WorldWideScience

Sample records for situ reaction study

  1. In situ NMR studies of reactions on catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Haw, James F [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry

    1994-12-31

    Zeolites are useful in the synthesis of fine chemicals. The systematic understanding of organic chemistry of zeolite catalysis may contribute to: the elucidation of reaction mechanisms of existing catalytic processes; the discovery of new catalytic reactions; the application of zeolite catalysis to the synthesis of fine chemicals. This work presents species of zeolites identified by in situ NMR; reactions of organic chemicals on zeolites and proposes mechanisms as well as reactivity trends 3 refs., 7 tabs.

  2. The Oxford-Diamond In Situ Cell for studying chemical reactions using time-resolved X-ray diffraction

    Science.gov (United States)

    Moorhouse, Saul J.; Vranješ, Nenad; Jupe, Andrew; Drakopoulos, Michael; O'Hare, Dermot

    2012-08-01

    A versatile, infrared-heated, chemical reaction cell has been assembled and commissioned for the in situ study of a range of chemical syntheses using time-resolved energy-dispersive X-ray diffraction (EDXRD) on Beamline I12 at the Diamond Light Source. Specialized reactor configurations have been constructed to enable in situ EDXRD investigation of samples under non-ambient conditions. Chemical reactions can be studied using a range of sample vessels such as alumina crucibles, steel hydrothermal autoclaves, and glassy carbon tubes, at temperatures up to 1200 °C.

  3. Experimental study and numerical modelling of geochemical reactions occurring during uranium in situ recovery (ISR) mining

    International Nuclear Information System (INIS)

    Ben Simon, R.

    2011-09-01

    The in situ Recovery (ISR) method consists of ore mining by in situ chemical leaching with acid or alkaline solutions. ISR takes place underground and is therefore limited to the analysis of the pumped solutions, hence ISR mine management is still empirical. Numerical modelling has been considered to achieve more efficient management of this process. Three different phenomena have to be taken into account for numerical simulations of uranium ISR mining: (1) geochemical reactions; (2) the kinetics of these reactions, and (3) hydrodynamic transport with respect to the reaction kinetics. Leaching tests have been conducted on ore samples from an uranium mine in Tortkuduk (Kazakhstan) where ISR is conducted by acid leaching. Two types of leaching experiments were performed: (1) tests in batch reactors; and (2) extraction in flow through columns. The assumptions deduced from the leaching tests were tested and validated by modelling the laboratory experiments with the numerical codes CHESS and HYTEC, both developed at the Geosciences research center of Mines ParisTech. A well-constrained 1D hydrogeochemical transport model of the ISR process at laboratory-scale was proposed. It enables to translate the chemical release sequence that is observed during experiments into a geochemical reaction sequence. It was possible to highlight the controlling factors of uranium dissolution, and the precipitation of secondary mineral phase in the deposit, as well as the determination of the relative importance of these factors. (author)

  4. Hydration of swelling clay and bacteria interaction. An experimental in situ reaction study; Hydratation des argiles gonflantes et influence des bacteries. Etude experimentale de reaction in situ

    Energy Technology Data Exchange (ETDEWEB)

    Berger, J

    2008-01-15

    This study reports on the physical-chemical behaviour of swelling di-octahedral clays (smectites) and their interaction with aqueous solutions and bacteria (Shewanella putrefaciens). Experimental results are presented for compacted clays, hydrated under confined volume conditions, using a new type of reaction-cell (the 'wet-cell' of Warr and Hoffman, 2004) that was designed for in situ X-ray diffraction (XRD) measurement. For comparison, dispersed clay systems were studied using standard batch solutions subjected to varying degrees of agitation. The combination of time-dependent in situ XRD measurements with gravimetric measurements and calculated diffraction patterns using the CALCMIX software (Plancon and Drits, 1999) allowed to successful quantification of the dynamics of water uptake and storage. This analytical procedure combined with published water vapour adsorption data enabled determination of the abundance of structured water layers, developed in the interlayer space, and the amount of water contained in different storage sites (interlayers, surfaces and pore spaces). Qualitative information on surface area and textural organization was also estimated based on calculated changes in the average particle thickness and the organization of water layer structures (ordering). Abiotic smectite hydration experiments, using a range of natural and industrial bentonites (SWy-2, IBECO, MX80, TIXOTON), focused on defining the role of the interlayer cation, variable clay packing densities and the ionic strength of the infiltrating solution. The rate of smectite hydration, as expected, was seen to be highly dependent on the type of interlayer cation (enhanced for Ca as opposed to Na) and the ionic strength of solution (enhanced uptake rates with saline solutions, particularly as they infiltrate Na-smectite). A range of dynamic changes in micro textural state occurred as a function of packing density. These changes explain the differences in hydration behaviour

  5. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Luan; Tao, Franklin, E-mail: franklin.tao.2011@gmail.com [Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045 (United States)

    2016-06-15

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  6. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    International Nuclear Information System (INIS)

    Nguyen, Luan; Tao, Franklin

    2016-01-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  7. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays

    International Nuclear Information System (INIS)

    Dai, Z G; Xiao, X H; Zhang, Y P; Ren, F; Wu, W; Zhang, S F; Zhou, J; Jiang, C Z; Mei, F

    2012-01-01

    Control of the plasmon-driven chemical reaction for the transformation of 4-nitrobenzenethiol to p,p′-dimercaptoazobenzene by Ag nanoparticle arrays was studied. The Ag nanoparticle arrays were fabricated by means of nanosphere lithography. By changing the PS particle size, the localized surface plasmon resonance (LSPR) peaks of the Ag nanoparticle arrays can be tailored from 460 to 560 nm. The controlled reaction process was monitored by in situ surface-enhanced Raman scattering. The reaction can be dramatically influenced by varying the duration of laser exposure, Ag nanoparticle size, laser power and laser excitation wavelength. The maximum reaction speed was achieved when the LSPR wavelength of the Ag nanoparticle arrays matched the laser excitation wavelength. The experimental results reveal that the strong LSPR can effectively drive the transfer of the ‘hot’ electrons that decay from the plasmon to the reactants. The experimental results were confirmed by theoretical calculations. (paper)

  8. Hydration of swelling clay and bacteria interaction. An experimental in situ reaction study

    International Nuclear Information System (INIS)

    Berger, J.

    2008-01-01

    This study reports on the physical-chemical behaviour of swelling di-octahedral clays (smectites) and their interaction with aqueous solutions and bacteria (Shewanella putrefaciens). Experimental results are presented for compacted clays, hydrated under confined volume conditions, using a new type of reaction-cell (the 'wet-cell' of Warr and Hoffman, 2004) that was designed for in situ X-ray diffraction (XRD) measurement. For comparison, dispersed clay systems were studied using standard batch solutions subjected to varying degrees of agitation. The combination of time-dependent in situ XRD measurements with gravimetric measurements and calculated diffraction patterns using the CALCMIX software (Plancon and Drits, 1999) allowed to successful quantification of the dynamics of water uptake and storage. This analytical procedure combined with published water vapour adsorption data enabled determination of the abundance of structured water layers, developed in the interlayer space, and the amount of water contained in different storage sites (interlayers, surfaces and pore spaces). Qualitative information on surface area and textural organization was also estimated based on calculated changes in the average particle thickness and the organization of water layer structures (ordering). Abiotic smectite hydration experiments, using a range of natural and industrial bentonites (SWy-2, IBECO, MX80, TIXOTON), focused on defining the role of the interlayer cation, variable clay packing densities and the ionic strength of the infiltrating solution. The rate of smectite hydration, as expected, was seen to be highly dependent on the type of interlayer cation (enhanced for Ca as opposed to Na) and the ionic strength of solution (enhanced uptake rates with saline solutions, particularly as they infiltrate Na-smectite). A range of dynamic changes in micro textural state occurred as a function of packing density. These changes explain the differences in hydration behaviour observed

  9. In Situ Apparatus to Study Gas-Metal Reactions and Wettability at High Temperatures for Hot-Dip Galvanizing Applications

    Science.gov (United States)

    Koltsov, A.; Cornu, M.-J.; Scheid, J.

    2018-02-01

    The understanding of gas-metal reactions and related surface wettability at high temperatures is often limited due to the lack of in situ surface characterization. Ex situ transfers at low temperature between annealing furnace, wettability device, and analytical tools induce noticeable changes of surface composition distinct from the reality of the phenomena.Therefore, a high temperature wettability device was designed in order to allow in situ sample surface characterization by x-rays photoelectron spectroscopy after gas/metal and liquid metal/solid metal surface reactions. Such airless characterization rules out any contamination and oxidation of surfaces and reveals their real composition after heat treatment and chemical reaction. The device consists of two connected reactors, respectively, dedicated to annealing treatments and wettability measurements. Heat treatments are performed in an infrared lamp furnace in a well-controlled atmosphere conditions designed to reproduce gas-metal reactions occurring during the industrial recrystallization annealing of steels. Wetting experiments are carried out in dispensed drop configuration with the precise control of the deposited droplets kinetic energies. The spreading of drops is followed by a high-speed CCD video camera at 500-2000 frames/s in order to reach information at very low contact time. First trials have started to simulate phenomena occurring during recrystallization annealing and hot-dip galvanizing on polished pure Fe and FeAl8 wt.% samples. The results demonstrate real surface chemistry of steel samples after annealing when they are put in contact with liquid zinc alloy bath during hot-dip galvanizing. The wetting results are compared to literature data and coupled with the characterization of interfacial layers by FEG-Auger. It is fair to conclude that the results show the real interest of such in situ experimental setup for interfacial chemistry studies.

  10. In situ infrared spectroscopic study of the electrochromic reactions of tungsten trioxide films

    International Nuclear Information System (INIS)

    Habib, M.A.; Maheswari, S.P.

    1991-01-01

    This paper reports on thin WO 3 films which are transparent in the oxidized state and colored in the reduced state. These changes in optical properties are associated with compositional variations of the material. Changes in vibrational intensities of W double-bond O, W emdash O, and W double-bond O emdash H bonds in the electrochromic WO 3 film were detected by an in situ FTIR technique at various stages of reduction (coloration). The absorbance due to O emdash H stretching and bending vibrations was found to increase during the electrochemical reduction of the film, indicating the incorporation of water into the film along with the formation of H x WO 3 bronze during coloration. The absorbance due to W double-bond O vibration decreased while that due to W emdash O vibration increased during reduction. These observations suggest that during the coloration process W double-bond O bonds break and new W emdash O bonds form in the film, and thus, provide direct evidence for the electrochromic reaction. O 2 W double-bond O + xH + + xe - ↔ O 2 W emdash O emdash H x

  11. A flexible gas flow reaction cell for in situ x-ray absorption spectroscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Kroner, Anna B., E-mail: anna.kroner@diamond.ac.uk; Gilbert, Martin; Duller, Graham; Cahill, Leo; Leicester, Peter; Woolliscroft, Richard; Shotton, Elizabeth J. [Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Chilton, Oxfordshire, OX110DE (United Kingdom); Mohammed, Khaled M. H. [UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX110FA (United Kingdom); School of Chemistry, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2016-07-27

    A capillary-based sample environment with hot air blower and integrated gas system was developed at Diamond to conduct X-ray absorption spectroscopy (XAS) studies of materials under time-resolved, in situ conditions. The use of a hot air blower, operating in the temperature range of 298-1173 K, allows introduction of other techniques e.g. X-ray diffraction (XRD), Raman spectroscopy for combined techniques studies. The flexibility to use either quartz or Kapton capillaries allows users to perform XAS measurement at energies as low as 5600 eV. To demonstrate performance, time-resolved, in situ XAS results of Rh catalysts during the process of activation (Rh K-edge, Ce L{sub 3}-edge and Cr K-edge) and the study of mixed oxide membrane (La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ}) under various partial oxygen pressure conditions are described.

  12. Study on in-situ electrochemical impedance spectroscopy measurement of anodic reaction in SO_2 depolarized electrolysis process

    International Nuclear Information System (INIS)

    Xue Lulu; Zhang Ping; Chen Songzhe; Wang Laijun

    2014-01-01

    SO_2 depolarized electrolysis (SDE) is the pivotal reaction in hybrid sulfur process, one of the most promising approaches for mass hydrogen production without CO_2 emission. The net result of hybrid sulfur process is to split water into hydrogen and oxygen at a relatively low voltage, which will dramatically decrease the energy consumption for the production of hydrogen. The potential loss of SDE process could be separated into four components, i.e. reversible cell potential, anode overpotential, cathode overpotential and ohmic loss. So far, it has been identified that the total cell potential for the SO_2 depolarized electrolyzer is dominantly controlled by sulfuric acid concentration of the anolyte and electrolysis temperature of the electrolysis process. In this work, an in-situ Electrochemical Impedance Spectroscopy (EIS) measurement of the anodic SDE reaction was conducted. Results show that anodic overpotential is mainly resulted from the SO_2 oxidation reaction other than ohmic resistance or mass transfer limitation. This study extends the understanding to SDE process and gives suggestions for the further improvement of the SDE performance. (author)

  13. In situ EPR studies of reaction pathways in Titania photocatalyst-promoted alkylation of alkenes.

    Science.gov (United States)

    Rhydderch, Shona; Howe, Russell F

    2015-03-03

    In situ EPR spectroscopy at cryogenic temperatures has been used to observe and identify paramagnetic species produced when titania is irradiated in the presence of reactants used in the photocatalytic alkylation of maleimide with t-butyl carboxylic acid or phenoxyacetic acid. It is shown that maleimide acts as an acceptor of conduction band electrons. Valence band holes oxidise t-butyl carboxylic acid to the t-butyl radical and phenoxyacetic acid to the phenoxyacetic acid radical cation. In the presence of maleimide, the phenoxymethyl radical is formed from phenoxyacetic acid. The relevance of these observations to the mechanisms of titania photocatalyst-promoted alkylation of alkenes is discussed.

  14. Reflection-mode x-ray powder diffraction cell for in situ studies of electrochemical reactions

    International Nuclear Information System (INIS)

    Roberts, G.A.; Stewart, K.D.

    2004-01-01

    The design and operation of an electrochemical cell for reflection-mode powder x-ray diffraction experiments are discussed. The cell is designed for the study of electrodes that are used in rechargeable lithium batteries. It is designed for assembly in a glove box so that air-sensitive materials, such as lithium foil electrodes and carbonate-based electrolytes with lithium salts, can be used. The cell uses a beryllium window for x-ray transmission and electrical contact. A simple mechanism for compressing the electrodes is included in the design. Sample results for the cell are shown with a Cu Kα source and a position-sensitive detector

  15. Simultaneous FTIR/UV-Vis study of reactions over metallo-zeolites. Approach to quantitative in situ studies

    Czech Academy of Sciences Publication Activity Database

    Sobalík, Zdeněk; Jíša, Kamil; Jirglová, Hana; Bernauer, B.

    2007-01-01

    Roč. 126, 1-2 (2007), s. 73-80 ISSN 0920-5861 R&D Projects: GA AV ČR 1ET400400413; GA ČR GA104/06/1254; GA ČR GA203/05/2309 Institutional research plan: CEZ:AV0Z40400503 Keywords : metallo-zeolites * FTIR/UV-Vis * adsorption * modeling * in-situ Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.764, year: 2007

  16. In situ X-ray diffraction study of the electrochemical reaction on lead electrodes in sulphate electrolytes

    International Nuclear Information System (INIS)

    Angerer, P.; Mann, R.; Gavrilovic, A.; Nauer, G.E.

    2009-01-01

    The anodic oxidation of pure lead in two acidic sulphate electrolytes with identical ionic strength (pH ∼ 0 and pH ∼ -0.1) was studied by in situ grazing incidence X-ray diffraction method (GIXD). Crystalline products such as lead sulphate (anglesite, PbSO 4 , orthorhombic), α- and β-lead dioxide (α-PbO 2 , orthorhombic, and β-PbO 2 , tetragonal), and tribasic lead sulphate hydrate with the stoichiometric composition 3PbO.PbSO 4 .H 2 O (triclinic) were detected at defined potentials. A method for the semi-quantitative determination of the thickness of the deposited layer from diffraction data is described. After the in situ measurement, the washed and dried working electrodes were additionally characterized ex situ by GIXD measurements at different angles of incidence. The phase litharge (lead oxide, t-PbO, tetragonal) and lead sulphate were observed at the surface of the lead substrate. The quantitative evaluation of the diffraction intensity of this measurement series enables the modelling of a qualitative depth profile of the layer generated during the electrochemical treatment. The anglesite phase is located in the uppermost layer, while the litharge phase was detected closer to the lead substrate

  17. In situ Fourier transform infrared spectroscopy and on-line differential electrochemical mass spectrometry study of the NH3BH3 oxidation reaction on gold electrodes

    International Nuclear Information System (INIS)

    Belén Molina Concha, M.; Chatenet, Marian; Lima, Fabio H.B.; Ticianelli, Edson A.

    2013-01-01

    The ammonia borane (NH 3 BH 3 ) oxidation reaction (ABOR) was studied on gold electrodes using the rotating disk electrode (RDE) setup and coupled physical techniques: on-line differential electrochemical mass spectrometry (DEMS) and in situ Fourier transform infrared spectroscopy (FTIR). Non-negligible heterogeneous hydrolysis in the low-potential region was asserted via molecular H 2 detection. As a consequence, the number of electron exchanged per BH 3 OH − species is ca. 3 at low potential, and only reaches ca. 6 above 0.6 V vs. RHE. These figures were confirmed by Levich and Koutecki–Levich calculations using the RDE experiments data. The nature of the ABOR intermediates and products was determined using in situ FTIR. While BH 2 species were detected during the ABOR, it seems that its adsorption onto the Au electrode proceeds via the O atom, in opposition to what happens during the borohydride oxidation reaction (BOR). Therefore, it is likely that the mechanism of the ABOR differs from that of the BOR. From the whole set of data (RDE, DEMS, FTIR), a relevant reaction pathway was proposed, including competition between the BH 3 OH − heterogeneous hydrolysis and oxidation at low potential, and preponderant oxidation at higher potential. Finally, a simplified kinetic modeling accounting with this reaction pathway was proposed, which nicely fits the stationary (i vs. E) ABOR plot

  18. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction

    Science.gov (United States)

    Xu, Haoran; Chen, Bin; Zhang, Houcheng; Tan, Peng; Yang, Guangming; Irvine, John T. S.; Ni, Meng

    2018-04-01

    In this paper, 2D models for direct carbon solid oxide fuel cells (DC-SOFCs) with in situ catalytic steam-carbon gasification reaction are developed. The simulation results are found to be in good agreement with experimental data. The performance of DC-SOFCs with and without catalyst are compared at different operating potential, anode inlet gas flow rate and operating temperature. It is found that adding suitable catalyst can significantly speed up the in situ steam-carbon gasification reaction and improve the performance of DC-SOFC with H2O as gasification agent. The potential of syngas and electricity co-generation from the fuel cell is also evaluated, where the composition of H2 and CO in syngas can be adjusted by controlling the anode inlet gas flow rate. In addition, the performance DC-SOFCs and the percentage of fuel in the outlet gas are both increased with increasing operating temperature. At a reduced temperature (below 800 °C), good performance of DC-SOFC can still be obtained with in-situ catalytic carbon gasification by steam. The results of this study form a solid foundation to understand the important effect of catalyst and related operating conditions on H2O-assisted DC-SOFCs.

  19. A reaction cell with sample laser heating for in situ soft X-ray absorption spectroscopy studies under environmental conditions.

    Science.gov (United States)

    Escudero, Carlos; Jiang, Peng; Pach, Elzbieta; Borondics, Ferenc; West, Mark W; Tuxen, Anders; Chintapalli, Mahati; Carenco, Sophie; Guo, Jinghua; Salmeron, Miquel

    2013-05-01

    A miniature (1 ml volume) reaction cell with transparent X-ray windows and laser heating of the sample has been designed to conduct X-ray absorption spectroscopy studies of materials in the presence of gases at atmospheric pressures. Heating by laser solves the problems associated with the presence of reactive gases interacting with hot filaments used in resistive heating methods. It also facilitates collection of a small total electron yield signal by eliminating interference with heating current leakage and ground loops. The excellent operation of the cell is demonstrated with examples of CO and H2 Fischer-Tropsch reactions on Co nanoparticles.

  20. Structure Sensitivity in Pt Nanoparticle Catalysts for Hydrogenation of 1,3-Butadiene: In Situ Study of Reaction Intermediates Using SFG Vibrational Spectroscopy

    KAUST Repository

    Michalak, William D.

    2013-01-31

    The product selectivity during 1,3-butadiene hydrogenation on monodisperse, colloidally synthesized, Pt nanoparticles was studied under reaction conditions with kinetic measurements and in situ sum frequency generation (SFG) vibrational spectroscopy. SFG was performed with the capping ligands intact in order to maintain nanoparticle size by reduced sintering. Four products are formed at 75 C: 1-butene, cis-2-butene, trans-2-butene, and n-butane. Ensembles of Pt nanoparticles with average diameters of 0.9 and 1.8 nm exhibit a ∼30% and ∼20% increase in the full hydrogenation products, respectively, as compared to Pt nanoparticles with average diameters of 4.6 and 6.7 nm. Methyl and methylene vibrational stretches of reaction intermediates observed under working conditions using SFG were used to correlate the stable reaction intermediates with the product distribution. Kinetic and SFG results correlate with previous DFT predictions for two parallel reaction pathways of 1,3-butadiene hydrogenation. Hydrogenation of 1,3-butadiene can initiate with H-addition at internal or terminal carbons leading to the formation of 1-buten-4-yl radical (metallocycle) and 2-buten-1-yl radical intermediates, respectively. Small (0.9 and 1.8 nm) nanoparticles exhibited vibrational resonances originating from both intermediates, while the large (4.6 and 6.7 nm) particles exhibited vibrational resonances originating predominately from the 2-buten-1-yl radical. This suggests each reaction pathway competes for partial and full hydrogenation and the nanoparticle size affects the kinetic preference for the two pathways. The reaction pathway through the metallocycle intermediate on the small nanoparticles is likely due to the presence of low-coordinated sites. © 2012 American Chemical Society.

  1. In situ synchrotron powder diffraction study of the setting reaction kinetics of magnesium-potassium phosphate cements

    Czech Academy of Sciences Publication Activity Database

    Viani, Alberto; Pérez-Estébanez, Marta; Pollastri, S.; Gualtieri, A. F.

    2016-01-01

    Roč. 79, January (2016), s. 344-352 ISSN 0008-8846 R&D Projects: GA MŠk(CZ) LO1219 Keywords : kinetics * reaction * X-ray diffraction * MgO * chemically bonded ceramics Subject RIV: JN - Civil Engineering Impact factor: 4.762, year: 2016 http://www.sciencedirect.com/science/article/pii/S0008884615002690

  2. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell

    International Nuclear Information System (INIS)

    Deb, A.; Bergmann, U.; Cairns, E.L.; California Univ., Berkeley, CA; Cramer, S.P.; California Univ., Davis, CA

    2004-01-01

    The extraction and insertion of lithium in LiFePO 4 has been investigated in practical Li-ion intercalation electrodes for Li-ion batteries using Fe K-edge X-ray absorption spectroscopy (XAS). A versatile electrochemical in situ reaction cell was utilized, specifically designed for long-term X-ray experiments on battery electrodes during the lithium-extraction/insertion process in electrode materials for Li-ion batteries. The electrode contained about 7.7 mg of LiFePO 4 on a 20 μm-thick Al foil. In order to determine the charge compensation mechanism and structural perturbations occurring in the system during cycling, in situ X-ray absorption fine-structure spectroscopy (XAFS) measurements were conducted on the cell at a moderate rate using typical Li-ion battery operating voltages (3.0-4.1 V versus Li/Li + ).XAS studies of the LiFePO 4 electrode measured at the initial state (LiFePO 4 ) showed iron to be in the Fe(II) state corresponding to the initial state (0.0 mAh) of the battery, whereas in the delithiated state (FePO 4 ) iron was found to be in the FE(III) state corresponding to the final charged state (3 m Ah) of the battery. The X-ray absorption near-edge structure (XANES) region of the XAS spectra revealed a high-spin configuration for the two states [Fe(II), d 6 and Fe(III), d 5 ]. The XAFS data analysis confirmed that the olivine structure of the LeFePO 4 and FePO 4 is retained by the electrodes, which is in agreement with the X-ray diffraction observations on these compounds. The XAFS data that were collected continuously during cycling revealed details about the response of the cathode to Li insertion and extraction. These measurements on the LiFePO 4 cathode show that the material retains good structural short-range order leading to superior cycling

  3. In situ TEM observation of solid-gas reactions

    International Nuclear Information System (INIS)

    Kishita, K; Kamino, T; Watabe, A; Kuroda, K; Saka, H

    2008-01-01

    Under a gaseous atmosphere at high temperatures, almost all the materials (metal, catalysts, etc.) change their structures and properties. For the research and development of materials, it is of vital importance to clarify mechanisms of solid-gas and liquid-gas reactions. Recently an in situ TEM system combined with an environmental holder, which has a gas injection nozzle close to a specimen-heating element, has been developed. The gas injection nozzle permits gas to flow around the specimens sitting on the heating element made of a fine W filament. The newly developed in situ TEM has a differential pumping system; therefore, the pressure in the specimen chamber is maintained in the range of higher than 1 Pa, while the pressure in the electron gun chamber can be kept in the range of 10 -5 Pa. This system was applied to in situ observation of chemical reactions of metals with gases: Observation of oxidation and reduction under a gas pressure ranging from 10 -5 Pa to 1 Pa at high temperatures (room temperature to ∼1473 K) were successfully carried out on pure metal and rare metal catalysts at near-atomic resolution. This in situ environmental TEM system is promising for clarifying mechanisms of many solid-gas and liquid-gas reactions that take place at high temperatures under a gas atmosphere.

  4. Gas sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of trichloroethylene adsorption and reactions on SnO2 films

    Science.gov (United States)

    Zhang, Zhenxin; Huang, Kaijin; Yuan, Fangli; Xie, Changsheng

    2014-05-01

    The detection of trichloroethylene has attracted much attention because it has an important effect on human health. The sensitivity of the SnO2 flat-type coplanar gas sensor arrays to 100 ppm trichloroethylene in air was investigated. The adsorption and surface reactions of trichloroethylene were investigated at 100-200 °C by in-situ diffuse reflection Fourier transform infrared spectroscopy (DIRFTS) on SnO2 films. Molecularly adsorbed trichloroethylene, dichloroacetyl chloride (DCAC), phosgene, HCl, CO, H2O, CHCl3, Cl2 and CO2 surface species are formed during trichloroethylene adsorption at 100-200 °C. A possible mechanism of the reaction process is discussed.

  5. Electrocatalytic oxygen reduction and hydrogen evolution reactions on phthalocyanine modified electrodes: Electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif, E-mail: akoca@eng.marmara.edu.tr [Department of Chemical Engineering, Faculty of Engineering, Marmara University, Goeztepe, 34722 Istanbul (Turkey); Kalkan, Ayfer; Bayir, Zehra Altuntas [Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul (Turkey)

    2011-06-30

    Highlights: > Electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines were performed. > The presence of O{sub 2} influences both oxygen reduction reaction and the electrochemical behaviors of the complexes. > Homogeneous catalytic ORR process occurs via an 'inner sphere' chemical catalysis process. > CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. - Abstract: This study describes electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring of the electrocatalytic reduction of molecular oxygen and hydronium ion on the phthalocyanine-modified electrodes. For this purpose, electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines (MPc) bearing tetrakis-[4-((4'-trifluoromethyl)phenoxy)phenoxy] groups were performed. While CoPc gives both metal-based and ring-based redox processes, H{sub 2}Pc, ZnPc and CuPc show only ring-based electron transfer processes. In situ electrocolorimetric method was applied to investigate the color of the electrogenerated anionic and cationic forms of the complexes. The presence of O{sub 2} in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes, which indicate electrocatalytic activity of the complexes for the oxygen reduction reaction. Perchloric acid titrations monitored by voltammetry represent possible electrocatalytic activities of the complexes for hydrogen evolution reaction. CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. The nature of the metal center changes the electrocatalytic activities for hydrogen evolution reaction in aqueous solution. Although CuPc has an inactive metal center, its electrocatalytic activity is recorded more than CoPc for H{sup +} reduction in aqueous

  6. A novel fabrication technology of in situ TiB2/6063Al composites: High energy ball milling and melt in situ reaction

    International Nuclear Information System (INIS)

    Zhang, S.-L.; Yang, J.; Zhang, B.-R.; Zhao, Y.-T.; Chen, G.; Shi, X.-X.; Liang, Z.-P.

    2015-01-01

    Highlights: • This paper presents a novel technology to fabricate the TiB 2 /6063Al composites. • The novel technology decreases in situ reaction temperature and shortens the time. • The reaction mechanism of in situ reaction at the low temperature is discussed. • Effect of ball milling time and in situ reaction time on the composites is studied. - Abstract: TiB 2 /6063Al matrix composites are fabricated from Al–TiO 2 –B 2 O 3 system by the technology combining high energy ball milling with melt in situ reaction. The microstructure and tensile properties of the composites are investigated by XRD, SEM, EDS, TEM and electronic tensile testing. The results indicate that high energy ball milling technology decreases the in situ reaction temperature and shortens the reaction time for Al–TiO 2 –B 2 O 3 system in contrast with the conventional melt in situ synthesis. The morphology of in situ TiB 2 particles is exhibited in irregular shape or nearly circular shape, and the average size of the particles is less than 700 nm, thereinto the minimum size is approximately 200 nm. In addition, the morphology and size of the reinforced particles are affected by the time of ball milling and in situ reaction. TEM images indicate that the interface between 6063Al matrix and TiB 2 particles is clear and no interfacial outgrowth is observed. Tensile testing results show that the as-cast TiB 2 /6063Al composites exhibit a much higher strength, reaching 191 MPa, which is 1.23 times as high as the as-cast 6063Al matrix. Besides, the tensile fracture surface of the composites displays the dimple-fracture character

  7. A novel fabrication technology of in situ TiB{sub 2}/6063Al composites: High energy ball milling and melt in situ reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.-L.; Yang, J. [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhang, B.-R. [School of Mechanical Engineering, Qilu University of Technology, Jinan, Shandong 250022 (China); Zhao, Y.-T., E-mail: 278075525@qq.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Chen, G.; Shi, X.-X.; Liang, Z.-P. [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)

    2015-08-05

    Highlights: • This paper presents a novel technology to fabricate the TiB{sub 2}/6063Al composites. • The novel technology decreases in situ reaction temperature and shortens the time. • The reaction mechanism of in situ reaction at the low temperature is discussed. • Effect of ball milling time and in situ reaction time on the composites is studied. - Abstract: TiB{sub 2}/6063Al matrix composites are fabricated from Al–TiO{sub 2}–B{sub 2}O{sub 3} system by the technology combining high energy ball milling with melt in situ reaction. The microstructure and tensile properties of the composites are investigated by XRD, SEM, EDS, TEM and electronic tensile testing. The results indicate that high energy ball milling technology decreases the in situ reaction temperature and shortens the reaction time for Al–TiO{sub 2}–B{sub 2}O{sub 3} system in contrast with the conventional melt in situ synthesis. The morphology of in situ TiB{sub 2} particles is exhibited in irregular shape or nearly circular shape, and the average size of the particles is less than 700 nm, thereinto the minimum size is approximately 200 nm. In addition, the morphology and size of the reinforced particles are affected by the time of ball milling and in situ reaction. TEM images indicate that the interface between 6063Al matrix and TiB{sub 2} particles is clear and no interfacial outgrowth is observed. Tensile testing results show that the as-cast TiB{sub 2}/6063Al composites exhibit a much higher strength, reaching 191 MPa, which is 1.23 times as high as the as-cast 6063Al matrix. Besides, the tensile fracture surface of the composites displays the dimple-fracture character.

  8. Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy.

    Science.gov (United States)

    Blasco, Teresa

    2010-12-01

    This tutorial review intends to show the possibilities of in situ solid state NMR spectroscopy in the elucidation of reaction mechanisms and the nature of the active sites in heterogeneous catalysis. After a brief overview of the more usual experimental devices used for in situ solid state NMR spectroscopy measurements, some examples of applications taken from the recent literature will be presented. It will be shown that in situ NMR spectroscopy allows: (i) the identification of stable intermediates and transient species using indirect methods, (ii) to prove shape selectivity in zeolites, (iii) the study of reaction kinetics, and (iv) the determination of the nature and the role played by the active sites in a catalytic reaction. The approaches and methodology used to get this information will be illustrated here summarizing the most relevant contributions on the investigation of the mechanisms of a series of reactions of industrial interest: aromatization of alkanes on bifunctional catalysts, carbonylation reaction of methanol with carbon monoxide, ethylbenzene disproportionation, and the Beckmann rearrangement reaction. Special attention is paid to the research carried out on the role played by carbenium ions and alkoxy as intermediate species in the transformation of hydrocarbon molecules on solid acid catalysts.

  9. In-situ Studies of the Reactions of Bifunctional and Heterocyclic Molecules over Noble Metal Single Crystal and Nanoparticle Catalysts Studied with Kinetics and Sum-Frequency Generation Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kliewer, Christopher J. [Univ. of California, Berkeley, CA (United States)

    2009-06-30

    Sum frequency generation surface vibrational spectroscopy (SFG-VS) in combination with gas chromatography (GC) was used in-situ to monitor surface bound reaction intermediates and reaction selectivities for the hydrogenation reactions of pyrrole, furan, pyridine, acrolein, crotonaldehyde, and prenal over Pt(111), Pt(100), Rh(111), and platinum nanoparticles under Torr reactant pressures and temperatures of 300K to 450K. The focus of this work is the correlation between the SFG-VS observed surface bound reaction intermediates and adsorption modes with the reaction selectivity, and how this is affected by catalyst structure and temperature. Pyrrole hydrogenation was investigated over Pt(111) and Rh(111) single crystals at Torr pressures. It was found that pyrrole adsorbs to Pt(111) perpendicularly by cleaving the N-H bond and binding through the nitrogen. However, over Rh(111) pyrrole adsorbs in a tilted geometry binding through the {pi}-aromatic orbitals. A surface-bound pyrroline reaction intermediate was detected over both surfaces with SFG-VS. It was found that the ring-cracking product butylamine is a reaction poison over both surfaces studied. Furan hydrogenation was studied over Pt(111), Pt(100), 10 nm cubic platinum nanoparticles and 1 nm platinum nanoparticles. The product distribution was observed to be highly structure sensitive and the acquired SFG-VS spectra reflected this sensitivity. Pt(100) exhibited more ring-cracking to form butanol than Pt(111), while the nanoparticles yielded higher selectivities for the partially saturated ring dihydrofuran. Pyridine hydrogenation was investigated over Pt(111) and Pt(100). The α-pyridyl surface adsorption mode was observed with SFG-VS over both surfaces. 1,4-dihydropyridine was seen as a surface intermediate over Pt(100) but not Pt(111). Upon heating the surfaces to 350K, the adsorbed pyridine changes to a flat-lying adsorption mode. No evidence was found for the pyridinium cation. The hydrogenation of the

  10. Nuclear reaction studies

    International Nuclear Information System (INIS)

    Alexander, J.M.; Lacey, R.A.

    1994-01-01

    Research focused on the statistical and dynamical properties of ''hot'' nuclei formed in symmetric heavy-ion reactions. Theses included ''flow'' measurements and the mechanism for multifragment disassembly. Model calculations are being performed for the reactions C+C, Ne+Al, Ar+Sc, Kr+Nb, and Xe+La. It is planned to study 40 Ar reactions from 27 to 115 MeV/nucleon. 2 figs., 41 refs

  11. In situ alkali-silica reaction observed by x-ray microscopy

    International Nuclear Information System (INIS)

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-01-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction

  12. In situ alkali-silica reaction observed by x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurtis, K.E.; Monteiro, P.J.M. [Univ. of California, Berkeley, CA (United States); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  13. In situ XAFS studies of the oxygen reduction reaction on carbon supported platinum and platinum nickel nano-scale alloys as cathode catalysts in fuel cells

    Science.gov (United States)

    Jia, Qingying

    Platinum based bimetallic alloys have been investigated by conducting Pt L3 and Ni K edge in situ XAFS measurements on carbon supported Pt and PtNi(1:1) nanoscale catalysts under a wide range of operating potentials. We observed that (1) the Pt-Pt bond distance in PtNi alloys is shorter than that of Pt, and the bond distance between Pt and oxygen adsorbate is longer for PtNi. (2) Pt has a tendency to stay on the surface while Ni is mostly underneath the surface. (3) While a change in oxidation of pure Pt was clearly observed at different potentials, the Pt in the PtNi alloy remained nearly oxygen-free at all potentials, but an accompanying oxidation change of Ni was observed instead. (4) PtNi has higher open circuit voltage than Pt/C. These results indicate that the chemisorption energy between Pt and oxygen adsorbate is reduced in PtNi alloys, which prevents the poison of oxygen adsorbate and hence improves the reactivity. In addition, the strain and ligand effects in PtNi nanoparticle alloys were studied by FEW calculations using experimental data as a guide to understand the factors causing the reduction of chemisorptions energy of Pt. Our calculation indicates that Pt d-band is broader and lower in energy when the bond distance between Pt is shorter, resulting in weaker chemisorption energy between Pt and absorbed oxygen atom on top, and vice verse. Meanwhile, the investigation of ligand effect shows two trends in modifying Pt's properties within alloyed transition metals. The strain effect dominates in PtNi bimetallic system, corresponding to weaker chemisorptions energy and lower white intensity of Pt L3 edge, which is in consistent with our experimental results. The implications of these results afford a good guideline in understanding the reactivity enhancement mechanism and in the context of alloy catalysts design.

  14. Structure Sensitivity in Pt Nanoparticle Catalysts for Hydrogenation of 1,3-Butadiene: In Situ Study of Reaction Intermediates Using SFG Vibrational Spectroscopy

    KAUST Repository

    Michalak, William D.; Krier, James M.; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2013-01-01

    hydrogenation and the nanoparticle size affects the kinetic preference for the two pathways. The reaction pathway through the metallocycle intermediate on the small nanoparticles is likely due to the presence of low-coordinated sites. © 2012 American Chemical

  15. Proof-of-Concept Study: Novel Microbially-Driven Fenton Reaction for In Situ Remediation of Groundwater Contaminated with 1,4-Dioxane, Tetrachloroethene (PCE) and Trichloroethene (TCE)

    Science.gov (United States)

    2014-09-17

    with 1,4-Dioxane, Tetrachloroethene (PCE) and Trichloroethene ( TCE ) SERDP Project ER-2305 September 2014 Thomas DiChristina Georgia...HO) radicals that degrade 1,4- dioxane, TCE , and PCE. In comparison to conventional (purely abiotic) Fenton reactions, the microbially-driven Fenton...reaction operates at circumneutral pH and does not require addition of exogenous H2O2 or UV irradiation to regenerate Fe(II). The 1,4-dioxane, TCE

  16. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods.

    Science.gov (United States)

    Qi, Wei; Yan, Pengqiang; Su, Dang Sheng

    2018-03-20

    Sustainable and environmentally benign catalytic processes are vital for the future to supply the world population with clean energy and industrial products. The replacement of conventional metal or metal oxide catalysts with earth abundant and renewable nonmetallic materials has attracted considerable research interests in the field of catalysis and material science. The stable and efficient catalytic performance of nanocarbon materials was discovered at the end of last century, and these materials are considered as potential alternatives for conventional metal-based catalysts. With its rapid development in the past 20 years, the research field of carbon catalysis has been experiencing a smooth transition from the discovery of novel nanocarbon materials or related new reaction systems to the atomistic-level mechanistic understanding on the catalytic process and the subsequent rational design of the practical catalytic reaction systems. In this Account, we summarize the recent progress in the kinetic and mechanistic studies on nanocarbon catalyzed alkane oxidative dehydrogenation (ODH) reactions. The paper attempts to extract general concepts and basic regularities for carbon catalytic process directing us on the way for rational design of novel efficient metal-free catalysts. The nature of the active sites for ODH reactions has been revealed through microcalorimetric analysis, ambient pressure X-ray photoelectron spectroscopy (XPS) measurement, and in situ chemical titration strategies. The detailed kinetic analysis and in situ catalyst structure characterization suggests that carbon catalyzed ODH reactions involve the redox cycles of the ketonic carbonyl-hydroxyl pairs, and the key physicochemical parameters (activation energy, reaction order, and rate/equilibrium constants, etc.) of the carbon catalytic systems are proposed and compared with conventional transition metal oxide catalysts. The proposal of the intrinsic catalytic activity (TOF) provides the

  17. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research.

    Science.gov (United States)

    Wu, Jianbo; Shan, Hao; Chen, Wenlong; Gu, Xin; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2016-11-01

    Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In-situ synchrotron PXRD study of spinel LiMn2O4 formation

    DEFF Research Database (Denmark)

    Birgisson, Steinar; Jensen, Kirsten Marie Ørnsbjerg; Christiansen, Troels Lindahl

    structural properties for the reaction being studied. Normally the reactions are started by heating and a constant temperature is kept throughout the experiment. In this study the hydrothermal reaction previously shown to produce spinel LiMn2O4 nanoparticles is studied in-situ to learn more about the phase......O4, depending on the initial concentration if Li-ions. An impurity phase, identified as Mn3O4, is also detected in different concentrations depending on reaction time and temperature. We have developed an experimental technique for in-situ measurements of solvothermal reactions under sub...... in the in-situ measurements it gives a unique opportunity to study reaction kinetics and thermodynamic quantities of the reactions. A temperature study of the reaction has been conducted to see how the formation rate and particle growth is affected by temperature while the precursor concentration is kept...

  19. STUDIES ON ENDOTHELIAL REACTIONS

    Science.gov (United States)

    Foot, Nathan Chandler

    1923-01-01

    operative. On the other hand, there may be an increase in the phagocytic activity of the endothelium of the sinusoids which might take up more bacteria under these changed conditions. Several investigators have claimed, recently, that there is an increased activity of the liver endothelium following splenectomy, their experiments being directed chiefly toward determining the fate of the erythrocytes. Pearce (1918) in reporting the effects of experimental splenectomy in dogs, states that there are definite compensatory changes in the lymph nodes, in the form of an increased proliferation of endothelial phagocytes, and that the stellate cells of the liver sinusoids often show a similar compensatory increase in number. In both cases the cells are, apparently, formed in situ rather than transported to the organs. He says: ‘Such findings suggest the development of a compensatory function on the part of the lymph-nodes and possibly the liver,’ and suggests that, in times of stress ‘the stellate cells of the liver thus assume, in part at least, the function of destroying red blood-corpuscles by phagocytosis.’ Incidentally, he presents an excellent discussion of the history and subject of splenectomy. Motohashi (1922) reports a great increase in the hemophagic power of the hepatic endothelium and an increase in the number of endothelial elements, after some 45 days following splenectomy in rabbits. Nishikawa and Takagi (1922) have observed similar phenomena with white rats, the Kupffer cells taking up erythrocytes in large numbers in splenectomized animals, whereas controls never show similar propensities on the part of these cells. It may be that different substances cause different reactions on the part of the hepatic endothelium. Contributory Experiment.—A side experiment was performed with five rabbits, two splenectomized and three controls, into which uniform doses of pneumococci were injected intravenously. They all died of septicemia after a few days. The results

  20. An in-situ chemical reaction deposition of nanosized wurtzite CdS thin films

    International Nuclear Information System (INIS)

    Chu Juan; Jin Zhengguo; Cai Shu; Yang Jingxia; Hong Zhanglian

    2012-01-01

    Nanocrystalline CdS thin films were deposited on glass substrates by an ammonia-free in-situ chemical reaction synthesis technique using cadmium cationic precursor solid films as reaction source and sodium sulfide based solutions as anionic reaction medium. Effects of ethanolamine addition to the cadmium cationic precursor solid films, deposition cycle numbers and annealing treatments in Ar atmosphere on structure, morphology, chemical composition and optical properties of the resultant films were investigated by X-ray diffraction, field emission scanning electron microscope, energy dispersive X-ray analysis and UV–Vis spectra measurements. The results show that CdS thin films deposited by the in-situ chemical reaction synthesis have wurtzite structure with (002) plane preferential orientation and crystallite size is in the range of 16 nm–19 nm. The growth of film thickness is almost constant with deposition cycle numbers and about 96 nm per cycle.

  1. Design of a facility for the in situ measurement of catalytic reaction by neutron scattering spectroscopy

    Science.gov (United States)

    Tan, Shuai; Cheng, Yongqiang; Daemen, Luke L.; Lutterman, Daniel A.

    2018-01-01

    Catalysis is a critical enabling science for future energy needs. The next frontier of catalysis is to evolve from catalyst discovery to catalyst design, and for this next step to be realized, we must develop new techniques to better understand reaction mechanisms. To do this, we must connect catalytic reaction rates and selectivities to the kinetics, energetics, and dynamics of individual elementary steps and relate these to the structure and dynamics of the catalytic sites involved. Neutron scattering spectroscopies offer unique capabilities that are difficult or impossible to match by other techniques. The current study presents the development of a compact and portable instrumental design that enables the in situ investigation of catalytic samples by neutron scattering techniques. The developed apparatus was tested at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory and includes a gas handling panel that allows for computer hookups to control the panel externally and online measurement equipment such as coupled GC-FID/TCD (Gas Chromatography-Flame Ionization Detector/Thermal Conductivity Detector) and MS (Mass Spectrometry) to characterize offgassing while the sample is in the neutron scattering spectrometer. This system is flexible, modular, compact, and portable enabling its use for many types of gas-solid and liquid-solid reactions at the various beamlines housed at the SNS.

  2. Production of mullite-zirconia ceramics composites by 'In situ' reaction

    International Nuclear Information System (INIS)

    Melo, F.C.L. de; Cairo, C.A.A.; Piorino Neto, F.; Devezas, T.C.

    1987-01-01

    Mullita-zirconia ceramic composites were produced by 'In situ' reaction of alumina and brazilian zircon. The ideal curve of thermal treatment (reaction + sinterization) was determined for the obtention of composites of maximum mechanical resistence. The retained fraction of tetragonal fase was evaluated by X-ray difraction and correlated with the values of mechanical resistence obtained by different treatment curves. The performance of the developed composites under corrosion and thermal shock was evaluated by glass casting. (Author) [pt

  3. One ligand capable of in situ reaction in a mixed-ligand system with two new different frameworks

    KAUST Repository

    Wang, Xiaofang

    2017-12-24

    The in situ ligand 2,3-pyrazinedicarboxylic acid (2,3-H2pzdc) mixed with 1,1′-(1,4-butanediyl)bis(benzimidazole) (bbbi) is used to form two coordination polymers ([Cd(2,3-pzdc)(bbbi)] (1) and [Cd2Cl3(2-pzc)(bbbi)2] (2)) under hydrothermal conditions. Complex 1 was obtained in the absence of in situ reaction and 2 was synthesized with 2,3-H2pzdc in situ generating 2-pyrazinecarboxylate (2-pzc−). The structural details reveal that 1 has a 3D framework with dia topology, and 2 is a 2D layer structure and develops a 3D supramolecular structure via strong π⋯π stacking interactions. The ligand effects were compared for the two frameworks. In addition, fluorescence properties and thermal stabilities of 1 and 2 in the solid were studied.

  4. Human epidermal growth factor receptor 2 assessment in a case-control study: comparison of fluorescence in situ hybridization and quantitative reverse transcription polymerase chain reaction performed by central laboratories.

    Science.gov (United States)

    Baehner, Frederick L; Achacoso, Ninah; Maddala, Tara; Shak, Steve; Quesenberry, Charles P; Goldstein, Lynn C; Gown, Allen M; Habel, Laurel A

    2010-10-01

    The optimal method to assess human epidermal growth factor receptor 2 (HER2) status remains highly controversial. Before reporting patient HER2 results, American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guidelines mandate that laboratories demonstrate ≥ 95% concordance to another approved laboratory or methodology. Here, we compare central laboratory HER2 assessed by fluorescence in situ hybridization (FISH) and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) using Oncotype DX in lymph node-negative, chemotherapy-untreated patients from a large Kaiser Permanente case-control study. Breast cancer specimens from the Kaiser-Genomic Health study were examined. Central FISH assessment of HER2 amplification and polysomy 17 was conducted by PhenoPath Laboratories (ratios > 2.2, 1.8 to 2.2, and < 1.8 define HER2 positive, HER2 equivocal, and HER2 negative, respectively). HER2 expression by RT-PCR was conducted using Oncotype DX by Genomic Health (normalized expression units ≥ 11.5, 10.7 to < 11.5, and < 10.7 define HER2 positive, HER2 equivocal, and HER2 negative, respectively). Concordance analyses followed ASCO/CAP guidelines. HER2 concordance by central FISH and central RT-PCR was 97% (95% CI, 96% to 99%). Twelve percent (67 of 568 patients) and 11% (60 of 568 patients) of patients were HER2 positive by RT-PCR and FISH, respectively. HER2-positive patients had increased odds of dying from breast cancer compared with HER2-negative patients. Polysomy 17 was demonstrated in 12.5% of all patients and 33% of FISH-positive patients. Nineteen of 20 FISH-positive patients with polysomy 17 were also RT-PCR HER2 positive. Although not statistically significantly different, HER2-positive/polysomy 17 patients tended to have the worst prognosis, followed by HER2-positive/eusomic, HER2-negative/polysomy 17, and HER2-negative/eusomic patients. There is a high degree of concordance between central FISH and quantitative RT

  5. In situ study of interface reactions of ion beam sputter deposited (Ba0.5Sr0.5)TiO3 films on Si, SiO2, and Ir

    International Nuclear Information System (INIS)

    Gao, Y.; Mueller, A.H.; Irene, E.A.; Auciello, O.; Krauss, A.; Schultz, J.A.

    1999-01-01

    (Ba 0.5 ,Sr 0.5 )TiO 3 (BST) thin films were deposited on MgO, Si, SiO 2 and Ir surfaces by ion beam sputter deposition in oxygen at 700 degree C. In situ spectroscopic ellipsometry (SE) has been used to investigate the evolution of the BST films on different surfaces during both deposition and postannealing processes. First, the optical constants of the BST films in the photon energy range of 1.5 - 4.5 eV were determined by SE analysis on crystallized BST films deposited on MgO single crystal substrates. The interfaces in BST/Si and BST/SiO 2 /Si structure were examined by SE and Auger electron spectroscopy depth profiles. Subcutaneous oxidation in the BST/Ir structure was observed by in situ SE during both ion beam sputter deposition and postdeposition annealing in oxygen at 700 degree C. A study of the thermal stability of the Ir/TiN/SiO 2 /Si structure in oxygen at 700 degree C was carried out using in situ SE. The oxidation of Ir was confirmed by x-ray diffraction. The surface composition and morphology evolution after oxidation were investigated by time of flight mass spectroscopy of recoiled ions (TOF-MSRI) and atomic force microscopy. It has been found that Ti from the underlying TiN barrier layer diffused through the Ir layer onto the surface and thereupon became oxidized. It was also shown that the surface roughness increases with increasing oxidation time. The implications of the instability of Ir/TiN/SiO 2 /Si structure on the performance of capacitor devices based on this substrate are discussed. It has been shown that a combination of in situ SE and TOF-MSRI provides a powerful methodology for in situ monitoring of complex oxide film growth and postannealing processes. copyright 1999 American Vacuum Society

  6. Al-Si/Al2O3 in situ composite prepared by displacement reaction of CuO/Al system

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2010-02-01

    Full Text Available Al2O3 particle-reinforced ZL109 composite was prepared by in situ reaction between CuO and Al. The microstructure was observed by means of OM, SEM and TEM. The Al2O3 particles in sub-micron sizes distribute uniformly in the matrix, and the Cu displaced from the in situ reaction forms net-like alloy phases with other alloy elements. The hardness and the tensile strength of the composites at room temperature have a slight increase as compared to that of the matrix. However, the tensile strength at 350 ℃ has reached 90.23 MPa, or 16.92 MPa higher than that of the matrix. The mechanism of the reaction in the CuO/Al system was studied by using of differential scanning calorimetry(DSC and thermodynamic calculation. The reaction between CuO and Al involves two steps. First, CuO reacts with Al to form Cu2O and Al2O3 at the melting temperature of the matrix alloy, and second, Cu2O reacts with Al to form Cu and Al2O3 at a higher temperature. At ZL109 casting temperature of 750–780 ℃, the second step can also take place because of the effect of exothermic reaction of the first step.

  7. Synthesis of Citric-Acrylate Oligomer and its in-Situ Reaction with Chrome Tanned Collagen (hide powder)

    International Nuclear Information System (INIS)

    Haroun, A.A.; Masoud, R.A.; Bronco, S.; Ciardelli, F.

    2005-01-01

    The purpose of this study was to formulate the new combined system of acrylic and citric acids, which has been prepared by free radical polymerization and esterification reaction at the same time to form citric acrylate (CAC) oligomer through ester linkage and low molecular weight (Mw 2241), in compared with polyacrylic acid. The chemical structure and the reaction mechanism of this oligomer were confirmed by different spectroscopic tools (1 H , 13 C-NMR, ATR-IR), gel permeation chromatography and thermogravimetric analysis (TGA/DTA). The problem of the effect of the masking agents in the chrome tanning of the collagen and the pickling of the hide has been approached from the study of the hydrothermal and mechanical properties, using this new eco-friendly oligomer, which was carried out in-situ treated/grafted chrome tanned collagen (hide powder), and pickled hide. The microemulsion grafting copolymerization of (CAC) using 2.2-azo-bis isobutyronitrile (ABIN), via direct coupling reaction, onto the chrome tanned collagen showed that the free amino groups of the collagen were considered to be a potential site for the in-situ reaction with (CAC) oligomer. Also, using of citric-acrylate (CAC) oligomer, during chrome tanning of leather, instead of the traditional strong acids (sulfuric, hydrochloric and formic) resulted in significant improvement in chrome exhaustion and physical properties

  8. Four unexpected lanthanide coordination polymers involving in situ reaction of solvent N, N-Dimethylformamide

    International Nuclear Information System (INIS)

    Jin, Jun-Cheng; Tong, Wen-Quan; Fu, Ai-Yun; Xie, Cheng-Gen; Chang, Wen-Gui; Wu, Ju; Xu, Guang-Nian; Zhang, Ya-Nan; Li, Jun; Li, Yong; Yang, Peng-Qi

    2015-01-01

    Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of DMF solvent under solvothermal conditions. The isostructural complexes 1–3 contain four types of 2 1 helical chains. While the Nd(III) ions are bridged through μ 2 -HIDC 2− and oxalate to form a 2D sheet along the bc plane without helical character in 4. Therefore, complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature. - Graphical abstract: Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of solvent DMF to formate acid or oxalic acid under solvothermal conditions. The isostructural complexes 1–3 contain four types of different 2 1 helical chains in the 2D layer and 1 exhibits bright red solid-state phosphorescence upon UV radiation. - Highlights: • Four unexpected 2D lanthanide coordination compounds have been synthesized through in situ reactions under solvothermal conditions. • The complexes 1–3 contain four types of 2 1 helical chains in the layer. • Complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature

  9. In situ observation of the reaction of scandium and carbon by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Juarez-Arellano, Erick A., E-mail: eajuarez@unpa.edu.m [Institut fuer Geowissenschaften, Universitaet Frankfurt, Altenhoeferallee 1, 60438 Frankfurt a.M. (Germany); Universidad del Papaloapan, Circuito Central 200, Parque Industrial, Tuxtepec 68301 (Mexico); Winkler, Bjorn [Institut fuer Geowissenschaften, Universitaet Frankfurt, Altenhoeferallee 1, 60438 Frankfurt a.M. (Germany); Vogel, Sven C. [Los Alamos National Laboratory, Lujan Center. Mail Stop H805, Los Alamos, NM 87545 (United States); Senyshyn, Anatoliy [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universitaet Muenchen, Lichtenbergstr. 1, D-85747 Garching (Germany); Materialwissenschaft, TU Darmstadt, Petersensstr. 23, D-64287 Darmstadt (Germany); Kammler, Daniel R. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Avalos-Borja, Miguel [CNyN, UNAM, A. Postal 2681, Ensenada, B.C. (Mexico)

    2011-01-05

    Research highlights: {yields} Exist two ScC cubic phases with B1-structure type differing in site occupancy of C. {yields} A new orthorhombic scandium carbide phase is formed at 1473(50) K. {yields} The recrystallization of alpha-Sc occurs between 1000 and 1223 K. - Abstract: The formation of scandium carbides by reaction of the elements has been investigated by in situ neutron diffraction up to 1823 K. On heating, the recrystallization of {alpha}-Sc occurs between 1000 and 1223 K. The formation of Sc{sub 2}C and ScC (NaCl-B1 type structure) phases has been detected at 1323 and 1373 K, respectively. The formation of a new orthorhombic scandium carbide phase was observed at 1473(50) K. Once the scandium carbides are formed they are stable upon heating or cooling. No other phases were detected in the present study, in which the system was always carbon saturated. The thermal expansion coefficients of all phases have been determined, they are constant throughout the temperature interval studied.

  10. Modification of Clays by Sol-Gel Reaction and Their Use in the Ethylene In Situ Polymerization for Obtaining Nanocomposites

    Directory of Open Access Journals (Sweden)

    E. Moncada

    2012-01-01

    Full Text Available The nanocomposites formation by in situ polymerization used a metallocene catalyst (butyl-2-cyclopentadienyl zirconium 2-chlorines and a hectorite synthetic clay type which is discussed. This research was carried out in two phases. The first phase consisted of mixing the components of the metallocenic polymerization reaction (metallocene-methylaluminoxane-ethylene with clay in a reactor. In the second phase, the metallocenic catalytic system was supported by clay particles and then a polymerization reaction was made. In this second phase, the clay particles were modified using a sol-gel reaction with different pH values: pH = 3, pH = 8, and pH = 12. The results were compared in terms of the catalytic activity in the different systems (phase 1 and phase 2 and the nanoparticle morphology of nanocomposites generated in this study.

  11. In Situ Monitoring of Chemical Reactions at a Solid-Water Interface by Femtosecond Acoustics.

    Science.gov (United States)

    Shen, Chih-Chiang; Weng, Meng-Yu; Sheu, Jinn-Kong; Yao, Yi-Ting; Sun, Chi-Kuang

    2017-11-02

    Chemical reactions at a solid-liquid interface are of fundamental importance. Interfacial chemical reactions occur not only at the very interface but also in the subsurface area, while existing monitoring techniques either provide limited spatial resolution or are applicable only for the outmost atomic layer. Here, with the aid of the time-domain analysis with femtosecond acoustics, we demonstrate a subatomic-level-resolution technique to longitudinally monitor chemical reactions at solid-water interfaces, capable of in situ monitoring even the subsurface area under atmospheric conditions. Our work was proven by monitoring the already-known anode oxidation process occurring during photoelectrochemical water splitting. Furthermore, whenever the oxide layer thickness equals an integer  number of the effective atomic layer thickness, the measured acoustic echo will show higher signal-to-noise ratios with reduced speckle noise, indicating the quantum-like behavior of this coherent-phonon-based technique.

  12. Analysis of hepcidin expression: in situ hybridization and quantitative polymerase chain reaction from paraffin sections.

    Science.gov (United States)

    Sakuraoka, Yuhki; Sawada, Tokihiko; Shiraki, Takayuki; Park, Kyunghwa; Sakurai, Yuhichiro; Tomosugi, Naohisa; Kubota, Keiichi

    2012-07-28

    To establish methods for quantitative polymerase chain reaction (PCR) for hepcidin using RNAs isolated from paraffin-embedded sections and in situ hybridization of hepatocellular carcinoma (HCC). Total RNA from paraffin-embedded sections was isolated from 68 paraffin-embedded samples of HCC. Samples came from 54 male and 14 female patients with a mean age of 66.8 ± 7.8 years. Quantitative PCR was performed. Immunohistochemistry and in situ hybridization for hepcidin were also performed. Quantitative PCR for hepcidin using RNAs isolated from paraffin-embedded sections of HCC was performed successfully. The expression level of hepcidin mRNA in cancer tissues was significantly higher than that in non-cancer tissues. A method of in situ hybridization for hepcidin was established successfully, and this demonstrated that hepcidin mRNA was expressed in non-cancerous tissue but absent in cancerous tissue. We have established novel methods for quantitative PCR for hepcidin using RNAs isolated from paraffin-embedded sections and in situ hybridization of HCC.

  13. In situ Spectroscopy of Solid-State Chemical Reaction in PbBr2-Deposited CsBr Crystals

    Science.gov (United States)

    Kondo, Shin-ichi; Matsunaga, Toshihiro; Saito, Tadaaki; Asada, Hiroshi

    2003-09-01

    It is possible to measure the fundamental optical absorption spectra of CsPbBr3 and Cs4PbBr6, whose stability is predicted by the study of phase diagram in the binary system CsBr-PbBr2, by means of in situ optical absorption and reflection spectroscopy of thermally induced solid-state chemical reaction in PbBr2-deposited CsBr crystals. On heavy annealing of the crystals, the Pb2+ ions are uniformly dispersed in the crystal matrix. The present experiment provides a novel method for measuring intrinsic optical absorption of ternary metal halides and also for in situ monitoring of doping metal halide crystal with impurities (metal ions or halogen ions).

  14. Supramolecular Assembly of Comb-like Macromolecules Induced by Chemical Reactions that Modulate the Macromolecular Interactions In Situ.

    Science.gov (United States)

    Xia, Hongwei; Fu, Hailin; Zhang, Yanfeng; Shih, Kuo-Chih; Ren, Yuan; Anuganti, Murali; Nieh, Mu-Ping; Cheng, Jianjun; Lin, Yao

    2017-08-16

    Supramolecular polymerization or assembly of proteins or large macromolecular units by a homogeneous nucleation mechanism can be quite slow and require specific solution conditions. In nature, protein assembly is often regulated by molecules that modulate the electrostatic interactions of the protein subunits for various association strengths. The key to this regulation is the coupling of the assembly process with a reversible or irreversible chemical reaction that occurs within the constituent subunits. However, realizing this complex process by the rational design of synthetic molecules or macromolecules remains a challenge. Herein, we use a synthetic polypeptide-grafted comb macromolecule to demonstrate how the in situ modulation of interactions between the charged macromolecules affects their resulting supramolecular structures. The kinetics of structural formation was studied and can be described by a generalized model of nucleated polymerization containing secondary pathways. Basic thermodynamic analysis indicated the delicate role of the electrostatic interactions between the charged subunits in the reaction-induced assembly process. This approach may be applicable for assembling a variety of ionic soft matters that are amenable to chemical reactions in situ.

  15. Quantifying Chemical and Electrochemical Reactions in Liquids by in situ Electron Microscopy

    DEFF Research Database (Denmark)

    Canepa, Silvia

    and developing a robust imaging analysis method for quantitatively understand chemical and electrochemical process during in situ liquid electron microscopy. By using two custom-made liquid cells (an electrochemical scanning electron microscopy (EC-SEM) platform and Liquid Flow S/TEM holder) beam...... of electrochemical deposition of copper (Cu) by electrochemical liquid scanning electron microscopy (EC-SEM) was done in order to direct observe the formation of dendritic structures. Finally the shape evolution from solid to hollow structures through galvanic replacement reactions were observed for different silver...

