WorldWideScience

Sample records for situ measurement techniques

  1. Reliable cost effective technique for in situ ground stress measurements in deep gold mines.

    CSIR Research Space (South Africa)

    Stacey, TR

    1995-07-01

    Full Text Available on these requirements, an in situ stress measurement technique which will be practically applicable in the deep gold mines, has been developed conceptually. Referring to the figure on the following page, this method involves: • a borehole-based system, using... level mines have not been developed. 2 This is some of the background to the present SIMRAC research project, the title ofwhich is “Reliable cost effective technique for in-situ ground stress measurements in deep gold mines”. A copy of the research...

  2. In-situ measurement of mechanical properties of structural components using cyclic ball indentation technique

    International Nuclear Information System (INIS)

    Chatterjee, S.; Madhusoodanan, K.; Panwar, Sanjay; Rupani, B.B.

    2007-01-01

    Material properties of components change during service due to environmental conditions. Measurement of mechanical properties of the components is important for assessing their fitness for service. In many instances, it is not possible to remove sizable samples from the component for doing the measurement in laboratory. In-situ technique for measurement of mechanical properties has great significance in such cases. One of the nondestructive methods that can be adopted for in-situ application is based on cyclic ball indentation technique. It involves multiple indentation cycles (at the same penetration location) on a metallic surface by a spherical indenter. Each cycle consists of indentation, partial unload and reload sequences. Presently, commercial systems are available for doing indentation test on structural component for limited applications. But, there is a genuine need of remotely operable compact in-situ property measurement system. Considering the importance of such applications Reactor Engineering Division of BARC has developed an In-situ Property Measurement System (IProMS), which can be used for in-situ measurement of mechanical properties of a flat or tubular component. This paper highlights the basic theory of measurement, qualification tests on IProMS and results from tests done on flat specimens and tubular component. (author)

  3. A New Technique for Deep in situ Measurements of the Soil Water Retention Behaviour

    DEFF Research Database (Denmark)

    Rocchi, Irene; Gragnano, Carmine Gerardo; Govoni, Laura

    2018-01-01

    In situ measurements of soil suction and water content in deep soil layers still represent an experimental challenge. Mostly developed within agriculture related disciplines, field techniques for the identification of soil retention behaviour have been so far employed in the geotechnical context ...

  4. Outside-out "sniffer-patch" clamp technique for in situ measures of neurotransmitter release.

    Science.gov (United States)

    Muller-Chrétien, Emilie

    2014-01-01

    The mechanism underlying neurotransmitter release is a critical research domain for the understanding of neuronal network function; however, few techniques are available for the direct detection and measurement of neurotransmitter release. To date, the sniffer-patch clamp technique is mainly used to investigate these mechanisms from individual cultured cells. In this study, we propose to adapt the sniffer-patch clamp technique to in situ detection of neurosecretion. Using outside-out patches from donor cells as specific biosensors plunged in acute cerebral slices, this technique allows for proper detection and quantification of neurotransmitter release at the level of the neuronal network.

  5. Measurement techniques for in situ stresses around underground constructions in a deep clay formation

    Directory of Open Access Journals (Sweden)

    Li X.L.

    2010-06-01

    Full Text Available Disposal in deep underground geological formations is internationally recognized as the most viable option for the long-term management of high-level radioactive waste. In Belgium, the Boom clay formation is extensively studied in this context, in particular at the 225 m deep HADES Underground Research Facility in Mol. A cost-effective design of deep underground structures requires an accurate assessment of the in situ stresses; a good estimation of these stresses is also essential when interpreting in situ experiments regarding the hydro-mechanical behaviour of the host formation. Different measurement techniques are available to provide data on the stress evolution and other mechanical properties of the geological formation. The measurement can be direct (measurement of total pressure, or it can be an indirect technique, deriving the stress from related quantities such as strain (changes in structural members. Most total stress measurements are performed through permanently installed sensors; also once-only measurements are performed through specific methods (e.g. pressuremeter. Direct measurement of the stress state is challenging due to the complex mechanical behaviour of the clay, and the fact that the sensor installation inevitably disturbs the original stress field. This paper describes ways to deal with these problems and presents the results obtained using different techniques at HADES.

  6. Techniques for sampling nuclear waste tank contents and in situ measurement of activity

    International Nuclear Information System (INIS)

    Lawrence, R.C.

    1978-04-01

    A study was conducted to develop suitable sampling equipment and techniques for characterizing the mechanical properties of nuclear wastes; identifying effective means of measuring radiation levels, temperatures, and neutron fluxes in situ in wastes; and developing a waste core sampler. A portable, stainless steel probe was developed which is placed in the tank through a riser. This probe is built for the insertion of instrumentation that can measure the contents of the tank at any level and take temperature, radiation, and neutron activation readings with reliable accuracy. A simple and reliable instrument for the in situ extraction of waste materials ranging from liquid to concrete-like substances was also developed. This portable, stainless steel waste core sampler can remove up to one liter of radioactive waste from tanks for transportation to hot cell laboratories for analysis of hardness, chemical form, and isotopic content. A cask for transporting the waste samples from the tanks to the laboratory under radiation-protected conditions was also fabricated. This cask was designed with a ''boot'' or inner-seal liner to contain any radioactive wastes that might remain on the outside of the waste core sampling device

  7. Measurement of in-situ stress in salt and rock using NQR techniques

    International Nuclear Information System (INIS)

    Schempp, E.; Hirschfeld, T.; Klainer, S.

    1980-01-01

    A discussion of how stress and strain affect the quantities which can be measured in an NQR experiment shows that, for stresses of the magnitude to be expected at depths up to about 10,000 feet, quadrupole coupling constants will fall in the range of 1 to 10 kHz for both the sodium and chloride ions in NaCl. The most promising system involves pulsed nuclear double resonance detection; and alterative is to observe the quadrupolar splitting of the NMR signal. Choices to be made in the measurement and mapping techniques are discussed. The well-known perturbation of the homogenous stress field in the neighborhood of a borehole is shown to be advantageous from the point of view of obtaining directional information on the stress. Construction and operation of a borehole stress sensor are considered. The NQR technique seems feasible for measuring the magnitude and direction of underground stress with a resolution of about 25 psi, or 2.5% at 1000 psi. Downhole instrumentation suitable for in-situ determinations of stress appears within the state of the art. Additional tasks required on the project are identified

  8. Reliable practical technique for in-situ rock stress measurements in deep gold mines.

    CSIR Research Space (South Africa)

    Stacey, TR

    1998-03-01

    Full Text Available The proposed primary output of this research project is the development of a set of equipment and method of in situ stress measurements in a high stress environment typical of the deep level gold mines....

  9. In-situ performance evaluation of radon measurement techniques in Uranium mine exhausts of Jaduguda

    International Nuclear Information System (INIS)

    Patnaik, R.L.; Jha, V.N.; Singh, M.K.; Meena, J.S.; Rajesh Kumar; Srivastava, V.S.; Sethy, N.K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Several techniques are used for the measurement of the activity concentration of radon in the work place and the environment. Devices like Scintillation cell, Alpha guard and Low Level Radon Detection System (LLRDS) are widely used for the estimation of radon. Some of the devices like scintillation cell is normally used in high activity concentration, whereas, device like LLRDS is used in low activity concentration range. All these above devices are used in ambient mode in which air sample is either collected in a cell or in a chamber and the alpha counts are recorded after a definite delay. In some device, air is allowed to be diffused through a filter and alpha activity is estimated using proper detection system. Passive radon dosimeters can effectively be used both in low and high activity concentration range. The cumulative radon exposure can be assessed using passive radon dosimeters. For in situ performance evaluation an area is required where both high and low level activity concentration of radon is anticipated. Uranium mines exhaust area is presumed to be an area where both these conditions can be found by mere variation in the placement of the device. Inter comparison exercise can also be done effectively at this location using various devices of radon estimation

  10. Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques.

    NARCIS (Netherlands)

    Unsworth, Emily R; Warnken, Kent W; Zhang, Hao; Davison, William; Black, Frank; Buffle, Jacques; Cao, Jun; Cleven, Rob; Galceran, Josep; Gunkel, Peggy; Kalis, Erwin; Kistler, David; Leeuwen, Herman P van; Martin, Michel; Noël, Stéphane; Nur, Yusuf; Odzak, Niksa; Puy, Jaume; Riemsdijk, Willem van; Sigg, Laura; Temminghoff, Erwin; Tercier-Waeber, Mary-Lou; Toepperwien, Stefanie; Town, Raewyn M; Weng, Liping; Xue, Hanbin

    2006-01-01

    Measurements of trace metal species in situ in a softwater river, a hardwater lake, and a hardwater stream were compared to the equilibrium distribution of species calculated using two models, WHAM 6, incorporating humic ion binding model VI and visual MINTEQ incorporating NICA-Donnan. Diffusive

  11. Performance of the In Situ Microcosm Technique for Measuring the Degradation of Organic Chemicals in Aquifers

    DEFF Research Database (Denmark)

    Nielsen, Per H.; Christensen, Thomas Højlund; Albrechtsen, Hans-Jørgen

    1996-01-01

    chemicals in polluted and pristine aquifers representing different redox environments. The ISM technique has great potential for providing field-relevant degradation potentials and rate constants, but care must be taken in using the equipment and interpreting the results. This paper provides details......An in situ microcosm (ISM) consists of a stainless steel cylinder isolating about 2 L of the aquifer and is equipped with valves allowing for loading and sampling from the ground surface. During the last five years, this technique has been used frequently to study the degradation of organic...

  12. In Situ Analytical Characterization of Contaminated Sites Using Nuclear Spectrometry Techniques. Review of Methodologies and Measurements

    International Nuclear Information System (INIS)

    2017-01-01

    Past and current human activities can result in the contamination of sites by radionuclides and heavy metals. The sources of contamination are various. The most important sources for radionuclide release include global fallout from nuclear testing, nuclear and radiological accidents, waste production from nuclear facilities, and activities involving naturally occurring radioactive material (NORM). Contamination of the environment by heavy metals mainly originates from industrial applications and mineralogical background concentration. Contamination of sites by radionuclides and heavy metals can present a risk to people and the environment. Therefore, the estimation of the contamination level and the identification of the source constitute important information for the national authorities with the responsibility to protect people and the environment from adverse health effects. In situ analytical techniques based on nuclear spectrometry are important tools for the characterization of contaminated sites. Much progress has been made in the design and implementation of portable systems for efficient and effective monitoring of radioactivity and heavy metals in the environment directly on-site. Accordingly, the IAEA organized a Technical Meeting to review the current status and trends of various applications of in situ nuclear spectrometry techniques for analytical characterization of contaminated sites and to support Member States in their national environmental monitoring programmes applying portable instrumentation. This publication represents a comprehensive review of the in situ gamma ray spectrometry and field portable X ray fluorescence analysis techniques for the characterization of contaminated sites. It includes papers on the use of these techniques, which provide useful background information for conducting similar studies, in the following Member States: Argentina, Australia, Brazil, Czech Republic, Egypt, France, Greece, Hungary, Italy, Lithuania

  13. Environmental gamma-ray measurements using in situ and core sampling techniques

    International Nuclear Information System (INIS)

    Dickson, H.W.; Kerr, G.D.; Perdue, P.T.; Abdullah, S.A.

