was an accumulation of organic carbon that promoted microbial activity, converting organic carbon into acetate and propionate, which are intermediate compounds in anaerobic processes. This augmentation of anaerobic activity strongly correlated to a noticeable reduction in RDX concentrations in the amended soil. Changes in concentrations of RDX in pore water were similar to those observed in the soil suggesting that RDX leaching from the soil matrix, and treatment with waste glycerol, contributed to the enhanced removal of RDX from the water and soil. This was not the case with 2,4-DNT, which was neither found in pore water nor affected by the waste glycerol treatment. Results from saturated conditions and Synthetic Precipitation Leaching Procedure testing, to investigate the environmental fate of 2,4-DNT, indicated that 2,4-DNT found on site was relatively inert and was likely to remain in its current state on the site.

  19. In situ remediation and phytotoxicity assessment of lead-contaminated soil by biochar-supported nHAP.

    Science.gov (United States)

    Yang, Zhangmei; Fang, Zhanqiang; Tsang, Pokeung Eric; Fang, Jianzhang; Zhao, Dongye

    2016-11-01

    In this study, a kind of biochar-supported nano-hydroxyapatite (nHAP@BC) material was used in in-situ remediation of lead-contaminated soil. Column experiments were performed to compare the mobility of nHAP@BC and Bare-nHAP. The immobilization, accumulation and toxic effects of Pb in the after-amended soil were assessed by the in vitro toxicity tests and pot experiments. The column experiments showed a significant improvement in the mobility of nHAP@BC. The immobilization rate of Pb in the soil was 74.8% after nHAP@BC remediation. Sequential extraction procedures revealed that the residual fraction of Pb increased by 66.6% after nHAP@BC remediation, which greatly reduced the bioavailability of Pb in the soil. In addition, pot experiments indicated that nHAP@BC could effectively reduce the upward translocation capacity of Pb in a soil-plant system. The concentration of Pb in the aerial part of the cabbage mustard was 0.1 mg/kg, which is lower than the tolerance limit (0.3 mg/kg). nHAP@BC can remediate Pb-contaminated soil effectively, which can restore soil quality for planting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Long-term impacts of prescribed burns on soil thermal conductivity and soil heating at a Colorado Rocky Mountain site: a data/model fusion study

    Science.gov (United States)

    W. J. Massman; J. M. Frank; N. B. Reisch

    2008-01-01

    Heating any soil during a sufficiently intense wild fire or prescribed burn can alter that soil irreversibly, resulting in many significant, and well studied, long-term biological, chemical, and hydrological effects. On the other hand, much less is known about how fire affects the thermal properties and the long-term thermal regime of soils. Such knowledge is important...

  1. Studies on the under ground heating in greenhouse. Measuring of thermal conductivity of soil

    Energy Technology Data Exchange (ETDEWEB)

    Iwao, Toshio; Takeyama, Koichi

    1987-12-21

    The underground heating system is an effective method of heating a greenhouse, because the system controls directly the temperature of soil near the roots. The thermal conductivity of soil was measured by the steady-state method, and the heat transfer characteristics in soil were examined in this study. In measuring the thermal conductivity through experiments, firstly the thermal conductivity of a reference plate was measured by the steady-state method, then on the basis of the above mentioned result, the thermal conuctivity of soil was obtained by the comparative method. Toyoura standard sands with particle size of 0.21-0.25mm were used as the sample. As the experiment result, the relations between the thermal conductivity of the reference plate (glass) and temperature was made clear, furthermore through the measurements using these relations, it was clarified that the apparent thermal conductivity is influenced by soil water content. It seems that the difference between the apparent thermal conductivity and the real one is caused mainly by a migration of latent heat with a migration of steam. (10 figs, 7 refs)

  2. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil

    Directory of Open Access Journals (Sweden)

    Martínez-Toledo Ángeles

    2013-01-01

    Full Text Available In situ biosurfactant (rhamnolipid production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus, P. putida addition, and addition of both (P. putida and nutrients. The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p < 0.019 between TPH concentration (mg/kg and surface tension (mN/m, When both bacteria and nutrients were involved, TPH levels were lowered to 33.7%, and biosurfactant production and surface tension were 2.03 mg/kg and 67.3 mN/m, respectively. In irradiated soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p < 0.009 was observed. When the nutrients and P. putida were added, TPH removal was 61.1%, 1.85 mg/kg of biosurfactants were produced, and the surface tension was 55.6 mN/m. In summary, in irradiated and non-irradiated soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil.

  3. Electrochemically induced reactions in soils - a new approach to the in-situ remediation of contaminated soils?

    Energy Technology Data Exchange (ETDEWEB)

    Rahner, D.; Ludwig, G.; Roehrs, J. [Dresden Univ. of Technology, Inst. of Physical Chemistry and Electrochemistry (Germany); Neumann, V.; Nitsche, C.; Guderitz, I. [Soil and Groundwater Lab. GmbH, Dresden (Germany)

    2001-07-01

    Electrochemical reactions can be induced in soils if the soil matrix contains particles or films with electronic conducting properties ('microconductors'). In these cases the wet soil may act as a 'diluted' electrochemical solid bed reactor. A discussion of this reaction principle within the soil matrix will be presented here. It will be shown, that under certain conditions immobile organic contaminants may be converted. (orig.)

  4. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Grapes, Michael D., E-mail: mgrapes1@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Friedman, Lawrence H.; LaVan, David A., E-mail: david.lavan@nist.gov [Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Weihs, Timothy P., E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-08-15

    Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns–500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10{sup 2} K/s–10{sup 5} K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

  5. PROTOCOL FOR DETERMINING BIOAVAILABILITY AND BIOKINETICS OF ORGANIC POLLUTANTS IN DISPERSED, COMPACTED AND INTACT SOIL SYSTEMS TO ENHANCE IN SITU BIOREMEDIATION

    Science.gov (United States)

    The development of effective in situ and on-site bioremediation technologies can facilitate the cleanup of chemically-contaminated soil sites. Knowledge of biodegradation kinetics and bioavailability of organic pollutants can facilitate decisions on the efficacy of in situ and o...

  6. An Efficient Heat Exchanger for In Situ Resource Utilization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In situ resource utilization (ISRU) is essential for several of NASA's future flagship missions. Currently envisioned ISRU plants include production of oxygen from...

  7. Analysis of the existing correlations of effective friction angle for eastern piedmont soils of Bogota from in situ tests

    Directory of Open Access Journals (Sweden)

    July E. Carmona-Álvarez

    2015-07-01

    Full Text Available To estimate the effective friction angle of soil from in situ test is a complicated job, due to high rates of strain existing in this kind of tests, which tend to be too invasive and disturb the vicinities of test depth, even the sample that eventually is taken at the site. Likewise, the most of the correlations found in the current bibliography to obtain the effective friction angle using field tests, have been developed for soils from different regions. For that reason when are implemented on tropical soils present high scatter, to compare the field parameter values with real results obtained at the lab. This research aims to use in situ tests define through of analysis of different correlations, which fits adequately to the specific conditions of the piedmont soils of Bogota. For the present study will be utilized data from SPT (widely used in Colombia and SPT-T (never before conducted in the country, carried out considering the appropriated norms to each test, taking in account to SPT-T, doesn’t exist local standard governing such tests. The correlations for field procedures of the tests implemented were for effective confining and energy transference of the SPT hammer, since the state-of-the-art mentions it as the most affect the reliability of the final results. The final results show the tendency of the methodologies used to obtain the correlation, in relation with the real value of effective friction angle from of lab tests.

  8. Effect of heat treatment of whole cottonseed on in vitro, in situ and in ...

    African Journals Online (AJOL)

    Keywords: Amino acid flow, heat treatment, protein degradation, whole cononseed. * Author to whom ... heat-treated soybearu were compared with raw soybeans, it was found that ... et al., 1985; Faldet & Sarter, 1989) while milk fat percenrage.

  9. Influence of root-water-uptake parameterization on simulated heat transport in a structured forest soil

    Science.gov (United States)

    Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir

    2015-04-01

    Coupled simulations of soil water flow and associated transport of substances have become a useful and increasingly popular tool of subsurface hydrology. Quality of such simulations is directly affected by correctness of its hydraulic part. When near-surface processes under vegetation cover are of interest, appropriate representation of the root water uptake becomes essential. Simulation study of coupled water and heat transport in soil profile under natural conditions was conducted. One-dimensional dual-continuum model (S1D code) with semi-separate flow domains representing the soil matrix and the network of preferential pathways was used. A simple root water uptake model based on water-potential-gradient (WPG) formulation was applied. As demonstrated before [1], the WPG formulation - capable of simulating both the compensatory root water uptake (in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers), and the root-mediated hydraulic redistribution of soil water - enables simulation of more natural soil moisture distribution throughout the root zone. The potential effect on heat transport in a soil profile is the subject of the present study. [1] Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  10. Water storage change estimation from in situ shrinkage measurements of clay soils

    NARCIS (Netherlands)

    Brake, te B.; Ploeg, van der M.J.; Rooij, de G.H.

    2012-01-01

    Water storage in the unsaturated zone is a major determinant of the hydrological behaviour of the soil, but methods to quantify soil water storage are limited. The objective of this study is to assess the applicability of clay soil surface elevation change measurements to estimate soil water storage

  11. Sensing soil properties in the laboratory, in situ, and on-Line: A review

    NARCIS (Netherlands)

    Kuang, B.; Mahmood, H.S.; Quraishi, Z.; Hoogmoed, W.B.; Mouazen, A.M.; Henten, van E.

    2012-01-01

    Since both the spatial and vertical heterogeneities in soil properties have an impact on crop growth and yield, accurate characterization of soil properties at high sampling resolution is a preliminary step in successful management of soil-water-plant system. Conventional soil sampling and analyses

  12. Heat and Water Transport in Soils and Across the Soil-Atmosphere Interface: Comparison of Model Concepts

    DEFF Research Database (Denmark)

    Vanderborght, Jan; Smits, Kathleen; Mosthaf, Klaus

    Evaporation from the soil surface represents a water flow and transport process in a porous medium that is coupled with free air flow and with heat fluxes in the system. We give an overview of different model concepts that are used to describe this process. These range from non-isothermal two......-phase flow two-component transport in the porous medium that is coupled with one-phase flow two-component transport in the free air to isothermal water flow in the porous with upper boundary conditions defined by a potential evaporation flux when available energy and transfer to the free air flow...... models were found. The effect of vapor flow in the porous medium on cumulative evaporation could be evaluated using the desorptivity, Sevap, which represents a weighted average of liquid and vapor diffusivity over the range of soil water contents between the soil surface water content and the initial...

  13. Advantages of the in-situ LTP distortion profile test on high-heat-load mirrors and applications

    International Nuclear Information System (INIS)

    Qian, S.; Jark, W.; Sostero, G.; Gambitta, A.; Mazzolini, F.; Savoia, A.

    1996-01-01

    The first in-situ distortion profile measurement of a high heat load mirror by use of the penta-prism LTP is presented. A maximum height distortion of 0.47 micron in tangential direction over a length of 180 mm was measured for an internally water-cooled mirror of a undulator beam line at ELETTRA while exposed to a total emitted power of 600 W (undulator gap 30 mm and current 180 mA). The experiment has an accuracy and repeatability of 0.04 micron. The test schematic and the test equipment are presented. Two measuring methods to scan a penta-prism being installed either outside or inside the vacuum chamber are introduced. Advantages and some possible applications of adopting the penta-prism LTP to make the in-situ profile test are explained

  14. Examining the Suitability of a Sparse In Situ Soil Moisture Monitoring Network for Assimilation into a Spatially Distributed Hydrologic Model

    Science.gov (United States)

    De Vleeschouwer, N.; Verhoest, N.; Pauwels, V. R. N.

    2015-12-01

    The continuous monitoring of soil moisture in a permanent network can yield an interesting data product for use in hydrological data assimilation. Major advantages of in situ observations compared to remote sensing products are the potential vertical extent of the measurements, the finer temporal resolution of the observation time series, the smaller impact of land cover variability on the observation bias, etc. However, two major disadvantages are the typical small integration volume of in situ measurements and the often large spacing between monitoring locations. This causes only a small part of the modelling domain to be directly observed. Furthermore, the spatial configuration of the monitoring network is typically temporally non-dynamic. Therefore two questions can be raised. Do spatially sparse in situ soil moisture observations contain a sufficient data representativeness to successfully assimilate them into the largely unobserved spatial extent of a distributed hydrological model? And if so, how is this assimilation best performed? Consequently two important factors that can influence the success of assimilating in situ monitored soil moisture are the spatial configuration of the monitoring network and the applied assimilation algorithm. In this research the influence of those factors is examined by means of synthetic data-assimilation experiments. The study area is the ± 100 km² catchment of the Bellebeek in Flanders, Belgium. The influence of the spatial configuration is examined by varying the amount of locations and their position in the landscape. The latter is performed using several techniques including temporal stability analysis and clustering. Furthermore the observation depth is considered by comparing assimilation of surface layer (5 cm) and deeper layer (50 cm) observations. The impact of the assimilation algorithm is assessed by comparing the performance obtained with two well-known algorithms: Newtonian nudging and the Ensemble Kalman

  15. Assessing the small-strain soil stiffness for offshore wind turbines based on in situ seismic measurements

    International Nuclear Information System (INIS)

    Versteijlen, W G; Van Dalen, K N; Metrikine, A V; Hamre, L

    2014-01-01

    The fundamental natural frequency as measured on installed offshore wind turbines is significantly higher than its designed value, and it is expected that the explanation for this can be found in the currently adopted modeling of soil-structure interaction. The small-strain soil stiffness is an important design parameter, as it has a defining influence on the first natural frequency of these structures. In this contribution, in situ seismic measurements are used to derive the small-strain shear modulus of soil as input for 3D soil-structure interaction models to assess the initial soil stiffness at small strains for offshore wind turbine foundations. A linear elastic finite element model of a half-space of solids attached to a pile is used to derive an equivalent first mode shape of the foundation. The second model extends the first one by introducing contact elements between pile and soil, to take possible slip and gap-forming into account. The deflections derived with the 3D models are smaller than those derived with the p- y curve design code. This higher stiffness is in line with the higher measured natural frequencies. Finally a method is suggested to translate the response of 3D models into 1D engineering models of a beam laterally supported by uncoupled distributed springs

  16. Development of a low-cost soil moisture sensor for in-situ data collection by citizen scientists

    Science.gov (United States)

    Rajasekaran, E.; Jeyaram, R.; Lohrli, C.; Das, N.; Podest, E.; Hovhannesian, H.; Fairbanks, G.

    2017-12-01

    Soil moisture (SM) is identified as an Essential Climate Variable and it exerts a strong influence on agriculture, hydrology and land-atmosphere interaction. The aim of this project is to develop an affordable (low-cost), durable, and user-friendly, sensor and an associated mobile app to measure in-situ soil moisture by the citizen scientists or any K-12 students. The sensor essentially measures the electrical resistance between two metallic rods and the resistance is converted into SM based on soil specific calibration equations. The sensor is controlled by a micro-controller (Arduino) and a mobile app (available both for iOS and Android) reads the resistance from the micro-controller and converts it into SM for the soil type selected by the user. Extensive laboratory tests are currently being carried out to standardize the sensor and to calibrate the sensor for various soil types. The sensor will also be tested during field campaigns and recalibrated for field conditions. In addition to the development of the sensor and the mobile app, supporting documentation and videos are also being developed that show the step-by-step process of building the sensor from scratch and measurement protocols. Initial laboratory calibration and validation of the prototype suggested that the sensor is able to satisfactorily measure SM for sand, loam, sandy loam, sandy clay loam type of soils. The affordable and simple sensor will help citizen scientists to understand the dynamics of SM at their site and the in-situ data will further be utilized for validation of the satellite observations from the SMAP mission.

  17. Soil remediation by heat injection: Experiments and numerical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Betz, C.; Emmert, M.; Faerber, A. [Univ. of Stuttgart (Germany)] [and others

    1995-03-01

    In order to understand physical processes of thermally enhanced soil vapor extraction methods in porous media the isothermal, multiphase formulation for the numerical model MUFTE will be extended by a non-isothermal, multiphase-multicomponent formulation. In order to verify the numerical model, comparison with analytical solutions for well defined problems will be carried out. To identify relevant processes and their interactions, the results of the simulation will be compared with well controlled experiments with sophisticated measurement equipment in three different scales. The aim is to compare the different numerical solution techniques namely Finite Element versus Integral Finite Difference technique as implemented in MUFTE and TOUGH2 [9] respectively.

  18. Simultaneous heat and moisture transfer in soils combined with building simulation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G. H. dos; Mendes, N. [Pontifical Catholic University of Parana, PUCPR/CCET, Thermal Systems Laboratory (LST), Curitiba (Brazil)

    2006-07-01

    In order to precisely predict ground heat transfer, room air temperature and humidity, a combined model has been developed and conceived to calculate both the coupled heat and moisture transfer in soil and floor and the psychrometrics condition of indoor air. The present methodology for the soil is based on the theory of Philip and De Vries, using variable thermophysical properties for different materials. The governing equations were discretized using the finite-volume method and a three-dimensional model for describing the physical phenomena of heat and mass transfer in unsaturated moist porous soils and floor. Additionally, a lumped transient approach for a building room and a finite-volume multi-layer model for the building envelope have been developed to integrate with the soil model. Results are presented in terms of temperature, humidity and heat flux at the interface between room air and the floor, showing the importance of the approach presented and the model robustness for long-term simulations with a high time step. (author)

  19. Modeling soil heating and moisture transport under extreme conditions: Forest fires and slash pile burns

    Science.gov (United States)

    W. J. Massman

    2012-01-01

    Heating any soil during a sufficiently intense wildfire or prescribed burn can alter it irreversibly, causing many significant, long-term biological, chemical, and hydrological effects. Given the climate-change-driven increasing probability of wildfires and the increasing use of prescribed burns by land managers, it is important to better understand the dynamics of the...

  20. The influence of soil moisture transfer on building heat loss via the ground

    NARCIS (Netherlands)

    Janssen, H.M.; Carmeliet, J.; Hens, H.

    2004-01-01

    In this paper, the influence of soil moisture transfer on building heat loss via the ground is investigated by comparing fully coupled simulations with linear thermal simulations. The observed influences of coupling are (1) the larger amplitude of surface temperature, (2) the variation of thermal

  1. Numerical modeling of coupled water flow and heat transport in soil and snow

    Science.gov (United States)

    Thijs J. Kelleners; Jeremy Koonce; Rose Shillito; Jelle Dijkema; Markus Berli; Michael H. Young; John M. Frank; William Massman

    2016-01-01

    A one-dimensional vertical numerical model for coupled water flow and heat transport in soil and snow was modified to include all three phases of water: vapor, liquid, and ice. The top boundary condition in the model is driven by incoming precipitation and the surface energy balance. The model was applied to three different terrestrial systems: A warm desert bare...

  2. In Situ Heating of the 2007 May 19 CME Ejecta Detected by STEREO/PLASTIC and ACE

    Science.gov (United States)

    2011-01-24

    Cara E. Rakowski,1 J. Martin Laming2 & Maxim Lyutikov3 ABSTRACT In situ measurements of ion charge states can provide unique insight into the heating...2010) found ideal self-similar solutions for expanding spheromak, with electric fields E = r c α̇ α er ×B (2) – 6 – (dot denotes differentiation with...the electric field should be related to the cur- rent density through Ohm’s law. Formally, the procedure described below breaks down the assumption of

  3. Pulse-echo ultrasonic inspection system for in-situ nondestructive inspection of Space Shuttle RCC heat shields.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Walkington, Phillip D.; Rackow, Kirk A.

    2005-06-01

    The reinforced carbon-carbon (RCC) heat shield components on the Space Shuttle's wings must withstand harsh atmospheric reentry environments where the wing leading edge can reach temperatures of 3,000 F. Potential damage includes impact damage, micro cracks, oxidation in the silicon carbide-to-carbon-carbon layers, and interlaminar disbonds. Since accumulated damage in the thick, carbon-carbon and silicon-carbide layers of the heat shields can lead to catastrophic failure of the Shuttle's heat protection system, it was essential for NASA to institute an accurate health monitoring program. NASA's goal was to obtain turnkey inspection systems that could certify the integrity of the Shuttle heat shields prior to each mission. Because of the possibility of damaging the heat shields during removal, the NDI devices must be deployed without removing the leading edge panels from the wing. Recently, NASA selected a multi-method approach for inspecting the wing leading edge which includes eddy current, thermography, and ultrasonics. The complementary superposition of these three inspection techniques produces a rigorous Orbiter certification process that can reliably detect the array of flaws expected in the Shuttle's heat shields. Sandia Labs produced an in-situ ultrasonic inspection method while NASA Langley developed the eddy current and thermographic techniques. An extensive validation process, including blind inspections monitored by NASA officials, demonstrated the ability of these inspection systems to meet the accuracy, sensitivity, and reliability requirements. This report presents the ultrasonic NDI development process and the final hardware configuration. The work included the use of flight hardware and scrap heat shield panels to discover and overcome the obstacles associated with damage detection in the RCC material. Optimum combinations of custom ultrasonic probes and data analyses were merged with the inspection procedures needed to

  4. Assessment of in situ immobilization of Lead (Pb) and Arsenic (As) in contaminated soils with phosphate and iron: solubility and bioaccessibility

    NARCIS (Netherlands)

    Cui, Y.S.; Du, X.; Weng, L.P.; Riemsdijk, van W.H.

    2010-01-01

    The effect of in situ immobilization of lead (Pb) and arsenic (As) in soil with respectively phosphate and iron is well recognized. However, studies on combined Pb and As-contaminated soil are fewer, and assessment of the effectiveness of the immobilization on mobility and bioaccessibility is also

  5. Soil heat flux calculation for sunlit and shaded surfaces under row crops: 1 - Model Development and sensitivity analysis

    Science.gov (United States)

    Soil heat flux at the surface (G0) is strongly influenced by whether the soil is shaded or sunlit, and therefore can have large spatial variability for incomplete vegetation cover, such as across the interrows of row crops. Most practical soil-plant-atmosphere energy balance models calculate G0 as a...

  6. Water, solute and heat transport in the soil: the Australian connection

    Science.gov (United States)

    Knight, John

    2016-04-01

    The interest of Peter Raats in water, solute and heat transport in the soil has led to scientific and/or personal interactions with several Australian scientists such as John Philip, David Smiles, Greg Davis and John Knight. Along with John Philip and Robin Wooding, Peter was an early user of the Gardner (1958) linearised model of soil water flow, which brought him into competition with John Philip. I will discuss some of Peter's solutions relevant to infiltration from line and point sources, cavities and basins. A visit to Canberra, Australia in the early 1980s led to joint work on soil water flow, and on combined water and solute movement with David Smiles and others. In 1983 Peter was on the PhD committee for Greg Davis at the University of Wollongong, and some of the methods in his thesis 'Mathematical modelling of rate-limiting mechanisms of pyritic oxidation in overburden dumps' were later used by Peter's student Sjoerd van der Zee. David Smiles and Peter wrote a survey article 'Hydrology of swelling clay soils' in 2005. In the last decade Peter has been investigating the history of groundwater and vadose zone hydrology, and recently he and I have been bringing to light the largely forgotten work of Lewis Fry Richardson on finite difference solution of the heat equation, drainage theory, soil physics, and the soil-plant-atmosphere continuum.

  7. Liquid metal heat exchanger for efficient heating of soils and geologic formations

    Science.gov (United States)

    DeVault, Robert C [Knoxville, TN; Wesolowski, David J [Kingston, TN

    2010-02-23

    Apparatus for efficient heating of subterranean earth includes a well-casing that has an inner wall and an outer wall. A heater is disposed within the inner wall and is operable within a preselected operating temperature range. A heat transfer metal is disposed within the outer wall and without the inner wall, and is characterized by a melting point temperature lower than the preselected operating temperature range and a boiling point temperature higher than the preselected operating temperature range.

  8. Influence of heating rates on in situ resistance measurements of a bronze route Nb-Sn-Cu-Ta multifilamentary conductor

    International Nuclear Information System (INIS)

    Tan, K.S.; Hopkins, S.C.; Glowacki, B.A.