  16. The In Situ Enzymatic Screening (ISES) Approach to Reaction Discovery and Catalyst Identification.

    Science.gov (United States)

    Swyka, Robert A; Berkowitz, David B

    2017-12-14

    The importance of discovering new chemical transformations and/or optimizing catalytic combinations has led to a flurry of activity in reaction screening. The in situ enzymatic screening (ISES) approach described here utilizes biological tools (enzymes/cofactors) to advance chemistry. The protocol interfaces an organic reaction layer with an adjacent aqueous layer containing reporting enzymes that act upon the organic reaction product, giving rise to a spectroscopic signal. ISES allows the experimentalist to rapidly glean information on the relative rates of a set of parallel organic/organometallic reactions under investigation, without the need to quench the reactions or draw aliquots. In certain cases, the real-time enzymatic readout also provides information on sense and magnitude of enantioselectivity and substrate specificity. This article contains protocols for single-well (relative rate) and double-well (relative rate/enantiomeric excess) ISES, in addition to a colorimetric ISES protocol and a miniaturized double-well procedure. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. In-situ burning: NIST studies

    International Nuclear Information System (INIS)

    Evans, D.D.

    1992-01-01

    In-situ burning of spilled oil has distinct advantages over other countermeasures. It offers the potential to convert rapidly large quantities of oil into its primary combustion products, carbon dioxide and water, with a small percentage of other unburned and residue byproducts. Because the oil is converted to gaseous products of combustion by burning, the need for physical collection, storage, and transport of recovered fluids is reduced to the few percent of the original spill volume that remains as residue after burning. Burning oil spills produces a visible smoke plume containing smoke particulate and other products of combustion which may persist for many kilometers from the burn. This fact gives rise to public health concerns, related to the chemical content of the smoke plume and the downwind deposition of particulate, which need to be answered. In 1985, a joint Minerals Management Service (MMS) and Environment Canada (EC) in-situ burning research program was begun at the National Institute of Standards and Technology (NIST). This research program was designed to study the burning of large crude oil spills on water and how this burning would affect air quality by quantifying the products of combustion and developing methods to predict the downwind smoke particulate deposition. To understand the important features of in-situ burning, it is necessary to perform both laboratory and mesoscale experiments. Finally, actual burns of spilled oil at sea will be necessary to evaluate the method at the anticipated scale of actual response operations. In this research program there is a continuing interaction between findings from measurements on small fire experiments performed in the controlled laboratory environments of NIST and the Fire Research Institute (FRI) in Japan, and large fire experiments at facilities like the USCG Fire Safety and Test Detachment in Mobile, Alabama where outdoor liquid fuel burns in large pans are possible

  18. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy.

    Science.gov (United States)

    Lin, Han; Chen, Yu; Shi, Jianlin

    2018-03-21

    Tumour chemotherapy employs highly cytotoxic chemodrugs, which kill both cancer and normal cells by cellular apoptosis or necrosis non-selectively. Catalysing/triggering the specific chemical reactions only inside tumour tissues can generate abundant and special chemicals and products locally to initiate a series of unique biological and pathologic effects, which may enable tumour-specific theranostic effects to combat cancer without bringing about significant side effects on normal tissues. Nevertheless, chemical reaction-initiated selective tumour therapy strongly depends on the advances in chemistry, materials science, nanotechnology and biomedicine. This emerging cross-disciplinary research area is substantially different from conventional cancer-theranostic modalities in clinics. In response to the fast developments in cancer theranostics based on intratumoural catalytic chemical reactions, this tutorial review summarizes the very-recent research progress in the design and synthesis of representative nanoplatforms with intriguing nanostructures, compositions, physiochemical properties and biological behaviours for versatile catalytic chemical reaction-enabled cancer treatments, mainly by either endogenous tumour microenvironment (TME) triggering or exogenous physical irradiation. These unique intratumoural chemical reactions can be used in tumour-starving therapy, chemodynamic therapy, gas therapy, alleviation of tumour hypoxia, TME-responsive diagnostic imaging and stimuli-responsive drug release, and even externally triggered versatile therapeutics. In particular, the challenges and future developments of such a novel type of cancer-theranostic modality are discussed in detail to understand the future developments and prospects in this research area as far as possible. It is highly expected that this kind of unique tumour-specific therapeutics by triggering specific in situ catalytic chemical reactions inside tumours would provide a novel but efficient

  19. Study on the fabrication of Al matrix composites strengthened by combined in-situ alumina particle and in-situ alloying elements

    International Nuclear Information System (INIS)

    Huang Zanjun; Yang Bin; Cui Hua; Zhang Jishan

    2003-01-01

    A new idea to fabricate aluminum matrix composites strengthened by combined in-situ particle strengthening and in-situ alloying has been proposed. Following the concept of in-situ alloying and in-situ particle strengthening, aluminum matrix composites reinforced by Cu and α-Al 2 O 3 particulate (material I) and the same matrix reinforced by Cu, Si alloying elements and α-Al 2 O 3 particulate (material II) have been obtained. SEM observation, EDS and XRD analysis show that the alloy elements Cu and Si exist in the two materials, respectively. In-situ Al 2 O 3 particulates are generally spherical and their mean size is less than 0.5 μm. TEM observation shows that the in-situ α-Al 2 O 3 particulates have a good cohesion with the matrix. The reaction mechanism of the Al 2 O 3 particulate obtained by this method was studied. Thermodynamic considerations are given to the in-situ reactions and the distribution characteristic of in-situ the α-Al 2 O 3 particulate in the process of solidification is also discussed

  20. Optimizing Metalloporphyrin-Catalyzed Reduction Reactions for In Situ Remediation of DOE Contaminants

    International Nuclear Information System (INIS)

    Schlautman, Mark A.

    2013-01-01

    Past activities have resulted in a legacy of contaminated soil and groundwater at Department of Energy facilities nationwide. Uranium and chromium are among the most frequently encountered and highest-priority metal and radionuclide contaminants at DOE installations. Abiotic chemical reduction of uranium and chromium at contaminated DOE sites can be beneficial because the reduced metal species are less soluble in water, less mobile in the environment, and less toxic to humans and ecosystems. Although direct biological reduction has been reported for U(VI) and Cr(VI) in laboratory studies and at some field sites, the reactions can sometimes be slow or even inhibited due to unfavorable environmental conditions. One promising approach for the in-situ remediation of DOE contaminants is to develop electron shuttle catalysts that can be delivered precisely to the specific subsurface locations where contaminants reside. Previous research has shown that reduction of oxidized organic and inorganic contaminants often can be catalyzed by electron shuttle systems. Metalloporphyrins and their derivatives are well known electron shuttles for many biogeochemical systems, and thus were selected to study their catalytic capabilities for the reduction of chromium and uranium in the presence of reducing agents. Zero valent iron (ZVI) was chosen as the primary electron donor in most experimental systems. Research proceeded in three phases and the key findings of each phase are reported here. Phase I examined Cr(VI) reduction and utilized micro- and nano-sized ZVI as the electron donors. Electron shuttle catalysts tested were cobalt- and iron-containing metalloporphyrins and Vitamin B12. To aid in the recycle and reuse of the nano-sized ZVI and soluble catalysts, sol-gels and calcium-alginate gel beads were tested as immobilization/support matrices. Although the nano-sized ZVI could be incorporated within the alginate gel beads, preliminary attempts to trap it in sol-gels were not

  1. Optimizing Metalloporphyrin-Catalyzed Reduction Reactions for In Situ Remediation of DOE Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Schlautman, Mark A. [Clemson University, Clemson, SC (United States)

    2013-07-14

    Past activities have resulted in a legacy of contaminated soil and groundwater at Department of Energy facilities nationwide. Uranium and chromium are among the most frequently encountered and highest-priority metal and radionuclide contaminants at DOE installations. Abiotic chemical reduction of uranium and chromium at contaminated DOE sites can be beneficial because the reduced metal species are less soluble in water, less mobile in the environment, and less toxic to humans and ecosystems. Although direct biological reduction has been reported for U(VI) and Cr(VI) in laboratory studies and at some field sites, the reactions can sometimes be slow or even inhibited due to unfavorable environmental conditions. One promising approach for the in-situ remediation of DOE contaminants is to develop electron shuttle catalysts that can be delivered precisely to the specific subsurface locations where contaminants reside. Previous research has shown that reduction of oxidized organic and inorganic contaminants often can be catalyzed by electron shuttle systems. Metalloporphyrins and their derivatives are well known electron shuttles for many biogeochemical systems, and thus were selected to study their catalytic capabilities for the reduction of chromium and uranium in the presence of reducing agents. Zero valent iron (ZVI) was chosen as the primary electron donor in most experimental systems. Research proceeded in three phases and the key findings of each phase are reported here. Phase I examined Cr(VI) reduction and utilized micro- and nano-sized ZVI as the electron donors. Electron shuttle catalysts tested were cobalt- and iron-containing metalloporphyrins and Vitamin B12. To aid in the recycle and reuse of the nano-sized ZVI and soluble catalysts, sol-gels and calcium-alginate gel beads were tested as immobilization/support matrices. Although the nano-sized ZVI could be incorporated within the alginate gel beads, preliminary attempts to trap it in sol-gels were not

  2. Exhaust catalysis studies using in-situ positron emission

    International Nuclear Information System (INIS)

    Vonkeman, K.A.

    1990-01-01

    In this thesis the kinetics of noble metal catalysts with a formulation related to that of commercial automotive exhaust catalysts, have been examined. The application of a new radioisotope tracer technique in studies of catalyst kinetics is described. Reactant and product molecules were pulsed over a catalyst under conditions such, that the reaction rates were kinetically controlled. Labelling of the reacting molecules enables the in-situ measurement of transient phenomena in a reactor as a function of time and position, if a tomograph is used as detection system. Integral reactor profiles are measured, by which concentration gradients occurring in the reactor can be studied. The large amount of data obtained during each experiment were used to quantify the kinetics. To this end, a refined mathematical model of the kinetics based on the elementary steps of adsorption, desorption and surface reaction was used to simulate the experiments. The experimental conditions in this study were representative for the cold start of a car, when the catalyst is heating up. By applying small catalyst particles and high linear velocities the influence of transport phenomena was excluded so that the experiments were carried out in the kinetically controlled regime. Reaction kinetics of carbon monoxide oxidation by oxygen and nitrogen oxide were studied. Experimental data obtained with surface science techniques were very useful in constructing the kinetic model. By simulating the experiments, the relevant kinetic parameters could be quantified and information on the elementary reaction steps was obtained. Since carbon dioxide adsorbs strongly to the catalyst carrier; 10% carbon dioxide was added to the gas phase (in actual automotive exhaust gas the concentration of carbon dioxide is 10 - 15%). This enabled the determination of the transients due to the interaction of gas components with the catalytically active compounds of the catalyst. (author). 446 refs.; 57 figs.; 21 tabs

  3. Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy

    KAUST Repository

    McDowell, Matthew T.

    2012-09-04

    In situ transmission electron microscopy (TEM) is used to study the electrochemical lithiation of high-capacity crystalline Si nanoparticles for use in Li-ion battery anodes. The lithiation reaction slows down as it progresses into the particle interior, and analysis suggests that this behavior is due not to diffusion limitation but instead to the influence of mechanical stress on the driving force for reaction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy

    KAUST Repository

    McDowell, Matthew T.; Ryu, Ill; Lee, Seok Woo; Wang, Chongmin; Nix, William D.; Cui, Yi

    2012-01-01

    In situ transmission electron microscopy (TEM) is used to study the electrochemical lithiation of high-capacity crystalline Si nanoparticles for use in Li-ion battery anodes. The lithiation reaction slows down as it progresses into the particle interior, and analysis suggests that this behavior is due not to diffusion limitation but instead to the influence of mechanical stress on the driving force for reaction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. IVO, a device for In situ Volatilization and On-line detection of products from heavy ion reactions

    CERN Document Server

    Duellmann, C E; Eichler, R; Gäggeler, H W; Jost, D T; Piguet, D; Türler, A

    2002-01-01

    A new gaschromatographic separation system to rapidly isolate heavy ion reaction products in the form of highly volatile species is described. Reaction products recoiling from the target are stopped in a gas volume and converted in situ to volatile species, which are swept by the carrier gas to a chromatography column. Species that are volatile under the given conditions pass through the column. In a cluster chamber, which is directly attached to the exit of the column, the isolated volatile species are chemically adsorbed to the surface of aerosol particles and transported to an on-line detection system. The whole set-up was tested using short-lived osmium (Os) and mercury (Hg) nuclides produced in heavy ion reactions to model future chemical studies with hassium (Hs, Z=108) and element 112. By varying the temperature of the isothermal section of the chromatography column between room temperature and -80 deg. C, yield measurements of given species can be conducted, yielding information about the volatility o...

  6. Investigation of CaO-CO₂ reaction kinetics by in-situ XRD using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Biasin, A.; Segre, C. U.; Salviulo, G.; Zorzi, F.; Strumendo, M. [Padova; (IIT)

    2015-02-05

    In this work, in-situ synchrotron radiation x-ray powder diffraction (SR-XRPD), performed at the Advanced Photon Source (APS) facilities of the Argonne National Laboratory, was applied to investigate the CaO–CO2 reaction. A set of CO2 absorption experiments were conducted in a high temperature reaction capillary with a controlled atmosphere (CO2 partial pressure of 1 bar), in the temperature range between 450 °C and 750 °C using CaO based sorbents obtained by calcination of commercial calcium carbonate. The evolution of the crystalline phases during CO2 uptake by the CaO solid sorbents was monitored for a carbonation time of 20 min as a function of the carbonation temperature and of the calcination conditions. The Rietveld refinement method was applied to estimate the calcium oxide conversion during the reaction progress and the average size of the initial (at the beginning of carbonation) calcium oxide crystallites. The measured average initial carbonation rate (in terms of conversion time derivative) of 0.280 s-1 (±13.2% standard deviation) is significantly higher than the values obtained by thermo-gravimetric analysis and reported thus far in the literature. Additionally, a dependence of the conversion versus time curves on the initial calcium oxide crystallite size was observed and a linear relationship between the initial CaO crystallite size and the calcium oxide final conversion was identified.

  7. Experimental Study of Serpentinization Reactions

    Science.gov (United States)

    Cohen, B. A.; Brearley, A. J.; Ganguly, J.; Liermann, H.-P.; Keil, K.

    2004-01-01

    Current carbonaceous chondrite parent-body thermal models [1-3] produce scenarios that are inconsistent with constraints on aqueous alteration conditions based on meteorite mineralogical evidence, such as phase stability relationships within the meteorite matrix minerals [4] and isotope equilibration arguments [5, 6]. This discrepancy arises principally because of the thermal runaway effect produced by silicate hydration reactions (here loosely called serpentinization, as the principal products are serpentine minerals), which are so exothermic as to produce more than enough heat to melt more ice and provide a self-sustaining chain reaction. One possible way to dissipate the heat of reaction is to use a very small parent body [e.g., 2] or possibly a rubble pile model. Another possibility is to release this heat more slowly, which depends on the alteration reaction path and kinetics.

  8. Development of In Situ Infrared Spectroelectrochemical Techniques: Application to Lithium Intercalation Reactions in Electrode Materials

    National Research Council Canada - National Science Library

    Frech, Roger

    2007-01-01

    .... The transition between LiFePO4 and FePO4 could easily be followed in the in situ spectra. An industrially available coin cell was modified to facilitate routine in situ Raman measurements of lithium batteries...

  9. The application of in situ analytical transmission electron microscopy to the study of preferential intergranular oxidation in Alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M.G., E-mail: m.g.burke@manchester.ac.uk; Bertali, G.; Prestat, E.; Scenini, F.; Haigh, S.J.

    2017-05-15

    In situ analytical transmission electron microscopy (TEM) can provide a unique perspective on dynamic reactions in a variety of environments, including liquids and gases. In this study, in situ analytical TEM techniques have been applied to examine the localised oxidation reactions that occur in a Ni-Cr-Fe alloy, Alloy 600, using a gas environmental cell at elevated temperatures. The initial stages of preferential intergranular oxidation, shown to be an important precursor phenomenon for intergranular stress corrosion cracking in pressurized water reactors (PWRs), have been successfully identified using the in situ approach. Furthermore, the detailed observations correspond to the ex situ results obtained from bulk specimens tested in hydrogenated steam and in high temperature PWR primary water. The excellent agreement between the in situ and ex situ oxidation studies demonstrates that this approach can be used to investigate the initial stages of preferential intergranular oxidation relevant to nuclear power systems. - Highlights: • In situ analytical TEM has been performed in 1 bar H{sub 2}-H{sub 2}O vapor at 360–480 °C. • Nanoscale GB migration and solute partitioning correlate with ex situ data for Alloy 600 in H{sub 2}-steam. • This technique can provide new insights into localised reactions associated with localised oxidation.

  10. Kinetic studies of elementary chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Durant, J.L. Jr. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  11. MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase.

    Energy Technology Data Exchange (ETDEWEB)

    Dugger, Michael Thomas; Asay, David B.; Kim, Seong H.

    2008-01-01

    Vapor Phase Lubrication (VPL) of silicon surfaces with pentanol has been demonstrated. Two potential show stoppers with respect to application of this approach to real MEMS devices have been investigated. Water vapor was found to reduce the effectiveness of VPL with alcohol for a given alcohol concentration, but the basic reaction mechanism observed in water-free environments is still active, and devices operated much longer in mixed alcohol and water vapor environments than with chemisorbed monolayer lubricants alone. Complex MEMS gear trains were successfully lubricated with alcohol vapors, resulting in a factor of 104 improvement in operating life without failure. Complex devices could be made to fail if operated at much higher frequencies than previously used, and there is some evidence that the observed failure is due to accumulation of reaction products at deeply buried interfaces. However, if hypothetical reaction mechanisms involving heated surfaces are valid, then the failures observed at high frequency may not be relevant to operation at normal frequencies. Therefore, this work demonstrates that VPL is a viable approach for complex MEMS devices in conventional packages. Further study of the VPL reaction mechanisms are recommended so that the vapor composition may be optimized for low friction and for different substrate materials with potential application to conventionally fabricated, metal alloy parts in weapons systems. Reaction kinetics should be studied to define effective lubrication regimes as a function of the partial pressure of the vapor phase constituent, interfacial shear rate, substrate composition, and temperature.

  12. In situ57Fe Moessbauer Investigation of Solid-State Redox Reactions of Lithium Insertion Electrodes for Advanced Batteries

    International Nuclear Information System (INIS)

    Sakai, Yoichi; Ariyoshi, Kingo; Ohzuku, Tsutomu

    2002-01-01

    A novel in situ electrochemical cell for 57 Fe Moessbauer measurements was developed in order to clarify the mechanisms of solid-state redox reactions in lithium insertion materials containing iron. Our in situ Moessbauer technique was successfully applied to the determination as to which transition metal ion was a redox center in the insertion electrodes, such as LiFe 0.5 Mn 1.5 O 4 , LiFeTiO 4 , or LiFe 0.25 Ni 0.75 O 2 , for the lithium-ion batteries.

  13. In-situ X-ray diffraction : a useful tool to investigate hydride-formation reactions

    NARCIS (Netherlands)

    Notten, P.H.L.; Daams, J.L.C.; Veirman, de A.E.M.; Staals, A.A.

    1994-01-01

    A high-pressure X-ray diffraction (XRD) cell has been designed which allowed us to study simultaneously hydrogen absorption/desorption isotherms and XRD powder diffraction patterns on (de)hydrided intermetallic compounds. The hydride formation reaction was investigated in the case of LaNi5 under

  14. Nuclear reaction studies: Progress report

    International Nuclear Information System (INIS)

    Thaler, R.M.

    1986-01-01

    A principal focus of recent research has been the three-body problem. A great deal of effort has been devoted to the creation of a computer program to calculate physical observables in the three body problem below 1 GeV. Successful results have been obtained for the triton. Additional work concerns scattering of K + mesons from nuclei, antinucleon physics, relativistic nuclear physics and inclusive reactions

  15. In-situ nanoelectrospray for high-throughput screening of enzymes and real-time monitoring of reactions.

    Science.gov (United States)

    Yang, Yuhan; Han, Feifei; Ouyang, Jin; Zhao, Yunling; Han, Juan; Na, Na

    2016-01-01

    The in-situ and high-throughput evaluation of enzymes and real-time monitoring of enzyme catalyzed reactions in liquid phase is quite significant in the catalysis industry. In-situ nanoelectrospray, the direct sampling and ionization method for mass spectrometry, has been applied for high-throughput evaluation of enzymes, as well as the on-line monitoring of reactions. Simply inserting a capillary into a liquid system with high-voltage applied, analytes in liquid reaction system can be directly ionized at the capillary tip with small volume consumption. With no sample pre-treatment or injection procedure, different analytes such as saccharides, amino acids, alkaloids, peptides and proteins can be rapidly and directly extracted from liquid phase and ionized at the capillary tip. Taking irreversible transesterification reaction of vinyl acetate and ethanol as an example, this technique has been used for the high-throughput evaluation of enzymes, fast optimizations, as well as real-time monitoring of reaction catalyzed by different enzymes. In addition, it is even softer than traditional electrospray ionization. The present method can also be used for the monitoring of other homogenous and heterogeneous reactions in liquid phases, which will show potentials in the catalysis industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. In situ composition measurements of Bunsen reaction solution by radiation probes

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Shinji; Nagaya, Yasunobu [Japan Atomic Energy Agency (Japan)

    2010-07-01

    Measuring equipments are integral to chemical process controls. A stable hydrogen production by the Iodine-Sulfur thermochemical water-splitting process is relatively difficult because of lack of existing in situ composition measurement techniques for multiple components and corrosive solution. Composition regulations of Bunsen reaction solution is particularly important, since a closed cycle system provided with this process causes that the many streams with different composition return to this section. Accordingly Bunsen solution becomes changeable composition. Radiation probes have a potential for applications to determine this multiple component solution while the non-contact approach avoids the corrosive issues. Moreover the probes have features of the promptness, contact-less and sequential use. Laboratory scale experiments to evaluate these possibilities of the measurement were conducted with use of simulated Bunsen solution, HIx solution and H{sub 2}SO{sub 4} solution, containing HI, I2, H{sub 2}SO{sub 4} and H{sub 2}O and sealed radiation sources. Radiations were counted, which were interacted with the solutions in various compositions around room temperature contained in vessels. For HIx solution, the obtained counting rates were correlated with hydrogen volume concentrations; moreover, the application of the Monte Carlo method suggests possibilities that the detector responses for HIx solution by the radiation probes are predictable. For H{sub 2}SO{sub 4} solution, iodine atoms had significant influences on the relationship between output values of two gamma-ray density meters, cesium source as higher energy and barium source as lower energy. This results suggest that the neutron ray probe, the gamma-ray probes of both lower energy and higher energy have possibilities to determine the composition of Bunsen solution of HIx and H{sub 2}SO{sub 4} solutions. (orig.)

  17. Mechanically activated SHS reaction in the Fe-Al system: in-situ time resolved diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Gaffet, E.; Charlot, F.; Klein, D.; Bernard, F.; Niepce, J.C.

    1998-01-01

    The mechanical activation self propagating high temperature synthesis (M.A.S.H.S.) processing is a new way to produce nanocrystalline iron aluminide intermetallic compounds. This process is maily the combination of two steps; in the one hand, a mechanical activation where the Fe - Al powder mixture was milled during a short time at given energy and frequency of shocks and in the other hand, a self propagating high temperature synthesis (S.H.S.) reaction, for which the exothermicity of the Fe + Al reaction is used. This fast propagated MASHS reaction has been in-situ investigated using the time resolved X-ray diffraction (TRXRD) using a X-ray synchrotron beam and an infrared thermography camera, allowing the coupling of the materials structure and the temperature field. The effects of the initial mean compositions, of the milling conditions as well as of the compaction parameters on the MASHS reaction are reported. (orig.)

  18. Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in situ X-ray nanodiffraction.

    Science.gov (United States)

    Huang, Zhifeng; Bartels, Matthias; Xu, Rui; Osterhoff, Markus; Kalbfleisch, Sebastian; Sprung, Michael; Suzuki, Akihiro; Takahashi, Yukio; Blanton, Thomas N; Salditt, Tim; Miao, Jianwei

    2015-07-01

    In situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to investigate many physical science phenomena, ranging from phase transitions, chemical reactions and crystal growth to grain boundary dynamics. A major limitation of in situ XRD and TEM is a compromise that has to be made between spatial and temporal resolution. Here, we report the development of in situ X-ray nanodiffraction to measure high-resolution diffraction patterns from single grains with up to 5 ms temporal resolution. We observed, for the first time, grain rotation and lattice deformation in chemical reactions induced by X-ray photons: Br(-) + hv → Br + e(-) and e(-) + Ag(+) → Ag(0). The grain rotation and lattice deformation associated with the chemical reactions were quantified to be as fast as 3.25 rad s(-1) and as large as 0.5 Å, respectively. The ability to measure high-resolution diffraction patterns from individual grains with a temporal resolution of several milliseconds is expected to find broad applications in materials science, physics, chemistry and nanoscience.

  19. Physical organic studies of organometallic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, Robert G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1981-01-01

    The mechanisms of reactions of organotransition metal complexes have only begun to be understood in detail during the last ten years. The complementary interaction of techniques and concepts developed earlier in studies of organic reaction mechanisms, with those commonly used in inorganic chetnistry, has played a crucial role in helping to elucidate organor.1etall.ic reaction mechanisms. A few systems in which this interaction has proved especially fruitful are discussed in this article.

  20. In situ study of hydrothermal MnO2 formation

    DEFF Research Database (Denmark)

    Birgisson, Steinar; Shen, Yanbin; Iversen, Bo Brummerstedt

    Our group has designed and successfully implemented an experimental setup capable of in situ measurements of solvothermal reactions. The setup uses synchrotron radiation and a time resolution in the range 1-10 seconds can be acquired [1]. The experiments can be optimized either to measure powder X......-ray diffraction (PXRD) data or total scattering (TS) data. From PXRD data properties such as what crystalline phases are present and their weight fractions, structural parameters (e.g. unit cell parameters, site occupancies, bond lengths), crystallite sizes and morphologies are extracted as a function of reaction...... time using Rietveld refinements [2]. TS data gives information about all the material in the solution; from complexes to amorphous particles to crystalline particles. Properties such as bond lengths, scale factors and particle sizes as a function of reaction time can be extracted via real space...

  1. Spallation reactions studied with 4-detector arrays

    Indian Academy of Sciences (India)

    Recently there has been a renewed interest in the study of spallation reactions in basic nuclear physics as well as in potential applications. Spallation reactions induced by light projectiles (protons, antiprotons, pions, etc.) in the GeV range allow the formation of hot nuclei which do not suffer the collective excitations ...

  2. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs

    National Research Council Canada - National Science Library

    Siegrist, Robert L; Crimi, Michelle; Munakata-Marr, Junko; Illangasekare, Tissa; Dugan, Pamela; Heiderscheidt, Jeff; Jackson, Shannon; Petri, Ben; Sahl, Jason; Seitz, Sarah

    2006-01-01

    In situ chemical oxidation involves the introduction of chemical oxidants into the subsurface to destroy organic contaminants in soil and ground water, with the goal being to reduce the mass, mobility...

  3. Mechanical properties of thermoelectric n-type magnesium silicide synthesized employing in situ spark plasma reaction sintering

    Science.gov (United States)

    Muthiah, Saravanan; Singh, R. C.; Pathak, B. D.; Dhar, Ajay

    2017-07-01

    Thermoelectric devices employing magnesium silicide (Mg2Si) offer an inexpensive and non-toxic solution for green energy generation compared to other existing conventional thermoelectric materials in the mid-temperature range. However, apart from the thermoelectric performance, their mechanical properties are equally important in order to avoid the catastrophic failure of their modules during actual operation. In the present study, we report the synthesis of Mg2Si co-doped with Bi and Sb employing in situ spark plasma reaction sintering and investigate its broad range of mechanical properties. The mechanical properties of the sintered co-doped Mg2Si suggest a significantly enhanced value of hardness ~5.4  ±  0.2 GPa and an elastic modulus ~142.5  ±  6 GPa with a fracture toughness of ~1.71  ±  0.1 MPa  √m. The thermal shock resistance, which is one of the most vital parameter for designing thermoelectric devices, was found to be ~300 W m-1, which is higher than most of the other existing state-of-the-art mid-temperature thermoelectric materials. The friction and wear characteristics of sintered co-doped Mg2Si have been reported for the first time, in order to realize the sustainability of their thermoelectric modules under actual hostile environmental conditions.

  4. Nuclear reaction studies using inverse kinematics

    International Nuclear Information System (INIS)

    Shapira, D.

    1985-01-01

    Reaction studies with reversed kinematics refer to studies of nuclear reactions induced by a heavy projectile colliding with lighter target nuclei. The technique of using reversed kinematics is costly in terms of the available center-of-mass energy. Most of the projectile's energy goes into forward motion of the reaction products in the laboratory system. Examples are presented where the use of reversed kinematics techniques has provided new information on certain reaction processes. A list of kinematic properties and advantages they may afford is shown. Clearly the possible studies listed can be done without using reversed kinematics but because of the difficulty associated with some of these studies they were never performed until more energetic heavier beams have become available and the reversed kinematics technique was utilized

  5. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth.

    Science.gov (United States)

    Sutter, Eli A; Sutter, Peter W

    2014-12-03

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important, as they provide direct insight into processes in liquids, such as solution growth of nanoparticles, among others. In liquid cell TEM/STEM redox reaction experiments, the hydrated electrons e(-)aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e(-)aq generated by the electron beam during in situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e(-)aq]. By comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e(-)aq] but also the rate of reduction of a metal-ion complex to zerovalent metal atoms in solution.

  6. The samarium Grignard reaction. In situ formation and reactions of primary and secondary alkylsamarium(III) reagents

    Energy Technology Data Exchange (ETDEWEB)

    Curran, D.P.; Totleben, M.J. [Univ. of Pittsburgh, PA (United States)

    1992-07-15

    This work shows that primary and secondary radicals are rapidly reduced in THF/HMPA to form primary- and secondary-alkylsamarium reagents. The primary- and secondary-radicals can be formed either by direct SmI{sup 2} reductions of primary- and secondary-halides or by a previous rapid radical cyclization. The samarium reagents have moderate stability in solution, and they react with a variety of typical electrophiles, including aldehydes and ketones. The work further shows that organosamarium intermediates can be involved in the traditional samarium Barbier reaction of aldehydes and ketones conducted in THF/HMPA. A new procedure called the {open_quotes}samarium Grignard{close_quotes} method is introduced, and it is suggested that this new procedure will have considerably more scope and generality than the samarium Barbier reaction. 37 refs., 4 tabs.

  7. Ultraviolet-Visible (UV-Vis) Microspectroscopic System Designed for the In Situ Characterization of the Dehydrogenation Reaction Over Platinum Supported Catalytic Microchannel Reactor.

    Science.gov (United States)

    Suarnaba, Emee Grace Tabares; Lee, Yi Fuan; Yamada, Hiroshi; Tagawa, Tomohiko

    2016-11-01

    An ultraviolet visible (UV-Vis) microspectroscopic system was designed for the in situ characterization of the activity of the silica supported platinum (Pt) catalyst toward the dehydrogenation of 1-methyl-1,4-cyclohexadiene carried out in a custom-designed catalytic microreactor cell. The in situ catalytic microreactor cell (ICMC) with inlet/outlet ports was prepared using quartz cover as the optical window to facilitate UV-Vis observation. A fabricated thermometric stage was adapted to the UV-Vis microspectrophotometer to control the reaction temperature inside the ICMC. The spectra were collected by focusing the UV-Vis beam on a 30 × 30 µm area at the center of ICMC. At 393 K, the sequential measurement of the spectra recorded during the reaction exhibited a broad absorption peak with maximum absorbance at 260 nm that is characteristic for gaseous toluene. This result indicates that the silica supported Pt catalyst is active towards the dehydrogenation of 1-methyl-1,4-cyclohexadiene at the given experimental conditions. The onset of coke formation was also detected based on the appearance of absorption bands at 300 nm. The UV-Vis microspectroscopic system developed can be used further in studying the mechanism of the dehydrogenation reaction. © The Author(s) 2016.

  8. Redox Reaction in Silicate Melts Monitored by ''Static'' In-Situ Fe K-Edge XANES up to 1180 deg. C

    International Nuclear Information System (INIS)

    Wilke, Max; Partzsch, Georg M.; Welter, Edmund; Farges, Francois

    2007-01-01

    A new experimental setup to measure in-situ kinetics of redox reactions in silicate melts is presented. To study the progress of the Fe-redox reaction, the variation of the signal is recorded at an energy, where the difference between the spectra of the oxidized and reduced Fe in the melt is largest (''static XANES''). To control the redox conditions, the gas atmosphere could be changed between to types of gases using computer-controlled valves (N2:H2 and air, respectively). In this way, a number of reduction/oxidation cycles can be monitored in-situ and continuously. Applied at the Fe K-edge in molten silicates, we obtained a set of high quality data, which includes the very first steps of the redox reaction. An Avrami-type equation is used to investigate rate-controlling parameters for the iron oxidation/reduction kinetics for two melts (basaltic and Na trisilicate) for temperatures up to 1180 deg. C

  9. Comparative analysis of fluorescence in situ hybridizationand real time polymerase chain reaction in diagnosis of chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Ali, J.; Khan, S.A.; Rauf, S.E.; Ayyub, M.; Ali, N.

    2017-01-01

    To compare the sensitivity and specificity of fluorescence in situ hybridization (FISH) with real time polymerase chain reaction (RT-PCR) in the diagnosis of Chronic Myeloid Leukemia (CML). Study Design: A cross-sectional, analytical study. Place and Duration of Study: Haematology Department, Armed Forces Institute of Pathology, Rawalpindi, from January 2012 to February 2014. Methodology:A total number of 87 patients of CML were studied. The diagnosis was made on the basis of clinical history, peripheral blood and bone marrow aspiration. These patients were tested for the presence of BCR-ABL1 fusion gene by RT-PCR and FISH. About 5 ml of venous blood was collected, half was taken in heparin for FISH and half in ethylenediamine tetra-acetic acid (EDTA) for CBC and PCR. For FISH, cells were cultured for 24 hours in RPMI 1640 medium and evaluated using BX51 fluorescence microscope for dual fusion signal of yellow colour. Samples having 20 or more interphases positive for dual fusion signals were taken as positive. For PCR, RNA extraction was done by Tri-Reagent LS (MRC, USA) and cDNA was synthesized using reverse transcriptase and gene specific primer. RT-PCR was done on ABI-7500. The positive samples were identified when fluorescence exceeded threshold limit. Results of RT-PCR and FISH were compared. Results: Out of the 87 patients, 85 (97.7%) were PCR positive and 2 (2.3%) were PCR negative, whereas in FISH 83 (95.4%) were positive and 4 (4.5%) were negative. Sensitivity and specificity of FISH was 97.6% and 100%, respectively. Conclusion: FISH is a reliable supplementary method to PCR for detection of BCR-ABL1 fusion gene in the diagnosis of CML. (author)

  10. Study of fusion reactions forming Cf nuclei

    International Nuclear Information System (INIS)

    Khuyagbaatar, J.; Hinde, D. J.; Du Rietz, R.; Carter, I. P.; Dasgupta, M.; Duellmann, C. E.; Evers, M.; Wakhle, A.; Williams, E.; Yakushev, A.

    2013-01-01

    The formation of a compound nucleus in different projectile and target combinations is a powerful method for investigating the fusion process. Recently, the dominance of quasi-fission over fusion-fission has been inferred for 34 S+ 208 Pb in comparison to 36 S+ 206 Pb; both reactions lead to the compound nucleus 242 Cf*.The mass and angle distributions of the fission fragments from these reactions were studied in order to further investigate the presence of quasi-fission. (authors)

  11. Alpha resonant scattering for astrophysical reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H.; Kahl, D.; Nakao, T. [Center for Nuclear Study (CNS), University of Tokyo, RIKEN campus, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakabayashi, Y.; Kubano, S. [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hashimoto, T. [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Hayakawa, S. [Istituto Nazionale Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), Via S. Sofia 62, 95125 Catania (Italy); Kawabata, T. [Department of Physics, Kyoto University, Kita-Shirakawa, Kyoto 606-8502 (Japan); Iwasa, N. [Department of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kwon, Y. K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-811 (Korea, Republic of); Binh, D. N. [30 MeV Cyclotron Center, Tran Hung Dao Hospital, Hoan Kiem District, Hanoi (Viet Nam); Khiem, L. H.; Duy, N. G. [Institute of Physics, Vietnam Academy of Science and Technology, 18 Hong Quoc Viet, Nghia do, Hanoi (Viet Nam)

    2014-05-02

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of {sup 7}Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the {sup 7}Be(α,γ) reaction, and proposed a new cluster band in {sup 11}C.

  12. Alpha resonant scattering for astrophysical reaction studies

    International Nuclear Information System (INIS)

    Yamaguchi, H.; Kahl, D.; Nakao, T.; Wakabayashi, Y.; Kubano, S.; Hashimoto, T.; Hayakawa, S.; Kawabata, T.; Iwasa, N.; Teranishi, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. G.

    2014-01-01

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of 7 Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the 7 Be(α,γ) reaction, and proposed a new cluster band in 11 C

  13. Fast and calibration free determination of first order reaction kinetics in API synthesis using in-situ ATR-FTIR.

    Science.gov (United States)

    Rehbein, Moritz C; Husmann, Sascha; Lechner, Christian; Kunick, Conrad; Scholl, Stephan

    2018-05-01

    In early stages of drug development only sparse amounts of the key substances are available, which is problematic for the determination of important process data like reaction kinetics. Therefore, it is important to perform experiments as economically as possible, especially in regards to limiting compounds. Here we demonstrate the use of a temperature step experiment enabling the determination of complete reaction kinetics in a single non-isothermal experiment. In contrast to the traditionally used HPLC, the method takes advantage of the high measuring rate and the low amount of labor involved in using in-situ ATR-FTIR to determine time-dependent concentration-equivalent data. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The adsorption of methanol and water on SAPO-34: in situ and ex situ X-ray diffraction studies

    DEFF Research Database (Denmark)

    Wragg, David S.; Johnsen, Rune; Norby, Poul

    2010-01-01

    The adsorption of methanol on SAPO-34 has been studied using a combination of in situ synchrotron powder X-ray diffraction to follow the process and ex situ high resolution powder diffraction to determine the structure. The unit cell volume of SAPO-34 is found to expand by 0.5% during methanol ad...

  15. In situ study on the formation of FeTe

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Wulff, Anders Christian; Yue, Zhao

    2011-01-01

    The formation of the FeTe compound from a mixture of Fe and Te powders was studied in situ by means of high-energy synchrotron X-ray diffraction. FeTe does not form directly from the starting elements; instead, FeTe2 forms as an intermediate product. During a 2 °C/min heating ramp, Te first reacts...

  16. In situ spectroscopy of ligand exchange reactions at the surface of colloidal gold and silver nanoparticles

    International Nuclear Information System (INIS)

    Dinkel, Rebecca; Peukert, Wolfgang; Braunschweig, Björn

    2017-01-01

    Gold and silver nanoparticles with their tunable optical and electronic properties are of great interest for a wide range of applications. Often the ligands at the surface of the nanoparticles have to be exchanged in a second step after particle formation in order to obtain a desired surface functionalization. For many techniques, this process is not accessible in situ . In this review, we present second-harmonic scattering (SHS) as an inherently surface sensitive and label-free optical technique to probe the ligand exchange at the surface of colloidal gold and silver nanoparticles in situ and in real time. First, a brief introduction to SHS and basic features of the SHS of nanoparticles are given. After that, we demonstrate how the SHS intensity decrease can be correlated to the thiol coverage which allows for the determination of the Gibbs free energy of adsorption and the surface coverage. (topical review)

  17. Theoretical studies of chemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, G.C. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

  18. In situ stress determination research study

    International Nuclear Information System (INIS)

    Austin, W.G.; Thompson, P.M.

    1994-01-01

    The objectives of this study are to evaluate and implement rock stress determination instruments and techniques developed by Atomic Energy of Canada Limited (AECL) at its Underground Research Laboratory (URL) for use in jointed rock and to continue the development of analytical and interpretation methods for stress determination results including effects of scale, structure and anisotropy. Testing and evaluation of the instruments and methods developed at URL need to be done in a similar rock type prior to underground access at the Yucca Mountain Site Characterization Project

  19. Micro-Membrane Electrode Assembly Design to Precisely Measure the in Situ Activity of Oxygen Reduction Reaction Electrocatalysts for PEMFC.

    Science.gov (United States)

    Long, Zhi; Li, Yankai; Deng, Guangrong; Liu, Changpeng; Ge, Junjie; Ma, Shuhua; Xing, Wei

    2017-06-20

    An in situ micro-MEA technique, which could precisely measure the performance of ORR electrocatalyst using Nafion as electrolyte, was designed and compared with regular thin-film rotating-disk electrode (TFRDE) (0.1 M HClO 4 ) and normal in situ membrane electrode assembly (MEA) tests. Compared to the traditional TFRDE method, the micro-MEA technique makes the acquisition of catalysts' behavior at low potential values easily achieved without being limited by the solubility of O 2 in water. At the same time, it successfully mimics the structure of regular MEAs and obtains similar results to a regular MEA, thus providing a new technique to simply measure the electrode activity without being bothered by complicated fabrication of regular MEA. In order to further understand the importance of in situ measurement, Fe-N-C as a typical oxygen reduction reaction (ORR) free-Pt catalyst was evaluated by TFRDE and micro-MEA. The results show that the half wave potential of Fe-N-C only shifted negatively by -135 mV in comparison with state-of-the-art Pt/C catalysts from TFRDE tests. However, the active site density, mass transfer of O 2 , and the proton transfer conductivity are found to strongly influence the catalyst activity in the micro-MEA, thereby resulting in a much lower limiting current density than Pt/C (8.7 times lower). Hence, it is suggested that the micro-MEA is better in evaluating the in situ ORR performance, where the catalysts are characterized more thoroughly in terms of intrinsic activity, active site density, proton transfer, and mass transfer properties.

  20. MARS - a multidetector array for reaction studies

    International Nuclear Information System (INIS)

    Ball, G.C.; Davies, W.G.; Forster, J.S.

    1988-03-01

    The proposal for MARS, a Multidetector Array for Reaction Studies is presented. MARS consists of a large, high-vacuum vessel enclosing an array of 128 scintillation detectors for use in studies of heavy-ion collisions at TASCC. The instrument will be funded and owned jointly by AECL and NSERC

  1. A study on sodium-concrete reaction

    Energy Technology Data Exchange (ETDEWEB)

    Pae, Jae Huem; Min, Byung Hoon; Lee, Joon Sik; Lee, Choong Hui; Chung, Ki Hong; Keum, Choong Ki [Suwon University, Suwon (Korea, Republic of)

    1994-07-15

    Sodium is commonly used as a coolant in liquid metal reactor. A large amount of its leakage may be possible in hypothetical accidents, even though the possibility is very low. In case that the leaked hot sodium comes in direct contact with structural concrete of liquid metal reactor, the reactor`s integrity can be challenged by the rupture of structure materials, hydrogen generation and its explosion, and release of radioactive aerosols due to sodium-concrete reaction. The knowledge of sodium-concrete reaction is evaluated to be one of the important and indispensable technologies for the establishment of safety measure in liquid metal reactor. In this study, the experimental facility of sodium-concrete reaction is to be designed, constructed and operated. And the reaction phenomena of sodium-concrete reaction is also to be analyzed through the experimental results. The aim of this study is to establish the measure of safety and protection for sodium-related facilities and to secure one of the fundamental technologies of liquid metal reactor safety. 47 refs., 7 figs., 13 tab.

  2. Simplified method of ''push-pull'' test data analysis for determining in situ reaction rate coefficients

    International Nuclear Information System (INIS)

    Haggerty, R.; Schroth, M.H.; Istok, J.D.

    1998-01-01

    The single-well, ''''push-pull'''' test method is useful for obtaining information on a wide variety of aquifer physical, chemical, and microbiological characteristics. A push-pull test consists of the pulse-type injection of a prepared test solution into a single monitoring well followed by the extraction of the test solution/ground water mixture from the same well. The test solution contains a conservative tracer and one or more reactants selected to investigate a particular process. During the extraction phase, the concentrations of tracer, reactants, and possible reaction products are measured to obtain breakthrough curves for all solutes. This paper presents a simplified method of data analysis that can be used to estimate a first-order reaction rate coefficient from these breakthrough curves. Rate coefficients are obtained by fitting a regression line to a plot of normalized concentrations versus elapsed time, requiring no knowledge of aquifer porosity, dispersivity, or hydraulic conductivity. A semi-analytical solution to the advective-dispersion equation is derived and used in a sensitivity analysis to evaluate the ability of the simplified method to estimate reaction rate coefficients in simulated push-pull tests in a homogeneous, confined aquifer with a fully-penetrating injection/extraction well and varying porosity, dispersivity, test duration, and reaction rate. A numerical flow and transport code (SUTRA) is used to evaluate the ability of the simplified method to estimate reaction rate coefficients in simulated push-pull tests in a heterogeneous, unconfined aquifer with a partially penetrating well. In all cases the simplified method provides accurate estimates of reaction rate coefficients; estimation errors ranged from 0.1 to 8.9% with most errors less than 5%

  3. SOFC anode reduction studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    The Solid Oxide Fuel Cell (SOFC) is a promising part of future energy approaches due to a relatively high energy conversion efficiency and low environmental pollution. SOFCs are typically composed of ceramic materials which are highly complex at the nanoscale. TEM is routinely applied ex situ...... for studying these nanoscale structures, but only few SOFC studies have applied in situ TEM to observe the ceramic nanostructures in a reactive gas environment at elevated temperatures. The present contribution focuses on the reduction of an SOFC anode which is a necessary process to form the catalytically...... active Ni surface before operating the fuel cells. The reduction process was followed in the TEM while exposing a NiO/YSZ (YSZ = Y2O3-stabilized ZrO2) model anode to H2 at T = 250-1000⁰C. Pure NiO was used in reference experiments. Previous studies have shown that the reduction of pure Ni...

  4. In-situ x-ray absorption study of copper films in ground water solutions

    International Nuclear Information System (INIS)

    Kvashnina, K.O.; Butorin, S.M.; Modin, A.; Soroka, I.; Marcellini, M.; Nordgren, J.; Guo, J.-H.; Werme, L.

    2007-01-01

    This study illustrates how the damage from copper corrosion can be reduced by modifying the chemistry of the copper surface environment. The surface modification of oxidized copper films induced by chemical reaction with Cl - and HCO 3 - in aqueous solutions was monitored by in situ X-ray absorption spectroscopy. The results show that corrosion of copper can be significantly reduced by adding even a small amount of sodium bicarbonate. The studied copper films corroded quickly in chloride solutions, whereas the same solution containing 1.1 mM HCO 3 - prevented or slowed down the corrosion processes

  5. [Electromagnetic studies of nuclear structure and reactions

    International Nuclear Information System (INIS)

    1992-01-01

    The experimental goals are focused on developing an understanding of strong interactions and the structure of hadronic systems by determination of the electromagnetic response; these goals will be accomplished through coincidence detection of final states. Nuclear modeling objectives are to organize and interpret the data through a consistent description of a broad spectrum of reaction observables; calculations are performed in a nonrelativistic diagrammatic framework as well as a relativistic QHD approach. Work is described according to the following arrangement: direct knockout reactions (completion of 16 O(e,e'p), 12 C(e,e'pp) progress, large acceptance detector physics simulations), giant resonance studies (intermediate-energy experiments with solid-state detectors, the third response function in 12 C(e,e'p 0 ) and 16 O(e,e'p 0 ), comparison of the 12 C(e, e'p 0 ) and 16 O(e,e'p 3 ) reactions, quadrupole strength in the 16 O(e,e'α 0 ) reaction, quadrupole strength in the 12 C(e,e'α) reaction, analysis of the 12 C(e,e'p 1 ) and 16 O(e,e'p 3 ) angular distributions, analysis of the 40 Ca(e,e'x) reaction at low q, analysis of the higher-q 12 C(e,e'x) data from Bates), models of nuclear structure (experimental work, Hartree-Fock calculations, phonon excitations in spherical nuclei, shell model calculations, variational methods for relativistic fields), and instrumentation development efforts (developments at CEBAF, CLAS contracts, BLAST developments)

  6. ALDOL- AND MANNICH-TYPE REACTIONS VIA IN SITU OLEFIN MIGRATION IN IONIC LIQUID

    Science.gov (United States)

    An aldol-type and a Mannich-type reaction via the cross-coupling of aldehydes and imines with allylic alcohols catalyzed by RuCl2(PPh3)3 was developed with ionic liquid as the solvent. The solvent/catalyst system could be reused for at least five times with no loss of reactiv...

  7. Compositional Simulation of In-Situ Combustion EOR: A Study of Process Characteristics

    DEFF Research Database (Denmark)

    Jain, Priyanka; Stenby, Erling Halfdan; von Solms, Nicolas

    2010-01-01

    In order to facilitate the study of the influence of reservoir process characteristics in In-Situ combustion modeling and advance the work of Kristensen et al. in this domain; a fully compositional In-situ combustion (ISC) model of Virtual Kinetic Cell (VKC; single-cell model) for laboratory scale....... This incorporates fourteen pseudo components and fourteen reactions (distributed amongst thermal cracking, low temperature oxidation and high temperature oxidation). The paper presents a set of derivative plots indicating that reservoir process characterization in terms of thermal behavior of oil can be well...... construed in terms of thermo-oxidative sensitivity of SARA fractions. It can be interpreted from the results that operating parameters like air injection rate, oxygen feed concentration and activation energy have significant influence on oil recovery; an increase in air injection rate can lead to cooling...

  8. Expedient construction of small molecule macroarrays via sequential palladium- and copper-mediated reactions and their ex situ biological testing.

    Science.gov (United States)

    Frei, Reto; Breitbach, Anthony S; Blackwell, Helen E

    2012-05-01

    We report the highly efficient syntheses of a series of focused libraries in the small molecule macroarray format using Suzuki-Miyaura and copper-catalyzed azide-alkyne cycloaddition (or "click") reactions. The libraries were based on stilbene and triazole scaffolds, which are known to have a broad range of biological activities, including quorum-sensing (QS) modulation in bacteria. The library products were generated in parallel on the macroarray in extremely short reaction times (~10-20 min) and isolated in excellent purities. Biological testing of one macroarray library post-cleavage (ex situ) revealed several potent agonists of the QS receptor, LuxR, in Vibrio fischeri. These synthetic agonists, in contrast to others that we have reported, were only active in the presence of the native QS signal in V. fischeri, which is suggestive of a different mode of activity. Notably, the results presented herein showcase the ready compatibility of the macroarray platform with chemical reactions that are commonly utilized in small molecule probe and drug discovery today. As such, this work serves to expand the utility of the small molecule macroarray as a rapid and operationally straightforward approach toward the synthesis and screening of bioactive agents.

  9. Molecular beam studies of reaction dynamics

    International Nuclear Information System (INIS)

    Lee, Yuan T.

    1991-03-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation

  10. Molecular beam studies of reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  11. Superaerophobic Ultrathin Ni-Mo Alloy Nanosheet Array from In Situ Topotactic Reduction for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Zhang, Qian; Li, Pengsong; Zhou, Daojin; Chang, Zheng; Kuang, Yun; Sun, Xiaoming

    2017-11-01

    Hydrogen evolution reaction (HER) has prospect to becoming clean and renewable technology for hydrogen production and Ni-Mo alloy is among the best HER catalysts in alkaline electrolytes. Here, an in situ topotactic reduction method to synthesize ultrathin 2D Ni-Mo alloy nanosheets for electrocatalytic hydrogen evolution is reported. Due to its ultrathin structure and tailored composition, the as-synthesized Ni-Mo alloy shows an overpotential of 35 mV to reach a current density of 10 mA cm -2 , along with a Tafel slope of 45 mV decade -1 , demonstrating a comparable intrinsic activity to state-of-art commercial Pt/C catalyst. Besides, the vertically aligned assemble structure of the 2D NiMo nanosheets on conductive substrate makes the electrode "superaerophobic," thus leading to much faster bubble releasing during HER process and therefore shows faster mass transfer behavior at high current density as compared with drop drying Pt/C catalyst on the same substrate. Such in situ topotactic conversion finds a way to design and fabricate low-cost, earth-abundant non-noble metal based ultrathin 2D nanostructures for electrocatalytic issues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst

    Science.gov (United States)

    Zhang, Qiulin; Fan, Jie; Ning, Ping; Song, Zhongxian; Liu, Xin; Wang, Lanying; Wang, Jing; Wang, Huimin; Long, Kaixian

    2018-03-01

    A series of ceria modified zirconium phosphate catalysts were synthesized for selective catalytic reduction of NO with ammonia (NH3-SCR). Over 98% NOx conversion and 98% N2 selectivity were obtained by the CeO2/ZrP catalyst with 20 wt.% CeO2 loading at 250-425 °C. The interaction between CeO2 and zirconium phosphate enhanced the redox abilities and surface acidities of the catalysts, resulting in the improvement of NH3-SCR activity. The in situ DRIFTS results indicated that the NH3-SCR reaction over the catalysts followed both Eley-Rideal and Langmuir-Hinshelwood mechanisms. The amide (sbnd NH2) groups and the NH4+ bonded to Brønsted acid sites were the important intermediates of Eley-Rideal mechanism.

  13. Carbonylative Heck Reactions Using CO Generated ex Situ in a Two-Chamber System

    DEFF Research Database (Denmark)

    Hermange, Philippe; Gøgsig, Thomas; Lindhardt, Anders Thyboe

    2011-01-01

    A carbonylative Heck reaction of aryl iodides and styrene derivatives employing a two-chamber system using a stable, crystalline, and nontransition metal based carbon monoxide source is reported. By applying near-stoichiometric amounts of the carbon monoxide precursor, an effective exploitation o...... of the hazardous CO gas is obtained affording chalcone derivatives in good yields. Application to isotope labeling, incorporating 13CO, was further established....

  14. Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction.

    Science.gov (United States)

    Liu, Pengpeng; Ge, Xingbo; Wang, Rongyue; Ma, Houyi; Ding, Yi

    2009-01-06

    Ultrathin Pt films from one to several atomic layers are successfully decorated onto nanoporous gold (NPG) membranes by utilizing under potential deposition (UPD) of Cu onto Au or Pt surfaces, followed by in situ redox replacement reaction (RRR) of UPD Cu by Pt. The thickness of Pt layers can be controlled precisely by repeating the Cu-UPD-RRR cycles. TEM observations coupled with electrochemical testing suggest that the morphology of Pt overlayers changes from an ultrathin epitaxial film in the case of one or two atomic layers to well-dispersed nanoislands in the case of four and more atomic layers. Electron diffraction (ED) patterns confirm that the as-prepared NPG-Pt membranes maintain a single-crystalline structure, even though the thickness of Pt films reaches six atomic layers, indicating the decorated Pt films hold the same crystallographic relationship to the NPG substrate during the entire fabrication process. Due to the regular modulation of Pt utilization, the electrocatalytic activity of NPG-Pt exhibits interesting surface structure dependence in methanol, ethanol, and CO electrooxidation reactions. These novel bimetallic nanocatalysts show excellent electrocatalytic activity and much enhanced poison tolerance as compared to the commercial Pt/C catalysts. The success in the fabrication of NPG-Pt-type materials provides a new path to prepare electrocatalysts with ultralow Pt loading and high Pt utilization, which is of great significance in energy-related applications, such as direct alcohol fuel cells (DAFCs).

  15. A new in situ model to study erosive enamel wear, a clinical pilot study.

    NARCIS (Netherlands)

    Ruben, J.L.; Truin, G.J.; Bronkhorst, E.M.; Huysmans, M.C.D.N.J.M.

    2017-01-01

    OBJECTIVES: To develop an in situ model for erosive wear research which allows for more clinically relevant exposure parameters than other in situ models and to show tooth site-specific erosive wear effect of an acid challenge of orange juice on enamel. METHODS: This pilot study included 6

  16. IFMIF - Design Study for in Situ Creep Fatigue Tests

    International Nuclear Information System (INIS)

    Gordeev, S.; Heinzel, V.; Simakov, St.; Stratmanns, E.; Vladimirov, P.; Moeslang, A.

    2006-01-01

    While the high flux volume (20-50 dpa/fpy) of the International Fusion Materials Irradiation Facility (IFMIF) is dedicated to the irradiation of ∼ 1100 qualified specimens that will be post irradiation examined after disassembling in dedicated Hot Cells, various in situ experiments are foreseen in the medium flux volume (1-20 dpa/fpy). Of specific importance for structural lifetime assessments of fusion power reactors are instrumented in situ creep-fatigue experiments, as they can simulate realistically a superposition of thermal fatigue or creep fatigue and irradiation with fusion relevant neutrons. Based on former experience with in situ fatigue tests under high energy light ion irradiation, a design study has been performed to evaluate the feasibility of in situ creep fatigue tests in the IFMIF medium flux position. The vertically arranged test module for such experiments consists basically of a frame similar to a universal testing machine, but equipped with three pulling rods, driven by independent step motors, instrumentation systems and specimen cooling systems. Therefore, three creep fatigue specimens may be tested at one time in this apparatus. Each specimen is a hollow tube with coolant flow in the specimen interior to maintain individual specimen temperatures. The recently established IFMIF global 3D geometry model was used together the latest McDeLicious code for the neutral and charged particle transport calculations. These comprehensive neutronics calculations have been performed with a fine special resolution of 0.25 cm 3 , showing among others that the specimens will be irradiated with a homogeneous damage rate of up to 13(∼ 9%) dpa/fpy and a fusion relevant damage to helium ratio of 10-12 appm He/dpa. In addition, damage and gas production rates as well as the heat deposition in structural parts of the test module have been calculated. Despite of the vertical gradients in the nuclear heating, CFD code calculations with STAR-CD revealed very

  17. A sistematical study of spallation reaction

    International Nuclear Information System (INIS)

    Foshina, M.

    1982-01-01

    A four-parameter semi-empirical formulae is proposed to calculate photo-spallation cross sections. This formulae is deduced starting from a nuclear model considered as a particle mixture without differences among them and the spallation phenomenous is considered as sucessive nucleon emission ruled by determined probability law. The formulae parameters are obtained from photo-spallation yields experimentally determined and available in literature. A variation study of the values of different parameters with the mass number of the 'seed' nucleus and incident energy is made. A parallel study for the spallation reactions induced by protons of a sampling of 720 data is also presented. (L.C.) [pt

  18. Densification of Ce0.9Gd0.1O1.95 barrier layer by in-situ solid state reaction

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo

    2014-01-01

    A novel methodology, called in-situ solid state reaction (SSR), is developed and achieved for the densification of gadolinia doped ceria (CGO) barrier layer (BL) within the solid oxide fuel cell (SOFC) technology. The method is based on the combined use of impregnation technique and a designed two...

  19. [Reaction mechanism studies of heavy ion induced nuclear reactions]: Annual progress report, October 1987

    International Nuclear Information System (INIS)

    Mignerey, A.C.

    1987-10-01

    The experiments which this group has been working on seek to define the reaction mechanisms responsible for complex fragment emission in heavy ion reactions. The reactions studied are La + La, La + Al, and La + Cu at 46.8 MeV/u; and Ne + Ag and Ne + Au reactions at 250 MeV/u. Another experimental program at the Oak Ridge Hollifield Heavy Ion Research Facility (HHIRF) is designed to measure the excitation energy division between reaction products in asymmetric deep inelastic reactions. A brief description is given of progress to date, the scientific goals of this experiment and the plastic phoswich detectors developed for this experiment

  20. Mechanical properties enhancement and microstructure study of Al-Si-TiB2 in situ composites

    Science.gov (United States)

    Sahoo, S. K.; Majhi, J.; Pattnaik, A. B.; Sahoo, J. K.; Das, Swagat

    2018-03-01

    Al–Si alloy-based composite is one of the most promising MMC materials owing to its outstanding mechanical properties, wear and corrosion resistance, low cost and ability to be synthesized via conventional casting routes. Challenges in achieving clean interface between reinforced particles and matrix alloy have been overcome by means of in-situ techniques of fabrication. Present investigation is concerned with synthesizing Al-Si-TiB2 in-situ composites through stir casting route using K2TiF6 and KBF4 halide salts for exothermic salt metal reaction. X-Ray diffraction analysis revealed the existence of TiB2 in the prepared samples. Effect of TiB2in-situ particles in the Al-Si base alloy has been investigated from the results obtained from optical microscopy as well as SEM study and wear analysis with a pin on disc wear testing apparatus. Improved hardness and wear properties were observed with addition of TiB2.

  1. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-28

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn(2+) linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.

  2. Use of Isotopes for Studying Reaction Mechanisms

    Indian Academy of Sciences (India)

    of atoms during a chemical transformation. This strategy of determining reaction mechanisms is illustrated in the article with several examples. Introduction. When a reaction is carried out, the primary effort goes towards the identification of the product(s) of the reaction. A more time consuming endeavour, however, is the ...

  3. Fluorescence in situ hybridization and molecular studies in infertile men with dysplasia of the fibrous sheath.

    Science.gov (United States)

    Baccetti, Baccio; Collodel, Giulia; Gambera, Laura; Moretti, Elena; Serafini, Francesca; Piomboni, Paola

    2005-07-01

    To perform fluorescence in situ hybridization (FISH) and molecular analysis in patients with the genetic sperm defect "dysplasia of the fibrous sheath" (DFS). Retrospective study. Regional Referral Center for Male Infertility, Siena, Italy. Twelve infertile patients with DFS sperm defects. Family history, lymphocytic karyotype, physical and hormonal assays, semen analysis. The DFS sperm phenotype was defined by light, fluorescent, and electron microscopy. Sperm chromosomal constitution was examined by FISH. Gene deletions were tested by polymerase chain reaction. The genetic sperm defect DFS was determined by transmission and scanning electron microscopy. Immunofluorescence staining of A-kinase anchoring protein 4 (AKAP4) showed a moderate and diffuse signal, revealing a disorganized and incompletely assembled fibrous sheath. In 11 of 12 DFS patients, polymerase chain reaction for detecting the presence of partial sequence of AKAP4/AKAP3 binding regions gave positive results. Fluorescence in situ hybridization was performed in decondensed sperm nuclei with probes for chromosomes 18, X, and Y. The mean disomy frequency of chromosome 18 was in the normal range, whereas the mean disomy frequencies of sex chromosomes and diploidies were twice those of controls. These results should be considered when DFS sperm are used in assisted reproductive technology, owing to the high risk of transmission of chromosomal unbalance and of DFS sperm defects to male offspring.

  4. Electrochemical studies, in-situ and ex-situ characterizations of different manganese compounds electrodeposited in aerated solutions

    International Nuclear Information System (INIS)

    Peulon, S.; Lacroix, A.; Chausse, A.; Larabi-Gruet, N.