    1976-01-01

    Dose rates from natural radionuclides and 137 Cs in soils of the Oak Ridge area have been determined from in situ and core sample measurements. In situ γ-ray measurements were made with a transportable spectrometer. A tape of spectral data and a soil core sample from each site were returned to ORNL for further analysis. Information on soil composition, density and moisture content and on the distribution of cesium in the soil was obtained from the core samples. In situ spectra were analyzed by a computer program which identified and assigned energies to peaks, integrated the areas under the peaks, and calculated radionuclide concentrations based on a uniform distribution in the soil. The assumption of a uniform distribution was adequate only for natural radionuclides, but simple corrections can be made to the computer calculations for man-made radionuclides distributed on the surface or exponentially in the soil. For 137 Cs a correction was used based on an exponential function fitted to the distribution measured in core samples. At typical sites in Oak Ridge, the dose rate determined from these measurements was about 5 μrad/hr. (author)

  14. Development of the DGT technique for in-situ Pu speciation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cusnir, R.; Bochud, F.; Froidevaux, P. [Institute of Radiation Physics, Lausanne University Hospital, Rue du Grand-Pre 1, CH-1007 Lausanne (Switzerland); Steinmann, P. [Federal Office of Public Health, Swarzenburgstrasse 165, CH-3003 Bern (Switzerland)

    2014-07-01

    Toxic effects of artificial radionuclides are strongly dependent on the surrounding chemical environment which determines the bioavailability of contaminant species. Speciation of plutonium in the environment is of particular interest since it is a long-life actinide contributing to the dose exposure via ingestion with water and food in case of radioactive discharge. Furthermore, natural colloids present in waters, as main carriers of dissolved trace metals, can transport plutonium over significant distances from contaminated sites. The diffusive gradients in thin films (DGT) technique is an efficient instrument for passive sampling of trace metals. It allows for in-situ monitoring of mean concentrations of bioavailable contaminant species (1). A DGT sampler consists of two gel layers: a polyacrylamide hydrogel diffusion layer allowing to diffuse labile metal species to the second, binding layer, impregnated with ion-exchange resin. Resin elution and further analysis allow determining the amount of the bioavailable fraction of trace metals in the bulk solution, which can be calculated from the relationship: C{sub bulk}= (M x Δg)/(D x t x A) where M is the measured metal species inventory in the resin, Δg the thickness of the diffusion layer, D the diffusion coefficient of the species in the gel, t the time of deployment, A the diffusion area. To our knowledge, the DGT has not yet been applied for Pu speciation measurements and the D value is unknown. Here we propose the use of DGT to monitor the dissolved phase and labile complexes of plutonium in the aquatic environment. We have first measured the diffusion coefficient of plutonium in the hydrogel. Experiments were carried out in a diffusion cell (2) and with commercially available DGT samplers exposed in standardized solutions containing {sup 239}Pu at pico-molar concentrations. Both approaches give comparable D values in the range of 2.30 x 10{sup -6} - 2.45 x 10{sup -6} cm{sup 2} s{sup -1}. We then studied

  15. USE OF THE MOBILE NYLON BAG TECHNIQUE FOR MEASURING IN SITU DIGESTIBILITY OF SOME SUPPLIES FOOD AND AVOCADO IN PIGS

    Directory of Open Access Journals (Sweden)

    Julio Ly Carmenatti

    2015-08-01

    Full Text Available The mobile nylon bag technique was used for measuring in situ digestibility of conventional feeds and avocado (Persea americana Mills products in three 70 kg pigs fitted with a simple cannula in duodenum. One 3x3 Latin square was used for determining in situ digestibility of soybean, maize and sorghum meal and another 3x3 Latin square for measuring in situ digestibility of seed, peel plus seed meal and the entire Nayaritean avocado fruit of Hass type, as well as of the commercial diet given ad libitum to animals. In a preliminary test conducted with only bags containing a commercial feedstuff, it was found that in situ digestibility of DM was on average 73.01%. In conventional feeds, soybean meal samples showed higher (P0.05 for N digestibility among avocado products, which was generally low (between 28.02 and 34.58%. In situ organic matter digestibility was linked to that of MS (r = 0.915; P<0.001, both in percent, in 42 examined samples, by the following found equation: y = 2.076 + 0.926 x. The herein described studies concerning the utilization of the mobile bag showed that it is possible to obtain a fast response in connection to the nutritive value of non conventional, tropical alimentary resources for pigs. On the other hand, the continuation of studies relative to the nutritive value of avocado products for pigs is highly recommended.

  16. An optical technique to measure distortion in heat-treated parts in-situ

    Science.gov (United States)

    Sciammarella, Federico; Nash, Phillip

    2005-05-01

    Improvements in the properties of aluminum alloys have made them more popular for structural applications. Using the different heat treatments that are available, aluminum alloys can have a wide variation in properties for different types of applications. The appropriate heat treatments of these alloys are vital in providing the properties needed for their particular applications. Moreover, understanding the effects of heat treatments that may cause distortion to a part is critical. Most of the work carried out in this field is in the form of pre- and post-treatment analysis of a part. In this study, in-situ measurements of the distortions that a heat-treated part undergoes when subjected to rapid heating to temperatures near melting followed by slow cooling were carried out. A numerical model was built to simulate the experiment and the results are compared. This study will provide much-needed insight into the complex occurrences that aluminum parts undergo during heat treatment.

  17. A study on in-situ measuring method and modeling technique of an unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Hisashi [Hazama Corp., Tsukuba, Ibaraki (Japan). Technical Research Inst.; Amemiya, Kiyoshi; Nishida, Kaoru; Lin, Weiren; Lei, Xinglin

    1997-03-01

    It is generally considered that an unsaturated zone is generated in the vicinity of a drift after excavation. In such a zone, invasion of air containing oxygen possibly changes geochemical environment (redox condition) of the rock mass. However, no measurement technique for quantitative understanding of this unsaturated zone is currently available. This study has been started to develop the measuring method in the several years. This year, fundamental information has been obtained through analysis, laboratory experiments using homogeneous rock samples and field measurement described below. (1) experiments on the mechanism of undersaturation in rock. (2) experiments on the measuring method of the extend of unsaturated zone. (author)

  18. A New Technique for Deep in situ Measurements of the Soil Water Retention Behaviour

    DEFF Research Database (Denmark)

    Rocchi, Irene; Gragnano, Carmine Gerardo; Govoni, Laura

    2018-01-01

    to monitor shallow landslides and seasonal volume changes beneath shallow foundations, within the most superficial ground strata. In this paper, a novel installation technique is presented, discussed and assessed, which allows to extend the use of commercially available low cost and low maintenance...... to the field data. The results of this study offer a convenient starting point to accommodate important geotechnical works such as river and road embankments in the traditional monitoring of unsaturated soil variables....

  19. Research on in-situ measurement technique of three-dimensional distance

    International Nuclear Information System (INIS)

    Shiraishi, Masatake; Aoshima, Shinichi; Aose, Shinichi; Takeuchi, Masayuki

    2004-04-01

    Equipments used in the nuclear facility must be done the adequate maintenance and should be exchanged to new ones by the remote control. For this aim, we need information about the objects such as a distance, a profile, and an inclination with the required accuracy. The aim of this research is, thus, to establish and equipment exchanging method by controlling the position of equipments and parts. In order to catch the whole position condition of objects, a rough measurement system was developed, and information was obtained from the front side of parts. Then, a precise measurement system that performs local measurement was constructed to obtain the information around the shade portion of the objects, which is not obtainable by the rough measurement system. Therefore, the new system performs two measurements: a rough measurement and a precise measurement. Consequently, it was found to be effective for acquiring a lot of information that are not obtained only by the rough measurement system form the front side only. Before exchanging equipments, we need to know their conditions whether they are still applicable or not. The another point of this research is, therefore, to develop an on-line deterioration diagnosis method of equipments. Specifically, a new approach in which the laser light is projected onto the equipment surface is proposed to check the contrast of the reflection pattern. Because the contrast is corresponding to the condition of the measured surface and therefore we can conjecture the surface states of the object surface by obtaining the contrast. We examined those states empirically by changing the laser angle of incidence and the receiving angle of camera. As a result, the validity of the on-line diagnosis was confirmed through various experiments. Finally, the possibility of applying VR method was discussed as a control of robot manipulator, although this research is on going. (author)

  20. In-situ permeability measurements with direct push techniques: Phase II topical report

    International Nuclear Information System (INIS)

    Lowry, W.; Mason, N.; Chipman, V.; Kisiel, K.; Stockton, J.

    1999-01-01

    This effort designed, fabricated, and field tested the engineering prototype of the Cone Permeametertrademark system. The integrated system includes the instrumented penetrometer probe, air and water pumps, flowrate controls, flow sensors, and a laptop-controlled data system. All of the equipment is portable and can be transported as luggage on airlines. The data system acquired and displays the process measurements (pressures, flows, and downhole temperature) in real time and calculates the resulting permeability. The measurement probe is a 2 inch diameter CPT rod section, incorporating a screened injection zone near the lower end of the rod and multiple sensitive absolute pressure sensors embedded in the probe at varying distances from the injection zone. Laboratory tests in a large test cell demonstrated the system's ability to measure nominally 1 Darcy permeability soil (30 to 40 Darcy material had been successfully measured in the Phase 1 effort). These tests also provided a shakedown of the system and identified minor instrument problems, which were resolved. Supplemental numerical modeling was conducted to evaluate the effects of layered permeability (heterogeneity) and anisotropy on the measurement system's performance. The general results of the analysis were that the Cone Permeameter could measure accurately, in heterogeneous media, the volume represented by the sample port radii if the outer pressure ports were used. Anisotropic permeability, while readily analyzed numerically, is more complicated to resolve with the simple analytical approach of the 1-D model, and will need further work to quantify. This phase culminated in field demonstrations at the DOE Savannah River Site. Saturated hydraulic conductivity measurements were completed at the D-Area Coal Pile Runoff Basin, and air permeability measurements were conducted at the M Area Integrated Demonstration Site and the 321 M area. The saturated hydraulic conductivity measurements were the most

  1. Comparison of continuous in situ CO2 observations at Jungfraujoch using two different measurement techniques

    Science.gov (United States)

    Schibig, M. F.; Steinbacher, M.; Buchmann, B.; van der Laan-Luijkx, I. T.; van der Laan, S.; Ranjan, S.; Leuenberger, M. C.