    2004-01-01

    The superconducting properties of a bronze process multifilamentary conductor are controlled by the structure, dimensions and composition of the intermetallic layers, which are strongly influenced by the details of the heat treatments applied to the conductor. It has previously been reported that the electrical resistivity of a Vacuumschmelze bronze process conductor varies during heat treatment, and that analysis of the conductor as a set of parallel resistors allows the features of the resistivity variation to be assigned to the progress of Nb 3 Sn intermetallic phase formation. The behaviour of NSP2 Nb-Sn-Cu-Ta bronze process multifilamentary conductors (Imperial Metal Industries) is now reported as a function of the heating rate, in preparation for more complex non-isothermal heat treatment procedures. It is shown that the resistance of the wire measured in situ by an alternating current (AC) technique can be used to observe the progress of the formation of Nb 3 Sn, and that the comparison of resistometric measurements at different heating rates can give an indication of other processes (such as recovery and recrystallisation) occurring at lower temperatures during the heating up process prior to isothermal annealing. In addition, this wire containing only about 1% of copper was carefully chosen because of the broken tantalum barriers around individual copper filaments. Therefore, the resistometric measurements were used to attempt to detect the diffusion of tin from the bronze matrix into the copper filaments at lower temperatures without noticeable influence on Nb 3 Sn phase formation. Treating the NSP2 wire as a set of parallel resistors also permits estimates to be made of the intermetallic layer thicknesses from resistometric measurements, and these are shown to be in good agreement with estimates from scanning electron microscopy. The difference in critical temperature, T c , between wires heated at different rates, with the presence of the bronze matrix

  9. Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ

    International Nuclear Information System (INIS)

    Regonne, Raïssa Kom; Martin, Florence; Mbawala, Augustin; Ngassoum, Martin Benoît; Jouanneau, Yves

    2013-01-01

    Efficient bioremediation of PAH-contaminated sites is limited by the hydrophobic character and poor bioavailability of pollutants. In this study, stable isotope probing (SIP) was implemented to track bacteria that can degrade PAHs adsorbed on hydrophobic sorbents. Temperate and tropical soils were incubated with 13 C-labeled phenanthrene, supplied by spiking or coated onto membranes. Phenanthrene mineralization was faster in microcosms with PAH-coated membranes than in microcosms containing spiked soil. Upon incubation with temperate soil, phenanthrene degraders found in the biofilms that formed on coated membranes were mainly identified as Sphingomonadaceae and Actinobacteria. In the tropical soil, uncultured Rhodocyclaceae dominated degraders bound to membranes. Accordingly, ring-hydroxylating dioxygenase sequences recovered from this soil matched PAH-specific dioxygenase genes recently found in Rhodocyclaceae. Hence, our SIP approach allowed the detection of novel degraders, mostly uncultured, which differ from those detected after soil spiking, but might play a key role in the bioremediation of PAH-polluted soils. -- Highlights: •Soil bacteria with the ability to degrade sorbent-bound PAHs were investigated. •In soil, membrane-bound phenanthrene was readily mineralized. •PAH degraders found in biofilms were different in temperate and tropical soils. •Uncultured Rhodocyclaceae were dominant phenanthrene degraders in the tropical soil. •PAH-specific ring-hydroxylating dioxygenase sequences were identified in soil DNA. -- Bacteria able to degrade PAHs bound to a hydrophobic sorbent were mainly identified as uncultured Rhodocyclaceae and Sphingomonadaceae in polluted soils from tropical and temperate area, respectively

  10. PROSCARA Inc. in-situ burning summary paper

    International Nuclear Information System (INIS)

    1994-06-01

    In-situ burning as a viable response tactic in the event of an oil spill, was discussed. Key factors which influence a decision to use burning were enumerated, including a detailed analysis of the environmental effects of in-situ burning on soils. The critical parameters were time, soil heating and extent of oil penetration into the soil. It was noted that on water-saturated and frozen soil in-situ burning had no adverse effects. The advantages and disadvantages of in-situ burning vis-a-vis conventional mechanical recovery were discussed. Factors that do, and factors that do not support decisions in favour of in-situ burning were listed. 4 refs., 2 tabs

  11. Transformation Heat Treatment of Rapidly Quenched Nb3A1 Precursor Monitored in situ by High Energy Synchrotron Diffraction

    CERN Document Server

    Scheuerlein, C; Di Michiel, M; Jin, X; Takeuchi, T; Kikuchi, A; Tsuchiya, K; Nakagawa, K; Nakamoto, T

    2013-01-01

    Nb3Al superconductors are studied for use in high field magnets. Fine grained Nb3Al with nearly stoichiometric Al content is obtained by a Rapid Heating Quenching and Transformation (RHQT) process. We describe a non destructive in situ study of the transformation process step of a RHQ Nb3Al precursor wire with ramp rates of either 120 °C/h or 800 °C/h. High energy synchrotron x-ray diffraction measurements show the transformation from a Nb(Al)SS supersaturated solid solution into Nb3Al. When heating with a ramp rate of 120 °C/h a strong reduction of the Nb(Al)SS (110) diffraction peak component is observed when the temperature exceeds 660 °C. Additional diffraction peaks are detectable in the approximate temperature interval 610 °C - 750 °C and significant Nb3Al growth is observed above 730 °C.

  12. Mechanism for microwave heating of 1-(4'-cyanophenyl)-4-propylcyclohexane characterized by in situ microwave irradiation NMR spectroscopy.

    Science.gov (United States)

    Tasei, Yugo; Yamakami, Takuya; Kawamura, Izuru; Fujito, Teruaki; Ushida, Kiminori; Sato, Motoyasu; Naito, Akira

    2015-05-01

    Microwave heating is widely used to accelerate organic reactions and enhance the activity of enzymes. However, the detailed molecular mechanism for the effect of microwave on chemical reactions is not yet fully understood. To investigate the effects of microwave heating on organic compounds, we have developed an in situ microwave irradiation NMR spectroscopy. (1)H NMR spectra of 1-(4'-cyanophenyl)-4-propylcyclohexane (PCH3) in the liquid crystalline and isotropic phases were observed under microwave irradiation. When the temperature was regulated at slightly higher than the phase transition temperature (Tc=45 °C) under a gas flow temperature control system, liquid crystalline phase mostly changed to the isotropic phase. Under microwave irradiation and with the gas flow temperature maintained at 20 °C, which is 25 °C below the Tc, the isotropic phase appeared stationary as an approximately 2% fraction in the liquid crystalline phase. The temperature of the liquid crystalline state was estimated to be 38 °C according to the line width, which is at least 7 °C lower than the Tc. The temperature of this isotropic phase should be higher than 45 °C, which is considered to be a non-equilibrium local heating state induced by microwave irradiation. Microwaves at a power of 195 W were irradiated to the isotropic phase of PCH3 at 50 °C and after 2 min, the temperature reached 220 °C. The temperature of PCH3 under microwave irradiation was estimated by measurement of the chemical shift changes of individual protons in the molecule. These results demonstrate that microwave heating generates very high temperature within a short time using an in situ microwave irradiation NMR spectrometer. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Evaluation of in situ remediation methods in soils contaminated with organic pollutants

    OpenAIRE

    Simpanen, Suvi

    2016-01-01

    Soil contamination is a result of human activities that allow hazardous substances to accumulate in soil and thereby to increase the risk to the environment or to human health. There is an estimate of over 2.5 million contaminated sites in Europe and nearly 24 000 of these are in Finland. The most common soil contaminants are oil hydrocarbons and metals. The main anthropogenic activities that contribute to soil contamination include fuel distribution and storage, industrial activity, waste tr...

  14. Bioavailability-Based In Situ Remediation To Meet Future Lead (Pb) Standards in Urban Soils and Gardens.

    Science.gov (United States)

    Henry, Heather; Naujokas, Marisa F; Attanayake, Chammi; Basta, Nicholas T; Cheng, Zhongqi; Hettiarachchi, Ganga M; Maddaloni, Mark; Schadt, Christopher; Scheckel, Kirk G

    2015-08-04

    Recently the Centers for Disease Control and Prevention lowered the blood Pb reference value to 5 μg/dL. The lower reference value combined with increased repurposing of postindustrial lands are heightening concerns and driving interest in reducing soil Pb exposures. As a result, regulatory decision makers may lower residential soil screening levels (SSLs), used in setting Pb cleanup levels, to levels that may be difficult to achieve, especially in urban areas. This paper discusses challenges in remediation and bioavailability assessments of Pb in urban soils in the context of lower SSLs and identifies research needs to better address those challenges. Although in situ remediation with phosphate amendments is a viable option, the scope of the problem and conditions in urban settings may necessitate that SSLs be based on bioavailable rather than total Pb concentrations. However, variability in soil composition can influence bioavailability testing and soil amendment effectiveness. More data are urgently needed to better understand this variability and increase confidence in using these approaches in risk-based decision making, particularly in urban areas.

  15. Water storage change estimation from in situ shrinkage measurements of clay soils

    NARCIS (Netherlands)

    Brake, te B.; Ploeg, van der M.J.; Rooij, de G.H.

    2013-01-01

    The objective of this study is to assess the applicability of clay soil elevation change measurements to estimate soil water storage changes, using a simplified approach. We measured moisture contents in aggregates by EC-5 sensors, and in multiple aggregate and inter-aggregate spaces (bulk soil) by

  16. Phosphorus Amendment Efficacy for In Situ Remediation of Soil Lead Depends on the Bioaccessible Method

    Science.gov (United States)

    A validated method is needed to measure reductions of in vitro bioaccessible (IVBA) Pb in urban soil remediated with amendments. This study evaluated the effect of in vitro extraction solution pH and glycine buffer on bioaccesible Pb in P-treated soils. Two Pb-contaminated soils...

  17. In-Situ Measurement of Soil Permittivity at Various Depths for the Calibration and Validation of Low-Frequency SAR Soil Moisture Models by Using GPR

    Directory of Open Access Journals (Sweden)

    Christian N. Koyama

    2017-06-01

    Full Text Available At radar frequencies below 2 GHz, the mismatch between the 5 to 15 cm sensing depth of classical time domain reflectometry (TDR probe soil moisture measurements and the radar penetration depth can easily lead to unreliable in situ data. Accurate quantitative measurements of soil water contents at various depths by classical methods are cumbersome and usually highly invasive. We propose an improved method for the estimation of vertical soil moisture profiles from multi-offset ground penetrating radar (GPR data. A semi-automated data acquisition technique allows for very fast and robust measurements in the field. Advanced common mid-point (CMP processing is applied to obtain quantitative estimates of the permittivity and depth of the reflecting soil layers. The method is validated against TDR measurements using data acquired in different environments. Depth and soil moisture contents of the reflecting layers were estimated with root mean square errors (RMSE on the order of 5 cm and 1.9 Vol.-%, respectively. Application of the proposed technique for the validation of synthetic aperture radar (SAR soil moisture estimates is demonstrated based on a case study using airborne L-band data and ground-based P-band data. For the L-band case we found good agreement between the near-surface GPR estimates and extended integral equation model (I2EM based SAR retrievals, comparable to those obtained by TDR. At the P-band, the GPR based method significantly outperformed the TDR method when using soil moisture estimates at depths below 30 cm.

  18. In situ solidification/stabilization pilot study for the treatment of coal tar contaminated soils and river sediments

    International Nuclear Information System (INIS)

    Lawson, M.A.; Venn, J.G.; Pugh, L.B.; Vallis, T.

    1996-01-01

    Coal tar contamination was encountered at a former coal gasification site in soils below the groundwater table, and in the sediments of the adjacent river. Ex situ remediation techniques at this site would be costly because of the need to dewater the impacted media. In situ solidification/stabilization was tested to evaluate its effectiveness. Treatability testing was performed to evaluate a Portland cement/fly ash binder system with added stabilizing agents. Results were sufficiently promising to warrant pilot testing. Grout containing Portland cement, fly ash, organically modified clay, and granular activated carbon was pilot tested at the site. Test specimens were collected and tested to evaluate durability, compressive strength, and permeability. The samples were extracted by several methods and analyzed to measure the leachable concentrations of organic compounds and metals. Results indicated acceptable physical characteristics. Leachable concentrations of most polynuclear aromatic compounds were decreased

  19. Effect of heat treatment on in situ rumen degradability and in vitro ...

    African Journals Online (AJOL)

    fat soyabean (FFSB) and solvent extracted soyabean meal (SBM) on the in situ dry matter (DM) and protein degradability, and in vitro gas production kinetics of the protein sources. Ruminal disappearance of DM and crude protein (CP), and in ...

  20. Assessing phase stability and element distribution in Co-base superalloys at elevated temperatures by in situ TEM heating experiments

    Energy Technology Data Exchange (ETDEWEB)

    Eggeler, Yolita; Mueller, Julian; Spiecker, Erdmann [Lehrstuhl fuer Mikro- und Nanostrukturforschung and Center for Nanoanalysis and Electron Microscopy (CENEM), Department Werkstoffwissenschaften, Universitaet Erlangen-Nuernberg, Erlangen (Germany)

    2016-07-01

    Co-based alloys, of a composition of Co-12Al-9W, form a stable two phase γ/γ{sup '} microstructure at 900 C. γ{sup '} cubes, consisting of the L12 crystal structure are coherently embedded in a solid solution fcc (A1) γ matrix. To ensure precipitate hardening at temperatures, which are relevant to practical applications, 700-1100 C, as experienced in gas turbine applications, the stability of the γ/γ{sup '} phases is of fundamental importance. In this analysis in situ TEM studies with chip-based heating systems (by DENS solution) are applied on new Co-based superalloys. After in situ heating at apr. 900 C and controlled quenching with different quenching rates the elemental distribution at the γ/γ{sup '} interface is measured using ChemiSTEM EDX. Exploiting the driving force for interface movement resulting from temperature-dependent volume fraction of γ and γ{sup '} insight into the diffusion of individual alloying elements and the relationship between local chemistry and ordering can be gained from transient phenomena. The experimental results will be compared with theoretical calculations. This work has been carried out within the framework of the SFB-TR 103 ''Single Crystal Superalloys''.

  1. Monitoring and characterisation of bacteria in corroding district heating systems using fluorescence in situ hybridisation and microautoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Kjellerup, B.V. [Danish Technological Institute, Teknologiparken (Denmark). Dept. of Environment; Aalborg University (Denmark). Dept. of Environmental Engineering; Olesen, B.H.; Frolund, B. [Danish Technological Institute, Teknologiparken (Denmark). Dept. of Environment; Nielsen, J.L.; Nielsen, P.H. [Aalborg University (Denmark). Dept. of Environmental Engineering; Odum, S. [CTR I/S, Frederiksberg (Denmark)

    2003-07-01

    Presence of biofilm and biocorrosion has been observed in Danish district heating (DH) systems despite very good water quality that was expected to prevent significant microbial growth. The microbiological water quality was investigated in order to identify the dominating bacterial groups on surfaces with corrosion problems. Water samples from 29 DH systems were investigated for the total number of bacteria and presence of sulphate reducing bacteria (SRBs). SRBs were found to be present in more than 80% of the DH systems. The microbial population in samples from 2 DH systems (biofilm from a test coupon and an in situ sample from a heat exchanger) was investigated with fluorescence in situ hybridisation, and the results showed significant differences in population composition. Betaproteobacteria was the dominant population in both samples. SRBs were present in both samples but were most numerous in the biofilm from the test coupon. Examination of functional groups based on uptake of radiolabelled acetate (microautoradiography) showed presence of both aerobic and anaerobic bacteria despite the fact that oxygen is not anticipated in DH systems. (author)

  2. Heat impact caused molecular level changes in solid and dissolved soil organic matter

    Science.gov (United States)

    Hofmann, Diana; Steffen, Bernhard; Eckhardt, Kai-Uwe; Leinweber, Peter

    2015-04-01

    The ubiquitous abundance of pyrolysed, highly aromatic organic matter, called "Black Carbon" (BC), in all environmental compartments became increasingly important in different fields of research beyond intensive investigated atmospheric aerosol due to climatic relevance. Its predominant high resistance to abiotic and biotic degradation resulted in turnover times from less than a century to several millennia. This recalcitrance led to the enrichment of BC in soils, accounting for 1-6% (European forest soils) to 60% (Chernozems) of total soil organic matter (SOM). Hence, soil BC acts an important sink in the global carbon cycle. In contrast, consequences for the nitrogen cycle up to date are rather inconsistently discussed. Soil related dissolved organic matter (DOM) is a major controlling factor in soil formation, an important pathway of organic matter transport and one of the largest active carbon reservoirs on earth, if considering oceans and other bodies of water. The aim of this study was to evaluate the effects of artificially simulated wildfire by thermal treatment on the molecular composition of water extractable soil organic matter (DOM). Soils from two outdoor lysimeters with different management history were investigated. Soil samples, non-heated and heated up to 350°C were analyzed for elemental composition (carbon, nitrogen and sulfur) and for bulk molecular composition by Pyrolysis-Field Ionization Mass Spectrometry (Py-FIMS) and synchrotron-based X-ray Absorption Near-Edge Spectroscopy (XANES) at the C- and N K-edges. DOM-samples obtained by hot water extraction, desalting and concentration by solid phase extraction were subsequently analyzed by flow injection analysis in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR-MS), equipped with an ESI source and a 7 T supra-conducting magnet (LTQ-FT Ultra, ThermoFisher Scientific). This technique is the key technique for the analysis of complex samples due to its outstanding mass

  3. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    Science.gov (United States)

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  4. Energy saving potential of heat insulation solar glass: Key results from laboratory and in-situ testing

    International Nuclear Information System (INIS)

    Cuce, Erdem; Cuce, Pinar Mert; Young, Chin-Huai

    2016-01-01

    HISG (heat insulation solar glass) is a recently developed multi-functional glazing technology to mitigate energy consumption of buildings. HISG can generate electricity similar to conventional PV (photovoltaic) glazing products when exposed to sunlight, however it differs from them by having some extraordinary characteristic features such as thermal insulation, which is competitive with Argon filled triple glazed windows, acoustic comfort, remarkable energy saving potential and self-cleaning ability owing to TiO_2 nano coating. Within the scope of this research, latest results from laboratory and in-situ testing of HISG are presented in terms of its key role in mitigating heating and cooling demand of buildings as well as clean energy generation. Lighting and thermal comfort related parameters such as shading coefficient, UV, IR and visible light intensity are also investigated through the tests conducted in real operating conditions. It is achieved from the results that instant electricity generation of HISG is 16% higher than that of standard PV glazing owing to its nano layer reflective film. Shading coefficient of HISG is only 0.136, which provides almost 80% reduction in solar heat gain compared to ordinary glazing. Indoor air temperature measured from HISG test house in summer time is very close to the ambient temperature, whereas it is found to be 14.7 °C higher in ordinary glass test house due to greenhouse effect. Annual heating and cooling demand tests indicate that HISG provides 38 and 48% energy saving in heating and cooling season, respectively. - Highlights: • Nano layer reflective film of HISG enables 16% more power generation. • 80% of undesired outdoor thermal radiation is prevented by HISG. • HISG has a 100% UV blocking rate. • The shading coefficient of HISG is 0.136. • HISG provides 38 and 48% energy saving in heating and cooling season.

  5. Development of a Compact, Deep-Penetrating Heat Flow Instrument for Lunar Landers: In-Situ Thermal Conductivity System

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.

  6. Simulation study of soil water and heat dynamics at two sites with significant preferential flow

    Science.gov (United States)

    Votrubova, J.; Vogel, T.; Dohnal, M.; Tesar, M.

    2012-04-01

    Numerical models based on two hydraulically contrasting flow domains coupled through a simple transfer formula have become a useful tool for modeling both water flow and associated substance transport in structured soils. A comparative numerical study focused on the preferential flow effects on the soil heat transport is presented. Sites located in two different headwater catchments were included. Experimental catchment Liz is situated in a forested mountain area of Sumava Mts. in the southern part of the Czech Republic (altitude: 830 m, mean annual temperature: 6.3°C, mean annual precipitation: 861 mm). Uhlirska catchment is located in the north-west of the Czech Republic in Jizera Mts. and is currently undergoing reforestation (altitude: 820 m, mean annual temperature: 4.6°C, mean annual precipitation: 1400 mm). Both sites are instrumented for monitoring of the relevant meteorological and hydrological variables, as well as the soil moisture and temperature distribution. Changes of the soil water content and temperature during vegetation season were simulated. Model performance was qualitatively evaluated and shown to replicate the field measurements. The soils' heat budgets and the preferential flow effect thereon was compared and analyzed.

  7. In situ nuclear magnetic resonance response of permafrost and active layer soil in boreal and tundra ecosystems

    Directory of Open Access Journals (Sweden)

    M. A. Kass

    2017-12-01

    Full Text Available Characterization of permafrost, particularly warm and near-surface permafrost which can contain significant liquid water, is critical to understanding complex interrelationships with climate change, ecosystems, and disturbances such as wildfires. Understanding the vulnerability and resilience of permafrost requires an interdisciplinary approach, relying on (for example geophysical investigations, ecological characterization, direct observations, remote sensing, and more. As part of a multiyear investigation into the impacts of wildfires on permafrost, we have collected in situ measurements of the nuclear magnetic resonance (NMR response of the active layer and permafrost in a variety of soil conditions, types, and saturations. In this paper, we summarize the NMR data and present quantitative relationships between active layer and permafrost liquid water content and pore sizes and show the efficacy of borehole NMR (bNMR to permafrost studies. Through statistical analyses and synthetic freezing simulations, we also demonstrate that borehole NMR is sensitive to the nucleation of ice within soil pore spaces.

  8. Implementation of in situ vitrification technology for remediation of Oak Ridge contaminated soil sites: Past results and future plans

    International Nuclear Information System (INIS)

    Tixier, J.S.; Powell, T.D.; Spalding, B.P.; Jacobs, G.K.

    1993-02-01

    In situ vitrification is a thermal treatment technology being developed for remediation of contaminated soils. The process transforms easily leached, contaminated soils into a durable, leach-resistant. vitreous and crystalline monolith. This paper presents the results of the recent highly successful ISV demonstration conducted jointly by PNL and ORNL on a tracer-level quantity of radioactive sludge in a model trench at ORNL. A retention of 90 r in the vitreous and crystalline product of greater than 99.9999% was measured with a reduction in potential environmental mobility of more than two orders of magnitude. The paper also presents the current plans for continued collaboration on a two-setting treatability test on one portion of an old seepage pit at ORNL

  9. Design and evaluation of in situ biorestoration methods for the treatment of sludges and soils at waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Berry-Spark, K L; Barker, J F; Mayfield, C I

    1990-12-31

    In-situ methods for treatment of waste sludges hold great promise for efficient remediation of sludge at waste disposal sites, such as the diverse and complex sludges from the O.E. MacDougall site near Brockville, Ontario. This report presents results of laboratory testing of natural bioremediation techniques using six representative soils and sludges obtained from the MacDougall site. Four of six samples contained concentrations of hydrocarbons typical of petroleum products and solvents. The report includes descriptions of the characterisation of the organic chemistry and microbial populations of the soils, as well as of the experiments conducted under aerobic, methane oxidising, anaerobic-denitrifying, sulphate reducing, and methanogenic conditions.

  10. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available The integration of bioventing (BV and soil vapor extraction (SVE appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5% of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  11. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  12. Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ

    Energy Technology Data Exchange (ETDEWEB)

    Regonne, Raïssa Kom [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France); Laboratoire de Substances Actives et Pollution, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Martin, Florence [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France); Mbawala, Augustin [Laboratoire de Microbiologie, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Ngassoum, Martin Benoît [Laboratoire de Substances Actives et Pollution, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Jouanneau, Yves [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France)

    2013-09-15

    Efficient bioremediation of PAH-contaminated sites is limited by the hydrophobic character and poor bioavailability of pollutants. In this study, stable isotope probing (SIP) was implemented to track bacteria that can degrade PAHs adsorbed on hydrophobic sorbents. Temperate and tropical soils were incubated with {sup 13}C-labeled phenanthrene, supplied by spiking or coated onto membranes. Phenanthrene mineralization was faster in microcosms with PAH-coated membranes than in microcosms containing spiked soil. Upon incubation with temperate soil, phenanthrene degraders found in the biofilms that formed on coated membranes were mainly identified as Sphingomonadaceae and Actinobacteria. In the tropical soil, uncultured Rhodocyclaceae dominated degraders bound to membranes. Accordingly, ring-hydroxylating dioxygenase sequences recovered from this soil matched PAH-specific dioxygenase genes recently found in Rhodocyclaceae. Hence, our SIP approach allowed the detection of novel degraders, mostly uncultured, which differ from those detected after soil spiking, but might play a key role in the bioremediation of PAH-polluted soils. -- Highlights: •Soil bacteria with the ability to degrade sorbent-bound PAHs were investigated. •In soil, membrane-bound phenanthrene was readily mineralized. •PAH degraders found in biofilms were different in temperate and tropical soils. •Uncultured Rhodocyclaceae were dominant phenanthrene degraders in the tropical soil. •PAH-specific ring-hydroxylating dioxygenase sequences were identified in soil DNA. -- Bacteria able to degrade PAHs bound to a hydrophobic sorbent were mainly identified as uncultured Rhodocyclaceae and Sphingomonadaceae in polluted soils from tropical and temperate area, respectively.

  13. Effect of in situ soil amendments on arsenic uptake in successive harvests of ryegrass (Lolium perenne cv Elka) grown in amended As-polluted soils

    International Nuclear Information System (INIS)

    Hartley, William; Lepp, Nicholas W.