    2007-01-01

    This work deals with the electrodeposition of manganese compounds. A systematic study of the synthesis experimental conditions has been carried out, and the obtained depositions have been characterized by different ex-situ analyses methods (XRD, FTIR, SEM). The in-situ measurements of mass increase with a quartz microbalance during the syntheses have allowed to estimate the growth mechanisms which are in agreement with the ex-situ characterizations. The cation has an important role in the nature of the electrodeposited compounds. In presence of sodium, a mixed lamellar compound Mn(III)/Mn(IV), the birnessite, is deposited, whereas in presence of potassium, bixbyite is formed (Mn 2 O 3 ), these two compounds having a main role in the environment. The substrate can also influence the nature of the formed intermediary compounds. Little studied compounds such as feitkneichtite (β-MnOOH) and groutite (α-MnOOH) have been revealed. (O.M.)

  5. Study of fragmentation reactions of light nucleus

    International Nuclear Information System (INIS)

    Toneli, David Arruda; Carlson, Brett Vern

    2011-01-01

    Full text: The decay of the compound nucleus is traditionally calculated using a sequential emission model, such as the Weisskopf-Ewing or Hauser-Feshbach ones, in which the compound nucleus decays through a series of residual nuclei by emitting one particle at a time until there is no longer sufficient energy for further emission. In light compound nucleus, however, the excitation energy necessary to fully disintegrate the system is relatively easy to attain. In such cases, decay by simultaneous emission of two or more particles becomes important. A model which takes into account all these decay is the Fermi fragmentation model. Recently, the equivalence between the Fermi fragmentation model and statistical multifragmentation model used to describe the decay for highly excited fragments for reactions of heavy ions was demonstrated. Due the simplicity of the thermodynamic treatment used in the multifragmentation model, we have adapted it to the calculation of Fermi breakup of light nuclei. The ultimate goal of this study is to calculate the distribution of isotopes produced in proton-induced reactions on light nuclei of biological interest, such as C, O e Ca. Although most of these residual nuclei possess extremely short half-lives and thus represent little long-term danger, they tend to be deficient in neutrons and to decay by positron emission, which allows the monitoring of proton radiotherapy by PET (Positron Emission Tomography). (author)

  6. SISGR - In situ characterization and modeling of formation reactions under extreme heating rates in nanostructured multilayer foils

    Energy Technology Data Exchange (ETDEWEB)

    Hufnagel, Todd C.

    2014-06-09

    Materials subjected to extreme conditions, such as very rapid heating, behave differently than materials under more ordinary conditions. In this program we examined the effect of rapid heating on solid-state chemical reactions in metallic materials. One primary goal was to develop experimental techniques capable of observing these reactions, which can occur at heating rates in excess of one million degrees Celsius per second. One approach that we used is x-ray diffraction performed using microfocused x-ray beams and very fast x-ray detectors. A second approach is the use of a pulsed electron source for dynamic transmission electron microscopy. With these techniques we were able to observe how the heating rate affects the chemical reaction, from which we were able to discern general principles about how these reactions proceed. A second thrust of this program was to develop computational tools to help us understand and predict the reactions. From atomic-scale simulations were learned about the interdiffusion between different metals at high heating rates, and about how new crystalline phases form. A second class of computational models allow us to predict the shape of the reaction front that occurs in these materials, and to connect our understanding of interdiffusion from the atomistic simulations to measurements made in the laboratory. Both the experimental and computational techniques developed in this program are expected to be broadly applicable to a wider range of scientific problems than the intermetallic solid-state reactions studied here. For example, we have already begun using the x-ray techniques to study how materials respond to mechanical deformation at very high rates.

  7. Study of the Radical Chain Mechanism of Hydrocarbon Oxidation for In Situ Combustion Process

    Directory of Open Access Journals (Sweden)

    Alexandra Ushakova

    2017-01-01

    Full Text Available Despite the abundance of in situ combustion models of oil oxidation, many of the effects are still beyond consideration. For example, until now, initial stages of oxidation were not considered from a position of radical chain process. This is a serious difficulty for the simulation of oil recovery process that involves air injection. To investigate the initial stages of oxidation, the paper considers the sequence of chemical reactions, including intermediate short-living compounds and radicals. We have attempted to correlate the main stages of the reaction with areas of heat release observed in the experiments. The system of differential equations based on the equations of oxidation reactions was solved. Time dependence of peroxides formation and start of heat release is analytically derived for the initial stages. We have considered the inhibition of initial oxidation stages by aromatic oil compounds and have studied the induction time in dependence on temperature. Chain ignition criteria for paraffins and crude oil in presence of core samples were obtained. The calculation results are compared with the stages of oxidation that arise by high-pressure differential scanning calorimetry. According to experimental observations we have determined which reactions are important for the process and which can be omitted or combined into one as insignificant.

  8. Case study of the gradient features of in situ concrete

    Directory of Open Access Journals (Sweden)

    Pengkun Hou

    2014-01-01

    Full Text Available The recognition of gradient features of the properties of in situ concrete is important for the interpretation/prediction of service life. In this work, the gradient features: water absorption, porosity, mineralogy, morphology and micromechanical properties were studied on two in situ road concretes (15 and 5 years old, respectively by weighing, MIP, XRD, IR, SEM/EDS and micro-indentation techniques. Results showed that a coarsening trend of the pores of the concrete leads to a gradual increase of liquid transport property from inside to outside. Although the carbonation of the exposed surface results in a compact microstructure of the paste, its combined action with calcium-leaching leads to a comparable porosity of different concrete layers. Moreover, the combining factors result in three morphological features, i.e. a porous and granular exposed-layer, a fibrous and porous subexposed-layer and a compact inner-layer. Micro-indentation test results showed that a hard layer that moves inward with aging exists due to the alterations of the mineralogy, the pore and the gel structure.

  9. A Novel Penetration System for in situ Astrobiological Studies

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2005-12-01

    Full Text Available Due to ultraviolet flux in the surface layers of most solar bodies, future astrobiological research is increasingly seeking to conduct subsurface penetration and drilling to detect chemical signature for extant or extinct life. To address this issue, we present a micro-penetrator concept (mass < 10 kg that is suited for extraterrestrial planetary deployment and in situ investigation of chemical and physical properties. The instrumentation in this concept is a bio-inspired drill to access material beneath sterile surface layer for biomarker detection. The proposed drill represents a novel concept of two-valve-reciprocating motion, inspired by the working mechanism of wood wasp ovipositors. It is lightweight (0.5 kg, driven at low power (3 W, and able to drill deep (1-2 m. Tests have shown that the reciprocating drill is feasible and has potential of improving drill efficiency without using any external force. The overall penetration system provides a small, light and energy efficient solution to in situ astrobiological studies, which is crucial for space engineering. Such a micro-penetrator can be used for exploration of terrestrial-type planets or other small bodies of the solar system with the minimum of modifications.

  10. A Novel Penetration System for in situ Astrobiological Studies

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2008-11-01

    Full Text Available Due to ultraviolet flux in the surface layers of most solar bodies, future astrobiological research is increasingly seeking to conduct subsurface penetration and drilling to detect chemical signature for extant or extinct life. To address this issue, we present a micro-penetrator concept (mass < 10 kg that is suited for extraterrestrial planetary deployment and in situ investigation of chemical and physical properties. The instrumentation in this concept is a bio-inspired drill to access material beneath sterile surface layer for biomarker detection. The proposed drill represents a novel concept of two-valve-reciprocating motion, inspired by the working mechanism of wood wasp ovipositors. It is lightweight (0.5 kg, driven at low power (3 W, and able to drill deep (1-2 m. Tests have shown that the reciprocating drill is feasible and has potential of improving drill efficiency without using any external force. The overall penetration system provides a small, light and energy efficient solution to in situ astrobiological studies, which is crucial for space engineering. Such a micro-penetrator can be used for exploration of terrestrial-type planets or other small bodies of the solar system with the minimum of modifications.

  11. Deposition and characteristics of PbS thin films by an in-situ solution chemical reaction process

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Junna; Ji, Huiming; Wang, Jian; Zheng, Xuerong; Lai, Junyun; Liu, Weiyan; Li, Tongfei [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Ma, Yuanliang; Li, Haiqin; Zhao, Suqin [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining 810007 (China); Jin, Zhengguo, E-mail: zhgjin@tju.edu.cn [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2015-09-01

    Preferential oriented and uniform PbS thin films were deposited by a room temperature in-situ solution chemical reaction process, in which the lead nitrate as precursor in a form of thin solid films from lead precursor solution was used to react with ammonium sulfide ethanol solution. Influence of 1-butanol addition in the lead precursor solution, Pb:S molar ratios in the separate cationic and anionic solutions, deposition cycle numbers and annealing treatment in Ar atmosphere on structure, morphology, chemical composition and optical absorption properties of the deposited PbS films were investigated based on X-ray diffraction, field emission scanning electron microscopy, energy dispersive spectrometer, atomic force microscopy, selected area electron diffraction, UV–vis, near infrared ray and fourier transform infrared spectroscopy measurements. The results showed that the deposited PbS thin films had a cubic structure and highly preferred orientation along with the plane (100). The deposition rate of single-layer was stable, about 30 nm in thickness per deposition cycle. - Highlights: • Time-efficiency synthetic method for the preparation of lead sulfide (PbS) films • Effect of 1-butanol addition into cationic precursor solution is discussed. • Growth rate of the PbS films is stable at about 30 nm per cycle.

  12. In situ X-ray diffraction environments for high-pressure reactions

    DEFF Research Database (Denmark)

    R. S. Hansen, Bjarne; Møller, Kasper Trans; Paskevicius, Mark

    2015-01-01

    ), quartz glass (SiO2), stainless steel (S316) and glassy carbon (Sigradur K), and burst pressures are calculated and tested for the different tube materials. In these studies, high hydrogen pressure is generated with a metal hydride hydrogen compressor mounted in a closed system, which allows reuse...

  13. A study on sodium-concrete reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jae Heum; Min, Byong Hun [Suwon University, Suwon (Korea, Republic of)

    1997-07-01

    A small sodium-concrete reaction facility was designed, manufactured and installed. this facility has been operated under inert gas(N{sub 2}) with different experimental variables such as sodium injection temperature, injection amount of sodium, aging period of concrete, sodium reservoir temperature. As a result, it was found that sodium injection temperature and injected amount of sodium has little effect on sodium-concrete reaction. However, sodium reservoir temperature and aging period of concrete has relatively high impact on sodium-concrete reaction. Sodium-concrete reaction model has also been developed and compared with experimental results. (Author) 51 refs., 16 tabs., 64 figs.

  14. In situ transmission electron microscopy investigation of the interfacial reaction between Ni and Al during rapid heating in a nanocalorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Grapes, Michael D., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Material Measurement Laboratory, Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H. [Lawrence Livermore National Laboratory, Materials Science and Technology Division, Livermore, California 94550 (United States); Woll, Karsten [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Institute of Applied Materials, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); LaVan, David A., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Material Measurement Laboratory, Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Weihs, Timothy P., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-11-01

    The Al/Ni formation reaction is highly exothermic and of both scientific and technological significance. In this report, we study the evolution of intermetallic phases in this reaction at a heating rate of 830 K/s. 100-nm-thick Al/Ni bilayers were deposited onto nanocalorimeter sensors that enable the measurement of temperature and heat flow during rapid heating. Time-resolved transmission electron diffraction patterns captured simultaneously with thermal measurements allow us to identify the intermetallic phases present and reconstruct the phase transformation sequence as a function of time and temperature. The results show a mostly unaltered phase transformation sequence compared to lower heating rates.

  15. Use of Isotopes for Studying Reaction Mechanisms

    Indian Academy of Sciences (India)

    In the first part of this series, we discussed how isotopes can be used as markers to determine the nature of intermediates in chemical reactions. The second part covered the effect of isotopes on equilibria and reactions, in processes where the bond to the isotopic a tom is broken. We showed with specific examples how.

  16. In situ ellipsometric study of surface immobilization of flagellar filaments

    Energy Technology Data Exchange (ETDEWEB)

    Kurunczi, S., E-mail: kurunczi@mfa.kfki.hu [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Nemeth, A.; Huelber, T. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Kozma, P. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Petrik, P. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Jankovics, H. [Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Sebestyen, A. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Vonderviszt, F. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Institute of Enzymology, Karolina ut 29-33, Budapest, H-1113 (Hungary); and others

    2010-10-15

    Protein filaments composed of thousands of subunits are promising candidates as sensing elements in biosensors. In this work in situ spectroscopic ellipsometry is applied to monitor the surface immobilization of flagellar filaments. This study is the first step towards the development of layers of filamentous receptors for sensor applications. Surface activation is performed using silanization and a subsequent glutaraldehyde crosslinking. Structure of the flagellar filament layers immobilized on activated and non-activated Si wafer substrates is determined using a two-layer effective medium model that accounted for the vertical density distribution of flagellar filaments with lengths of 300-1500 nm bound to the surface. The formation of the first interface layer can be explained by the multipoint covalent attachment of the filaments, while the second layer is mainly composed of tail pinned filaments floating upwards with the free parts. As confirmed by atomic force microscopy, covalent immobilization resulted in an increased surface density compared to absorption.

  17. In situ Raman spectroscopy studies of bulk and surface metal

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Jehng, J.M.; Deo, G.; Guliants, V.V.; Benziger, J.B.

    1996-01-01

    Bulk V-P-O and model supported vanadia catalysts were investigated with in situ Raman spectroscopy during n-butane oxidation to maleic anhydride in order to determine the fundamental molecular structure-reactivity/selectivity insights that can be obtained from such experiments. The in situ Raman

  18. Design of an electrochemical cell for in situ XAS studies

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, N. [Instituto de Quimica, Universidade Estadual de Campinas (UNICAMP), Box 6154, CEP 13083-970, Campinas, SP (Brazil); Morais, J. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Goncalves, 9500, Bairro Agronomia, CP 15051, CEP 91501-970, Porto Alegre, RS (Brazil); Alves, M.C.M. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Goncalves, 9500, Bairro Agronomia, CP 15003, CEP 91501-970, Porto Alegre, RS (Brazil)], E-mail: maria@iq.ufrgs.br

    2007-05-15

    In situ X-ray absorption spectroscopy (XAS) studies have been carried out on the electrochemical insertion of Co metal particles in polypyrrole. This has become possible due to the development of an electrochemical cell to allow XAS studies in fluorescence geometry under steady-state conditions. The experimental set-up allows the in situ monitoring of the structural and electronic changes of the selected atom in a matrix. The project of the electrochemical cell is presented with the results obtained at different stages of the electrochemical process. XANES and EXAFS results showed that the initial stage of the cobalt insertion in polypyrrole took place in an ionic form, like [-[(C{sub 4}H{sub 2}N){sub 3}CH{sub 3}(CH{sub 2}){sub 11}OSO{sub 3}{sup -}]{sub 6}Co{sup 2+}] with posterior reduction to a metallic form. The quantitative analysis of the first shell shows that, at -0.60 V, the cobalt atoms are surrounded by 6 ({+-}0.5) atoms located at 2.12 ({+-}0.05) A with a large Debye-Waller factor ({sigma}{sup 2}) value of 0.0368 ({+-}0.0074). At -0.80 V, two distances of R = 1.99 ({+-}0.01) and R = 2.50 ({+-}0.01) A show the coexistence of cobalt in the oxidized and reduced (Co{sup 0}) forms. The Co-Co distance corresponds to that of bulk cobalt. At -1.20 V, the obtained values of N = 12 ({+-}0.5) and R = 2.56 ({+-}0.01) A and a Debye-Waller factor of 0.0176 ({+-}0.0004) suggest the formation of metallic cobalt in a quite disordered form.

  19. Comparative study of in-situ filter test methods

    International Nuclear Information System (INIS)

    Marshall, M.; Stevens, D.C.

    1981-01-01

    Available methods of testing high efficiency particulate aerosol (HEPA) filters in-situ have been reviewed. In order to understand the relationship between the results produced by different methods a selection has been compared. Various pieces of equipment for generating and detecting aerosols have been tested and their suitability assessed. Condensation-nuclei, DOP (di-octyl phthalate) and sodium-flame in-situ filter test methods have been studied, using the 500 cfm (9000 m 3 /h) filter test rig at Harwell and in the field. Both the sodium-flame and DOP methods measure the penetration through leaks and filter material. However the measured penetration through filtered leaks depends on the aerosol size distribution and the detection method. Condensation-nuclei test methods can only be used to measure unfiltered leaks since condensation nuclei have a very low penetration through filtered leaks. A combination of methods would enable filtered and unfiltered leaks to be measured. A condensation-nucleus counter using n-butyl alcohol as the working fluid has the advantage of being able to detect any particle up to 1 μm in diameter, including DOP, and so could be used for this purpose. A single-particle counter has not been satisfactory because of interference from particles leaking into systems under extract, particularly downstream of filters, and because the concentration of the input aerosol has to be severely limited. The sodium-flame method requires a skilled operator and may cause safety and corrosion problems. The DOP method using a total light scattering detector has so far been the most satisfactory. It is fairly easy to use, measures reasonably low values of penetration and gives rapid results. DOP has had no adverse effect on HEPA filters over a long series of tests

  20. Explore the reaction mechanism of the Maillard reaction: a density functional theory study.

    Science.gov (United States)

    Ren, Ge-Rui; Zhao, Li-Jiang; Sun, Qiang; Xie, Hu-Jun; Lei, Qun-Fang; Fang, Wen-Jun

    2015-05-01

    The mechanism of Maillard reaction has been investigated by means of density functional theory calculations in the gaseous phase and aqueous solution. The Maillard reaction is a cascade of consecutive and parallel reaction. In the present model system study, glucose and glycine were taken as the initial reactants. On the basis of previous experimental results, the mechanisms of Maillard reaction have been proposed, and the possibility for the formation of different compounds have been evaluated through calculating the relative energy changes for different steps of reaction under different pH conditions. Our calculations reveal that the TS3 in Amadori rearrangement reaction is the rate-determining step of Maillard reaction with the activation barriers of about 66.7 and 68.8 kcal mol(-1) in the gaseous phase and aqueous solution, respectively. The calculation results are in good agreement with previous studies and could provide insights into the reaction mechanism of Maillard reaction, since experimental evaluation of the role of intermediates in the Maillard reaction is quite complicated.

  1. In-Situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes

    Science.gov (United States)

    2010-12-28

    DATES COVERED (From - To) 1/29/10-9/30/10 4. TITLE AND SUBTITLE In situ optical studies of oxidation/reduction kinetics on SOFC cermet anodes 5a...0572 In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Department of Chemistry and Biochemistry Montana State University...of Research In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Principal Investigator Robert Walker Organization

  2. Coulomb dissociation studies for astrophysical thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, T [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)

    1998-06-01

    The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)

  3. Summary of feasibility studies on in situ disposal as a decommissioning option for nuclear facilities

    International Nuclear Information System (INIS)

    Helbrecht, R.A.

    2002-01-01

    A scoping study was conducted over the period 1998-2000 to consider the feasibility of in situ disposal as a decommissioning option for AECL's Nuclear Power Demonstration Reactor located at Rolphton, Ontario. The results of a detailed assessment are summarized and the study concludes that in situ disposal appears feasible. Additional work required to confirm the results is also identified. A second in situ component, contaminated Winnipeg River sediments at AECL's Whiteshell Laboratory located in Manitoba, was also evaluated. That study concluded that in situ abandonment would have no adverse impact on aquatic life, humans and the environment. A summary of the study is presented as an appendix to the report. (author)

  4. Glycolate adsorption at gold and platinum electrodes: A theoretical and in situ spectroelectrochemical study

    International Nuclear Information System (INIS)

    Delgado, Jose Manuel; Blanco, Raquel; Orts, Jose Manuel; Perez, Juan Manuel; Rodes, Antonio

    2010-01-01

    The adsorption of glycolate anions at sputtered gold thin-film electrodes was studied in perchloric acid solutions by cyclic voltammetry experiments combined with in situ Surface Enhanced Raman Scattering (SERS) and Surface Enhanced Infrared Reflection Absorption Spectroscopy under attenuated total reflection conditions (ATR-SEIRAS). Theoretical harmonic vibrational frequencies and band intensities obtained from B3LYP/LANL2DZ,6-31+G(d) calculations for glycolate species adsorbed on Au clusters with (1 1 1) orientation were used to interpret the experimental spectra. Vibrational data confirm the bidentate bonding of glycolate anions through the oxygen atoms of the carboxylate group, in a bridge configuration with the OCO plane perpendicular to the metal surface. The DFT calculations show no significant effect of the total charge of the metal cluster-adsorbate adduct on the vibrational frequencies of adsorbed glycolate species. The infrared experimental study is extended to platinum films electrochemically deposited onto sputtered gold thin-film electrodes showing the potential-dependent formation of adsorbed CO upon dissociative adsorption of glycolate anions. As in the case of gold, the reversible adsorption of glycolate anions takes place in a bidentate configuration as predicted by DFT calculations for glycolate adsorbed on Pt(1 1 1) clusters. At low glycolic acid concentration, the in situ ATR-SEIRA spectra evidence the formation of adsorbed oxalate as reaction intermediate.

  5. Raman spectroscopic study of reaction dynamics

    Science.gov (United States)

    MacPhail, R. A.

    1990-12-01

    The Raman spectra of reacting molecules in liquids can yield information about various aspects of the reaction dynamics. The author discusses the analysis of Raman spectra for three prototypical unimolecular reactions, the rotational isomerization of n-butane and 1,2-difluoroethane, and the barrierless exchange of axial and equatorial hydrogens in cyclopentane via pseudorotation. In the first two cases the spectra are sensitive to torsional oscillations of the gauche conformer, and yield estimates of the torsional solvent friction. In the case of cyclopentane, the spectra can be used to discriminate between different stochastic models of the pseudorotation dynamics, and to determine the relevant friction coefficients.

  6. Electrochemical studies, in-situ and ex-situ characterizations of different manganese compounds electrodeposited in aerated solutions; Etudes electrochimiques, suivis in-situ et caracterisations ex-situ de divers composes de manganese electrodeposes dans des solutions aerees

    Energy Technology Data Exchange (ETDEWEB)

    Peulon, S.; Lacroix, A.; Chausse, A. [Univ. d' Evry-val-d' Essonne, Laboratoire Analyse et Modelisation pour la Biologie et l' Environnement (LAMBE CNRS UMR 8587), 91 - Evry (France); Larabi-Gruet, N. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR/L3MR), 91 - Gif sur Yvette (France)

    2007-07-01

    This work deals with the electrodeposition of manganese compounds. A systematic study of the synthesis experimental conditions has been carried out, and the obtained depositions have been characterized by different ex-situ analyses methods (XRD, FTIR, SEM). The in-situ measurements of mass increase with a quartz microbalance during the syntheses have allowed to estimate the growth mechanisms which are in agreement with the ex-situ characterizations. The cation has an important role in the nature of the electrodeposited compounds. In presence of sodium, a mixed lamellar compound Mn(III)/Mn(IV), the birnessite, is deposited, whereas in presence of potassium, bixbyite is formed (Mn{sub 2}O{sub 3}), these two compounds having a main role in the environment. The substrate can also influence the nature of the formed intermediary compounds. Little studied compounds such as feitkneichtite ({beta}-MnOOH) and groutite ({alpha}-MnOOH) have been revealed. (O.M.)

  7. Role of Re in Pt-Re/TiO2 catalyst for water gas shift reaction: A mechanistic and kinetic study.

    NARCIS (Netherlands)

    Azzam, K.G.H.; Babych, Igor V.; Seshan, Kulathuiyer; Lefferts, Leonardus

    2008-01-01

    Transient kinetic studies and in situ FTIR spectroscopy were used to follow the reaction sequences that occur during water gas shift (WGS) reaction over Pt–Re/TiO2 catalyst. Results pointed to contributions of an associative formate route with redox regeneration and two classical redox routes

  8. A comparative study of the character and complexation properties of in-situ and extracted humic and fulvic substances

    International Nuclear Information System (INIS)

    Warwick, P.; Hall, A.; Patterson, M.

    1992-12-01

    The character and complexation properties of humic and fulvic acids, derived from a moorland water, have been studied, both under ''in-situ'' conditions and also after extraction. The characterisation studies involved determinations of UV-visible properties, fluorescence properties. size ranges, molecular weights and proton capacities. Complexation studies were conducted using High Performance Size Exclusion Chromatography, Fluorescence Reduction and the Schubert Ion Exchange Method. A strong and weak site ligand model was used to interpret the data. The effects of pH, ionic strength, side reactions, ligand type, purity and nature of the cation were considered. No major differences in the character or complexation properties of the in-situ and extracted materials were found. (Author)

  9. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy.

    Science.gov (United States)

    Shimoyamada, Atsushi; Yamamoto, Kazuo; Yoshida, Ryuji; Kato, Takehisa; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2015-12-01

    All-solid-state Li-ion batteries (LIBs) with solid electrolytes are expected to be the next generation devices to overcome serious issues facing conventional LIBs with liquid electrolytes. However, the large Li-ion transfer resistance at the electrode/solid-electrolyte interfaces causes low power density and prevents practical use. In-situ-formed negative electrodes prepared by decomposing the solid electrolyte Li(1+x+3z)Alx(Ti,Ge)(2-x)Si(3z)P(3-z)O12 (LASGTP) with an excess Li-ion insertion reaction are effective electrodes providing low Li-ion transfer resistance at the interfaces. Prior to our work, however, it had still been unclear how the negative electrodes were formed in the parent solid electrolytes. Here, we succeeded in dynamically visualizing the formation by in situ spatially resolved electron energy-loss spectroscopy in a transmission electron microscope mode (SR-TEM-EELS). The Li-ions were gradually inserted into the solid electrolyte region around 400 nm from the negative current-collector/solid-electrolyte interface in the charge process. Some of the ions were then extracted in the discharge process, and the rest were diffused such that the distribution was almost flat, resulting in the negative electrodes. The redox reaction of Ti(4+)/Ti(3+) in the solid electrolyte was also observed in situ during the Li insertion/extraction processes. The in situ SR-TEM-EELS revealed the mechanism of the electrochemical reaction in solid-state batteries. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Studies on electrochemical hydrodebromination mechanism of 2,5-dibromobenzoic acid on Ag electrode by in situ FTIR spectroscopy

    International Nuclear Information System (INIS)

    Li Meichao; Bao Dandan; Ma Chunan

    2011-01-01

    Research highlights: → Silver is a good catalyst for the hydrodebromination of 2,5-dibromobenzoic acid. → 3-Bromobenzoic acid as main intermediate product. → The finally product is benzoic acid. → In situ FTIR is useful to study the electrochemical hydrodebromination mechanism. - Abstract: Cyclic voltammetry and in situ FTIR were employed to study the electrochemical hydrodebromination (EHB) mechanism of 2,5-dibromobenzoic acid (2,5-DBBA) in NaOH solution. Compared with titanium and graphite electrodes, silver electrode exhibited a high electrocatalytic activity for the hydrodebromination reaction of 2,5-DBBA. On the basis of in situ FTIR data, EHB reaction of 2,5-DBBA on Ag cathode might be represented as a sequence of electron additions and bromine expulsions. Firstly, from potential at approximately -1100 mV, 2,5-DBBA received an electron to form 2,5-DBBA radical anion, which lost a bromine ion in the 2-position to form 3-bromobenzoic acid (3-BBA) free radical. Then the free radical received a proton to give 3-BBA. Finally, 3-BBA further took off another bromine ion to produce benzoic acid free radical and the end product benzoic acid was obtained by receiving another electron and a proton with the potential shifting to more negative values.

  11. Redox reaction studies by nanosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Moorthy, P.N.

    1979-01-01

    Free radicals are formed as intermediates in many chemical and biochemical reactions. An important type of reaction which they can undergo is a one electron or redox process. The direction and rate of such electron transfer reactions is governed by the relative redox potentials of the participating species. Because of the generally short lived nature of free radicals, evaluation of their redox potentials poses a number of problems. Two techniques are described for the experimental determination of the redox potentials of short lived species generated by either a nanosecond electron pulse or laser flash. In the first method, redox titration of the short lived species with stable molecules of known redox potential is carried out, employing the technique of fast kinetic spectrophotometry. Conversely, by the same method it is also possible to evaluate the one electron redox potentials of stable molecules by redox titration with free radicals of known redox potential produced as above. In the second method, electrochemical reduction or oxidation of the short lived species at an appropriate electrode (generally a mercury drop) is carried out at different fixed potentials, and the redox potential evaluated from the current-potential curves (polarograms). Full description of the experimental set up and theoretical considerations for interpretation of the raw data are given. The relative merits of the two methods and their practical applicability are discussed. (auth.)

  12. Efficient Absorption of Antibiotic from Aqueous Solutions over MnO2@SA/Mn Beads and Their In Situ Regeneration by Heterogeneous Fenton-Like Reaction

    Directory of Open Access Journals (Sweden)

    Yu Luo

    2017-01-01

    Full Text Available Alginate has been extensively used as absorbents due to its excellent properties. However, the practical application of pure alginate has been restricted since the saturated adsorbent has weak physical structure and could not be regenerated easily. In this study, a low-cost and renewable composite MnO2@alginate/Mn adsorbent has been prepared facilely for the absorptive removal of antibiotic wastewater. FE-SEM, FTIR, and XRD analyses were used to characterize the samples. The norfloxacin (NOR was used as an index of antibiotics. More specifically, the batch absorption efficiency of the adsorbents was evaluated by pH, contact time with different NOR concentration, and the temperature. Thus, the performance of absorption kinetic dynamics and isotherm equations were estimated for the adsorptive removal process. Parameters including ΔG0, ΔH0, and ΔS0 were utilized to describe the feasible adsorption process. To regenerate the saturated absorptive sites of the adsorbent, the heterogeneous Fenton-like reactions were trigged by introduction of H2O2. The results showed that the in situ regenerating has exhibited an excellent recycling stability. The high activity and the simple fabrication of the adsorbents make them attractive for the treatment of wastewater containing refractory organic compound and also provide fundamental basis and technology for further practical application.

  13. Chromogenic in situ Hybridization Compared with Real time Quantitative Polymerase Chain Reaction to Evaluate HER2/neu Status in Breast Cancer.

    Science.gov (United States)

    Ayatollahi, Hossein; Fani, Azar; Ghayoor Karimiani, Ehsan; Homaee, Fateme; Shajiei, Arezoo; Sheikh, Maryam; Shakeri, Sepideh; Shams, Seyyede Fatemeh

    2017-01-01

    The assessment of human epidermal growth factor receptor 2 (HER2) status has become of great importance in the diagnosis of breast cancer. The aim of this study was to investigate the diagnostic value of quantitative Polymerase Chain Reaction (qPCR) and Chromogenic In Situ Hybridization (CISH) to assess HER2 status of biopsy specimens. To elucidate the status of HER2 gene amplification, biopsies of breast carcinoma from 120 patients with 2+ IHC status were analyzed by qPCR and CISH. The results of the two experiments were compared, and it was depicted that the concordance rate between CISH and qPCR assays was 88.1%.The quantification of HER2 gene with CISH and qPCR showed that there was a significant correlation (p value= 0.0001 and r= 0.808). The results of this research support the idea that qPCR is a precise and reproducible technique, which can be employed as a supplementary method to evaluate HER2 status.

  14. Study of the (p,d3He) reaction as a quasi-free reaction process

    International Nuclear Information System (INIS)

    Cowley, A.A.; Roos, P.G.; Chant, N.S.; Woody, R. III; Holmgren, H.D.; Goldberg, D.A.

    1976-11-01

    The (p,d 3 He) reaction on 6 Li, 7 Li, 9 Be, and 12 C has been investigated in conjunction with studies of the (p,pα) reaction on the same targets. Coincident data for all four targets were obtained at a bombarding energy of 100 MeV for numerous angle pairs in order to test the reaction mechanism. Comparisons of the (p,d 3 He) data to both (p,pα) data and distorted wave impulse approximation calculations (DWIA) indicate a dominance of the direct quasi-free reaction process (p + alpha yields d + 3 He). The absolute alpha-particle spectroscopic factors extracted using DWIA analysis are in agreement with the values obtained in the (p,pα) reaction

  15. Studies in the reaction dynamics of beam-gas chemiluminescent reactions

    International Nuclear Information System (INIS)

    Prisant, M.G.

    1984-01-01

    This thesis develops techniques for the analysis and interpretation of data obtained from beam-gas chemiluminescence experiments. These techniques are applied to experimental studies of atom transfer reactions of the type A + BC → AB + C. A procedure is developed for determining the product rotational alignment in the center-of-mass frame from polarization measurements of chemiluminescent atom-diatom exchange reactions under beam-gas conditions. Knowledge of a vector property of a reaction, such as product alignment, provides information on the disposition of angular momentum by a chemical reaction. Fluorescence polarization and hence product alignment are measured for two prototype reactions. The reaction of metastable calcium atoms with hydrogen-chloride gas yields highly aligned calcium-chloride product which exhibits little variation of alignment with vibrational state. The reaction of ground-state calcium with fluorine gas yields moderately aligned product which shows strong variation of alignment with vibration. A multi-surface direct-interaction model is developed to interpret product alignment and population data. The predictions of this model for the reaction of calcium with fluorine show reasonable agreement with experiment

  16. Low temperature hydrogen plasma-assisted atomic layer deposition of copper studied using in situ infrared reflection absorption spectroscopy

    International Nuclear Information System (INIS)

    Chaukulkar, Rohan P.; Rai, Vikrant R.; Agarwal, Sumit; Thissen, Nick F. W.

    2014-01-01

    Atomic layer deposition (ALD) is an ideal technique to deposit ultrathin, conformal, and continuous metal thin films. However, compared to the ALD of binary materials such as metal oxides and metal nitrides, the surface reaction mechanisms during metal ALD are not well understood. In this study, the authors have designed and implemented an in situ reflection-absorption infrared spectroscopy (IRAS) setup to study the surface reactions during the ALD of Cu on Al 2 O 3 using Cu hexafluoroacetylacetonate [Cu(hfac) 2 ] and a remote H 2 plasma. Our infrared data show that complete ligand-exchange reactions occur at a substrate temperature of 80 °C in the absence of surface hydroxyl groups. Based on infrared data and previous studies, the authors propose that Cu(hfac) 2 dissociatively chemisorbs on the Al 2 O 3 surface, where the Al-O-Al bridge acts as the surface reactive site, leading to surface O-Cu-hfac and O-Al-hfac species. Surface saturation during the Cu(hfac) 2 half-cycle occurs through blocking of the available chemisorption sites. In the next half-reaction cycle, H radicals from an H 2 plasma completely remove these surface hfac ligands. Through this study, the authors have demonstrated the capability of in situ IRAS as a tool to study surface reactions during ALD of metals. While transmission and internal reflection infrared spectroscopy are limited to the first few ALD cycles, IRAS can be used to probe all stages of metal ALD starting from initial nucleation to the formation of a continuous film

  17. In situ studies of NO reduction by H

    NARCIS (Netherlands)

    Roobol, S. B.; Onderwaater, W. G.; van Spronsen, M. A.; Carla, F; Balmes, O; Navarro-Paredes, V; Vendelbo, S.B.; Kooyman, P.J.; Elkjær, C. F.; Helveg, S; Felici, R; Frenken, J. W.M.; Groot, I.M.N.

    2017-01-01

    In situ surface X-ray diffraction and transmission electron microscopy at 1 bar show massive material transport of platinum during high-temperature NO reduction with H2. A Pt(110) single-crystal surface shows a wide variety of surface reconstructions and extensive faceting of the

  18. In Situ Study of Noncatalytic Metal Oxide Nanowire Growth

    DEFF Research Database (Denmark)

    Rackauskas, Simas; Jiang, Hua; Wagner, Jakob Birkedal

    2014-01-01

    a catalyst is still widely disputed and unclear. Here, we show that the nanowire growth during metal oxidation is limited by a nucleation of a new layer. On the basis of in situ transmission electron microscope investigations we found that the growth occurs layer by layer at the lowest specific surface...

  19. Comparative Study Between Ethylbenzene Disproportionation Reaction and its Ethylation Reaction with Ethanol over ZSM-5

    KAUST Repository

    Tukur, N. M.

    2009-06-23

    Ethylation of ethylbenzene with ethanol has been studied over ZSM-5 catalyst in a riser simulator that mimics the operation of a fluidized-bed reactor. The feed molar ratio of ethylbenzene:ethanol is 1:1. The study was carried out at 350, 400, 450, and 500°C for reaction times of 3, 5, 7, 10, 13, and 15 s. Comparisons are made between the results of the ethylbenzene ethylation reaction with that of ethylbenzene disproportionation reaction earlier reported. The effect of reaction conditions on ethylbenzene reactivity, p-diethylbenzene selectivity, total diethylbenzene (DEB) isomers selectivity, p-DEB-to-m-DEB ratio, benzene-to-DEB molar ratio, and benzene selectivity, are reported. Benzene selectivity is about 10 times more in the EB disproportion reaction as compared to its ethylation reaction with ethanol at 350°C. In addition, the results showed a p-DEB/m-DEB ratio for the EB ethylation reaction varying between 1.2-1.7, which is greater than the equilibrium values. Increase in temperature shifts the alkylation/dealkylation equilibrium towards dealkylation, thereby decreasing conversion and selectivity to DEB. © Springer Science+Business Media, LLC 2009.

  20. In situ coral reef oxygen metabolism: an eddy correlation study.

    Directory of Open Access Journals (Sweden)

    Matthew H Long

    Full Text Available Quantitative studies of coral reefs are challenged by the three-dimensional hard structure of reefs and the high spatial variability and temporal dynamics of their metabolism. We used the non-invasive eddy correlation technique to examine respiration and photosynthesis rates, through O2 fluxes, from reef crests and reef slopes in the Florida Keys, USA. We assessed how the photosynthesis and respiration of different reef habitats is controlled by light and hydrodynamics. Numerous fluxes (over a 0.25 h period were as high as 4500 mmol O2 m(-2 d(-1, which can only be explained by efficient light utilization by the phototrophic community and the complex canopy structure of the reef, having a many-fold larger surface area than its horizontal projection. Over diel cycles, the reef crest was net autotrophic, whereas on the reef slope oxygen production and respiration were balanced. The autotrophic nature of the shallow reef crests implies that the export of organics is an important source of primary production for the larger area. Net oxygen production on the reef crest was proportional to the light intensity, up to 1750 µmol photons m(-2 s(-1 and decreased thereafter as respiration was stimulated by high current velocities coincident with peak light levels. Nighttime respiration rates were also stimulated by the current velocity, through enhanced ventilation of the porous framework of the reef. Respiration rates were the highest directly after sunset, and then decreased during the night suggesting that highly labile photosynthates produced during the day fueled early-night respiration. The reef framework was also important to the acquisition of nutrients as the ambient nitrogen stock in the water had sufficient capacity to support these high production rates across the entire reef width. These direct measurements of complex reefs systems yielded high metabolic rates and dynamics that can only be determined through in situ, high temporal resolution

  1. In-situ XRD and EDS method study on the oxidation behaviour of Ni-Cu sulphide ore.

    Science.gov (United States)

    Li, Guangshi; Cheng, Hongwei; Xiong, Xiaolu; Lu, Xionggang; Xu, Cong; Lu, Changyuan; Zou, Xingli; Xu, Qian

    2017-06-12

    The oxidation mechanism of sulfides is the key issue during the sulphide-metallurgy process. In this study, the phase transformation and element migration were clearly demonstrated by in-situ laboratory-based X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS), respectively. The reaction sequence and a four-step oxidation mechanism were proposed and identified. The elemental distribution demonstrated that at a low temperature, the Fe atoms diffused outward and the Ni/Cu atoms migrated toward the inner core, whereas the opposite diffusion processes were observed at a higher temperature. Importantly, the unique visual presentation of the oxidation behaviour provided by the combination of in-situ XRD and EDS might be useful for optimising the process parameters to improve the Ni/Cu extraction efficiency during Ni-Cu sulphide metallurgy.

  2. Kinetic study of the dehydration reaction of lithium sulfate monohydrate crystals using microscopy and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Shuiquan [Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612AZ Eindhoven (Netherlands); Zondag, Herbert [Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612AZ Eindhoven (Netherlands); Energy research Center of the Netherlands – ECN, P.O. Box 1, 1755ZG Petten (Netherlands); Steenhoven, Anton van [Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612AZ Eindhoven (Netherlands); Rindt, Camilo, E-mail: c.c.m.rindt@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612AZ Eindhoven (Netherlands)

    2015-12-10

    Highlights: • Kinetics of Li{sub 2}SO{sub 4}·H{sub 2}O single crystals were modeled based on elementary processes. • Kinetics of nucleation and nuclei growth were studied by using optical microscopy. • A novel experiment was designed to visualize the reaction front into crystal bulk. • Fractional conversion was calculated and compared with TGA-experiments. - Abstract: Simulation of gas–solid reactions occurring in industrial processes requires a robust kinetic model to be applicable in a wide range of complicated reaction conditions. However, in literature it is often seen that even the same reaction under specific controlled conditions is interpreted with different kinetic models. In the present work, a phenomenological model based on nucleation and nuclei growth processes is presented to study the kinetics of the dehydration reaction of lithium sulfate monohydrate single crystals. The two elementary processes of the reaction, nucleation and nuclei growth, are characterized and quantified as a function of temperature by using optical microscopy experiments. The in-situ measured characteristics of the dehydration reaction provided confirmatory evidence that the rate of nucleation obeys an exponential law and the rate of nuclei growth is approximately constant. With knowledge acquired from the optical observations as inputs of the kinetic model, the fractional conversion of the dehydration reaction was calculated and compared with experimental results from thermogravimetric analysis (TGA). A satisfactory comparison was found both in isothermal and non-isothermal conditions. It is demonstrated that this knowledge-based model has a great potential to represent the gas–solid reaction kinetics in a wide range of process conditions regarding temperature, pressure and particle geometry.

  3. Reaction

    African Journals Online (AJOL)

    abp

    19 oct. 2017 ... Reaction to Mohamed Said Nakhli et al. concerning the article: "When the axillary block remains the only alternative in a 5 year old child". .... Bertini L1, Savoia G, De Nicola A, Ivani G, Gravino E, Albani A et al ... 2010;7(2):101-.

  4. Quantitative in situ monitoring of an elevated temperature reaction using a water-cooled mid-infrared fiber-optic probe.

    Science.gov (United States)

    Maclaurin, P; Crabb, N C; Wells, I; Worsfold, P J; Coombs, D

    1996-04-01

    A novel water-cooled mid-infrared fiber-optic probe is described which is heatable to 230 °C. The probe has chalcogenide fibers and a ZnSe internal reflection element and is compact and fully flexible, allowing access to a wide range of standard laboratory reaction vessels and fume cupboard arrangements. Performance is demonstrated via the in situ analysis of an acid-catalyzed esterification reaction in toluene at 110 °C, and the results are compared with those from a conventional extractive sampling loop flow cell arrangement. Particular emphasis is given to the quantitative interpretation of the spectroscopic data, using gas chromatographic reference data. Calibration data are presented for univariate and partial least squares models, with an emphasis on procedures for improving the quality of interpreparation calibration and prediction through the use of focused reference analysis regimes. Subset univariate procedures are presented that yield relative errors of spectroscopy combined with bias correction partial least squares procedures for the efficient in situ quantitative analysis of laboratory scale reactions.

  5. Oral microemulsions of paclitaxel: in situ and pharmacokinetic studies.

    Science.gov (United States)

    Nornoo, Adwoa O; Zheng, Haian; Lopes, Luciana B; Johnson-Restrepo, Boris; Kannan, Kurunthachalam; Reed, Rachel

    2009-02-01

    The overall goal of this study was to develop cremophor-free oral microemulsions of paclitaxel (PAC) to enhance its permeability and oral absorption. The mechanism of this enhancement, as well as characteristics of the microemulsions relevant to the increase in permeability and absorption of the low solubility, low permeability PAC was investigated. Phase diagrams were used to determine the macroscopic phase behavior of the microemulsions and to compare the efficiency of different surfactant-oil mixtures to incorporate water. The microemulsion region on the phase diagrams utilizing surfactant-myvacet oil combinations was in decreasing order: lecithin: butanol: myvacet oil (LBM, 48.5%)>centromix CPS: 1-butanol: myvacet oil (CPS, 45.15%)>capmul MCM: polysorbate 80: myvacet oil (CPM, 27.6%)>capryol 90: polysorbate 80: myvacet oil (CP-P80, 23.9%)>capmul: myvacet oil (CM, 20%). Oil-in-water (o/w) microemulsions had larger droplet sizes (687-1010 nm) than the water-in-oil (w/o) microemulsions (272-363 nm) when measured using a Zetasizer nano series particle size analyzer. Utilizing nuclear magnetic resonance spectroscopy (NMR), the self-diffusion coefficient (D) of PAC in CM, LBM and CPM containing 10% of deuterium oxide (D(2)O) was 2.24x10(-11), 1.97x10(-11) and 0.51x10(-11) m(2)/s, respectively. These values indicate the faster molecular mobility of PAC in the two w/o microemulsions (CM and LBM) than the o/w microemulsion--CPM. The in situ permeability of PAC through male CD-IGS rat intestine was 3- and 11-fold higher from LBM and CM, respectively, than that from the control clinical formulation, Taxol (CE, cremophor: ethanol) in a single pass perfusion study. PAC permeability was significantly increased in the presence of the pgp/CYP3A4 inhibitor cyclosporine A (CsA). This enhancement may be attributed to the pgp inhibitory effect of the surfactants, oil and/or the membrane perturbation effect of the surfactants. The oral disposition of PAC in CM, LBM and CPM compared

  6. NASTRAN buckling study of a linear induction motor reaction rail

    Science.gov (United States)

    Williams, J. G.

    1973-01-01

    NASTRAN was used to study problems associated with the installation of a linear induction motor reaction rail test track. Specific problems studied include determination of the critical axial compressive buckling stress and establishment of the lateral stiffness of the reaction rail under combined loads. NASTRAN results were compared with experimentally obtained values and satisfactory agreement was obtained. The reaction rail was found to buckle at an axial compressive stress of 11,400 pounds per square inch. The results of this investigation were used to select procedures for installation of the reaction rail.

  7. Crossed molecular beam studies of unimolecular reaction dynamics

    International Nuclear Information System (INIS)

    Buss, R.J.

    1979-04-01

    The study of seven radical-molecule reactions using the crossed molecular beam technique with supersonic nozzle beams is reported. Product angular and velocity distributions were obtained and compared with statistical calculations in order to identify dynamical features of the reactions. In the reaction of chlorine and fluorine atoms with vinyl bromide, the product energy distributions are found to deviate from predictions of the statistical model. A similar effect is observed in the reaction of chlorine atoms with 1, 2 and 3-bromopropene. The reaction of oxygen atoms with ICl and CF 3 I has been used to obtain an improved value of the IO bond energy, 55.0 +- 2.0 kcal mol -1 . In all reactions studied, the product energy and angular distributions are found to be coupled, and this is attributed to a kinematic effect of the conservation of angular momentum

  8. Studies on electron transfer reactions of Keggin-type mixed ...

    Indian Academy of Sciences (India)

    Administrator

    (PV2) in aqueous phosphate buffer of pH 6 at ambient temperature. Electrochemical and optical studies show that the stoichiometry of the reaction is 1: 2 (NADH : HPA). EPR and optical studies show that HPA act as one electron acceptor and the products of electron transfer reactions are one elec- tron reduced heteropoly ...

  9. One ligand capable of in situ reaction in a mixed-ligand system with two new different frameworks

    KAUST Repository

    Wang, Xiaofang; Wang, Runwei; Liu, Xiaofang; Zhu, Pinwen; Qiu, Shilun

    2017-01-01

    The in situ ligand 2,3-pyrazinedicarboxylic acid (2,3-H2pzdc) mixed with 1,1′-(1,4-butanediyl)bis(benzimidazole) (bbbi) is used to form two coordination polymers ([Cd(2,3-pzdc)(bbbi)] (1) and [Cd2Cl3(2-pzc)(bbbi)2] (2)) under hydrothermal conditions

  10. A chiral Brønsted acid-catalyzed highly enantioselective Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines.

    Science.gov (United States)

    Unhale, Rajshekhar A; Sadhu, Milon M; Ray, Sumit K; Biswas, Rayhan G; Singh, Vinod K

    2018-04-03

    A chiral phosphoric acid-catalyzed asymmetric Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines, derived from 3-hydroxyisoindolinones has been demonstrated in this communication. A variety of isoindolinone-based α-amino diazo esters bearing a quaternary stereogenic center were afforded in high yields (up to 99%) with excellent enantioselectivities (up to 99% ee). Furthermore, the synthetic utility of the products has been depicted by the hydrogenation of the diazo moiety of adducts.

  11. Directed ortho metalation-based methodology. Halo-, nitroso-, and boro-induced ipso-desilylation. Link to an in situ Suzuki reaction.

    Science.gov (United States)

    Zhao, Zhongdong; Snieckus, Victor

    2005-06-23

    [reaction: see text] Treatment of DoM-derived silylated aromatics 2-4 under standard electrophilic halogenation conditions cleanly affords ipso-desilyation products 5-7, while nitration of methoxy-substituted analogues 8, 9 leads to non-ipso isomers 10, 12 and 11, 13, controlled by a silicon steric effect. Sequential ipso-borodesilylation of 2a, 3a, and 20 followed by treatment with aryl halides under Pd-catalyzed conditions constitutes an in situ Suzuki-Miyaura cross-coupling protocol to biaryls and heterobiaryls 23.

  12. Matrix isolation as a tool for studying interstellar chemical reactions

    Science.gov (United States)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  13. In situ ESEM study of the thermal decomposition of chrysotile asbestos in view of safe recycling of the transformation product

    International Nuclear Information System (INIS)

    Gualtieri, Alessandro F.; Gualtieri, Magdalena Lassinantti; Tonelli, Massimo

    2008-01-01

    The thermal transformation of asbestos into non-hazardous crystalline phases and their recycling is a promising solution for the 'asbestos problem'. The most common asbestos-containing industrial material produced worldwide is cement-asbestos. Knowledge of the kinetics of thermal transformation of asbestos fibers in cement-asbestos is of paramount importance for the optimization of the firing process at industrial scale. Here, environmental scanning electron microscopy (ESEM) was used for the first time to follow in situ the thermal transformation of chrysotile fibers present in cement-asbestos. It was found that the reaction kinetics of thermal transformation of chrysotile was highly slowed down in the presence of water vapor in the experimental chamber with respect to He. This was explained by chemisorbed water on the surface of the fibers which affected the dehydroxylation reaction and consequently the recrystallization into Mg-silicates. In the attempt to investigate alternative and faster firing routes for the decomposition of asbestos, a low melting glass was mixed with cement-asbestos and studied in situ to assess to which extent the decomposition of asbestos is favored. It was found that the addition of a low melting glass to cement-asbestos greatly improved the decomposition reaction and decreased the transformation temperatures

  14. Variational Flooding Study of a SN2 Reaction.

    Science.gov (United States)

    Piccini, GiovanniMaria; McCarty, James J; Valsson, Omar; Parrinello, Michele

    2017-02-02

    We have studied the reaction dynamics of a prototypical organic reaction using a variationally optimized truncated bias to accelerate transitions between educt and product reactant states. The asymmetric S N 2 nucleophilic substitution reaction of fluoromethane and chloromethane CH 3 F + Cl - ⇌ CH 3 Cl + F - is considered, and many independent biased molecular dynamics simulations have been performed at 600, 900, and 1200 K, collecting several hundred transitions at each temperature. The transition times and relative rate constants have been obtained for both reaction directions. The activation energies extracted from an Arrhenius plot compare well with standard static calculations.

  15. Transverse flow reactor studies of the dynamics of radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, R.G. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Radical reactions are in important in combustion chemistry; however, little state-specific information is available for these reactions. A new apparatus has been constructed to measure the dynamics of radical reactions. The unique feature of this apparatus is a transverse flow reactor in which an atom or radical of known concentration will be produced by pulsed laser photolysis of an appropriate precursor molecule. The time dependence of individual quantum states or products and/or reactants will be followed by rapid infrared laser absorption spectroscopy. The reaction H + O{sub 2} {yields} OH + O will be studied.

  16. High-temperature dehydration of talc: a kinetics study using in situ X-ray powder diffraction

    Science.gov (United States)

    Wang, Duojun; Yi, Li; Huang, Bojin; Liu, Chuanjiang

    2015-06-01

    High-temperature in situ X-ray powder diffraction patterns were used to study the dehydration kinetics of natural talc with a size of 10-15 µm. The talc was annealed from 1073 to 1223 K, and the variations in the characteristic peaks corresponding to talc with the time were recorded to determine the reaction progress. The decomposition of talc occurred, and peaks corresponding to talc and peaks corresponding to enstatite and quartz were observed. The enstatite and talc exhibited a topotactic relationship. The dehydration kinetics of talc was studied as a function of temperature between 1073 and 1223 K. The kinetics data could be modeled using an Avrami equation that considers nucleation and growth processes ? where n varies from 0.4 to 0.8. The rate constant (k) equation for the natural talc is ? The reaction mechanism for the dehydration of talc is a heterogeneous nucleation and growth mechanism.

  17. In-situ reactions in hybrid aluminum alloy composites during incorporating silica sand in aluminum alloy melts

    Directory of Open Access Journals (Sweden)

    Benjamin F. Schultz

    2016-07-01

    Full Text Available In order to gain a better understanding of the reactions and strengthening behavior in cast aluminum alloy/silica composites synthesized by stir mixing, experiments were conducted to incorporate low cost foundry silica sand into aluminum composites with the use of Mg as a wetting agent. SEM and XRD results show the conversion of SiO2 to MgAl2O4 and some Al2O3 with an accompanying increase in matrix Si content. A three-stage reaction mechanism proposed to account for these changes indicates that properties can be controlled by controlling the base Alloy/SiO2/Mg chemistry and reaction times. Experimental data on changes of composite density with increasing reaction time and SiO2 content support the three-stage reaction model. The change in mechanical properties with composition and time is also described.

  18. An experimental and theoretical study of reaction steps relevant to the methanol-to-hydrocarbons reaction

    Energy Technology Data Exchange (ETDEWEB)

    Svelle, Stian

    2004-07-01

    The primary objective of the present work is to obtain new insight into the reaction mechanism of the zeolite catalyzed methanol-to-hydrocarbons (MTH) reaction. It was decided to use both experimental and computational techniques to reach this goal. An investigation of the n-butene + methanol system was therefore initiated. Over time, it became apparent that it was possible to determine the rate for the methylation of n-butene by methanol. The ethene and propene systems were therefore reexamined in order to collect kinetic information also for those cases. With the development of user-friendly quantum chemistry programs such as the Gaussian suite of programs, the possibility of applying quantum chemical methods to many types of problems has become readily available even for non-experts. When performing mechanistic studies, there is quite often a considerable synergy effect when combining experimental and computational approaches. The methylation reactions mentioned above turned out to be an issue well suited for quantum chemical investigations. The incentive for examining the halomethane reactivity was the clear analogy to the MTH reaction system. Alkene dimerization was also a reaction readily examined with quantum chemistry. As discussed in the introduction of this thesis, polymethylbenzenes, or their cationic counterparts, are suspected to be key intermediates in the MTH reaction. It was therefore decided to investigate the intrinsic reactivity of these species in the gas-phase by employing sophisticated mass spectrometric (MS) techniques in collaboration with the MS group at the Department of Chemistry, University of Oslo The data thus obtained will also be compared with results from an ongoing computational study on gas phase polymethylbenzenium reactivity. 6 papers presenting various studies are included. The titles are: 1) A Theoretical Investigation of the Methylation of Alkenes with Methanol over Acidic Zeolites. 2) A Theoretical Investigation of the

  19. An experimental and theoretical study of reaction steps relevant to the methanol-to-hydrocarbons reaction

    Energy Technology Data Exchange (ETDEWEB)

    Svelle, Stian

    2004-07-01

    The primary objective of the present work is to obtain new insight into the reaction mechanism of the zeolite catalyzed methanol-to-hydrocarbons (MTH) reaction. It was decided to use both experimental and computational techniques to reach this goal. An investigation of the n-butene + methanol system was therefore initiated. Over time, it became apparent that it was possible to determine the rate for the methylation of n-butene by methanol. The ethene and propene systems were therefore reexamined in order to collect kinetic information also for those cases. With the development of user-friendly quantum chemistry programs such as the Gaussian suite of programs, the possibility of applying quantum chemical methods to many types of problems has become readily available even for non-experts. When performing mechanistic studies, there is quite often a considerable synergy effect when combining experimental and computational approaches. The methylation reactions mentioned above turned out to be an issue well suited for quantum chemical investigations. The incentive for examining the halomethane reactivity was the clear analogy to the MTH reaction system. Alkene dimerization was also a reaction readily examined with quantum chemistry. As discussed in the introduction of this thesis, polymethylbenzenes, or their cationic counterparts, are suspected to be key intermediates in the MTH reaction. It was therefore decided to investigate the intrinsic reactivity of these species in the gas-phase by employing sophisticated mass spectrometric (MS) techniques in collaboration with the MS group at the Department of Chemistry, University of Oslo The data thus obtained will also be compared with results from an ongoing computational study on gas phase polymethylbenzenium reactivity. 6 papers presenting various studies are included. The titles are: 1) A Theoretical Investigation of the Methylation of Alkenes with Methanol over Acidic Zeolites. 2) A Theoretical Investigation of the

  20. Unexpected allergic reactions to food, a prospective study

    NARCIS (Netherlands)

    Michelsen-Huisman, A.D.; Os-Medendorp, H. van; Versluis, A.; Kruizinga, A.G.; Castenmiller, J.J.M.; Noteborn, H.P.J.M.; Houben, G.F.; Knulst, A.C.

    2013-01-01

    Unexpected reactions occur in patients with food allergy, but frequency data are scare. This prospective study investigates the frequency, severity and causes of unexpected allergic reactions to food in adults with a doctor's diagnosed food allergy. Participants complete an online questionnaire

  1. In-situ irradiation of cerium precursors in TEM to study nanocrystal formation

    Science.gov (United States)

    Asghar, Muhammad Sajid Ali; Sabri, Mohammed Mohammed; Tian, Zijian; Möbus, Günter

    2017-09-01

    Three of the most commonly used precursor chemicals for wet-chemical nano-ceria synthesis are examined by means of direct dry electron irradiation in TEM. Transformation reactions of micron-size carbonate, chloride, and nitrate grains into nanocrystallites (internal or external) are recorded in situ. Progress of possible redox-changes of cerium is tracked by EELS. We find a straight local oxidation reaction for carbonates, but external nanorod formation by condensation in the case of chlorides, while nitrates show a multi-stage complex redox behaviour.

  2. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    Energy Technology Data Exchange (ETDEWEB)

    Grunes, Jeffrey Benjamin [Univ. of California, Berkeley, CA (United States)

    2004-05-01

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al2O3) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum

  3. Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Surrey, Alexander, E-mail: a.surrey@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Schultz, Ludwig [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Rellinghaus, Bernd, E-mail: b.rellinghaus@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2017-04-15

    Highlights: • Multislice HRTEM contrast simulations of a windowed environmental cell. • Study of Mg and MgH2 nanocrystals as model system in hydrogen at ambient pressure. • Investigation of spatial resolution and contrast depending on specimen thickness, defocus, and hydrogen pressure. • Atomic resolution is expected for specimens as thin as 5  nm. - Abstract: The use of transmission electron microscopy (TEM) for the structural characterization of many nanostructured hydrides, which are relevant for solid state hydrogen storage, is hindered due to a rapid decomposition of the specimen upon irradiation with the electron beam. Environmental TEM allows to stabilize the hydrides by applying a hydrogen back pressure of up to 4.5 bar in a windowed environmental cell. The feasibility of high-resolution TEM (HRTEM) investigations of light weight metals and metal hydrides in such a “nanoreactor” is studied theoretically by means of multislice HRTEM contrast simulations using Mg and its hydride phase, MgH{sub 2}, as model system. Such a setup provides the general opportunity to study dehydrogenation and hydrogenation reactions at the nanoscale under technological application conditions. We analyze the dependence of both the spatial resolution and the HRTEM image contrast on parameters such as the defocus, the metal/hydride thickness, and the hydrogen pressure in order to explore the possibilities and limitations of in-situ experiments with windowed environmental cells. Such simulations may be highly valuable to pre-evaluate future experimental studies.

  4. Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure

    International Nuclear Information System (INIS)

    Surrey, Alexander; Schultz, Ludwig; Rellinghaus, Bernd

    2017-01-01

    Highlights: • Multislice HRTEM contrast simulations of a windowed environmental cell. • Study of Mg and MgH2 nanocrystals as model system in hydrogen at ambient pressure. • Investigation of spatial resolution and contrast depending on specimen thickness, defocus, and hydrogen pressure. • Atomic resolution is expected for specimens as thin as 5  nm. - Abstract: The use of transmission electron microscopy (TEM) for the structural characterization of many nanostructured hydrides, which are relevant for solid state hydrogen storage, is hindered due to a rapid decomposition of the specimen upon irradiation with the electron beam. Environmental TEM allows to stabilize the hydrides by applying a hydrogen back pressure of up to 4.5 bar in a windowed environmental cell. The feasibility of high-resolution TEM (HRTEM) investigations of light weight metals and metal hydrides in such a “nanoreactor” is studied theoretically by means of multislice HRTEM contrast simulations using Mg and its hydride phase, MgH_2, as model system. Such a setup provides the general opportunity to study dehydrogenation and hydrogenation reactions at the nanoscale under technological application conditions. We analyze the dependence of both the spatial resolution and the HRTEM image contrast on parameters such as the defocus, the metal/hydride thickness, and the hydrogen pressure in order to explore the possibilities and limitations of in-situ experiments with windowed environmental cells. Such simulations may be highly valuable to pre-evaluate future experimental studies.