    2015-01-01

    Since 2004, atmospheric carbon dioxide (CO2) is being measured at the High Altitude Research Station Jungfraujoch by the division of Climate and Environmental Physics at the University of Bern (KUP) using a nondispersive infrared gas analyzer (NDIR) in combination with a paramagnetic O2 analyzer. In January 2010, CO2 measurements based on cavity ring-down spectroscopy (CRDS) as part of the Swiss National Air Pollution Monitoring Network were added by the Swiss Federal Laboratories for Materials Science and Technology (Empa). To ensure a smooth transition - a prerequisite when merging two data sets, e.g., for trend determinations - the two measurement systems run in parallel for several years. Such a long-term intercomparison also allows the identification of potential offsets between the two data sets and the collection of information about the compatibility of the two systems on different time scales. A good agreement of the seasonality, short-term variations and, to a lesser extent mainly due to the short common period, trend calculations is observed. However, the comparison reveals some issues related to the stability of the calibration gases of the KUP system and their assigned CO2 mole fraction. It is possible to adapt an improved calibration strategy based on standard gas determinations, which leads to better agreement between the two data sets. By excluding periods with technical problems and bad calibration gas cylinders, the average hourly difference (CRDS - NDIR) of the two systems is -0.03 ppm ± 0.25 ppm. Although the difference of the two data sets is in line with the compatibility goal of ±0.1 ppm of the World Meteorological Organization (WMO), the standard deviation is still too high. A significant part of this uncertainty originates from the necessity to switch the KUP system frequently (every 12 min) for 6 min from ambient air to a working gas in order to correct short-term variations of the O2 measurement system. Allowing additional time for

  2. Comparison of continuous in-situ CO2 observations at Jungfraujoch using two different measurement techniques

    Science.gov (United States)

    Schibig, M. F.; Steinbacher, M.; Buchmann, B.; van der Laan-Luijkx, I. T.; van der Laan, S.; Ranjan, S.; Leuenberger, M. C.

    2014-07-01

    Since 2004, atmospheric carbon dioxide (CO2) is measured at the High Altitude Research Station Jungfraujoch by the division of Climate and Environmental Physics at the University of Bern (KUP) using a nondispersive infrared gas analyzer (NDIR) in combination with a paramagnetic O2 analyzer. In January 2010, CO2 measurements based on cavity ring down spectroscopy (CRDS) as part of the Swiss National Air Pollution Monitoring Network have been added by the Swiss Federal Laboratories for Materials Science and Technology (Empa). To ensure a smooth transition - a prerequisite when merging two datasets e.g. for trend determinations - the two measurement systems run in parallel for several years. Such a long-term intercomparison also allows identifying potential offsets between the two datasets and getting information about the compatibility of the two systems on different time scales. A good agreement of the seasonality as well as for the short-term variations was observed and to a lesser extent for trend calculations mainly due to the short common period. However, the comparison revealed some issues related to the stability of the calibration gases of the KUP system and their assigned CO2 mole fraction. It was possible to adapt an improved calibration strategy based on standard gas determinations, which lead to better agreement between the two data sets. By excluding periods with technical problems and bad calibration gas cylinders, the average hourly difference (CRDS - NDIR) of the two systems is -0.03 ppm ± 0.25 ppm. Although the difference of the two datasets is in line with the compatibility goal of ±0.1 ppm of the World Meteorological Organization (WMO), the standard deviation is still too high. A significant part of this uncertainty originates from the necessity to switch the KUP system frequently (every 12 min) for 6 min from ambient air to a working gas in order to correct short-term variations of the O2 measurement system. Allowing additionally for signal

  3. In situ measurement of diffusivity

    International Nuclear Information System (INIS)

    Berne, F.; Pocachard, J.

    2004-01-01

    The mechanism of molecular diffusion controls the migration of contaminants in very low-permeability porous media, like underground facilities for the storage of hazardous waste. Determining of relevant diffusion coefficients is therefore of prime importance. A few techniques exist for in situ measurement of the quantity, but they suffer from many handicaps (duration, complexity and cost of the experiments). We propose here two innovative methods that have some potential to improve the situation. So far, we have found them feasible on the basis of design calculations and laboratory experiments. This work is presently protected by a patent. (author)

  4. In situ measurement of diffusivity

    International Nuclear Information System (INIS)

    Berne, Ph.; Pocachard, J.

    2005-01-01

    The mechanism of molecular diffusion controls the migration of contaminants in very low-permeability porous media, like underground facilities for the storage of hazardous waste. Determining the relevant diffusion coefficients is, therefore, of prime importance. A few techniques exist for the in situ measurement of that quantity, but they suffer from many handicaps (duration, complexity and cost of the experiments). We propose here two innovative methods that have some potential to improve this situation. So far, we have found them feasible on the basis of design calculations and laboratory experiments. This work is presently protected by a patent. (author)

  5. A new contact electric resistance technique for in-situ measurement of the electric resistance of surface films on metals in electrolytes at high temperatures and pressures

    International Nuclear Information System (INIS)

    Saario, T.; Marichev, V.A.

    1993-01-01

    Surface films play a major role in corrosion assisted cracking. A new Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films. The method has been upgraded for high temperature high pressure application. The technique can be used for any electrically conductive material in any environment including liquid, gas or vacuum. The technique has been used to determine in situ the electric resistance of films on metals during adsorption of water and anions, formation and destruction of oxides and hydrides, electroplating of metals and to study the electric resistance of films on semiconductors. The resolution of the CER technique is 10 -9 Ω, which corresponds to about 0.03 monolayers of deposited copper during electrochemical deposition Cu/Cu 2+ . Electric resistance data can be measured with a frequency of the order of one hertz, which enables one to follow in situ the kinetics of surface film related processes. The kinetics of these processes and their dependence on the environment, temperature, pH and electrochemical potential can be investigated

  6. The use of a neutron backscatter technique for in-situ water measurement in paper-recycling industry

    International Nuclear Information System (INIS)

    Hasan, Norpaiza Mohamad; Zain, Rasif Mohd; Abdul Rahman, Mohd Fitri; Mustapha, Ismail

    2009-01-01

    A bulk of used paper supplied to recycling industry may contain water in their internal voids. This is because the price of the used paper is currently based on their weight and it has a huge potential of suppliers to add with water in order to increase the price. Currently used methods for detecting moisture content in a paper are restricted to a sheet of paper only. This paper presents a non-intrusive method for quick and in-situ measurement of water content in a bulk of used paper. The proposed method extends the capability of common paper moisture gauge, by using a neutron device. A fast neutron source (Am-Be 241) and a portable backscattering neutron detector are used for water measurement. It theoretically indicates that the slow neutron counts can be correlated to the hydrogen or water level in a paper. The method has the potential of being used by the paper-recycling industry for rapid and non-destructive measurement of water in a bulk of used paper.

  7. In situ solution mining technique

    International Nuclear Information System (INIS)

    Learmont, R.P.

    1978-01-01

    A method of in situ solution mining is disclosed in which a primary leaching process employing an array of 5-spot leaching patterns of production and injection wells is converted to a different pattern by converting to injection wells all the production wells in alternate rows

  8. Titanium dioxide-based DGT technique for in situ measurement of dissolved reactive phosphorus in fresh and marine waters

    DEFF Research Database (Denmark)

    Panther, Jared G.; Teasdale, Peter R.; Bennett, William W.

    2010-01-01

    A new diffusive gradients in a thin film (DGT) technique for measuring dissolved reactive phosphorus (DRP) in fresh and marine waters is reported. The new method, which uses a commercially available titanium dioxide based adsorbent (Metsorb), was evaluated and compared to the well-established fer...

  9. In situ, real-time thickness measurement techniques for bath-deposited CdS thin films on Cu(In,Ga)Se2

    International Nuclear Information System (INIS)

    Mann, Jonathan R.; Noufi, Rommel

    2012-01-01

    A technique has been developed that can measure the thickness of a 30–70 nm thin film of cadmium sulfide on a Cu(In,Ga)Se 2 substrate, in real time, as it grows in a chemical bath. The technique does not damage the film, and can be used to monitor batch depositions and roll-to-roll depositions with equal accuracy. The technique is based on reflectance spectroscopy through the chemical bath. - Highlights: ► Reflection spectra were collected during the chemical bath deposition of CdS. ► Two algorithms were generated to extract film thickness from each spectrum. ► Two conventional techniques were used to independently verify CdS film thicknesses. ► The accuracies of the algorithms are within 7% of the actual thicknesses. ► The algorithms offer in situ, real time thicknesses through the chemical bath.

  10. Accuracy assessment of water vapour measurements from in situ and remote sensing techniques during the DEMEVAP 2011 campaign at OHP

    Directory of Open Access Journals (Sweden)

    O. Bock

    2013-10-01

    Full Text Available The Development of Methodologies for Water Vapour Measurement (DEMEVAP project aims at assessing and improving humidity sounding techniques and establishing a reference system based on the combination of Raman lidars, ground-based sensors and GPS. Such a system may be used for climate monitoring, radiosonde bias detection and correction, satellite measurement calibration/validation, and mm-level geodetic positioning with Global Navigation Satellite Systems. A field experiment was conducted in September–October 2011 at Observatoire de Haute-Provence (OHP. Two Raman lidars (IGN mobile lidar and OHP NDACC lidar, a stellar spectrometer (SOPHIE, a differential absorption spectrometer (SAOZ, a sun photometer (AERONET, 5 GPS receivers and 4 types of radiosondes (Vaisala RS92, MODEM M2K2-DC and M10, and Meteolabor Snow White participated in the campaign. A total of 26 balloons with multiple radiosondes were flown during 16 clear nights. This paper presents preliminary findings from the analysis of all these data sets. Several classical Raman lidar calibration methods are evaluated which use either Vaisala RS92 measurements, point capacitive humidity measurements, or GPS integrated water vapour (IWV measurements. A novel method proposed by Bosser et al. (2010 is also tested. It consists in calibrating the lidar measurements during the GPS data processing. The methods achieve a repeatability of 4–5%. Changes in the calibration factor of IGN Raman lidar are evidenced which are attributed to frequent optical re-alignments. When modelling and correcting the changes as a linear function of time, the precision of the calibration factors improves to 2–3%. However, the variations in the calibration factor, and hence the absolute accuracy, between methods and types of reference data remain at the level of 7%. The intercomparison of radiosonde measurements shows good agreement between RS92 and Snow White measurements up to 12 km. An overall dry bias is found

  11. Optimization of colorimetric DET technique for the in situ, two-dimensional measurement of iron(II) distributions in sediment porewaters

    DEFF Research Database (Denmark)

    Bennett, William W.; Teasdale, Peter R.; Welsh, David T.

    2012-01-01

    The recently developed colorimetric diffusive equilibration in thin films (DET) technique for the in situ, high-resolution measurement of iron(II) in marine sediments is optimized to allow measurement of the higher iron concentrations typical of freshwater sediment porewaters. Computer imaging...... the sensitivity of the assay as required; by processing the image with different color channel filters, the sensitivity of the assay can be optimized for lower concentrations (up to 100 μmol L -1) or higher concentrations (up to 2000 μmol L -1) of iron(II), depending on the specific site characteristics......(II) in sediment porewaters. The detection limit of the optimized technique was 4.1 ± 0.3 μmol L -1 iron(II) and relative standard deviations were less than 6%....