    2008-01-01

    Several iron-bearing additives, selected for their potential ability to adsorb anions, were evaluated for their effectiveness in attenuation of arsenic (As) in three soils with different sources of contamination. Amendments used were lime, goethite (α-FeOOH) (crystallised iron oxide) and three iron-bearing additives, iron grit, Fe II and Fe III sulphates plus lime, applied at 1% w/w. Sequential extraction schemes conducted on amended soils determined As, Cu, Zn and Ni fractionation. Plant growth trials using perennial ryegrass (Lolium perenne var. Elka) assessed shoot As uptake. This was grown in the contaminated soils for 4 months, during which time grass shoots were successively harvested every 3 weeks. Goethite increased biomass yields, but clear differences were observed in As transfer rates with the various iron oxides. In conclusion, whilst Fe-oxides may be effective in situ amendments, reducing As bioavailability, their effects on plant growth require careful consideration. Soil-plant transfer of As was not completely halted by any amendment. - Arsenic attenuation is illustrated using Fe-based amendments, their efficacy providing different indicators of success

  14. Crystallization of TiO2 Nanotubes by In Situ Heating TEM

    KAUST Repository

    Casu, Alberto; Lamberti, Andrea; Stassi, Stefano; Falqui, Andrea

    2018-01-01

    nanotubes was heated looking at their electron diffraction pattern change versus temperature, in order to determine both the initial temperature of crystallization and the corresponding crystalline phases. Second, the experiment was repeated on groups of few

  15. Leaf Cutter Ant (Atta cephalotes) Soil Modification and In Situ CO2 Gas Dynamics in a Neotropical Wet Forest

    Science.gov (United States)

    Fernandez Bou, A. S.; Carrasquillo Quintana, O.; Dierick, D.; Harmon, T. C.; Johnson, S.; Schwendenmann, L.; Zelikova, T. J.

    2016-12-01

    The goal of this work is to advance our understanding of soil carbon cycling in highly productive neotropical wet forests. More specifically, we are investigating the influence of leaf cutter ants (LCA) on soil CO2 gas dynamics in primary and secondary forest soils at La Selva Biological Station, Costa Rica. LCA are the dominant herbivore in tropical Americas, responsible for as much as 50% of the total herbivory. Their presence is increasing and their range is expanding because of forest fragmentation and other human impacts. We installed gas sampling wells in LCA (Atta cephalotes) nest and control sites (non-nests in the same soil and forest settings). The experimental design encompassed land cover (primary and secondary forest) and soil type (residual and alluvial). We collected gas samples monthly over an 18-month period. Several of the LCA nests were abandoned during this period. Nevertheless, we continued to sample these sites for LCA legacy effects. In several of the sites, we also installed sensors to continuously monitor soil moisture content, temperature, and CO2 levels. Within the 18-month period we conducted a 2-month field campaign to collect soil and nest vent CO2 efflux data from 3 of the nest-control pairs. Integrating the various data sets, we observed that for most of the sites nest and control soils behaved similarly during the tropical dry season. However, during the wet season gas well CO2 concentrations increased in the control sites while levels in the nests remained at dry season levels. This outcome suggests that ants modify soil gas transport properties (e.g., tortuosity). In situ time series and efflux sampling campaign data corroborated these findings. Abandoned nest CO2 levels were similar to those of the active nests, supporting the notion of a legacy effect from LCA manipulations. For this work, the period of abandonment was relatively short (several months to 1 year maximum), which appears to be insufficient for estimating the

  16. A new method for the determination of radionuclide distribution in the soil by in situ gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Zombori, P.; Andrasi, A.; Nemeth, I.

    1995-01-01

    In case of major nuclear accidents when larger amount of radioactive material is released into the atmosphere vast areas can become contaminated by the nuclear fallout. The deposited radioactivity penetrates the soil in a complex manner: dry and wet deposition lead to different initial distribution patterns which are further modified by the later transport processes in the upper layers of the soil. The distribution is influenced by various factors (physico-chemical characteristics of the radioisotopes, soil type, weather conditions, environment etc.), the resulting soil profile is hardly predictable. An important lesson we learned from the Chernobyl reactor accident is the great variability of the contamination both in the extent of the deposition and in the penetration features. In recent years - following the reactor accident in Chernobyl - an increased interest for rapid methods of monitoring environmental radioactivity was expressed. The International Atomic Energy Agency initiated a research project to co-ordinate the activities carried out in various laboratories aiming at the development of rapid monitoring procedures. The Co-ordinated Research Project (CRP) G6 10 01 under the title Rapid Instrumental and Separation Methods for Monitoring Radionuclides in Food and the Environment has given a frame for 11 research programs. The Health Physics Department of the KFKI Institute for Atomic Energy Research (the former Central Research Institute for Physics) has taken a part in this CRP with a project titled: Rapid In Situ Gamma Spectrometric Determination of Fallout Radioactivity in the Environment. The main objective of our study was to find a method to estimate the penetration characteristics of the fallout radioactivity by using only spectral information obtained by the in situ spectrometric measurement thus avoiding the need for a long and tiresome sampling and sample analysis procedure

  17. Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fife, Julie L., E-mail: julie.fife@psi.ch [Laboratory for Synchrotron Radiation, Swiss Light Source, Paul Scherrer Institut, Villigen (Switzerland); Computational Materials Laboratory, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Rappaz, Michel [Computational Materials Laboratory, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Pistone, Mattia [Institute for Geochemistry and Petrology, Swiss Federal Institute of Technology of Zurich, Zurich (Switzerland); Celcer, Tine [Laboratory for Synchrotron Radiation, Swiss Light Source, Paul Scherrer Institut, Villigen (Switzerland); The Centre of Excellence for Biosensors, Instrumentation and Process Control, Solkan (Slovenia); Mikuljan, Gordan [Laboratory for Synchrotron Radiation, Swiss Light Source, Paul Scherrer Institut, Villigen (Switzerland); Stampanoni, Marco [Laboratory for Synchrotron Radiation, Swiss Light Source, Paul Scherrer Institut, Villigen (Switzerland); Institute for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, Zurich (Switzerland)

    2012-05-01

    A laser-based heating system has been developed at the TOMCAT beamline of the Swiss Light Source for in situ observations of moderate-to-high-temperature applications of materials. Understanding the formation of materials at elevated temperatures is critical for determining their final properties. Synchrotron-based X-ray tomographic microscopy is an ideal technique for studying such processes because high spatial and temporal resolutions are easily achieved and the technique is non-destructive, meaning additional analyses can take place after data collection. To exploit the state-of-the-art capabilities at the tomographic microscopy and coherent radiology experiments (TOMCAT) beamline of the Swiss Light Source, a general-use moderate-to-high-temperature furnace has been developed. Powered by two diode lasers, it provides controlled localized heating, from 673 to 1973 K, to examine many materials systems and their dynamics in real time. The system can also be operated in various thermal modalities. For example, near-isothermal conditions at a given sample location can be achieved with a prescribed time-dependent temperature. This mode is typically used to study isothermal phase transformations; for example, the formation of equiaxed grains in metallic systems or to nucleate and grow bubble foams in silicate melts under conditions that simulate volcanic processes. In another mode, the power of the laser can be fixed and the specimen moved at a constant speed in a user-defined thermal gradient. This is similar to Bridgman solidification, where the thermal gradient and cooling rate control the microstructure formation. This paper details the experimental set-up and provides multiple proofs-of-concept that illustrate the versatility of using this laser-based heating system to explore, in situ, many elevated-temperature phenomena in a variety of materials.

  18. Heat and water transport in soils and across the soil-atmosphere interface: 1. Theory and different model concepts

    DEFF Research Database (Denmark)

    Vanderborght, Jan; Fetzer, Thomas; Mosthaf, Klaus

    2017-01-01

    on a theoretical level by identifying the underlying simplifications that are made for the different compartments of the system: porous medium, free flow and their interface, and by discussing how processes not explicitly considered are parameterized. Simplifications can be grouped into three sets depending......Evaporation is an important component of the soil water balance. It is composed of water flow and transport processes in a porous medium that are coupled with heat fluxes and free air flow. This work provides a comprehensive review of model concepts used in different research fields to describe...

  19. First in situ operation performance test of ground source heat pump in Tunisia

    International Nuclear Information System (INIS)

    Naili, Nabiha; Attar, Issam; Hazami, Majdi; Farhat, Abdelhamid

    2013-01-01

    Highlights: • Evaluate the geothermal energy in Tunisia. • Study of the performance of GSHP system for cooling space. • GSHP is a promising alternative for building cooling in Tunisia. - Abstract: The main purpose of this paper is to study the energetic potential of the deployment in Tunisia of the Ground Source Heat Pump (GSHP) system for cooling mode application. Therefore, a pilot GSHP system using horizontal Ground Heat Exchanger (GHE) was installed and experimented in the Research and Technology Center of Energy (CRTEn), Borj Cédria. The experiment is conducted in a test room with a floor area of about 12 m 2 . In the floor of the tested room is integrated a polyethylene exchanger (PEX) used as a radiant floor cooling (RFC) system. The experimental setup mainly includes the ground temperature, the temperature and flow rate of water circulating in the heat pump and the GHE, as well as the power consumption of the heat pump and circulating pumps. These experimental data are essentially used to evaluate the coefficient of performance of the heat pump (COP hp ) and the overall system (COP sys ) for continuous operation mode. The COP hp and the COP sys were found to be 4.25 and 2.88, respectively. These results reveal that the use of the ground source heat pump is very appropriate for Tunisian building cooling

  20. Heat and water transport in soils and across the soil-atmosphere interface: 2. Numerical analysis

    DEFF Research Database (Denmark)

    Fetzer, Thomas; Vanderborght, Jan; Mosthaf, Klaus

    2017-01-01

    evaporation decreases from parts of the heterogeneous soil surface, lateral flow and transport processes in the free flow and in the porous medium generate feedbacks that enhance evaporation from wet surface areas. In the second set of simulations, we assume that the vertical fluxes do not vary considerably...

  1. Comparison of Soil Moisture in Switzerland Using In-Situ Measurements and Model Output

    Science.gov (United States)

    Mittelbach, H.; Orth, R.; Seneviratne, S. I.

    2011-01-01

    Soil moisture is an essential contributor to land surface- atmosphere interactions. In this study we evaluate the two Land surface models CLM3.5 and SIB3 regarding their performance in simulating soil moisture and its anomalies for the one year period 01.09.2009 to 31.08.2010. Four grassland sites from the SwissSMEX/- Veg project were used as reference soil moisture data. In general, both models represent the soil moisture anomalies and their distribution better than the absolute soil moisture. Furthermore, both models show a seasonal dependence of the correlation and root mean square error. In contrast to the SIB3 model, the CLM3.5 model shows stronger seasonal variation of the root mean square error and a larger interquantile range for soil moisture anomalies.

  2. Investigation of potential for occurrence of molten soil displacement events during in situ vitrification of combustible wastes

    International Nuclear Information System (INIS)

    Roberts, J.S.; Strachan, C.W.; Luey, J.

    1993-02-01

    Computer simulations are used to investigate the application of in situ vitrification (ISV) for processing contaminated soil containing high loadings of solid, compressible waste material, typical of landfills and solid waste trenches. Specifically, these simulations predict whether significant displacement of molten soil, due to large, 1 to 2 m diameter, gas bubbles rising up through the ISV melt, are likely to occur during processing of combustible waste-loaded sites. These bubbles are believed to originate from high-pressure regions below the melt caused by vaporization of water and gases generated by the combustion, volatilization, or pyrolyzation of combustible materials in the waste. Simulations were run using the TOUGH2 computer code to predict pressures underneath the ISV melt TOUGH2 is an unsaturated groundwater modeling code capable of treating non-isothermal problems. These simulations include moving melt front and simple pyrolysis models and investigate how the gas pressure in the soil below the melt is affected by melt progression rate, soil permeability, combustible and impermeable material loading. The following, conclusions have been drawn based on the TOUGH2 simulations

  3. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)--a field experiment.

    Science.gov (United States)

    Beškoski, Vladimir P; Gojgić-Cvijović, Gordana; Milić, Jelena; Ilić, Mila; Miletić, Srdjan; Solević, Tatjana; Vrvić, Miroslav M

    2011-03-01

    Mazut (heavy residual fuel oil)-polluted soil was exposed to bioremediation in an ex situ field-scale (600 m(3)) study. Re-inoculation was performed periodically with biomasses of microbial consortia isolated from the mazut-contaminated soil. Biostimulation was conducted by adding nutritional elements (N, P and K). The biopile (depth 0.4m) was comprised of mechanically mixed polluted soil with softwood sawdust and crude river sand. Aeration was improved by systematic mixing. The biopile was protected from direct external influences by a polyethylene cover. Part (10 m(3)) of the material prepared for bioremediation was set aside uninoculated, and maintained as an untreated control pile (CP). Biostimulation and re-inoculation with zymogenous microorganisms increased the number of hydrocarbon degraders after 50 d by more than 20 times in the treated soil. During the 5 months, the total petroleum hydrocarbon (TPH) content of the contaminated soil was reduced to 6% of the initial value, from 5.2 to 0.3 g kg(-1) dry matter, while TPH reduced to only 90% of the initial value in the CP. After 150 d there were 96%, 97% and 83% reductions for the aliphatic, aromatic, and nitrogen-sulphur-oxygen and asphaltene fractions, respectively. The isoprenoids, pristane and phytane, were more than 55% biodegraded, which indicated that they are not suitable biomarkers for following bioremediation. According to the available data, this is the first field-scale study of the bioremediation of mazut and mazut sediment-polluted soil, and the efficiency achieved was far above that described in the literature to date for heavy fuel oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. In situ characterization of thermal conductivities of irradiated solids by using ion beam heating and infrared imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mondrik, Nicholas; Gigax, Jonathan; Wang, Xuemei; Price, Lloyd [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Wei, Chaochen [Materials Science and Engineering Department, Texas A and M University, College Station, TX 77843 (United States); Shao, Lin, E-mail: lshao@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Materials Science and Engineering Department, Texas A and M University, College Station, TX 77843 (United States)

    2014-08-01

    We propose a method to characterize thermal properties of ion irradiated materials. This method uses an ion beam as a heating source to create a hot spot on sample surface. Infrared imaging is used as a surface temperature mapping tool to record hot zone spreading. Since ion energy, ion flux, and ion penetration depth can be precisely controlled, the beam heating data is highly reliable and repeatable. Using a high speed infrared camera to capture lateral spreading of the hot zone, thermal diffusivity can be readily extracted. The proposed method has advantages in studying radiation induced thermal property changes, for which radiation damage can be introduced by using an irradiating beam over a relatively large beam spot and beam heating can be introduced by using a focused testing beam over a relatively small beam spot. These two beams can be switched without breaking vacuum. Thus thermal conductivity changes can be characterized in situ with ion irradiation. The feasibility of the technique is demonstrated on a single crystal quartz substrate.

  5. In situ characterization of thermal conductivities of irradiated solids by using ion beam heating and infrared imaging

    International Nuclear Information System (INIS)

    Mondrik, Nicholas; Gigax, Jonathan; Wang, Xuemei; Price, Lloyd; Wei, Chaochen; Shao, Lin

    2014-01-01

    We propose a method to characterize thermal properties of ion irradiated materials. This method uses an ion beam as a heating source to create a hot spot on sample surface. Infrared imaging is used as a surface temperature mapping tool to record hot zone spreading. Since ion energy, ion flux, and ion penetration depth can be precisely controlled, the beam heating data is highly reliable and repeatable. Using a high speed infrared camera to capture lateral spreading of the hot zone, thermal diffusivity can be readily extracted. The proposed method has advantages in studying radiation induced thermal property changes, for which radiation damage can be introduced by using an irradiating beam over a relatively large beam spot and beam heating can be introduced by using a focused testing beam over a relatively small beam spot. These two beams can be switched without breaking vacuum. Thus thermal conductivity changes can be characterized in situ with ion irradiation. The feasibility of the technique is demonstrated on a single crystal quartz substrate

  6. Nanocalorimeter platform for in situ specific heat measurements and x-ray diffraction at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Willa, K. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Diao, Z. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden; Laboratory of Mathematics, Physics and Electrical Engineering, Halmstad University, P.O. Box 823, SE-301 18 Halmstad, Sweden; Campanini, D. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden; Welp, U. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Divan, R. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Hudl, M. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden; Islam, Z. [X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Kwok, W. -K. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Rydh, A. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden

    2017-12-01

    Recent advances in electronics and nanofabrication have enabled membrane-based nanocalorimetry for measurements of the specific heat of microgram-sized samples. We have integrated a nanocalorimeter platform into a 4.5 T split-pair vertical-field magnet to allow for the simultaneous measurement of the specific heat and x-ray scattering in magnetic fields and at temperatures as low as 4 K. This multi-modal approach empowers researchers to directly correlate scattering experiments with insights from thermodynamic properties including structural, electronic, orbital, and magnetic phase transitions. The use of a nanocalorimeter sample platform enables numerous technical advantages: precise measurement and control of the sample temperature, quantification of beam heating effects, fast and precise positioning of the sample in the x-ray beam, and fast acquisition of x-ray scans over a wide temperature range without the need for time-consuming re-centering and re-alignment. Furthermore, on an YBa2Cu3O7-delta crystal and a copper foil, we demonstrate a novel approach to x-ray absorption spectroscopy by monitoring the change in sample temperature as a function of incident photon energy. Finally, we illustrate the new insights that can be gained from in situ structural and thermodynamic measurements by investigating the superheated state occurring at the first-order magneto-elastic phase transition of Fe2P, a material that is of interest for magnetocaloric applications.

  7. Coupled heat and water flow dynamics in dry soils : application to a multilayer waste cover

    OpenAIRE

    Gran Esforzado, Meritxell

    2015-01-01

    Unsaturated flow plays an important role in numerous environmental phenomena. It is complex in arid regions, where liquid water fluxes are small and vapor fluxes become relevant, so that heat, water and solute mass transport are needed to understand evaporation. This thesis aims at gaining insight evaporation and vapor flow mechanisms and the relevance of matric potential, temperature and osmotic gradients. These issues are especially relevant for soil salinization, whose mechanisms are po...

  8. Effects of soil water and heat relationship under various snow cover during freezing-thawing periods in Songnen Plain, China.

    Science.gov (United States)

    Fu, Qiang; Hou, Renjie; Li, Tianxiao; Jiang, Ruiqi; Yan, Peiru; Ma, Ziao; Zhou, Zhaoqiang

    2018-01-22

    In this study, the spatial variations of soil water and heat under bare land (BL), natural snow (NS), compacted snow (CS) and thick snow (TS) treatments were analyzed. The relationship curve between soil temperature and water content conforms to the exponential filtering model, by means of the functional form of the model, it was defined as soil water and heat relation function model. On this basis, soil water and heat function models of 10, 20, 40, 60, 100, and 140 cm were established. Finally, a spatial variation law of the relationship effect was described based on analysising of the differences between the predicted and measured results. During freezing period, the effects of external factors on soil were hindered by snow cover. As the snow increased, the accuracy of the function model gradually improved. During melting period, infiltration by snowmelt affected the relationship between the soil temperature and moisture. With the increasing of snow, the accuracy of the function models gradually decreased. The relationship effects of soil water and heat increased with increasing depth within the frozen zone. In contrast, below the frozen layer, the relationship of soil water and heat was weaker, and the function models were less accurate.

  9. Measurement of in situ phosphorus availability in acidified soils using iron-infused resin.

    Czech Academy of Sciences Publication Activity Database

    Tahovská, K.; Čapek, P.; Šantrůčková, H.; Kaňa, Jiří; Kopáček, Jiří

    2016-01-01

    Roč. 47, č. 4 (2016), s. 487-494 ISSN 0010-3624 R&D Projects: GA ČR(CZ) GAP504/12/1218 Institutional support: RVO:60077344 Keywords : acidification * aluminium * forest soil * ion exchange resin * iron * phosphorus availability Subject RIV: DF - Soil Science Impact factor: 0.589, year: 2016

  10. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus.

    Science.gov (United States)

    Moldes, Ana Belén; Paradelo, Remigio; Rubinos, David; Devesa-Rey, Rosa; Cruz, José Manuel; Barral, María Teresa

    2011-09-14

    The utilization of biosurfactants for the bioremediation of contaminated soil is not yet well established, because of the high production cost of biosurfactants. Consequently, it is interesting to look for new biosurfactants that can be produced at a large scale, and it can be employed for the bioremediation of contaminated sites. In this work, biosurfactants from Lactobacillus pentosus growing in hemicellulosic sugars solutions, with a similar composition of sugars found in trimming vine shoot hydrolysates, were employed in the bioremediation of soil contaminated with octane. It was observed that the presence of biosurfactant from L. pentosus accelerated the biodegradation of octane in soil. After 15 days of treatment, biosurfactants from L. pentosus reduced the concentration of octane in the soil to 58.6 and 62.8%, for soil charged with 700 and 70,000 mg/kg of hydrocarbon, respectively, whereas after 30 days of treatment, 76% of octane in soil was biodegraded in both cases. In the absence of biosurfactant and after 15 days of incubation, only 1.2 and 24% of octane was biodegraded in soil charged with 700 and 70,000 mg/kg of octane, respectively. Thus, the use of biosurfactants from L. pentosus, as part of a well-designed bioremediation process, can provide mechanisms to mobilize the target contaminants from the soil surface to make them more available to the microbial population.

  11. Upscaling In Situ Soil Moisture Observations To Pixel Averages With Spatio-Temporal Geostatistics

    NARCIS (Netherlands)

    Wang, Jianghao; Ge, Yong; Heuvelink, Gerard B.M.; Zhou, Chenghu

    2015-01-01

    Validation of satellite-based soil moisture products is necessary to provide users with an assessment of their accuracy and reliability and to ensure quality of information. A key step in the validation process is to upscale point-scale, ground-based soil moisture observations to satellite-scale

  12. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Science.gov (United States)

    Jeffrey M. Warren; J. Renée Brooks; Maria I. Dragila; Frederick C. Meinzer

    2011-01-01

    Nocturnal increases in water potential and water content in the upper soil profile are often attributed to root water efflux, a process termed hydraulic redistribution (HR). However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the daily recovery in water content, confounding efforts to determine the actual...

  13. In-situ heating test in sedimentary soft rock. Phase 2

    International Nuclear Information System (INIS)

    Ikenoya, Takafumi; Takakura, Nozomu; Okada, Tetsuji; Sawada, Masataka; Hirano, Kouhei; Tani, Kazuo

    2011-01-01

    Various researches have been conducted on high level radioactive waste geological disposal in sedimentary soft rocks. It is noted that the long-term mechanical behaviors of sedimentary soft rocks can be affected by various environmental factors such as temperatures or hydraulic conditions. Therefore, in-situ heater test was conducted in an underground cavern at a depth of 50 m for the purpose of improving thermo-hydro-mechanical coupled analysis code. This report presents the test result demonstrating the changes of temperature and strain distributions with time at the elevated temperature of the heater up to 90degC. (author)

  14. Ex situ bioremediation of mineral oil in soils: Aerated pile treatment. Final report

    International Nuclear Information System (INIS)

    Graves, D.

    1998-04-01

    Under a contract with Southern Company Services, a pilot-scale evaluation of mineral oil biodegradation was conducted at Plant Mitchell. The evaluation consisted of two demonstrations to examine land treatment and aerated pile treatment of soil contaminated with the mineral insulating oil used in electrical transformers. Treatment of mineral oil contaminated soil is problematic in the State of Georgia and throughout the US because current practice is to excavate and landfill the contaminated soil. In many cases, the cost associated with these activities far exceeds the environmental risk of mineral oil in soil. This project was designed to evaluate the performance of bioremediation for the treatment of mineral oil in soil. Testing was carried out in a demonstration facility prepared by Georgia Power Company. The facility consisted of 12 independent treatment cells constructed on a concrete pad and covered with a roof

  15. In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil.

    Science.gov (United States)

    Cui, Hongbiao; Fan, Yuchao; Yang, John; Xu, Lei; Zhou, Jing; Zhu, Zhenqiu

    2016-10-01

    Phytoremediation is a potential cost-effective technology for remediating heavy metal-contaminated soils. In this study, we evaluated the biomass and accumulation of copper (Cu) and cadmium (Cd) of plant species grown in a contaminated acidic soil treated with limestone. Five species produced biomass in the order: Pennisetum sinese > Elsholtzia splendens > Vetiveria zizanioides > Setaria pumila > Sedum plumbizincicola. Over one growing season, the best accumulators for Cu and Cd were Pennisetum sinese and Sedum plumbizincicola, respectively. Overall, Pennisetum sinese was the best species for Cu and Cd removal when biomass was considered. However, Elsholtzia splendens soil had the highest enzyme activities and microbial populations, while the biological properties in Pennisetum sinese soil were moderately enhanced. Results would provide valuable insights for phytoremediation of metal-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Ex-situ bioremediation of Brazilian soil contaminated with plasticizers process wastes

    Directory of Open Access Journals (Sweden)

    I. D. Ferreira

    2012-03-01

    Full Text Available The aim of this research was to evaluate the bioremediation of a soil contaminated with wastes from a plasticizers industry, located in São Paulo, Brazil. A 100-kg soil sample containing alcohols, adipates and phthalates was treated in an aerobic slurry-phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry (11gVSS kg-1 dry soil, during 120 days. The soil pH and temperature were not corrected during bioremediation; soil humidity was corrected weekly to maintain 40%. The biodegradation of the pollutants followed first-order kinetics; the removal efficiencies were above 61% and, among the analyzed plasticizers, adipate was removed to below the detection limit. Biological molecular analysis during bioremediation revealed a significant change in the dominant populations initially present in the reactor.