  5. In-situ carboxylation and synthesis of two novel Sm(III) coordination polymers assembled from 5-hydroxyisophthalate and nitrate, chloride in hydrothermal reaction

    International Nuclear Information System (INIS)

    Huang Yan; Yan Bing; Shao Min

    2008-01-01

    By reactions of 5-hydroxyisophthalic acid (H 2 hisp) with Sm(NO 3 ) 3 .6H 2 O or SmCl 3 .6H 2 O in the presence of NaOH, two kinds of samarium coordination polymers, [Sm(H 2 hbtc)(ox) 0.5 (H 2 O) 3 ] n .nH 2 O (1) (H 2 hbtc 2- =6-hydroxy-1,2,4-benzenetricarboxylate) and [Sm(hisp)(Hhisp)(H 2 O) 2 ] n .2nH 2 O (2), have been hydrothermal synthesized and characterized. Single-crystal X-ray analyses reveal that compound 1 features a novel two-dimensional (2D) stair-like structure with oxalate ligands and the new organic ligand (H 2 hbtc 2- ) but without 5-hydroxyisophthalate ligands, while compound 2 gives the expected product and displays a novel layer structure. The oxalate ligands have been formed via the in-situ reductive coupling of CO 2 molecules released from the decomposition of carboxylate ligands with the reduction of NO 3 - and the new organic ligands have been formed via the in-situ carboxylation under the presence of NO 3 - . Reported herein are the syntheses of compounds 1 and 2, crystal structures and possible mechanism information regarding the in-situ carboxylation. - Graphical abstract: Hydrothermal reactions of Sm(NO 3 ) 3 .6H 2 O or SmCl 3 .6H 2 O with 5-hydroxyisophthalic acid (H 2 hisp) have given rise to two different kinds of Sm(III) coordination polymers. Single-crystal X-ray analyses reveal that compound 1 features a novel 2D stair-like structure with oxalate and a new organic ligand, 6-hydroxy-1,2,4-benzenetricarboxylate, while compound 2 gives the normal product and displays a novel 2D layer structure. Oxalate ligands have been formed via the in-situ reductive coupling of CO 2 molecules released from the decomposition of 5-hydroxyisophthalate ligands with the reduction of NO 3 - and the new organic ligands have been formed via the in-situ carboxylation under the presence of NO 3 -

  6. Capillary based Li-air batteries for in situ synchrotron X-ray powder diffraction studies

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Johnsen, Rune E.; Younesi, Reza

    2015-01-01

    For Li-air batteries to reach their full potential as energy storage system, a complete understanding of the conditions and reactions in the battery during operation is needed. To follow the reactions in situ a capillary-based Li-O2 battery has been developed for synchrotron-based in situ X......-ray powder diffraction (XRPD). In this article, we present the results for the analysis of 1st and 2nd deep discharge and charge for a cathode being cycled between 2 and 4.6 V. The crystalline precipitation of Li2O2 only is observed in the capillary battery. However, there are indications of side reactions...... of constant exposure of X-ray radiation to the electrolyte and cathode during charge of the battery was also investigated. X-ray exposure during charge leads to changes in the development of the intensity and the FWHM of the Li2O2 diffraction peaks. The X-ray diffraction results are supported by ex situ X...

  7. Electromagnetic studies of nuclear structure and reactions

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, F.W.; Dawson, J.F.; Heisenberg, J.H.; Calarco, J.R.

    1990-06-01

    This report contains papers on the following topics: giant resonance studies; deep inelastic scattering studies; high resolution nuclear structure work; and relativistic RPA; and field theory in the Schroedinger Representation.

  8. Electromagnetic studies of nuclear structure and reactions

    International Nuclear Information System (INIS)

    Hersman, F.W.; Dawson, J.F.; Heisenberg, J.H.; Calarco, J.R.

    1990-06-01

    This report contains papers on the following topics: giant resonance studies; deep inelastic scattering studies; high resolution nuclear structure work; and relativistic RPA; and field theory in the Schroedinger Representation

  9. Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies

    International Nuclear Information System (INIS)

    Babonneau, D; Abadias, G; Toudert, J; Girardeau, T; Fonda, E; Micha, J S; Petroff, F

    2008-01-01

    The comprehensive study of C/FePt granular multilayers prepared by ion-beam sputtering at room temperature and subsequent annealing is reported. The as-deposited multilayers consist of carbon-encapsulated FePt nanoparticles (average size ∼3 nm) with a disordered face-centered-cubic structure. The effects of thermal annealing on the structural and magnetic properties are investigated by using dedicated ex situ and in situ techniques, including high-resolution transmission electron microscopy, extended x-ray absorption fine structure, magnetometry, and coupled grazing incidence small-angle x-ray scattering and x-ray diffraction. Our structural data show that the particle size and interparticle distance increase slightly with annealing at temperatures below 790 K by thermally activated migration of Fe and Pt atoms. We find that thermal annealing at temperatures above 870 K results in the dramatic growth of the FePt nanoparticles by coalescence and their gradual L1 0 ordering. In addition, we observe a preferential graphitization of the carbon matrix, which provides protection against oxidation for the FePt nanoparticles. Magnetization measurements indicate that progressive magnetic hardening occurs after annealing. The dependences of the blocking temperature, saturation magnetization, coercivity, and magnetocrystalline anisotropy energy on the annealing temperature are discussed on the basis of the structural data

  10. Indium hydroxide to oxide decomposition observed in one nanocrystal during in situ transmission electron microscopy studies

    Science.gov (United States)

    Miehe, Gerhard; Lauterbach, Stefan; Kleebe, Hans-Joachim; Gurlo, Aleksander

    2013-02-01

    The high-resolution transmission electron microscopy (HR-TEM) is used to study, in situ, spatially resolved decomposition in individual nanocrystals of metal hydroxides and oxyhydroxides. This case study reports on the decomposition of indium hydroxide (c-In(OH)3) to bixbyite-type indium oxide (c-In2O3). The electron beam is focused onto a single cube-shaped In(OH)3 crystal of {100} morphology with ca. 35 nm edge length and a sequence of HR-TEM images was recorded during electron beam irradiation. The frame-by-frame analysis of video sequences allows for the in situ, time-resolved observation of the shape and orientation of the transformed crystals, which in turn enables the evaluation of the kinetics of c-In2O3 crystallization. Supplementary material (video of the transformation) related to this article can be found online at 10.1016/j.jssc.2012.09.022. After irradiation the shape of the parent cube-shaped crystal is preserved, however, its linear dimension (edge) is reduced by the factor 1.20. The corresponding spotted selected area electron diffraction (SAED) pattern representing zone [001] of c-In(OH)3 is transformed to a diffuse strongly textured ring-like pattern of c-In2O3 that indicates the transformed cube is no longer a single crystal but is disintegrated into individual c-In2O3 domains with the size of about 5-10 nm. The induction time of approximately 15 s is estimated from the time-resolved Fourier transforms. The volume fraction of the transformed phase (c-In2O3), calculated from the shrinkage of the parent c-In(OH)3 crystal in the recorded HR-TEM images, is used as a measure of the kinetics of c-In2O3 crystallization within the framework of Avrami-Erofeev formalism. The Avrami exponent of ˜3 is characteristic for a reaction mechanism with fast nucleation at the beginning of the reaction and subsequent three-dimensional growth of nuclei with a constant growth rate. The structural transformation path in reconstructive decomposition of c-In(OH)3 to c

  11. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    Science.gov (United States)

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Treatability Study Report for In SITU Lead Immobilization Using Phosphate-Based Binders

    National Research Council Canada - National Science Library

    Bricka, R. M; Marwaha, Anirudha; Fabian, Gene L

    2008-01-01

    .... The treatability study described in this report was designed to develop the information necessary to support the immobilization of lead contaminants in soil by in situ treatment with phosphate-based binders...

  13. Study of the frequency of translocations and dicentrics in human spermatozoid using fluorescent in situ hybridization

    International Nuclear Information System (INIS)

    Alvarez, R.; Ponsa, I.; Tusell, L.; Genesca, A.; Miro, R.; Egozcue, J.

    1998-01-01

    Present study has intended to analyze the induction translocations and dicentrics in human sperms irradiated in vitro to the dose 4Gy by means of the use technical in situ hybridization with probes marked fluorescently

  14. In Situ Raman Study of Liquid Water at High Pressure.

    Science.gov (United States)

    Romanenko, Alexandr V; Rashchenko, Sergey V; Goryainov, Sergey V; Likhacheva, Anna Yu; Korsakov, Andrey V

    2018-06-01

    A pressure shift of Raman band of liquid water (H 2 O) may be an important tool for measuring residual pressures in mineral inclusions, in situ barometry in high-pressure cells, and as an indicator of pressure-induced structural transitions in H 2 O. However, there was no consensus as to how the broad and asymmetric water Raman band should be quantitatively described, which has led to fundamental inconsistencies between reported data. In order to overcome this issue, we measured Raman spectra of H 2 O in situ up to 1.2 GPa using a diamond anvil cell, and use them to test different approaches proposed for the description of the water Raman band. We found that the most physically meaningful description of water Raman band is the decomposition into a linear background and three Gaussian components, associated with differently H-bonded H 2 O molecules. Two of these components demonstrate a pronounced anomaly in pressure shift near 0.4 GPa, supporting ideas of structural transition in H 2 O at this pressure. The most convenient approach for pressure calibration is the use of "a linear background + one Gaussian" decomposition (the pressure can be measured using the formula P (GPa) = -0.0317(3)·Δν G (cm -1 ), where Δν G represents the difference between the position of water Raman band, fitted as a single Gaussian, in measured spectrum and spectrum at ambient pressure).

  15. Evidence for the Active Phase of Heterogeneous Catalysts through In Situ Reaction Product Imaging and Multiscale Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Matera, S.; Blomberg, S.; Hoffmann, M. J.; Zetterberg, J.; Gustafson, J.; Lundgren, E.; Reuter, K.

    2015-06-17

    We use multiscale modeling to analyze laser-induced fluorescence (LIF) measurements of the CO oxidation reaction over Pd(100) at near-ambient reaction conditions. Integrating density functional theory-based kinetic Monte Carlo simulations of the active catalyst into fluid-dynamical simulations of the mass transport inside the reactor chamber, we calculate the reaction product concentration directly above the catalyst surface. Comparing corresponding data calculated for different surface models against the measured LIF signals, we can discriminate the one that predominantly actuates the experimentally measured catalytic activity. For the probed CO oxidation reaction conditions, the experimental activity is due to pristine Pd(100) possibly coexisting with other (oxidic) domains on the surface.

  16. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Bertram, F.; Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-01-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  17. Study on tertiary in-situ leachable uranium mineralization conditions in South Songliao basin

    International Nuclear Information System (INIS)

    Zhang Zhenqiang; Li Guokuan; Zhao Zonghua; Zhang Jingxun

    2001-01-01

    Tertiary in-situ leachable mineralization in Songliao Basin was analyzed in theory in the past. Since 1998, regional investigation at 1:200000 scale has been done with about 120 holes drilled. Based on drill holes recording, section compiling and sample analysis, the authors investigate into the Tertiary in-situ leachable conditions including rock character, sedimentary facies, rock chemistry, organic substances, uranium content, sandstone porosity, sandstone bodies, interlayer oxidation, and hydro-dynamic value. The study would play important role in prospecting for in-situ leachable uranium in South Songliao basin

  18. Electrochemically induced reactions in soils - a new approach to the in-situ remediation of contaminated soils?

    Energy Technology Data Exchange (ETDEWEB)

    Rahner, D.; Ludwig, G.; Roehrs, J. [Dresden Univ. of Technology, Inst. of Physical Chemistry and Electrochemistry (Germany); Neumann, V.; Nitsche, C.; Guderitz, I. [Soil and Groundwater Lab. GmbH, Dresden (Germany)

    2001-07-01

    Electrochemical reactions can be induced in soils if the soil matrix contains particles or films with electronic conducting properties ('microconductors'). In these cases the wet soil may act as a 'diluted' electrochemical solid bed reactor. A discussion of this reaction principle within the soil matrix will be presented here. It will be shown, that under certain conditions immobile organic contaminants may be converted. (orig.)

  19. Use of Isotopes for Studying Reaction Mechanisms

    Indian Academy of Sciences (India)

    their positions rapidly. This is especially true of carbocations and ... Several specific examples can be quoted. Ammonia is a ... All experimental studies on this system were ... rearrangement. Hence, the species will have a relatively simple 13C.

  20. Combination of in situ metathesis reaction with a novel "magnetic effervescent tablet-assisted ionic liquid dispersive microextraction" for the determination of endogenous steroids in human fluids.

    Science.gov (United States)

    Wu, Jia; Xu, Zilin; Pan, Yixuan; Shi, Yi; Bao, Xiujie; Li, Jun; Tong, Yu; Tang, Han; Ma, Shuyan; Wang, Xuedong; Lyu, Jianxin

    2018-05-01

    Herein, a novel magnetic effervescence tablet-assisted microextraction coupled to in situ metathesis reaction of ionic liquid (IS-META-ILDM) is presented for the determination of four endogenous steroids in human urine, pregnant women's blood, and fetal umbilical cord blood. The magnetic effervescent tablets, which were composed of Fe 3 O 4 nanoparticles, sodium carbonate (alkaline source), and tartaric acid (acidic source), were used to disperse the extractant and for convenient magnetic separation. After the effervescent reaction, in situ reaction between NH 4 PF 6 and [C 6 MIM]BF 4 was adopted to change hydrophilic ionic liquid to hydrophobic liquid, which could be separated from the aqueous phase. The newly developed method has three obvious advantages: (1) combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously; (2) as compared to temperature-controlled ionic liquid dispersive microextraction and cold-induced solidified microextraction, this method avoids a heating and cooling process which significantly reduces the extraction time and energy cost; and (3) the combination of adsorption by magnetic nanoparticles with extraction by in situ metathesis reaction easily produces high recoveries for target analytes. The optimized composition of effervescent tablet and experimental parameters are as follows: 0.64 g mixture of sodium carbonate and tartaric acid, 7 mg of Fe 3 O 4 (20 nm) as magnetic sorbents, 40 μL of [C 6 MIM]BF 4 as the extraction solvent, 0.15 g NH 4 PF 6 , and 300 μL of elution solvent. Under the optimized conditions, the newly developed method provided high extraction recoveries (90.0-118.5%) and low LODs (0.14-0.17 μg L -1 ) in urine and blood samples. In total, this IS-META-ILDM method provided high extraction efficiency, fast and convenient separation, and underutilization of any organic solvent, and thus

  1. Experimental Study of Na based Titanium Nanofluid-Water Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gunyeop; Kim, Soo Jae; Baek, Jehyun; Kim, Hyun Soo; Oh, Sun Ryung; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of)

    2015-10-15

    In KALIMER-600, a sodium-cooled fast reactor designed by KAERI, thermal energy is transported from high-temperature liquid Na (526 .deg. C at 0.1 MPa) to low temperature water (230 .deg. C at - 19.5 MPa) through a heat exchanger. If any leakage or rupture occurs during the operation of this heat exchanger, highly pressurized liquid water can penetrate into the liquid Na channels; this contact should instantly cause SWR. As reaction continues, liquid water is soon vaporized by pressure drop and huge amount of reaction heat. This generated water vapor expands large reaction area and increases sodium-water vapor reaction process. Therefore, the rapid generation of reaction product (like H{sub 2}) and water vapor increases the system pressure that can cause the system failure in SFR. To reduce this strong chemical reaction phenomena between Na and water, some we have focused on suppressing the chemical reactivity of liquid Na by dispersing nanoparticles (NPs). For the real application of NaTiNF, the pressure change induced by NaTiNF-water reaction is compared with Na-water reaction in the present study. NaTiNF contains 100nm of Ti NPs at 0.2 vol. %. The reaction rate of NaTiNF-water reaction is also investigated as reaction temperature increases. Sodium-water vapor reaction (SVR) will occur when an SWR accident occurs in SFR. In this manner, NaTiNF-water vapor reaction is experimentally performed for ensuring the suppression of chemical reactivity of NaTiNF in contact with water vapor. In the basic step for reducing risk of an SWR in SFR, we have experimentally verified the suppressed chemical reactivity of liquid sodium using Ti NPs through SWR and SVR experiments. In SWR, Na based titanium nanofluid (NaTiNF) shows lower pressure change than Na. As T{sub R} increases, P{sub max} in Na-water reaction increases while NaTiNF does not. The reaction rate of NaTiNF shows twice slower than that of Na. In SVR, NaTiNF shows slower temperature increase than Na. The distinct

  2. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    Science.gov (United States)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  3. Theoretical study of sodium-water surface reaction mechanism

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    2012-01-01

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR). (author)

  4. Chloride influence on the formation of lanthanum hexaboride: An in-situ diffraction study

    Science.gov (United States)

    Mattox, Tracy M.; Groome, Chloe; Doran, Andrew; Beavers, Christine M.; Urban, Jeffrey J.

    2018-03-01

    LaB6 has been a material of interest for decades due to its thermionic emission, plasmonic properties, and low work function, and researchers continue to discover new properties even now. In order to meet growing interest in customizing these properties, it is important to gain better control over the system and a better understanding of the fundamental mechanism of LaB6 crystal growth and formation. Traditional synthetic methods require very high temperatures, at which point crystallization happens too quickly to be readily studied. Our discovery that LaB6 may be made using lower temperatures has made it possible to slow down crystal formation enough for lattice growth to be observed. We report here an in situ diffraction study of the reaction between LaCl3 and NaBH4. In observing the evolution of the (1 1 1), (1 1 0), and (2 0 0) lattice planes of LaB6, we have discovered that the Cl of LaCl3 has a strong influence on crystal formation, and that excess Cl, temperature and heating rate may all be used as tools to control the LaB6 final product.

  5. Spallation reactions studied with 4 -detector arrays

    Indian Academy of Sciences (India)

    of inert or biological materials, these neutrons can be used to study details of the material ... ping zone- or neck-built up with part of projectile- and target-nuclei). ..... also been designed to complement the set of tools at our disposal [40].

  6. Theoretical Studies of Elementary Hydrocarbon Species and Their Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Wesley D. [Univ. of Georgia, Athens, GA (United States). Dept. of Chemistry. Center for Computational Quantum Chemistry; Schaefer, III, Henry F. [Univ. of Georgia, Athens, GA (United States). Dept. of Chemistry. Center for Computational Quantum Chemistry

    2015-11-14

    This is the final report of the theoretical studies of elementary hydrocarbon species and their reactions. Part A has a bibliography of publications supported by DOE from 2010 to 2016 and Part B goes into recent research highlights.

  7. Structural characterizaiton and gas reactions of small metal particles by high-resolution, in-situ TEM and TED

    Science.gov (United States)

    1984-01-01

    The existing in-situ transmission electron microscopy (TEM) facility was improved by adding a separately pumped mini-specimen chamber. The chamber contains wire-evaporation sources for three metals and a specimen heater for moderate substrate temperatures. A sample introduction device was constructed, installed, and tested, facilitating rapid introduction of a specimen into the mini-chamber while maintaining the background pressure in that chamber in the 10(-9) millibar range. Small particles and clusters of Pd, grown by deposition from the vapor phase in an in-situ TEM facility on amorphous and crystalline support films of alumina and on ultra-thin carbon films, were analyzed by conventional high-resolution TEM and image analysis in terms of detectability, number density, and size distribution. The smallest particles that could be detected and counted contained no more than 6 atoms; size determinations could be made for particles 1 nm in diameter. The influence of various oxygen plasma treatments, annealing treatments, and of increasing the substrate temperature during deposition was investigated. The TEM technique was employed to demonstrate that under otherwise identica l conditions the lattice parameter of Pd particles in the 1 to 2 nm size range and supported in random orientation on ex-situ prepared mica films is expanded by some 3% when compared to 5 nm size particles. It is believed that this expansion is neither a small-particle diffraction effect nor due to pseudomorphism, but that it is due to a annealing-induced transformation of the small as-deposited particles with predominantly composite crystal structures into larger particles with true f.c.c. structure and thus inherently smaller lattice parameter.

  8. Formation and texture of palladium germanides studied by in situ X-ray diffraction and pole figure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Geenen, F.A., E-mail: Filip.Geenen@UGent.be [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium); Knaepen, W.; De Keyser, K. [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium); Opsomer, K. [Interuniversitair Micro-Electronica Centrum (IMEC), Kapeldreef 75, 3001 Leuven (Belgium); Vanmeirhaeghe, R.L. [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium); Jordan-Sweet, J.; Lavoie, C. [IBM T.J. Watson Research Center, Yorktown (United States); Detavernier, C. [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium)

    2014-01-31

    The solid state reaction between 30 nm Pd films and various Ge substrates (Ge(100), Ge(111), polycrystalline Ge and amorphous Ge) was studied by means of in situ X-ray diffraction and in situ sheet resistance measurements. The reported phase sequence of Pd{sub 2}Ge followed by PdGe was verified on all substrates. The texture of the germanides was analysed by pole figure measurements on samples quenched in the Pd{sub 2}Ge and in the PdGe phase on both Ge(100) and (111) substrates. We report an epitaxial growth of Pd{sub 2}Ge on Ge(111) and on Ge(100). The formed PdGe has an axiotaxial alignment on Ge(111). On Ge(100), the axiotaxial texture is observed together with a fibre texture. The higher formation temperature of PdGe on Ge(111) could be related to the epitaxial alignment of the Pd{sub 2}Ge parent phase on Ge(111). - Highlights: • Solid-state reaction is studied on a Pd film with Ge substrates. • Pd2Ge grains have an epitaxial texture on both Ge 100 and Ge 111. • PdGe grains are found to grow with an axiotaxial texture. • Retarded PdGe formation on Ge111 is related with strong epitaxy of Pd2Ge.

  9. In situ electrochemical atomic force microscope study on graphite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hirasawa, K.A.; Sato, Tomohiro; Asahina, Hitoshi; Yamaguchi, Shoji; Mori, Shoichiro [Mitsubishi Chemical Corp., Inashiki, Ibaraki (Japan). Tsukuba Research Center

    1997-04-01

    Interest in the formation of the solid electrolyte interphase (SEI) film on graphite electrodes has increased recently in the quest to improve the performance of lithium-ion batteries. Topographic and frictional changes on the surface of a highly oriented pyrolytic graphite electrode in 1 M LiCiO{sub 4} ethylene carbonate/ethylmethyl carbonate (1:1) electrolyte were examined during charge and discharge by in situ electrochemical atomic force microscopy and friction force microscopy simultaneously in real-time. Solid electrolyte interphase film formation commenced at approximately 2 V vs. Li/Li{sup +} and stable film formation with an island-like morphology was observed below approximately 0.9 V vs. Li/Li{sup +}. Further experiments on a KS-44 graphite/polyvinylidene difluoride binder composite electrode showed similar phenomena.

  10. Study of ODE limit problems for reaction-diffusion equations

    Directory of Open Access Journals (Sweden)

    Jacson Simsen

    2018-01-01

    Full Text Available In this work we study ODE limit problems for reaction-diffusion equations for large diffusion and we study the sensitivity of nonlinear ODEs with respect to initial conditions and exponent parameters. Moreover, we prove continuity of the flow and weak upper semicontinuity of a family of global attractors for reaction-diffusion equations with spatially variable exponents when the exponents go to 2 in \\(L^{\\infty}(\\Omega\\ and the diffusion coefficients go to infinity.

  11. ADVERSE REACTIONS OF BLOOD DONATION: A PROSPECTIVE OBSERVATIONAL STUDY

    OpenAIRE

    Kandukuri Mahesh; Ravikanth; Chinthakindi; Shashi Kiran; Sudhir Kuma

    2014-01-01

    BACKGROUND: Voluntary donors normally tolerate blood donation very well as the history and preliminary examination is clear without any hidden history or facts related to the health status of the donor, occasionally, adverse reactions of variable severity may occur during or at the end of the collection. AIM: Aim of this study is to estimate and possibly avoid the cause of unwanted reactions. MATERIALS AND METHODS: This study is conducted over a period of three years, from ...

  12. Facile Synthesis of In–Situ Nitrogenated Graphene Decorated by Few–Layer MoS2 for Hydrogen Evolution Reaction

    International Nuclear Information System (INIS)

    Dai, Xiaoping; Li, Zhanzhao; Du, Kangli; Sun, Hui; Yang, Ying; Zhang, Xin; Ma, Xingyu; Wang, Jie

    2015-01-01

    Graphical abstract: In–situ nitrogenated graphene–few layer MoS 2 composites are fabricated by combinating chemical and hydrothermal reduction. The resulting MoS 2 /N–rGO–HA by N 2 H 4 ·H 2 O and NH 3 ·H 2 O as co-reductant exhibits high activity and remarkable stability for hydrogen evolution reaction (HER). The excellent electro-catalytic performance is ascribed to the synergistic effects, confinement effects and highly dispersed MoS 2 nanosheets on N-doping rGO. Display Omitted -- Highlights: • In–situ nitrogenated graphene–few layer MoS 2 composites are fabricated by combinating chemical and hydrothermal co-reduction. • The resulting MoS 2 /N–rGO–HA exhibits high activity and remarkable stability for HER. • The excellent electro-catalytic performance is ascribed to the synergistic effects, confinement effects and highly dispersed MoS 2 nanosheets on N-doping rGO. -- Abstract: A facile one–step synthetic strategy by combinating chemical and hydrothermal reduction of graphene oxide and Mo precursor is proposed to fabricate in–situ nitrogenated graphene–few layer MoS 2 composite (MoS 2 /N–rGO–HA) for hydrogen evolution reaction (HER). The N–doping graphene nanosheets and highly dispersed MoS 2 nanosheets by ammonia and hydrozine as co–reductant have greatly promoted the N content, concentrations of pyridinic and graphitic N, the electron transport in electrodes, and assure high catalytic efficiency. The MoS 2 /N–rGO–HA composite exhibits extremely high activity in acidic solutions with a small onset potential of 100 mV and Tafel slope of 45 mV/dec, as well as a current density about 32.4 mA cm −2 at overpotential about 0.2 V. Moreover, such MoS 2 /N–rGO–HA electroncatalyst also shows an excellent stability during 1000 cycles with negligible loss of the cathodic current. This facile hydrothermal method could provide a promising strategy for the synthesis of in–situ nitrogen–doping graphene sheets and few

  13. An in-situ FTIR study of the side-chain alkylation of toluene with methanol

    International Nuclear Information System (INIS)

    King, S.T.; Garces, J.

    1985-01-01

    The side-chain alkylation of toluene with methanol to styrene and ethylbenzene can be an economically attractive industrial process if it has high enough conversion and selectivity. This process has been investigated by many others using zeolites or metal oxides as the catalyst. It has been generally accepted that high basicity in certain size pores in the catalyst is required for such side-chain alkylation. However, the actual reaction mechanism is still not understood. In this paper the results of an in-situ FT-IR study of the side-chain alkylation in Li, Na, K, Rb and Cs exchanged X zeolites is discussed. It was found that the KX, RbX and CsX zeolites, which are capable of side-chain alkylation, also form surface formate and a surface precursor of formate from methanol decomposition. While the surface formate itself is not the alkylation agent, the observed formate precursor may be the intermediate for side-chain alkylation

  14. In situ diffraction studies of electrode surface structure during gold electrodeposition

    International Nuclear Information System (INIS)

    Magnussen, O.M.; Krug, K.; Ayyad, A.H.; Stettner, J.

    2008-01-01

    Surface X-ray scattering (SXS) in transmission geometry provides a valuable tool for in situ structural studies of electrochemical interfaces under reaction conditions, as illustrated here for homoepitaxial electrodeposition on Au(1 0 0) and Au(1 1 1) electrodes. Employing diffusion-limited deposition conditions to separate the effects of potential and deposition rate, a mutual interaction between the interface structure and the growth behavior is found. Time-dependent SXS measurements during Au(1 0 0) homoepitaxy show with decreasing potential transitions from step flow to layer-by-layer growth, then to multilayer growth, and finally back to layer-by-layer growth. This complex growth behavior can be explained within the framework of kinetic growth theory by the effect of potential, Cl adsorbates and the Au surface structure, specifically the presence of the surface reconstruction, on the Au surface mobility. Conversely, the electrodeposition process influences the structure of the reconstructed Au surface, as illustrated for Au(1 1 1), where a significant deposition-induced compression of the Au surface layer as compared to Au(1 1 1) surfaces under ultrahigh vacuum conditions or in Au-free electrolyte is found. This compression increases towards more negative potentials, which may be explained by a release of potential-induced surface stress

  15. Trojan Horse Method for neutrons-induced reaction studies

    Science.gov (United States)

    Gulino, M.; Asfin Collaboration

    2017-09-01

    Neutron-induced reactions play an important role in nuclear astrophysics in several scenario, such as primordial Big Bang Nucleosynthesis, Inhomogeneous Big Bang Nucleosynthesis, heavy-element production during the weak component of the s-process, explosive stellar nucleosynthesis. To overcome the experimental problems arising from the production of a neutron beam, the possibility to use the Trojan Horse Method to study neutron-induced reactions has been investigated. The application is of particular interest for reactions involving radioactive nuclei having short lifetime.

  16. Indium hydroxide to oxide decomposition observed in one nanocrystal during in situ transmission electron microscopy studies

    International Nuclear Information System (INIS)

    Miehe, Gerhard; Lauterbach, Stefan; Kleebe, Hans-Joachim; Gurlo, Aleksander

    2013-01-01

    The high-resolution transmission electron microscopy (HR-TEM) is used to study, in situ, spatially resolved decomposition in individual nanocrystals of metal hydroxides and oxyhydroxides. This case study reports on the decomposition of indium hydroxide (c-In(OH) 3 ) to bixbyite-type indium oxide (c-In 2 O 3 ). The electron beam is focused onto a single cube-shaped In(OH) 3 crystal of {100} morphology with ca. 35 nm edge length and a sequence of HR-TEM images was recorded during electron beam irradiation. The frame-by-frame analysis of video sequences allows for the in situ, time-resolved observation of the shape and orientation of the transformed crystals, which in turn enables the evaluation of the kinetics of c-In 2 O 3 crystallization. Supplementary material (video of the transformation) related to this article can be found online at (10.1016/j.jssc.2012.09.022). After irradiation the shape of the parent cube-shaped crystal is preserved, however, its linear dimension (edge) is reduced by the factor 1.20. The corresponding spotted selected area electron diffraction (SAED) pattern representing zone [001] of c-In(OH) 3 is transformed to a diffuse strongly textured ring-like pattern of c-In 2 O 3 that indicates the transformed cube is no longer a single crystal but is disintegrated into individual c-In 2 O 3 domains with the size of about 5–10 nm. The induction time of approximately 15 s is estimated from the time-resolved Fourier transforms. The volume fraction of the transformed phase (c-In 2 O 3 ), calculated from the shrinkage of the parent c-In(OH) 3 crystal in the recorded HR-TEM images, is used as a measure of the kinetics of c-In 2 O 3 crystallization within the framework of Avrami–Erofeev formalism. The Avrami exponent of ∼3 is characteristic for a reaction mechanism with fast nucleation at the beginning of the reaction and subsequent three-dimensional growth of nuclei with a constant growth rate. The structural transformation path in reconstructive

  17. In Situ Study of Thermal Stability of Copper Oxide Nanowires at Anaerobic Environment

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2014-01-01

    Full Text Available Many metal oxides with promising electrochemical properties were developed recently. Before those metal oxides realize the use as an anode in lithium ion batteries, their thermal stability at anaerobic environment inside batteries should be clearly understood for safety. In this study, copper oxide nanowires were investigated as an example. Several kinds of in situ experiment methods including in situ optical microscopy, in situ Raman spectrum, and in situ transmission electron microscopy were adopted to fully investigate their thermal stability at anaerobic environment. Copper oxide nanowires begin to transform as copper(I oxide at about 250°C and finish at about 400°C. The phase transformation proceeds with a homogeneous nucleation.

  18. Study of lixiviant damage of a sandstone deposit during in-situ leaching of uranium

    International Nuclear Information System (INIS)

    Liao Wensheng; Wang Limin; Jiang Yan; Jiang Guoping; Tan Yahui

    2014-01-01

    The permeability of sandstone deposit is a key factor for economical uranium recovery during in-situ leaching uranium. Low permeability sandstone uranium deposits behave low push-pull capacity, and show formation damage in leaching operations. It is important to study formation damage of permeability, therefore, and to stabilize even improve the push-pull power of drillholes during in-situ leaching. In this paper, formation damage caused by lixiviants was investigated based on a low permeability sandstone uranium deposit. The resulted showed that, under the conditions of in-situ leaching, the salinity of leaching fluid has no harm to formation permeability, on the contrary, the increment of salinity of lixiviant during in-situ leaching improve the permeability of the deposit. The alkalinity, hydrogen peroxide and productivity of the lixiviant cause no significant formation damage. But the fine particles in the lixiviant shows formation damage significantly, and the quantity of the particles should be controlled during production. (authors)

  19. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials.

    Science.gov (United States)

    Kulriya, P K; Singh, F; Tripathi, A; Ahuja, R; Kothari, A; Dutt, R N; Mishra, Y K; Kumar, Amit; Avasthi, D K

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90 MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T=255 K.

  20. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials

    Science.gov (United States)

    Kulriya, P. K.; Singh, F.; Tripathi, A.; Ahuja, R.; Kothari, A.; Dutt, R. N.; Mishra, Y. K.; Kumar, Amit; Avasthi, D. K.

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T =255K.

  1. Studies of heavy-ion reactions and transuranic nuclei

    International Nuclear Information System (INIS)

    Schroeder, W.U.; Huizenga, J.R.

    1991-08-01

    The development of the ''cold-fusion'' episode is reviewed. Ongoing studies of compound-nucleus formation and decay via the neutron multiplicity distribution confirm the validity of conventional statistical theory. The excitation energy partition in near-barrier damped 58 Ni + 208 Pb collisions is found to be largely independent of the direction of net mass transfer, supporting a diffusion-like nucleon-exchange mechanism. Exclusive experiments on the heavy reaction systems 197 Au + 208 Pb and 209 Bi + 136 Xe in the Fermi-energy domain have revealed important new insights into the reaction mechanism, which is found to be dominated by damped, binary processes. The effectiveness of the neutron multiplicity as an impact-parameter filter is demonstrated. It is shown that very-heavy-ion reactions lead to transient nuclear systems with temperatures in excess of τ = 6 MeV and transfer of large, aligned spins to reaction fragments. The first measurements of neutrons in coincidence with kinematically identified reaction fragments provide evidence for the binary, sequential character of dissipative collisions in the Fermi-energy domain. Also for the first time, a full event characterization was achieved for nuclear reactions in terms of neutrons and charged particles. Technical information on this experiment is provided. First results yield strong evidence for dominantly binary primary reaction dynamics of even highly dissipative 209 Bi + (28MeV/u) 136 Xe collisions, associated with several intermediate-mass fragments

  2. Theoretical studies of the reactions of HCN with atomic hydrogen

    International Nuclear Information System (INIS)

    Bair, R.A.; Dunning, T.H. Jr.

    1985-01-01

    A comprehensive theoretical study has been made of the energetics of the important pathways involved in the reaction of hydrogen atoms with hydrogen cyanide. For each reaction ab initio GVB-CI calculations were carried out to determine the structures and vibrational frequencies of the reactants, transition states, and products; then POL-CI calculations were carried out to more accurately estimate the electronic contribution to the energetics of the reactions. The hydrogen abstraction reaction is calculated to be endoergic by 24 kcal/mol [expt. ΔH (0 K) = 16--19 kcal/mol] with a barrier of 31 kcal/mol in the forward direction and 6 kcal/mol in the reverse direction. For the hydrogen addition reactions, addition to the carbon atom is calculated to be exoergic by 19 kcal/mol with a barrier of 11 kcal/mol, while addition to the nitrogen center is essentially thermoneutral with a barrier of 17 kcal/mol. Calculations were also carried out on the isomerization reactions of the addition products. The cis→trans isomerization of HCNH has a barrier of only 10 kcal/mol with the trans isomer being more stable by 5 kcal/mol. The (1,2)-hydrogen migration reaction, converting H 2 CN to trans-HCNH, is endoergic by only 14 kcal/mol, but the calculated barrier for the transfer is 52 kcal/mol. The energy of the migration pathway thus lies above that of the dissociation--recombination pathway

  3. Study of ions - molecules reactions in the gas phase with collision reaction cell devices: Applications to the direct resolution of spectroscopic interferences in ICP-MS

    International Nuclear Information System (INIS)

    Favre, G.

    2008-12-01

    Inductively Coupled Plasma Mass Spectrometry emerged as the most widespread mass spectrometry technique in inorganic analytical chemistry for determining the concentration of a given isotope or an isotope ratio. The problem of spectroscopic interferences, inherent to this technique, finds a solution through the use of reaction cell devices. An in situ interference removal is feasible with the addition of a well selected gas in the cell. The understanding of the chemistry of ions-molecules interactions in the gas phase is however fundamental to optimize the efficiency of such devices. An accurate knowledge of experimental conditions in the reaction zone according to instrumental parameters appears crucial in order to interpret observed reactivities. This preliminary study is then used for the resolution of two nuclear field characteristic interferences. (author)

  4. Effect of Graphene Oxide on the Reaction Kinetics of Methyl Methacrylate In Situ Radical Polymerization via the Bulk or Solution Technique

    Directory of Open Access Journals (Sweden)

    Ioannis S. Tsagkalias

    2017-09-01

    Full Text Available The synthesis of nanocomposite materials based on poly(methyl methacrylate and graphene oxide (GO is presented using the in situ polymerization technique, starting from methyl methacrylate, graphite oxide, and an initiator, and carried out either with (solution or without (bulk in the presence of a suitable solvent. Reaction kinetics was followed gravimetrically and the appropriate characterization of the products took place using several experimental techniques. X-ray diffraction (XRD data showed that graphite oxide had been transformed to graphene oxide during polymerization, whereas FTIR spectra revealed no significant interactions between the polymer matrix and GO. It appears that during polymerization, the initiator efficiency was reduced by the presence of GO, resulting in a reduction of the reaction rate and a slight increase in the average molecular weight of the polymer formed, measured by gel permeation chromatography (GPC, along with an increase in the glass transition temperature obtained from differential scanning calorimetry (DSC. The presence of the solvent results in the suppression of the gel-effect in the reaction rate curves, the synthesis of polymers with lower average molecular weights and polydispersities of the Molecular Weight Distribution, and lower glass transition temperatures. Finally, from thermogravimetric analysis (TG, it was verified that the presence of GO slightly enhances the thermal stability of the nano-hybrids formed.

  5. Quid-Induced Lichenoid Reactions: A Prevalence Study

    OpenAIRE

    Vishal Dang; Madhav Nagpal

    2011-01-01

    White lesions of the oral mucosa are of concern to the dental surgeon in view of the fact that some of these may be potentially malignant. Oral lichen plane: (OLP) and oral lichenoid reactions (OLR) share similar clinical appearances but need to be carefully distinguished because of their different etiologies and clinical behaviour. This study screened 5.017 population, in a house-to-house field survey, for tobacco use and investigated the prevalence of oral lichenoid reactions in the 98 quid...

  6. A PEM fuel cell for in situ XAS studies

    International Nuclear Information System (INIS)

    Wiltshire, Richard J.K.; King, Colin R.; Rose, Abigail; Wells, Peter P.; Hogarth, Martin P.; Thompsett, David; Russell, Andrea E.

    2005-01-01

    A miniature proton exchange membrane (PEM) fuel cell has been designed to enable in situ XAS investigations of the anode catalyst using fluorescence detection. The development of the cell is described, in particular the modifications required for elevated temperature operation and humidification of the feed gasses. The impact of the operating conditions is observed as an increase in the catalyst utilisation, which is evident in the EXAFS collected at the Pt L III and Ru K edges for a PtRu/C catalyst. The Pt component of the catalyst was found to be readily reduced by hydrogen in the fuel, while the Ru was only fully reduced under conditions of good gas flow and electrochemical contact. Under such conditions no evidence of O neighbours were found at the Ru edge. The results are interpreted in relation to the lack of surface sensitivity of the EXAFS method and indicate that the equilibrium coverage of O species on the Ru surface sites is too low to be observed using EXAFS

  7. Studies of complex fragment emission in heavy ion reactions

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    1993-01-01

    The study of intermediate-energy heavy-ion nuclear reactions is reported. This work has two foci: the properties of nuclear matter under abnormal conditions, in this energy domain, predominately low densities and the study of the relevant reaction mechanisms. Nuclear matter properties, such as phase transitions, are reflected in the dynamics of the reactions. The process leads to an understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. The program has the following objectives: to study energy, mass, and angular momentum deposition by studying incomplete fusion reactions; to gain confidence in the understanding of how highly excited systems decompose by studying all emissions from the highly excited systems; to push these kinds of studies into the intermediate energy domain (where intermediate mass fragment emission is not improbable) with excitation function studies; and to learn about the dynamics of the decays using particle-particle correlations. The last effort focuses on simple systems, where definitive statements are possible. These avenues of research share a common theme, large complex fragment production. It is this feature, more than any other, which distinguishes the intermediate energy domain

  8. Solid oxide electrode kinetics in light of in situ surface studies

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    2014-01-01

    The combination of in situ and in particular in operando characterization methods such as electrochemical impedance spectroscopy (EIS) on both technical and model electrode are well known ways to gain some practical insight in electrode reaction kinetics. Yet, is has become clear that in spite...... of the strengths it is not sufficient to reveal much details of the electrode mechanisms mainly because it provide average values only. Therefore it has to be combined with surface science methods in order to reveal the interface structure and composition. Ex situ methods have been very useful over the latest....... Furthermore, it seems that detailed mathematical modeling using new tools like COMSOL is necessary for the synthesis of the large amount of data for a well-characterized electrode into one physical meaningful picture. A brief review of literature an own data will be presented with a practical example of SOFC...

  9. Quantum wave packet study of D+OF reaction

    International Nuclear Information System (INIS)

    Kurban, M.; Karabulut, E.; Tutuk, R.; Goektas, F.

    2010-01-01

    The quantum dynamics of the D+OF reaction on the adiabatic potential energy surface of the ground 1 3 A ' state has been studied by using a time-dependent quantum real wave packet method. The state-to-state and state-to-all reaction probabilities for total angular momentum J = 0 have been calculated. The probabilities for J > 0 have been calculated by J-shifting the J = 0 results by means of capture model. Then, the integral cross sections and initial state selected rate constants have been calculated. The initial state-selected reaction probabilities and reaction cross section show threshold but not manifest any resonances and the initial state selected rate constants are sensitive to the temperature.

  10. Microstructure development, phase reaction characteristics and mechanical properties of a commercial Al–20%Mg2Si–xCe in situ composite solidified at a slow cooling rate

    International Nuclear Information System (INIS)

    Nordin, Nur Azmah; Farahany, Saeed; Abu Bakar, Tuty Asma; Hamzah, Esah; Ourdjini, Ali

    2015-01-01

    The microstructure, phase reaction characteristics and mechanical properties of fabricated Al–20%Mg 2 Si in situ composite with different contents of cerium have been investigated using optical microscopy, scanning electron microscopy, X-ray diffraction, thermal analysis and hardness tests. The results show that addition of Ce not only refined Mg 2 Si reinforcement particles but also changed the morphology of eutectic Al–Mg 2 Si, Al 5 FeSi (β) intermetallic and Al 5 Cu 2 Mg 8 Si 6 (Q) + Al 2 Cu (Ɵ) phases. It was found that 0.8 wt% Ce is the optimum concentration to transform the phases into refined structures. The structure of the skeleton of Mg 2 Si P changed to a polygonal shape with uniform distribution and decrease in size from 124 μm to 60 μm and increased in density from 12 to 45 particles/mm 2 . Flake-like Mg 2 Si E transformed into a rod-like morphology. In addition, the aspect ratio of needle-like β structures reduced from 40.5 to 22.9, accompanied with an increase of solid fraction for Q + Ɵ phase. Ce addition increased the nucleation temperature of Mg 2 Si P and β phases; however, it had an opposite effect for the Mg 2 Si E and Q + Ɵ phases. The composite hardness increased from 61.32 to 74.15 HV because of refinement of the microstructure. The refining mechanism of Mg 2 Si P and Mg 2 Si E phases is discussed in the current study, and formation of new Ce compounds is believed to be responsible for the refinement effect. - Highlights: • Refinement of Mg 2 Si P , Mg 2 Si E and β-Fe in Al–Mg 2 Si MMC was achieved with 0.8 wt% Ce. • Distribution of Mg 2 Si P particles over the composite samples was reported. • Hardness property was discussed comprehensively related to refinement effect. • Refinement mechanism of primary and eutectic Mg 2 Si with Ce addition was studied.

  11. Isotopic Exchange Reaction Assisted with Cu (I) generated ''in situ'' For Synthesis of Ready-to-Use for on-the-spot Formulation of [131 I] Iodobenzyl Derivatives

    International Nuclear Information System (INIS)

    Abudaia, J.A.; Suliman, M.O.

    2007-01-01

    It has been examined that meta-Iodobenzylguanidine (m-IBG), para-Iodoamphetamine (p-IPA) and orth-Iodohippuric acid (o-IHA) are three commonly used Iodobenzyl derivative compounds, and can be formulated as Ready-to-Use Kits for on-the-spot labeling catalyzed with copper ion Cu+ (I) generated ''In Situ''. The labeling procedure efficiently has been established within 30 min of heating using an autoclave, 20 min. and 90 min. using dry heating block respectively. Isotopic exchange reaction with Iodine-131 radioactive of those three Ready-to-Use Kits has led to Radiochemical Purity ''RCP'' equals to 98%, > 98%, and almost 99%, and Radiochemical Yield ''RCY'' > 97%, >93% and > 98% respectively. Attention was paid to the Radiochemical Stability of those three Iodobenzyl derivatives for a period time of preservation at low temperature. As a result, this gave evidence that such Radiopharmaceuticals could be used as Ready-to-Use products at different times of preservations.

  12. Use of Hybridization Chain Reaction-Fluorescent In Situ Hybridization To Track Gene Expression by Both Partners during Initiation of Symbiosis.

    Science.gov (United States)

    Nikolakakis, K; Lehnert, E; McFall-Ngai, M J; Ruby, E G

    2015-07-01

    The establishment of a productive symbiosis between Euprymna scolopes, the Hawaiian bobtail squid, and its luminous bacterial symbiont, Vibrio fischeri, is mediated by transcriptional changes in both partners. A key challenge to unraveling the steps required to successfully initiate this and many other symbiotic associations is characterization of the timing and location of these changes. We report on the adaptation of hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) to simultaneously probe the spatiotemporal regulation of targeted genes in both E. scolopes and V. fischeri. This method revealed localized, transcriptionally coregulated epithelial cells within the light organ that responded directly to the presence of bacterial cells while, at the same time, provided a sensitive means to directly show regulated gene expression within the symbiont population. Thus, HCR-FISH provides a new approach for characterizing habitat transition in bacteria and for discovering host tissue responses to colonization. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. In situ 119Sn Moessbauer spectroscopy used to study lithium insertion in c-Mg2Sn

    International Nuclear Information System (INIS)

    Aldon, L.; Ionica, C. M.; Lippens, P. E.; Larcher, D.; Tarascon, J.-M.; Olivier-Fourcade, J.; Jumas, J.-C.

    2006-01-01

    The electrochemical reactions of Li with c-Mg 2 Sn have been investigated by in situ Moessbauer spectroscopy of 119 Sn and X-ray diffraction. The lithiation transforms initially c-Mg 2 Sn part into Li x Mg 2 Sn alloy (x 2 MgSn ternary alloy. In situ Moessbauer spectroscopy provides valuable information on local environment of tin and swelling behavior and cracking of the particles during discharge and charge processes.

  14. A simple, fast and low-cost turn-on fluorescence method for dopamine detection using in situ reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiulan [School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003 (China); Zhu, Yonggang [Microfluidics and Fluid Dynamics Laboratory, CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria, 3168 (Australia); Li, Xie [School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003 (China); Guo, Xuhong [School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003 (China); State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237 (China); Zhang, Bo [Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000 (China); Jia, Xin, E-mail: jiaxin@shzu.edu.cn [School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003 (China); and others

    2016-11-09

    A simple, fast and low-cost method for dopamine (DA) detection based on turn-on fluorescence using resorcinol is developed. The rapid reaction between resorcinol and DA allows the detection to be performed within 5 min, and the reaction product (azamonardine) with high quantum yield generates strong fluorescence signal for sensitive optical detection. The detection exhibits a high sensitivity to DA with a wide linear range of 10 nM–20 μM and the limit of detection is estimated to be 1.8 nM (S/N = 3). This approach has been successfully applied to determine DA concentrations in human urine samples with satisfactory quantitative recovery of 97.84%–103.50%, which shows great potential in clinical diagnosis. - Highlights: • A turn-on fluorescence technique is developed for dopamine detection by using one-step selective reaction between resorcinol and dopamine. • The limit of detection is 1.8 nM (S/N = 3). • This detection could be completed within 5 min. • The method has been demonstrated to successfully detect dopamine in human urine samples with high recovery ratio of 97.84%–103.50%.

  15. A simple, fast and low-cost turn-on fluorescence method for dopamine detection using in situ reaction

    International Nuclear Information System (INIS)

    Zhang, Xiulan; Zhu, Yonggang; Li, Xie; Guo, Xuhong; Zhang, Bo; Jia, Xin

    2016-01-01

    A simple, fast and low-cost method for dopamine (DA) detection based on turn-on fluorescence using resorcinol is developed. The rapid reaction between resorcinol and DA allows the detection to be performed within 5 min, and the reaction product (azamonardine) with high quantum yield generates strong fluorescence signal for sensitive optical detection. The detection exhibits a high sensitivity to DA with a wide linear range of 10 nM–20 μM and the limit of detection is estimated to be 1.8 nM (S/N = 3). This approach has been successfully applied to determine DA concentrations in human urine samples with satisfactory quantitative recovery of 97.84%–103.50%, which shows great potential in clinical diagnosis. - Highlights: • A turn-on fluorescence technique is developed for dopamine detection by using one-step selective reaction between resorcinol and dopamine. • The limit of detection is 1.8 nM (S/N = 3). • This detection could be completed within 5 min. • The method has been demonstrated to successfully detect dopamine in human urine samples with high recovery ratio of 97.84%–103.50%.

  16. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    Science.gov (United States)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  17. Experimental study on neptunium migration under in situ geochemical conditions

    Science.gov (United States)

    Kumata, M.; Vandergraaf, T. T.

    1998-12-01

    Results are reported for migration experiments performed with Np under in situ geochemical conditions over a range of groundwater flow rates in columns of crushed rock in a specially designed facility at the 240-level of the Underground Research Laboratory (URL) near Pinawa, Manitoba, Canada. This laboratory is situated in an intrusive granitic rock formation, the Lac du Bonnet batholith. Highly altered granitic rock and groundwater were obtained from a major subhorizontal fracture zone at a depth of 250 m in the URL. The granite was wet-crushed and wet-sieved with groundwater from this fracture zone. The 180-850-μm size fraction was selected and packed in 20-cm long, 2.54-cm in diameter Teflon™-lined stainless steel columns. Approximately 30-ml vols of groundwater containing 3HHO and 237Np were injected into the columns at flow rates of 0.3, 1, and 3 ml/h, followed by elution with groundwater, obtained from the subhorizontal fracture, at the same flow rates, for a period of 95 days. Elution profiles for 3HHO were obtained, but no 237Np was detected in the eluted groundwater. After terminating the migration experiments, the columns were frozen, the column material was removed and cut into twenty 1-cm thick sections and each section was analyzed by gamma spectrometry. Profiles of 237Np were obtained for the three columns. A one-dimensional transport model was fitted to the 3HHO breakthrough curves to obtain flow parameters for this experiment. These flow parameters were in turn applied to the 237Np concentration profiles in the columns to produce sorption and dispersion coefficients for Np. The results show a strong dependence of retardation factors ( Rf) on flow rate. The decrease in the retarded velocity of the neptunium ( Vn) varied over one order of magnitude under the geochemical conditions for these experiments.

  18. Desorption of hydrogen from magnesium hydride: in-situ electron diffraction study

    International Nuclear Information System (INIS)

    Paik, B.; Jones, I.P.; Walton, A.; Mann, V.; Book, D.; Harris, I.R.

    2009-01-01

    The dynamics of a phase change has been studied where electron beam in Transmission Electron Microscope (TEM) has been used to transform MgH 2 into magnesium. A combination of in-situ Electron Diffraction (ED) and an in-situ Electron Energy Loss Spectroscopy (EELS) study under ED mode describes the phase transformation in terms of, respectively, change in the crystal structure and Plasmon energy shift. The orientation relation [001] MgH2 //[-2110] Mg and (-110) MgH2 //(0001) Mg , obtained from the ED study, has been used to propose a model for the movements of magnesium atoms in the structural change to describe the dynamics of the process. The in-situ EELS study has been compared with the existing H-desorption model. The study aims to describe the sorption dynamics of hydrogen in MgH 2 which is a base material for a number of promising hydrogen storage systems. (author)

  19. Design, development, and demonstration of a fully LabVIEW controlled in situ electrochemical Fourier transform infrared setup combined with a wall-jet electrode to investigate the electrochemical interface of nanoparticulate electrocatalysts under reaction conditions.

    Science.gov (United States)

    Nesselberger, Markus; Ashton, Sean J; Wiberg, Gustav K H; Arenz, Matthias

    2013-07-01

    We present a detailed description of the construction of an in situ electrochemical ATR-FTIR setup combined with a wall-jet electrode to investigate the electrocatalytic properties of nanoparticulate catalysts in situ under controlled mass transport conditions. The presented setup allows the electrochemical interface to be probed in combination with the simultaneous determination of reaction rates. At the same time, the high level of automation allows it to be used as a standard tool in electrocatalysis research. The performance of the setup was demonstrated by probing the oxygen reduction reaction on a platinum black catalyst in sulfuric electrolyte.

  20. Reaction studies of hot silicon, germanium and carbon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1990-01-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms? This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs

  1. Studies of complex fragment emission in heavy ion reactions

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    1992-01-01

    Our work involves the study of intermediate energy heavy-ion nuclear reactions. This work has two foci. On the one hand, we desire to learn about the properties of nuclear matter under abnormal conditions, in this energy domain, predominately low densities. This purpose runs abreast of the second, which is the study of the relevant reaction mechanisms. The two objectives are inexorably linked because our experimental laboratory for studying nuclear matter properties is a dynamic one. We are forced to ask how nuclear matter properties, such as phase transitions, are reflected in the dynamics of the reactions. It may be that irrefutable information about nuclear matter will not be extracted from the reaction work. Nevertheless, we are compelled to undertake this effort not only because it is the only game in town and as yet we do not know that information cannot be extracted, but also because of our second objective. The process leads to an understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. Our program has been: To study energy, mass, and angular momentum deposition by studying incomplete fusion reactions. To gain confidence that we understand how highly excited systems decompose by studying all emissions from the highly excited systems. To push these kinds of studies into the intermediate energy domain, with excitation function studies. And attempt to learn about the dynamics of the decays using particle-particle correlations. In the last effort, we have decided to focus on simple systems, where we believe, definitive statements are possible. These avenues of research share a common theme, large complex fragment production

  2. Electrochemically assisted organosol method for Pt-Sn nanoparticle synthesis and in situ deposition on graphite felt support: Extended reaction zone anodes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lycke, Derek R.; Gyenge, Elod L. [Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC (Canada)

    2007-03-20

    Two electrochemically assisted variants of the Boenneman organosol method were developed for Pt-Sn nanoparticle synthesis and in situ deposition on graphite felt electrodes (e.g. thickness up to 2 mm). Tetraoctylammonium triethylhydroborate N(C{sub 8}H{sub 17}){sub 4}BH(C{sub 2}H{sub 5}){sub 3} was employed as colloid stabilizer and reductant dissolved in tetrahydrofuran (THF). The role of the electric field at a low deposition current density of 1.25 mA cm{sup -2} was mainly electrophoretic causing the migration and adsorption of N(C{sub 8}H{sub 17}){sub 4}BH(C{sub 2}H{sub 5}){sub 3} on the graphite felt surface where it reduced the PtCl{sub 2}-SnCl{sub 2} mixture. Faradaic electrodeposition was detected mostly for Sn. Typical Pt-Sn loadings were between 0.4 and 0.9 mg cm{sup -2} depending on the type of pre-deposition exposure of the graphite felt: surfactant-adsorption and metal-adsorption variant, respectively. The catalyst surface area and Pt:Sn surface area ratio was determined by anodic striping of an underpotential deposited Cu monolayer. The two deposition variants gave different catalyst surfaces: total area 233 and 76 cm{sup 2} mg{sup -1}, with Pt:Sn surface area ratio of 3.5:1 and 7.7:1 for surfactant and metal adsorption, respectively. Regarding electrocatalysis of ethanol oxidation, voltammetry and chronopotentiometry studies corroborated by direct ethanol fuel cell experiments using 0.5 M H{sub 2}SO{sub 4} as electrolyte, showed that due to a combination of higher catalyst load and Pt:Sn surface ratio, the graphite felt anodes prepared by the metal-adsorption variant gave better performance. The catalyzed graphite felt provided an extended reaction zone for ethanol electrooxidation and it gave higher catalyst mass specific peak power outputs compared to literature data obtained using gas diffusion anodes with carbon black supported Pt-Sn nanoparticles. (author)

  3. Support Effects in Catalysis Studied by in-situ Sum Frequency Generation Vibrational Spectroscopy and in-situ X-Ray Spectroscopies

    Science.gov (United States)

    Kennedy, Griffin John

    Kinetic measurements are paired with in-situ spectroscopic characterization tools to investigate colloidally based, supported Pt catalytic model systems in order to elucidate the mechanisms by which metal and support work in tandem to dictate activity and selectivity. The results demonstrate oxide support materials, while inactive in absence of Pt nanoparticles, possess unique active sites for the selective conversion of gas phase molecules when paired with an active metal catalyst. In order to establish a paradigm for metal-support interactions using colloidally synthesized Pt nanoparticles the ability of the organic capping agent to inhibit reactivity and interaction with the support must first be assessed. Pt nanoparticles capped by poly(vinylpyrrolidone) (PVP), and those from which the PVP is removed by UV light exposure, are investigated for two reactions, the hydrogenation of ethylene and the oxidation of methanol. It is shown that prior to PVP removal the particles are moderately active for both reactions. Following removal, the activity for the two reactions diverges, the ethylene hydrogenation rate increases 10-fold, while the methanol oxidation rate decreases 3-fold. To better understand this effect the capping agent prior to, and the residual carbon remaining after UV treatment are probed by sum frequency generation vibrational spectroscopy. Prior to removal no major differences are observed when the particles are exposed to alternating H2 and O2 environments. When the PVP is removed, carbonaceous fragments remain on the surface that dynamically restructure in H2 and O2. These fragments create a tightly bound shell in an oxygen environment and a porous coating of hydrogenated carbon in the hydrogen environment. Reaction rate measurements of thermally cleaned PVP and oleic acid capped particles show this effect to be independent of cleaning method or capping agent. In all this demonstrates the ability of the capping agent to mediate nanoparticle catalysis

  4. Highly Stretchable and Conductive Silver Nanoparticle Embedded Graphene Flake Electrode Prepared by In situ Dual Reduction Reaction

    Science.gov (United States)

    Yoon, Yeoheung; Samanta, Khokan; Lee, Hanleem; Lee, Keunsik; Tiwari, Anand P.; Lee, Jihun; Yang, Junghee; Lee, Hyoyoung

    2015-09-01

    The emergence of stretchable devices that combine with conductive properties offers new exciting opportunities for wearable applications. Here, a novel, convenient and inexpensive solution process was demonstrated to prepare in situ silver (Ag) or platinum (Pt) nanoparticles (NPs)-embedded rGO hybrid materials using formic acid duality in the presence of AgNO3 or H2PtCl6 at low temperature. The reduction duality of the formic acid can convert graphene oxide (GO) to rGO and simultaneously deposit the positively charged metal ion to metal NP on rGO while the formic acid itself is converted to a CO2 evolving gas that is eco-friendly. The AgNP-embedded rGO hybrid electrode on an elastomeric substrate exhibited superior stretchable properties including a maximum conductivity of 3012 S cm-1 (at 0 % strain) and 322.8 S cm-1 (at 35 % strain). Its fabrication process using a printing method is scalable. Surprisingly, the electrode can survive even in continuous stretching cycles.

  5. Field study of nitrous oxide production with in situ aeration in a closed landfill site.

    Science.gov (United States)

    Nag, Mitali; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Xiaoli, Chai

    2016-03-01

    Nitrous oxide (N(2)O) has gained considerable attention as a contributor to global warming and depilation of stratospheric ozone layer. Landfill is one of the high emitters of greenhouse gas such as methane and N(2)O during the biodegradation of solid waste. Landfill aeration has been attracted increasing attention worldwide for fast, controlled and sustainable conversion of landfills into a biological stabilized condition, however landfill aeration impel N(2)O emission with ammonia removal. N(2)O originates from the biodegradation, or the combustion of nitrogen-containing solid waste during the microbial process of nitrification and denitrification. During these two processes, formation of N(2)O as a by-product from nitrification, or as an intermediate product of denitrification. In this study, air was injected into a closed landfill site and investigated the major N(2)O production factors and correlations established between them. The in-situ aeration experiment was carried out by three sets of gas collection pipes along with temperature probes were installed at three different distances of one, two and three meter away from the aeration point; named points A-C, respectively. Each set of pipes consisted of three different pipes at three different depths of 0.0, 0.75 and 1.5 m from the bottom of the cover soil. Landfill gases composition was monitored weekly and gas samples were collected for analysis of nitrous oxide concentrations. It was evaluated that temperatures within the range of 30-40°C with high oxygen content led to higher generation of nitrous oxide with high aeration rate. Lower O(2) content can infuse N(2)O production during nitrification and high O(2) inhibit denitrification which would affect N(2)O production. The findings provide insights concerning the production potentials of N(2)O in an aerated landfill that may help to minimize with appropriate control of the operational parameters and biological reactions of N turnover. Investigation of

  6. A Structural Study of Escherichia coli Cells Using an In Situ Liquid Chamber TEM Technology

    Directory of Open Access Journals (Sweden)

    Yibing Wang

    2015-01-01

    Full Text Available Studying cell microstructures and their behaviors under living conditions has been a challenging subject in microbiology. In this work, in situ liquid chamber TEM was used to study structures of Escherichia coli cells in aqueous solutions at a nanometer-scale resolution. Most of the cells remained intact under electron beam irradiation, and nanoscale structures were observed during the TEM imaging. The analysis revealed structures of pili surrounding the E. coli cells; the movements of the pili in the liquid were also observed during the in situ tests. This technology also allowed the observation of features of the nucleoid in the E. coli cells. Overall, in situ TEM can be applied as a valuable tool to study real-time microscopic structures and processes in microbial cells residing in native aqueous solutions.

  7. The effect of sintering time on synthesis of in situ submicron {alpha}-Al{sub 2}O{sub 3} particles by the exothermic reactions of CuO particles in molten pure Al

    Energy Technology Data Exchange (ETDEWEB)

    Dikici, Burak, E-mail: burakdikici@yyu.edu.tr [Yuzuncu Yil University, Department of Mechanical Engineering, 65080 Van (Turkey); Gavgali, Mehmet [Ataturk University, Department of Mechanical Engineering, 25240 Erzurum (Turkey)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Al-Cu/Al{sub 2}O{sub 3} composites were prepared successfully by means of hot pressing method. Black-Right-Pointing-Pointer Sintering time of the Al-CuO system effect the reaction rate and formation of Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Increase in sintering time accelerates formation of submicron in situ {alpha}-Al{sub 2}O{sub 3} phase. Black-Right-Pointing-Pointer Hardness of the sintered composite for 30 min at 1000 Degree-Sign C increased from 60 to 174 HV. - Abstract: In this study, in situ {alpha}-Al{sub 2}O{sub 3} reinforcing particles have been successfully synthesised in an Al-Cu matrix alloy by means of the conventional Hot Pressing (HP) method. The effect of sintering time on the forming of the {alpha}-Al{sub 2}O{sub 3} phase at 1000 Degree-Sign C was investigated using Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and a Scanning Electron Microscope (SEM). The sintered composites contained thermodynamically stable {alpha}-Al{sub 2}O{sub 3} particles and {theta}-Al{sub 2}Cu eutectic phases, which were embedded in the Al-Cu matrix. The in situ {alpha}-Al{sub 2}O{sub 3} particles were generally spherical and their mean size was observed to be less than 0.5 {mu}m. The results showed that sintering time influences not only the reaction rate of copper and the formation of Al{sub 2}O{sub 3}. Also, an increase in the sintering time accelerates the formation of submicron in situ {alpha}-Al{sub 2}O{sub 3} particles and decreases the quantity of {theta}-Al{sub 2}Cu intermetallic phase in the liquid aluminium. Additionally, sintering of composite for 30 min at 1000 Degree-Sign C increased the hardness from 60 to 174 HV.