  12. In Situ TEM Electrical Measurements

    DEFF Research Database (Denmark)

    Canepa, Silvia; Alam, Sardar Bilal; Ngo, Duc-The

    2016-01-01

    understanding of complex physical and chemical interactions in the pursuit to optimize nanostructure function and device performance. Recent developments of sample holder technology for TEM have enabled a new field of research in the study of functional nanomaterials and devices via electrical stimulation...... influence the sample by external stimuli, e.g. through electrical connections, the TEM becomes a powerful laboratory for performing quantitative real time in situ experiments. Such TEM setups enable the characterization of nanostructures and nanodevices under working conditions, thereby providing a deeper...... and measurement of the specimen. Recognizing the benefits of electrical measurements for in situ TEM, many research groups have focused their effort in this field and some of these methods have transferred to ETEM. This chapter will describe recent advances in the in situ TEM investigation of nanostructured...

  13. Applicability study of using in-situ gamma-ray spectrometry technique for 137Cs and 210Pbex inventories measurement in grassland environments

    International Nuclear Information System (INIS)

    Li Junjie; Li Yong; Wang Yanglin; Wu Jiansheng

    2010-01-01

    In-situ measurement of fallout radionuclides 137 Cs and 210 Pb ex has the potential to assess soil erosion and sedimentation rapidly. In this study, inventories of 137 Cs and 210 Pb ex in the soil of Inner Mongolia grassland were measured using an In-situ Object Counting System (ISOCS). The results from the field study indicate that in-situ gamma-ray spectrometry has the following advantages over traditional laboratory measurements: no extra time is required for sample collection, no reference inventories are required, more economic, prompt availability of the results, the ability to average radionuclide inventory over a large area, and high precision.

  14. In-situ measurement of the lithium distribution in Li-ion batteries using micro-IBA techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, A., E-mail: yamazaki@tac.tsukuba.ac.jp [Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Orikasa, Y.; Chen, K.; Uchimoto, Y. [Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsucho, Sakyo-ku, Kyoto 606-8501 (Japan); Kamiya, T.; Koka, M.; Satoh, T. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233, Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Mima, K.; Kato, Y.; Fujita, K. [The Graduate School for the Creation of New Photonics Industries, 1955-1, Kurematsu, NIshi-ku, Hamamatsu, Shizuoka 431-1202 (Japan)

    2016-03-15

    Direct observation of lithium concentration distribution in lithium-ion battery composite electrodes has been performed for the first time. Lithium-ion battery model cells for particle induced X-ray emission (PIXE) and particle induced gamma ray emission (PIGE) measurements were designed and fabricated. Two dimensional images of lithium concentration in LiFePO{sub 4} composite electrodes were obtained with PIXE and PIGE by scanning the proton microbeam for various charged states of the electrodes. Lithium concentration in LiFePO{sub 4} composite electrodes was decreased from the contact interface between LiFePO{sub 4} electrode and liquid electrolyte during the charge reaction.

  15. In-situ measurement of the lithium distribution in Li-ion batteries using micro-IBA techniques

    International Nuclear Information System (INIS)

    Yamazaki, A.; Orikasa, Y.; Chen, K.; Uchimoto, Y.; Kamiya, T.; Koka, M.; Satoh, T.; Mima, K.; Kato, Y.; Fujita, K.

    2016-01-01

    Direct observation of lithium concentration distribution in lithium-ion battery composite electrodes has been performed for the first time. Lithium-ion battery model cells for particle induced X-ray emission (PIXE) and particle induced gamma ray emission (PIGE) measurements were designed and fabricated. Two dimensional images of lithium concentration in LiFePO_4 composite electrodes were obtained with PIXE and PIGE by scanning the proton microbeam for various charged states of the electrodes. Lithium concentration in LiFePO_4 composite electrodes was decreased from the contact interface between LiFePO_4 electrode and liquid electrolyte during the charge reaction.

  16. In situ observation techniques of protective oxide layer

    International Nuclear Information System (INIS)

    Doi, Takashi; Adachi, Takeharu; Usuki, Noriaki

    2015-01-01

    In situ analyzing techniques for investigating a surface and interface change during corrosion and oxidation of metals by using Raman scattering spectroscopy (Raman), X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS) are present. The Raman spectra revealed that a crystal structure and distribution of corrosion products varied during corrosion progress at elevated temperature and high pressure electrolyte. Time dependent XRD measurements made clear the behavior of the electrochemical reduction of a rust and the iso thermal transformation of a scale on a steel. It was demonstrated that XPS was capable of the in-situ measurements for initial stage of high temperature oxidation. (author)

  17. Automated quantitative analysis of in-situ NaI measured spectra in the marine environment using a wavelet-based smoothing technique

    International Nuclear Information System (INIS)

    Tsabaris, Christos; Prospathopoulos, Aristides

    2011-01-01

    An algorithm for automated analysis of in-situ NaI γ-ray spectra in the marine environment is presented. A standard wavelet denoising technique is implemented for obtaining a smoothed spectrum, while the stability of the energy spectrum is achieved by taking advantage of the permanent presence of two energy lines in the marine environment. The automated analysis provides peak detection, net area calculation, energy autocalibration, radionuclide identification and activity calculation. The results of the algorithm performance, presented for two different cases, show that analysis of short-term spectra with poor statistical information is considerably improved and that incorporation of further advancements could allow the use of the algorithm in early-warning marine radioactivity systems. - Highlights: → Algorithm for automated analysis of in-situ NaI γ-ray marine spectra. → Wavelet denoising technique provides smoothed spectra even at parts of the energy spectrum that exhibits strong statistical fluctuations. → Automated analysis provides peak detection, net area calculation, energy autocalibration, radionuclide identification and activity calculation. → Analysis of short-term spectra with poor statistical information is considerably improved.

  18. In-Situ Measurements of Aerosol Optical Properties using New Cavity Ring-Down and Photoacoustics Instruments and Comparison with more Traditional Techniques

    Science.gov (United States)

    Strawa, A. W.; Arnott, P.; Covert, D.; Elleman, R.; Ferrare, R.; Hallar, A. G.; Jonsson, H.; Kirchstetter, T. W.; Luu, A. P.; Ogren, J.

    2004-01-01

    Carbonaceous species (BC and OC) are responsible for most of the absorption associated with aerosol particles. The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult aerosol properties to measure. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-ARC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Aerosol absorption coefficient is also measured by a photoacoustic (PA) instrument (DRI) that was operated on an aircraft for the first time during the DOE Aerosol Intensive Operating Period (IOP). This paper will report on measurements made with this new instrument and other in-situ instruments during two field recent field studies. The first field study was an airborne cam;oaign, the DOE Aerosol Intensive Operating Period flown in May, 2003 over northern Oklahoma. One of the main purposes of the IOP was to assess our ability to measure extinction and absorption coefficient in situ. This paper compares measurements of these aerosol optical properties made by the CRD, PA, nephelometer, and Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model. The second study was conducted in the Caldecott Tunnel, a heavily-used tunnel located north of San Francisco, Ca. The aerosol sampled in this study was

  19. Pulse holographic measurement techniques

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Baik, Seong Hoon; Hong, Seok Kyung; Kim, Jeong Moog; Kim, Duk Hyun

    1992-01-01

    With the development of laser, remote inspection techniques using laser have been growing on. The inspection and measurement techniques by pulse holography are well-established technique for precise measurement, and widely used in various fields of industry now. In nuclear industry, this technology is practically used because holographic inspection is remote, noncontact, and precise measurement technique. In relation to remote inspection technology in nuclear industry, state-of-the art of pulse HNDT (Holographic non-destructive testing) and holographic measurement techniques are examined. First of all, the fundamental principles as well as practical problems for applications are briefly described. The fields of pulse holography have been divided into the HNDT, flow visualization and distribution study, and other application techniques. Additionally holographic particle study, bubble chamber holography, and applications to other visualization techniques are described. Lastly, the current status for the researches and applications of pulse holography to nuclear industry which are carried out actively in Europe and USA, is described. (Author)

  20. The attribute measurement technique

    International Nuclear Information System (INIS)

    MacArthur, Duncan W.; Langner, Diana; Smith, Morag; Thron, Jonathan; Razinkov, Sergey; Livke, Alexander

    2010-01-01

    Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. An information barrier (IB) is included in the measurement system to protect the potentially classified information while allowing sufficient information transfer to occur for the monitoring party to gain confidence that the material being measured is consistent with the host's declarations, concerning that material. The attribute measurement technique incorporates an IB and addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The attribute measurement technique has been implemented in the AVNG, an attribute measuring system described in other presentations at this conference. In this presentation, we will discuss four techniques used in the AVNG: (1) the 1B, (2) the attribute measurement technique, (3) the use of open and secure modes to increase confidence in the displayed results, and (4) the joint design as a method for addressing both host and monitor needs.

  1. In Situ Techniques for Life Detection on Mars

    Science.gov (United States)

    Becker, L.; Brinckerhoff, W.; Cotter, R.

    2006-12-01

    The search for organic matter on Mars is rapidly emerging as a result of technological advancements and the study of early "life" on our own planet. As we learned from the Viking missions and the examination of martian meteorites, the criteria for establishing life require the appropriate strategy. One such approach would require careful mapping of the surface from orbit for the selection of the appropriate landing sites, robotic space missions equipped with several life detection in situ techniques for selection of samples, and sample return missions for additional verification of in situ results and laboratory measurements. It may, however, be possible to obtain critical information about the organic matter and associated mineral assemblages present on Mars, in situ, in a single measurement that is both capable of flight and is nondestructive to the sample. We discuss a new multi-source mass spectrometer, `MOMA' (Mars Organic Molecule Analyzer) that incorporates multiple methods of volatilizing and ionizing chemical compounds from intact samples without further processing or manipulation. Moreover, MOMA is capable of detecting a broad range of organics enabling the evaluation of the origin of the organics and the presence of terrestrial contaminants.

  2. Investigation of Structure and Dynamics in Disordered Materials Using Containerless Techniques with In-Situ Quantum Beam and Thermophysical Property Measurements

    Directory of Open Access Journals (Sweden)

    Shinji Kohara

    2018-02-01

    Full Text Available The use of levitation (containerless techniques can enable new scientific discoveries because deeply undercooled and metastable liquids can be achieved over a wide temperature range. This review article summarizes the state-of-art instrumentation for structure measurements at synchrotron radiation/neutron sources and for thermophysical property measurements not only on the ground but also in microgravity utilizing the International Space Station (ISS. Furthermore, we introduce recent scientific topics on high-temperature oxide liquids and oxide glasses synthesized from levitated undercooled liquids by the use of quantum beam measurements analyzed using advanced computation.