  17. DEVELOPMENT OF NEW HYPERSPECTRAL ANGLE INDEX FOR ESTIMATION OF SOIL MOISTURE USING IN SITU SPECTRAL MEASURMENTS

    Directory of Open Access Journals (Sweden)

    M. R. Mobasheri

    2013-10-01

    Full Text Available Near-surface soil moisture is one of the crucial variables in hydrological processes, which influences the exchange of water and energy fluxes at the land surface/atmosphere interface. Accurate estimate of the spatial and temporal variations of soil moisture is critical for numerous environmental studies. On the other hand, information of distributed soil moisture at large scale with reasonable spatial and temporal resolution is required for improving climatic and hydrologic modeling and prediction. The advent of hyperspectral imagery has allowed examination of continuous spectra not possible with isolated bands in multispectral imagery. In addition to high spectral resolution for individual band analyses, the contiguous narrow bands show characteristics of related absorption features, such as effects of strong absorptions on the band depths of adjacent absorptions. Our objective in this study was to develop a new spectral angle index to estimate soil moisture based on spectral region (350 and 2500 nm. In this paper, using spectral observations made by ASD Spectroradiometer for predicting soil moisture content, two soil indices were also investigated involving the Perpendicular Drought Index (PDI, NMDI (Normalized Multi-band Drought Index indices. Correlation and regression analysis showed a high relationship between PDI and the soil moisture percent (R2 = 0.9537 and NMDI (R2 = 0.9335. Furthermore, we also simulated these data according to the spectral range of some sensors such as MODIS, ASTER, ALI and ETM+. Indices relevant these sensors have high correlation with soil moisture data. Finally, we proposed a new angle index which shows significant relationship between new angle index and the soil moisture percentages (R2 = 0.9432.angle index relevant bands 3, 4, 5, 6, 7 MODIS also showing high accuracy in estimation of soil moisture (R2 = 0.719.

  18. In situ heating experiments in hard rock: their objectives and design

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Witherspoon, P.A.

    1978-01-01

    Of the many alternatives that are being considered for the disposal of nuclear wastes, deep underground burial is favored. The wealth of experience concerning the design and construction of underground excavations does not include the unique effects of heating excavations by radioactive decay, nor the issue of long-term isolation. The effects of heating are important in establishing the feasibility of this method of disposal, and are essential for the design of an underground repository. Near-field phenomena around individual canisters can be studied by full-scale experiments, using electrical heaters. The thermal diffusivity of rock is so low that information concerning the interaction between full-scale heaters and of the effects of heating a large volume of rock cannot be measured in full-scale experiments lasting less than a few decades. To overcome this difficulty, a time-scaled heating experiment has been developed in which a reduction in linear scale is accompanied by an acceleration of the time scale to the second power. In this experiment, the linear scale is about a third, so that the time scale is about ten fold

  19. In situ heating experiments in hard rock: their objectives and design

    International Nuclear Information System (INIS)

    Cook, N.G.W.; Witherspoon, P.A.; California Univ., Berkeley

    1978-01-01

    Of the many alternatives that are being considered for the disposal of nuclear wastes, deep underground burial is favored. The wealth of experience concerning the design and construction of underground excavations does not include the unique effects of heating excavations by radioactive decay, nor the issue of long-term isolation. The effects of heating are important in establishing the feasibility of this method of disposal and are essential for the design of an underground repository. Near-field phenomena around individual canisters can be studied by full-scale experiments, using electrical heaters. The thermal diffusivity of rock is so low that information concerning the interaction between full-scale heaters and of the effects of heating a large volume of rock cannot be measured in full-scale experiments lasting less than a few decades. To overcome this difficulty, a time-scaled heating experiment has been developed in which a reduction in linear scale is accompanied by an acceleration of the time scale to the second power. In this experiment, the linear scale is about a third, so that the time scale is about ten fold

  20. Exploratory Project: Rigid nanostructured organic polymer monolith for in situ collection and analysis of plant metabolites from soil matrices

    Energy Technology Data Exchange (ETDEWEB)

    Tharayil, Nishanth [Clemson Univ., SC (United States)

    2016-06-29

    Plant metabolites released from litter leachates and root exudates enable plants to adapt and survive in a wide range of habitats by facilitating resource foraging and plant-organismal interactions, and could influence soil carbon storage. The biological functions of these plant inputs and the organismal interactions they facilitate in soil are strictly governed by their composition and molecular identity. Our current understanding about the molecular identity of exudates is based on physiological studies that are done in soil-less axenic cultures. On the other hand, ecological studies that rely on isotope labeling to track the fluxes of carbon from plants to soil have found the complexities of soil-microbe matrices as an insurmountable barrier to undertake any meaningful molecular level characterization of plant inputs. Although it is constantly advocated to undertake a molecular level identification of the dynamicity of plant metabolites in soils, the complexity of soil system has thus far prevented any such endeavors. We developed polymeric probes through in-situ polymerization of poly(styrene-co-vinylbenzyl chloride-co-divinylbenzene) to elucidate the chemical environment of the soil to which the plant roots are exposed. Hypercrosslinking of the polymeric probes through an in-situ Friedel-Crafts alkylation significantly increased the surface area and the sorption capacity of the probes. Surface functionalization of the probes using a hybrid approach was also attempted. The efficacy of these probes was tested using batch equilibration. Scanning electron microscopy revealed extensive modification of the surface of the probes through hypercrosslinking. The probes exhibited a lower site specific sorption (slope of Freundlich adsorption isotherm close to unity) and percent recovery of the sorbed compounds from the probes were >70, indicating a predominance of reversible sorption. Further we imparted specificity to this copolymer matrix by using molecular

  1. Verification of High Resolution Soil Moisture and Latent Heat in Germany

    Science.gov (United States)

    Samaniego, L. E.; Warrach-Sagi, K.; Zink, M.; Wulfmeyer, V.

    2012-12-01

    Improving our understanding of soil-land-surface-atmosphere feedbacks is fundamental to make reliable predictions of water and energy fluxes on land systems influenced by anthropogenic activities. Estimating, for instance, which would be the likely consequences of changing climatic regimes on water availability and crop yield, requires of high resolution soil moisture. Modeling it at large-scales, however, is difficult and uncertain because of the interplay between state variables and fluxes and the significant parameter uncertainty of the predicting models. At larger scales, the sub-grid variability of the variables involved and the nonlinearity of the processes complicate the modeling exercise even further because parametrization schemes might be scale dependent. Two contrasting modeling paradigms (WRF/Noah-MP and mHM) were employed to quantify the effects of model and data complexity on soil moisture and latent heat over Germany. WRF/Noah-MP was forced ERA-interim on the boundaries of the rotated CORDEX-Grid (www.meteo.unican.es/wiki/cordexwrf) with a spatial resolution of 0.11o covering Europe during the period from 1989 to 2009. Land cover and soil texture were represented in WRF/Noah-MP with 1×1~km MODIS images and a single horizon, coarse resolution European-wide soil map with 16 soil texture classes, respectively. To ease comparison, the process-based hydrological model mHM was forced with daily precipitation and temperature fields generated by WRF during the same period. The spatial resolution of mHM was fixed at 4×4~km. The multiscale parameter regionalization technique (MPR, Samaniego et al. 2010) was embedded in mHM to be able to estimate effective model parameters using hyper-resolution input data (100×100~km) obtained from Corine land cover and detailed soil texture fields for various horizons comprising 72 soil texture classes for Germany, among other physiographical variables. mHM global parameters, in contrast with those of Noah-MP, were

  2. Kinetically controlled fabrication of gold nanorods and investigation of their thermal stability via in-situ TEM heating

    Science.gov (United States)

    Chankhunthod, N.; Aslam, Z.; Critchley, K.; Evans, S. D.; Brydson, R.

    2017-09-01

    Size controlled CTAB-capped AuNRs with various aspect ratios (ARs) ranging from 1.63±0.13 to 4.12±0.25 were synthesized following a modified seed-mediated method. Their thermal stability was examined by in-situ TEM heating. The results revealed a structural change from rods to spheres with increasing temperature. At lower temperatures 600ºC, particles became increasingly spherical. This behaviour occurred at temperatures lower than the melting point of bulk gold supporting a surface diffusion mechanism with material diffusing from the tips and redepositing at the middle of the rods. The rate of change in AR appeared to increase for thinner AuNRs.

  3. CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland

    International Nuclear Information System (INIS)

    Fridriksson, Thrainn; Kristjansson, Bjarni Reyr; Armannsson, Halldor; Margretardottir, Eygerour; Olafsdottir, Snjolaug; Chiodini, Giovanni

    2006-01-01

    Carbon dioxide emissions and heat flow through soil, steam vents and fractures, and steam heated mud pools were determined in the Reykjanes geothermal area, SW Iceland. Soil diffuse degassing of CO 2 was quantified by soil flux measurements on a 600 m by 375 m rectangular grid using a portable closed chamber soil flux meter and the resulting data were analyzed by both a graphical statistical method and sequential Gaussian simulations. The soil temperature was measured in each node of the grid and used to evaluate the heat flow. The heat flow data were also analyzed by sequential Gaussian simulations. Heat flow from steam vents and fractures was determined by quantifying the amount of steam emitted from the vents by direct measurements of steam flow rate. The heat loss from the steam heated mud pools was determined by quantifying the rate of heat loss from the pools by evaporation, convection, and radiation. The steam flow rate into the pools was calculated from the observed heat loss from the pools, assuming that steam flow was the only mechanism of heat transport into the pool. The CO 2 emissions from the steam vents and mud pools were determined by multiplying the steam flow rate from the respective sources by the representative CO 2 concentration of steam in the Reykjanes area. The observed rates of CO 2 emissions through soil, steam vents, and steam heated mud pools amounted to 13.5 ± 1.7, 0.23 ± 0.05, and 0.13 ± 0.03 tons per day, respectively. The heat flow through soil, steam vents, and mud pools was 16.9 ± 1.4, 2.2 ± 0.4, and 1.2 ± 0.1 MW, respectively. Heat loss from the geothermal reservoir, inferred from the CO 2 emissions through the soil amounts to 130 ± 16 MW of thermal energy. The discrepancy between the observed heat loss and the heat loss inferred from the CO 2 emissions is attributed to steam condensation in the subsurface due to interactions with cold ground water. These results demonstrate that soil diffuse degassing can be a more

  4. In situ phytoremediation of a soil historically contaminated by metals, hydrocarbons and polychlorobiphenyls.

    Science.gov (United States)

    Doni, S; Macci, C; Peruzzi, E; Arenella, M; Ceccanti, B; Masciandaro, G

    2012-05-01

    In the past several years, industrial and agricultural activities have led to serious environmental pollution, resulting in a large number of contaminated sites. As a result, much recent research activity has focused on the application of bioremediation technologies as an environmentally friendly and economically feasible means for decontamination of polluted soil. In this study horse manure and Populus nigra (var. italica) (HM + P treatment) have been used, at real scale level, as an approach for bioremediation of a soil historically contaminated by metals (Pb, Cr, Cd, Zn, Cu and Ni) and organic contaminants, such as polychlorobiphenyls and petroleum hydrocarbon. After one year, the HM + P phytotreatment was effective in the reclamation of the polluted soil from both organic and inorganic contaminants. A reduction of about 80% in total petroleum hydrocarbon (TPH), and 60% in polychlorobiphenyls (PCBs) and total metals was observed in the HM + P treatment. In contrast, in the horse manure (HM) treatment, used as control, a reduction of only about 30% of TPH was obtained. In order to assess both effectiveness and evolution of the remediation system to a biologically active soil ecosystem, together with the pollution parameters, the parameters describing the evolution of the soil functionality (enzymatic activities and protein SDS-PAGE pattern) were investigated. A stimulation of the metabolic soil processes (increase in dehydrogenase activity) was observed in the HM + P compared to the HM treatment. Finally, preliminary protein SDS-PAGE results have permitted the identification of proteins that have been recovered in the HM + P soil with respect to the HM; this may become a basic tool for improving the biogeochemical status of soil during the decontamination through the identification of microbial populations that are active in soil decontamination.

  5. Localized enrichment of polycyclic aromatic hydrocarbons in soil, spruce needles, and lake sediments linked to in-situ bitumen extraction near Cold Lake, Alberta

    International Nuclear Information System (INIS)

    Korosi, J.B.; Irvine, G.; Skierszkan, E.K.; Doyle, J.R.; Kimpe, L.E.; Janvier, J.; Blais, J.M.

    2013-01-01

    The extraction of bitumen from the Alberta oil sands using in-situ technologies is expanding at a rapid rate; however, investigations into the environmental impacts of oil sands development have focused on surface mining in the Athabasca region. We measured polycyclic aromatic hydrocarbons (PAH) in soils, spruce needles, and lake sediment cores in the Cold Lake oil sands region to provide a historical and spatial perspective on PAH contamination related to in-situ extraction activities. A pronounced increase in PAH concentrations was recorded in one of two study lakes (Hilda Lake) corresponding to the onset of commercial bitumen production in ∼1985. Distance from extraction rigs was not an important predictor of PAH concentrations in soils, although two samples located near installations were elevated in alkyl PAHs. Evidence of localized PAH contamination in Hilda Lake and two soil samples suggests that continued environmental monitoring is justified to assess PAH contamination as development intensifies. -- Highlights: •In-situ bitumen extraction linked to rise in alkyl PAHs in one of two study lakes. •Alkyl PAHs elevated in two soil samples. •PAH contamination likely related to effluent sources, not atmospheric deposition. -- PAHs in sediments and soils were generally low in areas adjacent to in-situ bitumen extraction rigs in the Cold Lake Alberta oil sands, but evidence of localized contamination at some sites was evident

  6. In situ immobilization of cadmium and zinc in contaminated soils : fiction or fixation?

    NARCIS (Netherlands)

    Osté, L.

    2001-01-01

    Keywords: beringite, cadmium, DOC, DOM, earthworms, immobilization, leaching, lime, manganese oxides, metal binding, metal uptake, organic matter partitioning, pH, soil contamination, remediation, sorption, Swiss chard, zeolites, zinc.

    It is generally

  7. FLUORESCENT IN SITU HYBRIDIZATION AND MICROAUTORADIOGRAPHY APPLIED TO ECOPHYSIOLOGY IN SOIL

    Science.gov (United States)

    Soil microbial communities perform many important processes, including nutrient cycling, plant-microorganism interactions, and degradation of xenobiotics. The study of microbial communities, however, has been limited by cultural methods, which may greatly underestimate diversity....

  8. In situ changes in the moisture content of heated, welded tuff based on thermal neutron measurements

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Carlson, R.C.; Buscheck, T.A.

    1991-07-01

    Thermal neutron logs were collected to monitor changes in moisture content within a welded tuff rock mass heated from a borehole containing an electrical heater which remained energized for 195 days. Thermal neutron measurements were made in sampling boreholes before, during and after heating. The results generally corroborated our conceptual understanding of hydrothermal flow as well as most of the numerical modeling conducting for this study. Conceptual models have been developed in conjunction with the numerical model calculations to explain differences in the drying and re-wetting behavior above and below the heater. Numerical modeling indicated that the re-wetting of the dried-out zone was dominated by the binary diffusion of water vapor through fractures. Saturation gradients in the rock matrix resulted in relative humidity gradients which drove water vapor (primarily along fractures) back to the dried-out zone where it condensed along the fracture walls and was imbibed by the matrix. 4 refs., 28 figs

  9. In situ vitrification of a mixed-waste contaminated soil site: The 116-B-6A crib at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Luey, J.; Koegler, S.S.; Kuhn, W.L.; Lowery, P.S.; Winkelman, R.G.

    1992-09-01

    The first large-scale mixed-waste test of in situ vitrification (ISV) has been completed. The large-scale test was conducted at an actual contaminated soil site, the 116-B-6A crib, on the Department of Energy's Hanford Site. The large-scale test was a demonstration of the ISV technology and not an interim action for the 116-B-6A crib. This demonstration has provided technical data to evaluate the ISV process for its potential in the final disposition of mixed-waste contaminated soil sites at Hanford. Because of the test's successful completion. technical data on the vitrified soil are available on how well the process incorporates transuranics and heavy metals into the waste form. how well the form resists leaching of transuranics and heavy metals. how well the process handles sites with high combustible loadings, and the important site parameters which may affect the achievable process depth. This report describes the 116-B-6A crib site, the objectives of the ISV demonstration, the results in terms of the objectives, and the overall process performance.

  10. Electron microscopic in situ study of phase and defect formation in Bi2Sr2CaCu2Oy single crystals in heating

    International Nuclear Information System (INIS)

    Goncharov, V.A.; Ignat'eva, E.Yu.; Osip'yan, Yu.A.; Suvorov, Eh.V.

    1997-01-01

    The nonthermal effect of electron irradiation on generating of new phases and structural defects has been uncovered during the investigation of structural variations of monocrystals Bi 2 Sr 2 CaCu 2 O y on heating in situ. The stability of the modulated structure and the package defects to heating under the electron beam action and in the absence of the irradiation has been studied

  11. In-situ studies of microbial CH4 oxidation efficiency in Arctic wetland soils. Applications of stable carbon isotopes

    International Nuclear Information System (INIS)

    Preuss, Inken-Marie

    2013-01-01

    Arctic wetland soils are significant sources of the climate-relevant trace gas methane (CH 4 ). The observed accelerated warming of the Arctic is expected to cause deeper permafrost thawing followed by increased carbon mineralization and CH 4 formation in water-saturated permafrost-affected tundra soils thus creating a positive feedback to climate change. Aerobic CH 4 oxidation is regarded as the key process reducing CH 4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. This study improved the in-situ quantification of microbial CH 4 oxidation efficiency in arctic wetland soils in Russia's Lena River Delta based on stable isotope signatures of CH 4 . In addition to the common practice of determining the stable isotope fractionation during oxidation, additionally the fractionation effect of diffusion, an important gas transport mechanism in tundra soils, was investigated for both saturated and unsaturated conditions. The isotopic fractionation factors α ox and α diff were used to calculate the CH 4 oxidation efficiency from the CH 4 stable isotope signatures of wet polygonal tundra soils of different hydrology. Further, the method was used to study the short-term effects of temperature increase with a climate manipulation experiment. For the first time, the stable isotope fractionation of CH 4 diffusion through water-saturated soils was determined with α diff = 1.001 ± 0.0002 (n = 3). CH 4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was α diff = 1.013 ± 0.003 (n = 18). For the studied sites the fractionation factor for diffusion under saturated conditions α diff = 1.001 seems to be of utmost importance for the quantification of the CH 4 oxidation efficiency, since most of the CH 4 is oxidized in the saturated part at the aerobic-anaerobic interface. Furthermore, it was found that α ox differs widely between sites and horizons (mean α ox = 1

  12. In Situ Chemical Reduction (ISCR) for Removal of Persistent Pesticides; focus on kepone in tropical soils

    OpenAIRE

    Mouvet , Christophe; Bristeau , Sébastien; Amalric , Laurence; Dictor , Marie Christine; Mercier , Anne; Thannberger , Laurent; Mueller , Jim; Valkenburg , John; Seech , Alan; Przepiora , Andrezej; Molin , Josephine; Bucci , Edson Marcus

    2011-01-01

    Background/Objectives. The global use of organochlorine pesticides (OCPs) such as Lindane, DDT, Dieldrin, Kepone, Chlordane and Toxaphene has resulted in long-term soil impacts at many sites. Given the potential risks to human health and the environment, some OCP-impacted sites require treatment. In certain cases, the "dig-and-dump" approach is not practical due to magnitude of the problem, access issues, and/or resource constraints. Here "bioremediation" can be used to treat the soil on site...

  13. From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2008-12-01

    Full Text Available A long term data acquisition effort of profile soil moisture is under way in southwestern France at 13 automated weather stations. This ground network was developed in order to validate remote sensing and model soil moisture estimates. In this paper, both those in situ observations and a synthetic data set covering continental France are used to test a simple method to retrieve root zone soil moisture from a time series of surface soil moisture information. A recursive exponential filter equation using a time constant, T, is used to compute a soil water index. The Nash and Sutcliff coefficient is used as a criterion to optimise the T parameter for each ground station and for each model pixel of the synthetic data set. In general, the soil water indices derived from the surface soil moisture observations and simulations agree well with the reference root-zone soil moisture. Overall, the results show the potential of the exponential filter equation and of its recursive formulation to derive a soil water index from surface soil moisture estimates. This paper further investigates the correlation of the time scale parameter T with soil properties and climate conditions. While no significant relationship could be determined between T and the main soil properties (clay and sand fractions, bulk density and organic matter content, the modelled spatial variability and the observed inter-annual variability of T suggest that a weak climate effect may exist.

  14. Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain

    Science.gov (United States)

    Gruber, A.; Crow, W. T.; Dorigo, W. A.

    2018-02-01

    Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model-based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two-dimensional (2-D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground-based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2-D system is compared to that obtained from the 1-D assimilation of remote sensing retrievals to assess the value of ground-based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite-based surface soil moisture retrievals.

  15. Ex situ remediation of polluted soils by absorptive polymers, and a comparison of slurry and two-phase partitioning bioreactors for ultimate contaminant degradation

    Energy Technology Data Exchange (ETDEWEB)

    Tomei, M. Concetta, E-mail: tomei@irsa.cnr.it [Water Research Institute, C.N.R., Via Salaria km 29.300, Monterotondo Scalo, 00015 Rome (Italy); Mosca Angelucci, Domenica [Water Research Institute, C.N.R., Via Salaria km 29.300, Monterotondo Scalo, 00015 Rome (Italy); Annesini, M. Cristina [Department of Chemical Engineering Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome (Italy); Daugulis, Andrew J. [Department of Chemical Engineering, Queen' s University, Kingston, Ontario, Canada K7L 3N6 (Canada)

    2013-11-15

    Highlights: • We investigate absorptive polymers for ex-situ soil bioremediation. • We compare the performance of the novel technology with a slurry bioreactor. • The polymer is very effective in decontaminating the soil (77% removal in 4 h). • The polymer is readily regenerated in a two phase partitioning bioreactor. -- Abstract: The present study has provided a comparison between a conventional ex situ method for the treatment of contaminated soil, a soil slurry bioreactor, with a novel technology in which a contaminant is rapidly and effectively removed from the soil by means of absorptive polymer beads, which are then added to a two-phase partitioning bioreactor (TPPB) for biodegradation of the target molecule. 4-nitrophenol (4NP) was selected as a model contaminant, being representative of a large class of xenobiotics, and the DuPont thermoplastic Hytrel™ 8206 was utilized for its extraction from soil over ranges of soil contamination level, soil moisture content, and polymer:soil ratios. Since the polymers were able to rapidly (up to 77% and 85% in 4 and 24 h respectively) and selectively remove the contaminant, the soil retained its nutrient and microflora content, which is in contrast to soil washing which can remove these valuable soil resources. After 4 h of reaction time, the TPPB system demonstrated removal efficiency four times higher (77% vs 20%) than the slurry system, with expected concomitant savings in time and energy. A volumetric removal rate of 75 mg4NP h{sup −1} L{sup −1} was obtained in the TPPB, significantly greater than the value of 1.7 obtained in the slurry bioreactor. The polymers were readily regenerated for subsequent reuse, demonstrating the versatility of the polymer-based soil treatment technology.

  16. Heating treatment schemes for enhancing chelant-assisted phytoextraction of heavy metals from contaminated soils.

    Science.gov (United States)

    Chen, Yahua; Wang, Chunchun; Wang, Guiping; Luo, Chunling; Mao, Ying; Shen, Zhenguo; Li, Xiangdong

    2008-04-01

    Recent research has shown that chelant-assisted phytoextraction approaches often require a high dosage of chelant applied to soil. The present study focused on optimization of phytoremediation processes to increase the phytoextraction efficiency of metals at reduced chelant applications. Pot experiments were carried out to investigate the effects of increased soil temperature on shoot uptake of heavy metals by corn (Zea mays L.) and mung bean (Vigna radiat L. Wilczek) from heavy metal-contaminated soils. After the application of S,S-ethylenediaminedisuccinic acid or ethylenediaminetetra-acetic acid, soils were exposed to high temperatures (50 or 80 degrees C) for 3 h, which significantly increased the concentration of heavy metals in shoots. The heating treatment 2 d after the chelant addition resulted in higher concentrations of metals compared with those treatments 2 d before or simultaneously with the chelant application. Irrigation with 100 degrees C water 2 d after the chelant addition, or irrigation with 100 degrees C chelant solutions directly, also resulted in significantly higher phytoextraction of metals in the two crops compared with 25 degrees C chelant solutions. In addition, a novel application method to increase soil temperature using underground polyvinyl chloride tubes would increase the chelant-assisted extraction efficiency of Cu approximately 10- to 14-fold in corn and fivefold in mung bean compared with those nonheating treatments. In a field experiment, increasing soil temperature 2 d after chelant addition also increased the shoot Cu uptake approximately fivefold compared with those nonheating treatments. This new technique may represent a potential, engineering-oriented approach for phytoremediation of metal-polluted soils.