  8. Nanolithographic Fabrication and Heterogeneous Reaction Studies ofTwo-Dimensional Platinum Model Catalyst Systems

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Anthony Marshall [Univ. of California, Berkeley, CA (United States)

    2006-05-20

    In order to better understand the fundamental components that govern catalytic activity, two-dimensional model platinum nanocatalyst arrays have been designed and fabricated. These catalysts arrays are meant to model the interplay of the metal and support important to industrial heterogeneous catalytic reactions. Photolithography and sub-lithographic techniques such as electron beam lithography, size reduction lithography and nanoimprint lithography have been employed to create these platinum nanoarrays. Both in-situ and ex-situ surface science techniques and catalytic reaction measurements were used to correlate the structural parameters of the system to catalytic activity.

  9. Picosecond pulse radiolysis study of primary reactions in solutions

    International Nuclear Information System (INIS)

    El-Omar, Abdel Karim

    2013-01-01

    Following the discovery of ionizing radiations and their chemical effects, it was important to study and comprehend the formation mechanisms of short lived free radicals and molecular products. In order to perform such studies, researchers and research groups worked on developing tools allowing both formation and detection of those species at short time scales. Nowadays, pulse radiolysis imposed itself as a fundamental and efficient tool allowing scientists to probe chemical effects as well as reaction mechanisms in studied media. The Laboratoire de Chimie Physique d'Orsay 'LCP' is an interdisciplinary laboratory hosting the platform of fast kinetics known as 'ELYSE'. Due to its femtosecond laser and its picosecond electron accelerator, we have the possibility to study chemical effects of ionizing radiations interaction with media at ultrashort times up to ∼5 ps.Knowing that we are interested in primary reactions induced in aqueous media by ionizing radiations, ELYSE represents the essential tool in performing our studies. The obtained results concern:- First direct determination of hydroxyl radical 'HO*' radiolytic yield as function of time at picosecond time scale;- Direct effect of ionizing radiation in highly concentrated aqueous solutions as well as investigation of the ultrafast electron transfer reaction between solute molecules and positive holes 'H 2 O*+' formed upon water radiolysis;- Study at room temperature of electron transfer reaction between solvated electron (electron donor) and organic solutes (electron acceptors) en viscous medium;- Study at room temperature of electron's solvation dynamics in ethylene glycol and 2-propanol. (author)

  10. Studies of complex fragment emission in heavy ion reactions

    International Nuclear Information System (INIS)

    Sobotka, L.G.

    1989-01-01

    The production of large fragments, fragments with mass between light particles and fission fragments, in intermediate and high energy nuclear reactions has fostered the proposal of a number of novel reaction mechanisms. These include liquid-vapor equilibrium and nuclear shattering. Temporarily left in the wake of these exciting proposed mechanisms was the old standard, statistical decay of compound nuclei. To be sure, the standard treatment of compound nucleus decay did not deal with large fragment production. However, this omission was not due to any fundamental deficiency of statistical models, but rather an uncertainty concerning exactly how to splice large fragment emission into statistical models. A large portion of our program deals with this problem. Specifically, by studying the yields of large fragments produced in sufficiently low energy reactions we are attempting to deduce the asymmetry and l-wave dependence of large fragment emission from compound nuclear intermediates. This, however, is only half of the problem. Since the novel mechanisms proposed for large fragment emission were spawned by intermediate and high energy reaction data, we must also realize the relevance of the compound nucleus mechanisms at high energies. It is not unreasonable to suspect that compound nucleus-like objects are formed with less than complete momentum transfer and perhaps less than complete mass transfer. Therefore the study of energy, mass, and angular momentum transfer in incomplete fusion and non-compound reactions. This thread joins the apparently divergent subjects covered in this report

  11. Singlet oxygen reactions with flavonoids. A theoretical-experimental study.

    Science.gov (United States)

    Morales, Javier; Günther, Germán; Zanocco, Antonio L; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λ(max) = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T), and the reactive reaction rate constant, k(r), for the reaction between singlet oxygen and several flavonoids. Values of k(T) determined in deuterated water, ranging from 2.4×10(7) M(-1) s(-1) to 13.4×10(7) M(-1) s(-1), for rutin and morin, respectively, and the values measured for k(r), ranging from 2.8×10(5) M(-1) s(-1) to 65.7×10(5) M(-1) s(-1) for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.

  12. Singlet Oxygen Reactions with Flavonoids. A Theoretical – Experimental Study

    Science.gov (United States)

    Morales, Javier; Günther, Germán; Zanocco, Antonio L.; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λmax = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, kT, and the reactive reaction rate constant, kr, for the reaction between singlet oxygen and several flavonoids. Values of kT determined in deuterated water, ranging from 2.4×107 M−1s−1 to 13.4×107 M−1s−1, for rutin and morin, respectively, and the values measured for kr, ranging from 2.8×105 M−1s−1 to 65.7×105 M−1s−1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid. PMID:22802966

  13. Singlet oxygen reactions with flavonoids. A theoretical-experimental study.

    Directory of Open Access Journals (Sweden)

    Javier Morales

    Full Text Available Detection of singlet oxygen emission, λ(max = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T, and the reactive reaction rate constant, k(r, for the reaction between singlet oxygen and several flavonoids. Values of k(T determined in deuterated water, ranging from 2.4×10(7 M(-1 s(-1 to 13.4×10(7 M(-1 s(-1, for rutin and morin, respectively, and the values measured for k(r, ranging from 2.8×10(5 M(-1 s(-1 to 65.7×10(5 M(-1 s(-1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.

  14. Enhanced Oxygen Reduction Reaction by In Situ Anchoring Fe2N Nanoparticles on Nitrogen-Doped Pomelo Peel-Derived Carbon

    Directory of Open Access Journals (Sweden)

    Yiqing Wang

    2017-11-01

    Full Text Available The development of effective oxygen electrode catalysts for renewable energy technologies such as metal-air batteries and fuel cells remains challenging. Here, we prepared a novel high-performance oxygen reduction reaction (ORR catalyst comprised of Fe2N nanoparticles (NPs in situ decorated over an N-doped porous carbon derived from pomelo peel (i.e., Fe2N/N-PPC. The decorated Fe2N NPs provided large quantities of Fe-N-C bonding catalytic sites. The as-obtained Fe2N/N-PPC showed superior onset and half-wave potentials (0.966 and 0.891 V, respectively in alkaline media (0.1 M KOH compared to commercial Pt/C through a direct four-electron reaction pathway. Fe2N/N-PPC also showed better stability and methanol tolerance than commercial Pt/C. The outstanding ORR performance of Fe2N/N-PPC was attributed to its high specific surface area and the synergistic effects of Fe2N NPs. The utilization of agricultural wastes as a precursor makes Fe2N/N-PPC an ideal non-precious metal catalyst for ORR applications.

  15. In situ high temperature MAS NMR study of the mechanisms of catalysis. Ethane aromatization on Zn-modified zeolite BEA.

    Science.gov (United States)

    Arzumanov, Sergei S; Gabrienko, Anton A; Freude, Dieter; Stepanov, Alexander G

    2009-04-01

    Ethane conversion into aromatic hydrocarbons over Zn-modified zeolite BEA has been analyzed by high-temperature MAS NMR spectroscopy. Information about intermediates (Zn-ethyl species) and reaction products (mainly toluene and methane), which were formed under the conditions of a batch reactor, was obtained by (13)C MAS NMR. Kinetics of the reaction, which was monitored by (1)H MAS NMR in situ at the temperature of 573K, provided information about the reaction mechanism. Simulation of the experimental kinetics within the frames of the possible kinetic schemes of the reaction demonstrates that a large amount of methane evolved under ethane aromatization arises from the stage of direct ethane hydrogenolysis.

  16. In Situ PDF Study of the Nucleation and Growth of Intermetallic PtPb Nanocrystals

    DEFF Research Database (Denmark)

    Saha, Dipankar; Bojesen, Espen D.; Mamakhel, Mohammad Aref Hasen

    2017-01-01

    The mechanism of Pt and PtPb nanocrystal formation under supercritical ethanol conditions has been investigated by means of in situ X-ray total scattering and pair distribution function (PDF) analysis. The metal complex structures of two different platinum precursor solutions, chloroplatinic acid...... supercritical ethanol process for obtaining phase-pure hexagonal PtPb nanocrystals. The study thus highlights the importance of in situ studies in revealing atomic-scale information about nucleation mechanisms, which can be used in design of specific synthesis pathways, and the new continuous-flow process...

  17. In situ observation of the reaction of tantalum with nitrogen in a laser heated diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Alexandra, E-mail: friedrich@kristall.uni-frankfurt.d [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany); Winkler, Bjoern; Bayarjargal, Lkhamsuren [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany); Juarez Arellano, Erick A. [Universidad del Papaloapan, Circuito Central 200, Parque Industrial, Tuxtepec 68301 (Mexico); Morgenroth, Wolfgang; Biehler, Jasmin; Schroeder, Florian [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany); Yan, Jinyuan; Clark, Simon M. [Advanced Light Source, Lawrence Berkeley National Laboratory, MS6R2100, 1 Cyclotron Road, Berkeley, CA 94720-8226 (United States)

    2010-07-16

    Tantalum nitrides were formed by reaction of the elements at pressures between 9(1) and 12.7(5) GPa and temperatures >1600-2000 K in the laser-heated diamond anvil cell. The incorporation of small amount of nitrogen in the tantalum structure was identified as the first reaction product on weak laser irradiation. Subsequent laser heating led to the formation of hexagonal {beta}-Ta{sub 2}N and orthorhombic {eta}-Ta{sub 2}N{sub 3}, which was the stable phase at pressures up to 27 GPa and high temperatures. No evidence was found for the presence of {epsilon}-TaN, {theta}-TaN, {delta}-TaN, Ta{sub 3}N{sub 5}-I or Ta{sub 3}N{sub 5}-II, which was predicted to be the stable phase at P>17 GPa and T=2800 K, at the P,T-conditions of this experiment. The bulk modulus of {eta}-Ta{sub 2}N{sub 3} was determined to be B{sub 0}=319(6) GPa from a 2nd order Birch-Murnaghan equation of state fit to the experimental data, while quantum mechanical calculations using the density functional theory gave a bulk modulus of B{sub 0}=348.0(9) GPa for a 2nd-order fit or B{sub 0}=339(1) GPa and B{sup '}=4.67(9) for a 3rd-order fit. The values show the large incompressibility of this high-pressure phase. From the DFT data the structural compression mechanism could be determined.

  18. Studies of heavy-ion reactions and transuranic nuclei

    International Nuclear Information System (INIS)

    Schroeder, W.U.

    1993-08-01

    This report contain papers on the following topics: The Cold-Fusion Saga; Decay Patterns of Dysprosium Nuclei Produced in 32 S + 118,124 Sn Fusion Reactions; Unexpected Features of Reactions Between Very Heavy Ions at Intermediate Bombarding Energies; Correlations Between Neutrons and Charged Products from the Dissipative Reaction 197 Au+ 208 Pb at E/A = 29 MeV; Dissipative Dynamics of Projectile-Like Fragment Production in the Reaction 209 Bi+ 136 Xe at E/A = 28.2 MeV; Dynamical Production of Intermediate-Mass Fragments in Peripheral 209 Bi+ 136 Xe Collisions at E lab /A = 28.2 MeV; The Rochester 960-Liter Neutron Multiplicity Meter; A Simple Pulse Processing Concept for a Low-Cost Pulse-Shape-Based Particle Identification; A One-Transistor Preamplifier for PMT Anode Signals; A Five-Channel Multistop TDC/Event Handler for the SuperBall Neutron Multiplicity Meter; Construction of the SuperBall -- a 16,000-Liter Neutron Detector for Calorimetric Studies of Intermediate-Energy Heavy-Ion Reactions; A Computer Code for Light Detection Efficiency Calculations for Photo-multipliers of a Neutron Detector; Evaluation of Gd-Loaded Liquid Scintillators for the SuperBall Neutron Calorimeter; and Measurement of the Interaction of Cosmic-Ray μ - with a Muon Telescope

  19. KINETIC MODELS STUDY OF HYDRODESULPHURIZATION VACUUM DISTILLATE REACTION

    Directory of Open Access Journals (Sweden)

    AbdulMunem A. Karim

    2013-05-01

    Full Text Available    This study deals with  kinetics of hydrodesulphurization (HDS reaction of vacuum gas oil (611-833 K which was distillated from Kirkuk crude oil and which was obtained by blending the fractions, light vacuum gas oil (611 - 650 K, medium vacuum gas oil (650-690 K, heavy vacuum gas oil (690-727 K and very heavy vacuum gas oil (727-833 K.   The vacuum gas oil was hydrotreated on a commercial cobalt-molybdenum alumina catalyst presulfied at specified conditions in a laboratory trickle bed reactor. The reaction temperature range (583-643 K,liquid hourly space velocity range (1.5-3.75 h-1 and hydrogen pressure was kept constant at 3.5 MPa with hydrogen to oil ratio about 250 lt/lt.           The conversion results for desulphurization reaction appeared to obey the second order reaction. According to this model, the rate constants for desulphurization reaction were determined. Finally, the apparent activation energy (Ea, enthalpy of activation ( H* and entropy ( S* were calculated based on the values of rate constant (k2 and were equal 80.3792 KJ/mole, 75.2974 KJ/mole and 197.493 J/mole, respectively.

  20. Toluene pyrolysis studies and high temperature reactions of propargyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kern, R.D.; Chen, H.; Qin, Z. [Univ. of New Orleans, LA (United States)

    1993-12-01

    The main focus of this program is to investigate the thermal decompositions of fuels that play an important role in the pre-particle soot formation process. It has been demonstrated that the condition of maximum soot yield is established when the reaction conditions of temperature and pressure are sufficient to establish a radical pool to support the production of polyaromatic hydrocarbon species and the subsequent formation of soot particles. However, elevated temperatures result in lower soot yields which are attributed to thermolyses of aromatic ring structures and result in the bell-shaped dependence of soot yield on temperature. The authors have selected several acyclic hydrocarbons to evaluate the chemical thermodynamic and kinetic effects attendant to benzene formation. To assess the thermal stability of the aromatic ring, the authors have studied the pyrolyses of benzene, toluene, ethylbenzene, chlorobenzene and pyridine. Time-of-flight mass spectrometry (TOF) is employed to analyze the reaction zone behind reflected shock waves. Reaction time histories of the reactants, products, and intermediates are constructed and mechanisms are formulated to model the experimental data. The TOF work is often performed with use of laser schlieren densitometry (LS) to measure density gradients resulting from the heats of various reactions involved in a particular pyrolytic system. The two techniques, TOF and LS, provide independent and complementary information about ring formation and ring rupture reactions.

  1. Nanoscale size effect in in situ titanium based composites with cell viability and cytocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Miklaszewski, Andrzej, E-mail: andrzej.miklaszewski@put.poznan.pl [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland); Jurczyk, Mieczysława U. [Division Mother' s and Child' s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan (Poland); Kaczmarek, Mariusz [Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Paszel-Jaworska, Anna; Romaniuk, Aleksandra; Lipińska, Natalia [Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan (Poland); Żurawski, Jakub [Department of Immunobiochemistry, Chair of Biology and Environmental Sciences, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan (Poland); Urbaniak, Paulina [Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Jurczyk, Mieczyslaw [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland)

    2017-04-01

    Novel in situ Metal Matrix Nanocomposite (MMNC) materials based on titanium and boron, revealed their new properties in the nanoscale range. In situ nanocomposites, obtained through mechanical alloying and traditional powder metallurgy compaction and sintering, show obvious differences to their microstructural analogue. A unique microstructure connected with good mechanical properties reliant on the processing conditions favour the nanoscale range of results of the Ti-TiB in situ MMNC example. The data summarised in this work, support and extend the knowledge boundaries of the nanoscale size effect that influence not only the mechanical properties but also the studies on the cell viability and cytocompatibility. Prepared in the same bulk, in situ MMNC, based on titanium and boron, could be considered as a possible candidate for dental implants and other medical applications. The observed relations and research conclusions are transferable to the in situ MMNC material group. Aside from all the discussed relations, the increasing share of these composites in the ever-growing material markets, heavily depends on the attractiveness and a possible wider application of these composites as well as their operational simplicity presented in this work. - Highlights: • Nano and microscale size precursor influence the final composite microstructure and properties. • Obtained from the nanoscale precursor sinters, characterise with a uniform and highly dispersed microstructure • Mechanical properties favoured Nano scale size precursor • Boron addition could be significantly reduced for moderate properties range. • A possible candidate for dental implants and other medical applications.

  2. Reaction pathways of the dissociation of methylal: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H -M; Beaud, P; Gerber, T; Mischler, B; Radi, P P; Tzannis, A -P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Schemata for modelling combustion processes do not yet include reaction rates for oxygenated fuels like methylal (DMM) which is considered as an additive or replacement for diesel due to its low sooting propensity. Density functional theory (DFT) studies of the possible reaction pathways for different dissociation steps of methylal are presented. Cleavage of a hydrogen bond to the methoxy group or the central carbon atom were simulated at the BLYP/6-311++G{sup **} level of theory. The results are compared to the experiment when dissociating and/or ionising DMM with femtosecond pulses. (author) 1 fig., 1 tab., 1 ref.

  3. Studying reaction products in a lithium thionyl chloride cell

    International Nuclear Information System (INIS)

    Vol'fkovich, Yu.M.; Sosenkin, V.E.; Nikol'skaya, N.F.; Blinov, I.A.

    1999-01-01

    Change in the mass, volume and chemical composition of reaction insoluble products (RIP) formed in the course of discharge of thionyl chloride lithium cells under different conditions has been studied by the methods of gravimetry, volumetry and element analysis. It has been ascertained that the measured volume and mass of RIP essentially (by a factor of 1.1-1.8) exceed the calculated values, proceeding from the reaction stoichiometry. Besides lithium chloride and sulfur during discharge additional RIP is formed as LiAlCl 4 · SOCl 2 solvate, its share increasing with temperature decrease, increase in current density and electrolyte concentration [ru

  4. Study on the Attitude Control of Spacecraft Using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Ju-Young Du

    1998-06-01

    Full Text Available Attitude determination and control of satellite is important component which determines the accomplish satellite missions. In this study, attitude control using reaction wheels and momentum dumping of wheels are considered. Attitude control law is designed by Sliding control and LQR. Attitude maneuver control law is obtained by Shooting method. Wheels momentum dumping control law is designed by Bang-Bang control. Four reaction wheels are configurated for minimized the electric power consumption. Wheels control torque and magnetic moment of magnetic torquer are limited.

  5. A study of butyl acetate synthesis. 4-reaction kinetics

    OpenAIRE

    Álvaro Orjuela Londoño; Fernando Leiva Lenis; Luis Alejandro Boyacá Mendivelso; Gerardo Rodríguez Niño; Luis María Carballo Suárez

    2006-01-01

    This work was aimed at studying liquid-phase acetic acid and butyl alcohol esterification reaction (P atm =0.76 Bar),using an ion exchange resin (Lewatit K-2431) as catalyst. The effect of the absence of internal and external mass transport on catalyst particles was established in the research conditions used here. A set of assays to determine the effect of catalyst load (0.5%, 1%, 2% w/w) temperature (73°C, 80°C, 87°C) and molar ratio (1:2, 1:1, 2:1 acid/alcohol) on reaction rate was carrie...

  6. Theoretical nuclear reaction and structure studies using hyperons and photons

    International Nuclear Information System (INIS)

    Cotanch, S.R.

    1991-01-01

    This report details research progress and results obtained during the 12 month period from January 1991 through 31 December 1991. The research project, entitled ''Theoretical Nuclear Reaction and Structure Studies Using Hyperons and Photons,'' is supported by grant DE-FG05-88ER40461 between North Carolina State University and the United States Department of Energy. In compliance with grant requirements the Principal Investigator, Professor Stephen R. Cotanch, has conducted a research program addressing theoretical investigations of reactions involving hyperons and photons. The new, significant research results are briefly summarized in the following sections

  7. NATO Advanced Study Institute on Advances in Chemical Reaction Dynamics

    CERN Document Server

    Capellos, Christos

    1986-01-01

    This book contains the formal lectures and contributed papers presented at the NATO Advanced Study Institute on. the Advances in Chemical Reaction Dynamics. The meeting convened at the city of Iraklion, Crete, Greece on 25 August 1985 and continued to 7 September 1985. The material presented describes the fundamental and recent advances in experimental and theoretical aspects of, reaction dynamics. A large section is devoted to electronically excited states, ionic species, and free radicals, relevant to chemical sys­ tems. In addition recent advances in gas phase polymerization, formation of clusters, and energy release processes in energetic materials were presented. Selected papers deal with topics such as the dynamics of electric field effects in low polar solutions, high electric field perturbations and relaxation of dipole equilibria, correlation in picosecond/laser pulse scattering, and applications to fast reaction dynamics. Picosecond transient Raman spectroscopy which has been used for the elucidati...

  8. High vacuum general purpose scattering chamber for nuclear reaction study

    International Nuclear Information System (INIS)

    Suresh Kumar; Ojha, S.C.

    2003-01-01

    To study the nuclear reactions induced by beam from medium energy accelerators, one of the most common facility required is a scattering chamber. In the scattering chamber, projectile collides with the target nucleus and the scattered reaction products are detected with various type of nuclear detector at different angles with respect to the beam. The experiments are performed under high vacuum to minimize the background reaction and the energy losses of the charged particles. To make the chamber general purpose various requirement of the experiments are incorporated into it. Changing of targets, changing angle of various detectors while in vacuum are the most desired features. The other features like ascertaining the beam spot size and position on the target, minimizing the background counts by proper beam dump, accurate positioning of the detector as per plan etc. are some of the important requirements

  9. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krier, James M. [Univ. of California, Berkeley, CA (United States)

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  10. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1991-05-01

    This report discusses topics in the following areas: Hadronic structure; hadrons in nuclei; hot hadronic matter; relativistic nuclear physics and NN interaction; leptonic emissions from high-Z heavy ion collisions; theoretical studies of heavy ion dynamics; nuclear pre-equilibrium reactions; classical chaotic dynamics and nuclear structure; and, theory of nuclear fission

  11. In situ bioremediation of petroleum hydrocarbons and chlorinated hydrocarbons: Three case studies

    International Nuclear Information System (INIS)

    Bost, R.C.; Perry, R.G.; Barber, T.

    1997-01-01

    In situ biodegradation of organic contaminants is one of the most cost-effective means of site remediation. This method has proven successful in soils, ground water, and slurries. Bacteria capable of degrading organic contaminants within an aquifer include many species from a wide spectrum of genera, e.g. Pseudomonas, Corynebacterium, Bacillus, etc. In most cases, a mixture of bacterial strains is required to completely oxidize a complex organic contaminant. Each strain of an organism may target a specific compound, working together with other organisms to ultimately degrade each intermediate until complete degradation, also known as mineralization, occurs. One or more of the following mechanisms are utilized by bacteria for organic chemical degradation: (1) aerobic, (2) anaerobic, and (3) co-metabolic. During aerobic oxidation of organic chemicals, bacteria utilize the pollutant as an electron and hydrogen source and oxygen acts as the electron and hydrogen acceptor, resulting in water. As the bacterial enzymes cleave the compound, oxidized products are produced along with energy for the reaction to proceed. This is the most rapid and widely utilized mechanism. Dehalogenation occurs under aerobic, or perhaps more often, under anoxic conditions. This process occurs in the presence of alternate electron acceptors and replaces chlorine with hydrogen. The mechanism of co-metabolism can be aerobic or anaerobic, but is more often aerobic. This process requires a separate energy source for the bacterial cell because the pollutant is not utilized as an energy source. The role of bioremediation in site remediation is demonstrated below by three case studies: (1) a refinery, (2) a municipal landfill and (3) a pesticide formulation plant

  12. Fathead minnow whole-mount in situ hybridization (WISH)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This study demonstrates the potential of whole-mount in situ hybridization (WISH), in conjunction with quantitative real-time polymerase chain reaction (QPCR)...

  13. Real-time studies of battery electrochemical reactions inside a transmission electron microscope.

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Kevin; Hudak, Nicholas S.; Liu, Yang; Liu, Xiaohua H.; Fan, Hongyou; Subramanian, Arunkumar; Shaw, Michael J.; Sullivan, John Patrick; Huang, Jian Yu

    2012-01-01

    We report the development of new experimental capabilities and ab initio modeling for real-time studies of Li-ion battery electrochemical reactions. We developed three capabilities for in-situ transmission electron microscopy (TEM) studies: a capability that uses a nanomanipulator inside the TEM to assemble electrochemical cells with ionic liquid or solid state electrolytes, a capability that uses on-chip assembly of battery components on to TEM-compatible multi-electrode arrays, and a capability that uses a TEM-compatible sealed electrochemical cell that we developed for performing in-situ TEM using volatile battery electrolytes. These capabilities were used to understand lithiation mechanisms in nanoscale battery materials, including SnO{sub 2}, Si, Ge, Al, ZnO, and MnO{sub 2}. The modeling approaches used ab initio molecular dynamics to understand early stages of ethylene carbonate reduction on lithiated-graphite and lithium surfaces and constrained density functional theory to understand ethylene carbonate reduction on passivated electrode surfaces.

  14. [Studies of heavy-ion induced reactions]: Annual progress report

    International Nuclear Information System (INIS)

    Mignerey, A.C.

    1986-10-01

    An experiment was performed at the Lawrence Berkeley Laboratory Bevalac, extending previous studies using inverse reactions to 50 MeV/u 139 La incident on targets of C and Al. Studies of excitation energy division in lower energy division in lower energy heavy-ion reactions were furthered using kinematic coincidences to measure the excitation energies of primary products in the Fe + Ho reaction at 12 MeV/u. These results will provide important systematics for comparisons with previous measurements at 9 MeV/u on the same system and at 15 MeV/u on the Fe + Fe and Fe + U systems. Also studied were different aspects of 15 MeV/u Fe-induced reactions, with experiments performed at the Oak Ridge HHIRF. The first three contributions of this report constitute a major portion of the results from this research. Finally, at the Lawrence Berkeley Laboratory Bevalac a large detector array for coincident detection of fragmentation products in heavy-ion collisions below 100 MeV/u is being built. A list of publications, personnel, and activities is provided

  15. Spontaneous dispersion of PdO onto acid sites of zeolites studied by in situ DXAFS

    CERN Document Server

    Okumura, K; Niwa, M; Yokota, S; Kato, K; Tanida, H; Uruga, T

    2003-01-01

    The generation of highly dispersed PdO over zeolite supports was studied using in situ energy-dispersive XAFS (DXAFS) technique. From the comparison with the Na-ZSM-5, it was found that the oxidation as well as the spontaneous dispersion of Pd was promoted through the interaction between PdO and acid sites of H-form zeolites. (author)

  16. Coalescence and compression in centrifuged emulsions studied with in situ optical microscopy

    NARCIS (Netherlands)

    Krebs, T.; Ershov, D.S.; Schroën, C.G.P.H.; Boom, R.M.

    2013-01-01

    We report an experimental method to investigate droplet dynamics in centrifuged emulsions and its application to study droplet compression and coalescence. The experimental setup permits in situ monitoring of an ensemble of droplets in a centrifuged monolayer of monodisperse emulsion droplets using

  17. Dynamical In Situ Study of Morphological Changes of Bentonite in ESEM

    Czech Academy of Sciences Publication Activity Database

    Navrátilová, Eva; Neděla, Vilém; Sun, H.; Mašín, D.

    2017-01-01

    Roč. 23, S1 (2017), s. 2196-2197 ISSN 1431-9276 R&D Projects: GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : ESEM * morphological changes * in situ study Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Geology Impact factor: 1.891, year: 2016

  18. Surface phenomena revealed by in situ imaging: studies from adhesion, wear and cutting

    Science.gov (United States)

    Viswanathan, Koushik; Mahato, Anirban; Yeung, Ho; Chandrasekar, Srinivasan

    2017-03-01

    Surface deformation and flow phenomena are ubiquitous in mechanical processes. In this work we present an in situ imaging framework for studying a range of surface mechanical phenomena at high spatial resolution and across a range of time scales. The in situ framework is capable of resolving deformation and flow fields quantitatively in terms of surface displacements, velocities, strains and strain rates. Three case studies are presented demonstrating the power of this framework for studying surface deformation. In the first, the origin of stick-slip motion in adhesive polymer interfaces is investigated, revealing a intimate link between stick-slip and surface wave propagation. Second, the role of flow in mediating formation of surface defects and wear particles in metals is analyzed using a prototypical sliding process. It is shown that conventional post-mortem observation and inference can lead to erroneous conclusions with regard to formation of surface cracks and wear particles. The in situ framework is shown to unambiguously capture delamination wear in sliding. Third, material flow and surface deformation in a typical cutting process is analyzed. It is shown that a long-standing problem in the cutting of annealed metals is resolved by the imaging, with other benefits such as estimation of energy dissipation and power from the flow fields. In closure, guidelines are provided for profitably exploiting in situ observations to study large-strain deformation, flow and friction phenomena at surfaces that display a variety of time-scales.

  19. Direct Observations of Oxygen-induced Platinum Nanoparticle Ripening Studied by In Situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chorkendorff, Ib; Dahl, Søren

    2010-01-01

    This study addresses the sintering mechanism of Pt nanoparticles dispersed on a planar, amorphous Al2O3 support as a model system for a catalyst for automotive exhaust abatement. By means of in situ transmission electron microscopy (TEM), the model catalyst was monitored during the exposure to 10...

  20. In situ, Cr K-edge XAS study on the Phillips catalyst : activation and ethylene polymerization

    NARCIS (Netherlands)

    Groppo, E.; Prestipino, C.; Cesano, F.; Bonino, F.; Bordiga, S.; Lamberti, C.; Thuene, P.C.; Niemantsverdriet, J.W.; Zecchina, A.

    2005-01-01

    In this in situ EXAFS and XANES study on the Phillips ethylene-polymerization Cr/SiO2 catalyst, two polymerization routes are investigated and compared. The first mimics that adopted in industrial plants, where ethylene is dosed directly on the oxidized catalyst, while in the second the oxidized

  1. Development of equipment for in situ studies of biofilm in hot water systems

    DEFF Research Database (Denmark)

    Bagh, Lene Karen; Albrechtsen, Hans-Jørgen; Arvin, Erik

    1999-01-01

    New equipment was developed for in situ studies of biofilms in hot water tanks and hot water pipes under normal operation and pressure. Sampling ports were installed in the wall of a hot water tank and through these operating shafts were inserted with a test plug in the end. The surface of the test...

  2. Methodology for in situ synchrotron X-ray studies in the laser-heated diamond anvil cell

    DEFF Research Database (Denmark)

    Mezouar, M.; Giampaoli, R.; Garbarino, G.

    2017-01-01

    A review of some important technical challenges related to in situ diamond anvil cell laser heating experimentation at synchrotron X-ray sources is presented. The problem of potential chemical reactions between the sample and the pressure medium or the carbon from the diamond anvils is illustrated...

  3. Study of austempering reaction in austempered ductile iron

    International Nuclear Information System (INIS)

    Ja'far Farhan Al-Sharab; Sharma, D.G.R.; Samsul Bahar Sadli

    1996-01-01

    Austempered Ductile Iron (ADI) is an important engineering material which is gaining popularity. The conventional belief that austempered ductile iron, when heat treated satisfactorily, contains bainite, is now disproved by recent experiments. Our present work on the study of the reaction products of heat treated ADI by x-ray diffraction confirms the recent view. The results of x-ray diffraction studies on the structural constituents od ADI for various durations of austempering are presented and discussed

  4. In Situ complement activation and T-cell immunity in leprosy spectrum: An immunohistological study on leprosy lesional skin.

    Science.gov (United States)

    Bahia El Idrissi, Nawal; Iyer, Anand M; Ramaglia, Valeria; Rosa, Patricia S; Soares, Cleverson T; Baas, Frank; Das, Pranab K

    2017-01-01

    Mycobacterium leprae (M. leprae) infection causes nerve damage and the condition worsens often during and long after treatment. Clearance of bacterial antigens including lipoarabinomannan (LAM) during and after treatment in leprosy patients is slow. We previously demonstrated that M. leprae LAM damages peripheral nerves by in situ generation of the membrane attack complex (MAC). Investigating the role of complement activation in skin lesions of leprosy patients might provide insight into the dynamics of in situ immune reactivity and the destructive pathology of M. leprae. In this study, we analyzed in skin lesions of leprosy patients, whether M. leprae antigen LAM deposition correlates with the deposition of complement activation products MAC and C3d on nerves and cells in the surrounding tissue. Skin biopsies of paucibacillary (n = 7), multibacillary leprosy patients (n = 7), and patients with erythema nodosum leprosum (ENL) (n = 6) or reversal reaction (RR) (n = 4) and controls (n = 5) were analyzed. The percentage of C3d, MAC and LAM deposition was significantly higher in the skin biopsies of multibacillary compared to paucibacillary patients (p = leprosy patients (r = 0.9578, pleprosy patients (p = leprosy patients, suggesting that inflammation driven by complement activation might contribute to nerve damage in the lesions of these patients. This should be regarded as an important factor in M. leprae nerve damage pathology.

  5. In-situ TEM Studies : Heat-treatment and Corrosion

    NARCIS (Netherlands)

    Malladi, S.R.K.

    2014-01-01

    Transmission electron microscopy (TEM) has been well known as a powerful characterisation tool to understand the structure and composition of various materials down to the atomic level. Over the years, several TEM studies have been carried out to understand the compositional, structural and

  6. In-situ TEM studies of microstructure evolution under ion irradiation for nuclear engineering applications

    International Nuclear Information System (INIS)

    Kaoumi, D.

    2011-01-01

    One of the difficulties of studying processes occurring under irradiation (in a reactor environment) is the lack of kinetics information since usually samples are examined ex situ (i.e. after irradiation) so that only snapshots of the process are available. Given the dynamic nature of the phenomena, direct in situ observation is invaluable for better understanding the mechanisms, kinetics and driving forces of the processes involved. This can be done using in situ ion irradiation in a TEM at the IVEM facility at Argonne National Laboratory which, in the USA, is a unique facility. To predict the in reactor behavior of alloys, it is essential to understand the basic mechanisms of radiation damage formation (loop density, defect interactions) and accumulation (loop evolution, precipitation or dissolution of second phases etc.). In-situ Ion-irradiation in a TEM has proven a very good tool for that purpose as it allows for the direct determination of the formation and evolution of irradiation-induced damage and the spatial correlation of the defect structures with the pre-existing microstructure (including lath boundaries, network dislocations and carbides) as a function of dose, dose rate, temperature and ion type. Using this technique, different aspects of microstructure evolution under irradiation were studied, such as defect cluster formation and evolution as a function of dose in advanced Ferritic/Martensitic (F/M) steels, the irradiation stability of precipitates in Oxide Dispersion Strengthened (ODS) steels, and irradiation-induced grain-growth. Such studies will be reported in this presentation

  7. A new cryostat for 'in situ' radiation damage studies

    International Nuclear Information System (INIS)

    Hariharan, Y.; Radhakrishnan, T.S.

    1977-01-01

    Conventional cryostats to study properties of materials between 4deg K and 300deg K base their designs either on continuous flow or bath type. A new cryostat which incorporates the advantages of both these has been designed and fabricated. This essentially has three chambers isolated from each other by poor thermal links. These are enclosed in a vacuum chamber and the whole assembly is immersed in a 4 He bath. The lowermost chamber is kept in good thermal contact with the bath. The second chamber can be maintained between 4deg K and 77deg K by circulation of cold 4 He vapour. The uppermost chamber can be maintained between 77deg K and 300deg K by circulating cold nitrogen vapours. There is a through axial hole in the centre, through which the sample can be moved up and down by means of a thin walled stainless steel tube. This comes out from the top of the cryostat through a Wilson seal. Thus the specimen can be anchored in any of the three chambers. This cryostat can be used to study the radiation damages caused by α-particles the sample being kept at 4.2deg K. There is provision for isolating the sample from the radiation zone. Isothermal and isochronal annealing of the damage caused can also be studied. Provision for taking out electrical leads from both inside and outside the sample chamber are also there. (auth.)

  8. Unified studies of structure and reactions in light unstable nuclei

    Directory of Open Access Journals (Sweden)

    Ito Makoto

    2016-01-01

    Full Text Available The generalized two-center cluster model (GTCM, which can treat covalent, ionic and atomic configurations in general systems with two inert cores plus valence nucleons, is formulated in the basis of the microscopic cluster model. In this model, the covalent configurations constructed by the molecular orbital (MO method and the atomic (or ionic configuration obtained by the valence bonding (VB method can be described in a consistent manner. GTCM is applied to the light neutron-rich system, 10,12Be = α + α + XN (X = 2,4, and the unified studies of the structural changes and the reaction problem are performed. In the structure study, the calculated energy levels are characterized in terms of the chemical bonding like structures, such as the covalent MO or ionic VB structures. The chemical bonding structures changes from level to level within a small energy interval. In the unbound region, the structure problem with the total system of α + α + XN and the reaction problem, induced by the collision of an asymptotic VB state of α+6,8He, are combined by GTCM. The properties of unbound resonant states are discussed in a close connection to the reaction mechanism, and some enhancement factors originated from the properties of the intrinsic states are predicted in the reaction observables. The unified calculation of the structures and the reactions is applied to the Coulomb shift problem in the mirror system, such the 10Be and 10C nuclei. The Coulomb displacement energy of the mirror systems are discussed.

  9. Charged particle reaction studies on /sup 14/C. [Spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, F E; Shepard, J R; Anderson, R E; Peterson, R J; Kaczkowski, P [Colorado Univ., Boulder (USA). Nuclear Physics Lab.

    1975-12-22

    The reactions /sup 14/C(p,d), (d,d') and (d,p) have been measured for E/sub p/ = 27 MeV and E/sub d/ = 17 MeV. The (d,d') and (d,p) reactions were studied between theta/sub lab/ = 15/sup 0/ and 85/sup 0/; the (p,d) reactions, between theta/sub lab/ = 5/sup 0/ and 40/sup 0/. The /sup 14/C deformation parameters were deduced from the deuteron inelastic scattering and found to agree with deformations measured in nearby doubly even nuclei. The spectroscopic factors deduced from the (p,d) reaction allowed a /sup 14/C ground-state wave function to be deduced which compares favorably with a theoretically deduced wave function. The (p,d) and (d,p) spectroscopic factors are consistent. The implications of our /sup 14/C ground-state wave function regarding the problem of the /sup 14/C hindered beta decay are discussed.

  10. Inertial confinement fusion reaction chamber and power conversion system study

    International Nuclear Information System (INIS)

    Maya, I.; Schultz, K.R.; Battaglia, J.M.

    1984-09-01

    GA Technologies has developed a conceptual ICF reactor system based on the Cascade rotating-bed reaction chamber concept. Unique features of the system design include the use of low activation SiC in a reaction chamber constructed of box-shaped tiles held together in compression by prestressing tendons to the vacuum chamber. Circulating Li 2 O granules serve as the tritium breeding and energy transport material, cascading down the sides of the reaction chamber to the power conversion system. The total tritium inventory of the system is 6 kg; tritium recovery is accomplished directly from the granules via the vacuum system. A system for centrifugal throw transport of the hot Li 2 O granules from the reaction chamber to the power conversion system has been developed. A number of issues were evaluated during the course of this study. These include the response of first-layer granules to the intense microexplosion surface heat flux, cost effective fabrication of Li 2 O granules, tritium inventory and recovery issues, the thermodynamics of solids-flow options, vacuum versus helium-medium heat transfer, and the tradeoffs of capital cost versus efficiency for alternate heat exchange and power conversion system option. The resultant design options appear to be economically competitive, safe, and environmentally attractive

  11. In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan, E-mail: dany@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Jia, Shaojie [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Fodjo, Essy Kouadio [Laboratory of Physical Chemistry, University Felix Houphouet Boigny, 22 BP 582, Abidjan 22, Cote d’Ivoire (Cote d' Ivoire); Xu, Hu [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Wang, Yuhong, E-mail: yuhong_wang502@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Deng, Wei [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China)

    2016-03-30

    Graphical abstract: The orientation of anthraquinone-2-carboxylic acid (AQ-2-COOH) has been investigated by in situ surface-enhanced Raman scattering (in situ SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) on silver surface. - Highlights: • The adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on Ag electrode is influenced by the pH. • The pH-dependant adsorption of AQ-2-COOH has been confirmed by in situ surface-enhanced Raman scattering (in situ SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS). • The results can provide insights into electron transfer reactions of AQ-2-COOH in biological systems. - Abstract: In this study, in situ surface-enhanced Raman scattering (SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) are used to investigate the redox reaction and adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on an Ag electrode at different pH values. The obtained results indicate that AQ-2-COOH is adsorbed tilted on the Ag electrode through O-atom of ring carbonyl in a potential range from −0.3 to −0.5 V vs. SCE, but the orientation turns to more tilted orientation with both O-atom of the ring carbonyl and carboxylate group in positive potential region for pH 6.0 and 7.4. However, at pH 10.0, the orientation adopts tilted conformation constantly on the Ag electrode with both O-atom of the anthraquinone ring and carboxylate group in the potential range from −0.3 to −0.5 V vs. SCE or at positive potentials. Moreover, the adsorption behavior of AQ-2-COOH has been further confirmed by AR-XPS on the Ag surface. Proposed reasons for the observed changes in orientation are presented.

  12. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  13. Computational and experimental studies on stabilities, reactions and reaction rates of cations and ion-dipole complexes

    NARCIS (Netherlands)

    Ervasti, H.K.

    2008-01-01

    In this thesis, ion stability, ion-molecule reactions and reaction rates are studied using mass spectrometry and molecular modelling. In Chapter 2 the effect of functional group substitution on neutral and ionised ketene are studied. Electron-donating substituents show a stabilising positive

  14. Effects of Processing Parameters on the Fabrication of in-situ Al/TiC Composites by Thermally Activated Combustion Reaction Process in an Aluminium Melt using Al-TiO_2-C Powder Mixtures

    International Nuclear Information System (INIS)

    Kim, Hwa-Jung; Lee, Jung-Moo; Cho, Young-Hee; Kim, Jong-Jin; Kim, Su-Hyeon; Lee, Jae-Chul

    2012-01-01

    A feasible way to fabricate in-situ Al/TiC composites was investigated. An elemental mixture of Al-TiO_2-C pellet was directly added into an Al melt at 800-920°C to form TiC by self-combustion reaction. The addition of CuO initiates the self-combustion reaction to form TiC in 1-2 um at the melt temperature above 850°C. Besides the CuO addition, a diluent element of excess Al plays a significant role in the TiC formation by forming a precursor phase, Al_3Ti. Processing parameters such as CuO content, the amount of excess Al and the melt temperature, have affected the combustion reaction and formation of TiC, and their influences on the microstructures of in-situ Al/TiC composites are examined.

  15. Cost studies of thermally enhanced in situ soil remediation technologies

    International Nuclear Information System (INIS)

    Bremser, J.; Booth, S.R.

    1996-05-01

    This report describes five thermally enhanced technologies that may be used to remediate contaminated soil and water resources. The standard methods of treating these contaminated areas are Soil Vapor Extraction (SVE), Excavate ampersand Treat (E ampersand T), and Pump ampersand Treat (P ampersand T). Depending on the conditions at a given site, one or more of these conventional alternatives may be employed; however, several new thermally enhanced technologies for soil decontamination are emerging. These technologies are still in demonstration programs which generally are showing great success at achieving the expected remediation results. The cost savings reported in this work assume that the technologies will ultimately perform as anticipated by their developers in a normal environmental restoration work environment. The five technologies analyzed in this report are Low Frequency Heating (LF or Ohmic, both 3 and 6 phase AC), Dynamic Underground Stripping (DUS), Radio Frequency Heating (RF), Radio Frequency Heating using Dipole Antennae (RFD), and Thermally Enhanced Vapor Extraction System (TEVES). In all of these technologies the introduction of heat to the formation raises vapor pressures accelerating contaminant evaporation rates and increases soil permeability raising diffusion rates of contaminants. The physical process enhancements resulting from temperature elevations permit a greater percentage of volatile organic compound (VOC) or semi- volatile organic compound (SVOC) contaminants to be driven out of the soils for treatment or capture in a much shorter time period. This report presents the results of cost-comparative studies between these new thermally enhanced technologies and the conventional technologies, as applied to five specific scenarios

  16. Crossed-beam studies of the dynamics of radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The objective of this program is to characterize the detailed dynamics of elementary radical reactions and to provide a better understanding of radical reactivity in general. The radical beam is typically generated by a laser photolysis method. After colliding with the reacting molecule in a crossed-beam apparatus, the reaction product state distribution is interrogated by laser spectroscopic techniques. Several radicals of combustion significance, such as O, CH, OH, CN and NCO have been successfully generated and their collisional behavior at the state-to-state integral cross section level of detail has been studied in this manner. During the past year, the detection system has been converted from LIF to REMPI schemes, and the emphasis of this program shifted to investigate the product angular distributions. Both inelastic and reactive processes have been studied.

  17. Continuing studies of alkali-aggregate reactions in concrete

    International Nuclear Information System (INIS)

    Gilliot, J.E.; Beddoes, R.J.

    1981-01-01

    Studies are continuing into the nature of the different forms of the alkali-aggregate reaction. No general agreement exists as to the detailed nature of the expansive mechanisms. Alkali is known to react internally with opaline silica because of its microporous nature whereas reaction at the external surface is thought to be relatively more important in the case of quartz. A combination of Fourier shape and surface texture analysis, microscopy and osmotic studies is being used to obtain information on the relative importance of these two forms of alkaline attack on silica. Analytical methods are much more rapid than dimensional change tests and it is hoped that a better understanding of the expansion mechanism will lead to more certain recognition of potentially alkali expansive aggregates

  18. Prospects in the study of very inelastic electronuclear reactions

    International Nuclear Information System (INIS)

    Laget, J.M.

    1983-03-01

    Nuclear physics has reached a frontier where it is not possible to consider the classical constituents (mesons and nucleons) as inert objects: it is necessary to take also into account internal structure. After having shown how the study of nuclei, with the electromagnetic probe, has made it possible to solve and clarify some problems, it is shown under what conditions these internal degrees of freedom can show up in the study of electronuclear reactions, and to what extent the study of complex hadronic systems at short distance is an essential complement to the study of high momentum scattering between elementary hadrons

  19. Novel concept of recycling sludge and dust to BOF converter through dispersed in-situ phase induced by composite ball explosive reaction

    Science.gov (United States)

    Tang, Fu-ping; Yu, Shu-juan; Fei, Peng; Hou, Hou-yu; Qian, Feng; Wang, Xiao-feng

    2017-08-01

    Recycling of iron and steelmaking dusts is a key issue in environmental protection efforts and to ensure efficient utilization. In this investigation, we developed a novel recovery process that uses a dispersed in-situ phase induced by an explosive reaction of composite balls of iron and steelmaking dusts. We designed and prepared composite balls for this function using a laboratory model batch-type balling disc (at 12 r/min) and optimized the feeding modes in 180-t and 260-t basic oxygen furnace (BOF) converters. The results indicate that feeding composite balls into BOF converters is an effective novel technology for recovering iron and steelmaking dusts. The period after hot metal charging and prior to the oxygen-blowing process is the most reasonable time to feed composite balls. Composite ball treatment is not appropriate for steel production with sulfur requirements lower than 80 ppm. The maximum composite ball feeding amount is 40 kg/t and the iron yield rate is better than 95%. Compared with the conventional recycling process of sludge and dust, this novel technology is more convenient and efficient, saving up to 309 RMB per ton of steel. Further investigation of this novel recycling technology is merited.

  20. In-situ Study of Dynamic Phenomena at Metal Nanosolder Interfaces Using Aberration Corrected Scanning Transmission Electron Microcopy.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ping

    2014-10-01

    Controlling metallic nanoparticle (NP) interactions plays a vital role in the development of new joining techniques (nanosolder) that bond at lower processing temperatures but remain viable at higher temperatures. The pr imary objective of this project is t o develop a fundamental understanding of the actual reaction processes, associated atomic mechanisms, and the resulting microstructure that occur during thermally - driven bond formation concerning metal - metal nano - scale (%3C50nm) interfaces. In this LDRD pr oject, we have studied metallic NPs interaction at the elevated temperatures by combining in - situ transmission electron microscopy (TEM ) using an aberration - corrected scanning transmission electron microscope (AC - STEM) and atomic - scale modeling such as m olecular dynamic (MD) simulations. Various metallic NPs such as Ag, Cu and Au are synthesized by chemical routines. Numerous in - situ e xperiments were carried out with focus of the research on study of Ag - Cu system. For the first time, using in - situ STEM he ating experiments , we directly observed t he formation of a 3 - dimensional (3 - D) epitaxial Cu - Ag core - shell nanoparticle during the thermal interaction of Cu and Ag NPs at elevated temperatures (150 - 300 o C). The reaction takes place at temperatures as low as 150 o C and was only observed when care was taken to circumvent the effects of electron beam irradiation during STEM imaging. Atomic - scale modeling verified that the Cu - Ag core - shell structure is energetically favored, and indicated that this phenomenon is a nano - scale effect related to the large surface - to - volume ratio of the NPs. The observation potentially can be used for developing new nanosolder technology that uses Ag shell as the "glue" that stic ks the particles of Cu together. The LDRD has led to several journal publications and numerous conference presentations, and a TA. In addition, we have developed new TEM characterization techniques and phase

  1. A Reactive Oxide Overlayer on Rh Nanoparticles during CO Oxidation and Its Size Dependence Studied by in Situ Ambient Pressure XPS

    International Nuclear Information System (INIS)

    Grass, Michael E.; Zhang, Yawen; Butcher, Derek R.; Park, Jeong Y.; Li, Yimin; Bluhm, Hendrik; Bratlie, Kaitlin M.; Zhang, Tianfu; Somorjai, Gabor A.

    2008-01-01

    CO oxidation is one of the most studied heterogeneous reactions, being scientifically and industrially important, particularly for removal of CO from exhaust streams and preferential oxidation for hydrogen purification in fuel cell applications. The precious metals Ru, Rh, Pd, Pt, and Au are most commonly used for this reaction because of their high activity and stability. Despite the wealth of experimental and theoretical data, it remains unclear what is the active surface for CO oxidation under catalytic conditions for these metals. In this communication, we utilize in situ synchrotron ambient pressure X-ray photoelectron spectroscopy (APXPS) to monitor the oxidation state at the surface of Rh nanoparticles during CO oxidation and demonstrate that the active catalyst is a surface oxide, the formation of which is dependent on particle size. The amount of oxide formed and the reaction rate both increase with decreasing particle size.

  2. Nanoindentation studies of ex situ AlN/Al metal matrix nanocomposites

    International Nuclear Information System (INIS)

    Fale, Sandeep; Likhite, Ajay; Bhatt, Jatin

    2014-01-01

    Highlights: • Formation of in-situ phases nucleated on AlN particles strengthens the matrix. • Formation of in-situ phases increases with AlN content in nanocomposites. • Stronger in-situ phases results in increased hardness and modulus of elasticity. - Abstract: Nanocrystalline Aluminium nitride (AlN) powder is dispersed in different weight ratio in Aluminum matrix to fabricate metal matrix nanocomposite (MMNC) using ex situ melt metallurgy process. The synthesized Al–AlN nanocomposites are studied for phase analysis using high resolution scanning electron microscopy (FEG-SEM) and for hardness behavior using microindentation and nanoindentation tests. Quantitative analysis of the oxide phases is calculated from thermodynamic data and mass balance equation using elemental data obtained from energy dispersive spectroscopy (EDS) results. Role of oxide phases in association with AlN particles is investigated to understand the mechanical behavior of composites using nanoindentation tester. Load–displacement profile obtained from nanoindentation test reveals distribution of oxide phases along with AlN particle and their effect on indent penetration

  3. Study of charged current reactions induced by muon antineutrinos

    International Nuclear Information System (INIS)

    Huss, D.

    1979-07-01

    We present in this work a study of antineutrino reactions on light targets. We have used the Gargamelle cloud chamber with a propane-freon mix. In the 2 first chapters we give a brief description of the experimental setting and we present the selection criteria of the events. In the third chapter we analyse the data for the reaction anti-ν + p → μ + + n that preserves strangeness. We have deduced the values of the axial (M A ) and vector (M V ) form factors: M A = (O.92 ± 0.08) GeV and M V = (0.86 ± 0.04) GeV. In the fourth chapter we study reactions in which strange particles appear (ΔS = 1) and we have determined their production cross-sections. The elastic reaction: anti-ν + p → μ + + Λ is studied in a more accurate manner thanks to a 3-constraint adjustment that enables the selection of events occurring on free protons. We have deduced from our data the longitudinal, orthogonal and transverse polarization of Λ, we have got respectively P l = -0.06 ± 0.44; P p = 0.29 ± 0.41; P t 1.05 ± 0.30. We have also deduced the values of the total cross-section as a function of the incident antineutrino energy E: σ (0.27 ± 0.02)*E*10 -38 cm -2 . E has been assessed from the energy deposited in the cloud chamber and we have adjusted the cross-section with a straight line as it is expected under the assumption of scale invariance. (A.C.)

  4. Studies of Catalytic Properties of Inorganic Rock Matrices in Redox Reactions

    Directory of Open Access Journals (Sweden)

    Nikolay M. Dobrynkin

    2017-09-01

    Full Text Available Intrinsic catalytic properties of mineral matrices of various kinds (basalts, clays, sandstones were studied, which are of interest for in-situ heavy oil upgrading (i.e., underground to create advanced technologies for enhanced oil recovery. The elemental, surface and phase composition and matrix particle morphology, surface and acidic properties were studied using elemental analysis, X-ray diffraction, adsorption and desorption of nitrogen and ammonia. The data on the catalytic activity of inorganic matrices in ammonium nitrate decomposition (reaction with a large gassing, oxidation of hydrocarbons and carbon monoxide, and hydrocracking of asphaltenes into maltenes (the conversion of heavy hydrocarbons into more valuable light hydrocarbons were discussed. In order to check their applicability for the asphaltenes hydrocracking catalytic systems development, basalt and clay matrices were used as supports for iron/basalt, nickel/basalt and iron/clay catalysts. The catalytic activity of the matrices in the reactions of the decomposition of ammonium nitrate, oxidation of hydrocarbons and carbon monoxide, and hydrocracking of asphaltens was observed for the first time.

  5. Subpicosecond pulse radiolysis studies on spur reactions and nanotechnology

    International Nuclear Information System (INIS)

    Tagawa, S.

    2003-01-01

    Recently we developed a subpicosecond pulse radiolysis system, although the time resolution of pulse radiolysis had remained about 30 ps for these 30 years. Time resolution and S/N ratio have been improved dramatically. The subpicosecond pulse radiolysis is a very powerful method to detect and observe transient phenomena in radiation chemistry and physics within 30 ps. By using the subpicosecond pulse radiolysis, many researches have been carried out on ultrafast phenomena in radiation chemistry, physics, biology and applied fields such as material science.Especially the spur reaction, which is one of the most important reactions in radiation chemistry, physics and biology, has been studied in the very wide time range from subpicosecond to several hundred nanoseconds by very high S/N ratio. These experimental results were analyzed theoretically and applied to the basic data for nanofabrication, which are very important in both next generation lithography and nanotechnology

  6. Study of charge transfer reactions in a microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E.; Savadogo, O. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Chimique; National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.; Tartakovsky, B. [National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.

    2008-07-01

    Electron transfer reactions in a microbial fuel cell (MFC) were evaluated. The MFC was inoculated with anaerobic mesophilic sludge and operated with carbon felt, carbon cloth, and platinum (Pt) coated carbon cloth. The MFC was then fed with either acetate or glucose as a source of fuel and operated at a temperature of 25 degrees C and a pH of 7. Scanning electron microscopy (SEM) micrographs demonstrated that the micro-organisms colonized the anodes. Cyclic voltammetry and polarization tests were conducted using different fractions of the anodophilic biofilm in order to determine charge transfer routes. The study characterized the electron transfer mechanisms used by the exoelectrogenic micro-organisms to produce electricity. It was concluded that further research is needed to characterize reaction transfer routes. 2 refs., 1 fig.

  7. A semiconductor counter telescope for neutron reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Lalovic, B I; Ajdacic, V S [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1963-12-15

    A counter telescope consisting of two or three semiconductor counters for {delta}E/{delta}x vs. E analysis was made for studying nuclear reactions induced by 14.4 MeV neutrons. Various factors important for the telescope performance are discussed in details and some solutions for getting an optimum resolution and a low background are given. Protons, deuterons and alpha particles resulting from scattering and reactions of 14.4 MeV neutrons on deuterium, tritium, praseodymium and niobium were detected, and pulses from the counters recorded on a two-dimensional analyzer. These experiments have shown that the telescope compares favorably with other types of telescopes with regards to the upper limit of neutron flux which can be used, (DELTADELTA)x and E resolution, versatility and compactness (author)

  8. Direct Reaction Experimental Studies with Beams of Radioactive Tin Ions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K. L. [University of Tennessee, Knoxville (UTK); Ahn, S.H. [University of Tennessee, Knoxville (UTK); Allmond, James M [ORNL; Ayres, A. [University of Tennessee, Knoxville (UTK); Bardayan, Daniel W [ORNL; Baugher, T. [Michigan State University, East Lansing; Bazin, D. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL); Beene, James R [ORNL; Berryman, J. S. [Michigan State University, East Lansing; Bey, A. [University of Tennessee, Knoxville (UTK); Bingham, C. R. [University of Tennessee, Knoxville (UTK); Cartegni, L. [University of Tennessee, Knoxville (UTK); Chae, K. Y. [University of Tennessee, Knoxville (UTK)/Sungkyunkwan University, Korea; Cizewski, J. A. [Rutgers University; Gade, A. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL); Galindo-Uribarri, Alfredo {nmn} [ORNL; Garcia-Ruiz, R.F. [Instituut voor Kernen Stralingsfysica, KU Leuven, B-3001, Leuven, Belgium; Grzywacz, Robert Kazimierz [ORNL; Howard, Meredith E [ORNL; Kozub, R. L. [Tennessee Technological University (TTU); Liang, J Felix [ORNL; Manning, Brett M [ORNL; Matos, M. [Louisiana State University; McDaniel, S. [Michigan State University, East Lansing; Miller, D. [University of Tennessee, Knoxville (UTK); Nesaraja, Caroline D [ORNL; O' Malley, Patrick [Rutgers University; Padgett, S [University of Tennessee, Knoxville (UTK); Padilla-Rodal, Elizabeth [Universidad Nacional Autonoma de Mexico (UNAM); Pain, Steven D [ORNL; Pittman, S. T. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Radford, David C [ORNL; Ratkiewicz, Andrew J [ORNL; Schmitt, Kyle [ORNL; Smith, Michael Scott [ORNL; Stracener, Daniel W [ORNL; Stroberg, S. [Michigan State University, East Lansing; Tostevin, Jeffrey A [ORNL; Varner Jr, Robert L [ORNL; Weisshaar, D. [Michigan State University, East Lansing; Wimmer, K. [Michigan State University, National Superconducting Cyclotron Laboratory (NSCL)/Central Michigan University; Winkler, R. [Michigan State University, East Lansing

    2015-01-01

    The tin chain of isotopes provides a unique region in which to investigate the evolution of single-particle structure, spreading from N = 50 at Sn-100, through 10 stable isotopes and the N = 82 shell closure at Sn-132 out into the r-process path. Direct reactions performed on radioactive ion beams are sensitive spectroscopic tools for studying exotic nuclei. Here we present one experiment knocking out neutrons from tin isotopes that are already neutron deficient and two reactions that add a neutron to neutron-rich Sn-130. Both techniques rely on selective particle identification and the measurement of gamma rays in coincidence with charged ions. We present the goals of the two experiments and the particle identification for the channels of interest. The final results will be presented in future publications.

  9. Study on radiation grafting reaction of MMA onto hydroxyapatite

    International Nuclear Information System (INIS)

    Jiang Bo

    1996-01-01

    The grafting reaction of MMA onto hydroxyapatite has been studied with the pre-irradiation method in air. The effects of radiation dose, monomer concentration, reaction temperature and inorganic acid on the system are observed. The grafting copolymerization is found to be controlled by the kinetics. If proper kinetic conditions are selected, a better grafting yield can be obtained. Employing weight method, burning method as well as SeM and IR analysis, it has been proved that MMA is definitely grafted onto hydroxyapatite by chemical bonds, which shows that it is possible to improve the interface of inorganic-organic composite materials and to make bioactive ceramics by using radiation induced-grafting copolymerization

  10. High resolution studies of pion-nucleus reaction mechanism

    International Nuclear Information System (INIS)

    Morris, C.L.

    1983-01-01

    Pion inelastic scattering is generally well described as a first order process using the DWIA. This is especially true for a large body of inelastic scattering data to low-lying collective states which is well-described by form factors obtained in (e,e') and the DWIA. Some data for which this model does not work are presented. Higher order reaction mechanisms have been invoked to explain some of these data. However, no model of these second order processes gives a satisfactory explanation of the entire data set. Experimentally, more data for pion-induced transitions to low-spin unnatural-parity states which have been studied by other probes would be useful in sorting out the reaction mechanisms responsible for the anomalous cross sections observed for the 1 + states in 12 C. Theoretically, a consistent evaluation of possible second-order diagrams in inelastic scattering, such as is being attempted for DCX 22 , would be useful

  11. A study of butyl acetate synthesis. 4-reaction kinetics

    Directory of Open Access Journals (Sweden)

    Álvaro Orjuela Londoño

    2006-05-01

    Full Text Available This work was aimed at studying liquid-phase acetic acid and butyl alcohol esterification reaction (P atm =0.76 Bar,using an ion exchange resin (Lewatit K-2431 as catalyst. The effect of the absence of internal and external mass transport on catalyst particles was established in the research conditions used here. A set of assays to determine the effect of catalyst load (0.5%, 1%, 2% w/w temperature (73°C, 80°C, 87°C and molar ratio (1:2, 1:1, 2:1 acid/alcohol on reaction rate was carried out and both LHHW and pseudo-homogeneous kinetic expressions were obtained, these being in good agreement with the experimental data.

  12. Theoretical nuclear reaction and structure studies using hyperons and photons

    International Nuclear Information System (INIS)

    Cotanch, S.R.