  3. 4. Measuring technique

    International Nuclear Information System (INIS)

    2006-01-01

    It is noted that in nuclear medicine a most widely the scintillation detectors are applying. Action of these detectors is based on registration of light flares in visible and ultraviolet field arising in scintillator under ionizing radiation action. In the chapter following subchapters are included: gamma-spectrometer and gamma radiation detectors; counter of whole body; measuring of accumulated activity (uptake measurements); scanner; scintillation chamber; single-photon emission computed tomography; positron emission computed tomography; magnet resonance tomography; computer technique, images making

  4. Experimental Measurement of In Situ Stress

    Science.gov (United States)

    Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul

    2016-04-01

    The World Stress Map data is determined by stress indicators including earthquake focal mechanisms, in situ measurement in mining, oil and gas boreholes as well as the borehole cores, and geologic data. Unfortunately, these measurements are not only infrequent but sometimes infeasible, and do not provide nearly enough data points with high accuracy to correctly infer stress fields in deep mines around the world. Improvements in stress measurements of Earth's crust is fundamental to several industries such as oil and gas, mining, nuclear waste management, and enhanced geothermal systems. Quantifying the state of stress and the geophysical properties of different rock types is a major complication in geophysical monitoring of deep mines. Most stress measurement techniques involve either the boreholes or their cores, however these measurements usually only give stress along one axis, not the complete stress tensor. The goal of this project is to investigate a new method of acquiring a complete stress tensor of the in situ stress in the Earth's crust. This project is part of a comprehensive, exploration geophysical study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, and focuses on two boreholes located in this mine. These boreholes are approximately 400 m long with NQ diameters and are located at depths of about 1300 - 1600 m and 1700 - 2000 m. Two borehole logging surveys were performed on both boreholes, October 2013 and July 2015, in order to perform a time-lapse analysis of the geophysical changes in the mine. These multi-parameter surveys include caliper, full waveform sonic, televiewer, chargeability (IP), and resistivity. Laboratory experiments have been performed on borehole core samples of varying geologies from each borehole. These experiments have measured the geophysical properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. The apparatus' used for this project are geophysical imaging cells capable

  5. In situ measurement of conductivity during nanocomposite film deposition

    International Nuclear Information System (INIS)

    Blattmann, Christoph O.; Pratsinis, Sotiris E.

    2016-01-01

    Highlights: • Flame-made nanosilver dynamics are elucidated in the gas-phase & on substrates. • The resistance of freshly depositing nanosilver layers is monitored. • Low T g polymers facilitate rapid synthesis of conductive films. • Conductive nanosilver films form on top of or within the polymer depending on MW. - Abstract: Flexible and electrically conductive nanocomposite films are essential for small, portable and even implantable electronic devices. Typically, such film synthesis and conductivity measurement are carried out sequentially. As a result, optimization of filler loading and size/morphology characteristics with respect to film conductivity is rather tedious and costly. Here, freshly-made Ag nanoparticles (nanosilver) are made by scalable flame aerosol technology and directly deposited onto polymeric (polystyrene and poly(methyl methacrylate)) films during which the resistance of the resulting nanocomposite is measured in situ. The formation and gas-phase growth of such flame-made nanosilver, just before incorporation onto the polymer film, is measured by thermophoretic sampling and microscopy. Monitoring the nanocomposite resistance in situ reveals the onset of conductive network formation by the deposited nanosilver growth and sinternecking. The in situ measurement is much faster and more accurate than conventional ex situ four-point resistance measurements since an electrically percolating network is detected upon its formation by the in situ technique. Nevertheless, general resistance trends with respect to filler loading and host polymer composition are consistent for both in situ and ex situ measurements. The time lag for the onset of a conductive network (i.e., percolation) depends linearly on the glass transition temperature (T g ) of the host polymer. This is attributed to the increased nanoparticle-polymer interaction with decreasing T g . Proper selection of the host polymer in combination with in situ resistance monitoring

  6. Illumination Sufficiency Survey Techniques: In-situ Measurements of Lighting System Performance and a User Preference Survey for Illuminance in an Off-Grid, African Setting

    Energy Technology Data Exchange (ETDEWEB)

    Alstone, Peter; Jacobson, Arne; Mills, Evan

    2010-08-26

    Efforts to promote rechargeable electric lighting as a replacement for fuel-based light sources in developing countries are typically predicated on the notion that lighting service levels can be maintained or improved while reducing the costs and environmental impacts of existing practices. However, the extremely low incomes of those who depend on fuel-based lighting create a need to balance the hypothetically possible or desirable levels of light with those that are sufficient and affordable. In a pilot study of four night vendors in Kenya, we document a field technique we developed to simultaneously measure the effectiveness of lighting service provided by a lighting system and conduct a survey of lighting service demand by end-users. We took gridded illuminance measurements across each vendor's working and selling area, with users indicating the sufficiency of light at each point. User light sources included a mix of kerosene-fueled hurricane lanterns, pressure lamps, and LED lanterns.We observed illuminance levels ranging from just above zero to 150 lux. The LED systems markedly improved the lighting service levels over those provided by kerosene-fueled hurricane lanterns. Users reported that the minimum acceptable threshold was about 2 lux. The results also indicated that the LED lamps in use by the subjects did not always provide sufficient illumination over the desired retail areas. Our sample size is much too small, however, to reach any conclusions about requirements in the broader population. Given the small number of subjects and very specific type of user, our results should be regarded as indicative rather than conclusive. We recommend replicating the method at larger scales and across a variety of user types and contexts. Policymakers should revisit the subject of recommended illuminance levels regularly as LED technology advances and the price/service balance point evolves.

  7. CoMet: an airborne mission to simultaneously measure CO2 and CH4 using lidar, passive remote sensing, and in-situ techniques

    Science.gov (United States)

    Fix, Andreas; Amediek, Axel; Bovensmann, Heinrich; Ehret, Gerhard; Gerbig, Christoph; Gerilowski, Konstantin; Pfeilsticker, Klaus; Roiger, Anke; Zöger, Martin

    2018-04-01

    TIn order to improve our current knowledge on the budgets of the two most important anthropogenic greenhouse gases, CO2 and CH4, an airborne mission on board the German research aircraft HALO in coordination with two smaller Cessna aircraft is going to be conducted in April/May 2017. The goal of CoMet is to combine a suite of the best currently available active (lidar) and passive remote sensors as well as in-situ instruments to provide regional-scale data of greenhouse gases which are urgently required.

  8. In-situ measurements of soil-water conductivity

    International Nuclear Information System (INIS)

    Murphy, C.E.

    1978-01-01

    Radionuclides and other environmentally important materials often move in association with water. In terrestrial ecosystems, the storage and movement of water in the soil is of prime importance to the hydrologic cycle of the ecosystem. The soil-water conductivity (the rate at which water moves through the soil) is a necessary input to models of soil-water movement. In situ techniques for measurement of soil-water conductivity have the advantage of averaging soil-water properties over larger areas than most laboratory methods. The in situ techniques also cause minimum disturbance of the soil under investigation. Results of measurements using a period of soil-water drainage after initial wetting indicate that soil-water conductivity and its variation with soil-water content can be determined with reasonable accuracy for the plot where the measurements were made. Further investigations are being carried out to look at variability between plots within a soil type

  9. Novel in-situ lamella fabrication technique for in-situ TEM.

    Science.gov (United States)

    Canavan, Megan; Daly, Dermot; Rummel, Andreas; McCarthy, Eoin K; McAuley, Cathal; Nicolosi, Valeria

    2018-03-29

    In-situ transmission electron microscopy is rapidly emerging as the premier technique for characterising materials in a dynamic state on the atomic scale. The most important aspect of in-situ studies is specimen preparation. Specimens must be electron transparent and representative of the material in its operational state, amongst others. Here, a novel fabrication technique for the facile preparation of lamellae for in-situ transmission electron microscopy experimentation using focused ion beam milling is developed. This method involves the use of rotating microgrippers during the lift-out procedure, as opposed to the traditional micromanipulator needle and platinum weld. Using rotating grippers, and a unique adhesive substance, lamellae are mounted onto a MEMS device for in-situ TEM annealing experiments. We demonstrate how this technique can be used to avoid platinum deposition as well as minimising damage to the MEMS device during the thinning process. Our technique is both a cost effective and readily implementable alternative to the current generation of preparation methods for in-situ liquid, electrical, mechanical and thermal experimentation within the TEM as well as traditional cross-sectional lamella preparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Molecular Interaction of a New Antibacterial Polymer with a Supported Lipid Bilayer Measured by an in situ Label-Free Optical Technique

    Directory of Open Access Journals (Sweden)

    Robert Horvath

    2013-05-01

    Full Text Available The interaction of the antibacterial polymer–branched poly(ethylene imine substituted with quaternary ammonium groups, PEO and alkyl chains, PEI25QI5J5A815–with a solid supported lipid bilayer was investigated using surface sensitive optical waveguide spectroscopy. The analysis of the optogeometrical parameters was extended developing a new composite layer model in which the structural and optical anisotropy of the molecular layers was taken into consideration. Following in situ the change of optical birefringence we were able to determine the composition of the lipid/polymer surface layer as well as the displacement of lipid bilayer by the antibacterial polymer without using additional labeling. Comparative assessment of the data of layer thickness and optical anisotropy helps to reveal the molecular mechanism of antibacterial effect of the polymer investigated.

  11. Strain measurement technique

    International Nuclear Information System (INIS)

    1987-01-01

    The 10 contributions are concerned with selected areas of application, such as strain measurements in wood, rubber/metal compounds, sets of strain measurements on buildings, reinforced concrete structures without gaps, pipes buried in the ground and measurements of pressure fluctuations. To increase the availability and safety of plant, stress analyses were made on gas turbine rotors with HT-DMS or capacitive HT-DMS (high temperature strain measurements). (DG) [de

  12. ISIDORE, a probe for in situ trace metal speciation based on Donnan membrane technique with related electrochemical detection part 1: Equilibrium measurements

    Energy Technology Data Exchange (ETDEWEB)

    Parat, Corinne, E-mail: corinne.parat@univ-pau.fr [Université de Pau et des Pays de l’Adour, CNRS UMR 5254, LCABIE, 64000 Pau (France); Pinheiro, J.P. [Université de Lorraine/ENSG, CNRS UMR 7360, LIEC, 54500 Nancy (France)

    2015-10-08

    This work presents the development of a new probe (ISIDORE probe) based on the hyphenation of a Donnan Membrane Technique device (DMT) to a screen-printed electrode through a flow-cell to determine the free zinc, cadmium and lead ion concentration in natural samples, such as a freshwater river. The probe displays many advantages namely: (i) the detection can be performed on-site, which avoids all problems inherent to sampling, transport and storage; (ii) the low volume of the acceptor solution implies shorter equilibration times; (ii) the electrochemical detection system allows monitoring the free ion concentration in the acceptor solution without sampling. - Highlights: • A new probe has been developed for on-site analyses of free metal ion. • A screen-printed electrode has been hyphenated to a DMT device. • Analysis time has been reduced to 6H against 36H when using a classical DMT device. • This new probe has been successfully applied on a synthetic freshwater sample.

  13. Aquifer restoration techniques for in-situ leach uranium mines

    International Nuclear Information System (INIS)

    Deutsch, W.J.; Bell, N.E.; Mercer, B.W.; Serne, R.J.; Shade, J.W.; Tweeton, D.R.

    1984-02-01

    In-situ leach uranium mines and pilot-scale test facilities are currently operating in the states of Wyoming, Texas, New Mexico and Colorado. This report summarizes the technical considerations involved in restoring a leached ore zone and its aquifer to the required level. Background information is provided on the geology and geochemistry of mineralized roll-front deposits and on the leaching techniques used to extract the uranium. 13 references, 13 figures, 4 tables

  14. Technique for in situ leach simulation of uranium ores

    International Nuclear Information System (INIS)

    Grant, D.C.; Seidel, D.C.; Nichols, I.L.