  17. Detection and Identification of potentially toxic elements in urban soil using in situ spectroscopy

    Science.gov (United States)

    Brook, Anna; Kopel, Daniella; Wittenberg, Lea

    2017-04-01

    Anthropogenic urban soils are the foundation of the urban green infrastructure, the green net quality is as good as each of its patches. In early days of pedology urban soil has been recognized with respect to contamination and the risks for human health but in study performed since the 70s, the importance of urban soil for the urban ecology became increasingly significant. Urban soils are highly disturbed land that was created by the process of urbanization. The dominant agent in the creation of urban soils is human activity which modifies the natural soil through mixing, filling or by contamination of land surfaces so as to create a layer of urban soil which can be more than 50 cm thick. The objective of this study is to determine the extent to which field spectroscopy methods can be used to extend the knowledge of toxic elements in urban soils. The majority of the studies on urban soils concentrate on identifying and mapping of known pollution mostly certain heavy metals, we are focusing on almost non disturbed soils where no direct disturbance occurred but the urban matrix inflicted on it. The elements in those soils where an-knowns features. In this study a top-down analysis is applied for detecting the presence of minerals, organic matter and pollutants in mixed soil samples. Results of the proposed top-down unmixing method suggest that the analysis is made very fast due to the simplified hierarchy which avoids the high-learning curve associated with unmixing algorithms showed that the most abundant components were coarse organic matter 12% followed by concrete dust, plastic crumbs, other man made materials, clay and other minerals. The results of the soils pH, measured electrometrically and the particle size distribution, measured by Laser diffraction, indicate there is no big different between the samples particle size distribution and the pH values of the samples but they are not significantly different from the expected, except for the OM percentage which

  18. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools

    International Nuclear Information System (INIS)

    McHugh, P.R.; Ramshaw, J.D.

    1991-11-01

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs

  19. In Situ Experiment and Numerical Model Validation of a Borehole Heat Exchanger in Shallow Hard Crystalline Rock

    Directory of Open Access Journals (Sweden)

    Mateusz Janiszewski

    2018-04-01

    Full Text Available Accurate and fast numerical modelling of the borehole heat exchanger (BHE is required for simulation of long-term thermal energy storage in rocks using boreholes. The goal of this study was to conduct an in situ experiment to validate the proposed numerical modelling approach. In the experiment, hot water was circulated for 21 days through a single U-tube BHE installed in an underground research tunnel located at a shallow depth in crystalline rock. The results of the simulations using the proposed model were validated against the measurements. The numerical model simulated the BHE’s behaviour accurately and compared well with two other modelling approaches from the literature. The model is capable of replicating the complex geometrical arrangement of the BHE and is considered to be more appropriate for simulations of BHE systems with complex geometries. The results of the sensitivity analysis of the proposed model have shown that low thermal conductivity, high density, and high heat capacity of rock are essential for maximising the storage efficiency of a borehole thermal energy storage system. Other characteristics of BHEs, such as a high thermal conductivity of the grout, a large radius of the pipe, and a large distance between the pipes, are also preferred for maximising efficiency.

  20. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, P.R.; Ramshaw, J.D.

    1991-11-01

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.

  1. Radiation budget, soil heat flux and latent heat flux at the forest floor in warm, temperate mixed forest

    International Nuclear Information System (INIS)

    Tamai, K.; Abe, T.; Araki, M.; Ito, H.

    1998-01-01

    Seasonal changes in the radiation budget and soil heat flux of a forest floor were measured in a mixed forest located in Kyoto, Japan. The basal area at breast height in the survey forest was about 15·82 m 2 ha −1 , for evergreen trees, and 12·46 m 2 ha −1 , for deciduous trees. The sky view factor was 16 and 22% at the survey site in the foliate and defoliate seasons, respectively. The small difference between the sky view factor in the two seasons was reflected in the seasonal change in the radiation budget of the forest floor. Namely, the net long-wave radiation changed rapidly in leafing and falling days, and the rate of net short-wave radiation was highest in April. The distinctive characteristic of the radiation budget was that the rates of available radiation in the daytime and at night were almost equal in September and October. Latent heat flux at the forest floor was estimated to be around 94 MJ m −2 annually, from our measurement with the simulation model. (author)

  2. Soil as natural heat resource for very shallow geothermal application: laboratory and test site updates from ITER Project

    Science.gov (United States)

    Di Sipio, Eloisa; Bertermann, David

    2017-04-01

    Nowadays renewable energy resources for heating/cooling residential and tertiary buildings and agricultural greenhouses are becoming increasingly important. In this framework, a possible, natural and valid alternative for thermal energy supply is represented by soils. In fact, since 1980 soils have been studied and used also as heat reservoir in geothermal applications, acting as a heat source (in winter) or sink (in summer) coupled mainly with heat pumps. Therefore, the knowledge of soil thermal properties and of heat and mass transfer in the soils plays an important role in modeling the performance, reliability and environmental impact in the short and long term of engineering applications. However, the soil thermal behavior varies with soil physical characteristics such as soil texture and water content. The available data are often scattered and incomplete for geothermal applications, especially very shallow geothermal systems (up to 10 m depths), so it is worthy of interest a better comprehension of how the different soil typologies (i.e. sand, loamy sand...) affect and are affected by the heat transfer exchange with very shallow geothermal installations (i.e. horizontal collector systems and special forms). Taking into consideration these premises, the ITER Project (Improving Thermal Efficiency of horizontal ground heat exchangers, http://iter-geo.eu/), funded by European Union, is here presented. An overview of physical-thermal properties variations under different moisture and load conditions for different mixtures of natural material is shown, based on laboratory and field test data. The test site, located in Eltersdorf, near Erlangen (Germany), consists of 5 trenches, filled in each with a different material, where 5 helix have been installed in an horizontal way instead of the traditional vertical option.

  3. In situ heat treatment of a tar sands formation after drive process treatment

    Science.gov (United States)

    Vinegar, Harold J.; Stanecki, John

    2010-09-21

    A method for treating a tar sands formation includes providing a drive fluid to a hydrocarbon containing layer of the tar sands formation to mobilize at least some hydrocarbons in the layer. At least some first hydrocarbons from the layer are produced. Heat is provided to the layer from one or more heaters located in the formation. At least some second hydrocarbons are produced from the layer of the formation. The second hydrocarbons include at least some hydrocarbons that are upgraded compared to the first hydrocarbons produced by using the drive fluid.

  4. In situ stabilization remediation of cadmium contaminated soils of wastewater irrigation region using sepiolite.

    Science.gov (United States)

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Wang, Lin; Lin, Dasong; Liang, Xuefeng; Shi, Xin

    2012-01-01

    The effects of immobilization remediation of Cd-contaminated soils using sepiolite on soil pH, enzyme activities and microbial communities, TCLP-Cd (toxicity characteristic leaching procedure-Cd) concentration, and spinach (Spinacia oleracea) growth and Cd uptake and accumulation were investigated. Results showed that the addition of sepiolite could increase soil pH, while the TCLP-Cd concentration in soil was decreased with increasing sepiolite. The changes of soil enzyme activities and bacteria number indicated that a certain metabolic recovery occurred after the sepiolite treatments, and spinach shoot biomass increased by 58.5%-65.5% in comparison with the control group when the concentration of sepiolite was < or = 10 g/kg. However, the Cd concentrations in the shoots and roots of spinach decreased with an increase in the rate of sepiolite, experiencing 38.4%-59.1% and 12.6%-43.6% reduction, respectively, in contrast to the control. The results indicated that sepiolite has the potential for success on a field scale in reducing Cd entry into the food chain.

  5. Removal of oxyfluorfen from ex-situ soil washing fluids using electrolysis with diamond anodes.

    Science.gov (United States)

    dos Santos, Elisama Vieira; Sáez, Cristina; Martínez-Huitle, Carlos Alberto; Cañizares, Pablo; Rodrigo, Manuel Andres

    2016-04-15

    In this research, firstly, the treatment of soil spiked with oxyfluorfen was studied using a surfactant-aided soil-washing (SASW) process. After that, the electrochemical treatment of the washing liquid using boron doped diamond (BDD) anodes was performed. Results clearly demonstrate that SASW is a very efficient approach in the treatment of soil, removing the pesticide completely by using dosages below 5 g of sodium dodecyl sulfate (SDS) per Kg of soil. After that, complete mineralization of organic matter (oxyflourfen, SDS and by-products) was attained (100% of total organic carbon and chemical oxygen demand removals) when the washing liquids were electrolyzed using BDD anodes, but the removal rate depends on the size of the particles in solution. Electrolysis of soil washing fluids occurs via the reduction in size of micelles until their complete depletion. Lower concentrations of intermediates are produced (sulfate, chlorine, 4-(trifluoromethyl)-phenol and ortho-nitrophenol) during BDD-electrolyzes. Finally, it is important to indicate that, sulfate (coming from SDS) and chlorine (coming from oxyfluorfen) ions play an important role during the electrochemical organic matter removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Regeneration strategies of polymers employed in ex-situ remediation of contaminated soil: Bioregeneration versus solvent extraction.

    Science.gov (United States)

    Mosca Angelucci, Domenica; Tomei, M Concetta

    2015-08-15

    In this study we evaluated the feasibility of two regeneration strategies of contaminated polymers employed for ex-situ soil remediation in a two-step process. Soil decontamination is achieved by sorption of the pollutants on the polymer beads, which are regenerated in a subsequent step. Tested soil was contaminated with a mixture of 4-chlorophenol and pentachlorophenol, and a commercial polymer, Hytrel, has been employed for extraction. Removal efficiencies of the polymer-soil extraction are in the range of 51-97% for a contact time ≤ 24 h. Two polymer regeneration strategies, solvent extraction and biological regeneration (realized in a two-phase partitioning bioreactor), were tested and compared. Performance was assessed in terms of removal rates and efficiencies and an economic analysis based on the operating costs has been performed. Results demonstrated the feasibility of both regeneration strategies, but the bioregeneration was advantageous in that provided the biodegradation of the contaminants desorbed from the polymer. Practically complete removal for 4-chlorophenol and up to 85% biodegradation efficiency for pentachlorophenol were achieved. Instead, in the solvent extraction, a relevant production (184-831 L kg(pol)(-1)) of a highly polluted stream to be treated or disposed of is observed. The cost analysis of the two strategies showed that the bioregeneration is much more convenient with operating costs of ∼12 €/kg(pol) i.e. more than one order of magnitude lower in comparison to ∼233 €/kg(pol) of the solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Multiphase, multi-electrode Joule heat computations for glass melter and in situ vitrification simulations

    International Nuclear Information System (INIS)

    Lowery, P.S.; Lessor, D.L.

    1991-02-01

    Waste glass melter and in situ vitrification (ISV) processes represent the combination of electrical thermal, and fluid flow phenomena to produce a stable waste-from product. Computational modeling of the thermal and fluid flow aspects of these processes provides a useful tool for assessing the potential performance of proposed system designs. These computations can be performed at a fraction of the cost of experiment. Consequently, computational modeling of vitrification systems can also provide and economical means for assessing the suitability of a proposed process application. The computational model described in this paper employs finite difference representations of the basic continuum conservation laws governing the thermal, fluid flow, and electrical aspects of the vitrification process -- i.e., conservation of mass, momentum, energy, and electrical charge. The resulting code is a member of the TEMPEST family of codes developed at the Pacific Northwest Laboratory (operated by Battelle for the US Department of Energy). This paper provides an overview of the numerical approach employed in TEMPEST. In addition, results from several TEMPEST simulations of sample waste glass melter and ISV processes are provided to illustrate the insights to be gained from computational modeling of these processes. 3 refs., 13 figs

  8. In-Situ Measurements of the Performance of Thermosyphon Solar Water Heating Systems in Libya

    International Nuclear Information System (INIS)

    Abdunnabi, M. I. R.; Loveday, D. L.

    2014-01-01

    This paper reports on a project carried out by the Centre for Solar Energy Research and Studies (CSERS) to familiarize Libyan people with solar water heating technologies. Around 100 solar water heaters have been installed in the domestic sector and selected systems were equipped with monitoring instruments required to evaluate thermal performance. The paper presents the results of data collected over a one year period from a system installed in a family residence situated in a village located 90 km south of Tripoli (Libyan capital). The results showed that the system solar fraction was 55.8% of the average amount of daily hot water withdrawn (144 liters) at an average withdrawal temperature of 46.6 °. The total energy withdrawn during the whole year was 1557 kWl1. It is concluded that such a system is not adequate in terms of cost effectiveness for the current installed situation. It is recommended that the annual solar fraction for any solar water heating system should be over 70° in order to achieve cost—effectiveness and to help wide spread take—up of this technology.(author)

  9. Ex situ remediation of polluted soils by absorptive polymers, and a comparison of slurry and two-phase partitioning bioreactors for ultimate contaminant degradation.

    Science.gov (United States)

    Tomei, M Concetta; Mosca Angelucci, Domenica; Annesini, M Cristina; Daugulis, Andrew J

    2013-11-15

    The present study has provided a comparison between a conventional ex situ method for the treatment of contaminated soil, a soil slurry bioreactor, with a novel technology in which a contaminant is rapidly and effectively removed from the soil by means of absorptive polymer beads, which are then added to a two-phase partitioning bioreactor (TPPB) for biodegradation of the target molecule. 4-nitrophenol (4NP) was selected as a model contaminant, being representative of a large class of xenobiotics, and the DuPont thermoplastic Hytrel™ 8206 was utilized for its extraction from soil over ranges of soil contamination level, soil moisture content, and polymer:soil ratios. Since the polymers were able to rapidly (up to 77% and 85% in 4 and 24h respectively) and selectively remove the contaminant, the soil retained its nutrient and microflora content, which is in contrast to soil washing which can remove these valuable soil resources. After 4h of reaction time, the TPPB system demonstrated removal efficiency four times higher (77% vs 20%) than the slurry system, with expected concomitant savings in time and energy. A volumetric removal rate of 75 mg4NPh(-1) L(-1) was obtained in the TPPB, significantly greater than the value of 1.7 obtained in the slurry bioreactor. The polymers were readily regenerated for subsequent reuse, demonstrating the versatility of the polymer-based soil treatment technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Application of the differential soil bioreactor to in-situ biodegradation of trichloroethylene at the Savannah River Site

    International Nuclear Information System (INIS)

    Andrews, G.F.; Hansen, S.G.

    1994-01-01

    The differential soil bioreactor is a continuous-flow, laboratory treatability-study device in which groundwater, supplemented with nutrients, is recirculated through a disc of aquifer material at a rate that simulates actual groundwater flow. A high recycle ratio ensures that all bacteria in the disc are exposed to the same physiochemical environment, so rate and yield parameters needed for modeling in-situ bioremediation can, in principle, be derived directly from measurements of inlet and outlet concentrations of contaminants, nutrients and cells. Results are shown for the biodegradation of trichloroethylene by methanotrophic bacteria in sediments from the Savannah River site. The limitations of the technique for slow-flowing aquifers are discussed

  11. Interdependence of soil and agricultural practice in a two - year phytoremediation in situ experiment

    Science.gov (United States)

    Nwaichi, Eucharia; Onyeike, Eugene; Frac, Magdalena; Iwo, Godknows

    2016-04-01

    A two - year plant - based soil clean - up was carried out at a crude oil spill agricultural site in a Niger Delta community in Nigeria to access further clean - up potentials of Cymbopogon citratus. Applied diagnostic ratios identified mixed petrogenic and pyrogenic sources as the main contributors of PAHs. Up to 90.8% sequestration was obtained for carcinogenic PAHs especially Benz (a) pyrene in a 2 - phase manner. A community level approach for assessing patterns of sole carbon source utilization by mixed microbial samples was employed to differentiate spatial and temporal changes in the soil microbial communities. In relation to pollution, soil conditioning notably decreased the lag times and showed mixed effects for colour development rates, maximum absorbance and the overall community pattern. For rate and utilization of different carbon substrates in BIOLOG wells, after day 3, in comparison to control soil communities, contamination with hydrocarbons and associated types increased amines and amides consumption. Consumption of carbohydrates in all polluted and unamended regimes decreased markedlyin comparison to those cultivated with C. citratus. We found a direct relationship between cellulose breakdown, measurable with B-glucosidase activity, organic matter content and CO2 realease within all soils in the present study. Organic amendment rendered most studied contaminants unavailable for uptake in preference to inorganic fertilizer in both study years. Generally, phytoremediation improved significantly the microbial community activity and thus would promote ecosystem restoration in relation to most patronised techniques. Supplementation with required nutrients, in a long - term design would present many ecological benefits. Keywords: Agricultural soils; Recovery; Hydrocarbon pollution; Ecology; Management practice.

  12. Quality of Irrigation Water Affects Soil Functionality and Bacterial Community Stability in Response to Heat Disturbance.

    Science.gov (United States)

    Frenk, Sammy; Hadar, Yitzhak; Minz, Dror

    2018-02-15

    Anthropogenic activities alter the structure and function of a bacterial community. Furthermore, bacterial communities structured by the conditions the anthropogenic activities present may consequently reduce their stability in response to an unpredicted acute disturbance. The present mesocosm-scale study exposed soil bacterial communities to different irrigation water types, including freshwater, fertilized freshwater, treated wastewater, and artificial wastewater, and evaluated their response to a disturbance caused by heat. These effectors may be considered deterministic and stochastic forces common in agricultural operations of arid and semiarid regions. Bacterial communities under conditions of high mineral and organic carbon availability (artificial wastewater) differed from the native bacterial community and showed a proteobacterial dominance. These bacterial communities had a lower resistance to the heat treatment disturbance than soils under conditions of low resource availability (high-quality treated wastewater or freshwater). The latter soil bacterial communities showed a higher abundance of operational taxonomic units (OTUs) classified as Bacilli These results were elucidated by soil under conditions of high resource availability, which lost higher degrees of functional potential and had a greater bacterial community composition change. However, the functional resilience, after the disturbance ended, was higher under a condition of high resource availability despite the bacterial community composition shift and the decrease in species richness. The functional resilience was directly connected to the high growth rates of certain Bacteroidetes and proteobacterial groups. A high stability was found in samples that supported the coexistence of both resistant OTUs and fast-growing OTUs. IMPORTANCE This report presents the results of a study employing a hypothesis-based experimental approach to reveal the forces involved in determining the stability of a

  13. Final report, Ames Mobile Laboratory Project: The development and operation of instrumentation in a mobile laboratory for in situ, real-time screening and characterization of soils using the laser ablation sampling technique

    International Nuclear Information System (INIS)

    Anderson, M.S.; Braymen, S.D.

    1995-01-01

    The main focus of the Ames Laboratory's Technology Integration Program, TIP, from May 1991 through December 1994 was the development, fabrication, and demonstration of a mobile instrumentation laboratory incorporating rapid in situ sampling systems for safe, rapid, and cost effective soil screening/characterization. The Mobile Demonstration Laboratory for Environmental Screening Technologies, MDLEST, containing the analysis instrumentation, along with surface and subsurface sampling probe prototypes employing the laser ablation sampling technique were chosen to satisfy the particular surface and subsurface soil characterization needs of the various Department of Energy facilities for determining the extent of heavy metal and radionuclide contamination. The MDLEST, a 44 foot long 5th wheel trailer, is easily configured for the analysis instrumentation and sampling system required for the particular site work. This mobile laboratory contains all of the utilities needed to satisfy the operating requirements of the various instrumentation installed. These utilities include, an electric generator, a chilled water system, process gases, a heating/air conditioning system, and computer monitoring and automatic operating systems. Once the MDLEST arrives at the job site, the instrumentation is aligned and calibration is completed, sampling and analysis operations begin. The sample is acquired, analyzed and the results reported in as little as 10 minutes. The surface sampling probe is used in two modes to acquire samples for analysis. It is either set directly on the ground over the site to be sampled, in situ sampling, or in a special fixture used for calibrating the sampling analysis system with standard soil samples, having the samples brought to the MDLEST. The surface sampling probe was used to in situ sample a flat concrete surface (nondestructively) with the ablated sample being analyzed by the instrumentation in the MDLEST

  14. Soil nitrogen availability and in situ nitrogen uptake by Acer rubrum L. and Pinus palustris Mill. in the southeastern U.S. Coastal Plain

    Science.gov (United States)

    Plant uptake of soil organic N in addition to inorganic N could play an important role in ecosystem N cycling as well as plant nutrition. We measured in situ plant uptake of organic and inorganic N by the dominant canopy species in two contrasting temperate forest ecosystems (bottomland floodplain ...

  15. In situ sampling of small volumes of soil solution using modified micro-suction cups

    NARCIS (Netherlands)

    Shen, Jianbo; Hoffland, E.

    2007-01-01

    Two modified designs of micro-pore-water samplers were tested for their capacity to collect unbiased soil solution samples containing zinc and citrate. The samplers had either ceramic or polyethersulfone (PES) suction cups. Laboratory tests of the micro-samplers were conducted using (a) standard

  16. School of Socrates 3, Roxboro : the impact of soil contaminated with heating oil on the health of occupants

    International Nuclear Information System (INIS)

    Beausoleil, M.; Brodeur, J.

    2004-04-01

    In 2001, a heating oil leak was discovered in the underground reservoir at the School of Socrates III, in Roxboro, Quebec. In response to concerns regarding the strong odour that was noticed by the school occupants, part of the soil was decontaminated. However, in 2002, while excavating the soil for the construction of a cafeteria, some remaining contaminated soil was noticed. The Quebec Ministry of Environment requested a study to clarify the extent of the soil contamination, and to study the air quality in order to be assured that soil contamination did not impact the indoor air quality or the health of the occupants of the school. Heating oil is comprised of hydrocarbons that are not as volatile as natural gas, but its presence is quickly noticed because of its very strong odour. Exposure by occupants to strong concentrations to heating oil vapours could cause irritations to eyes, respiratory airways, skin, and central nervous system. The study revealed a non-negligible contamination of soils at the school by contaminants specific to heating oil (petroleum hydrocarbons, polycyclic aromatic hydrocarbons, methylnaphtalenes). The soil contamination did not extend beyond one metre deep and was not in contact with soil at the surface or with the concrete foundation. As such, the heating oil vapours did not migrate into the indoor air. In 2002, 2003 and 2004 concentrations of total volatile organic compounds were sampled inside the school to verify that the heating oils did not infiltrate the indoor air. The measurements proved that there were no high concentrations of volatile organic compounds inside the school. In addition, all parameters measured in the school's drinking water respected regulations regarding potable water quality. 16 refs., 5 figs., 5 appendices

  17. Sound absorption coefficient in situ: an alternative for estimating soil loss factors.

    Science.gov (United States)

    Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina

    2015-01-01

    The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. In situ stabilization of mixed radioactive waste storage tanks and contaminated soil areas

    International Nuclear Information System (INIS)

    Matthern, G.E.; Meservey, R.H.

    1997-01-01

    Within the Department of Energy (DOE) Complex, there are a number of small (<50,000 gallons) underground Storage tanks containing mixed waste materials. The radioactive content of wastes eliminates the feasibility for hazardous waste treatment in accordance with previously prescribed Resource Conservation and Recovery Act (RCRA) technologies. As a result, DOE is funding in situ stabilization technology development for these tanks, Some of this development work has been done at the Idaho National Engineering and Environmental Laboratory (INEEL) and the initial efforts there were concentrated on the stabilization of the contents of the Test Area North (TAN) V-9 Tank. This is a 400 gallon underground tank filled with about 320 gallons of liquids and silty sediments. Sampling data indicates that approximately 50 wt% of the tank contents is aqueous-phase liquids. The vertically oriented cylindrical tank has a conical bottom and a chordal baffle that separates the tank inlet from its outlet. Access to the tank is through a six inch diameter access pipe on top of the tank. Because of the high volume, and the high concentration of aqueous-phase materials, Tank V-9 stabilization efforts have focussed on applying in situ agitation with dry feed addition to stabilize its contents. Materials selected for dry feed addition to this tank include a mixture of Aquaset IIH, and Type I/II Portland cement. This paper describes the results of proof-of-concept tests performed on full scale mockups of the Tank V-9. This proof-of-concept test were used to set operating parameters for in situ mixing, as well as evaluate how variations in Aquaset IIH/Portland cement ratio and sediment to liquid volume affected mixing of the tank

  19. Heat-Activated Persulfate Oxidation of Chlorinated Solvents in Sandy Soil

    Directory of Open Access Journals (Sweden)

    Jialu Liu

    2014-01-01

    Full Text Available Heat-activated persulfate oxidative treatment of chlorinated organic solvents containing chlorinated ethenes and ethanes in soil was investigated with different persulfate dosages (20 g/L, 40 g/L, and 60 g/L and different temperatures (30°C, 40°C, and 50°C. Chlorinated organic solvents removal was increased as persulfate concentration increase. The persulfate dosage of 20 g/L with the highest OE (oxidant efficiency value was economically suitable for chlorinated organic solvents removal. The increasing temperature contributed to the increasing depletion of chlorinated organic solvents. Chlorinated ethenes were more easily removed than chlorinated ethanes. Moreover, the persulfate depletion followed the pseudo-first-order reaction kinetics (kps=0.0292 [PS]0+0.0008, R2=0.9771. Heat-activated persulfate appeared to be an effective oxidant for treatment of chlorinated hydrocarbons.