    1992-01-01

    Research in three principal areas is summarized: (1) Work in elementary hadron structure seeks to further the understanding of hadron structure within the framework of quantum chromodynamics (QCD) and QCD-based models. A comparative study of meson properties employed three relativistic models: an extended Dziembowski model, a generalized light-front approach, and a completely covariant null plane approach. (2) Work on the electromagnetic production of strangeness addressed systems involving the strange quark (hyperons) and hyperon electromagnetic production and radiative capture processes. (3) In the work on medium-energy photonuclear reactions, a large-scale continuum shell-model calculation was performed for (γ,N) and (N,γ) reactions at low and medium energies spanning the Δ isobar region

  13. Quid-Induced Lichenoid Reactions: A Prevalence Study

    Directory of Open Access Journals (Sweden)

    Vishal Dang

    2011-01-01

    Full Text Available White lesions of the oral mucosa are of concern to the dental surgeon in view of the fact that some of these may be potentially malignant. Oral lichen plane: (OLP and oral lichenoid reactions (OLR share similar clinical appearances but need to be carefully distinguished because of their different etiologies and clinical behaviour. This study screened 5.017 population, in a house-to-house field survey, for tobacco use and investigated the prevalence of oral lichenoid reactions in the 98 quid users. Six subjects with clinical/clinical and histopathological criteria compatible with the diagnosis of OLR were identified. All these subjects were users of ′Gutka′, a unique chewable variant of tobacco quid containing areca nut and catechu. Statistical analysis revealed a significant association between quid habit and lesion occurrence (p < 0.005.

  14. Theoretical studies in nuclear reaction and nuclear structure. Final report, January 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Griffin, J.J.

    1977-07-01

    Progress in theoretical research is reported under the following readings: (1) few nuclear reactions, Eikonal approximations, and optical models; (2) pion reactions; (3) nuclear structure by reaction studies; (4) nuclear dynamics

  15. Study of some parameters of the fibrinogen - fibrin transformation reaction

    International Nuclear Information System (INIS)

    Hollard, D.; Suscillon, M.; Marcille, G.; Rambaud, F.; Baloyan, M.

    1966-01-01

    The authors studied the action of some parameters on the reaction of transformation fibrinogen-fibrin. The five parameters studied are: the concentration of substratum: a certain quantity of enzyme determines an optimum quantity of fibrinogen; the concentration of enzyme: a certain quantity of substratum defines an optimum quantity of enzyme, beyond which the excess of enzyme is unable to act, the substratum being saturated by the enzyme; the concentration of Ca ions: between 0,07 and 0,10 mg of Ca by mg of fibrinogen, the reaction appears with a great speed. Between 0,02 and 0,40 mg of Ca by mg of fibrinogen the fibrin stabilisation is possible, the FSF can act only inside the definite bounds; the ph of the solution: the reaction of the transformation appears with its maximum intensity on physiological ph, the polymerisation is not possible on acid ph; the temperature has an effect which could not really be verified owing to the fact that the technical realisation is difficult. (author) [fr

  16. In situ ATR FTIR studies of SO4 adsorption on goethite in the presence of copper ions.

    Science.gov (United States)

    Beattie, D A; Chapelet, J K; Gräfe, M; Skinner, W M; Smith, E

    2008-12-15

    Despite the existence of many single ion sorption studies on iron and aluminum oxides, fewer studies have been reported that describe cosorption reactions. In this work, we present an in situ ATR FTIR study of synergistic adsorption of sulfate (SO4) and copper (Cu) on goethite, which is representative of the minerals and ions present in mine wastes, acid sulfate soils, and other industrial and agricultural settings. Sulfate adsorption was studied as a function of varying pH, and as a function of increasing concentration in the absence and presence of Cu. The presence of Cu ions in solution had a complex effect on the ability of SO4 ions to be retained on the goethite surface with increasing pH, with complete desorption occurring near pH 7 and 9 in the absence and presence of Cu, respectively. In addition, Cu ions altered the balance of inner vs outer sphere adsorbed SO4. The solid phase partitioning of SO4 at pH 3 and pH 5 was elevated by the presence of Cu; in both cases Cu increased the affinity of SO4 for the goethite surface. Complementary ex situ sorption edge studies of Cu on goethite in the absence and presence of SO4 revealed that the Cu adsorption edge shifted to lower pH (6.3 --> 5.6) in the presence of SO4, consistent with a decrease of the electrostatic repulsion between the goethite surface and adsorbing Cu. Based on the ATR FTIR and bulk sorption data we surmise that the cosorption products of SO4 and Cu at the goethite-water interface were not in the nature of ternary complexes under the conditions studied here. This information is critical for the evaluation of the onset of surface precipitates of copper-hydroxy sulfates as a function of pH and solution concentration.

  17. Papulo-Nodular Reactions in Black Tattoos as Markers of Sarcoidosis: Study of 92 Tattoo Reactions from a Hospital Material.

    Science.gov (United States)

    Sepehri, Mitra; Hutton Carlsen, Katrina; Serup, Jørgen

    2016-01-01

    Sarcoidosis is, from historical data, suggested to be more prevalent among patients with tattoo reactions. We aimed to evaluate this association in a systematic study. This is a consecutive study of patients with tattoo complications, diagnosed in the "Tattoo Clinic" at Bispebjerg University Hospital in Copenhagen, Denmark, from 2008 to 2015, based on clinical assessment and histology. From the overall group of 494 tattoo complications in 406 patients, 92 reactions in 72 patients showed a papulo-nodular pattern studied for local and systemic sarcoidosis, since sarcoidosis is expected to be nodular. Of the 92 reactions with a papulo-nodular pattern, 27 (29%) reactions in 19 patients were diagnosed as cutaneous or systemic sarcoidosis, supported by histology; 65 (71%) were diagnosed as non-sarcoidosis due to histology and no clinical sarcoid manifestations. "Rush phenomenon" with concomitant reaction in many other black tattoos, triggered by a recent tattoo with a papulo-nodular reaction, was observed in 70% in the sarcoidosis group and 28% in the non-sarcoidosis group, indicating a predisposing factor which may be autoimmune and linked with sarcoidosis. Agglomerates of black pigment forming foreign bodies may in the predisposed individual trigger widespread reaction in the skin and internal organs. Black tattoos with papulo-nodular reactions should be seen as markers of sarcoidosis. Papulo-nodular reactions may, as triggers, induce widespread reactions in other black tattoos - a "rush phenomenon" - depending on individual predisposition. Sarcoidosis is estimated to be 500-fold increased in papulo-nodular reactions compared to the prevalence in the general population, and the association with black tattoos is strong. © 2017 S. Karger AG, Basel.

  18. In situ TEM study of the coarsening of carbon black supported Pt nanoparticles in hydrogen

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Wang, Yan; Jensen, Jens Oluf

    2017-01-01

    The control of sizes and shapes of nanostructures is of tremendous importance for the catalytic activity in electrochemistry and in catalysis more generally. However, due to relatively large surface free energies, nanostructures often sinter to form coarser and more stable structures that may...... not have the intended physicochemical properties. Pt is known to be a very active catalyst in several chemical reactions and for example as carbon supported nanoparticles in fuel cells. The presentation focusses on coarsening mechanisms of Pt nanoparticles supported on carbon black during exposure...... to hydrogen. By means of in situ transmission electron microscopy (TEM), Pt nanoparticle coarsening was monitored in 6 mbar 20 % H2/Ar while ramping up the temperature to ca. 900 °C. Time-resolved TEM images directly reveal that separated ca. 3 nm sized Pt nanoparticles in the pure hydrogen environment...

  19. Dynamical properties of nano-structured catalysts for methane conversion: an in situ scattering study

    DEFF Research Database (Denmark)

    Kehres, Jan

    /NiO particles in a fresh catalyst sample showed a Ni/NiO core shell structure. The Ni lattice parameter decreased during the reduction due to the release of stress between the Ni core and the NiO shell. Ni particles sintered during heating in hydrogen after the reduction of the NiO shell. Dry reforming......The reactivity of catalyst particles can be radically enhanced by decreasing their size down to the nanometer range. The nanostructure of a catalyst can have an enormous and positive influence on the reaction rate, for example strong structure sensitivity was observed for methane reforming...... range from 298 - 1023 K. Correlated crystallite and particle growth due to sintering were observed after the decomposition of the surfactant. Furthermore transformations from rod to spherical particle shape were observed. In situ reduction experiments of a Ni/MgAl2O4 catalyst were performed. The Ni...

  20. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Directory of Open Access Journals (Sweden)

    M. S. Demyan

    2013-05-01

    Full Text Available An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS is being proposed to rapidly characterize soil organic matter (SOM to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2 in order to relate evolved gas (i.e., CO2 to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i the Static Fertilization Experiment, Bad Lauchstädt (Chernozem, from treatments of farmyard manure (FYM, mineral fertilizer (NPK, their combination (FYM + NPK and control without fertilizer inputs; (ii Kraichgau; and (iii Swabian Alb (Cambisols areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM, sand and stable aggregates (Sa + A, silt and clay (Si + C, and NaOCl oxidized Si + C (rSOC to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm−1 being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min−1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max. Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the

  1. Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils

    International Nuclear Information System (INIS)

    Heiser, J.; Fuhrmann, M.

    1997-09-01

    This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex

  2. Ex-Situ and In-Situ Ellipsometric Studies of the Thermal Oxide on InP

    Science.gov (United States)

    1990-12-06

    ion---- Distribution/ Availabilit ? Codes£v l llt Codes Avail and/or Dist| Special Abstract The thermally grown InP oxide as etched by an aqueous...aqueous NH4OH/NH4F, and Law(17) has reported observations of orientational ordering of water and organic solvents on pyrex surfaces by in-situ...minutes, followed by a sequence of acetone, deionized water (d. i. water ) rinse. After being dipped in a concentrated aqueous HF solution for 15 seconds

  3. Study of elastic scattering between heavy ions. Reaction channel influence

    International Nuclear Information System (INIS)

    Doubre, Hubert.

    1978-01-01

    The role of absorption on the behavior of heavy ion angular distributions and excitaton functions has been investigated on light and medium mass systems. Comparison between 20 Ne+ 12 C and 16 O+ 16 O systems which lead to the same compound nucleus, shows that it originates from the direct channels strongly coupled to the entrance channel. Structures in the excitation functions occur for almost all the light systems and it is shown that the damping observed for heavier systems such as 40 Ca+ 40 Ca, essentially results on the predominance of Coulomb effects which hide the nuclear structure effects. Thus no valuable information on the details of S-matrix can be extracted for such an heavy system. A coherent description of the elastic scattering, based on a splitting of the scattering amplitude into two components, the modulus of each component varying smoothly as a function of energy and angle. The interference between these sub-amplitudes give rise to interference effects in angular distributions and excitation functions. The study of the main reaction channels of the 40 Ca+ 40 Ca system - i.e. deep inelastic reactions and fusion - also shows that the closed-shell nature of the interacting nuclei does not play any role in these processes due to the excitation processes in the first stage of the reactions which destroy the specific structure of the nuclei [fr

  4. Laboratory studies of ion-molecule reactions and interstellar chemistry

    International Nuclear Information System (INIS)

    Koyano, Inosuke

    1989-01-01

    Several types of laboratory studies have been performed on ion-molecule reactions relevant to the formation of the interstellar molecules. Special emphasis is placed on the formation, structure, and reactivity of the C 3 H 3 + ions, which are believed to play a key role in interstellar chemistry. When these ions are produced by the reaction of C 3 H 4+ with C 3 H 4 in a beam-gas arrangement, their times-of-flight (TOF) show abnormally broad distributions regardless of the sources of the reactant C 3 H 4 + ion (photoionization of allene, propyne, the cyclopropene) and the nature of the neutral reactant, while all other product ions from the same reaction show sharp TOF distributions. On the other hand, all C 3 H 3 + ions produced by unimolecular decomposition of energetic C 3 H 4 + ions show sharp TOF distribution. The peculiarity of the C 3 H 3 + ions manifested in these and other experiments is discussed in conjunction with interstellar chemistry

  5. In situ NMR and modeling studies of nitroxide mediated copolymerization of styrene and n-butyl acrylate

    NARCIS (Netherlands)

    Hlalele, L.; Klumperman, L.

    2011-01-01

    The combination of in situ1H NMR and in situ31P NMR was used to study the nitroxide mediated copolymerization of styrene and n-butyl acrylate. The alkoxyamine MAMA-DEPN was employed to initiate and mediate the copolymerization. The nature of the ultimate/terminal monomer units of dormant polymer

  6. In Situ X-ray Diffraction Studies of Cathode Materials in Lithium Batteries

    International Nuclear Information System (INIS)

    Yang, X. Q.; Sun, X.; McBreen, J.; Mukerjee, S.; Gao, Yuan; Yakovleva, M. V.; Xing, X. K.; Daroux, M. L.

    1998-01-01

    There is an increasing interest in lithiated transition metal oxides because of their use as cathodes in lithium batteries. LiCoO 2 , LiNiO 2 and LiMn 2 O 4 are the three most widely used and studied materials, At present, although it is relative expensive and toxic, LiCoO 2 is the material of choice in commercial lithium ion batteries because of its ease of manufacture, better thermal stability and cycle life. However, the potential use of lithium ion batteries with larger capacity for power tools and electric vehicles in the future will demand new cathode materials with higher energy density, lower cost and better thermal stability. LiNiO 2 is isostructural with LiCoO 2 . It offers lower cost and high energy density than LiCoO 2 . However, it has much poorer thermal stability than LiCoO 2 , in the charged (delithiated) state. Co, Al, and other elements have been used to partially replace Ni in LiNiO 2 system in order to increase the thermal stability. LiMn 2 O 4 has the highest thermal stability and lowest cost and toxicity. However, the low energy density and poor cycle life at elevated temperature are the major obstacles for this material. In order to develop safer, cheaper, and better performance cathode materials, the in-depth understanding of the relationships between the thermal stability and structure, performance and structure are very important. The performance here includes energy density and cycle life of the cathode materials. X-ray diffraction (XRD) is one of the most powerful tools to study these relationships. The pioneer ex situ XRD work on cathode materials for lithium batteries was done by Ohzuku. His XRD studies on LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiNi 0.5 Co 0.5 O 2 , and LiAl x Ni 1-x O 2 cathodes at different states of charge have provided important guidelines for the development of these new materials. However, the kinetic nature of the battery system definitely requires an in situ XRD technique to study the detail structural changes of the

  7. Allergic reactions to milk appear sooner than reactions to hen's eggs: a retrospective study.

    Science.gov (United States)

    Yanagida, Noriyuki; Minoura, Takanori; Kitaoka, Setsuko

    2016-01-01

    Oral food challenge test doses are recommended to be performed at least 20 min apart; however, the times of symptom provocation from the start of the oral food challenge have never been compared between different foods. In this study, the durations from the start of the oral food challenge to symptom development in children with egg or milk allergy were compared. Thirty-eight and 74 children who had previously passed oral food challenges to 96 g of yogurt and pumpkin cake containing ¼ whole egg underwent oral food challenges with 200 mL raw cow's milk and 1 whole scrambled egg, respectively; of these, 15/38 and 33/74 children had a reaction. The median ages of patients with a positive challenge were 5.8 and 5.1 years for milk and eggs, respectively. The median times for the first symptom occurrence were 20 min (range, 5-55 min) and 50 min (5-480 min), respectively (p = 0.009). The first symptoms developed within 30, 60, and 90 min in 12/15 (80 %), 15/15 (100 %), and 15/15 (100 %) children with milk allergies, and in 10/33 (30.3 %), 20/33 (60.6 %), and 26/33 (78.8 %) children with egg allergies, respectively. The median times of peak symptoms were 50 min (10-210 min) and 120 min (30-560 min) (p = 0.001), and those of symptom disappearance were 90 min (30-240 min) and 180 min (80-700 min) for milk and eggs (p = 0.002), respectively. Based on the results of our study, symptoms developed within 30 min for only a subset of patients for eggs, and may even take upwards of 60 min to develop. The times of symptom disappearance were 90 min and 180 min for milk and eggs, respectively, indicating that egg-allergic patients should be observed for a longer period time than milk-allergic patients. Allergic reactions induced by milk appeared and disappeared sooner than those induced by eggs.

  8. Demonstration testing and evaluation of in situ soil heating. Treatability study work plan (Revision 2)

    International Nuclear Information System (INIS)

    Sresty, G.C.

    1994-01-01

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 degrees to 95 degrees C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern. This document is a Treatability Study Work Plan for the demonstration program. The document contains a description of the proposed treatability study, background of the EM heating process, description of the field equipment, and demonstration test design

  9. Irradiation-related amorphization and crystallization: In situ transmission electron microscope studies

    International Nuclear Information System (INIS)

    Allen, C.W.

    1994-01-01

    Interfacing an ion accelerator to a transmission electron microscope (TEM) allows the analytical functions of TEM imaging and diffraction to be employed during ion-irradiation effects studies. At present there are twelve such installations in Japan, one in France and one in the US. This paper treats several aspects of in situ studies involving electron and ion beam induced and enhanced phase transformations and presents results of several in situ experiments to illustrate the dynamics of this approach in the materials science of irradiation effects. The paper describes the ion- and electron-induced amorphization of CuTi; the ion-irradiation-enhanced transformation of TiCr 2 ; and the ion- and electron-irradiation-enhanced crystallization of CoSi 2

  10. A flow-through hydrothermal cell for in situ neutron diffraction studies of phase transformations

    International Nuclear Information System (INIS)

    O'Neill, Brian; Tenailleau, Christophe; Nogthai, Yung; Studer, Andrew; Brugger, Joel; Pring, Allan

    2006-01-01

    A flow-through hydrothermal cell for the in situ neutron diffraction study of crystallisation and phase transitions has been developed. It can be used for kinetic studies on materials that exhibit structural transformations under hydrothermal conditions. It is specifically designed for use on the medium-resolution powder diffractometer (MRPD) at ANSTO, Lucas Heights, Sydney. But it is planned to adapt the design for the Polaris beamline at ISIS and the new high-intensity powder diffractometer (Wombat) at the new Australian reactor Opal. The cell will operate in a flow-through mode over the temperature range from 25-300 deg. C and up to pressures of 100 bar. The first results of a successful transformation of pentlandite (Fe,Ni) 9 S 8 to violarite (Fe,Ni) 3 S 4 under mild conditions (pH∼4) at 120 deg. C and 3 bar using in situ neutron diffraction measurements are presented

  11. Rotating cell for in situ Raman spectroelectrochemical studies of photosensitive redox systems.

    Science.gov (United States)

    Kavan, Ladislav; Janda, Pavel; Krause, Matthias; Ziegs, Frank; Dunsch, Lothar

    2009-03-01

    A recently developed rotating spectroelectrochemical cell for in situ Raman spectroscopic studies of photoreactive compounds without marked decomposition of the sample is presented. Photochemically and thermally sensitive redox systems are difficult to be studied under stationary conditions by in situ spectroelectrochemistry using laser excitation as in Raman spectroscopy. A rotating spectroelectrochemical cell can circumvent these difficulties. It can be used for any type of a planar electrode and for all electrode materials in contact with aqueous or nonaqueous solutions as well as with ionic liquids. The innovative technical solution consists of the precession movement of the spectroelectrochemical cell using an eccentric drive. This precession movement allows a fixed electrical connection to be applied for interfacing the electrochemical cell to a potentiostat. Hence, any electrical imperfections and noise, which would be produced by sliding contacts, are removed. A further advantage of the rotating cell is a dramatic decrease of the thermal load of the electrochemical system. The size of the spectroelectrochemical cell is variable and dependent on the thickness of the cuvettes used ranging up to approximately 10 mm. The larger measuring area causes a higher sensitivity in the spectroscopic studies. The as constructed spectroelectrochemical cell is easy to handle. The performance of the cell is demonstrated for ordered fullerene C(60) layers and the spectroelectrochemical behavior of nanostructured fullerenes. Here the charge transfer at highly ordered fullerene C(60) films was studied by in situ Raman spectroelectrochemistry under appropriate laser power and accumulation time without marked photodecomposition of the sample.

  12. Density Functional Study of Chemical Reaction Equilibrium for Dimerization Reactions in Slit and Cylindrical Nanopores

    Czech Academy of Sciences Publication Activity Database

    Malijevský, Alexandr; Lísal, Martin

    2009-01-01

    Roč. 130, č. 16 (2009), 164713-1-24 ISSN 0021-9606 R&D Projects: GA ČR GA203/05/0725; GA AV ČR 1ET400720507; GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40720504 Keywords : density functional theory * reaction ensemble Monte Carlo * reaction equilibrium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.093, year: 2009

  13. Coarsening of Pd nanoparticles in an oxidizing atmosphere studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chorkendorff, Ib; Dahl, Søren

    2016-01-01

    The coarsening of supported palladium nanoparticles in an oxidizing atmosphere was studied in situ by means of transmission electron microscopy (TEM). Specifically, the Pd nanoparticles were dispersed on a planar and amorphous Al2O3 support and were observed during the exposure to 10 mbar technical...... for the Ostwald ripening process indicates that the observed change in the particle size distribution can be accounted for by wetting of the Al2O3 support by the larger Pd nanoparticles....

  14. In Situ Raman Spectroscopy of Supported Chromium Oxide Catalysts: Reactivity Studies with Methanol and Butane

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.

    1996-01-01

    The interactions of methanol and butane with supported chromium oxide catalysts under oxidizing and reducing conditions were studied by in situ Raman spectroscopy as a function of the specific oxide support (Al2O3, ZrO2, TiO2, SiO2, Nb2O5, 3% SiO2/TiO2, 3% TiO2/SiO2, and a physical mixture of SiO2

  15. Autoradiographic study of transcription during early germination of Zea mays embryos maintained in situ

    International Nuclear Information System (INIS)

    Deltour, Roger

    1979-01-01

    Recovery of RNA synthesis was studied by autoradiography in primary root of Zea mays embryos germinating at 16 0 C. [H 3 ] uridine was provided to embryos maintained in situ. During the first 4hrs of germination the cell radioactivity is located almost exclusively in the extranucleolar chromatin. These observations agree well with previous results obtained when [H 3 ] uridine was provided to isolated embryos [fr

  16. In situ atomic force microscopy in the study of electrogeneration of polybithiophene on Pt electrode

    International Nuclear Information System (INIS)

    Innocenti, M.; Loglio, F.; Pigani, L.; Seeber, R.; Terzi, F.; Udisti, R.

    2005-01-01

    Electrochemical AFM technique has been used for the in situ study of the electrogeneration-deposition process of polybithiophene at varying the polymerisation conditions, such as supporting electrolyte, i.e., LiClO 4 or tetrabutylammonium hexafluorophosphate, and polymerisation procedure, i.e., either potentiostatic or potentiodynamic method. In order to better follow the evolution of the morphology of the deposit, particularly during the early stages of the polymer film growth, a suitable home-made electrochemical cell has been used

  17. Flexible metal-organic framework compounds: In situ studies for selective CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Allen, A.J., E-mail: andrew.allen@nist.gov [Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899-8520 (United States); Espinal, L.; Wong-Ng, W. [Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899-8520 (United States); Queen, W.L. [NIST Center for Neutron Research, Gaithersburg, MD 20899-6102 (United States); The Molecular Foundry, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720 (United States); Brown, C.M. [NIST Center for Neutron Research, Gaithersburg, MD 20899-6102 (United States); Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 (United States); Kline, S.R. [NIST Center for Neutron Research, Gaithersburg, MD 20899-6102 (United States); Kauffman, K.L. [National Energy Technology Laboratory (NETL), US Department of Energy, Pittsburgh, PA 15236 (United States); Culp, J.T. [National Energy Technology Laboratory (NETL), US Department of Energy, Pittsburgh, PA 15236 (United States); URS Corporation, South Park, PA 15219 (United States); Matranga, C. [National Energy Technology Laboratory (NETL), US Department of Energy, Pittsburgh, PA 15236 (United States)

    2015-10-25

    Results are presented that explore the dynamic structural changes occurring in two highly flexible nanocrystalline metal-organic framework (MOF) compounds during the adsorption and desorption of pure gases and binary mixtures. The Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN){sub 4}] and catena-bis(dibenzoylmethanato)-(4,4′-bipyridyl)nickel(II) chosen for this study are 3-D and 1-D porous coordination polymers (PCP) with a similar gate opening pressure response for CO{sub 2} isotherms at 303 K, but with differing degrees of flexibility for structural change to accommodate guest molecules. As such, they serve as a potential model system for evaluating the complex kinetics associated with dynamic structure changes occurring in response to gas adsorption in flexible MOF systems. Insights into the crystallographic changes occurring as the MOF pore structure expands and contracts in response to interactions with CO{sub 2}, N{sub 2}, and CO{sub 2}/N{sub 2} mixtures have been obtained from in situ small-angle neutron scattering and neutron diffraction, combined with ex situ X-ray diffraction structure measurements. The role of structure in carbon capture functionality is discussed with reference to the ongoing characterization challenges and a possible materials-by-design approach. - Graphical abstract: We present in situ small-angle neutron scattering results for two flexible metal-organic frameworks (MOFs). The figure shows that for one (NiBpene, high CO{sub 2} adsorption) the intensity of the Bragg peak for the expandable d-spacing most associated with CO{sub 2} adsorption varies approximately with the isotherm, while for the other (NiDBM-Bpy, high CO{sub 2} selectivity) the d-spacing, itself, varies with the isotherm. The cartoons show the proposed modes of structural change. - Highlights: • Dynamic structures of two flexible MOF CO{sub 2} sorbent compounds are compared in situ. • These porous solid sorbents serve as models for pure & dual gas adsorption. • Different

  18. A density functional theory study on redox reaction of uranium

    International Nuclear Information System (INIS)

    Toraishi, T.; Kawaguchi, M.; Tsuneda, T.; Tanaka, S.; Nagasaki, S.

    2005-01-01

    Full text of publication follows: Redox reactions are key issues for predicting the migration behavior of actinides in the geosphere, and therefore the chemical processes have to be profoundly understood. However, redox reactions basically involve several elemental processes, and in many cases only limited chemical information can be obtained experimentally. A theoretical approach gives further information which never can be obtained by experiments, such as precise thermodynamic data or reaction pathways of very rapid charge transfer reactions. For this reason, ab initio MO calculations have been applied in the last 5-6 years to the elucidation of redox processes in the U(VI)-Fe(II) or U(VI)-U(IV) system [1- 3]. Those studies provided extremely important chemical information. Nevertheless, the 'huge' calculation costs of ab initio MO techniques now interfere with the extension of the calculation to the 'real' size system: In order to deal with the practically important chemical reactions such as the reduction of actinides at solid surfaces, a large chemical system involving many atoms (electrons) has to be treated. Present ab initio MO techniques at CASSCF, CASPT2 or MRCI level, however, do not allow to handle such a large systems because of the high calculation costs. Density functional theory (DFT) calculations should be also feasible for such systems. Nevertheless, there are very few reports on redox processes of actinides calculated by DFT. This fact was based on the argument that DFT could not treat charge transfer phenomena accurately since the two-electron exchange integral term is not explicitly involved [1-3]. However this is no longer correct: the long-range corrected (LC) energy function was recently developed, and now the charge transfer reaction can safely be calculated by DFT [4]. In the present work, we employ the DFT technique to treat the reduction of U(VI) to U(V) by Fe(II) via the bi-nuclear complex system, and confirm the applicability of the

  19. Pulse radiolysis study on oxidation reactions of gallic acid

    International Nuclear Information System (INIS)

    Dwibedy, P.; Dey, G.R.; Naik, D.B.; Kishore, Kamal

    1998-01-01

    Reactions of OH . /O - and other oxidising radicals viz. N 3 . , Br 2 .- , Cl 2 .- with gallic acid (GA) have been studied at various pHs. At pH 6.8, OH . radicals react with GA giving an adduct which in turn reacts with the parent GA to give a dimeric species. At pH 9.7, the initial OH adduct formed is able to oxidize GA to give a semi-oxidised species. At pH 12 and ∼ 13.6, OH . /O .- radicals directly bring about oxidation of GA. (author)

  20. Innovation: study of 'ultra-short' time reactions

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    This short article presents the new Elyse facility of Orsay-Paris 11 university for the study of ultra-short chemical and biochemical phenomena. Elyse uses the 'pump-probe' technique which consists in two perfectly synchronized electron and photon pulses. It comprises a 3 to 9 MeV electron accelerator with a HF gun photo-triggered with a laser. Elyse can initiate reactions using ultra-short electron pulses (radiolysis) or ultra-short photon pulses (photolysis). (J.S.)

  1. Quantum chemical study of penicillin: Reactions after acylation

    Science.gov (United States)

    Li, Rui; Feng, Dacheng; Zhu, Feng

    The density functional theory methods were used on the model molecules of penicillin to determine the possible reactions after their acylation on ?-lactamase, and the results were compared with sulbactam we have studied. The results show that, the acylated-enzyme tetrahedral intermediate can evolves with opening of ?-lactam ring as well as the thiazole ring; the thiazole ring-open products may be formed via ?-lactam ring-open product or from tetrahedral intermediate directly. Those products, in imine or enamine form, can tautomerize via hydrogen migration. In virtue of the water-assisted, their energy barriers are obviously reduced.

  2. Study on curing reaction of 4-aminophenoxyphthalonitrile/bisphthalonitrile

    Institute of Scientific and Technical Information of China (English)

    Xiao

    2010-01-01

    A series of phthalonitrile blending resins were prepared from 4-aminophenoxyphthalonitrile (APN) and 4,4'-bis (3,4-dicyanophenoxy)biphenyl (BPH) by directly powder-mixing and copolymerization. Differential scanning calorimeter (DSC) and dynamic rheology were used to study the curing reaction behaviors of APN/BPH blends, and the results indicated that the introduction of APN accelerated the curing rate of BPH, and the existence of BPH decreased the curing temperature of APN/BPH systems. The thermal stability of postcured APN/BPH resins was investigated by thermogravimetric analysis (TGA), and the TGA results indicated that the crosslinked polymers of APN/BPH systems possessed good thermal stability.

  3. Quantum stereodynamics study for the reaction F + HD

    International Nuclear Information System (INIS)

    Yu-Fang, Liu; Wei, Zhang; De-Heng, Shi; Jin-Feng, Sun

    2009-01-01

    This paper studies the quantum stereodynamics of the F + HD(ν = 0,j = 0) → HD + F/HF + D reaction at the collision energies of 0.52 and 0.87 kcal/mol. The quantum scattering calculations, based on Stark–Werner potential energy surfaces, show that the differential cross sections for the HF(ν' = 2) + D and DF(ν' = 3) + H channels are consistent with the recent theoretical results. Furthermore, the product rotational angular momentum orientation and alignment have been determined for some selected rovibrational states of the HF + D and DF + H channels. (atomic and molecular physics)

  4. A new setup for the underground study of capture reactions

    CERN Document Server

    Casella, C; Lemut, A; Limata, B; Bemmerer, D; Bonetti, R; Broggini, C; Campajola, L; Cocconi, P; Corvisiero, P; Cruz, J; D'Onofrio, A; Formicola, A; Fülöp, Z; Gervino, G; Gialanella, L; Guglielmetti, A; Gustavino, C; Gyürky, G; Loiano, A; Imbriani, G; Jesus, A P; Junker, M; Musico, P; Ordine, A; Parodi, F; Parolin, M; Pinto, J V; Prati, P; Ribeiro, J P; Roca, V; Rogalla, D; Rolfs, C; Romano, M; Rossi-Alvarez, C; Rottura, A; Schuemann, F; Somorjai, E; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A; Zavatarelli, S

    2002-01-01

    For the study of astrophysically relevant capture reactions in the underground laboratory LUNA a new setup of high sensitivity has been implemented. The setup includes a windowless gas target, a 4 pi BGO summing crystal, and beam calorimeters. The setup has been recently used to measure the d(p,gamma) sup 3 He cross-section for the first time within its solar Gamow peak, i.e. down to 2.5 keV c.m. energy. The features of the optimized setup are described.

  5. Demonstration testing and evaluation of in situ soil heating. Treatability study work plan, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Sresty, G.C.

    1994-07-07

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the `70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid `80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern.

  6. In situ formation of a 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs

    Science.gov (United States)

    Zhang, Zhenbao; Wang, Jian; Chen, Yubo; Tan, Shaozao; Shao, Zongping; Chen, Dengjie

    2018-05-01

    BaZrxCeyY1-x-yO3-δ are recognized proton-conducting electrolyte materials for proton-conducting solid oxide fuel cells (H+-SOFCs) below 650 °C. Here Co cations are incorporated into the BaZr0.4Ce0.4Y0.2O3-δ (BZCY) scaffold to generate a 3D core-shell and triple-conducting (H+/O2-/e-) electrode in situ via infiltrating and reactive sintering. The core is the bulk BZCY scaffold, while the shell is composed of the cubic Ba(Zr0.4Ce0.4Y0.2)1-xCoxO3-δ, cubic spinel Co3O4 and cubic fluorite (Ce, Zr, Y)O2. The obtained electrode exhibits an excellent compatibility with the BZCY electrolyte, and performs well in yielding a low and stable polarization resistance for oxygen reduction reaction for intermediate-temperature H+-SOFCs. In particular, it achieves polarization resistances as low as 0.094 and 0.198 Ω cm2 at 650 and 600 °C in wet air (3% H2O) when the sintering temperature for the electrode is 900 °C. In addition, a symmetrical cell also exhibits operation stability of 70 h at 650 °C. Furthermore, a fuel cell assembled with the 3D core-shell and triple-conducting electrode delivers a peak power density of ∼330 mW cm-2 at 650 °C. The substantially improved electrochemical performance and high stability are ascribed to the unique core-shell structure and the formation of Ba(Zr0.4Ce0.4Y0.2)1-xCoxO3-δ in the shell.

  7. Study of pp→ppη reaction at threshold

    International Nuclear Information System (INIS)

    Taleb, A.

    1994-11-01

    The η production has been studied through the pp → ppη reaction at threshold. Data were taken at the Synchrotron of the ''Laboratoire National Saturne''. The detection in coincidence of the two protons scattered near 0 deg and analysed with the magnetic spectrometer SPES3 allows the reconstruction of missing mass spectra for the η signature. A simulation program which takes into account all the experimental set up characteristics has been realized and tested through the pp → dπ + reaction detected simultaneously with pp → ppη. The generated proton momentum spectra for pp → ppη show a pronounced η mass dependence. This characteristic, connected to the kinematical properties of pp → ppη at threshold, is used to extract the mass of the meson η. The obtained value, m η = 547.65 ± 0.18 MeV, is in good agreement with measurement done recently through the pd → H eη reaction. The total cross section σ t of pp → ppη measured at 1260, 1265 and 1300 MeV presents a strong energy dependence. This cross section increases less with energy than the phase-space. The influence of p-p and η-p final state interactions in our measurements is studied. Our results are compared with theoretical predictions and assess the dominant character of the baryonic resonance N * (1535) in the η mechanism production at threshold. These experimental results give an energy dependence which is not well reproduced by the theoretical predictions. This discrepancy could be an incorrect description of the η-p interaction in the models. (author). 48 refs., 60 figs., 15 tabs

  8. In-situ oxidation study of Pd(100) by surface x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Volkan; Franz, Dirk; Stierle, Andreas [AG Grenzflaechen, Universitaet Siegen (Germany); Martin, Natalia; Lundgren, Edvin [Department of Synchrotron Radiation Research, Lund University (Sweden); Mantilla, Miguel [MPI fuer Metallforschung, Stuttgart (Germany)

    2011-07-01

    The oxidation of the Pd(100) surface at oxygen pressures in the 10{sup -6} mbar to 10{sup 3} mbar range and temperatures up to 1000 K has been studied in-situ by surface x-ray diffraction (SXRD). The SXRD experiments were performed at the MPI beamline at the Angstrom Quelle Karlsruhe (ANKA). We present the surface and crystal truncation rod (CTR) data from the ({radical}(5) x {radical}(5)) surface layer. We show that the transformation from the surface oxide to PdO bulk oxide can be observed in-situ under specific pressure and temperature conditions. We compare our results with previously proposed structure models based on low energy electron diffraction (LEED) I(V) curves and density functional theory calculations. Finally, we elucidate the question of commensurability of the surface oxide layer with respect to the Pd(100) substrate.

  9. A case study of in situ oil contamination in a mangrove swamp (Rio De Janeiro, Brazil).

    Science.gov (United States)

    Brito, Elcia M S; Duran, Robert; Guyoneaud, Rémy; Goñi-Urriza, Marisol; García de Oteyza, T; Crapez, Miriam A C; Aleluia, Irene; Wasserman, Julio C A

    2009-08-01

    Mangroves are sensitive ecosystems of prominent ecological value that lamentably have lost much of their areas across the world. The vulnerability of mangroves grown in proximity to cities requires the development of new technologies for the remediation of acute oil spills and chronic contaminations. Studies on oil remediation are usually performed with in vitro microcosms whereas in situ experiments are rare. The aim of this work was to evaluate oil degradation on mangrove ecosystems using in situ microcosms seeded with an indigenous hydrocarbonoclastic bacterial consortium (HBC). Although the potential degradation of oil through HBC has been reported, their seeding directly on the sediment did not stimulate oil degradation during the experimental period. This is probably due to the availability of carbon sources that are easier to degrade than petroleum hydrocarbons. Our results emphasize the fragility of mangrove ecosystems during accidental oil spills and also the need for more efficient technologies for their remediation.

  10. Study on underground-water restoration of acid in-situ leaching process with electrodialytic desalination

    International Nuclear Information System (INIS)

    Huang Chongyuan; Meng Jin; Li Weicai

    2003-01-01

    The study focus undergrounder water restoration of acid in-situ leaching process with electrodialysis desalination in Yining Uranium Mine. It is shown in field test that electrodialysis desalination is an effective method for underground water restoration of acid in-situ leaching process. When TDS of underground-water at the decommissioning scope is 10-12 g/L, and TDS will be less than 1 g/L after the desalination process, the desalination rate is more than 90%, freshwater recovery 60%-70%, power consumption for freshwater recovery 5 kW·h/m 3 , the distance of the desalination flow 12-13 m, current efficiency 80%, and the throughput of the twin membrane 0.22-0.24 m 3 /(m 2 ·d)

  11. Intolerance reaction after application of glucagon during double contrast studies

    International Nuclear Information System (INIS)

    Kainberger, F.; Fruehwald, F.; Schwaighofer, B.; Lindemayr, H.

    1986-01-01

    Whereas intolerance reactions against contrast media are a well-known hazard during radiologic procedures, intolerance reactions to other preparations used in radiology are rare. Glucagon, frequently used to induce gastrointestinal hypotonia, is said to have almost no side-effects. A case of anaphylactic reaction during double-contrast upper gastrointestinal examination is reported. Pseudoallergic reaction to propylparaben, a preservative agent in glucagon, is suspected. IgE-antibodies to glucagon could not be detected by RAST. (orig.) [de

  12. Numerical study on core damage and interpretation of in situ state of stress

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [Gridpoint Finland Oy (Finland)

    1999-06-01

    Core disking is a phenomenon where a diamond cored core sample will be sliced when released from a stressed host rock. Ring disking is a similar phenomenon which takes place during overcoring with a pilot hole. Because of the uniform shape and spacing of disk fracturing, it has the potential to be used for estimating the in situ state of stress. If this is feasible, it could be used in high stress states where the traditional stress measuring techniques are not valid or even possible. In this work the both the core disking and ring disking phenomena were studied based on the elastic bottom hole stress application developed and a series of fracture growth stability simulations. The results-showed that both phenomena are very complicated and site specific, but the spacing, shape, extent and initiation point are clearly stress state dependent. Throughout the work, guidelines for the in situ stress field interpretation method were developed and implemented for the borehole aligned orthogonal stress field and Poisson`s ratio of 0.25. Based on this study, the in situ state of stress can be estimated with acceptable accuracy if information on both core disking and ring disking is available. On the other hand, as an indirect method, there are no reasons to use it if direct measurements can be used. (orig.) 35 refs.

  13. Development of new ultrafiltration techniques maintaining in-situ hydrochemical conditions for colloidal study

    International Nuclear Information System (INIS)

    Aosai, Daisuke; Yamamoto, Yuhei; Mizuno, Takashi

    2011-01-01

    Chemical state of elements in groundwater is one of the most important information for understanding behavior of elements in underground environment. Chemical state of elements controlled mainly by groundwater physico-chemical parameters. Because the change of physico-chemical parameters of groundwater, due to pressure release and oxidation during sampling, causes changes in chemical state of elements, systematic methodologies for understanding in situ chemical state is required. In this study, in order to understand chemical state of elements in groundwater, an ultrafiltration instrument for maintaining in-situ pressure and anaerobic conditions was developed. The instrument developed in this study for ultrafiltration made of passivated Stainless Used Steel (SUS) materials, was designed to keep groundwater samples maintaining in-situ pressure/anaerobic conditions. Ultrafiltration of groundwater was conducted at a borehole drilled from the 200 mbGL (meters below ground level) Sub-stage at a depth of 200 m at the Mizunami Underground Research Laboratory. Chemical analyses of groundwater were also conducted using samples filtered under both pressurized/anaerobic and atmospheric conditions and passivated SUS materials with different elapsed times after passivation. The results indicate that our ultrafiltration method is suitable for collection of filtered groundwater and passivation is an essential treatment before ultrafiltration. (author)

  14. Numerical study on core damage and interpretation of in situ state of stress

    International Nuclear Information System (INIS)

    Hakala, M.

    1999-06-01

    Core disking is a phenomenon where a diamond cored core sample will be sliced when released from a stressed host rock. Ring disking is a similar phenomenon which takes place during overcoring with a pilot hole. Because of the uniform shape and spacing of disk fracturing, it has the potential to be used for estimating the in situ state of stress. If this is feasible, it could be used in high stress states where the traditional stress measuring techniques are not valid or even possible. In this work the both the core disking and ring disking phenomena were studied based on the elastic bottom hole stress application developed and a series of fracture growth stability simulations. The results-showed that both phenomena are very complicated and site specific, but the spacing, shape, extent and initiation point are clearly stress state dependent. Throughout the work, guidelines for the in situ stress field interpretation method were developed and implemented for the borehole aligned orthogonal stress field and Poisson's ratio of 0.25. Based on this study, the in situ state of stress can be estimated with acceptable accuracy if information on both core disking and ring disking is available. On the other hand, as an indirect method, there are no reasons to use it if direct measurements can be used. (orig.)

  15. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    International Nuclear Information System (INIS)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F.C.; Geske, M.; Taha, A.; Pelzer, K.; Schloegl, R.

    2006-01-01

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N 2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N 2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH 3 · radicals is successfully demonstrated

  16. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    Science.gov (United States)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F. C.; Geske, M.; Taha, A.; Pelzer, K.; Schlögl, R.

    2006-05-01

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000°C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10ms. A detection time resolution of up to 20ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250°C on a Pt catalyst are presented. The detection of CH3• radicals is successfully demonstrated.

  17. A computational study of pyrolysis reactions of lignin model compounds

    Science.gov (United States)

    Thomas Elder

    2010-01-01

    Enthalpies of reaction for the initial steps in the pyrolysis of lignin have been evaluated at the CBS-4m level of theory using fully substituted b-O-4 dilignols. Values for competing unimolecular decomposition reactions are consistent with results previously published for phenethyl phenyl ether models, but with lowered selectivity. Chain propagating reactions of free...

  18. Cationic Pd(II-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies

    Directory of Open Access Journals (Sweden)

    Takashi Nishikata

    2016-05-01

    Full Text Available Cationic palladium(II complexes have been found to be highly reactive towards aromatic C–H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN4](BF42 or a nitrile-free cationic palladium(II complex generated in situ from the reaction of Pd(OAc2 and HBF4, effectively catalyzes C–H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C–H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1 C–H activation to generate a cationic palladacycle; (2 reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3 regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied.

  19. In-situ synchrotron PXRD study of spinel LiMn2O4 nanocrystal formation

    DEFF Research Database (Denmark)

    Birgisson, Steinar; Jensen, Kirsten Marie Ørnsbjerg; Christiansen, Troels Lindahl

    Many solvothermal reactions have a great potential for environmentally friendly and easily scalable way for producing nanocrystalline materials on an industrial scale. Here we study hydrothermal formation of spinel LiMn2O4 which is a well-known cathode material for Li-ion batteries. The LiMn2O4...... nanoparticles are formed by reducing KMnO4 in an aqueous solution containing Li-ions. The reducing agent is an alcohol (here ethanol) and the reaction takes place under high pressure and temperature. The LiMn2O4 nanocrystals are unstable towards further reduction to Mn3O4 nanocrystals. Possible reaction route...

  20. Substrate dependent reaction channels of the Wolff–Kishner reduction reaction: A theoretical study

    Directory of Open Access Journals (Sweden)

    Shinichi Yamabe

    2014-01-01

    Full Text Available Wolff–Kishner reduction reactions were investigated by DFT calculations for the first time. B3LYP/6-311+G(d,p SCRF=(PCM, solvent = 1,2-ethanediol optimizations were carried out. To investigate the role of the base catalyst, the base-free reaction was examined by the use of acetone, hydrazine (H2N–NH2 and (H2O8. A ready reaction channel of acetone → acetone hydrazine (Me2C=N–NH2 was obtained. The channel involves two likely proton-transfer routes. However, it was found that the base-free reaction was unlikely at the N2 extrusion step from the isopropyl diimine intermediate (Me2C(H–N=N–H. Two base-catalyzed reactions were investigated by models of the ketone, H2N–NH2 and OH−(H2O7. Here, ketones are acetone and acetophenone. While routes of the ketone → hydrazone → diimine are similar, those from the diimines are different. From the isopropyl diimine, the N2 extrusion and the C–H bond formation takes place concomitantly. The concomitance leads to the propane product concertedly. From the (1-phenylethyl substituted diimine, a carbanion intermediate is formed. The para carbon of the phenyl ring of the anion is subject to the protonation, which leads to a 3-ethylidene-1,4-cyclohexadiene intermediate. Its [1,5]-hydrogen migration gives the ethylbenzene product. For both ketone substrates, the diimines undergoing E2 reactions were found to be key intermediates.

  1. A plant chamber system with downstream reaction chamber to study the effects of pollution on biogenic emissions.

    Science.gov (United States)

    Timkovsky, J; Gankema, P; Pierik, R; Holzinger, R

    2014-01-01

    A system of two plant chambers and a downstream reaction chamber has been set up to investigate the emission of biogenic volatile organic compounds (BVOCs) and possible effects of pollutants such as ozone. The system can be used to compare BVOC emissions from two sets of differently treated plants, or to study the photochemistry of real plant emissions under polluted conditions without exposing the plants to pollutants. The main analytical tool is a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) which allows online monitoring of biogenic emissions and chemical degradation products. The identification of BVOCs and their oxidation products is aided by cryogenic trapping and subsequent in situ gas chromatographic analysis.

  2. An in situ study of zirconium-based conversion treatment on zinc surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, P. [Materials innovation institute (M2i), Elektronicaweg 25, 2628 XG Delft (Netherlands); Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Laha, P. [Vrije Universiteit Brussel, Department of Electrochemical and Surface Engineering, Pleinlaan 2, B-1050 Brussels (Belgium); Terryn, H. [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Vrije Universiteit Brussel, Department of Electrochemical and Surface Engineering, Pleinlaan 2, B-1050 Brussels (Belgium); Mol, J.M.C., E-mail: J.M.C.Mol@tudelft.nl [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands)

    2015-11-30

    Highlights: • We investigated the deposition mechanism of zirconium conversion layer on zinc. • In situ FTIR and electrochemical measurements are conducted. • The initial hydroxyl fraction plays an important role in the deposition process. • Deposition starts with hydroxyl removal by fluoride ions. • An increase of alkalinity adjacent to the surface promotes deposition of Zr. - Abstract: This study is focused on the deposition process of zirconium-based conversion layers on Zn surfaces. The analysis approach is based on a Kretschmann configuration in which in situ ATR-FTIR spectroscopy is combined with open circuit potential (OCP) and near surface pH measurements. Differently pretreated Zn surfaces were subjected to conversion treatments, while the Zr-based deposition mechanism was probed in situ. It was found that the initial hydroxyl fraction promotes the overall Zr conversion process as the near surface pH values are influenced by the initial hydroxyl fraction. Kinetics of the early surface activation and the subsequent Zr-based conversion process are discussed and correlated to the initial hydroxyl fractions.

  3. Matrix diffusion studies by electrical conductivity methods. Comparison between laboratory and in-situ measurements

    International Nuclear Information System (INIS)

    Ohlsson, Y.; Neretnieks, I.

    1998-01-01

    Traditional laboratory diffusion experiments in rock material are time consuming, and quite small samples are generally used. Electrical conductivity measurements, on the other hand, provide a fast means for examining transport properties in rock and allow measurements on larger samples as well. Laboratory measurements using electrical conductivity give results that compare well to those from traditional diffusion experiments. The measurement of the electrical resistivity in the rock surrounding a borehole is a standard method for the detection of water conducting fractures. If these data could be correlated to matrix diffusion properties, in-situ diffusion data from large areas could be obtained. This would be valuable because it would make it possible to obtain data very early in future investigations of potentially suitable sites for a repository. This study compares laboratory electrical conductivity measurements with in-situ resistivity measurements from a borehole at Aespoe. The laboratory samples consist mainly of Aespoe diorite and fine-grained granite and the rock surrounding the borehole of Aespoe diorite, Smaaland granite and fine-grained granite. The comparison shows good agreement between laboratory measurements and in-situ data

  4. Identification of intermediates in zeolite-catalyzed reactions by in situ UV/Vis microspectroscopy and a complementary set of molecular simulations.

    Science.gov (United States)

    Hemelsoet, Karen; Qian, Qingyun; De Meyer, Thierry; De Wispelaere, Kristof; De Sterck, Bart; Weckhuysen, Bert M; Waroquier, Michel; Van Speybroeck, Veronique

    2013-12-02

    The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol-to-olefins (MTO) process. In situ UV/Vis microscopy measurements on methanol conversion over the acidic solid catalysts H-SAPO-34 and H-SSZ-13 revealed the growth of various broad absorption bands around 400, 480, and 580 nm. The cationic nature of the involved species was determined by interaction of ammonia with the methanol-treated samples. To determine which organic species contribute to the various bands, a systematic series of aromatics was analyzed by means of time-dependent density functional theory (TDDFT) calculations. Static gas-phase simulations revealed the influence of structurally different hydrocarbons on the absorption spectra, whereas the influence of the zeolitic framework was examined by using supramolecular models within a quantum mechanics/molecular mechanics framework. To fully understand the origin of the main absorption peaks, a molecular dynamics (MD) study on the organic species trapped in the inorganic host was essential. During such simulation the flexibility is fully taken into account and the effect on the UV/Vis spectra is determined by performing TDDFT calculations on various snapshots of the MD run. This procedure allows an energy absorption scale to be provided and the various absorption bands determined from in situ UV/Vis spectra to be assigned to structurally different species. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nanoparticles of the superconductor MgB2: structural characterization and in situ study of synthesis kinetics

    International Nuclear Information System (INIS)

    Cui Chunxiang; Liu Debao; Shen Yutian; Sun Jinbin; Meng Fanbin; Wang Ru; Liu Shuangjin; Greer, A.L.; Chen, S.K.; Glowacki, B.A.

    2004-01-01

    Single-crystal MgB 2 nanoparticles, with diameters in the range 20-100 nm, have been synthesized in situ in the sample chamber of an X-ray diffractometer. The reaction kinetics are analyzed and related to the atomic-level structure of the particles as observed by high-resolution electron microscopy. Synthesis conditions may have a significant influence on microstructure and superconducting properties

  6. The human sunburn reaction: histologic and biochemical studies

    International Nuclear Information System (INIS)

    Gilchrest, B.A.; Soter, N.A.; Stoff, J.S.; Mihm, M.C. Jr.

    1981-01-01

    The ultraviolet-induced erythema reaction was investigated histologically and biochemically in four subjects, utilizing suction blister aspirates, analyzed for histamine and prostaglandin E2 (PGE2), and Epon-embedded 1-mu skin biopsy sections from control skin and from irradiated skin at intervals for 72 hours after exposure to a Hanovia lamp. Major histologic alterations in the epidermis included dyskeratotic and vacuolated keratinocytes (sunburn cells), and disappearance of Langerhans cells. In the dermis the major changes were vascular, involving both the superficial and deep venular plexuses. Endothelial cell enlargement was first apparent within 30 minutes of irradiation, peaked at 24 hours, and persisted throughout the 72-hour study period. Mast cell degranulation and associated perivenular edema were first apparent at 1 hour and striking at the onset of erythema, 3 to 4 hours postirradiation; edema was absent and mast cells were again normal in number and granule content at 24 hours. Histamine levels rose approximately fourfold above control values immediately after the onset of erythema and returned to baseline within 24 hours. PGE2 levels were statistically elevated even before the onset of erythema and reached approximately 150% of the control value at 24 hours. These data provide the first evidence that histamine may mediate the early phase of the human sunburn reaction and increase our understanding of its complex histologic and biochemical sequelae

  7. A discrete model to study reaction-diffusion-mechanics systems.

    Science.gov (United States)

    Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  8. Studies of high energy hadron-hadron reactions

    International Nuclear Information System (INIS)

    Maansson, O.

    1982-01-01

    The first part of this thesis concerns the possibility of obtaining a quantity that reveals more of the primary scattering of partons, than the single particle spectra for high-p(sub)T reactions. K -K is shown to be such a quantity for 90degree scattering. A p(sub)T-dependence of P(sub)t(sup)-5.4 is data from FNAL and ISR. A model for low-p(sub)T baryon production is presented. This one-dimensional string model gives longitudinal single particle spectra in good agreement with exp. data. A model for polarization of inclusively produced hyperons is presented. A baryon is pictured as a Y-shaped string with quarks at the ends. One of the quarks is kicked out in the reaction, leading to a basically one-dim. string system. The motion of the string junction is shown to be important for the understanding of polarization phenomena. Lowest order QCD is studied with respect to color factors in the production amplitude in order to find final string configurations in high-p(sub)T events. The basis for a Monte Carlo program for complete high-p(sub)T events is discussed. (author)

  9. A discrete model to study reaction-diffusion-mechanics systems.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available This article introduces a discrete reaction-diffusion-mechanics (dRDM model to study the effects of deformation on reaction-diffusion (RD processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material. Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  10. The study of redox mechanism of dobutamine at different pH media by electrochemical and in situ spectroelectrochemical methods

    International Nuclear Information System (INIS)

    Yang Gongjun; Xu Jingjuan; Chen Hongyuan

    2004-01-01

    Based on the comprehensive analyses of the experimental results of the electrochemical methods, in situ UV-Vis absorption spectra, in situ electron spin resonance (ESR), and attenuated total-internal reflection (ATR) as well as the calculation of UV-Vis absorption data by PM3 Semi-Empirical method, a reaction mechanism for the redox processes of dobutamine was presented. When the anodic sweep is carried out, dobutamine firstly undergoes a free radical reaction with one-electron and one-proton to form semi-quinone free radicals, which will continuously convert to its corresponding quinone form by further electrochemical oxidation reaction. The formed quinone cannot only undergo a cyclization process by chemical reaction to produce a new compound, which can be reduced at more negative potential, but also be reduced to form dobutamine again when subsequent cathodic sweep is followed. The cyclization rate is depended upon pH values, and it increases with the increase of pH. In neutral medium, the corresponding oxidation form of the cyclization reaction product is easy to convert to melanin

  11. In situ synthesis of TiB2-TiC particulates locally reinforced medium carbon steel-matrix composites via the SHS reaction of Ni-Ti-B4C system during casting

    International Nuclear Information System (INIS)

    Wang, H.Y.; Huang, L.; Jiang, Q.C.

    2005-01-01

    The fabrication of medium carbon steel-matrix composites locally reinforced with in situ TiB 2 -TiC particulates using self-propagating high-temperature synthesis (SHS) reaction of Ni-Ti-B 4 C system during casting was investigated. X-ray diffraction (XRD) results reveal that the exotherm of 1042 deg. C initiated by heat release of the solid state reaction in the differential thermal analysis (DTA) curve is an incomplete reaction in Ni-Ti-B 4 C system. As-cast microstructures of the in situ processed composites reveal a relatively uniform distribution of TiB 2 -TiC particulates in the locally reinforced regions. Furthermore, the particulate size and micro-porosity in the locally reinforced regions are significantly decreased with the increasing of the Ni content in the preforms. For a Ni content of 30 and 40 wt.%, near fully dense composites locally reinforced with in situ TiB 2 and TiC particulates can be fabricated. Although most of fine TiB 2 and TiC particulates which form by the reaction-precipitation mechanism during SHS reaction are present in the locally reinforced region, some large particulates which form by the nucleation-growth mechanism during solidification are entrapped inside the Fe-rich region located in the reinforcing region or inside the matrix region nearby the interface between matrix and reinforcing region. The hardness of the reinforcing region in the composite is significantly higher than that of the unreinforced medium carbon steel. Furthermore, the hardness values of the composites synthesized from 30 to 40 wt.% Ni-Ti-B 4 C systems are higher than those of the composites synthesized from 10 to 20 wt.% Ni-Ti-B 4 C systems

  12. An in situ study of the adsorption behavior of functionalized particles on selfassembled monolayers via different chemical interactions

    NARCIS (Netherlands)

    Ling, X.Y.; Malaquin, Laurent; Reinhoudt, David; Wolf, Heiko; Huskens, Jurriaan

    2007-01-01

    The formation of particle monolayers by convective assembly was studied in situ with three different kinds of particle-surface interactions: adsorption onto native surfaces, with additional electrostatic interactions, and with supramolecular host-guest interactions. In the first case

  13. Interfacial reactions in intermetallic matrix composites

    International Nuclear Information System (INIS)

    Cantrell, L.B.; Clevenger, E.M.; Perepezko, J.H.

    1993-01-01

    The thermal stability of advanced composites is dominated by the behavior of internal interfaces. Analysis of these internal interfaces often involves consideration of at least ternary order phase equilibria. Limited thermodynamic data exists for ternary and higher order systems. However, a combined approach based upon the use of binary data to estimate ternary phase equilibria and experimentally determined reaction pathways is effective in the analysis of interface reactions in composite systems. In blended powder samples, thermal analysis was used to find possible reaction temperatures, while X-ray analysis, EDS, and EPMA of diffusion couples were used to assess interdiffusion reaction pathways. The approach is illustrated by compatibility studies between TiAl and TiSi 2 at 1,100 C, and in-situ reactions between B 4 C and TiAl at 1300 C where multiple reaction sequences have been analyzed to provide guidance for the design of in-situ reaction processing of composites

  14. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xianjun, E-mail: xjxie@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China); Wang, Yanxin, E-mail: yx.wang@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China); Pi, Kunfu [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China); Liu, Chongxuan [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China)

    2015-09-15

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO{sub 4} and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na{sub 2}HAsO{sub 4}) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles

  15. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study

    International Nuclear Information System (INIS)

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-01-01

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO 4 and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na 2 HAsO 4 ) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles. - Highlights:

  16. Studies of nuclear structure in antinucleon charge-exchange reactions

    International Nuclear Information System (INIS)

    Auerbach, N.

    1986-01-01

    The antinucleon-nucleus charge exchange reaction is discussed an its use as a probe of isovector excitations in nuclei is described. Attention is drawn to the fact that the (anti p,anti n) reaction will predominantly excite ''pionic'' (i.e., longitudinal spin) modes in nuclei. Comparison between (anti p,anti n) and (n,p) reactions is made. Plans for (anti p,anti n) experiments in the near future are mentioned. 21 refs., 3 figs

  17. Report on in-situ studies of flash sintering of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, Alicia Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Flash sintering is a novel type of field assisted sintering that uses an electric field and current to provide densification of materials on very short time scales. The potential for field assisted sintering techniques to be used in producing nuclear fuel is gaining recognition due to the potential economic benefits and improvements in material properties. The flash sintering behavior has so far been linked to applied and material parameters, but the underlying mechanisms active during flash sintering have yet to be identified. This report summarizes the efforts to investigate flash sintering of uranium dioxide using dilatometer studies at Los Alamos National Laboratory and two separate sets of in-situ studies at Brookhaven National Laboratory’s NSLS-II XPD-1 beamline. The purpose of the dilatometer studies was to understand individual parameter (applied and material) effects on the flash behavior and the purpose of the in-situ studies was to better understand the mechanisms active during flash sintering. As far as applied parameters, it was found that stoichiometry, or oxygen-to-metal ratio, has a significant effect on the flash behavior (time to flash and speed of flash). Composite systems were found to have degraded sintering behavior relative to pure UO2. The critical field studies are complete for UO2.00 and will be analyzed against an existing model for comparison. The in-situ studies showed that the strength of the field and current are directly related to the sample temperature, with temperature-driven phase changes occurring at high values. The existence of an ‘incubation time’ has been questioned, due to a continuous change in lattice parameter values from the moment that the field is applied. Some results from the in-situ experiments, which should provide evidence regarding ion migration, are still being analyzed. Some preliminary conclusions can be made from these results with regard to using field assisted sintering to

  18. Studies Of The (n, γ) Reaction With A Neutron Monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Kane, W. R.; Gardner, D.; Brown, T.; Kevey, A.; Mateosian, E. der; Emery, G. T.; Gelletly, W.; Mariscotti, M. A.J. [Brookhaven National Laboratory, Upton, Long Island, NY (United States); Schröder, I. [National Bureau of Standards, Washington, DC (United States)

    1969-11-15

    A crystal diffraction neutron monochromator has been constructed specifically for studies of the(n, γ) reaction. This equipment plays a complementary role to that of time-of-flight devices in providing a neutron beam with a full duty cycle at a given energy. This feature and the small target size, large geometrical efficiency for y-ray detection, and negligible fast neutron background afford advantages for certain classes of experiments. The useful energy range extends from 0.01 to 20 eV. Novel features of the equipment include a complete reliance upon precision angle encoders for setting arm and crystal angles, the employment of a liquid shield to facilitate the extraction of the diffracted neutron beam, and the use of air bearings to provide for the motion of the target, detection devices, and associated shielding. Results obtained on low energy resonances of {sup 139}La, {sup 189}Os, and {sup 235}U will be presented. (author)

  19. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    International Nuclear Information System (INIS)

    Martin del Campo, Julia S.; Patino, Rodrigo

    2011-01-01

    Research highlights: → The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. → A spectrophotometric method is proposed for kinetic and thermodynamic analysis. → The pH and the temperature influences are reported on physical chemical properties. → Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD ox ) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD ox as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, Δ f G o = -1784 ± 5 kJ mol -1 .

  20. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo, Julia S. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico); Patino, Rodrigo, E-mail: rtarkus@mda.cinvestav.mx [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico)

    2011-04-20

    Research highlights: {yields} The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. {yields} A spectrophotometric method is proposed for kinetic and thermodynamic analysis. {yields} The pH and the temperature influences are reported on physical chemical properties. {yields} Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD{sub ox}) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD{sub ox} as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, {Delta}{sub f}G{sup o} = -1784 {+-} 5 kJ mol{sup -1}.