    1985-01-01

    In situ uranium mining offers the advantages of minimal environmental disturbance, low capital and operating costs, and reduced mining development time. It is becoming an increasingly attractive mining method for the recovery of uranium from secondary ore deposits. In order to better understand the process, a laboratory technique was developed and used to study and simulate both the chemical and physical phenomena occurring in ore bodies during in situ leaching. The laboratory simulation technique has been used to determine effects of leaching variables on permeability, uranium recovery, and post-leach aquifer restoration. This report describes the simulation system and testing procedure in sufficient detail to allow the construction of the system, and to perform the desired leaching tests. With construction of such a system, in situ leaching of a given ore using various leach conditions can be evaluated relatively rapidly in the laboratory. Not only could optimum leach conditions be selected for existing ore bodies, but also exploitation of new ore bodies could be accelerated. 8 references, 8 figures, 2 tables

  15. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2015-06-06

    The two-dimensional slope error of an X-ray mirror has been retrieved by employing the speckle scanning technique, which will be valuable at synchrotron radiation facilities and in astronomical telescopes. In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.

  16. IN SITU MEASUREMENT OF BEDROCK EROSION

    Directory of Open Access Journals (Sweden)

    D. H. Rieke-Zapp

    2012-07-01

    Full Text Available While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are – if at all available – based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest

  17. In Situ Measurement of Bedrock Erosion

    Science.gov (United States)

    Rieke-Zapp, D. H.; Beer, A.; Turowski, J. M.; Campana, L.

    2012-07-01

    While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are - if at all available - based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ) and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest generation of compact

  18. First observations of tropospheric δD data observed by ground- and space-based remote sensing and surface in-situ measurement techniques at MUSICA's principle reference station (Izaña Observatory, Spain)

    Science.gov (United States)

    González, Yenny; Schneider, Matthias; Christner, Emanuel; Rodríguez, Omaira E.; Sepúlveda, Eliezer; Dyroff, Christoph; Wiegele, Andreas

    2013-04-01

    The main goal of the project MUSICA (Multiplatform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi global tropospheric water vapor isototopologue dataset of a good and well-documented quality. Therefore, new ground- and space-based remote sensing observations (NDACC-FTIR and IASI/METOP) are combined with in-situ measurements. This work presents the first comparison between in-situ and remote sensing observations made at the Izaña Atmospheric Research Centre (Tenerife, Canary Islands, Spain). The in-situ measurements are made by a Picarro L2120-i water vapor isotopologue analyzer. At Izaña the in-situ data are affected by local small-scale mixing processes: during daylight, the thermally buoyant upslope flow prompts the mixing between the Marine Boundary Layer (MBL) and the low Free Troposphere (FT). However, the remote sensors detect δD values averaged over altitudes that are more representative for the free troposphere. This difference has to be considered for the comparison. In general, a good agreement between the MUSICA remote sensing and the in situ H2O-versus-δD plots is found, which demonstrates that the MUSICA δD remote sensing products add scientifically valuable information to the H2O data.

  19. Test plan for in situ stress measurement system development

    International Nuclear Information System (INIS)

    Kim, K.

    1981-09-01

    The tests are to be performed to provide information regarding the state of stress of the basalt rock beneath the Hanford Site. This test series is designed to obtain information necessary to determine if hydrofracturing stress measurement is feasible in a fractured basalt medium. During the course of these field tests, it will be attempted to adapt the conventional hydrofracturing test method and analysis techniques to the basalt medium. If the test is shown to be feasible, more holes will be identified for testing. A comprehensive in situ stress determination program will be initiated. 2 figs

  20. Kinematic analysis of in situ measurement during chemical mechanical planarization process

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongkai; Wang, Tongqing; Zhao, Qian; Meng, Yonggang; Lu, Xinchun, E-mail: xclu@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-10-15

    Chemical mechanical planarization (CMP) is the most widely used planarization technique in semiconductor manufacturing presently. With the aid of in situ measurement technology, CMP tools can achieve good performance and stable productivity. However, the in situ measurement has remained unexplored from a kinematic standpoint. The available related resources for the kinematic analysis are very limited due to the complexity and technical secret. In this paper, a comprehensive kinematic analysis of in situ measurement is provided, including the analysis model, the measurement trajectory, and the measurement time of each zone of wafer surface during the practical CMP process. In addition, a lot of numerical calculations are performed to study the influences of main parameters on the measurement trajectory and the measurement velocity variation of the probe during the measurement process. All the efforts are expected to improve the in situ measurement system and promote the advancement in CMP control system.

  1. Experimental techniques and measurement accuracies

    International Nuclear Information System (INIS)

    Bennett, E.F.; Yule, T.J.; DiIorio, G.; Nakamura, T.; Maekawa, H.

    1985-02-01

    A brief description of the experimental tools available for fusion neutronics experiments is given. Attention is paid to error estimates mainly for the measurement of tritium breeding ratio in simulated blankets using various techniques

  2. Phase Retrieval Techniques In Coordinates Measurement

    International Nuclear Information System (INIS)

    Harizanova, J. I.; Stoykova, E. V.; Sainov, V. C.

    2007-01-01

    A precise pattern projection profilometry for three-dimensional shape measurements with different methods of fringe generation is presented. The application of phase-shifting algorithm along with two-spacing illumination allow for phase retrieval and estimation of relative and absolute coordinates of the tested samples. The following experimental approaches for fringe generation are investigated: interferometric approach based on a classical Michelson interferometer, digital computation with a DMD projection and light modulation by a sinusoidal phase grating. The theoretical background, experimental results as well as comparison of the applied generation methods are analyzed. The obtained outcomes successfully display the applicability of this technique for surface profile measurement. The application of the proposed techniques for remote, non-destructive in-situ inspection of real objects from cultural heritage is discussed

  3. In situ measurement of laser beam quality

    Science.gov (United States)

    Hashemi, Somayeh Sadat; Ghavami Sabouri, Saeed; Khorsandi, Alireza

    2017-09-01

    An innovative optical method is introduced for the beam quality measurement of any arbitrary transverse mode based on the reconstruction of the mode from a few-frame image of the beam cross-section. This is performed by the decomposition of a mode to its basic Hermite-Gaussian modal coefficients. The performance of the proposed method is examined through M 2-factor measurement of the beam of a Nd:YAG laser which was forced to oscillate in a certain mode using a crossed rectangular intracavity aperture. Obtained results have shown that this method can be alternatively replaced for the hologram- and ISO-based techniques recently exploiting for beam quality measurement regardless of the mode type and the position of utilized CCD camera along the beam direction.

  4. Measurements Techniques for Gyrotron characterization

    International Nuclear Information System (INIS)

    Castro, P.J. de.

    1987-08-01

    Experiments planned for the characterization of the 35GHz girotron, which is being built at the Plasma Laboratory of INPE, are described. The methods of the measurements are presented and the required instrumentation and devices are specified. Special attention is given to the measurement techniques of the resonator electric field profile. (author) [pt

  5. Alternative technique to neutron probe calibration in situ

    International Nuclear Information System (INIS)

    Encarnacao, F.; Carneiro, C.; Dall'Olio, A.

    1990-01-01

    An alternative technique of neutron probe calibration in situ was applied for Podzolic soil. Under field condition, the neutron probe calibration was performed using a special arrangement that prevented the lateral movement of water around the access tube of the neutron probe. During the experiments, successive amounts of water were uniformly infiltrated through the soil profile. Two plots were set to study the effect of the plot dimension on the slope of the calibration curve. The results obtained shown that the amounts of water transferred to the soil profile were significantly correlated to the integrals of count ratio along the soil profile on both plots. In consequence, the slope of calibration curve in field condition was determined. (author)

  6. Thermal measurements and inverse techniques

    CERN Document Server

    Orlande, Helcio RB; Maillet, Denis; Cotta, Renato M

    2011-01-01

    With its uncommon presentation of instructional material regarding mathematical modeling, measurements, and solution of inverse problems, Thermal Measurements and Inverse Techniques is a one-stop reference for those dealing with various aspects of heat transfer. Progress in mathematical modeling of complex industrial and environmental systems has enabled numerical simulations of most physical phenomena. In addition, recent advances in thermal instrumentation and heat transfer modeling have improved experimental procedures and indirect measurements for heat transfer research of both natural phe

  7. Optical techniques for in-core measurements

    International Nuclear Information System (INIS)

    Brichard, B.

    2007-01-01

    The in-situ measurement of dimensional changes is a key issue for advanced irradiation programs in Material Test Reactors. It is for example crucial to monitor the changes of the dimensions of nuclear fuel assemblies as well as those of mechanically stressed structural material samples during in-pile irradiations. Different techniques already exist to carry out such measurements but they all come with a number of drawbacks. SCK-CEN and CEA have therefore decided to share the development of a measurement system that was never applied before in the core of a nuclear reactor. It relies on optical dimensional measurements and brings along unprecedented non-intrusiveness combined with high resolution. A clear advantage in using compact optical sensors results in a more efficient occupation of the irradiation volume available for target testings as well as a significant reduction of the gamma-heating associated with the in-pile instrumentation. The objectives of these shared studies are to design, develop, test and qualify an in-pile dimensional measurement system based on optical techniques, with the goal to implement this system in future MTR irradiation experiments. In 2006, we focussed our activities on sensor analysis, selection of the sensor prototypes, procurement and first irradiation experiment

  8. Developments in wireline in-situ rock stress measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso, Carlos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Canas, Jesus A.; Holzberg, Bruno; Gmach, Helmut [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This paper presents recent developments of in-situ stress measurements with wireline tools. The stress measurements are based on the micro hydraulic techniques that can be initialized when an interval is pressurized by pumping fluid until a tensile fracture begins or by packers fracturing (sleeve fracturing). Ultrasonic and Micro-resistivity borehole image logs (before and after the testes) are used as a complement, in order to observe the fractures created by the tests, evaluating the mechanical behavior of the formation. An offshore case study is presented, where shales and tight sandstones at depths deeper than 4500 meters depth were successfully evaluated. A workflow to succeed on stress measurements on such environments is proposed, what includes a planning phase: where breakdown pressures ranges are estimated and compared with the capacity of the tools, a Real Time Monitoring phase, where a decision tree is proposed to help on quick decisions while testing, and an interpretation phase, where appropriate techniques are indicated to evaluate the results. Also, the paper presents the main operational needs to succeed on such environments. Basically, such tests require an entirely software controlled, motorized and modular design tool consisting of dual packer (DP), pump out and flow control modules (Figure 1). These modules were upgraded for the present environment: conditions such as temperatures above 300 deg F, formation pressures above 10,000 psia, very low formation permeability, high pressure differential need and oil based mud (OBM) environment. (author)

  9. Comparison of GRACE with in situ hydrological measurement data ...

    African Journals Online (AJOL)

    Comparison of GRACE with in situ hydrological measurement data shows storage depletion in Hai River basin, Northern China. ... of the world, their application in conjunction with hydrological models could improve hydrological studies.