  20. Potential of activated carbon to recover randomly-methylated-β-cyclodextrin solution from washing water originating from in situ soil flushing.

    Science.gov (United States)

    Sniegowski, K; Vanhecke, M; D'Huys, P-J; Braeken, L

    2014-07-01

    Despite the overall high efficacy of cyclodextrins to accelerate the treatment of soil aquifer remediation by in-situ soil flushing, the use in practice remains limited because of the high costs of cyclodextrin and high concentrations needed to significantly reduce the treatment time. The current study tested the potential of activated carbon to treat washing water originating from soil flushing in order to selectively separate hydrocarbon contaminants from washing water containing cyclodextrin and subsequently reuse the cyclodextrin solution for reinfiltration. A high recovery of the cyclodextrin from the washing water would reduce the costs and would make the technique economically feasible for soil remediation. This study aimed to investigate whether cyclodextrin can pass through the activated carbon filter without reducing the cyclodextrin concentration when the contaminated washing water is treated and whether the presence of cyclodextrin negatively affects the purification potential of activated carbon to remove the organic pollutants from the pumped soil water. Lab-scale column experiments showed that with the appropriate activated carbon 100% of cyclodextrin (randomly-methylated-β-cyclodextrin) can be recovered from the washing water and that the effect on the efficiency of activated carbon to remove the hydrocarbon contaminants remains limited. These results show that additional field tests are useful to make in-situ soil flushing with cyclodextrin both a technical and an economical interesting technique. These results might stimulate the application of cyclodextrin in soil treatment technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Biostimulation proved to be the most efficient method in the comparison of in situ soil remediation treatments after a simulated oil spill accident.

    Science.gov (United States)

    Simpanen, Suvi; Dahl, Mari; Gerlach, Magdalena; Mikkonen, Anu; Malk, Vuokko; Mikola, Juha; Romantschuk, Martin

    2016-12-01

    The use of in situ techniques in soil remediation is still rare in Finland and most other European countries due to the uncertainty of the effectiveness of the techniques especially in cold regions and also due to their potential side effects on the environment. In this study, we compared the biostimulation, chemical oxidation, and natural attenuation treatments in natural conditions and pilot scale during a 16-month experiment. A real fuel spill accident was used as a model for experiment setup and soil contamination. We found that biostimulation significantly decreased the contaminant leachate into the water, including also the non-aqueous phase liquid (NAPL). The total NAPL leachate was 19 % lower in the biostimulation treatment that in the untreated soil and 34 % lower in the biostimulation than oxidation treatment. Soil bacterial growth and community changes were first observed due to the increased carbon content via oil amendment and later due to the enhanced nutrient content via biostimulation. Overall, the most effective treatment for fresh contaminated soil was biostimulation, which enhanced the biodegradation of easily available oil in the mobile phase and consequently reduced contaminant leakage through the soil. The chemical oxidation did not enhance soil cleanup and resulted in the mobilization of contaminants. Our results suggest that biostimulation can decrease or even prevent oil migration in recently contaminated areas and can thus be considered as a potentially safe in situ treatment also in groundwater areas.

  2. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p bioremediation.

  3. In-situ γ spectrometry of the Chernobyl fallout using soil-sample independent corrections for surface roughness and migration

    International Nuclear Information System (INIS)

    Karlberg, O.

    1993-12-01

    The 661 keV gamma and 32 keV X-ray fluences from Cs-137 were measured in-situ with a Gamma-X Ge detector on different types of urban and rural surfaces. In comparison with a model calculation, the 661 keV fluence was used to estimate the surface activity assuming an ideal, infinite surface and the quotient between the 32 and 661 fluences was used to estimate the correction factors for the surfaces due to migration and surface roughness. As an alternative to the X-ray method, the use of a collimator for ordinary measurements of the 661 keV peak was analysed, and compared with the X-ray method and with measurements without a collimator. The X-ray method with the optimal soil distribution and composition gives the best results, but ordinary measurements with use of a collimator with a constant correction factor seems to be an appropriate method, when soil profiles for determination of a more exact calibration factor are not available

  4. Standard practice for in situ examination of ferromagnetic Heat-Exchanger tubes using remote field testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes procedures to be followed during remote field examination of installed ferromagnetic heat-exchanger tubing for baseline and service-induced discontinuities. 1.2 This practice is intended for use on ferromagnetic tubes with outside diameters from 0.500 to 2.000 in. [12.70 to 50.80 mm], with wall thicknesses in the range from 0.028 to 0.134 in. [0.71 to 3.40 mm]. 1.3 This practice does not establish tube acceptance criteria; the tube acceptance criteria must be specified by the using parties. 1.4 Units—The values stated in either inch-pound units or SI units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this practice to establ...

  5. A New Scheme for Considering Soil Water-Heat Transport Coupling Based on Community Land Model: Model Description and Preliminary Validation

    Science.gov (United States)

    Wang, Chenghai; Yang, Kai

    2018-04-01

    Land surface models (LSMs) have developed significantly over the past few decades, with the result that most LSMs can generally reproduce the characteristics of the land surface. However, LSMs fail to reproduce some details of soil water and heat transport during seasonal transition periods because they neglect the effects of interactions between water movement and heat transfer in the soil. Such effects are critical for a complete understanding of water-heat transport within a soil thermohydraulic regime. In this study, a fully coupled water-heat transport scheme (FCS) is incorporated into the Community Land Model (version 4.5) to replaces its original isothermal scheme, which is more complete in theory. Observational data from five sites are used to validate the performance of the FCS. The simulation results at both single-point and global scale show that the FCS improved the simulation of soil moisture and temperature. FCS better reproduced the characteristics of drier and colder surface layers in arid regions by considering the diffusion of soil water vapor, which is a nonnegligible process in soil, especially for soil surface layers, while its effects in cold regions are generally inverse. It also accounted for the sensible heat fluxes caused by liquid water flow, which can contribute to heat transfer in both surface and deep layers. The FCS affects the estimation of surface sensible heat (SH) and latent heat (LH) and provides the details of soil heat and water transportation, which benefits to understand the inner physical process of soil water-heat migration.

  6. Soil behavior under earthquake loading conditions. In situ impulse test for determination of shear modulus for seismic response analyses. Progress report

    International Nuclear Information System (INIS)

    1974-06-01

    Progress is reported in the determination of the best methods of evaluation and prediction of soil behavior of potential nuclear power plant sites under seismic loading conditions. Results are reported of combined experimental and analytical studies undertaken to continue development of an in situ impulse test for determination of the soil shear modulus. Emphasis of the field work was directed toward making the field measurements at frequent depth intervals and at shear strains in the strong motion earthquake range. Emphasis of the analytical work was aimed toward supporting the field effort through processing and evaluation of the experimental test results combined with additional calculations required to gain insight into data interpretation and the in situ test setup itself. Continuing studies to evaluate free field soil behavior under earthquake loading conditions are discussed. (U.S.)

  7. In-situ active/passive bioreclamation of vadose zone soils contaminated with gasoline and waste oil using soil vapor extraction/bioventing: Laboratory pilot study to full scale site operation

    International Nuclear Information System (INIS)

    Zachary, S.P.; Everett, L.G.

    1993-01-01

    The use of soil venting to supply oxygen and remove metabolites from the biodegradation of light hydrocarbons is a cost effective in-situ remediation approach. To date, little data exists on the effective in-situ bioreclamation of vadose zone soil contaminated with waste/hydraulic oil without excavation or the addition of water or nutrients to degrade the heavy petroleum contaminants. Gasoline and waste/hydraulic oil contaminated soils below an active commercial building required an in-situ non-disruptive remediation approach. Initial soil vapor samples collected from the vadose zone revealed CO 2 concentrations in excess of 16% and O 2 concentrations of less than 1% by volume. Soil samples were collected from below the building within the contaminated vadose zone for laboratory chemical and physical analysis as well as to conduct a laboratory biotreatability study. The laboratory biotreatability study was conducted for 30 days to simulate vadose zone bioventing conditions using soil taken from the contaminated vadose zone. Results of the biotreatability study revealed that the waste oil concentrations had been reduced from 960 mg/Kg to non-detectable concentrations within 30 days and the volatile hydrocarbon content had decreased exponentially to less than 0.1% of the original concentration. Post treatability study biological enumeration revealed an increase in the microbial population of two orders of magnitude

  8. In situ nuclear magnetic response of permafrost and active layer soil in boreal and tundra ecosystems

    DEFF Research Database (Denmark)

    Kass, Mason Andrew; Irons, Trevor; Minsley, Burke J.

    2017-01-01

    Characterization of permafrost, particularly warm and near-surface permafrost which can contain significant liquid water, is critical to understanding complex interrelationships with climate change, ecosystems, and disturbances such as wildfires. Understanding the vulnerability and resilience...... of the nuclear magnetic resonance (NMR) response of the active layer and permafrost in a variety of soil conditions, types, and saturations. In this paper, we summarize the NMR data and present quantitative relationships between active layer and permafrost liquid water content and pore sizes and show...

  9. A New Technique for Deep in situ Measurements of the Soil Water Retention Behaviour

    DEFF Research Database (Denmark)

    Rocchi, Irene; Gragnano, Carmine Gerardo; Govoni, Laura

    2018-01-01

    to monitor shallow landslides and seasonal volume changes beneath shallow foundations, within the most superficial ground strata. In this paper, a novel installation technique is presented, discussed and assessed, which allows to extend the use of commercially available low cost and low maintenance...... to the field data. The results of this study offer a convenient starting point to accommodate important geotechnical works such as river and road embankments in the traditional monitoring of unsaturated soil variables....

  10. In situ studies of pesticides photodegradation on soils using PD-TOFMS technique

    Science.gov (United States)

    Thomas, J. P.; Bejjani, A.; Nsouli, B.; Gardon, A.; Chovelon, J. M.

    2009-01-01

    As we have demonstrated that plasma desorption time-of-flight mass spectrometry (PD-TOFMS) is well adapted to the direct characterization of pesticides adsorbed on agricultural soils the technique has been applied for the first time to the study of their evolution under sunlight-like irradiation. Two pesticides have been selected: norflurazon which is the most documentated (both from the literature and from our previous experiments) and oxyfluorfen in order to assess the capability of the technique. The photodegradation process has been investigated both for a deposit onto a metallic substrate and for a soil impregnated with the product. For norflurazon degradation parameters have been extracted from the yield variation of ions representative of the molecule and breakdown products and particularly the time required for 50% dissipation of their initial concentration (DT50 values). The comparison between deposits and soils indicates clearly that the degradation is slower in the latter case with an increase of about 3.5 for the DT50 of the molecule, and about 2 for its breakdown products. These values are in agreement with the decays of other ions. As expected, the degradation is faster when the UV of the sunlight is unfiltered, more significantly for the breakdown products. This is also observed for the oxyfluorfen deposited onto aluminium although at a lower level (twice less). The trends are only qualitative for the impregnated soil but definitely there. A discussion is presented for the interpretation of the photodegradation process in both cases together with suggestions of improvement in the data acquisition.

  11. Detector system for in-situ spectrometric analysis of 241Am and Pu in soil

    International Nuclear Information System (INIS)

    Kirby, J.A.; Anspaugh, L.R.; Phelps, P.L.; Amantrout, G.A.; Sawyer, D.

    1975-01-01

    This system for quantitative analysis of Pu in soil via 241 Am has four 2.5-mm high-purity Ge detectors of 33 cm 2 total detecting surface area. These detectors are paralleled by gating circuitry to avoid the degradation of energy resolution associated with electronic output summing. In field tests the system was approximately three times as sensitive as a 70-cm 3 Ge(Li) detector and approximately an order of magnitude more sensitive than the FIDLER system

  12. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer, E-mail: odahan@bgu.ac.il; Ronen, Zeev, E-mail: zeevrone@bgu.ac.il

    2017-02-15

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10{sup 5} to 10{sup 7} copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  13. Using the natural biodegradation potential of shallow soils for in-situ remediation of deep vadose zone and groundwater

    International Nuclear Information System (INIS)

    Avishai, Lior; Siebner, Hagar; Dahan, Ofer; Ronen, Zeev

    2017-01-01

    Highlights: • Integrated in-situ remediation treatment for soil, vadose zone and groundwater. • Turning the topsoil into an efficient bioreactor for perchlorate degradation. • Treating perchlorate leachate from the deep vadose zone in the topsoil. • Zero effluents discharge from the remediation process. - Abstract: In this study, we examined the ability of top soil to degrade perchlorate from infiltrating polluted groundwater under unsaturated conditions. Column experiments designed to simulate typical remediation operation of daily wetting and draining cycles of contaminated water amended with an electron donor. Covering the infiltration area with bentonite ensured anaerobic conditions. The soil remained unsaturated, and redox potential dropped to less than −200 mV. Perchlorate was reduced continuously from ∼1150 mg/L at the inlet to ∼300 mg/L at the outlet in daily cycles. Removal efficiency was between 60 and 84%. No signs of bioclogging were observed during three operation months although occasional iron reduction observed due to excess electron donor. Changes in perchlorate reducing bacteria numbers were inferred from an increased in pcrA gene abundances from ∼10"5 to 10"7 copied per gram at the end of the experiment indicating the growth of perchlorate-reducing bacteria. We proposed that the topsoil may serve as a bioreactor to treat high concentrations of perchlorate from the contaminated groundwater. The treated water that infiltrates from the topsoil through the vadose zone could be used to flush perchlorate from the deep vadose zone into the groundwater where it is retrieved again for treatment in the topsoil.

  14. Evaluation of the optimal strategy for ex situ bioremediation of diesel oil-contaminated soil.

    Science.gov (United States)

    Lin, Ta-Chen; Pan, Po-Tsen; Young, Chiu-Chung; Chang, Jo-Shu; Chang, Tsung-Chung; Cheng, Sheng-Shung

    2011-11-01

    Bioaugmentation and biostimulation have been widely applied in the remediation of oil contamination. However, ambiguous results have been reported. It is important to reveal the controlling factors on the field for optimal selection of remediation strategy. In this study, an integrated field landfarming technique was carried out to assess the relative effectiveness of five biological approaches on diesel degradation. The limiting factors during the degradation process were discussed. A total of five treatments were tested, including conventional landfarming, nutrient enhancement (NE), biosurfactant addition (BS), bioaugmentation (BA), and combination of bioaugmentation and biosurfactant addition (BAS). The consortium consisted of four diesel-degrading bacteria strains. Rhamnolipid was used as the biosurfactant. The diesel concentration, bacterial population, evolution of CO(2), and bacterial community in the soil were periodically measured. The best overall degradation efficiency was achieved by BAS treatment (90 ± 2%), followed by BA (86 ± 2%), NE (84 ± 3%), BS (78 ± 3%), and conventional landfarming (68 ± 3%). In the early stage, the total petroleum hydrocarbon was degraded 10 times faster than the degradation rates measured during the period from day 30 to 100. At the later stage, the degradation rates were similar among treatments. In the conventional landfarming, contaminated soil contained bacteria ready for diesel degradation. The availability of hydrocarbon was likely the limiting factor in the beginning of the degradation process. At the later stage, the degradation was likely limited by desorption and mass transfer of hydrocarbon in the soil matrix.

  15. Winter survival of microbial contaminants in soil: an in situ verification.

    Science.gov (United States)

    Bucci, Antonio; Allocca, Vincenzo; Naclerio, Gino; Capobianco, Giovanni; Divino, Fabio; Fiorillo, Francesco; Celico, Fulvio

    2015-01-01

    The aim of the research was to evaluate, at site scale, the influence of freezing and freeze/thaw cycles on the survival of faecal coliforms and faecal enterococci in soil, in a climate change perspective. Before the winter period and during grazing, viable cells of faecal coliforms and faecal enterococci were detected only in the first 10 cm below ground, while, after the winter period and before the new seasonal grazing, a lower number of viable cells of both faecal indicators was detected only in some of the investigated soil profiles, and within the first 5 cm. Taking into consideration the results of specific investigations, we hypothesise that the non-uniform spatial distribution of grass roots within the studied soil can play an important role in influencing this phenomenon, while several abiotic factors do not play any significant role. Taking into account the local trend in the increase of air temperature, a different distribution of microbial pollution over time is expected in spring waters, in future climate scenarios. The progressive increase in air temperature will cause a progressive decrease in freeze/thaw cycles at higher altitudes, minimising cold shocks on microbial cells, and causing spring water pollution also during winter. Copyright © 2014. Published by Elsevier B.V.

  16. Evaluation of soil thermal potential under Tunisian climate using a new conic basket geothermal heat exchanger: Energy and exergy analysis

    International Nuclear Information System (INIS)

    Boughanmi, Hassen; Lazaar, Mariem; Farhat, Abdelhamid; Guizani, Amenallah

    2017-01-01

    Highlights: • Conic geothermal basket heat exchanger (CBGHE) is experimentally investigated. • Charging and discharging processes of CBGHE are evaluated. • Energy and exergy efficiencies of CBGHE are performed. • High and stable performance of surface geothermal energy in Tunisia is established. - Abstract: Geothermal heat exchangers system composed of two conic baskets serially connected is designed and realized. Both heat exchangers are made in polyethylene high-density material and have a length of 3 m each one. They will be used for greenhouse cooling and heating through a geothermal heat pump. Its conical geometry is selected to reduce the operation cost and the exploited area, compared to vertical and horizontal geothermal heat exchangers often used. It also assures the maximum of heat exchange with the soil. The aim of this study is to determine the thermal performance of one Conic Basket Geothermal Heat Exchanger (CBGHE), buried at 3 m deep, in the exploitation of the soil thermal potential, in summer. A rate of heat exchange with the soil is determined and the global heat exchange of the CBGHE is assessed. Its energy and exergy efficiencies are also evaluated using both first and second law of thermodynamic. Results show that the specific heat exchange ranges between 20 W m"−"1 and 50 W m"−"1. Maximal energetic and exergetic efficiencies of the CBGHE, equal to 62% and 37% respectively, are reached for a mass flow rate of 0.1 kg s"−"1. For this value of mass flow rate, the overall heat exchange coefficient is of 52 W m"−"2 K"−"1.

  17. In-situ heating TEM observation of microscopic structural changes of size-controlled metallic copper/gelatin composite.

    Science.gov (United States)

    Narushima, Takashi; Hyono, Atsushi; Nishida, Naoki; Yonezawa, Tetsu

    2012-10-01

    Copper/gelatin composite particles with controlled sizes were prepared at room temperature from cupric sulfate pentahydrate in the presence of gelatin as a protective reagent by using hydrazine monohydrate as a reducing agent. The formed particles with the size between 190-940 nm were secondary aggregated particles which were composed of smaller nanosized particles ("particle-in-particle"), the presence of which was established by XRD patterns and a cross-sectional TEM image. The sintering behavior of these copper/gelatin composite particles was demonstrated by in-situ heating TEM under a high vacuum (approximately 10(-5) Pa) and separately with the oxygen partial pressure controlled at the 10(-4) Pa level. It was established that the particles began to sinter at about 330 degrees C with the oxygen and that they sublimate above 450 degrees C both in the vacuum and oxygen conditions. This result shows that the introduction of an adequate amount of oxygen was effective to remove the gelatin surrounding the particles. It can also be concluded that the sintering of the copper/gelatin composite particles occurred even in the absence of a reducing agent such as hydrogen gas.

  18. Highly textured fresnoite thin films synthesized in situ by pulsed laser deposition with CO2 laser direct heating

    International Nuclear Information System (INIS)

    Lorenz, Michael; Stölzel, Marko; Brachwitz, Kerstin; Hochmuth, Holger; Grundmann, Marius; De Pablos-Martin, Araceli; Patzig, Christian; Höche, Thomas

    2014-01-01

    Fresnoite Ba 2 TiSi 2 O 8 (BTS) thin films were grown and crystallized in situ using pulsed laser deposition (PLD) with CO 2 laser direct heating of the a-plane sapphire (1 1 0) substrates up to 1250 °C. Starting with 775 °C growth temperature, (0 0 1)- and (1 1 0)-textured BTS and BaTiO 3 phases, respectively, could be assigned in the films, and the typical fern-like BTS crystallization patterns appear. For higher process temperatures of 1100 to 1250 °C, atomically smooth, terraced surface of the films was found, accompanied by crystalline high-temperature phases of Ba–Ti–Si oxides. HAADF micrographs taken in both scanning transmission electron microscopy and energy-dispersive x-ray spectrometry mode show details of morphology and elemental distribution inside the films and at the interface. To balance the inherent Si deficiency of the BTS films, growth from glassy BTS × 2 SiO 2 and BTS × 2.5 SiO 2 targets was considered as well. The latter targets are ideal for PLD since the employed glasses possess 100% of the theoretical density and are homogeneous at the atomic scale. (paper)

  19. Soil heating in connection with outdoor garden production. Maan laemmittaeminen avomaan puutarhatuotannossa

    Energy Technology Data Exchange (ETDEWEB)

    Malkki, S.; Moilanen, J.

    1991-01-01

    Soil heating using electricity, hot water and air has been studied within Nordic countries as a way to extend the growing season in spring. The methods have not found general acceptance in practical outdoor garden production in Nordic countries, except in Iceland. The main reason for this may be the fairly high investment costs, lack of know-how, and the above-normal risks both at the cultivation stage and in marketing of the harvest. Two thirds of the respondents (177 persons) were prepared to accept the soil heating on outdoor garden production by electrical cables if it is profitable. Only one fifth of the respondents thought that it would be wasting of natural resources, and that plant protection by chemicals should be cut down in the future or to keep their use at the present level. The respondents believed that more efforts should be made in marketing of the garden products by improving the product quality, purity and aroma, because these are the most important sales promotion factors. Two thirds thought that the Finnish garden production sector would retain it's present status or improve it in the future. Organic farming and greening were believed to possess the best prerequisites for surviving the increasingly tough competition of the non-restricted European markets. Under-glass cultivation and fruit orchards in Finland were believed to run into difficulties.

  20. Constraining Parameter Uncertainty in Simulations of Water and Heat Dynamics in Seasonally Frozen Soil Using Limited Observed Data

    Directory of Open Access Journals (Sweden)

    Mousong Wu

    2016-02-01

    Full Text Available Water and energy processes in frozen soils are important for better understanding hydrologic processes and water resources management in cold regions. To investigate the water and energy balance in seasonally frozen soils, CoupModel combined with the generalized likelihood uncertainty estimation (GLUE method was used. Simulation work on water and heat processes in frozen soil in northern China during the 2012/2013 winter was conducted. Ensemble simulations through the Monte Carlo sampling method were generated for uncertainty analysis. Behavioral simulations were selected based on combinations of multiple model performance index criteria with respect to simulated soil water and temperature at four depths (5 cm, 15 cm, 25 cm, and 35 cm. Posterior distributions for parameters related to soil hydraulic, radiation processes, and heat transport indicated that uncertainties in both input and model structures could influence model performance in modeling water and heat processes in seasonally frozen soils. Seasonal courses in water and energy partitioning were obvious during the winter. Within the day-cycle, soil evaporation/condensation and energy distributions were well captured and clarified as an important phenomenon in the dynamics of the energy balance system. The combination of the CoupModel simulations with the uncertainty-based calibration method provides a way of understanding the seasonal courses of hydrology and energy processes in cold regions with limited data. Additional measurements may be used to further reduce the uncertainty of regulating factors during the different stages of freezing–thawing.

  1. IN SITU NON-INVASIVE SOIL CARBON ANALYSIS: SAMPLE SIZE AND GEOSTATISTICAL CONSIDERATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    WIELOPOLSKI, L.