  1. Exploratory study of nuclear reaction data utility framework of Japan charged particle reaction data group (JCPRG)

    International Nuclear Information System (INIS)

    Masui, Hiroshi; Ohnishi, Akira; Kato, Kiyoshi; Ohbayasi, Yosihide; Aoyama, Shigeyoshi; Chiba, Masaki

    2002-01-01

    Compilation, evaluation and dissemination are essential pieces of work for the nuclear data activities. We, Japan charged particle data group, have researched the utility framework for the nuclear reaction data on the basis of recent progress of computer and network technologies. These technologies will be not only for the data dissemination but for the compilation and evaluation assistance among the many corresponding researchers of all over the world. In this paper, current progress of our research and development is shown. (author)

  2. In-situ studies of the recrystallization process of CuInS2 thin films by energy dispersive X-ray diffraction

    International Nuclear Information System (INIS)

    Thomas, D.; Mainz, R.; Rodriguez-Alvarez, H.; Marsen, B.; Abou-Ras, D.; Klaus, M.; Genzel, Ch.; Schock, H.-W.

    2011-01-01

    Recrystallization processes during the sulfurization of CuInS 2 (CIS) thin films have been studied in-situ using energy dispersive X-ray diffraction (EDXRD) with synchrotron radiation. In order to observe the recrystallization isolated from other reactions occurring during film growth, Cu-poor, small grained CIS layers covered with CuS on top were heated in a vacuum chamber equipped with windows for synchrotron radiation in order to analyze the grain growth mechanism within the CIS layer. In-situ monitoring of the grain size based on diffraction line profile analysis of the CIS-112 reflection was utilized to interrupt the recrystallization process at different points. Ex-situ studies by electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX) performed on samples of intermediate recrystallization states reveal that during the heat treatment Cu and In interdiffuse inside the layer indicating the importance of the mobility of these two elements during CuInS 2 grain growth.

  3. The erosive effects of some mouthrinses on enamel. A study in situ.

    Science.gov (United States)

    Pontefract, H; Hughes, J; Kemp, K; Yates, R; Newcombe, R G; Addy, M

    2001-04-01

    There are both anecdotal clinical and laboratory experimental data suggesting that low pH mouthrinses cause dental erosion. This evidence is particularly relevant to acidified sodium chlorite (ASC) formulations since they have plaque inhibitory properties comparable to chlorhexidine but without the well known local side effects. Studies in situ and in vitro were planned to measure enamel erosion by low pH mouthrinses. The study in situ measured enamel erosion by ASC, essential oil and hexetidine mouthrinses over 15-day study periods. The study was a 5 treatment, single blind cross over design involving 15 healthy subjects using orange juice, as a drink, and water, as a rinse, as positive and negative controls respectively. 2 enamel specimens from unerupted human third molar teeth were placed in the palatal area of upper removable acrylic appliances which were worn from 9 a.m. to 5 p.m., Monday to Friday for 3 weeks. Rinses were used 2x daily and 250 ml volumes of orange juice were imbibed 4x daily. Enamel loss was determined by profilometry on days 5, 10 and 15. The study in vitro involved immersing specimens in the 4 test solutions together with a reduced acid ASC formulation for a period of 4 h under constant stirring; Enamel loss was measured by profilometry every hour. Enamel loss was in situ progressive over time with the 3 rinses and orange juice but negligible with water. ASC produced similar erosion to orange juice and significantly more than the two proprietary rinses and water. The essential oil and hexetidine rinses produced similar erosion and significantly more than water. Enamel loss in vitro was progressive over time, and the order from low to high erosion was reduced acid ASC, ASC, Essential oil, and hexetidine mouthrinses and orange juice. Based on the study in situ, it is recommended that low pH mouthrinses should not be considered for long term or continuous use and never as pre-brushing rinses. In view of the plaque inhibitory efficacy of ASC

  4. In Situ complement activation and T-cell immunity in leprosy spectrum: An immunohistological study on leprosy lesional skin.

    Directory of Open Access Journals (Sweden)

    Nawal Bahia El Idrissi

    Full Text Available Mycobacterium leprae (M. leprae infection causes nerve damage and the condition worsens often during and long after treatment. Clearance of bacterial antigens including lipoarabinomannan (LAM during and after treatment in leprosy patients is slow. We previously demonstrated that M. leprae LAM damages peripheral nerves by in situ generation of the membrane attack complex (MAC. Investigating the role of complement activation in skin lesions of leprosy patients might provide insight into the dynamics of in situ immune reactivity and the destructive pathology of M. leprae. In this study, we analyzed in skin lesions of leprosy patients, whether M. leprae antigen LAM deposition correlates with the deposition of complement activation products MAC and C3d on nerves and cells in the surrounding tissue. Skin biopsies of paucibacillary (n = 7, multibacillary leprosy patients (n = 7, and patients with erythema nodosum leprosum (ENL (n = 6 or reversal reaction (RR (n = 4 and controls (n = 5 were analyzed. The percentage of C3d, MAC and LAM deposition was significantly higher in the skin biopsies of multibacillary compared to paucibacillary patients (p = <0.05, p = <0.001 and p = <0.001 respectively, with a significant association between LAM and C3d or MAC in the skin biopsies of leprosy patients (r = 0.9578, p< 0.0001 and r = 0.8585, p<0.0001 respectively. In skin lesions of multibacillary patients, MAC deposition was found on axons and co-localizing with LAM. In skin lesions of paucibacillary patients, we found C3d positive T-cells in and surrounding granulomas, but hardly any MAC deposition. In addition, MAC immunoreactivity was increased in both ENL and RR skin lesions compared to non-reactional leprosy patients (p = <0.01 and p = <0.01 respectively. The present findings demonstrate that complement is deposited in skin lesions of leprosy patients, suggesting that inflammation driven by complement activation might contribute to nerve damage in the lesions

  5. In-situ Raman spectroscopy. A method to study and control the growth of microcrystalline silicon for thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Muthmann, Stefan

    2012-08-22

    of the in-situ method. The initial phase of deposition is of great importance for the performance of a {mu}cSi:H thin-film solar cell. Hence the dependence of the evolution of the crystalline volume fraction during initial layer growth on the properties of the underlying seed layer was studied in-situ. A seed layer dependent increase and subsequent stabilization of the crystalline volume fraction was observed. By actively controlling the deposition parameters based on these results it was possible to reduce the observed inhomogeneity of the Raman crystallinity in growth direction. A possible application of in-situ Raman spectroscopy as basis of an active process control was studied by testing the ability of in-situ Raman spectroscopy to detect fluctuations of the deposition parameters on the example of a disturbance of the process gas flow. It was possible to detect the reaction of the layer growth on a change of deposition conditions in-situ. By correlating the in-situ measurements to results obtained on solar-cells it was found that - unless the process fluctuation happens during the initial phase of deposition - it is possible to maintain state-of-the art solar cell performance by an active process control. By modulating the plasma emission synchronized to the Raman measurements the signal-to-noise level of the Raman measurements was reduced. Two deposition regimes were distinguished by their characteristic plasma induced temperature increase. In situ measurements show that an active control of the substrate heater results in a stabilized temperature of the growing layer throughout the deposition of a {mu}cSi:H film. (orig.)

  6. Novel in situ radiotracer methods for the direct and indirect study of chromate adsorption on alumina

    International Nuclear Information System (INIS)

    Gancs, L.; Nemeth, Z.; Horanyi, G.

    2002-01-01

    Radiotracer methods, particularly the radiotracer thin foil method, provide unique possibility of in situ monitoring of chromate adsorption on powdered adsorbents. Two different versions of the thin foil method can be distinguished. In the direct method, the species to be studied is labelled and the radiation measured gives direct information on the adsorption of this species. In the indirect method, a different labelled indicator species is added to the system and the adsorption of this species is followed and the adsorption of the species to be studied is determined based on analysis of the competitive adsorption processes. Both methods were used in the present study. In the in situ methods, the radiation measured consists of two main parts, one coming from the solution background, the other originating from the adsorption layer. In the case of the thin foil method using isotopes emitting soft β - radiation or low energy X-ray the solution background is governed and minimised by self-absorption of the radiation. In the direct study we applied an experimental methodology based on the energy selective measurement of the characteristic K α,β X-radiation emitted by the 51 Cr-labelled chromate species, whereas 35 S-labelled sulphate ions were used as the indicator species in the indirect study. (P.A.)

  7. Theoretical Studies of Elementary Hydrocarbon Species and Their Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Wesley D. [University of Georgia, Department of Chemistry and Center for Computational Quantum Chemistry; Schaefer, Henry F. [University of Georgia, Center for Computational Quantum Chemistry

    2018-04-08

    The research program supported by this DOE grant carried out both methodological development and computational applications of first-principles theoretical chemistry based on quantum mechanical wavefunctions, as directed toward understanding and harnessing the fundamental chemical physics of combustion. To build and refine the world’s database of thermochemistry, spectroscopy, and chemical kinetics, predictive and definitive computational methods are needed that push the envelope of modern electronic structure theory. The application of such methods has been made to gain comprehensive knowledge of the paradigmatic reaction networks by which the n- and i-propyl, t-butyl, and n-butyl radicals are oxidized by O2. Numerous ROO and QOOH intermediates in these R + O2 reaction systems have been characterized along with the interconnecting isomerization transition states and the barriers leading to fragmentation. Other combustion-related intermediates have also been studied, including methylsulfinyl radical, cyclobutylidene, and radicals derived from acetaldehyde and vinyl alcohol. Theoretical advances have been achieved and made available to the scientific community by implementation into PSI4, an open-source electronic structure computer package emphasizing automation, advanced libraries, and interoperability. We have pursued the development of universal explicitly correlated methods applicable to general electronic wavefunctions, as well as a framework that allows multideterminant reference functions to be expressed as a single determinant from quasiparticle operators. Finally, a rigorous analytical tool for correlated wavefunctions has been created to elucidate dispersion interactions, which play essential roles in many areas of chemistry, but whose effects are often masked and enigmatic. Our research decomposes and analyzes the coupled-cluster electron correlation energy in molecular systems as a function of interelectronic distance. Concepts

  8. Studies of (n,t) reactions on light nuclei

    International Nuclear Information System (INIS)

    Suhaimi, A.

    1988-04-01

    Cross Sections were measured with uncertainties of 13 to 21% for the reactions 9 Be(n,t)L 7 Li, 10 B(n,t)2α and 14 N(n,t) 12 C over various energy ranges. Irradiations were performed with thermal neutrons and neutrons produced via the reactions 2 H(d,n) 3 He and 9 Be(d,n) 10 B. The tritium produced and accumulated in the irradiated samples was separated by vacuum extraction and measured in the gas phase using anticoincidence β - counting. The residual tritium content was determined for the enriched 10 B and AlN samples. The characteristics of tritium diffusion in B 4 C were studied by high-temperature release experiments. The Li impurity in the AlN sample was determined via neutron activation analysis. The average 9 Be(n,t) 7 Li cross sections lie between 3 and 14 mb for break-up neutrons produced by 17.5 to 31.0 MeV deuterons on a thick Be target. A comparison of the measured data with the values deduced from differential data and neutron spectral distributions shows agreement within ± 21%. The 10 B(n,t)2α cross sections in the neutron energy range of 0.025 eV to 10.6 MeV lie between 12 and 215 mb (with the maximum at about 5.5 MeV). The 14 N(n,t) 12 C cross sections in the neutron energy range of 5.0 to 10.6 MeV lie between 11 and 30 mb. The excitation function shows a fluctuation which is attributed to the decay properties of the compound nucleus 15 N. Detailed Hauser-Feshbach calculations show that the statistical model cannot satisfactorily describe the (n,t) cross section on light nuclei. (orig.)

  9. Oxidation-reduction reactions. Overview and implications for repository studies

    International Nuclear Information System (INIS)

    Apted, Michael J.; Arthur, Randolph C.; Sasamoto, Hiroshi; Yui, Mikazu; Iwatsuki, Teruki

    2001-02-01

    The purpose of this report is to provide a survey and review on oxidation-reduction ('redox') reactions, with particular emphasis on implications for disposal of high-level waste (HLW) in deep geological formations. As an overview, the focus is on basic principles, problems, and proposed research related specifically to the assessment of redox for a HLW repository in Japan. For a more comprehensive treatment of redox and the myriad associated issues, the reader is directed to the cited textbooks used as primary references in this report. Low redox conditions in deep geological formations is a key assumption in the 'Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan' (hereafter called H12'). The release behavior of multi-valent radioelements (e.g., Tc, Se, U, Pu, Np), as well as daughter radioelements of these radioelements, from a deep geological repository are sensitively related to redox conditions. Furthermore, the performance of certain barrier materials, such as overpack and buffer, may be impacted by redox conditions. Given this importance, this report summarizes some key topics for future technical studies supporting site characterization and repository performance as follows: To fully test the conceptual models for system Eh, it will be necessary to measure and evaluate trace element and isotopic information of both coexisting groundwater and reactive minerals of candidate rocks. Because of importance of volatile species (e.g., O 2 , H 2 etc.) in redox reactions, and given the high total pressure of a repository located 500 to 1000 meter deep, laboratory investigations of redox will necessarily require use of pressurized test devices that can fully simulate repository conditions. The stability (redox capacity) of the repository system with respect to potential changes in redox boundary condition induced by oxidizing waters intrusion should be established experimentally. An overall conceptual model that unifies

  10. Study of the reactions psi' → γγpsi

    International Nuclear Information System (INIS)

    Oreglia, M.J.

    1980-12-01

    A large solid angle array (the Crystal Ball detector) of NaI(Tl) crystals, together with spark and multiwire proportional chambers for charged particle tracking, is used to study the decays of the psi' meson. Cascade reactions of the form psi' → γchi, chi → γpsi, psi → (e + e - or μ + μ - ) are used in this experiment to observe the intermediate chi states and to measure their spin by analyzing the angular correlations among the final-state particles. In addition, the multipole coefficients describing the individual radiative transitions are measured using the angular correlations. Values of J = 2 and J = 1 are obtained for the chi states with masses of 3.55 and 3.51 GeV, respectively. Radiative transitions to and from the chi states are found to be dominantly E1 in nature. The well-established J = 0 chi(3.41) state is observed in a cascade reaction, with a branching ratio BR(psi' → γchi → γγpsi) = (0.06 +- 0.02 +- 0.01)%; the first error describes uncertainties arising from statistics and acceptance corrections, while the second error is systematic. Branching ratios of (1.26 +- 0.08 +- 0.20)% for chi(3.55) and (2.38 +- 0.12 +- 0.38)% for chi(3.51) are consistent with those obtained in previous experiments. Natural line-widths of (4 +- 1) MeV for chi(3.55) and a full width consistent with the resolution of the apparatus for chi(3.51) are obtained

  11. Towards functionalization of graphene: in situ study of the nucleation of copper-phtalocyanine on graphene

    OpenAIRE

    Schwarz, Daniel; Henneke, Caroline; Kumpf, Christian

    2016-01-01

    Molecular films present an elegant way for the uniform functionalization or doping of graphene. Here, we present an in situ study on the initial growth of copper phthalocyanine (CuPc) on epitaxial graphene on Ir(111). We followed the growth up to a closed monolayer with low energy electron microscopy and selected area electron diffraction (μLEED). The molecules coexist on graphene in a disordered phase without long-range order and an ordered crystalline phase. The local topography of the grap...

  12. A STUDY ON MICROSTRUCTURE CHARACTERISTICS OF IN SITU FORMED TiC REINFORCED COMPOSITE COATINGS

    OpenAIRE

    PENG LIU; WEI GUO; HUI LUO

    2012-01-01

    In situ synthesized TiC reinforced composite coating was fabricated by laser cladding of Al-Ni-Cr-C powders on titanium alloys, which can greatly improve the surface performance of the substrate. In this study, the Al-Ni-Cr-C laser-cladded composite coatings have been researched by means of X-ray diffraction, scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA). There was a metallurgical combination between the Al-Ni-Cr-C laser-cladded coating and the Ti-6Al-4V substrat...

  13. Development of conductivity probe and temperature probe for in-situ measurements in hydrological studies

    International Nuclear Information System (INIS)

    Chandra, U.; Galindo, B.J.; Castagnet, A.C.G.

    1981-05-01

    A conductivity probe and a temperature probe have been developed for in-situ measurements in various hydrological field studies. The conductivity probe has platinum electrodes and is powered with two 12 volt batteries. The sensing element of the temperature probe consists of a resistor of high coefficient of temperature. Response of the conductivity probe is measured in a milliampere mater while the resistance of the thermistor is read by a digital meter. The values of conductivity and temperature are derived from respective calibration. The probes are prototype and their range of measurement can be improved depending upon the requirement of the field problem. (Author) [pt

  14. Case studies illustrating in-situ remediation methods for soil and groundwater contaminated with petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert A.; Lance, P.E.; Downs, A.; Kier, Brian P. [EMCON Northwest Inc., Portland, OR (United States)

    1993-12-31

    Four case studies of successful in-situ remediation are summarized illustrating cost-effective methods to remediate soil and groundwater contaminated with volatile and non-volatile petrochemicals. Each site is in a different geologic environment with varying soil types and with and without groundwater impact. The methods described include vadose zone vapor extraction, high-vacuum vapor extraction combined with groundwater tab.le depression, air sparging with groundwater recovery and vapor extraction, and bio remediation of saturated zone soils using inorganic nutrient and oxygen addition

  15. Sintering of oxide-supported Pt and Pd nanoparticles in air studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose

    This thesis presents a fundamental study of the sintering of supported nanoparticles in relation to diesel oxidation catalysts. The sintering of supported nanoparticles is an important challenge in relation to this catalyst, as well as many other catalyst systems, and a fundamental understanding...... of Pt, Pd and bimetallic Pt-Pd nanoparticles supported on a flat and homogeneous Al2O3 or SiO2 surface. By using in situ TEM on the planar model catalysts it was possible to directly monitor the detailed dynamical changes of the individual nanoparticles during exposure to oxidizing conditions...

  16. Chlorophyll bleaching by UV-irradiation in vitro and in situ: Absorption and fluorescence studies

    International Nuclear Information System (INIS)

    Zvezdanovic, Jelena; Cvetic, Tijana; Veljovic-Jovanovic, Sonja; Markovic, Dejan

    2009-01-01

    Chlorophyll bleaching by UV-irradiation has been studied by absorbance and fluorescence spectroscopy in extracts containing mixtures of photosynthetic pigments, in acetone and n-hexane solutions, and in aqueous thylakoid suspensions. Chlorophyll undergoes destruction (bleaching) accompanied by fluorescent transient formation obeying first-order kinetics. The bleaching is governed by UV-photon energy input, as well as by different chlorophyll molecular organizations in solvents of different polarities (in vitro), and in thylakoids (in situ). UV-C-induced bleaching of chlorophylls in thylakoids is probably caused by different mechanisms compared to UV-A- and UV-B-induced bleaching

  17. Case studies illustrating in-situ remediation methods for soil and groundwater contaminated with petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert A; Lance, P E; Downs, A; Kier, Brian P [EMCON Northwest Inc., Portland, OR (United States)

    1994-12-31

    Four case studies of successful in-situ remediation are summarized illustrating cost-effective methods to remediate soil and groundwater contaminated with volatile and non-volatile petrochemicals. Each site is in a different geologic environment with varying soil types and with and without groundwater impact. The methods described include vadose zone vapor extraction, high-vacuum vapor extraction combined with groundwater tab.le depression, air sparging with groundwater recovery and vapor extraction, and bio remediation of saturated zone soils using inorganic nutrient and oxygen addition

  18. Design, installation and in-situ performance study of ultrasonic continuous level meter

    International Nuclear Information System (INIS)

    Surya Prakash, G.; Somayaji, K.M.

    1995-01-01

    The report discusses the design and the development of a continuous liquid level meter based on ultrasonic pulse-echo technique. A review of various methods for level measurement along with the details of pulse-echo technique are presented. Also discussed is the development of discrete level detectors based on ultrasonic techniques. Lastly, the procedures adopted for in-situ installation of these level meters in FBTR and RML are given along with the field performance study. Some of the typical merits and limitations of the method and the surface preparation procedure are also highlighted. (author) (author)

  19. A study on the electro-oxidation and electropolymerization of a new OPE linear molecule by EQCM and in situ FTIR spectroelectrochemistry

    International Nuclear Information System (INIS)

    Luo Jiao; Liu Meiling; Zhao Qiangqin; Zhao Jie; Zhang Youyu; Tan Liang; Tang Hao; Xie Qingji; Li Haitao; Yao Shouzhuo

    2010-01-01

    A novel symmetric conjugated oligo(phenylene-ethynylene) (OPE) linear molecule (1,4-bis(4-aminophenylethynyl)benzene); BAB) was synthesized by Sonogashira cross-coupling reactions. The structure and purity of the compound were confirmed by 1 H NMR, 13 C NMR and infrared (IR) and mass spectrometry (MS). The electrochemical oxidation process and mechanism of BAB were investigated via in situ Fourier transform infrared (FTIR) spectroelectrochemistry and electrochemical quartz crystal microbalance (EQCM). The electrochemical oxidation mechanism of BAB was proposed. The studies revealed that the BAB concentration and oxidation potential had a significant influence on the growth of the polymer film. A densely packed polymer film, which exhibited nonelectroactivity, was formed when a high monomer concentration and a high oxidation potential were used. When the electropolymerization of BAB was conducted at a lower concentration, a new pair of redox peaks appeared, and the resultant thin film had better electroactivity. The in situ FTIR studies confirmed that BAB could be electro-oxidized into radical cations and then electropolymerized via para (N-N) and/or ortho (N-C) coupling reactions to form polymers with a larger conjugated π-electron system. The surface morphology of the poly-BAB was also investigated with atomic force microscopy (AFM) and scanning electron microscopy (SEM).

  20. Application of in-situ bioassays with macrophytes in aquatic mesocosm studies.

    Science.gov (United States)

    Coors, Anja; Kuckelkorn, Jochen; Hammers-Wirtz, Monika; Strauss, Tido

    2006-10-01

    Aquatic mesocosm studies assess ecotoxicological effects of chemicals by using small artificial ponds as models of lentic ecosystems. In this study, methods of controlled insertion of macrophytes within an outdoor mesocosm study were explored. Although analytically confirmed concentrations of the model herbicide terbuthylazine were high enough to expect direct effects on phytoplankton, functional parameters and dominant taxa abundance indicated only minor and transient effects. In-situ assays with Lemna minor, Myriophyllum spicatum, Potamogeton lucens and Chara globularis revealed adverse effects at concentrations in accordance with literature data. Complex interactions such as nutrient limitation and competition were possible reasons for the observed growth promotion at the lower concentration of about 5 microg/l terbuthylazine. The approach of macrophyte in-situ bioassays within a mesocosm study proved to be applicable. Presumed advantages are simultaneous acquisition of toxicity data for several species of aquatic plants under more realistic conditions compared to laboratory tests and inclusion of macrophytes as important structural and functional components in mesocosms while limiting their domination of the model ecosystem.

  1. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-12-01

    Reverse osmosis (RO) and nanofiltration (NF) membrane systems are high-pressure membrane filtration processes that can produce high quality drinking water. Biofouling, biofilm formation that exceeds a certain threshold, is a major problem in spiral wound RO and NF membrane systems resulting in a decline in membrane performance, produced water quality, and quantity. In practice, detection of biofouling is typically done indirectly through measurements of performance decline. Existing direct biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar oxygen sensing optodes, in combination with a simple imaging system, can be used for in-situ, non-destructive biofouling characterization. Aspects of the study were early detection of biofouling, biofilm spatial patterning in spacer filled channels, and the effect of feed cross-flow velocity, and feed flow temperature. Oxygen sensing optode imaging was found suitable for studying biofilm processes and gave detailed spatial and quantitative biofilm development information enabling better understanding of the biofouling development process. The outcome of this study attests the importance of in-situ, non-destructive imaging in acquiring detailed knowledge on biofilm development in membrane systems contributing to the development of effective biofouling control strategies.

  2. The study of reactions influencing the biomass steam gasification process

    Energy Technology Data Exchange (ETDEWEB)

    C. Franco; F. Pinto; I. Gulyurtlu; I. Cabrita [INETI-DEECA, Lisbon (Portugal)

    2003-05-01

    Steam gasification studies were carried out in an atmospheric fluidised bed. The gasifier was operated over a temperature range of 700 900{sup o}C whilst varying a steam/biomass ratio from 0.4 to 0.85 w/w. Three types of forestry biomass were studied: Pinus pinaster (softwood), Eucalyptus globulus and holm-oak (hardwood). The energy conversion, gas composition, higher heating value and gas yields were determined and correlated with temperature, steam/biomass ratio, and species of biomass used. The results obtained seemed to suggest that the operating conditions were optimised for a gasification temperature around 830{sup o}C and a steam/biomass ratio of 0.6 0.7 w/w, because a gas richer in hydrogen and poorer in hydrocarbons and tars was produced. These conditions also favoured greater energy and carbon conversions, as well the gas yield. The main objective of the present work was to determine what reactions were dominant within the operation limits of experimental parameters studied and what was the effect of biomass type on the gasification process. As biomass wastes usually have a problem of availability because of seasonal variations, this work analysed the possibility of replacing one biomass species by another, without altering the gas quality obtained. 19 refs., 8 figs. 2 tabs.

  3. Methodology for studying strain inhomogeneities in polycrystalline thin films during in situ thermal loading using coherent x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Vaxelaire, N; Labat, S; Thomas, O [Aix-Marseille University, IM2NP, FST avenue Escadrille Normandie Niemen, F-13397 Marseille Cedex (France); Proudhon, H; Forest, S [MINES ParisTech, Centre des materiaux, CNRS UMR 7633, BP 87, 91003 Evry Cedex (France); Kirchlechner, C; Keckes, J [Erich Schmid Institute for Material Science, Austrian Academy of Science and Institute of Metal Physics, University of Leoben, Jahnstrasse 12, 8700 Leoben (Austria); Jacques, V; Ravy, S [Synchrotron SOLEIL, L' Orme des merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex (France)], E-mail: nicolas.vaxelaire@univ-cezanne.fr

    2010-03-15

    Coherent x-ray diffraction is used to investigate the mechanical properties of a single grain within a polycrystalline thin film in situ during a thermal cycle. Both the experimental approach and finite element simulation are described. Coherent diffraction from a single grain has been monitored in situ at different temperatures. This experiment offers unique perspectives for the study of the mechanical properties of nano-objects.

  4. Methodology for studying strain inhomogeneities in polycrystalline thin films during in situ thermal loading using coherent x-ray diffraction

    International Nuclear Information System (INIS)

    Vaxelaire, N; Labat, S; Thomas, O; Proudhon, H; Forest, S; Kirchlechner, C; Keckes, J; Jacques, V; Ravy, S

    2010-01-01

    Coherent x-ray diffraction is used to investigate the mechanical properties of a single grain within a polycrystalline thin film in situ during a thermal cycle. Both the experimental approach and finite element simulation are described. Coherent diffraction from a single grain has been monitored in situ at different temperatures. This experiment offers unique perspectives for the study of the mechanical properties of nano-objects.

  5. Chromogenic in situ hybridisation for the assessment of HER2 status in breast cancer: an international validation ring study

    OpenAIRE

    van de Vijver, Marc; Bilous, Michael; Hanna, Wedad; Hofmann, Manfred; Kristel, Petra; Penault-Llorca, Frédérique; Rüschoff, Josef

    2007-01-01

    Introduction Before any new methodology can be introduced into the routine diagnostic setting it must be technically validated against the established standards. To this end, a ring study involving five international pathology laboratories was initiated to validate chromogenic in situ hybridisation (CISH) against fluorescence in situ hybridisation (FISH) and immunohistochemistry (IHC) as a test for assessing human epidermal growth factor receptor 2 (HER2) status in breast cancer. Methods Each...

  6. An Equation-of-State Compositional In-Situ Combustion Model: A Study of Phase Behavior Sensitivity

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, M. G.; Thomsen, Per Grove

    2009-01-01

    phase behavior sensitivity for in situ combustion, a thermal oil recovery process. For the one-dimensional model we first study the sensitivity to numerical discretization errors and provide grid density guidelines for proper resolution of in situ combustion behavior. A critical condition for success...... to ignition. For a particular oil we show that the simplified approach overestimates the required air injection rate for sustained front propagation by 17% compared to the equation of state-based approach....

  7. An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia

    International Nuclear Information System (INIS)

    Jung, Kyeong Taek; Bell, Alexis T.

    2001-01-01

    The mechanism of dimethyl carbonate (DMC) synthesis from methanol and carbon dioxide over monoclinic zirconia has been investigated using in situ infrared spectroscopy. The dissociative adsorption of methanol occurs more slowly than the adsorption of carbon dioxide, but the species formed from methanol are bound more strongly. Upon adsorption, the oxygen atom of methanol binds to coordinately unsaturated Zr4+ cations present at the catalyst surface. Rapid dissociation of the adsorbed methanol leads to the formation of a methoxide group (Zr-OCH3) and the release of a proton, which reacts with a surface hydroxyl group to produce water. Carbon dioxide inserts in the Zr-O bond of the methoxide to form a mondentate methyl carbonate group (Zr-OC(O)OCH3). This process is facilitated by the interactions of C and O atoms in CO2 with Lewis acid-base pairs of sites (Zr4+O2-) on the surface of the catalyst. Methyl carbonate species can also be produced via the reaction of methanol with carbon dioxide adsorbed in the form of bicarbonate species with methanol, a process that results in the transfer of a methyl group to the carbonate and restores a hydroxyl group to the zirconia surface. The decomposition of DMC on monoclinic zirconia has also been investigated and has been observed to occur via the reverse of the processes described for the synthesis of DMC

  8. In Situ Synchrotron X-ray Study of Ultrasound Cavitation and Its Effect on Solidification Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Jiawei; Tan, Dongyue; Lee, Tung Lik (Hull)

    2014-12-11

    Considerable progress has been made in studying the mechanism and effectiveness of using ultrasound waves to manipulate the solidification microstructures of metallic alloys. However, uncertainties remain in both the underlying physics of how microstructures evolve under ultrasonic waves, and the best technological approach to control the final microstructures and properties. We used the ultrafast synchrotron X-ray phase contrast imaging facility housed at the Advanced Photon Source, Argonne National Laboratory, US to study in situ the highly transient and dynamic interactions between the liquid metal and ultrasonic waves/bubbles. The dynamics of ultrasonic bubbles in liquid metal and their interactions with the solidifying phases in a transparent alloy were captured in situ. The experiments were complemented by the simulations of the acoustic pressure field, the pulsing of the bubbles, and the associated forces acting onto the solidifying dendrites. The study provides more quantitative understanding on how ultrasonic waves/bubbles influence the growth of dendritic grains and promote the grain multiplication effect for grain refinement.

  9. Cutaneous melanoma in situ: translational evidence from a large population-based study.

    Science.gov (United States)

    Mocellin, Simone; Nitti, Donato

    2011-01-01

    Cutaneous melanoma in situ (CMIS) is a nosologic entity surrounded by health concerns and unsolved debates. We aimed to shed some light on CMIS by means of a large population-based study. Patients with histologic diagnosis of CMIS were identified from the Surveillance Epidemiology End Results (SEER) database. The records of 93,863 cases of CMIS were available for analysis. CMIS incidence has been steadily increasing over the past 3 decades at a rate higher than any other in situ or invasive tumor, including invasive skin melanoma (annual percentage change [APC]: 9.5% versus 3.6%, respectively). Despite its noninvasive nature, CMIS is treated with excision margins wider than 1 cm in more than one third of cases. CMIS is associated with an increased risk of invasive melanoma (standardized incidence ratio [SIR]: 8.08; 95% confidence interval [CI]: 7.66-8.57), with an estimated 3:5 invasive/in situ ratio; surprisingly, it is also associated with a reduced risk of gastrointestinal (SIR: 0.78, CI: 0.72-0.84) and lung (SIR: 0.65, CI: 0.59-0.71) cancers. Relative survival analysis shows that persons with CMIS have a life expectancy equal to that of the general population. CMIS is increasingly diagnosed and is often overtreated, although it does not affect the life expectancy of its carriers. Patients with CMIS have an increased risk of developing invasive melanoma (which warrants their enrollment in screening programs) but also a reduced risk of some epithelial cancers, which raises the intriguing hypothesis that genetic/environmental risk factors for some tumors may oppose the pathogenesis of others.

  10. Synthesis and Characterization of WO3/Graphene Nanocomposites for Enhanced Photocatalytic Activities by One-Step In-Situ Hydrothermal Reaction

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Hu

    2018-01-01

    Full Text Available Tungsten trioxide (WO3 nanorods are synthesized on the surface of graphene (GR sheets by using a one-step in-situ hydrothermal method employing sodium tungstate (Na2WO4·2H2O and graphene oxide (GO as precursors. The resulting WO3/GR nanocomposites are characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirm that the interface between WO3 nanorod and graphene contains chemical bonds. The enhanced optical absorption properties are measured by UV-vis diffuse reflectance spectra. The photocatalytic activity of the WO3/GR nanocomposites under visible light is evaluated by the photodegradation of methylene blue, where the degradation rate of WO3/GR nanocomposites is shown to be double that of pure WO3. This is attributed to the synergistic effect of graphene and the WO3 nanorod, which greatly enhances the photocatalytic performance of the prepared sample, reduces the recombination of the photogenerated electron-hole pairs and increases the visible light absorption efficiency. Finally, the photocatalytic mechanism of the WO3/GR nanocomposites is presented. The synthesis of the prepared sample is convenient, direct and environmentally friendly. The study reports a highly efficient composite photocatalyst for the degradation of contaminants that can be applied to cleaning up the environment.

  11. Low-temperature interface reactions in layered Au/Sb films: In situ investigation of the formation of an amorphous phase

    Science.gov (United States)

    Boyen, H.-G.; Cossy-Favre, A.; Oelhafen, P.; Siber, A.; Ziemann, P.; Lauinger, C.; Moser, T.; Häussler, P.; Baumann, F.

    1995-01-01

    Photoelectron-spectroscopy methods combined with electrical-resistance measurements were employed to study the effects of intermixing at Au/Sb interfaces at low temperatures. For the purpose of characterizing the growth processes of the intermixed phase on a ML scale, Au/Sb bilayers (layer thicknesses DAu=0.5-75 ML and DSb=150 ML) were evaporated at 77 K and the different in situ techniques allowed a comparison to vapor-quenched amorphous AuxSb100-x alloys. For Au thicknesses between 0.5 and 0.9 ML, a change from a semiconducting to a metallic behavior of the samples has been detected, as indicated by the development of a steplike photoelectron intensity at the Fermi level. Evidence has been found that for Au coverages quenched amorphous alloys. Variation of the deposition temperature Ts revealed that an amorphous interface layer is only formed for Ts<= 220 K. This is consistent with the fact that for multilayers with large modulation lengths containing unreacted polycrystalline Au and Sb layers, long-range interdiffusion is found to set in at temperatures above 230 K. This interdiffusion, however, results in the formation of polycrystalline Au-Sb alloys.

  12. Water Mediated Wittig Reactions of Aldehydes in the Teaching Laboratory: Using Sodium Bicarbonate for the in Situ Formation of Stabilized Ylides

    Science.gov (United States)

    Kelly, Michael J. B.; Fallot, Lucas B.; Gustafson, Jeffrey L.; Bergdahl, B. Mikael

    2016-01-01

    The synthesis of alkenes using the Wittig reaction is a traditional part of many undergraduate organic chemistry teaching laboratory curricula. The aqueous medium version of the Wittig reaction presented is a reliable adaptation of this alkene formation reaction as a very safe alternative in the introductory organic chemistry laboratory. The…

  13. Novel thermosyphon driven hydrothermal flow-through cell for in situ and time resolved neutron diffraction studies

    International Nuclear Information System (INIS)

    Xia, Fang; Qian, Gujie; Etschmann, Barbara; University of Adelaide, South Australia, Australia; University of Adelaide, South Australia, Australia; Studer, Andrew; Olsen, Scott

    2009-01-01

    Full text: A flow-through cell for hydrothermal phase transformation studies by in situ and time-resolved neutron diffraction has been designed and constructed. The cell has a large internal volume of 320 m L and can work at up to 300 degree Centigrade under autogeneous vapour pressures (-85 bar). The fluid flow is driven by thermosyphon which is realized by the proper design of temperature difference around the closed loop[1,2). The main body of the cell is made of stainless steel (316 type), but the sample compartment is constructed from non-scattering Ti/Zr alloy. We have successfully commissioned the cell on Australia's new high intensity powder diffractometer WOMBAT in ANSTO, using a simple transformation reaction from leucite (KAISi 2 O 6 ) to analcime (NaAISi 2 O 6H2O ) and then back from analcime to leucite. The demonstration proved that the cell is an excellent tool for probing hydrothermal phase transformations. By collecting diffraction data every 5 min, it was clearly seen that leucite was progressively transformed to analcime in a NaCI solution, and the produced analcime was progressively transformed back to leucite in a K 2 CO 3 solution.

  14. In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Derek Robert [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    are present on the Pt(100) hex reconstructed phase, but not the (100)-(1x1) surface. The increase in ethylene pressure caused the adsorbate interactions to dominate the crystal morphology and imposed a surface layer structure that matched the ethylidyne binding geometry. The STM results also showed that the surface was reversibly deformed during imaging due to increases in Pt mobility at high pressure. The size dependence on the activity and surface chemistry of Rh nanoparticles was studied using AP-XPS. The activity was found to increase with particle size. The XPS spectra show that in reaction conditions the particle surface has an oxide layer which is chemically distinct from the surface structure formed by heating in oxygen alone. This surface oxide which is stabilized in the catalytically active CO oxidation conditions was found to be more prevalent on the smaller nanoparticles. The reaction-induced surface segregation behavior of bimetallic noble metal nanoparticles was observed with APXPS. Monodisperse 15 nm RhPd and PdPt nanoparticles were synthesized with well controlled Rh/Pd and Pd/Pt compositions. In-situ XPS studies showed that at 300 C in the presence of an oxidizing environment (100 mTorr NO or O2) the surface concentration of the more easily oxidized element (Rh in RhPd and Pd in PdPt) was increased. Switching the gas environment to more reducing conditions (100 mTorr NO and 100 mTorr CO) caused the surface enrichment of the element with the lowest surface energy in its metallic state. Using in-situ characterization, the redox chemistry and the surface composition of bimetallic nanoparticle samples were monitored in reactive conditions. The particle surfaces were shown to reversibly restructure in response to the gas environment at high temperature. The oxidation behavior of the Pt(110) surface was studied using surface sensitive in-situ characterization by APXPS and STM. In the presence of 500 mTorr O2 and temperatures between 25

  15. Microscopic study on dynamic barrier in fusion reactions

    International Nuclear Information System (INIS)

    Wu Xizhen; Tian Junlong; Zhao Kai; Li Zhuxia; Wang Ning

    2004-01-01

    The authors briefly review the fusion process of very heavy nuclear systems and some theoretical models. The authors propose a microscopic transport dynamic model, i.e. the Improved Quantum Molecular Dynamic model, for describing fusion reactions of heavy systems, in which the dynamical behavior of the fusion barrier in heavy fusion systems has been studied firstly. The authors find that with the incident energy decreasing the lowest dynamic barrier is obtained which approaches to the adiabatic static barrier and with increase of the incident energy the dynamic barrier goes up to the diabatic static barrier. The authors also indicate that how the dynamical fusion barrier is correlated with the development of the configuration of fusion partners along the fusion path. Associating the single-particle potentials obtained at different stages of fusion with the Two Center Shell Model, authors can study the time evolution of the single particle states of fusion system in configuration space of single particle orbits along the fusion path. (author)

  16. Theoretical study of reactions at the electrode-electrolyte interface

    International Nuclear Information System (INIS)

    Halley, J.W.

    1994-01-01

    Electron transfer rates are predicted by numerical methods, in collaboration with ANL. Emphasis is on electron transfer involving ions known to be important in enhancing stress corrosion cracking in light water reactors and on electron transfer at oxide surfaces. We have completed studies of the ferrous-ferric electron transfer rate in which effects of electric field, entropic effects in the free energy and quantum effects are included for the first time in the calculation of the rate of an electrochemical (heterogeneous) reaction rate. These new results confirm assumptions made in earlier calculations. The ferric ion has been modelled in a dissociable polarizable model showing the six-fold coordination of this ion in aqueous solution is stabilized by the three body interactions arising from the polarizability of water. In our studies of oxides, we have completed a Hartree self consistent calculation of the electronic structure of fayalite. The calculation utilizes a new method which takes phenomenological account of local electron correlations which have plagued electronic structure calculations of oxides for a long time. No electronic structure calculation of fayalite has been previously reported to our knowledge. Similar methods have been used to calculate the electronic structure of a vacancy in rutile (TiO 2 ). Results show that the screening donor electrons are anisotropically distributed around the vacancy

  17. Studies on the runaway reaction of ABS polymerization process

    International Nuclear Information System (INIS)

    Hu, K.-H.; Kao, C.-S.; Duh, Y.-S.

    2008-01-01

    Taiwan has the largest acrylonitrile-butadiene-styrene (ABS) copolymer production in the world. Preventing on unexpected exothermic reactions and related emergency relief hazard is essential in the safety control of ABS emulsion polymerization. A VSP2 (Vent Sizing Package 2) apparatus is capable of studying both normal and abnormal conditions (e.g., cooling failure, mischarge, etc.) of industrial process. In this study, the scenarios were verified from the following abnormal conditions: loss of cooling, double charge of initiator, overcharge of monomer, without charge of solvent, and external fire. An external fire with constant heating will promote higher self-heat rate and this is recommended as the worst case scenario of emulsion polymerization on butadiene. Cooling failure coupled with bulk system of reactant was determined to be the credible worst case in ABS emulsion polymerization. Finally, the emergency vent sizing based on thermokinetics from VSP associated with DIERS methodology were used for evaluating the vent sizing and compared to that of the industrial plants

  18. Nuclear structure and reaction studies at medium energies

    International Nuclear Information System (INIS)

    Hoffmann, G.W.; Ray, R.L.

    1990-10-01

    This document constitutes the (1988--1991) technical progress report for the ongoing medium energy physics research program supported by the US Department of Energy through special Research Grant FG05-88ER40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF), the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL), and at the Fermi National Accelerator Laboratory (FNAL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics;(2) provide unique, first-of-a-kind ''exploratory'' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics

  19. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Science.gov (United States)

    Demyan, M. S.; Rasche, F.; Schütt, M.; Smirnova, N.; Schulz, E.; Cadisch, G.

    2013-05-01

    An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA) in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS) is being proposed to rapidly characterize soil organic matter (SOM) to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2) in order to relate evolved gas (i.e., CO2) to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i) the Static Fertilization Experiment, Bad Lauchstädt (Chernozem), from treatments of farmyard manure (FYM), mineral fertilizer (NPK), their combination (FYM + NPK) and control without fertilizer inputs; (ii) Kraichgau; and (iii) Swabian Alb (Cambisols) areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM), sand and stable aggregates (Sa + A), silt and clay (Si + C), and NaOCl oxidized Si + C (rSOC) to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm-1) being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min-1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS) for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max). Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the Chernozem

  20. Two US EPA bioremediation field initiative studies: Evaluation of in-situ bioventing

    International Nuclear Information System (INIS)

    Sayles, G.D.; Brenner, R.C.; Hinchee, R.E.; Vogel, C.M.; Miller, R.N.

    1992-01-01

    Bioventing is the process of supplying oxygen in-situ to oxygen-deprived soil microbes by forcing air through contaminated soil at low air flow rates. Unlike soil venting or soil vacuum extraction technologies, bioventing attempts to stimulate biodegradative activity while minimizing stripping of volatile organics. The process destroys the toxic compounds in the ground. Bioventing technology is especially valuable for treating contaminated soils in areas where structures and utilities cannot be disturbed because the equipment needed (air injection/withdrawal wells, air blower, and soil gas monitoring wells) is relatively non-invasive. The US EPA Risk Reduction Engineering Laboratory, with resources from the US EPA Bioremediation Field Initiative, began two parallel 2-year field studies of in-situ of 1991 in collaboration with the US Air Force. The field sites are located at Eielson Air Force Base (AFB) near Fairbanks, Alaska, and Hill AFB near Salt Lake City, Utah. Each site has jet fuel JP-4 contaminated unsaturated soil where a spill has occurred in association with a fuel distribution network. With the pilot-scale experience gained in these studies and others, bioventing should be available in the very near future as an inexpensive, unobtrusive means of treating large quantities of organically contaminated soils. 5 figs

  1. In situ X-ray diffraction studies on the piezoelectric response of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Davydok, A., E-mail: davydok@mpie.de [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France); Max-Planck-Institut für Eisenforschung, Department Structure and Nano-/Micromechanics of Materials, D-40237 Düsseldorf (Germany); Cornelius, T.W. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France); Mocuta, C. [SOLEIL Synchrotron, DiffAbs beamline, L' Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex (France); Lima, E.C. [Universidade Federal do Tocantins, 77500-000 Porto Nacional, TO (Brazil); Araujo, E.B. [Departamento de Fisica e Quimica, Universidade Estadual Paulista, Av. Brasil, 56 Centro, 15385-000 Ilha Solteira, SP (Brazil); Thomas, O. [Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 13397 Marseille (France)

    2016-03-31

    Piezoelectric properties of randomly oriented self-polarized PbZr{sub 0.50}Ti{sub 0.50}O{sub 3} (PZT) thin films were investigated using in situ synchrotron X-ray diffraction. Possibilities for investigating the piezoelectric effect using micro-sized hard X-ray beams are demonstrated and perspectives for future dynamical measurements on PZT samples with variety of compositions and thicknesses are given. Studies performed on the crystalline [100, 110] directions evidenced piezoelectric anisotropy. The piezoelectric coefficient d{sub 33} was calculated in terms of the lab reference frame (d{sub perp}) and found to be two times larger along the [100] direction than along the [110] direction. The absolute values for the d{sub perp} amount to 120 and 230 pm/V being in good agreement with experimental and theoretical values found in literature for bulk PZT ceramics. - Highlights: • We performed in situ synchrotron X-ray diffraction studies on (PZT) thin films. • We discuss anisotropy of piezo effect in different crystallographic directions. • Perpendicular component Piezo coefficient of thin PZT layer is defined.

  2. In situ synchrotron X-ray studies during metal-organic chemical vapor deposition of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Carol [Northern Illinois Univ., DeKalb, IL (United States); Argonne National Lab., Argonne, IL (United States); Highland, Matthew J.; Perret, Edith; Fuoss, Paul H.; Streiffer, Stephen K.; Stephenson, G. Brian [Argonne National Lab., Argonne, IL (United States); Richard, Marie-Ingrid [Universite Paul Cezanne Aix-Marseille, Marseille (France)

    2012-07-01

    In-situ, time-resolved techniques provide valuable insight into the complex interplay of surface structural and chemical evolution occurring during materials synthesis and processing of semiconductors. Our approach is to observe the evolution of surface structure and morphology at the atomic scale in real-time during metal organic vapor phase deposition (MOCVD) by using grazing incidence x-ray scattering and X-ray fluorescence, coupled with visible light scattering. Our vertical-flow MOCVD chamber is mounted on a 'z-axis' surface diffractometer designed specifically for these studies of the film growth, surface evolution and the interactions within a controlled growth environment. These techniques combine the ability of X-rays to penetrate a complex environment for measurements during growth and processing, with the sensitivity of surface scattering techniques to atomic and nanoscale structure. In this talk, we outline our program and discuss examples from our in-situ and real-time X-ray diffraction and fluorescence studies of InN, GaN, and InGaN growth on GaN(0001).

  3. Studying the effect of graphene-ZnO nanocomposites on polymerase chain reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vinay, E-mail: winn201@gmail.com; Rajaura, Rajveer; Sharma, Preetam Kumar; Srivastava, Rishabh Ronin [Centre for Converging Technologies, University of Rajasthan, Jaipur 302004 (India); Sharma, Shyam Sundar [Govt. women Engineering College, Ajmer (India); Agrawal, Kailash [Centre for Converging Technologies, University of Rajasthan, Jaipur 302004 (India); Department of Botany, University of Rajasthan, Jaipur 302004 (India)

    2016-05-06

    An emerging area of research is improving the efficiency of the polymerase chain reaction (PCR) by using nanoparticles. With graphene nano-flakes showing promising results, in this paper we report the effect of Graphene-ZnO nanocomposites on Polymerase Chain reaction (PCR) efficiency. G-ZnO nanocomposites were efficiently synthesized via in situ chemical method. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) image confirms the formation of nanocomposites. ZnO nanoparticles of size range ~20-30 nm are uniformly attached on the graphene sheets. No amplification during PCR indicates inhibitory activity of G-ZnO nanocomposites which points the fingers at ZnO moiety of the G-ZnO composite for no amplification during our PCR reaction. Further work should concentrate on finding out the main inhibitory mechanism involved in inhibition of PCR using G-ZnO composites.

  4. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.

    Science.gov (United States)

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na2HAsO4) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles. Copyright © 2015

  5. Studies on the reaction of nitric acid and sugar

    International Nuclear Information System (INIS)

    MacDougall, C.S.; Bayne, C.K.; Roberson, R.B.

    1982-01-01

    The design of vessels and off-gas systems for denitrating acidic radioactive process solutions by reacting nitric acid with sugar requires a fairly accurate determination of the rate of the controlling step. Therefore, the reaction of sugar with concentrated nitric acid was closely examined at temperatures of 100 and 110 0 C and in the presence of low levels of iron )0 to 0.2 M Fe(III)). Efficiencies of the sugar destruction by nitric acid ranged from 2.56 to 2.93 mol of acid consumed per mole of carbon added. Product off-gases were examined throughout the reaction. Release of CO was fairly constant throughout the reaction, but amounts of CO 2 increased as the nitric acid began to attack the terminal carboxylic acids produced from the consumption of sucrose. Voluminous quantities of NO 2 were released at the beginning of the reaction, but larger relative concentrations of NO were observed toward the end

  6. Study of isotopic exchange reactions of azidothymidine with tritium

    International Nuclear Information System (INIS)

    Sidorov, G.V.; Zverkov, Yu.B.; Myasoedov, N.F.

    2003-01-01

    Different reactions of isotopic exchange of azidothymidine (3 - azido-3 - desoxythymidine) with tritium, such as solid- and liquid-phase catalytic isotopic exchange with gaseous tritium and isotopic exchange in solution with tritium water, are investigated. It is determined that catalytic reactions of azidothymidine with gaseous tritium in solution lead to practically full reduction of azido group up to amino group. In reactions of solid-phase catalytic hydrogenation this process takes place too and 3 - azido-3 - desoxythymidine yield is from 20 to 70 %. Molar radioactivity of labelled with tritium azidothymidine prepared in reactions of solid-phase catalytic isotopic exchange with gaseous tritium and so by isotopic exchange in solution with tritium water does not exceed 0.5 Cu/mmol [ru

  7. A study on the hierarchy model of nuclear reactions

    International Nuclear Information System (INIS)

    Kitazoe, Yasuhiro; Sekiya, Tamotsu

    1975-01-01

    The application of the hierarchy model of nuclear reaction is discussed, and the hierarchy model means that the compound nucleus state is formed after several steps, at least, one step of reaction. This model was applied to the analysis of the observed cross sections of 235 U and some other elements. Neglecting exchange scattering effect, the equations for the total neutron cross section of 235 U were obtained. One of these equations describes explicitly the hierarchy of the transition from intermediate reaction state Xm into the compound nucleus state Xs, and another one describes the cross section averaged over an energy interval larger than the average level spacing of compound nucleus eigenvalues. The hierarchy of reaction mechanism was investigated in more detail, and the hierarchy model was applied to the case of unresolved energy region. It was not tried to evaluate the strength function in the mass region (A>140), since the effect of nuclear deformation was neglected in the task. (Iwase, T.)

  8. Experimental study o the sodium-concrete reaction

    International Nuclear Information System (INIS)

    Goncalves, A.C.; Torres, A.R.; Brito Aghina, L.O. de; Messere e Castro, P.

    1986-01-01

    Effects and aspects of security are verified during a sodium leakage in high temperatures on liners of contention cells and directly on the concrete. As this kinetic process involves reactions between materials in solid state (such as oxides and carbonates) vapors and gases (such as water and CO 2 )) with liquid sodium, effects of each phase of the heterogeneous mixture are separately analysed. Are still analysed produced products and briefly discussed the kinetic of the sodium-concrete reaction. (Author) [pt

  9. In situ localization of chloroquine and immunohistological studies in UVB-irradiated skin of photosensitive patients

    NARCIS (Netherlands)

    Sjölin-Forsberg, G.; Berne, B.; Eggelte, T. A.; Karlsson-Parra, A.

    1995-01-01

    Chloroquine can prevent photosensitivity reactions, but its mechanism of action is poorly understood. To investigate if the drug may interfere with inflammatory or immunological mechanisms of the UV-induced erythema of photosensitive patients, we studied the localization of chloroquine in the skin

  10. Redox reactions of methylene blue: a pulse radiolysis study

    International Nuclear Information System (INIS)

    Kishore, K.; Guha, S.N.; Mahadevan, J.; Moorthy, P.N.; Mittal, J.P.

    1989-01-01

    One-electron oxidation of methylene blue (MB - has been studied using specific oxidizing radicals such as Cl 2 - , Br 2 - , N 3 and Tl(II) in acidic and neutral aqueous solutions). The transient spectrum showed absorption maxima at 525 nm and 360 nm in the acidic pH region. At neutral pH also the absorption maxima were at 525 and 360 nm but the extinction coefficients were lower by 30%. A pK a of ∼4.3 was observed for the equilibrium MBH 3+ MB 2+ + H + . In the case of N 3 radical as the oxidant, the equilibrium: N 3 + MB = N 3 - + MB 2+ was observed for which an equilibrium constant of 120 was estimated from the experimental data. From this as well as from cyclic voltammetric experiments, the redox potential for the MB 2+ /MB + couple was calculated as 1.25 V vs NHE. The transient species produced by the reaction of OH radicals with methylene blue gave a very different spectrum with λ m = 400nm and a pK a of ∼ 8.6, and hence it is inferred that OH radicals do not bring about one-electron oxidation of the molecule. (author)

  11. Mechanistic studies on the reaction of 0-phthaladehyde

    International Nuclear Information System (INIS)

    Maliha, B.; Siddiqui, H.L.; Hussain, I.; Ilyas, M.

    2009-01-01

    Urea and its N-alkyl/aryl derivatives react with o-phthalaldehyde (OPT A) to yield blue to purple coloration along-with isoindoline compounds (VII a,b,c) in acidic media. The color is unstable and changes into various shades with the passage of the time. The assay of urea which entirely depends upon this color does not suggest its determination with OPTA present in biological and non-biological fluids. Moreover, it is found that compounds which enhance color stability have nothing to do with determination of urea. The structures of isoindolines (VII a,b,c) have been confirmed by IH-, 13C-NMR and mass spectrometry techniques. The absolute authenticity comes from their (VII a,b,c) X-ray crystallography. The colors resulting from the said reactions fall in between 585-595 nm in UV/VIS spectra. As the use of OPTA for urea determination is known, hence, in this study, we are presenting chemistry for urea determination with OPTA. (author)

  12. Reaction CH3 + OH studied over the 294-714 K temperature and 1-100 bar pressure ranges.

    Science.gov (United States)

    Sangwan, Manuvesh; Chesnokov, Evgeni N; Krasnoperov, Lev N

    2012-08-30

    Reaction of methyl radicals with hydroxyl radicals, CH(3) + OH → products (1) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 294-714 K temperature and 1-100 bar pressure ranges (bath gas He). Methyl radicals were produced by photolysis of acetone at 193.3 nm. Hydroxyl radicals were generated in reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N(2)O at 193.3 nm, with H(2)O. Temporal profiles of CH(3) were recorded via absorption at 216.4 nm using xenon arc lamp and a spectrograph; OH radicals were monitored via transient absorption of light from a dc discharge H(2)O/Ar low pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light inside the reactor was determined by an accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study indicate that the rate constant of reaction 1 is pressure independent within the studied pressure and temperature ranges and has slight negative temperature dependence, k(1) = (1.20 ± 0.20) × 10(-10)(T/300)(-0.49) cm(3) molecule(-1) s(-1).

  13. A Comparative Study of Simple Auditory Reaction Time in Blind (Congenitally) and Sighted Subjects

    OpenAIRE

    Gandhi, Pritesh Hariprasad; Gokhale, Pradnya A.; Mehta, H. B.; Shah, C. J.

    2013-01-01

    Background: Reaction time is the time interval between the application of a stimulus and the appearance of appropriate voluntary response by a subject. It involves stimulus processing, decision making, and response programming. Reaction time study has been popular due to their implication in sports physiology. Reaction time has been widely studied as its practical implications may be of great consequence e.g., a slower than normal reaction time while driving can have grave results. Objective:...

  14. Fatty acid profile of the initial oral biofilm (pellicle): an in-situ study.

    Science.gov (United States)

    Reich, Marco; Kümmerer, Klaus; Al-Ahmad, Ali; Hannig, Christian

    2013-09-01

    The first step of bioadhesion on dental surfaces is the formation of the acquired pellicle. This mainly acellular layer is formed instantaneously on all solid surfaces exposed to oral fluids. It is composed of proteins, glycoproteins and lipids. However, information on the lipid composition is sparse. The aim of the present study was to evaluate the fatty acid (FA) profile of the in-situ pellicle for the first time. Furthermore, the impact of rinses with safflower oil on the pellicle's FA composition was investigated. Pellicles were formed in situ on bovine enamel slabs mounted on individual upper jaw splints. The splints were carried by ten subjects over durations of 3-240 min. After comprehensive sample preparation, gas chromatography coupled with electron impact ionization mass spectrometry (GC-EI/MS) was used in order to characterize qualitatively and quantitatively a wide range of FA (C12-C24). The relative FA profiles of the pellicle samples gained from different subjects were remarkably similar, whereas the amount of FA showed significant interindividual variability. An increase in FA in the pellicle was observed over time. The application of rinses with safflower oil resulted in an accumulation of its specific FA in the pellicle. Pellicle formation is a highly selective process that does not correlate directly with salivary composition, as shown for FA.

  15. Laboratory studies on natural restoration of ground water after in-situ leach uranium mining

    International Nuclear Information System (INIS)

    Bell, N.E.; Deutsch, W.J.; Serne, R.J.

    1983-05-01

    When uranium is mined using in-situ leach techniques, the chemical quality of the ground water in the ore-zone aquifer is affected. This could lead to long-term degradation of the ground water if restoration techniques are not applied after the leaching is completed. Pacific Northwest Laboratory (PNL), is conducting an NRC-sponsored research project on natural restoration and induced-restoration techniques. Laboratory studies were designed to evaluate the ability of the natural system (ore-zone sediments and groundwater) to mitigate the effects of mining on aquifer chemistry. Using batch and flow-through column experiments [performed with lixiviant (leaching solution) and sediments from the reduced zone of an ore-zone aquifer], we found that the natural system can lower uranium and bicarbonate concentrations in solutions and reduce the lixiviant redox potential (Eh). The change in redox potential could cause some of the contaminants that were dissolved during the uranium leaching operation to precipitate, thereby lowering their solution concentration. The concentrations of other species such as calcium, potassium, and sulfate increased, possibly as a result of mineral dissolution and ion exchange. In this paper, we describe the experimentally determined mobility of contaminants after in-situ leach mining, and discuss the possible chemical process affecting mobility

  16. Prioritising in situ conservation of crop resources: a case study of African cowpea (Vigna unguiculata).

    Science.gov (United States)

    Moray, C; Game, E T; Maxted, N

    2014-06-17

    Conserving crop wild relatives (CWR) is critical for maintaining food security. However, CWR-focused conservation plans are lacking, and are often based on the entire genus, even though only a few taxa are useful for crop improvement. We used taxonomic and geographic prioritisation to identify the best locations for in situ conservation of the most important (priority) CWR, using African cowpea (Vigna unguiculata (L.) Walp.) as a case study. Cowpea is an important crop for subsistence farmers in sub-Saharan Africa, yet its CWR are under-collected, under-conserved and under-utilised in breeding. We identified the most efficient sites to focus in situ cowpea CWR conservation and assessed whether priority CWR would be adequately represented in a genus-based conservation plan. We also investigated whether priority cowpea CWR are likely to be found in existing conservation areas and in areas important for mammal conservation. The genus-based method captured most priority CWR, and the distributions of many priority CWR overlapped with established conservation reserves and targets. These results suggest that priority cowpea CWR can be conserved by building on conservation initiatives established for other species.

  17. In-situ study of hydriding kinetics in Pd-based thin film systems

    Energy Technology Data Exchange (ETDEWEB)

    Delmelle, Renaud; Proost, Joris [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium). Div. of Materials and Process Engineering

    2010-07-01

    The hydriding kinetics of Pd thin films has been investigated in detail. The key experimental technique used in this work consists of a high resolution curvature measurement setup, which continuously monitors the reflections of multiple laser beams coming off a cantilevered sample. After mounting the sample inside a vacuum chamber, a H-containing gas mixture is introduced to instantaneously generate a given hydrogen partial pressure (p{sub H2}) inside the chamber. The resulting interaction of H with the Pd layer then leads to a volume expansion of the thin film system. This induces in turn changes in the sample curvature as a result of internal stresses developing in the Pd film during a hydriding cycle. Based on such curvature date obtained in-situ at different p{sub H2}, a two-step model for the kinetics of Pd-hydride formation has been proposed and expressions for the hydrogen adsorption and absorption velocities have been derived. The rate-limiting steps have been identified by studying the p{sub H2}-dependence of these velocities. Furthermore, from our in-situ experimental data, relevant kinetic parameters have been calculated. The effect of dry air exposure of the Pd films on the hydriding kinetics has been considered as well. (orig.)

  18. Laboratory studies on natural restoration of ground water after in-situ leach uranium mining

    Energy Technology Data Exchange (ETDEWEB)

    Bell, N.E.; Deutsch, W.J.; Serne, R.J.

    1983-05-01

    When uranium is mined using in-situ leach techniques, the chemical quality of the ground water in the ore-zone aquifer is affected. This could lead to long-term degradation of the ground water if restoration techniques are not applied after the leaching is completed. Pacific Northwest Laboratory (PNL), is conducting an NRC-sponsored research project on natural restoration and induced-restoration techniques. Laboratory studies were designed to evaluate the ability of the natural system (ore-zone sediments and groundwater) to mitigate the effects of mining on aquifer chemistry. Using batch and flow-through column experiments (performed with lixiviant (leaching solution) and sediments from the reduced zone of an ore-zone aquifer), we found that the natural system can lower uranium and bicarbonate concentrations in solutions and reduce the lixiviant redox potential (Eh). The change in redox potential could cause some of the contaminants that were dissolved during the uranium leaching operation to precipitate, thereby lowering their solution concentration. The concentrations of other species such as calcium, potassium, and sulfate increased, possibly as a result of mineral dissolution and ion exchange. In this paper, we describe the experimentally determined mobility of contaminants after in-situ leach mining, and discuss the possible chemical process affecting mobility.

  19. Growth studies of CVD-MBE by in-situ diagnostics

    Science.gov (United States)

    Maracas, George N.; Steimle, Timothy C.