  10. Development of in situ two-coil mutual inductance technique in a multifunctional scanning tunneling microscope.

    Science.gov (United States)

    Duan, Ming-Chao; Liu, Zhi-Long; Ge, Jian-Feng; Tang, Zhi-Jun; Wang, Guan-Yong; Wang, Zi-Xin; Guan, Dandan; Li, Yao-Yi; Qian, Dong; Liu, Canhua; Jia, Jin-Feng

    2017-07-01

    Superconducting thin films have been a focal point for intensive research efforts since their reduced dimension allows for a wide variety of quantum phenomena. Many of these films, fabricated in UHV chambers, are highly vulnerable to air exposure, making it difficult to measure intrinsic superconducting properties such as zero resistance and perfect diamagnetism with ex situ experimental techniques. Previously, we developed a multifunctional scanning tunneling microscope (MSTM) containing in situ four-point probe (4PP) electrical transport measurement capability in addition to the usual STM capabilities [Ge et al., Rev. Sci. Instrum. 86, 053903 (2015)]. Here we improve this MSTM via development of both transmission and reflection two-coil mutual inductance techniques for in situ measurement of the diamagnetic response of a superconductor. This addition does not alter the original STM and 4PP functions of the MSTM. We demonstrate the performance of the two-coil mutual inductance setup on a 10-nm-thick NbN thin film grown on a Nb-doped SrTiO 3 (111) substrate.

  11. Sampling hydrometeors in clouds in-situ - the replicator technique

    Science.gov (United States)

    Wex, Heike; Löffler, Mareike; Griesche, Hannes; Bühl, Johannes; Stratmann, Frank; Schmitt, Carl; Dirksen, Ruud; Reichardt, Jens; Wolf, Veronika; Kuhn, Thomas; Prager, Lutz; Seifert, Patric

    2017-04-01

    For the examination of ice crystals in clouds, concerning their number concentrations, sizes and shapes, often instruments mounted on fast flying aircraft are used. One related disadvantage is possible shattering of the ice crystals on inlets, which has been improved with the introduction of the "Korolev-tip" and by accounting for inter-arrival times (Korolev et al., 2013, 2015), but additionally, the typically fast flying aircraft allow only for a low spatial resolution. Alternative sampling methods have been introduced as e.g., a replicator by Miloshevich & Heymsfield (1997) and an in-situ imager by by Kuhn & Heymsfield (2016). They both sample ice crystals onto an advancing stripe while ascending on a balloon, conserving the ice crystals either in formvar for later off-line analysis under a microscope (Miloshevich & Heymsfield, 1997) or imaging them upon their impaction on silicone oil (Kuhn & Heymsfield, 2016), both yielding vertical profiles for different ice crystal properties. A measurement campaign was performed at the Lindenberg Meteorological Observatory of the German Meteorological Service (DWD) in Germany in October 2016, during which both types of instruments were used during balloon ascents, while ground-based Lidar and cloud-radar measurements were performed simultaneously. The two ice particle sondes were operated by people from the Lulea University of Technology and from TROPOS, where the latter one was made operational only recently. Here, we will show first results of the TROPOS replicator on ice crystals sampled during one ascent, for which the collected ice crystals were analyzed off-line using a microscope. Literature: Korolev, A., E. Emery, and K. Creelman (2013), Modification and tests of particle probe tips to mitigate effects of ice shattering, J. Atmos. Ocean. Tech., 30, 690-708, 2013. Korolev, A., and P. R. Field (2015), Assessment of the performance of the inter-arrival time algorithm to identify ice shattering artifacts in cloud

  12. Development of In Situ Infrared Spectroelectrochemical Techniques: Application to Lithium Intercalation Reactions in Electrode Materials

    National Research Council Canada - National Science Library

    Frech, Roger

    2007-01-01

    .... The transition between LiFePO4 and FePO4 could easily be followed in the in situ spectra. An industrially available coin cell was modified to facilitate routine in situ Raman measurements of lithium batteries...

  13. In situ nonlinear ultrasonic technique for monitoring microcracking in concrete subjected to creep and cyclic loading.

    Science.gov (United States)

    Kim, Gun; Loreto, Giovanni; Kim, Jin-Yeon; Kurtis, Kimberly E; Wall, James J; Jacobs, Laurence J

    2018-08-01

    This research conducts in situ nonlinear ultrasonic (NLU) measurements for real time monitoring of load-induced damage in concrete. For the in situ measurements on a cylindrical specimen under sustained load, a previously developed second harmonic generation (SHG) technique with non-contact detection is adapted to a cylindrical specimen geometry. This new setup is validated by demonstrating that the measured nonlinear Rayleigh wave signals are equivalent to those in a flat half space, and thus the acoustic nonlinearity parameter, β can be defined and interpreted in the same way. Both the acoustic nonlinearity parameter and strain are measured to quantitatively assess the early-age damage in a set of concrete specimens subjected to either 25 days of creep, or 11 cycles of cyclic loading at room temperature. The experimental results show that the acoustic nonlinearity parameter is sensitive to early-stage microcrack formation under both loading conditions - the measured β can be directly linked to the accumulated microscale damage. This paper demonstrates the potential of NLU for the in situ monitoring of mechanical load-induced microscale damage in concrete components. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Spectrometry techniques for radioactivity measurements

    International Nuclear Information System (INIS)

    Anilkumar, S.

    2016-01-01

    The energy of the radiation emission following the nuclear decay is unique and the characteristic of the radio nuclide which undergoes decay. Thus measurement of the energy of the radiation offers a method of identifying the radio nuclides. The prime requirement of the energy measurement is a suitable detector which shows response proportional to the energy of the radiation rather than the presence of the radiation. The response from such detectors are suitably processed and distributed with respect to the signal strength which is proportional to incident energy. This distribution is normally referred as energy spectrum and is recorded in the multichannel analyser. The measurement of energy and intensity of radiation from the spectrum is called radiation spectrometry. Thus the radiation spectrometry allows the identification and quantification of radioactive isotopes in variety of matrices. The radiation spectrometry has now become a popular radioanalytical technique in wide area of nuclear fuel cycle programs. The popular spectrometry techniques commonly used for the radioactivity measurement and analysis are Alpha spectrometry, Gamma ray spectrometry and Beta spectrometry

  15. Measurements techniques for transportation noise

    International Nuclear Information System (INIS)

    Brambilla, G.

    2001-01-01

    The noise from transport systems (roads, railways and aircraft) are increasing more and more both in space and in time and, therefore, they are still the major factor responsible for environmental noise pollution. The population exposed to transport noise is also increasing, and the corresponding health effects on people (i.e. annoyance and sleep disturbance) become more severe. Due to this current situation international and national legislation has been issued and implemented to reduce the harmful effects of such noise. This paper describes the techniques prescribed by recent Italian legislation to measure road, railway and aircraft noise. (author)

  16. Sintering process optimization for multi-layer CGO membranes by in situ techniques

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Prasad, A.S.; Foghmoes, Søren Preben Vagn

    2013-01-01

    The sintering of asymmetric CGO bi-layers (thin dense membrane on a porous support; Ce0.9Gd0.1O1.95-delta = CGO) with Co3O4 as sintering additive has been optimized by combination of two in situ techniques. Optical dilatometry revealed that bi-layer shape and microstructure are dramatically...... changing in a narrow temperature range of less than 100 degrees C. Below 1030 degrees C, a higher densification rate in the dense membrane layer than in the porous support leads to concave shape, whereas the densification rate of the support is dominant above 1030 degrees C, leading to convex shape. A fiat...... bi-layer could be prepared at 1030 degrees C, when shrinkage rates were similar. In situ van der Pauw measurements on tape cast layers during sintering allowed following the conductivity during sintering. A strong increase in conductivity and in activation energy E-a for conduction was observed...

  17. The in situ measurement of road reflection.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1994-01-01

    This paper describes a procedure that has been designed to measure P(0;0), P(2;0) and P(1;90), the three values that are the basis for the C1-C2 system for measuring road reflection of light. The system was proposed in The Netherlands, and subsequently adopted by the CIE as an alternative to the

  18. The ultrasonic technique for in situ investigations on stones: suggestions for uses

    Science.gov (United States)

    Bellopede, R.; Marini, P.

    2012-04-01

    The Ultrasound Pulse Velocity (UPV) is one of the main non destructive techniques to detect both in laboratory and in situ the stone decay and many international papers of the recent years deal with its application. This technique is often executed in laboratory, where the possibility to keep constant the environmental and test conditions are a guarantee of the reliability of the results. It is known in fact the UPV are mainly conditioned by the following factors: - the characteristics of the stone tested (not only petrographic properties such as texture and structure, but even specimen dimension and water content); - the transducers features such as frequency, divergence angle , near field and wavelength; - external climate factors such as environmental temperature, humidity. In spite of the many factors affecting the measurements, UPV performed in laboratory is well correlated with mechanical strength of the stone , with its porosity and, as consequence, it is a reliable technique to detect the durability of a stone. On the other side, for in situ UPV test it is important to take into account that the measurement uncertainty is affected by the unknown water content in the stone. From tests performed on different rocks (marble, limestones, travertines, granites, gneiss, schists , sandstones) , the ratios between UPV tested in dry and saturated conditions can be > 1 or stone in order to choose the suitable measurement frequency; the correct choice of transducers frequencies; the use of a reference slab, with a known UPV in dry conditions, to be exposed in the investigated site some days before the in situ tests, in order to appreciate the UPV variation due to climate factors.

  19. In-situ ionic conductivity measurement of lithium ceramics under high energy heavy ion irradiation

    International Nuclear Information System (INIS)

    Nakazawa, Tetsuya; Noda, Kenji; Ishii, Yoshinobu; Ohno, Hideo; Watanabe, Hitoshi; Matsui, Hisayuki.

    1992-01-01

    To obtain fundamental information regarding the radiation damage in some lithium ceramics, e.g. Li 2 O, Li 4 SiO 4 etc., candidate of breeder materials exposed to severe irradiation environment, an in-situ experiment technique for the ionic conductivity measurement, which allows the specimen temperature control and the beam current monitoring, have been developed. This paper describes the features of an apparatus to measure in situ the ionic conductivity under the irradiation environment and presents some results of ionic conductivity measured for typical ceramic breeders using this apparatus. (J.P.N.)