    2005-04-01

    I discuss a new approach for quantitative carbon analysis in soil based on INS. Although this INS method is not simple, it offers critical advantages not available with other newly emerging modalities. The key advantages of the INS system include the following: (1) It is a non-destructive method, i.e., no samples of any kind are taken. A neutron generator placed above the ground irradiates the soil, stimulating carbon characteristic gamma-ray emission that is counted by a detection system also placed above the ground. (2) The INS system can undertake multielemental analysis, so expanding its usefulness. (3) It can be used either in static or scanning modes. (4) The volume sampled by the INS method is large with a large footprint; when operating in a scanning mode, the sampled volume is continuous. (5) Except for a moderate initial cost of about $100,000 for the system, no additional expenses are required for its operation over two to three years after which a NG has to be replenished with a new tube at an approximate cost of $10,000, this regardless of the number of sites analyzed. In light of these characteristics, the INS system appears invaluable for monitoring changes in the carbon content in the field. For this purpose no calibration is required; by establishing a carbon index, changes in carbon yield can be followed with time in exactly the same location, thus giving a percent change. On the other hand, with calibration, it can be used to determine the carbon stock in the ground, thus estimating the soil's carbon inventory. However, this requires revising the standard practices for deciding upon the number of sites required to attain a given confidence level, in particular for the purposes of upward scaling. Then, geostatistical considerations should be incorporated in considering properly the averaging effects of the large volumes sampled by the INS system that would require revising standard practices in the field for determining the number of spots to

  2. The use of vinasse as an amendment to ex-situ bioremediation of soil and groundwater contaminated with diesel oil

    Directory of Open Access Journals (Sweden)

    Adriano Pinto Mariano

    2009-08-01

    Full Text Available This work investigated the possibility of using vinasse as an amendment in ex-situ bioremediation processes. Groundwater and soil samples were collected at petrol stations. The soil bioremediation was simulated in Bartha biometer flasks, used to measure the microbial CO2 production, during 48 days, where vinasse was added at a concentration of 33 mL.Kg-1of soil. Biodegradation efficiency was also measured by quantifying the total petroleum hydrocarbons (TPH by gas chromatography. The groundwater bioremediation was carried out in laboratory experiments simulating aerated (bioreactors and not aerated (BOD flasks conditions. In both the cases, the concentration of vinasse was 5 % (v/v and different physicochemical parameters were evaluated during 20 days. Although an increase in the soil fertility and microbial population were obtained with the vinasse, it demonstrated not to be adequate to enhance the bioremediation efficiency of diesel oil contaminated soils. The addition of the vinasse in the contaminated groundwaters had negative effects on the biodegradation of the hydrocarbons, since vinasse, as a labile carbon source, was preferentially consumed.Este trabalho investigou a possibilidade de se usar a vinhaça como um agente estimulador de processos de biorremediação ex-situ. Amostras de água subterrânea e solo foram coletadas em três postos de combustíveis. A biorremediação do solo foi simulada em frascos de Bartha, usados para medir a produção de CO2, durante 48 dias, onde a vinhaça foi adicionada a uma concentração de 33 mL.Kg-1 de solo. A eficiência de biodegradação também foi medida pela quantificação de hidrocarbonetos totais de petróleo (TPH por cromatografia gasosa. A biorremediação da água subterrânea foi realizada em experimentos laboratoriais simulando condições aeradas (bioreatores e não aeradas (frascos de DBO. Em ambos os casos, a concentração de vinhaça foi de 5 % (v/v e diferentes parâmetros f

  3. Wood-derived-biochar combined with compost or iron grit for in situ stabilization of Cd, Pb, and Zn in a contaminated soil.

    Science.gov (United States)

    Oustriere, Nadège; Marchand, Lilian; Rosette, Gabriel; Friesl-Hanl, Wolfgang; Mench, Michel

    2017-03-01

    In situ stabilization of Cd, Pb, and Zn in an Austrian agricultural soil contaminated by atmospheric depositions from a smelter plant was assessed with a pine bark chip-derived biochar, alone and in combination with either compost or iron grit. Biochar amendment was also trialed in an uncontaminated soil to detect any detrimental effect. The pot experiment consisted in ten soil treatments (% w/w): untreated contaminated soil (Unt); Unt soil amended with biochar alone (1%: B1; 2.5%: B2.5) and in combination: B1 and B2.5 + 5% compost (B1C and B2.5C), B1 and B2.5 + 1% iron grit (B1Z and B2.5Z); uncontaminated soil (Ctrl); Ctrl soil amended with 1 or 2.5% biochar (CtrlB1, CtrlB2.5). After a 3-month reaction period, the soil pore water (SPW) was sampled in potted soils and dwarf beans were grown for a 2-week period. The SPW Cd, Pb, and Zn concentrations decreased in all amended-contaminated soils. The biochar effects increased with its addition rate and its combination with either compost or iron grit. Shoot Cd and Zn removals by beans were reduced and shoot Cd, Pb, and Zn concentrations decreased to common values in all amended soils except the B1 soil. Decreases in the SPW Cd/Pb/Zn concentrations did not improve the root and shoot yields of plants as compared to the Ctrl soil.

  4. In-situ treatment of PCP contaminated soil by electrokinetics-Fenton-biodegradation process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.C.C.; Chen Jenteh [Inst. of Environmental Engineering, National Sun Yat-Sen Univ., Kaohsiung (Taiwan)

    2001-07-01

    This laboratory investigation was conducted to evaluate the treatment efficiency of a process combining electrokinetic remediation (EK), Fenton process, and biodegradation for treating a pentachlorophenol (PCP) contaminated soil. For EK-Fenton experiments, the results have indicated that an increase of treatment time (e.g., from 10 to 15 days) would substantially increase the overall treatment (i.e., removal and destruction) efficiency of PCP. Only a limited increase of the treatment efficiency would be found if the concentration of FeSO{sub 4} was increased from 0.0196M to 0.098M. When scrap iron power was employed as the catalyst, the residual PCP concentration for soil near the anode end was found to be lower than that of 0.0196M FeSO{sub 4}. But its overall treatment efficiency was only 56.58%, which is lower than 68.34% obtained by using 0.0196M FeSO{sub 4} and 0.35% H{sub 2}O{sub 2}. When H{sub 2}O{sub 2} concentration was further increased to 3.5%, an overall treatment efficiency of 79.77% would be obtained when 0.0196M FeSO{sub 4} was used. When treated by EK-biodegradation process with phenol enrichment bacteria, the overall treatment efficiency of PCP was as low as 25.67%. If PCP contaminated soil was pre-treated by EK-Fenton process and followed by EK-biodegradation, an overall treatment efficiency of 100% was found to be achievable. (orig.)

  5. Analytical treatment of the relationships between soil heat flux/net radiation ratio and vegetation indices

    International Nuclear Information System (INIS)

    Kustas, W.P.; Daughtry, C.S.T.; Oevelen, P.J. van

    1993-01-01

    Relationships between leaf area index (LAI) and midday soil heat flux/net radiation ratio (G/R n ) and two more commonly used vegetation indices (VIs) were used to analytically derive formulas describing the relationship between G/R n and VI. Use of VI for estimating G/R n may be useful in operational remote sensing models that evaluate the spatial variation in the surface energy balance over large areas. While previous experimental data have shown that linear equations can adequately describe the relationship between G/Rn and VI, this analytical treatment indicated that nonlinear relationships are more appropriate. Data over bare soil and soybeans under a range of canopy cover conditions from a humid climate and data collected over bare soil, alfalfa, and cotton fields in an arid climate were used to evaluate model formulations derived for LAI and G/R n , LAI and VI, and VI and G/R n . In general, equations describing LAI-G/R n and LAI-VI relationships agreed with the data and supported the analytical result of a nonlinear relationship between VI and G/R n . With the simple ratio (NIR/Red) as the VI, the nonlinear relationship with G/R n was confirmed qualitatively. But with the normalized difference vegetation index (NDVI), a nonlinear relationship did not appear to fit the data. (author)

  6. ELECTRICAL RESISTANCE HEATING OF SOILS AT C-REACTOR AT THE SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Blundy, R; Michael Morgenstern, M; Joseph Amari, J; Annamarie MacMurray, A; Mark Farrar, M; Terry Killeen, T

    2007-01-01

    Chlorinated solvent contamination of soils and groundwater is an endemic problem at the Savannah River Site (SRS), and originated as by-products from the nuclear materials manufacturing process. Five nuclear reactors at the SRS produced special nuclear materials for the nation's defense program throughout the cold war era. An important step in the process was thorough degreasing of the fuel and target assemblies prior to irradiation. Discharges from this degreasing process resulted in significant groundwater contamination that would continue well into the future unless a soil remediation action was performed. The largest reactor contamination plume originated from C-Reactor and an interim action was selected in 2004 to remove the residual trichloroethylene (TCE) source material by electrical resistance heating (ERH) technology. This would be followed by monitoring to determine the rate of decrease in concentration in the contaminant plume. Because of the existence of numerous chlorinated solvent sources around SRS, it was elected to generate in-house expertise in the design and operation of ERH, together with the construction of a portable ERH/SVE system that could be deployed at multiple locations around the site. This paper describes the waste unit characteristics, the ERH system design and operation, together with extensive data accumulated from the first deployment adjacent to the C-Reactor building. The installation heated the vadose zone down to 62 feet bgs over a 60 day period during the summer of 2006 and raised soil temperatures to over 200 F. A total of 730 lbs of trichloroethylene (TCE) were removed over this period, and subsequent sampling indicated a removal efficiency of 99.4%

  7. Volatilization of heavy metals and radionuclides from soil heated in an induction ''cold'' crucible melter

    International Nuclear Information System (INIS)

    Aloy, A.S.; Belov, V.Z.; Trofimenko, A.S.; Dmitriev, S.A.; Stefanovsky, S.V.; Gombert, D.; Knecht, D.A.

    1997-01-01

    The behavior of heavy metals and radionuclides during high-temperature treatment is very important for the design and operational capabilities of the off-gas treatment system, as well as for a better understanding of the nature and forms of the secondary waste. In Russia, a process for high-temperature melting in an induction heated cold crucible system is being studied for vitrification of Low Level Waste (LLW) flyash and SYNROC production with simulated high level waste (HLW). This work was done as part of a Department of Energy (DOE) funded research project for thermal treatment of mixed low level waste (LLW). Soil spiked with heavy metals (Cd, Pb) and radionuclides (Cs-137, U-239, Pu-239) was used as a waste surrogate. The soil was melted in an experimental lab-scale system that consisted of a high-frequency generator (1.76 MHz, 60 kW), a cold crucible melter (300 mm high and 90 mm in diameter), a shield box, and an off-gas system. The process temperature was 1,350--1,400 C. Graphite and silicon carbide were used as sacrificial conductive materials to start heating and initial melting of the soil batch. The off-gas system was designed in such a manner that after each experiment, it can be disconnected to collect and analyze all deposits to determine the mass balance. The off-gases were also sampled during an experiment to analyze for hydrogen, NO x , carbon dioxide, carbon monoxide and chlorine formation. This paper describes distribution and mass balance of metals and radionuclides in various parts of the off-gas system. The leach rate of the solidified blocks identified by the PCT method is also reported

  8. Theoretical analysis and numerical modelling of heat transfer and fuel migration in underlying soils and constructive elements of nuclear plants during an accident release from the core

    International Nuclear Information System (INIS)

    Arutunjan, R.V.; Bolshov, L.A.; Vitukov, V.V.; Goloviznin, V.M.; Dykhne, A.M.; Kiselev, V.P.; Klementova, S.V.; Krayushkin, I.E.; Moskovchenko, A.V.; Pismennii, V.D.; Popkov, A.G.; Chernov, S.Y.; Chudanov, V.V.; Khoruzhii, O.V.; Yudin, A.I.

    1990-01-01

    Migration of fuel fragments and core fission products during severe accidents on nuclear plants is studied analytically and numerically. The problems of heat transfer and migration of volume heat sources in construction materials and underlying soils are considered

  9. Simulated in situ competitive ability and survival of a representative soil yeast, Cryptococcus albidus.

    Science.gov (United States)

    Vishniac, H S

    1995-11-01

    Microcosms containing an air-dried autoclaved loamy sand (Eufala A) with low salt and organic content were inoculated with a representative (obligately aerobic, encapsulated) soil yeast, Cryptococcus albidus var. albidus (T) ATCC 10666, singly (for growth rate and survival determinations) and together with the bacterial biota native to Eufala A. The yeast competed successfully with the more rapidly growing bacteria in the presence of added water from 1% (5.7% of field capacity) to 14% (80% of field capacity) but grew for shorter times than when grown alone; times correlated with the lag phase of the bacterial biota. When well-watered (10 and 14%) competition cultures were allowed to dry and used as inoculum for subcultures, the yeast made significant growth only at 1% added water but survived at the higher moisture concentrations. The competitive ability of Cr. albidus confirms the previously reported advantages of the cryptococcal capsule in hydration and desiccation and, together with lengthy survival, suggests that the importance of such yeasts in the biogeochemistry of arid soils has been seriously underestimated.

  10. Developing a High Fidelity Martian Soil Simulant Based on MSL Measurements: Applications for Habitability, Exploration, and In-Situ Resource Utilization

    Science.gov (United States)

    Cannon, K.; Britt, D. T.; Smith, T. M.; Fritsche, R. F.; Covey, S. D.; Batcheldor, D.; Watson, B.

    2017-12-01

    Powerful instruments, that include CheMin and SAM on the MSL Curiosity rover, have provided an unprecedented look into the mineral, chemical, and volatile composition of Martian soils. Interestingly, the bulk chemistry of the Rocknest windblown soil is a close match to similar measurements from the Spirit and Opportunity rovers, suggesting the presence of a global basaltic soil component. The Martian regolith is likely composed of this global soil mixed with locally to regionally derived components that include alteration products and evolved volcanic compositions. Without returned soil samples, researchers have relied on terrestrial simulants to address fundamental Mars science, habitability, in-situ resource utilization, and hardware for future exploration. However, these past simulants have low fidelity compared to actual Martian soils: JSC Mars-1a is an amorphous palagonitic material with spectral similarities to Martian dust, not soil, and Mojave Mars is simply a ground up terrestrial basalt chosen for its convenient location. Based on our experience creating asteroid regolith simulants, we are developing a high fidelity Martian soil simulant (Mars Global) designed ab initio to match the mineralogy, chemistry, and volatile contents of the global basaltic soil on Mars. The crystalline portion of the simulant is based on CheMin measurements of Rocknest and includes plagioclase, two pyroxenes, olivine, hematite, magnetite, anhydrite, and quartz. The amorphous portion is less well constrained, but we are re-creating it with basaltic glass, synthetic ferrihydrite, ferric sulfate, and carbonates. We also include perchlorate and nitrate salts based on evolved gas analyses from the SAM instrument. Analysis and testing of Mars Global will include physical properties (shear strength, density, internal friction angle), spectral properties, magnetic properties, and volatile release patterns. The simulant is initially being designed for NASA agricultural studies, but

  11. [Characteristics of water and heat fluxes and its footprint climatology on farmland in low hilly region of red soil].

    Science.gov (United States)

    Li, Yang; Jing, Yuan Shu; Qin, Ben Ben

    2017-01-01

    The analysis of the characteristics and footprint climatology of farmland water and heat fluxes has great significance to strengthen regional climate resource management and improve the hydrothermal resource utilization in the region of red soil. Based on quality controlled data from large aperture scintillometer and automatic meteorological station in hilly region of red soil, this paper analyzed in detail the characteristics of farmland water and heat fluxes at different temporal scales and the corresponding source area distribution of flux measurement in the non-rainy season and crop growth period in hilly region of red soil. The results showed that the diurnal variation of water and heat fluxes showed a unimodal trend, but compared with the sunny day, the diurnal variation curves fluctuated more complicatedly on cloudy day. In the whole, either ten-day periods or month scale, the water and heat fluxes were greater in August than in September, while the net radiation flux was more distributed to latent heat exchange. The proportion of net radiation to latent heat flux decreased in September compared to August, but the sensible heat flux was vice versa. With combined effects of weather conditions (particularly wind), stability, and surface condition, the source areas of flux measurement at different temporal scales showed different distribution characteristics. Combined with the underlying surface crops, the source areas at different temporal scales also had different contribution sources.

  12. The effect of clustering on the mobility of dislocations during aging in Nb-microalloyed strip cast steels: In situ heating TEM observations

    International Nuclear Information System (INIS)

    Shrestha, Sachin L.; Xie, Kelvin Y.; Ringer, Simon P.; Carpenter, Kristin R.; Smith, David R.; Killmore, Chris R.; Cairney, Julie M.

    2013-01-01

    Cluster-strengthened Nb-microalloyed strip cast steels are of interest as clustering during aging leads to an enhancement in strength without compromising ductility, resulting in desirable mechanical properties. However, the precise strengthening mechanism is not well understood. Using in situ heating transmission electron microscopy, clustering was found to impede the movement of dislocations during aging. The attractive combination of ductility and strength was attributed to the effects of recovery and the restricted movement of dislocations through clustering

  13. Inferring near surface soil temperature time series from different land uses to quantify the variation of heat fluxes into a shallow aquifer in Austria

    Science.gov (United States)

    Kupfersberger, Hans; Rock, Gerhard; Draxler, Johannes C.

    2017-09-01

    Different land uses exert a strong spatially distributed and temporal varying signal of heat fluxes from the surface in or out of the ground. In this paper we show an approach to quantify the heat fluxes into a groundwater body differentiating between near surface soil temperatures under grass, forest, asphalt, agriculture and surface water bodies and heat fluxes from subsurface structures like heated basements or sewage pipes. Based on observed time series of near surface soil temperatures we establish individual parameters (e.g. shift, moving average) of a simple empirical function that relates air temperature to soil temperature. This procedure is useful since air temperature time series are readily available and the complex energy flux processes at the soil atmosphere interface do not need to be described in detail. To quantify the heat flux from heated subsurface structures that have lesser depths to the groundwater table the 1D heat conduction module SoilTemp is developed. Based on soil temperature time series observed at different depths in a research lysimeter heat conduction and heat storage capacity values are calibrated disregarding their dependence on the water content. With SoilTemp the strong interaction between time series of groundwater temperature and groundwater level, near surface soil temperatures and the basement temperatures in heated buildings could be evaluated showing the dynamic nature of thermal gradients. The heat fluxes from urban areas are calculated considering the land use patterns within a spatial unit by mixing the heat fluxes from basements with those under grass and asphalt. The heat fluxes from sewage pipes and of sewage leakage are shown to be negligible for evaluated pipe diameters and sewage discharges. The developed methodology will allow to parameterize the upper boundary of heat transport models and to differentiate between the heat fluxes from different surface usages and their dynamics into the subsurface.

  14. In situ remediation-released zero-valent iron nanoparticles impair soil ecosystems health: A C. elegans biomarker-based risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying-Fei; Cheng, Yi-Hsien; Liao, Chung-Min, E-mail: cmliao@ntu.edu.tw

    2016-11-05

    Highlights: • Fe{sup 0} NPs induced infertility risk in C. elegans. • A C.elegans-based probabilistic risk assessment model is developed. • In situ remediation-released Fe{sup 0} NPs impair soil ecosystems health. - Abstract: There is considerable concern over the potential ecotoxicity to soil ecosystems posed by zero-valent iron nanoparticles (Fe{sup 0} NPs) released from in situ environmental remediation. However, a lack of quantitative risk assessment has hampered the development of appropriate testing methods used in environmental applications. Here we present a novel, empirical approach to assess Fe{sup 0} NPs-associated soil ecosystems health risk using the nematode Caenorhabditis elegans as a model organism. A Hill-based dose-response model describing the concentration–fertility inhibition relationships was constructed. A Weibull model was used to estimate thresholds as a guideline to protect C. elegans from infertility when exposed to waterborne or foodborne Fe{sup 0} NPs. Finally, the risk metrics, exceedance risk (ER) and risk quotient (RQ) of Fe{sup 0} NPs in various depths and distances from remediation sites can then be predicted. We showed that under 50% risk probability (ER = 0.5), upper soil layer had the highest infertility risk (95% confidence interval: 13.18–57.40%). The margins of safety and acceptable criteria for soil ecosystems health for using Fe{sup 0} NPs in field scale applications were also recommended. Results showed that RQs are larger than 1 in all soil layers when setting a stricter threshold of ∼1.02 mg L{sup −1} of Fe{sup 0} NPs. This C. elegans biomarker-based risk model affords new insights into the links between widespread use of Fe{sup 0} NPs and environmental risk assessment and offers potential environmental implications of metal-based NPs for in situ remediation.

  15. Numerical Study of Heat Transfer during Artificial Ground Freezing Combined with Groundwater Flow based on in-situ Measurement

    Science.gov (United States)

    Hu, R.; Liu, Q.

    2016-12-01

    For civil engineering projects, especially in the subsurface with groundwater, the artificial ground freezing (AGF) method has been widely used. Commonly, a refrigerant is circulated through a pre-buried pipe network to form a freezing wall to support the construction. In many cases, the temperature change is merely considered as a result of simple heat conduction. However, the influence of the water-ice phase change on the flow properties should not be neglected, if large amount of groundwater with high flow velocities is present. In this work, we perform a 2D modelling (software: Comsol Multiphysics) of an AFG project of a metro tunnel in Southern China, taking groundwater flow into account. The model is validated based on in-situ measurement of groundwater flow and temperature. We choose a cross section of this horizontal AGF project and set up a model with horizontal groundwater flow normal to the axial of the tunnel. The Darcy velocity is a coupling variable and related to the temperature field. During the phase change of the pore water and the decrement of permeability in freezing zone, we introduce a variable of effective hydraulic conductivity which is described by a function of temperature change. The energy conservation problem is solved by apparent heat capacity method and the related parameter change is described by a step function (McKenzie, et. al. 2007). The results of temperature contour maps combined with groundwater flow velocity at different times indicate that the freezing wall appears in an asymmetrical shape along the groundwater flow direction. It forms slowly and on the upstream side the thickness of the freezing wall is thinner than that on the downstream side. The closure time of the freezing wall increases at the middle of the both up and downstream sides. The average thickness of the freezing wall on the upstream side is mostly affected by the groundwater flow velocity. With the successful validation of this model, this numerical

  16. A comparison of the toluene distillation and vacuum/heat methods for extracting soil water for stable isotopic analysis

    Science.gov (United States)

    Ingraham, Neil L.; Shadel, Craig

    1992-12-01

    Hanford Loam, from Richland, Washington, was used as a test soil to determine the precision, accuracy and nature of two methods to extract soil water for stable isotopic analysis: azeotropic distillation using toluene, and simple heating under vacuum. The soil was oven dried, rehydrated with water of known stable isotopic compositions, and the introduced water was then extracted. Compared with the introduced water, initial aliquots of evolved water taken during a toluene extraction were as much as 30 ‰ more depleted in D and 2.7 ‰ more depleted in 18O, whereas final aliquots were as much as 40 ‰ more enriched in D and 14.3 ‰ more enriched in 18O. Initial aliquots collected during the vacuum/heat extraction were as much as 64 ‰ more depleted in D and 8.4 ‰ more depleted in 18O than was the introduced water, whereas the final aliquots were as much as 139 ‰ more enriched in D, and 20.8 ‰ more enriched in 18O. Neither method appears quantitative; however, the difference in stable isotopic composition between the first and last aliquots of water extracted by the toluene method is less than that from the vacuum/heat method. This is attributed to the smaller fractionation factors involved with the higher average temperatures of distillation of the toluene. The average stable isotopic compositions of the extracted water varied from that of the introduced water by up to 1.4 ‰ in δD and 4.2 ‰ in δ18O with the toluene method, and by 11.0 ‰ in δD and 1.8 ‰ in δ18O for the vacuum/heat method. The lack of accuracy of the extraction methods is thought to be due to isotopic fractionation associated with water being weakly bound (not released below 110°C) in the soil. The isotopic effect of this heat-labile water is larger at low water contents (3.6 and 5.2% water by weight) as the water bound in the soil is a commensurately larger fraction of the total. With larger soilwater contents the small volume of water bound with an associated fractionation is

  17. In situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type.

    Science.gov (United States)

    Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.

  18. Assessment of bioavailability of pesticides in soils and identification of pesticide degradation drivers using the in-situ Mass Distribution Quotient (iMDQ)

    Science.gov (United States)

    Folberth, Christian

    2010-05-01

    The in-situ Mass Distribution Quotient (iMDQ) has recently been shown to reliably describe the bioavailability and mineralization of the widely applied pesticide isoproturon in agricultural soils. It is determined by pore water extraction from previously incubated soil samples and subsequent assessment of the mass distribution between solid and liquid phase. The method was verified by comparing the bioavailability with co-metabolic mineralization in soils under optimum microbial soil conditions (water tension -15 kPa and bulk density 1.3 g cm-3). A comparison of the results with the chemical partitioning assessed by the Kd method has shown a higher accuracy of the new method. By combining the iMDQ/pore water extraction method with mineralization of the pesticide under optimum microbial conditions in the soils, further information about mineralization and degradation processes could be obtained or confirmed: a) Metabolically outstanding soils could be identified due to inconsistency between bioavailability and mineralization when compared to the co-metabolic soils. In a metabolically hampered soil, the mineralization was very low compared to the bioavailability and in a soil with metabolically IPU degrading microorganisms the mineralization was extremely high despite low bioavailability. b) Analysis of metabolite patterns in soil water fractions of a degradation experiment allowed for an additional identification of the metabolic status of the soil. In co-metabolic soils, the diversity of metabolites increased proportionally with the degree of mineralization of the parent compound, whereas in a metabolically hampered soil the metabolite pattern was very diverse despite low mineralization. c) A quite stable fractioning between total mineralization of the parent compound to CO2 and build-up of non-extractable bound residues was found. This is a hint that also during co-metabolic degradation that can up to now not be attributed to a certain group of microorganisms

  19. In-situ studies on the performance of landfill caps (compacted soil liners, geomembranes, geosynthetic clay liners, capillary barriers)

    International Nuclear Information System (INIS)

    Melchior, S.

    1997-01-01

    Since 1986 different types of landfill covers have been studied in-situ on the Georgswerder landfill in Hamburg, Germany. Water balance data are available for eight years. The performance of different carriers has been measured by collecting the leakage on areas ranging from 100 m 2 to 500 m 2 . Composite liners with geomembranes performed best, showing no leakage. An extended capillary barrier also performed well. The performance of compacted soil liners, however, decreased severely within five years due to desiccation, shrinkage and plant root penetration (liner leakage now ranging from 150 mm/a to 200 mm/a). About 50 % of the water that reaches the surface of the liner is leaking through it. The maximum leakage rates have increased from 2 x 10 -10 m 3 m -2 s -1 to 4 x 10 -8 m 3 m -2 s -1 . Two types of geosynthetic clay liners (GCL) have been tested for two years now with disappointing results. The GCL desiccated during the first dry summer of the study. High percolation rates through the GCL were measured during the following winter (45 mm resp. 63 mm in four months). Wetting of the GCL did not significantly reduce the percolation rates

  20. X-231B technology demonstration for in situ treatment of contaminated soil: Technology evaluation and screening

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Morris, M.I.; Donaldson, T.L.; Palumbo, A.V.; Herbes, S.E.; Jenkins, R.A.; Morrissey, C.M.; Harris, M.T.