    1992-10-01

    This is the final technical report for the three year DARPA-URI program 'Growth Studies of CVD-MBE by in-situ Diagnostics'. The goals of the program were to develop non-invasive, real time epitaxial growth monitoring techniques and combine them to gain an understanding of processes that occur during MBE growth from gas sources. We have adapted these techniques to a commercially designed gas source MBE system (Vacuum Generators Inc.) to facilitate technology transfer out of the laboratory into industrial environments. The in-situ measurement techniques of spectroscopic ellipsometry (SE) and laser induced fluorescence (LIF) have been successfully implemented to monitor the optical and chemical properties of the growing epitaxial film and the gas phase reactants. The ellipsometer was jointly developed with the J. Woolam Co. and has become a commercial product. The temperature dependence of group 3 and 5 desorption from GaAs and InP has been measured as well as the incident effusion cell fluxes. The temporal evolution of the growth has also been measured both by SE and LIF to show the smoothing of heterojunction surfaces during growth interruption. Complicated microcavity optical device structures have been monitored by ellipsometry in real time to improve device quality. This data has been coupled with the structural information obtained from reflection high energy electron diffraction (RHEED) to understand the growth processes in binary and ternary bulk 3-5 semiconductors and heterojunctions.

  20. Prevention of dental erosion of a sports drink by nano-sized hydroxyapatite in situ study.

    Science.gov (United States)

    Min, Ji Hyun; Kwon, Ho Keun; Kim, Baek Il

    2015-01-01

    To evaluate the inhibitory effects of the sports drink containing nano-sized hydroxyapatite (nano-HA) on dental erosion in situ. The study had a single-blind, two-treatment crossover design. The two treatment groups were a control group (CG; Powerade only) and an experimental group (EG; 0.25% wt/vol nano-HA was added to Powerade). Ten subjects wore removable palatal appliances containing bovine enamel specimens. The appliances were immersed in each drink for 10 mins, 4 times a day for 10 days. The tooth surface microhardness (SMH) was tested, and the erosion depth and the morphology of the tooth surface were observed. The data were analysed by repeated measures anova and t-test. Between the baseline and the 10th day, SMH was decreased by 80% in the specimens of the CG (P erosion depth of 12.70 ± 4.66 μm and an irregular tooth surface were observed on the 10th day in the specimens of the CG. No dental erosions, however, was observed in the specimens of the EG. The sports drink containing 0.25% nano-HA was effective in preventing dental erosion in situ. © 2014 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Study of reactional conditions of oxidative cleavage reaction of bicyclic {beta}-hydroxy ethers promoted by ruthenium tetroxide; Estudo das condicoes reacionais da reacao de clivagem oxidativa de {beta}-hidroxi eteres biciclicos promovida por tetroxido de rutenio

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Helena M.C.; Scalfo, Alexsandra C. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica; Vilalba, Bruno T.; Longo Junior, Luiz S., E-mail: luiz.longo@unifesp.b [Universidade Federal de Sao Paulo (UNIFESP-EPM), Diadema, SP (Brazil)

    2010-07-01

    A systematic study of the reaction of {beta}-hydroxy ethers with ruthenium tetraoxide (RuO{sub 4}), generated in situ from ruthenium trichloride and sodium periodate, is presented, leading to nine-membered ring keto-lactones in moderate yields. Three different solvent systems - AcOEt/MeCN/H{sub 2}O, MeCN/H{sub 2}O and DMC/H{sub 2}O - were studied leading to the desired products in lower yields than those obtained with the classical mixture of CCl{sub 4}/MeCN/H{sub 2}O, commonly used in reactions promoted by this oxidant. However, it is noteworthy that these new solvent systems represent greener alternatives to the chlorinated solvents used in the oxidative cleavage of {beta}-hydroxy ethers by RuO{sub 4}. (author)

  2. Micro-CT in situ study of carbonate rock microstructural evolution for geologic CO2 storage

    DEFF Research Database (Denmark)

    Zheng, Yi; Yang, Yan; Rogowska, M.

    2017-01-01

    to achieve this is to find a suitable condition to create a stable 3D space in carbonate rock by injecting liquid to prepare space for the later CO2 injection. Micro-CT imaging is a non-destructive 3D method that can be used to study the property changes of carbonate rocks during and after CO2 injection....... The advance in lab source based micro-CT has made it capable of in situ experiments. We used a commercial bench top micro-CT (Zeiss Versa XRM410) to study the microstructure changes of chalk during liquid injection. Flexible temporal CT resolution is essential in this study because that the time scales...... of coupled physical and chemical processes can be very different. The results validated the feasibility of using a bench top CT system with a pressure cell to monitor the mesoscale multiphase interactions in chalk....

  3. Studies of nuclear reaction at very low energies

    International Nuclear Information System (INIS)

    Cecil, F.E.

    1992-01-01

    The deuteron radiative capture reactions on 2 H, 6 Li and 10 B have been measured between center of mass energies of 20 and 140 keV. Of note is the observation that the gamma ray-to-charged particle branching ratio for the DD reaction appears independent of energy down to a center of mass energy of 20 keV, consistent with some and contrary to other theoretical models. We have investigated the ratio of the reactions D(d,p)T and D(d,n) 3 He down to c.m. energies of 3 keV and the ratio of the reactions 6Li(d,p) 7 Li and 6 LI(d,α) 4 He down to a c.m. energy of 19 keV. The DD reaction ratio is independent of energy while the (d,p) branch of the D- 6 Li evinces a significant enhancement at the lowest measured energies. We have continued our investigation of charged particle production from deuterium-metal systems at a modest level of activity. Noteworthy in this investigation is the observation of 3 MeV protons from deuteron beam loaded Ti and LiD targets subjected to extreme thermal disequilibria. Significant facility improvements were realized during the most recent contract period. Specifically the downstream magnetic analysis system proposed to eliminate beam induced contaminants has been installed and thoroughly tested. This improvement should allow the D(a,γ) 6 Li reaction to be measured in the coming contract period. A scattering chamber required for the measurement of the 7 Li( 3 He,p) 9 Be reaction has been designed, fabricated and installed on the accelerator. A CAMAC based charged particle identification system has been assembled also for use in our proposed measurement of the 7 Li( 3 He, p) 9 Be

  4. Radiochemical study of the reactions of heavy ions with gold

    International Nuclear Information System (INIS)

    Binder, I.

    1977-07-01

    Thick gold foils have been bombarded with heavy-ion projectiles at energies above the Coulomb barrier. The radioactive products were identified and their yields measured using gamma-ray spectrometry and an extensive series of computer programs developed for the data analysis. The total mass-yield distribution was extracted from the data using charge-dispersion curves inferred from the experimental results. One observes a change in the mass-yield distributions corresponding to primarily fusion-fission tractions occurring with the lighter projectiles Ne-20 and Ar-40 and deep-inelastic transfer reactions predominating with heavier Kr-84, Kr-86, and Xe-136 projectiles. For the deep-inelastic transfer reaction, more mass transfer is seen to occur for a higher incident projectile energy, and the Gaussian distribution of products shows exponential tailing. The preferred direction for mass transfer is from gold to the projectile nucleus. Sequential fission is a likely fate for nucludes beyond the lead shell closure. The ''gold finger'' is explained as a combination of mass transfer, nucleon evaporation and sequential fission. The yields of gold nuclides indicate a superposition of two reaction mechanisms, quasi-elastic and deep-inelastic. The angular momentum involved with each mechanism determines which of two isomeric states is the end product of the nuclear reaction. Suggestions are offered regarding the possibility of synthesizing super-heavy elements by use of heavy-ion nuclear reactions

  5. Radiochemical study of the reactions of heavy ions with gold

    Energy Technology Data Exchange (ETDEWEB)

    Binder, I.

    1977-07-01

    Thick gold foils have been bombarded with heavy-ion projectiles at energies above the Coulomb barrier. The radioactive products were identified and their yields measured using gamma-ray spectrometry and an extensive series of computer programs developed for the data analysis. The total mass-yield distribution was extracted from the data using charge-dispersion curves inferred from the experimental results. One observes a change in the mass-yield distributions corresponding to primarily fusion-fission tractions occurring with the lighter projectiles Ne-20 and Ar-40 and deep-inelastic transfer reactions predominating with heavier Kr-84, Kr-86, and Xe-136 projectiles. For the deep-inelastic transfer reaction, more mass transfer is seen to occur for a higher incident projectile energy, and the Gaussian distribution of products shows exponential tailing. The preferred direction for mass transfer is from gold to the projectile nucleus. Sequential fission is a likely fate for nucludes beyond the lead shell closure. The ''gold finger'' is explained as a combination of mass transfer, nucleon evaporation and sequential fission. The yields of gold nuclides indicate a superposition of two reaction mechanisms, quasi-elastic and deep-inelastic. The angular momentum involved with each mechanism determines which of two isomeric states is the end product of the nuclear reaction. Suggestions are offered regarding the possibility of synthesizing super-heavy elements by use of heavy-ion nuclear reactions.

  6. HER-2 gene amplification by chromogenic in situ hybridisation (CISH) compared with fluorescence in situ hybridisation (FISH) in breast cancer-A study of two hundred cases.

    Science.gov (United States)

    Sáez, A; Andreu, F J; Seguí, M A; Baré, M L; Fernández, S; Dinarés, C; Rey, M

    2006-08-01

    The purpose of the study was to compare two methods used to analyse HER-2 gene amplification (fluorescence in situ hybridisation (FISH) and chromogenic in situ hybridisation (CISH)), and determine the accuracy of the antibodies CB11 and HercepTest for immunohistochemical detection of HER-2 overexpression from archival breast cancer tissue. Additionally, interobserver variability in the interpretation of CISH and immunohistochemical tests was measured. Two hundred cases of invasive breast carcinoma diagnosed between 2000 and 2003 were selected. Immunohistochemistry (IHC) was performed with HercepTest and CB11, and gene amplification was determined by FISH (PathVision, Vysis) and CISH (Zymed) using tissue macroarrays. An excellent concordance (94.8%) was found between CISH and FISH. Considering FISH as gold standard, sensitivity of CISH was 97.5% and specificity 94%. Overall interobserver agreement of CISH was 97.5% and of IHC 84%. Both antibodies showed a sensitivity of 95.2% and a specificity of 70.7% (CB11) and 81.2% (HercepTest). Our results show that CISH is a highly accurate, reproducible and practical technique to determine HER-2 gene amplification. CB11 and HercepTest are good screening methods with a high sensitivity. The performance of tissue macroarrays to test HER-2 status by IHC, FISH and CISH has demonstrated to be an available and effective method to study large series of tumours.

  7. In situ TEM observation of the Boudouard reaction: Multi-layered graphene formation from CO on cobalt nanoparticles at atmospheric pressure

    NARCIS (Netherlands)

    Bremmer, G.M.; Zacharaki, E.; Sjåstad, A.O.; Navarro, V.; Frenken, J.W.M.; Kooyman, P.J.

    2017-01-01

    Using a MEMS nanoreactor in combination with a specially designed in situ Transmission Electron Microscope (TEM) holder and gas supply system, we imaged the formation of multiple layers of graphene encapsulating a cobalt nanoparticle, at 1 bar CO:N2 (1:1) and 500 °C. The cobalt nanoparticle was

  8. Identification of Intermediates in Zeolite-Catalyzed Reactions Using In-situ UV/Vis Micro- Spectroscopy and a Complementary Set of Molecular Simulations

    NARCIS (Netherlands)

    Hemelsoet, K.L.J.; Qian, Q.|info:eu-repo/dai/nl/34138609X; De Meyer, T.; De Wispelaere, K.; De Sterck, B.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397; Waroquier, M.; Van Speybroeck, V.

    2013-01-01

    The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol-toolefins (MTO) process. In situ UV/Vis microscopy

  9. In-Situ Neutron Diffraction Under Tensile Loading of Powder-in-Tube Cu/Nb$_{3}$Sn Composite Wires Effect of Reaction Heat Treatment on Texture, Internal Stress State and Load Transfer

    CERN Document Server

    Scheuerlein, C; Thilly, L

    2007-01-01

    The strain induced degradation of Nb$_{3}$Sn superconductors can hamper the performance of high field magnets. We report elastic strain measurements in the different phases of entire non-heat treated and fully reacted Nb$_{3}$Sn composite strands as a function of uniaxial stress during in-situ deformation under neutron beam. After the reaction heat treatment the Cu matrix loses entirely its load carrying capability and the applied stress is transferred to the remaining Nb-Ta alloy and to the brittle (Nb-Ta)3Sn phase, which exhibits a preferential grain orientation parallel to the strand axis.

  10. Contrast reaction training in US radiology residencies: a COARDRI study.

    Science.gov (United States)

    LeBedis, Christina A; Rosenkrantz, Andrew B; Otero, Hansel J; Decker, Summer J; Ward, Robert J

    To perform a survey-based assessment of current contrast reaction training in US diagnostic radiology residency programs. An electronic survey was distributed to radiology residency program directors from 9/2015-11/2015. 25.7% of programs responded. 95.7% of those who responded provide contrast reaction management training. 89.4% provide didactic lectures (occurring yearly in 71.4%). 37.8% provide hands-on simulation training (occurring yearly in 82.3%; attended by both faculty and trainees in 52.9%). Wide variability in contrast reaction education in US diagnostic radiology residency programs reveals an opportunity to develop and implement a national curriculum. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. In situ experimental study for the optimization of chlorine dosage in seawater cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Nebot, E.; Casanueva, T.; Fernandez-Baston, M.M.; Sales, D. [Department of Chemical Engineering, Food Technology and Environmental Technologies, University of Cadiz (Spain); Casanueva, J.F. [Department of Thermal Engines, University of Cadiz (Spain)

    2006-11-15

    The paper details an in situ study for the evaluation of the evolution of fouling heat transfer resistance and to optimize the antifouling chlorine dosage at a 550MW power station. A portable pilot plant has been designed to simulate the steam surface condenser and used as an accurate fouling monitor that takes the seawater from the same intake point as the power station. This study includes fouling extraction and its characterization for different dosage patterns. The residual chlorine concentration at the cooling-water discharge from the power station is 0.2mg/l and has been considered appropriate for the prevention of the formation of fouling, because with this concentration approximately 90% reduction in the amount of fouling is obtained. Residual chlorine dosages lower than 0.2ppm could be effective in controlling fouling development if mechanical techniques of fouling control are also available. (author)

  12. In-situ X-ray diffraction activation study on an Fe/TiO2 pre-catalyst.

    Science.gov (United States)

    Rayner, Matthew K; Billing, David G; Coville, Neil J

    2014-06-01

    This study focuses on the use of in situ powder X-ray diffraction (PXRD) and quantitative phase analysis using the Rietveld method to monitor the structural properties of a titania-supported iron (10% Fe/TiO2) pre-catalyst during calcination (oxidation) and activation (reduction) in the temperature range 25-900°C. The TiO2 oxidation study revealed an increase in anatase particle size before the anatase to rutile phase transformation, lending credibility to the bridging mechanism proposed by Kim et al. [(2007), Mater. Sci. Forum, 534-536, 65-68]. Pre-catalyst oxidation experiments allowed for the determination of a suitable calcination temperature (450°C) of the pre-catalyst in terms of maximum hematite concentration and appropriate particle size. These experiments also confirmed that the anatase to rutile phase transformation occurred at higher temperatures after Fe addition and that anatase was the sole donor of Ti(4+) ions, which are known to migrate into hematite (Gennari et al., 1998), during the formation of pseudobrookite (Fe2TiO5) at temperatures above 690°C. Using the results from the oxidation experiments, two pre-catalyst samples were calcined at different temperatures; one to represent the preferred case and one to represent a case where the pre-catalyst had been excessively heated. Samples of the excessively heated catalysts were exposed to different reducing gas atmospheres (5, 10 and 100% H2/N2) and heated in the in situ PXRD reactor, so that diffraction data could be collected during the activation process. The results show that reduction with gases containing low concentrations of H2 (5 and 10%) led to the formation of ilmenite (FeTiO3) and we were able to show that both anatase and rutile are consumed in the reaction. Higher concentrations of H2 led to the formation of magnetite (Fe3O4) and metallic iron (Fe(0)). We also noted a decrease in the anatase to rutile transformation temperature under reducing atmospheres when compared with the pre

  13. Application of the Trojan Horse Method to study neutron induced reactions: the 17O(n, α14C reaction

    Directory of Open Access Journals (Sweden)

    Gulino M.

    2014-03-01

    Full Text Available The reaction 17O(n, α14C was studied using virtual neutrons coming from the quasi-free deuteron break-up in the three body reaction 17O+d → α+14C+p. This technique, called virtual neutron method, extends the Trojan Horse method to neutron-induced reactions allowing to study the reaction cross section avoiding the suppression effects coming from the penetrability of the centrifugal barrier. For incident neutron energies from thermal up to a few hundred keV, direct experiments have shown the population of two out of three expected excited states at energies 8213 keV and 8282 keV and the influence of the sub-threshold level at 8038 keV. In the present experiment the 18O excited state at E* = 8.125 MeV, missing in the direct measurement, is observed. The angular distributions of the populated resonances have been measured for the first time. The results unambiguously indicate the ability of the method to overcome the centrifugal barrier suppression effect and to pick out the contribution of the bare nuclear interaction.

  14. Theoretical and experimental studies of N and SF2 reaction

    International Nuclear Information System (INIS)

    Yu Shuqin; Zhou Xiaoguo

    2000-02-01

    In this paper, free radical reaction of N+SF 2 induced by dc discharge in N 2 and SF 6 system was examined. Although the NS + (m/z = 46) ion signals were detected, NS + is not the spectral carrier from obtained REMPI spectra analysis. Ab initio quantum calculation shows that NSF is the main product of N + SF 2 . It is confirmed from this calculation that NS + obtained in experiment was produced by multiphoton ionization and dissociation of NSF which is real product of N + SF 2 reaction. (author)

  15. In situ experimental study of subduction zone fluids using diamond anvil cells

    Science.gov (United States)

    Bureau, H.; Foy, E.; Somogyi, A.; Munsch, P.; Simon, G.; Kubsky, S.

    2008-12-01

    Experiments carried out in diamond anvil cells combined with in situ synchrotron light source measurements represent the only one issue to observe and study fluid equilibria in real time, at the pressure and temperature conditions of the subduction zones. We will present new results recently obtained at the DIFFABS beam line (SOLEIL Synchrotron) aiming at studying equilibria between silica-rich hydrous melts and aqueous fluids in the presence of U, Th, Pb, Ba and Br. We used synchrotron X-Ray fluorescence analysis performed in situ in Bassett-modified hydrothermal diamond anvil cells in order to monitor the chemical transfers of the studied elements between the phases in equilibrium at different pressures (up to 1.6 GPa) and temperatures (up to 900°C). We have calculated the partition coefficients for each studied element (i): Difluid/melt = Cifluid/Cimelt. Results show that U and Th exhibit more affinities for the silica-rich hydrous fluids in the presence or absence of Br, considered here such as an analogue for Cl, (i.e. 0.4 > 10 after decompression) this coefficient decreases with pressure suggesting that Br would not be immediately washed out from the subducted plate during dehydration but may be recycled deeper in the mantle. These new data combined with previous ones obtained for Pb, Ba (Bureau et al., 2007, HPR vol 27, p. 235) and Rb, Sr, Zr (Bureau et al., 2004, Eos Trans. AGU, 85(47), V11C-05), allow us to propose a general outline of the fluid phase transfers through the subduction factory: (1) at shallow level: their nature and composition, the impact of the presence of halogens and the fertilizing role of such fluids in the mantle wedge, where the generation of arc magmas takes place (2) deeper in the mantle: where hydrous silica-rich supercritical fluids may also favour a deep recycling of a fraction of volatiles and trace elements present in the subducted oceanic crust.

  16. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite

    NARCIS (Netherlands)

    Vos, A.M.; Rozanska, X.; Schoonheydt, R.A.; Santen, van R.A.; Hutschka, F.; Hafner, J.

    2001-01-01

    A theoretical study of the alkylation reaction of toluene with methanol catalyzed by the acidic Mordenite (Si/Al = 23) is reported. Cluster DFT as well as periodical structure DFT calculations have been performed. Full reaction energy diagrams of the elementary reaction steps that lead to the

  17. ESR study of electron reactions with esters and triglycerides

    International Nuclear Information System (INIS)

    Sevilla, M.D.; Morehouse, K.M.; Swarts, S.

    1981-01-01

    Reactions which occurred after electron attachment at 77K to a number of small carboxylic acid esters and triglycerides in an aqueous glass are reported. Most ester anions are found to decay on warming to form alkyl radicals by β scission: RC(O - )OR' → RCO 2 - + R'.. The alkyl radical (R'.) produced by annealing is found to abstract hydrogen from the parent ester at an α-carbon site, R'.+ R''CH 2 CO 2 R' → R''CHCO 2 R', or in the case of ethyl formate from the formate hydrogen, CH 3 CH 2 .+ HCO 2 C 2 H 5 → C 2 H 6 +.CO 2 C 2 H 5 . Results found for the methyl formate anion suggest hydrogen abstraction by the anion itself may compete with alkyl radical formation. The anion of the triglyceride triacetin is found to undergo an analogous mechanism to the ester anions producing the propane diol diester radical, .CH 2 CH(Ac)CH 2 (Ac), Ac = acetate. This species subsequently abstracts hydrogen from the parent compound to produce the α-carbon radical, .CH 2 CO 2 R. Results found after annealing the tripropionin radical anion give evidence for abstraction from the α carbon in the propionate side groups producing CH 3 CHCO 2 R. Studies of a γ-irradiated ester (ethyl myristate) and two triglycerides (tripalmitin and tristearin) yield results which suggest that the mechanism of ester anion decay found in aqueous glasses applies to γ-irradiated neat long-chain esters and triglycerides. Results found in this work are compared to the results of product analysis

  18. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W. Udo [Univ. of Rochester, NY (United States). Dept. of Chemistry. Dept. of Physics

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  19. Thermogravimetric study of the reaction of uranium oxides with fluorine

    International Nuclear Information System (INIS)

    Komura, Motohiro; Sato, Nobuaki; Kirishima, Akira; Tochiyama, Osamu

    2008-01-01

    Thermogravimetric study of the reaction of uranium oxides with fluorine was conducted by TG-DTA method using anti-corrosion type differential thermobalance. When UO 2 was heated from R.T. to 500 deg. C in 5% F 2 /He atmosphere, the weight increase appeared at ca. 250 deg. C with an exothermic peak. Then the weight decreased slightly with a small exothermic peak followed by the complete volatilization with a large exothermic peak at ca. 350 deg. C. At a flow rate of 15, 30, 60 ml min -1 , there seemed to be no significant change for the fluorination of UO 2 . With the different heating rates of 1, 2, 5 and 10 deg. C min -1 , the fluorination peak shifted to higher temperature with increasing heating rates. For the comparison with thermogravimetric results, phase analysis by XRD method was conducted for the products obtained at different temperatures. At 260 deg. C, the product was UO 2 with a small amount of the intermediate compound, UO 2 F. The amount of this compound increased with increasing temperature up to 320 deg. C. Then another phase of UO 2 F 2 appeared at 340 deg. C but it was immediately fluorinated to the volatile fluoride. When U 3 O 8 was used as a starting material, it was found that the steep weight decrease peak appeared at ca. 350 deg. C and the uranium volatilized completely. This result suggests that fluorination of U 3 O 8 occurs at this temperature forming UF 6 . Uranium trioxide showed the similar fluorination behavior to that of U 3 O 8

  20. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    International Nuclear Information System (INIS)

    Schroeder, W. Udo

    2016-01-01

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the ''boiling'' and ''vaporization'' of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, ''head-on'' collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (''neck'') between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  1. Reaction studies of hot silicon and germanium radicals. Period covered: September 1, 1977--August 31, 1978

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1978-01-01

    The experimental approach to attaining the goals of this research program is briefly outlined and the progress made in the last year is reviewed in sections entitled: primary steps in the reaction of recoiling silicon and germanium atoms and the identification of reactive intermediates; thermally induced silylene and germylene reactions; the role of ionic reactions in the chemistry of recoiling silicon atoms and other ion-molecule reactions studies; and silicon free radical chemistry

  2. Multiphoton microscopy: an efficient tool for in-situ study of cultural heritage artifacts

    Science.gov (United States)

    Latour, Gaël.; Echard, Jean-Philippe; Didier, Marie; Schanne-Klein, Marie-Claire

    2013-05-01

    We present multimodal nonlinear optical imaging of historical artifacts by combining Two-Photon Excited Fluorescence (2PEF) and Second Harmonic Generation (SHG) microscopies. Three-dimensional (3D) non-contact laser-scanning imaging with micrometer resolution is performed without any preparation of the objects under study. 2PEF signals are emitted by a wide range of fluorophores such as pigments and binder, which can be discriminated thanks to their different emission spectral bands by using suitable spectral filters in the detection channel. SHG signals are specific for dense non-centrosymmetric organizations such as the crystalline cellulose within the wood cell walls. We also show that plaster particles exhibit SHG signals. These particles are bassanite crystals with a non-centrosymmetric crystalline structure, while the other types of calcium sulphates exhibit a centrosymmetric crystalline structure with no SHG signal. In our study, we first characterize model single-layered samples: wood, gelatin-based films containing plaster or cochineal lake and sandarac film containing cochineal lake. We then study multilayered coating systems on wood and show that multimodal nonlinear microscopy successfully reveals the 3D distribution of all components within the stratified sample. We also show that the fine structure of the wood can be assessed, even through a thick multilayered varnish coating. Finally, in situ multimodal nonlinear imaging is demonstrated in a historical violin. SHG/2PEF imaging thus appears as an efficient non-destructive and contactless 3D imaging technique for in situ investigation of historical coatings and more generally for wood characterization and coating analysis at micrometer scale.

  3. Spectroscopic study of 126I via incomplete fusion reaction

    International Nuclear Information System (INIS)

    Kanagalekar, B.A.; Das, Pragya; Kumar, Vinod; Kumar, R.; Singh, R.P.; Muralithar, S.; Bhowmik, R.K.

    2006-01-01

    The experiment at Inter University Accelerator Centre consisted of identifying the yrast high-spin states of 126 I using the incomplete fusion reaction 124 Sn ( 10 B, α4n) 126 I at beam energy of 70 MeV

  4. Molecular beam studies of ion-molecule reactions

    International Nuclear Information System (INIS)

    Gentry, W.R.

    1978-01-01

    A review is presented in which an attempt is made to highlight some of the areas in which molecular beam techniques contribute to the understanding of ion--molecule reaction dynamics. Included are reactant kinetic energy range and resolution, internal state selection and analysis, and new chemical systems and phenomena. 35 references

  5. Penicillin Hydrolysis: A Kinetic Study of a Multistep, Multiproduct Reaction.

    Science.gov (United States)

    McCarrick, Thomas A.; McLafferty, Fred W.

    1984-01-01

    Background, procedures used, and typical results are provided for an experiment in which students carry out the necessary measurements on the acid-catalysis of penicillin in two hours. By applying kinetic theory to the data obtained, the reaction pathways for the hydrolysis of potassium benzyl penicillin are elucidated. (JN)

  6. Study towards benzoin condensation and Baylis-Hillman reactions

    Indian Academy of Sciences (India)

    Abstract. New heterocyclic ring systems consisting of (±) methanodibenzodiazocine and imidazolium/ benzimidazolium salts were synthesized in very good yield. Subsequently, these halide salts were subjected to the anion exchange reaction with KPF6 to yield the corresponding azolium salts in excellent yield.

  7. Self-reported adverse tattoo reactions: a New York City Central Park study.

    Science.gov (United States)

    Brady, Bobbi G; Gold, Heidi; Leger, Elizabeth A; Leger, Marie C

    2015-08-01

    Although permanent tattoos are becoming increasingly commonplace, there is a paucity of epidemiological data on adverse tattoo reactions. Several European studies have indicated that tattoo reactions may be relatively common, although the extent of this phenomenon in the United States is largely unknown. To provide insights into the prevalence and nature of adverse tattoo reactions. We administered a survey about adverse tattoo reactions to 300 randomly selected tattooed people in Central Park, New York City. Of 300 participants, 31 (10.3%) reported experiencing an adverse tattoo reaction, 13 (4.3%) reported acute reactions, and 18 (6.0%) suffered from a chronic reaction involving a specific colour lasting for >4 months. Forty-four per cent of colour-specific reactions were to red ink, which was only slightly higher than the frequency of red ink in the sampled population (36%). Twenty-five per cent of chronic reactions were to black ink, which was less than expected based on the number of respondents with black tattoos (90.3%). Study participants with chronic, colour-specific reactions had more tattoo colours than those without reactions. This study shows that tattoo reactions are relatively common, and that further investigation into the underlying causes is merited. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. In situ and Ex situ Annealing Studies of Hydrothermally Synthesized SrFe12O19 Nano Platelets

    DEFF Research Database (Denmark)

    Gjørup, Frederik; Saura-Múzquiz, Matilde; Ahlburg, Jakob

    Strontium hexaferrite is a chemically stable and cheap magnetic compound, free of rare-earth metals. Previous studies have shown that nanostructuring can improve the magnetic performance of strontium hexaferrite, both as a powder and after pellet compaction, which allows for better bulk magnets f...

  9. Applications of in situ optical measurements in ecological and biogeochemical studies - a framework for a user-driven national network

    Science.gov (United States)

    Bergamaschi, B. A.; Pellerin, B. A.; Downing, B. D.; Saraceno, J.; Aiken, G.; Stumpner, P.

    2010-12-01

    A critical challenge for understanding the dynamics between water quality, and ecological processes is obtaining data at time scales in which changes occur. Traditional, discrete sampling, approaches for data collection are often limited by analytical and field costs, site access, and logistical challenges, for long-term sampling at a large number of sites. The timescales of change, however, are often minutes, hours, or years. In situ optical (absorbance and fluorescence) instruments offer opportunities to help overcome these difficulties by directly or indirectly measuring constituents of interest. In situ optical instrumentation have been in use in oceanographic studies for well over 50 years, and as advances in the science, engineering and technology of these sensors have improved, optical sensors have become more commercially viable and available for research. We present several examples that highlight applications of in situ optical measurements for understanding dynamics in stream, river, and estuary systems. Examples illustrate the utility of in situ optical sensors for studies over short-duration events of days to weeks (diurnal cycles, tidal cycles, storm events and snowmelt periods) as well as longer-term continuous monitoring for months to years. We also highlight applied in situ optical measurements as proxies for constituents that are difficult and expensive to measure at high spatiotemporal resolution, for example, dissolved organic carbon, dissolved organic nitrogen, mercury and methylmercury, trihalomethane precursors, harmful algal blooms, and others. We propose that relatively simple absorbance and fluorescence measurements made in situ could be incorporated into short and long-term ecological research and monitoring programs, resulting in advanced understanding of sources that contribute to water quality improvements or degradation, contaminant and carbon cycling, and the occurrence and persistence of harmful algal blooms. Linking these efforts

  10. In situ generation of N-Boc-protected alkenyl imines: controlling the E/Z geometry of alkenyl moieties in the Mukaiyama-Mannich reaction.

    Science.gov (United States)

    Bai, Jian-Fei; Sasagawa, Hajime; Yurino, Taiga; Kano, Taichi; Maruoka, Keiji

    2017-07-18

    Readily available Boc-protected Z-alkenyl aminals could be used as Z-alkenyl and E-alkenyl imine precursors under acidic conditions. In the Mukaiyama-Mannich reaction of Z-alkenyl Boc-aminals, the E/Z geometry of the products was controlled by the catalyst used. The present method was also applied to asymmetric Mukaiyama-Mannich reactions.

  11. Further study of the reactions of fishes to toxic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J R.E.

    1948-01-01

    This paper records some further observations on the reactions of fish to toxic solutions. The method of experimentation resembles that described in a previous paper by the writer (Jones, 1947b). In every case the solution is presented as an alternative to the Aberystwyth tap water, which is well aerated, very soft, of pH 6.8. In experiments with sodium sulphide a supply system is arranged in which dilute sodium sulphide solution, brought to pH 6.8 by the addition of sulphuric acid, is automatically made up as it runs into the observation vessel. Gasterosteus aculeatus l. reacts negatively to a 0.001N solution almost immediately; at greater dilution the reaction time lengthens, at 0.00008N is about 47 min. Over the concentration range tested the reaction time is always shorter than the survival time. Gasterosteus is positive to 0.04N lead nitrate. As a positive reaction is also displayed to equivalent concentrations of calcium nitrate, sodium nitrate and sodium chloride it is possible that the osmotic pressure of the solution is its attractive feature. At 0.01N the positive response to lead nitrate disappears and at 0.004N is replaced by a very definite negative reaction which is maintained down to 0.00002N. The minnow (Phoxinus phoxinus l.) is also negative to dilute lead nitrate and will detect and avoid a 0.000004N solution. Gasterosteus will avoid water more acid than pH 5.6 or more alkaline than pH 11.4. Over the range 5.8-11.2 the fish are indifferent or very vaguely positive. Gasterosteus is negative to 0.04 and 0.01N ammonia solution, positive to 0.001 and 0.0001N. The general result with ammonia is thus the converse of that observed with lead nitrate.

  12. In-situ TEM study of domain switching in GaN thin films

    Science.gov (United States)

    Wang, Baoming; Wang, Tun; Haque, Aman; Snure, Michael; Heller, Eric; Glavin, Nicholas

    2017-09-01

    Microstructural response of gallium nitride (GaN) films, grown by metal-organic chemical vapor deposition, was studied as a function of applied electrical field. In-situ transmission electron microscopy showed sudden change in the electron diffraction pattern reflecting domain switching at around 20 V bias, applied perpendicular to the polarization direction. No such switching was observed for thicker films or for the field applied along the polarization direction. This anomalous behavior is explained by the nanoscale size effects on the piezoelectric coefficients of GaN, which can be 2-3 times larger than the bulk value. As a result, a large amount of internal energy can be imparted in 100 nm thick films to induce domain switching at relatively lower voltages to induce such events at the bulk scale.

  13. Towards functionalization of graphene: in situ study of the nucleation of copper-phtalocyanine on graphene

    Science.gov (United States)

    Schwarz, Daniel; Henneke, Caroline; Kumpf, Christian

    2016-02-01

    Molecular films present an elegant way for the uniform functionalization or doping of graphene. Here, we present an in situ study on the initial growth of copper phthalocyanine (CuPc) on epitaxial graphene on Ir(111). We followed the growth up to a closed monolayer with low energy electron microscopy and selected area electron diffraction (μLEED). The molecules coexist on graphene in a disordered phase without long-range order and an ordered crystalline phase. The local topography of the graphene substrate plays an important role in the nucleation process of the crystalline phase. Graphene flakes on Ir(111) feature regions that are under more tensile stress than others. We observe that the CuPc molecules form ordered domains initially on those graphene regions that are closest to the fully relaxed lattice. We attribute this effect to a stronger influence of the underlying Ir(111) substrate for molecules adsorbed on those relaxed regions.

  14. Towards functionalization of graphene: in situ study of the nucleation of copper-phtalocyanine on graphene

    International Nuclear Information System (INIS)

    Schwarz, Daniel; Henneke, Caroline; Kumpf, Christian

    2016-01-01

    Molecular films present an elegant way for the uniform functionalization or doping of graphene. Here, we present an in situ study on the initial growth of copper phthalocyanine (CuPc) on epitaxial graphene on Ir(111). We followed the growth up to a closed monolayer with low energy electron microscopy and selected area electron diffraction (μLEED). The molecules coexist on graphene in a disordered phase without long-range order and an ordered crystalline phase. The local topography of the graphene substrate plays an important role in the nucleation process of the crystalline phase. Graphene flakes on Ir(111) feature regions that are under more tensile stress than others. We observe that the CuPc molecules form ordered domains initially on those graphene regions that are closest to the fully relaxed lattice. We attribute this effect to a stronger influence of the underlying Ir(111) substrate for molecules adsorbed on those relaxed regions. (paper)

  15. In situ surface and interface study of crystalline (3×1)-O on InAs

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Xiaoye, E-mail: xxq102020@utdallas.edu; Wallace, Robert M., E-mail: rmwallace@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Wang, Wei-E.; Rodder, Mark S. [Advanced Logic Lab, Samsung Semiconductor, Inc., Austin, Texas 78754 (United States)

    2016-07-25

    The oxidation behavior of de-capped InAs (100) exposed to O{sub 2} gas at different temperatures is investigated in situ with high resolution of monochromatic x-ray photoelectron spectroscopy and low energy electron diffraction. The oxide chemical states and structure change dramatically with the substrate temperature. A (3 × 1) crystalline oxide layer on InAs is generated in a temperature range of 290–330 °C with a coexistence of In{sub 2}O and As{sub 2}O{sub 3}. The stability of the crystalline oxide upon the atomic layer deposition (ALD) of HfO{sub 2} is studied as well. It is found that the generated (3 × 1) crystalline oxide is stable upon ALD HfO{sub 2} growth at 100 °C.

  16. In-Situ TEM Study of Interface Sliding and Migration in an Ultrafine Lamellar Structure

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L M

    2005-12-06

    The instability of interfaces in an ultrafine TiAl-({gamma})/Ti{sub 3}Al-({alpha}{sub 2}) lamellar structure by straining at room temperature has been investigated using in-situ straining techniques performed in a transmission electron microscope. The purpose of this study is to obtain experimental evidence to support the creep mechanisms based upon the interface sliding in association with a cooperative movement of interfacial dislocations previously proposed to interpret the nearly linear creep behavior observed from ultrafine lamellar TiAl alloys. The results have revealed that both the sliding and migration of lamellar interfaces can take place simultaneously as a result of the cooperative movement of interfacial dislocations.

  17. In-Situ X-ray Tomography Study of Cement Exposed to CO2 Saturated Brine

    DEFF Research Database (Denmark)

    Chavez Panduro, E. A.; Torsæter, M.; Gawel, K.

    2017-01-01

    For successful CO2 storage in underground reservoirs, the potential problem of CO2 leakage needs to be addressed. A profoundly improved understanding of the behavior of fractured cement under realistic subsurface conditions including elevated temperature, high pressure and the presence of CO2...... saturated brine is required. Here, we report in situ X-ray micro computed tomography (μ-CT) studies visualizing the microstructural changes upon exposure of cured Portland cement with an artificially engineered leakage path (cavity) to CO2 saturated brine at high pressure. Carbonation of the bulk cement......, self-healing of the leakage path in the cement specimen, and leaching of CaCO3 were thus directly observed. The precipitation of CaCO3, which is of key importance as a possible healing mechanism of fractured cement, was found to be enhanced in confined regions having limited access to CO2...

  18. In situ stresses in rock masses: methodology for its study in tunnel projects in Spain

    International Nuclear Information System (INIS)

    Madirolas Perez, G.; Perucho Martinez, A.

    2014-01-01

    In situ stress is one of the main factors to be taken into account in the design of tunnels, as it can cause inadmissible stresses and strains leading to high deviations in the budgets. For that reason, the stress state is directly introduced into the numerical models used for the design of tunnels. In Spain, although several tunnels have been carried out with an important overburden in tectonically relevant zones, a quantitative determination of the stresses has not been usually included in civil work projects. Therefore, it is considered necessary to implement a routine procedure of study of civil work projects involving tunnels excavated in rock, and a new detailed methodology is proposed. The challenge is that project managers, who face works in which stresses may play a determinant role, may have a practical reference enabling them to optimize available resources and to include the real stress information in the design of underground works. (Author)

  19. Spectroelectrochemical study of polyphenylene by in situ external reflection FT-IR spectroscopy. Pt. 2

    International Nuclear Information System (INIS)

    Kvarnstroem, C.; Ivaska, A.

    1994-01-01

    In situ external reflection FT-IR measurements are performed during cyclic voltammetric scans on electrochemically polymerized polyphenylene films. The films are polymerized either in 0.1 or 0.8 M biphenyl in 0.1 M TBABF 4 in acetonitrile. Changes in the IR spectrum of films of different thicknesses are studied when the films are potentially cycled from the neutral to the oxidized states of the polymer. No differences between films made in high or low dimer concentration can be observed in the spectra. The potential-dependent insertion and expulsion of solvent, residual water, anions and cations in and out of the film have different behaviour in films of different thicknesses. Changes in the structure of the segments in the film, from the benzenoid form into the quinoid form, can be followed. Differences between the first and subsequent cyclic potential scans are observed. (orig.)

  20. In situ Raman study of C60 polymerization during isothermal pressurizing at 800 K

    International Nuclear Information System (INIS)

    Talyzin, A V; Dubrovinsky, L S

    2004-01-01

    The first in situ Raman study of C 60 isothermal compression at 800 K and up to 32 GPa was performed using rhombohedral and tetragonal phases as starting materials. The rhombohedral phase shows a phase transition to 3D polymer above 10 GPa, similar to that in experiments where isobaric heating was used at pressures of 9-13 GPa. It is shown that the T-P diagram of C 60 polymeric phases (temperature increase followed by pressurizing) is significantly different from the known P-T diagram (pressurizing followed by heating). Tetragonal polymer exhibited significantly stronger stability and can be followed at least up to ∼15 GPa. Heating up to 800 K of tetragonal polymer at pressures of 6-8 GPa confirms that, due to geometrical frustrations, the tetragonal phase remains stable even at pressure and temperature conditions at which rhombohedral polymer is usually formed

  1. In situ neutron scattering study of nanostructured PbTe-PbS bulk thermoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Fei [Temple University; Schmidt, Robert D [ORNL; Case, Eldon D [Michigan State University, East Lansing; An, Ke [ORNL

    2016-01-01

    Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570 600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.

  2. In-situ studies of bulk deformation structures: Static properties under load and dynamics during deformation

    DEFF Research Database (Denmark)

    Jakobsen, Bo

    2006-01-01

    The main goal of the study presented in this thesis was to perform in-situ investigations on deformation structures in plastically deformed polycrystalline copper at low degrees of tensile deformation (model system for cell forming pure fcc metals. Anovel synchrotron...... grains in polycrystalline samples during tensile deformation. We have shown that the resulting 3D reciprocal space maps from tensile deformed copper comprise a pronounced structure, consisting of bright sharp peaks superimposed on a cloud of enhanced intensity. Based on the integrated intensity......, the width of the peaks, and spatial scanning experiments it is concluded that the individual peaks arise from individual dislocation-free regions (the subgrains) in the dislocation structure. The cloud is attributed to the dislocation rich walls. Samples deformed to 2% tensile strain were investigated under...

  3. In situ X-ray and neutron diffraction study of Ba2In2O5

    International Nuclear Information System (INIS)

    Speakman, S.A.; Misture, S.T.

    2001-01-01

    Order-disorder transitions in barium indate, Ba 2 In 2 O 5 , have been studied using in-situ X-ray and neutron diffraction. At room temperature, the crystal structure is an orthorhombic brownmillerite structure. At 706 C, the crystal structure is orthorhombic, possibly of the Imma or Ibm2 space groups. At 900 C, oxygen vacancies begin to disorder. The order-disorder transition occurs slowly in two steps over a temperature range of 900 - 925 C. Above this temperature range, the crystal structure is tetragonal, most likely belonging to the space group I 4/mcm. A second order-disorder transition begins at 1040 C, and proceeds over the temperature range 1040 - 1065 C. Above this temperature range, the crystal structure is a cubic, oxygen-deficient perovskite structure, with space group Pm3m. At an undetermined temperature above 1200 C, Ba 2 In 2 O 5 begins to decompose. (orig.)

  4. Reactive molecular beam epitaxial growth and in situ photoemission spectroscopy study of iridate superlattices

    Directory of Open Access Journals (Sweden)

    C. C. Fan

    2017-08-01

    Full Text Available High-quality (001-oriented perovskite [(SrIrO3m/(SrTiO3] superlattices (m=1/2, 1, 2, 3 and ∞ films have been grown on SrTiO3(001 epitaxially using reactive molecular beam epitaxy. Compared to previously reported superlattices synthesized by pulsed laser deposition, our superlattices exhibit superior crystalline, interface and surface structure, which have been confirmed by high-resolution X-ray diffraction, scanning transmission electron microscopy and atomic force microscopy, respectively. The transport measurements confirm a novel insulator-metal transition with the change of dimensionality in these superlattices, and our first systematic in situ photoemission spectroscopy study indicates that the increasing strength of effective correlations induced by reducing dimensionality would be the dominating origin of this transition.

  5. A kinetic study on non-catalytic reactions in hydroprocessing Boscan crude oil

    Energy Technology Data Exchange (ETDEWEB)

    A. Marafi; E. Kam; A. Stanislaus [Kuwait Institute for Scientific Research, Safat (Kuwait). Petroleum Refining Department, Petroleum Research and Studies Center

    2008-08-15

    Non-catalytic hydrothermal cracking reactions are known to associate with catalytic hydrocracking reactions. In a recent study on hydroprocessing of Boscan crude over a specific catalyst system containing three distinct catalysts, it was found that hydrodesulfurization (HDS) and hydrodemetallation (HDM) reactions continued even when the catalyst is severely deactivated. Since the reactor was packed with considerable amount of inert material besides the three catalysts, it will be advantage to determine if the inert materials can also facilitate hydroprocessing reactions. A series of kinetic experiments for the inert particles was undertaken under different space velocity and temperature conditions. The extent of catalytic and non-catalytic hydroprocessing reactions was assessed. Through statistical analysis, the initial reaction rate constant, reaction order and activation energy for various hydroprocessing reactions were then determined. The absolute average deviations (AAD) of the kinetics values obtained for inert materials are less than 10%. 25 refs., 7 figs., 4 tabs.

  6. The effect of tissue decalcification on mRNA retention within bone for in-situ hybridization studies.

    Science.gov (United States)

    Walsh, L; Freemont, A J; Hoyland, J A

    1993-06-01

    Tissue decalcification is a routine part of the preparation of bone tissue for histological studies. Although in-situ hybridization has been employed to localize mRNA of collagenous and non-collagenous bone related proteins in skeletal tissue, little is known regarding the effects of decalcifying agents on mRNA retention within tissue. In this study in-situ hybridization using an oligonucleotide probe (i.e. a poly d(T) probe) to detect total messenger RNA has been employed to investigate the effects of the decalcifying agents nitric acid, formic acid and EDTA on mRNA retention compared to undeacalcified tissue. The results show that formalin fixation and EDTA decalcification preserve substantial amounts of mRNA within the tissue. In particular, this study illustrates that it is possible to perform in-situ hybridization on formalin fixed decalcified paraffin embedded tissue.

  7. Configuration of a pulse radiolysis system for the study of gas-phase reactions and kinetic investigations of the reactions of hydroxyl radicals with methyl and ethyl radicals

    International Nuclear Information System (INIS)

    Fagerstroem, K.

    1993-01-01

    The work that is presented in this thesis deals with the assembling and testing of a pulse radiolysis system for kinetic studies of gas-phase reactions as well as with the kinetics of the gas-phase reactions of hydroxyl radicals with methyl and ethyl radicals. These radicals are very important as these are formed at an early stage in hydrocarbon combustion processes. The two studied reactions are key reactions in those processes. (6 refs., 4 figs., 2 tabs.)

  8. [HER-2 oncogene amplification assessment in invasive breast cancer by dual-color in situ hybridization (dc-CISH): a comparative study with fluorescent in situ hybridization (FISH)].

    Science.gov (United States)

    Akhdar, Abbas; Bronsard, Marc; Lemieux, Renald; Geha, Sameh

    2011-12-01

    The amplification of the gene encoding for the human epidermal growth factor receptor 2 (HER-2 oncogene), located on chromosome 17 (17q21-q22), or the overexpression of this receptor have prognostic and therapeutic implications in invasive breast cancer. An evaluation of the HER-2 status by immunohistochemistry (IHC) is performed on all invasive breast cancer cases. Fluorescent in situ hybridization (FISH) is considered as the gold standard for the detection of HER-2 gene amplification for IHC equivocal cases (score 2+). A more recent in situ hybridization technique, the dual-color chromogenic in situ hybridization (dc-CISH), has been proposed as an alternative to FISH. The aim of this study was to measure the correlation between dc-CISH and FISH for HER-2 oncogene amplification assessment in invasive breast cancer. We built four tissue micro-array (TMA) blocs with 100 breast invasive cancer cases that had been previously tested by IHC for HER-2 detection: 10 score 0 cases, 10 score 3+cases, 39 score 1+and 41 score 2+cases. Both FISH and dc-CISH techniques were applied on all TMA cases as well as on two additional slides serving as controls. Interpretation of dc-CISH was carried out by a pathologist using an optical microscope. For FISH, the interpretation was done by a professional from the medical genetics department using a fluorescent microscope linked to a computer system for image capturing and analysis. The interpretation of the HER-2/CEN-17 ratio for both tests was in accordance with the values of the updated recommendations from the Canadian National Consensus Meeting on HER-2/neu testing in breast cancer and from the ASCO/CAP. Among the 100 cases initially included in the study, eight were excluded from the analysis due to sampling or technical flaws. From the 92 remaining cases, we obtained a concordance of 97.8% (90/92 cases) between the two techniques (Kappa coefficient 0.97, 95% confidence interval). The correlation coefficient (rho) between ratios

  9. [Study of the phase transformation of TiO2 with in-situ XRD in different gas].

    Science.gov (United States)

    Ma, Li-Jing; Guo, Lie-Jin

    2011-04-01

    TiO2 sample was prepared by sol-gel method from chloride titanium. The phase transformation of the prepared TiO2 sample was studied by in-situ XRD and normal XRD in different gas. The experimental results showed that the phase transformation temperatures of TiO2 were different under in-situ or normal XRD in different kinds of gas. The transformation of amorphous TiO2 to anatase was controlled by kinetics before 500 degrees C. In-situ XRD showed that the growth of anatase was inhibited, but the transformation of anatase to rutile was accelerated under inactive nitrogen in contrast to air. Also better crystal was obtained under hydrogen than in argon. These all showed that external oxygen might accelerate the growth of TiO2, but reduced gas might partly counteract the negative influence of lack of external oxygen. The mechanism of phase transformation of TiO2 was studied by in-situ XRD in order to control the structure in situ.

  10. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    Energy Technology Data Exchange (ETDEWEB)

    Cochain, B; Neuville, D R; Roux, J; Strukelj, E; Richet, P [Physique des Mineraux et Magmas, Geochimie-Cosmochimie, CNRS-IPGP, 4 place Jussieu, 75005 Paris (France); Ligny, D de [Universite Claude Bernard Lyon 1, LPCML, F-69622 Villeurbanne (France); Baudelet, F, E-mail: cochain@ipgp.jussieu.f [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin (France)

    2009-11-15

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe{sup 2+} and Fe{sup 3+}, but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  11. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    International Nuclear Information System (INIS)

    Cochain, B; Neuville, D R; Roux, J; Strukelj, E; Richet, P; Ligny, D de; Baudelet, F

    2009-01-01

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe 2+ and Fe 3+ , but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  12. Rheological Studies of Komatiite Liquids by In-Situ Falling Sphere Viscometry

    Science.gov (United States)

    O Dwyer, L.; Lesher, C. E.; Baxter, G.; Clark, A.; Fuss, T.; Tangeman, J.; Wang, Y.

    2005-12-01

    The rheological properties of komatiite liquids at high pressures and temperatures are being investigated by the in situ falling sphere technique, using the T-25 multianvil apparatus at the GSECARS 13 ID-D-D beamline at the Advanced Photon Source, ANL. The refractory and fluid nature of komatiite and other ultramafic liquids relevant to the Earth's deep interior, presents unique challenges for this approach. To reduce the density contrast between the melt and the marker sphere, and thus increase the Stoke's travel time, we have begun testing various composite spheres composed of refractory silicates and metals. Two successful custom designs are zirconia silicate mantled by Pt and Pt mantled by forsterite. These custom spheres contain sufficient Pt to absorb x-rays, while containing sufficient low-density refractory silicate so that marker sphere densities are in the range of 4-6 g/cc. These relatively more buoyant spheres increase travel time. These custom spheres, together with Re or Pt marker spheres, have been used to determine the viscosity of Gorgona anhydrous komatiite around 1600 ° C between 3.5 and 6 GPa. Initial experiments yield viscosities of 2.8 Pa s at 3.5 GPa, 5.3 Pa s at 4.6 GPa and 7.6 Pa s at 6 GPa. The observed positive pressure dependence of viscosity is consistent with recent results on pyrolite composition liquids and suggests that the activation volume for highly depolymerized melts will be positive for at least upper mantle conditions. The development of low-density, x-ray detectable marker spheres has applications in studies of melt density, whereby in situ detection of sink-float behavior during heating and compression cycles may be possible.

  13. In situ study of heavy ion induced radiation damage in NF616 (P92) alloy

    International Nuclear Information System (INIS)

    Topbasi, Cem; Motta, Arthur T.; Kirk, Mark A.

    2012-01-01

    Highlights: ► The ferritic–martensitic alloy NF616 was irradiated in situ with 1 MeV Kr ions at 50 K and 473 K. ► The defect cluster density increases with dose and saturates at ∼6 dpa at 50 K and 473 K. ► The defect size distributions do not change with dose at this temperature range. ► Results indicate that defect cluster formation and destruction is governed by cascade impact. - Abstract: NF616 is a nominal 9Cr ferritic–martensitic steel that is amongst the primary candidates for cladding and duct applications in the Sodium-Cooled Fast Reactor, one of the Generation IV nuclear energy systems. In this study, an in situ investigation of the microstructure evolution in NF616 under heavy ion irradiation has been conducted. NF616 was irradiated to 8.4 dpa at 50 K and to 7.6 dpa at 473 K with 1 MeV Kr ions. Nano-sized defects first appeared as white dots in dark-field TEM images and their areal density increased until saturation (∼6 dpa). Dynamic observations at 50 K and 473 K showed appearance and disappearance of TEM-visible defect clusters under irradiation that continued above saturation dose. Quantitative analysis showed no significant change in the average size (∼3–4 nm) and distribution of defect clusters with increasing dose at 50 K and 473 K. These results indicate a cascade-driven process of microstructure evolution under irradiation in these alloys that involves both the formation of TEM-visible defect clusters by various degrees of cascade overlap and cascade induced defect cluster elimination. According to this mechanism, saturation of defect cluster density is reached when the rate of defect cluster formation by overlap is equal to the rate of cluster elimination during irradiation.

  14. Corneal ectasia after myopic laser in situ keratomileusis: a long-term study

    Directory of Open Access Journals (Sweden)

    Spadea L

    2012-11-01

    Full Text Available Leopoldo Spadea,1 Emilia Cantera,2 Magdalena Cortes,2 Nicole Evangelista Conocchia,1 Charles WM Stewart11University of L’Aquila, Department of Biotechnological and Applied Clinical Sciences, Eye Clinic, L’Aquila, 2Villa Stuart Clinic, Department of Ophthalmic Sciences, Rome, ItalyBackground: The purpose of this study was to evaluate the long-term postoperative incidence of and key factors in the genesis of corneal ectasia after myopic laser-assisted in situ keratomileusis (LASIK in a large number of cases.Methods: A retrospective review of one surgeon's myopic LASIK database was performed. Patients were stratified into two groups based on date of surgery, ie, group 1 (1313 eyes from 1999 to 2001 and group 2 (2714 eyes from 2001 to 2003. Visual acuity, refraction, pachymetry, and corneal topography data were available for each patient from examinations performed both before and after the refractive procedures.Results: Of the 4027 surgically treated eyes, 23 (0.57% developed keratectasia during the follow-up period, which was a minimum seven years; nine eyes (0.69% were from group 1 and 14 eyes (0.51% were from group 2. The onset of corneal ectasia was at 2.57 ± 1.04 (range 1–4 years and 2.64 ± 1.29 (range 0.5–5 years, respectively, for groups 1 and 2. The most important preoperative risk factors using the Randleman Ectasia Risk Score System were manifest refractive spherical error in group 1 and a thin residual stromal bed in group 2. Each of the cases that developed corneal ectasia had risk factors that were identified.Conclusion: Ectasia was an uncommon outcome after an otherwise uncomplicated laser in situ keratomileusis procedure. The variables present in eyes developing postoperative LASIK ectasia can be better understood using the Randleman Ectasia Risk Score System.Keywords: corneal topography, Ectasia Risk Score System, keratectasia, myopia, LASIK

  15. Corrosion in Haas expanders with and without use of an antimicrobial agent: an in situ study

    Science.gov (United States)

    BAGATIN, Cristhiane Ristum; ITO, Izabel Yoko; ANDRUCIOLI, Marcela Cristina Damião; NELSON-FILHO, Paulo; FERREIRA, José Tarcísio Lima

    2011-01-01

    Objectives The purpose of this study was to evaluate in situ the occurrence of corrosion in the soldering point areas between the wire, silver brazing and band in Haas expanders. Material and Methods Thirty-four 7-12-year-old patients who needed maxillary expansion with a Haas expander were randomly assigned to two groups of 17 individuals each, according to the oral hygiene protocol adopted during the orthodontic treatment: Group I (control), toothbrushing with a fluoride dentifrice and Group II (experimental), toothbrushing with the same dentifrice plus 0.12% chlorhexidine gluconate (Periogard®) mouthrinses twice a week. The appliances were removed after approximately 4 months. Fragments of the appliances containing a metallic band with a soldered wire were sectioned at random for examination by stereomicroscopy, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). Data were analyzed statistically by Fisher's test at 5% significance level. Results The analysis by optical microscopy revealed areas with color change suggestive of corrosion in the soldering point areas joining the band and the wire in all specimens of both groups, with no statistically significant difference between the groups (p=1). The peaks of chemical elements (Ni, Fe, Cr, O, C and P) revealed by EDS were also similar in both groups. Conclusion: Color changes and peaks of chemical elements suggestive of corrosion were observed in the soldering point areas between the wire, silver brazing and band in both control and experimental groups, which indicate that the 0.12% chlorhexidine gluconate mouthrinses did not influence the occurrence of corrosion in situ. PMID:22231004

  16. In situ disinfection of sewage contaminated shallow groundwater: a feasibility study.

    Science.gov (United States)

    Bailey, Morgan M; Cooper, William J; Grant, Stanley B

    2011-11-01

    Sewage-contaminated shallow groundwater is a potential cause of beach closures and water quality impairment in marine coastal communities. In this study we set out to evaluate the feasibility of several strategies for disinfecting sewage-contaminated shallow groundwater before it reaches the coastline. The disinfection rates of Escherichia coli (EC) and enterococci bacteria (ENT) were measured in mixtures of raw sewage and brackish shallow groundwater collected from a coastal community in southern California. Different disinfection strategies were explored, ranging from benign (aeration alone, and aeration with addition of brine) to aggressive (chemical disinfectants peracetic acid (PAA) or peroxymonosulfate (Oxone)). Aeration alone and aeration with brine did not significantly reduce the concentration of EC and ENT after 6 h of exposure, while 4-5 mg L(-1) of PAA or Oxone achieved >3 log reduction after 15 min of exposure. Oxone disinfection was more rapid at higher salinities, most likely due to the formation of secondary oxidants (e.g., bromine and chlorine) that make this disinfectant inappropriate for marine applications. Using a Lagrangian modeling framework, we identify several factors that could influence the performance of in-situ disinfection with PAA, including the potential for bacterial regrowth, and the non-linear dependence of disinfection rate upon the residence time of water in the shallow groundwater. The data and analysis presented in this paper provide a framework for evaluating the feasibility of in-situ disinfection of shallow groundwater, and elucidate several topics that warrant further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Study of Cold Fusion Reactions Using Collective Clusterization Approach

    Science.gov (United States)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2017-10-01

    Within the framework of the dynamical cluster decay model (DCM), the 1n evaporation cross-sections ({σ }1n) of cold fusion reactions (Pb and Bi targets) are calculated for {Z}{CN}=104-113 superheavy nuclei. The calculations are carried out in the fixed range of excitation energy {E}{CN}* =15+/- 1 {MeV}, so that the comparative analysis of reaction dynamics can be worked out. First of all, the fission barriers (B f ) and neutron separation energies ({S}1n) are estimated to account the decreasing cross-sections of cold fusion reactions. In addition to this, the importance of hot optimum orientations of β 2i-deformed nuclei over cold one is explored at fixed angular momentum and neck-length parameters. The hot optimum orientations support all the target-projectile (t,p) combinations, which are explored experimentally in the cold fusion reactions. Some new target-projectile combinations are also predicted for future exploration. Further, the 1n cross-sections are addressed for {Z}{CN}=104-113 superheavy nuclei at comparable excitation energies which show the decent agrement with experimental data upto {Z}{CN}=109 nuclei. Finally, to understand the dynamics of higher-Z superheavy nuclei, the cross-sections are also calculated at maximum available energies around the Coulomb barrier and the effect of non-sticking moment of inertia ({I}{NS}) is also investigated at these energies. Supported by the Council of Scientific and Industrial Research (CSIR), in the Form of Research Project Grant No. 03(1341)/15/EMR-II, and to DST, New Delhi, for INSPIRE-Fellowship Grant No. DST/INSPIRE/03/2015/000199

  18. Study of reactions induced by 6He on 9Be

    Directory of Open Access Journals (Sweden)

    Pires K.C.C.

    2014-03-01

    Full Text Available We present the results of experiments using a 6He beam on a 9Be target at energies 7 − 9 times the Coulomb barrier. Angular distributions of the elastic, inelastic scattering (target breakup and the a-particle production in the 6He+9Be collision have been analysed. Total reaction cross sections were obtained from the elastic scatteringanalyses and a considerable enhancement has been observed by comparing to stable systems.

  19. Study of energy deposition in heavy-ion reactions

    International Nuclear Information System (INIS)

    Mota, V. De La; Abgrall, P.; Sebille, F.; Haddad, F.

    1993-01-01

    An investigation of energy deposition mechanisms in heavy-ion reactions at intermediate energies is presented. Theoretical simulations are performed in the framework of the semi-classical Landau-Vlasov model. They emphasize the influence of the initial non-equilibrium conditions, and the connection with the incident energy is discussed. Characteristic times involved in the energy thermalization process and finite size effects are analyzed. (authors) 20 refs., 4 figs

  20. Room temperature redox reaction by oxide ion migration at carbon/Gd-doped CeO2 heterointerface probed by an in situ hard x-ray photoemission and soft x-ray absorption spectroscopies

    Directory of Open Access Journals (Sweden)

    Takashi Tsuchiya, Shogo Miyoshi, Yoshiyuki Yamashita, Hideki Yoshikawa, Kazuya Terabe, Keisuke Kobayashi and Shu Yamaguchi

    2013-01-01

    Full Text Available In situ hard x-ray photoemission spectroscopy (HX-PES and soft x-ray absorption spectroscopy (SX-XAS have been employed to investigate a local redox reaction at the carbon/Gd-doped CeO2 (GDC thin film heterointerface under applied dc bias. In HX-PES, Ce3d and O1s core levels show a parallel chemical shift as large as 3.2 eV, corresponding to the redox window where ionic conductivity is predominant. The window width is equal to the energy gap between donor and acceptor levels of the GDC electrolyte. The Ce M-edge SX-XAS spectra also show a considerable increase of Ce3+ satellite peak intensity, corresponding to electrochemical reduction by oxide ion migration. In addition to the reversible redox reaction, two distinct phenomena by the electrochemical transport of oxide ions are observed as an irreversible reduction of the entire oxide film by O2 evolution from the GDC film to the gas phase, as well as a vigorous precipitation of oxygen gas at the bottom electrode to lift off the GDC film. These in situ spectroscopic observations describe well the electrochemical polarization behavior of a metal/GDC/metal capacitor-like two-electrode cell at room temperature.