    1993-08-01

    The Portsmouth Gaseous Diffusion Plant (Ports) is located approximately 70 miles south of Columbus in southern Ohio. Among the several waste management units on the facility, the X-231B unit consists of two adjacent oil biodegradation plots. The plots encompass ∼ 0.8 acres and were reportedly used from 1976 to 1983 for the treatment and disposal of waste oils and degreasing solvents, some containing uranium-235 and technetium-99. The X-231B unit is a regulated solid waste management unit (SWMU) under the Resource Conservation and Recovery Act (RCRA). The X-231B unit is also a designated SWMU located within Quadrant I of the site as defined in an ongoing RCRA Facilities Investigation and Corrective Measures Study (RFI/CMS). Before implementing one or more Technology Demonstration Project must be completed. The principal goal of this project was to elect and successfully demonstrate one ore more technologies for effective treatment of the contaminated soils associated with the X-231B unit at PORTS. The project was divided into two major phases. Phase 1 involved a technology evaluation and screening process. The second phase (i.e., Phase 2) was to involve field demonstration, testing and evaluation of the technology(s) selected during Phase 1. This report presents the methods, results, and conclusions of the technology evaluation and screening portion of the project

  1. Instrumental system for the quick relief of surface temperatures in fumaroles fields and steam heated soils

    Science.gov (United States)

    Diliberto, Iole; Cappuzzo, Santo; Inguaggiato, Salvatore; Cosenza, Paolo

    2014-05-01

    .g. in mofettes and diffuse degassing areas). The occurrence of thermal anomalies at the surface often reveals that a process of steam condensation is occurring below the ground and that CO2 fluxes are being released on the surface. A thermal map of steam heated grounds therefore highlights boundaries of underground steam advection and also the more suitable sites for geochemical monitoring. Pirogips has been assembled for the quick acquisition of surface parameters related to the exhaling activity of volcanic systems. It has been formerly tested in a controlled environment, after in the well known fumaroles areas of Vulcano island, and then in the volcanic system El Machin (Colombia) for the field survey preliminary to the installation of new monitoring stations. The preliminary test and the first field experiences confirmed that pirogips acquires the surface temperatures quickly and with good detail. The combination of sensors supplies the advantage of in situ methods (i.e. accuracy of the direct measurement by thermocouple) and those of ground-based remote sensing techniques (i.e. quickness of measurement process), at the same time reducing the main disadvantages of each method. A home-made data-logger combines the acquired parameters and returns a data-string allowing an easy visualization of acquired data on geo-referenced maps. The string of data returns the position of acquisition (lat, long, WGS84), surface temperature (either derived by the pyrometer and by thermocouple), ambient temperature, barometric pressure and air moisture. -References -Diliberto I.S., Gurrieri S., Valenza M. (2002) Relationships between diffuse CO2 emissions and volcanic activity on the island of Vulcano (Aeolian Islands, Italy) during the period 1984-1994 Bulletin of Volcanology vol 64: 219-228. -Diliberto I.S., (2013) Time series analysis of high temperature fumaroles monitored on the island of Vulcano (Aeolian Archipelago, italy). Journal of Volcanology and Geothermal Research

  2. In situ thermal properties characterization using frequential methods

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, O.; Defer, D.; Antczak, E.; Chauchois, A.; Duthoit, B. [Laboratoire dArtois de Mecanique Thermique Instrumentation (LAMTI), FSA Universite dArtois, Technoparc Futura, 62400 Bethune (France)

    2008-07-01

    In numerous fields, especially that of geothermal energy, we need to know about the thermal behaviour of the soil now that the monitoring of renewable forms of energy is an ecological, economic and scientific issue. Thus heat from the soil is widely used for air-conditioning systems in buildings both in Canada and in the Scandinavian countries, and it is spreading. The effectiveness of this technique is based on the soils calorific potential and its thermophysical properties which will define the quality of the exchanges between the soil and a heat transfer fluid. This article puts forward a method to be used for the in situ thermophysical characterisation of a soil. It is based upon measuring the heat exchanges on the surface of the soil and on measuring a temperature a few centimetres below the surface. The system is light, inexpensive, well-suited to the taking of measurements in situ without the sensors used introducing any disturbance into the heat exchanges. Whereas the majority of methods require excitation, the one presented here is passive and exploits natural signals. Based upon a few hours of recording, the natural signals allow us to identify the soils thermophysical properties continuously. The identification is based upon frequency methods the quality of which can be seen when the thermophysical properties are injected into a model with finite elements by means of a comparison of the temperatures modelled and those actually measured on site. (author)

  3. Transport and Application of Heat-Activated Persulfate for In-situ Chemical Oxidation of Residual Trichloroethylene

    Science.gov (United States)

    Quig, L.; Johnson, G. R.

    2015-12-01

    Persulfate ISCO has been shown to treat a wide range of contaminants. While persulfate ISCO can be tailored to site and pollutant specific characteristics (e.g., activation via energy or catalysis), thermal activation of persulfate is particularly promising as it can be easily controlled and requires no additional reagents. A mechanistic study of the physical and chemical processes controlling the effectiveness of this remedial approach is not well documented in the literature with much therein focused on reactions in batch systems. The purpose of this research was twofold. Initial studies characterized the overall transport behavior of unactivated and thermally-activated persulfate (20, 60, and 90°C) in one-dimensional soil column systems. Finally, experiments were conducted to investigate persulfate ISCO as a remedial approach for residual-phase trichloroethylene (TCE). At all activation temperatures investigated, persulfate exhibited ideal transport behavior in miscible displacement experiments. Moment analysis of persulfate ion breakthrough curves indicated negligible interaction of persulfate with the natural sandy material. Persulfate ISCO for residual-phase TCE was characterized at two flow rates, 0.2 mL/min and 0.5 mL/min, resulting in two degrees of persulfate activation, 39.5% and 24.6%, respectively. Both ISCO soil column systems showed an initial, long-term plateau in effluent TCE concentrations indicating steady-state dissolution of pure phase TCE. Observed effluent concentrations decreased after 75 and 100 pore volumes (normalized for the measured residual NAPL fraction) compared to 110 pore volumes in the control study. Pseudo first-order reaction rate constants for the decreasing TCE concentrations equaled 0.063/hr and 0.083/hr, respectively, compared to 0.041/hr for the control. Moment analysis of the complete dissolution of TCE in the persulfate/activated persulfate remediation systems indicated approximately 33% oxidation of TCE mass present. By

  4. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression

    NARCIS (Netherlands)

    Voort, van der M.; Kempenaar, Marcel; Driel, van Marc; Raaijmakers, Jos M.; Mendes, Rodrigo

    2016-01-01

    The rhizosphere microbiome offers a range of ecosystem services to the plant, including nutrient acquisition and tolerance to (a)biotic stress. Here, analysing the data by Mendes et al. (2011), we show that short heat disturbances (50 or 80 °C, 1 h) of a soil suppressive to the root pathogenic

  5. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression

    NARCIS (Netherlands)

    van der Voort, M.; Kempenaar, M.; van Driel, M.; Raaijmakers, J.M.; Mendes, R.

    2016-01-01

    The rhizosphere microbiome offers a range of ecosystem services to the plant, including nutrient acquisition and tolerance to (a)biotic stress. Here, analysing the data by Mendes et al. (2011), we show that short heat disturbances (50 or 80 °C, 1 h) of a soil suppressive to the root pathogenic

  6. Soil Thermal Balance Analysis for a Ground Source Heat Pump System in a Hot-Summer and Cold-Winter Region

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available As a renewable and high energy efficiency technology providing air conditioning and domestic hot water, the ground source heat pump system (GSHPS has been extensively used worldwide in recent years. Compared with conventional systems, GSHPSs with heat recovery reject less heat into the soil and extract more heat from it, which can help reduce soil thermal imbalance in hot-summer and cold-winter regions. In this paper, conventional GSHPS, and GSHPS with different heat recovery ratios, in a typical city were compared based on thermal imbalance ratios, average soil temperatures and soil temperature increases. The transient system simulation software was used to simulate the operation performance of GSHPS. The thermal imbalance ratio and soil temperature decreased with increasing heat recovery ratio. After 20 years of operation, the soil thermal imbalance ratios of the GSHPS were 29.2%, 21.1%, 16%, and 5.2%, and the soil temperature rises were 8.78 °C, 5.25 °C, 3.44 °C, and 0.34 °C, while the heat recovery ratios were 0, 18%, 30% and 53%, respectively. Consequently, a GSHPS with heat recovery is a potentially efficient and economical approach for buildings in hot-summer and cold-winter regions.

  7. In situ-observation of the vertical motion of soil waters by means of deuterated water using the gamma/neutron method: Laboratory and field

    International Nuclear Information System (INIS)

    Moutonnet, P.; Couchat, P.; Brissaud, F.; Puard, M.; Pappalardo, A.

    1978-01-01

    In order to study water movements in the field, the gamma/neutron method for measuring deuterated water was investigated. A laboratory device is presented which supplies measurements on 5 ml soil solution samples. A probe for in situ experiments is studied in all its performances: Background, calibration (count rate versus volumetric deuterated water content) and resolution. A dispersive transport of D 2 O pulses on soil column is presented and checked with a numerical simulation model. Then simultaneous measurement of soil water content and D 2 O concentration by neutron moisture gauge and gamma/neutron probe enable us to interpret the evolution of D 2 O pulse with an experimental field irrigation. (orig.) [de

  8. Validation of satellite-derived tropical cyclone heat potential with in situ observations in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nagamani, P.V.; Ali, M.M.; Goni, G.J.; Dinezio, P.N.; Pezzullo, J.C.; UdayaBhaskar, T.V.S.; Gopalakrishna, V.V.; Nisha, K.

    validation with in situ estimations for quantification of their reliability and consistency. Once the validation has been carried out, the satellite-derived TCHP values with their improved tempo- ral and spatial properties can be conveniently used...

  9. Degradability of n-alkanes during ex situ natural bioremediation of soil contaminated by heavy residual fuel oil (mazut

    Directory of Open Access Journals (Sweden)

    Ali Ramadan Mohamed Muftah

    2013-01-01

    Full Text Available It is well known that during biodegradation of oil in natural geological conditions, or oil pollutants in the environment, a degradation of hydrocarbons occurs according to the well defined sequence. For example, the major changes during the degradation process of n-alkanes occur in the second, slight and third, moderate level (on the biodegradation scale from 1 to 10. According to previous research, in the fourth, heavy level, when intensive changes of phenanthrene and its methyl isomers begin, n-alkanes have already been completely removed. In this paper, the ex situ natural bioremediation (unstimulated bioremediation, without addition of biomass, nutrient substances and biosurfactant of soil contaminated with heavy residual fuel oil (mazut was conducted during the period of 6 months. Low abundance of n-alkanes in the fraction of total saturated hydrocarbons in the initial sample (identification was possible only after concentration by urea adduction technique showed that the investigated oil pollutant was at the boundary between the third and the fourth biodegradation level. During the experiment, an intense degradation of phenanthrene and its methyl-, dimethyl-and trimethyl-isomers was not followed by the removal of the remaining n-alkanes. The abundance of n-alkanes remained at the initial low level, even at end of the experiment when the pollutant reached one of the highest biodegradation levels. These results showed that the unstimulated biodegradation of some hydrocarbons, despite of their high biodegradability, do not proceed completely to the end, even at final degradation stages. In the condition of the reduced availability of some hydrocarbons, microorganisms tend to opt for less biodegradable but more accessible hydrocarbons.

  10. In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils.

    Science.gov (United States)

    Kim, Shin Woong; Chae, Yooeun; Moon, Jongmin; Kim, Dokyung; Cui, Rongxue; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-02-15

    Soils contaminated with heavy metals have been reused for agricultural, building, and industrial uses following remediation. This study assesses plant growth and bioaccumulation of heavy metals following remediation of industrially contaminated soil. The soil was collected from a field site near a nonferrous smelter and was subjected to laboratory- and field-scale studies. Soil from the contaminated site was remediated by washing with acid or mixed with soil taken from a distant uncontaminated site. The activities of various soil exoenzymes, the rate of plant growth, and the bioaccumulations of six heavy metals were measured to assess the efficacy of these bioremediation techniques. Growth of rice (Oryza sativa) was unaffected in acid-washed soil or the amended soil compared to untreated soil from the contaminated site. The levels of heavy metals in the rice kernels remained within safe limits in treated and untreated soils. Rice, sorghum (Sorghum bicolor), and wheat (Triticum aestivum) cultivated in the same soils in the laboratory showed similar growth rates. Soil exoenzyme activities and crop productivity were not affected by soil treatment in field experiments. In conclusion, treatment of industrially contaminated soil by acid washing or amendment did not adversely affect plant productivity or lead to increased bioaccumulation of heavy metals in rice.

  11. Effect of pre-heating on the chemical oxidation efficiency: implications for the PAH availability measurement in contaminated soils.

    Science.gov (United States)

    Biache, Coralie; Lorgeoux, Catherine; Andriatsihoarana, Sitraka; Colombano, Stéfan; Faure, Pierre

    2015-04-09

    Three chemical oxidation treatments (KMnO4, H2O2 and Fenton-like) were applied on three PAH-contaminated soils presenting different properties to determine the potential use of these treatments to evaluate the available PAH fraction. In order to increase the available fraction, a pre-heating (100 °C under N2 for one week) was also applied on the samples prior oxidant addition. PAH and extractable organic matter contents were determined before and after treatment applications. KMnO4 was efficient to degrade PAHs in all the soil samples and the pre-heating slightly improved its efficiency. H2O2 and Fenton-like treatments presented low efficiency to degrade PAH in the soil presenting poor PAH availability, however, the PAH degradation rates were improved with the pre-heating. Consequently H2O2-based treatments (including Fenton-like) are highly sensitive to contaminant availability and seem to be valid methods to estimate the available PAH fraction in contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. In-situ chemical oxidation of BTEX in soil and groundwater for the redevelopment of a brownfield

    Energy Technology Data Exchange (ETDEWEB)

    Felske, D. [EBA Engineering Consultants Ltd., Edmonton, AB (Canada)

    2006-07-01

    This conference presentation discussed the chemical oxidation of BTEX in soil and groundwater. The presentation provided background on the study and conceptual site model. The site was a former highway maintenance yard until the early 1990s, purchased by the municipality and then sold to private owners in 2004. Remediation was done in 2006 and 2007 for hydrocarbon impacts. A treatability study was conducted to evaluate the hydrology and geology of the site; natural oxidant demand; potential for mobilization of redox-sensitive metals; transport mechanisms to ensure contact between oxidant and contaminant; and, sodium loading. It was also necessary to determine the hydrocarbon mass in each phase, stoichiometry-contaminant and oxidant, as well as mass oxidant required for the delivery mechanism. Logistics, safety, and contingency planning were also part of the study design. Pilot and full-scale implementation were presented as well as the results, costs, and conclusions of the study. It was concluded that higher concentrations of hydrogen peroxide caused moderate localized heat generation and synergism was observed in combination with hydrogen peroxide and catalyst. tabs., figs.

  13. Steam-treatment-based soil remediation promotes heat-tolerant, potentially pathogenic microbiota

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Bender, Mikkel; Ekelund, Flemming

    2014-01-01

    We investigated microbiota in surface and subsurface soil from a site, above steam-treated deep sub-soil originally contaminated with chlorinated solvents. During the steam treatment, the surface soil reached temperatures c. 30°C higher than the temperature in untreated soil; whereas the subsurfa...

  14. Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. Climate Reference Network (USCRN) locations: Analysis and applications to AMSR-E satellite validation

    Science.gov (United States)

    Surface soil moisture is critical parameter for understanding the energy flux at the land atmosphere boundary. Weather modeling, climate prediction, and remote sensing validation are some of the applications for surface soil moisture information. The most common in situ measurement for these purpo...

  15. In-situ heating test in the sedimentary soft rock. Part 3. Monitoring of the extent of high temperature zone by resistivity tomography

    International Nuclear Information System (INIS)

    Kubota, Kenji; Suzuki, Koichi; Ikenoya, Takafumi; Takakura, Nozomu; Tani, Kazuo

    2009-01-01

    One of the major issues in disposal of nuclear waste is that the long term behaviors of sedimentary soft rocks can be affected by various environmental factors such as temperature or hydraulic conditions. Therefore, it is necessary to develop a method for evaluating the long term stability of caverns in sedimentary soft rocks as subjected to changes of environment. We have conducted in-situ heating test to evaluate the influence of high temperature to the surrounding rock mass at a depth of 50m. Resistivity monitoring is thought to be effective to map the extent of high temperature zone. So resistivity tomography was conducted during the heating. The results demonstrated that the resistivity of the rock mass around the heater well was decreased and this area was gradually expanded from the heated area during the heating. Resistivity of rock is proportional to that of pore water which is known to decrease with increasing temperature. This suggests that high temperature zone is detected and spatial distribution of temperature can be mapped by resistivity tomography. So resistivity tomography is expected to be one of the promising methods to monitor the heated area by nuclear waste. (author)

  16. Structural study on Ni nanowires in an anodic alumina membrane by using in situ heating extended x-ray absorption fine structure and x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Cai Quan; Chen Xing; Chen Zhongjun; Wang Wei; Mo Guang; Wu Zhonghua; Zhang Junxi; Zhang Lide; Pan Wei

    2008-01-01

    Polycrystalline Ni nanowires have been prepared by electrochemical deposition in an anodic alumina membrane template with a nanopore size of about 60 nm. In situ heating extended x-ray absorption fine structure and x-ray diffraction techniques are used to probe the atomic structures. The nanowires are identified as being mixtures of nanocrystallites and amorphous phase. The nanocrystallites have the same thermal expansion coefficient, of 1.7 x 10 -5 K -1 , as Ni bulk; however, the amorphous phase has a much larger thermal expansion coefficient of 3.5 x 10 -5 K -1 . Details of the Ni nanowire structures are discussed in this paper

  17. Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events

    Science.gov (United States)

    Seo, Eunkyo; Lee, Myong-In; Jeong, Jee-Hoon; Koster, Randal D.; Schubert, Siegfried D.; Kim, Hye-Mi; Kim, Daehyun; Kang, Hyun-Suk; Kim, Hyun-Kyung; MacLachlan, Craig; Scaife, Adam A.

    2018-05-01

    This study uses a global land-atmosphere coupled model, the land-atmosphere component of the Global Seasonal Forecast System version 5, to quantify the degree to which soil moisture initialization could potentially enhance boreal summer surface air temperature forecast skill. Two sets of hindcast experiments are performed by prescribing the observed sea surface temperature as the boundary condition for a 15-year period (1996-2010). In one set of the hindcast experiments (noINIT), the initial soil moisture conditions are randomly taken from a long-term simulation. In the other set (INIT), the initial soil moisture conditions are taken from an observation-driven offline Land Surface Model (LSM) simulation. The soil moisture conditions from the offline LSM simulation are calibrated using the forecast model statistics to minimize the inconsistency between the LSM and the land-atmosphere coupled model in their mean and variability. Results show a higher boreal summer surface air temperature prediction skill in INIT than in noINIT, demonstrating the potential benefit from an accurate soil moisture initialization. The forecast skill enhancement appears especially in the areas in which the evaporative fraction—the ratio of surface latent heat flux to net surface incoming radiation—is sensitive to soil moisture amount. These areas lie in the transitional regime between humid and arid climates. Examination of the extreme 2003 European and 2010 Russian heat wave events reveal that the regionally anomalous soil moisture conditions during the events played an important role in maintaining the stationary circulation anomalies, especially those near the surface.

  18. Response of the East Asian climate system to water and heat changes of global frozen soil using NCAR CAM model

    Science.gov (United States)

    Xin, Y.

    2017-12-01

    Under the condition of land-atmosphere heat and water conservation, a set of sensitive numerical experiments are set up to investigate the response of the East Asian climate system to global frozen soil change. This is done by introducing the supercooled soil water process into the Community Land Model (CLM3.0), which has been coupled to the National Center of Atmospheric Research Community Atmosphere Model (CAM3.1). Results show that: 1) The ratio between soil ice and soil water in CLM3.0 is clearly changed by the supercooled soil water process. Ground surface temperature and soil temperature are also affected. 2) The Eurasian (including East Asian) climate system is sensitive to changes of heat and water in frozen soil regions. In January, the Aleutian low sea level pressure circulation is strengthened, Ural blocking high at 500 hPa weakened, and East Asian trough weakened. In July, sea level pressure over the Aleutian Islands region is significantly reduced; there are negative anomalies of 500 hPa geopotential height over the East Asian mainland, and positive anomalies over the East Asian ocean. 3) In January, the southerly component of the 850 hPa wind field over East Asia increases, indicating a weakened winter monsoon. In July, cyclonic anomalies appear on the East Asian mainland while there are anticyclonic anomalies over the ocean, reflective of a strengthened east coast summer monsoon. 4) Summer rainfall in East Asia changed significantly, including substantial precipitation increase on the southern Qinghai-Tibet Plateau, central Yangtze River Basin, and northeast China. Summer rainfall significantly decreased in south China and Hainan Island, but slightly decreased in central and north China. Further analysis showed considerable upper air motion along 30°N latitude, with substantial descent of air at its north and south sides. Warm and humid air from the Northeast Pacific converged with cold air from northern land areas, representing the main cause of

  19. The development in the in-situ decontamination technique for the large quantity of soils contaminated by radioactive materials

    International Nuclear Information System (INIS)

    Tsubaki, Junichiro

    2012-01-01

    The new filtration and condensation techniques that decontaminate effectively the large quantity of contaminated soils, was developed. The facility treating the soils of 5 tons per day is being developed. (M.H.)

  20. The microwave heating mechanism of N-(4-methoxybenzyliden)-4-butylaniline in liquid crystalline and isotropic phases as determined using in situ microwave irradiation NMR spectroscopy.

    Science.gov (United States)

    Tasei, Yugo; Tanigawa, Fumikazu; Kawamura, Izuru; Fujito, Teruaki; Sato, Motoyasu; Naito, Akira

    2015-04-14

    Microwave heating effects are widely used in the acceleration of organic, polymerization and enzymatic reactions. These effects are primarily caused by the local heating induced by microwave irradiation. However, the detailed molecular mechanisms associated with microwave heating effects on the chemical reactions are not yet well understood. This study investigated the microwave heating effect of N-(4-methoxybenzylidene)-4-butylaniline (MBBA) in liquid crystalline and isotropic phases using in situ microwave irradiation nuclear magnetic resonance (NMR) spectroscopy, by obtaining (1)H NMR spectra of MBBA under microwave irradiation. When heated simply using the temperature control unit of the NMR instrument, the liquid crystalline MBBA was converted to the isotropic phase exactly at its phase transition temperature (Tc) of 41 °C. The application of microwave irradiation at 130 W for 90 s while maintaining the instrument temperature at 20 °C generated a small amount of isotropic phase within the bulk liquid crystal. The sample temperature of the liquid crystalline state obtained during microwave irradiation was estimated to be 35 °C by assessing the linewidths of the (1)H NMR spectrum. This partial transition to the isotropic phase can be attributed to a non-equilibrium local heating state induced by the microwave irradiation. The application of microwave at 195 W for 5 min to isotropic MBBA while maintaining an instrument temperature of 50 °C raised the sample temperature to 160 °C. In this study, the MBBA temperature during microwave irradiation was estimated by measuring the temperature dependent chemical shifts of individual protons in the sample, and the different protons were found to indicate significantly different temperatures in the molecule. These results suggest that microwave heating polarizes bonds in polar functional groups, and this effect may partly explain the attendant acceleration of organic reactions.

  1. A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements.

    Science.gov (United States)

    Chen, Xingyuan; Miller, Gretchen R; Rubin, Yoram; Baldocchi, Dennis D

    2012-12-01

    The heat pulse method is widely used to measure water flux through plants; it works by using the speed at which a heat pulse is propagated through the system to infer the velocity of water through a porous medium. No systematic, non-destructive calibration procedure exists to determine the site-specific parameters necessary for calculating sap velocity, e.g., wood thermal diffusivity and probe spacing. Such parameter calibration is crucial to obtain the correct transpiration flux density from the sap flow measurements at the plant scale and subsequently to upscale tree-level water fluxes to canopy and landscape scales. The purpose of this study is to present a statistical framework for sampling and simultaneously estimating the tree's thermal diffusivity and probe spacing from in situ heat response curves collected by the implanted probes of a heat ratio measurement device. Conditioned on the time traces of wood temperature following a heat pulse, the parameters are inferred using a Bayesian inversion technique, based on the Markov chain Monte Carlo sampling metho