  20. satellite and in-situ measurements

    Directory of Open Access Journals (Sweden)

    José de Jesús Salas Pérez

    2005-01-01

    Full Text Available La distribución espacial y temporal de la circulación superficial de la Bahía de Banderas se obtuvo con el empleo de series temporales de rapidez de viento, temperatura superficial del mar (AVHR radiómetro y un termógrafo, nivel del mar y trazas ascendentes y descendentes del radar altimétrico ERS-2. El período que abarca dichos datos es de cuatro años, ya que comenzó en el verano de 1997 y finalizó en el invierno de 2002. La marea en la Bahía es mixta (F=0.25 con predominio del armónico M2. La bahía no muestra características de resonancia con la marea del mar abierto. Amplitudes promedio de 30 cms., resultan en corrientes de marea de pocos cms./s. Las bajas frecuencias (periodos mayores a tres días parecen ser los principales generadores de la circulación marina en esta área, en la que predomina el periodo estacional sobre los otros periodos. FEOs fueron aplicadas a las componentes de velocidad, calculadas con observaciones de altimetría medidas en la boca de la Bahía, las cuales mostraron dos principales distribuciones espaciales. El primer periodo de distribución, que se extendió desde febrero hasta julio, muestra un flujo de entrada por la porción norte/sur de la bahía, con un flujo de salida por su boca (distribución anticiclónica. El segundo periodo se extiende desde agosto hasta diciembre y es opuesto al primero (distribución ciclónica. Las características de la circulación aquí presentadas son hipotéticas y observaciones de velocidad medidas in-situ deben confirmarlas

  1. In Situ Techniques for the Investigation of the Kinetics of Austenitization of Supermartensitic Stainless Steel

    DEFF Research Database (Denmark)

    Nießen, Frank; Villa, Matteo; Apel, Daniel

    2016-01-01

    The austenitization and inter-critical annealing of X4CrNiMo16-5-1 (1.4418) supermartensitic stainless steel were investigated in-situ with synchrotron X-ray diffraction (XRD), dilatometry and differential scanning calorimetry (DSC) under isochronal heating conditions. Austenitization occurred...... of surface martensite formation on the XRD measurement. The applicable temperature range for DSC as well as the close proximity of the Ac1- and the Curietemperature limited the usage of the technique in the present case....

  2. In situ measurements of Merensky pillar behaviour at Impala Platinum

    CSIR Research Space (South Africa)

    Watson, BP

    2009-12-01

    Full Text Available to stabilize the stoping excavations. This paper describes the in situ measurement, of stress within a Merensky pillar from Impala Platinum. These measurements were used to derive a stress-strain curve that includes pre and post failure behaviour. 2D FLAC...

  3. Measuring in-situ stress in deep boreholes

    International Nuclear Information System (INIS)

    1985-08-01

    The hydrofracturing method of in-situ stress measurement is the only technique which has been proven to be reliable in boreholes below depths of 300 m. The method has been used in a variety of applications at depths of up to 5000m, and in a range of borehole diameters. The equipment used is composed of standard components from proven and long-established oil industry well-logging tools and is simple to operate. This is preferable to the delicate electrical devices used in the overcoring stress measurement method. Electrical components are difficult to waterproof, very small strains are monitored and the tendency of electrical circuits to drift, due to a variety of effects, makes interpretation of the results difficult. However, the interpretation of hydrofracturing test results is often not easy. Many factors can prevent ideal fracturing behaviour from occurring, in which case conventional analyses will yield incorrect answers. The complete state of stress can often not be determined and sweeping assumptions are commonly made about principal stress direction, which cannot always be subsequently verified. (author)

  4. A poloidal field measurement technique

    International Nuclear Information System (INIS)

    Jobes, F.C.

    1989-07-01

    The poloidal field of a tokamak can be determined by observing the light emitted by He + ions injected into the plasma by a perpendicular He 0 beam. These ions will orbit in small circles located where the neutral atom became ionized, and they will remain there for a few microseconds. During this time, some of these ions will also emit light at various spectral lines. The observed spectrum of any of these lines will have a peculiar and very wide shape, and it will be offset (Doppler shifted) with respect to the natural line location. The location and width of the spectral pattern provide independent information about the components of the poloidal field which are parallel and perpendicular to the beam velocity, and this information is local to the point where the light is emitted. For a horizontal beam, these components are b x and b y , respectively. The difference in Doppler shift between two measurement points above one another (at the top and bottom of the beam) is directly proportional to δb x , which in turn is proportional to the transform on that flux surface. Thus, this technique provides a means to measure directly local values of q(r). Simulation studies indicate that accurate measurements can be made in milliseconds. 6 refs., 8 figs

  5. Feasibility of in situ beta ray measurements in underwater environment.

    Science.gov (United States)

    Park, Hye Min; Park, Ki Hyun; Kang, Sung Won; Joo, Koan Sik

    2017-09-01

    We describe an attempt at the development of an in situ detector for beta ray measurements in underwater environment. The prototype of the in situ detector is based on a CaF2: Eu scintillator using crystal light guide and Si photomultiplier. Tests were conducted using various reference sources for evaluating the linearity and stability of the detector in underwater environment. The system is simple and stable for long-term monitoring, and consumes low power. We show here an effective detection distance of 7 mm and a 2.273 MeV end-point energy spectrum of 90 Sr/ 90 Y when using the system underwater. The results demonstrate the feasibility of in situ beta ray measurements in underwater environment and can be applied for designing an in situ detector for radioactivity measurement in underwater environment. The in situ detector can also have other applications such as installation on the marine monitoring platform and quantitative analysis of radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Rumen escape nitrogen from forages in sheep: comparison of in situ and in vitro techniques using in vivo data

    NARCIS (Netherlands)

    Gosselink, J.M.J.; Dulphy, J.P.; Poncet, C.; Aufrère, J.; Tamminga, S.; Cone, J.W.

    2004-01-01

    The objective of this study was to relate in vivo data of rumen escape N (REN) of forages with REN estimated from models and with determinations of rumen undegradable N. For these determinations and models measurements from in situ and in vitro techniques were used. Eleven forages were investigated

  7. In situ analytical techniques for battery interface analysis.

    Science.gov (United States)

    Tripathi, Alok M; Su, Wei-Nien; Hwang, Bing Joe

    2018-02-05

    Lithium-ion batteries, simply known as lithium batteries, are distinct among high energy density charge-storage devices. The power delivery of batteries depends upon the electrochemical performances and the stability of the electrode, electrolytes and their interface. Interfacial phenomena of the electrode/electrolyte involve lithium dendrite formation, electrolyte degradation and gas evolution, and a semi-solid protective layer formation at the electrode-electrolyte interface, also known as the solid-electrolyte interface (SEI). The SEI protects electrodes from further exfoliation or corrosion and suppresses lithium dendrite formation, which are crucial needs for enhancing the cell performance. This review covers the compositional, structural and morphological aspects of SEI, both artificially and naturally formed, and metallic dendrites using in situ/in operando cells and various in situ analytical tools. Critical challenges and the historical legacy in the development of in situ/in operando electrochemical cells with some reports on state-of-the-art progress are particularly highlighted. The present compilation pinpoints the emerging research opportunities in advancing this field and concludes on the future directions and strategies for in situ/in operando analysis.

  8. Development of portable HPGe spectrometer for in situ measurements

    Directory of Open Access Journals (Sweden)

    Kail Artjoms

    2015-01-01

    Full Text Available In situ applications require a very high level of portability of high-resolution spectrometric equipment. Usage of HPGe detectors for radioactivity measurements in the environment or for nuclear safeguard applications, to combat illicit trafficking of nuclear materials or uranium and plutonium monitoring in nuclear wastes, has become a norm in the recent years. Portable HPGe-based radionuclide spectrometer with electrical cooling has lately appeared on the market for in situ applications. At the same time deterioration of energy resolution associated with vibrations produced by cryocooler or high weight of the instrument, short time of autonomous operation and high price of these spectrometers are limiting their usage in many cases. In this paper we present development results of ultra compact hand held all-in-one spectrometer for in situ measurements based on HPGe detector cooled by liquid nitrogen without listing the above disadvantages.

  9. Introduction to in situ leaching technique and facility at Smith Ranch uranium project in USA

    International Nuclear Information System (INIS)

    Xu Lechang; Wang Delin; Sun Xianrong; Gao Shangxiong

    2005-01-01

    The history of in situ leaching of uranium in USA is reviewed. Some techniques and parameters of alkaline in situ leach at Smith Ranch uranium project are introduced, including well field, sorption, elution, precipitation, filter and drying, automatic control, radiation protection, safety and environmental protection. (authors)

  10. In situ spectrophotometric measurement of dissolved inorganic carbon in seawater

    Science.gov (United States)

    Liua, Xuewu; Byrne, Robert H.; Adornato, Lori; Yates, Kimberly K.; Kaltenbacher, Eric; Ding, Xiaoling; Yang, Bo

    2013-01-01

    Autonomous in situ sensors are needed to document the effects of today’s rapid ocean uptake of atmospheric carbon dioxide (e.g., ocean acidification). General environmental conditions (e.g., biofouling, turbidity) and carbon-specific conditions (e.g., wide diel variations) present significant challenges to acquiring long-term measurements of dissolved inorganic carbon (DIC) with satisfactory accuracy and resolution. SEAS-DIC is a new in situ instrument designed to provide calibrated, high-frequency, long-term measurements of DIC in marine and fresh waters. Sample water is first acidified to convert all DIC to carbon dioxide (CO2). The sample and a known reagent solution are then equilibrated across a gas-permeable membrane. Spectrophotometric measurement of reagent pH can thereby determine the sample DIC over a wide dynamic range, with inherent calibration provided by the pH indicator’s molecular characteristics. Field trials indicate that SEAS-DIC performs well in biofouling and turbid waters, with a DIC accuracy and precision of ∼2 μmol kg–1 and a measurement rate of approximately once per minute. The acidic reagent protects the sensor cell from biofouling, and the gas-permeable membrane excludes particulates from the optical path. This instrument, the first spectrophotometric system capable of automated in situ DIC measurements, positions DIC to become a key parameter for in situ CO2-system characterizations.

  11. Ignition technique for an in situ oil shale retort

    Science.gov (United States)

    Cha, Chang Y.

    1983-01-01

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  12. In-situ measurements in Vesivehmaa air field - STUK team

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, M.; Honkamaa, T.; Niskala, P. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1997-12-31

    Nineteen in-situ gamma-ray spectrometric measurements were performed in Vesivehmaa air field on 17th August 1995. The results for {sup 137}Cs and natural radionuclides are in good agreement with the results from soil sampling and laboratory analyses. (au).

  13. In-situ measurements in Vesivehmaa air field - STUK team

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, M; Honkamaa, T; Niskala, P [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1998-12-31

    Nineteen in-situ gamma-ray spectrometric measurements were performed in Vesivehmaa air field on 17th August 1995. The results for {sup 137}Cs and natural radionuclides are in good agreement with the results from soil sampling and laboratory analyses. (au).

  14. In situ Measurements of Phytoplankton Fluorescence Using Low Cost Electronics

    Directory of Open Access Journals (Sweden)

    Dana L. Wright

    2013-06-01

    Full Text Available Chlorophyll a fluorometry has long been used as a method to study phytoplankton in the ocean. In situ fluorometry is used frequently in oceanography to provide depth-resolved estimates of phytoplankton biomass. However, the high price of commercially manufactured in situ fluorometers has made them unavailable to some individuals and institutions. Presented here is an investigation into building an in situ fluorometer using low cost electronics. The goal was to construct an easily reproducible in situ fluorometer from simple and widely available electronic components. The simplicity and modest cost of the sensor makes it valuable to students and professionals alike. Open source sharing of architecture and software will allow students to reconstruct and customize the sensor on a small budget. Research applications that require numerous in situ fluorometers or expendable fluorometers can also benefit from this study. The sensor costs US$150.00 and can be constructed with little to no previous experience. The sensor uses a blue LED to excite chlorophyll a and measures fluorescence using a silicon photodiode. The sensor is controlled by an Arduino microcontroller that also serves as a data logger.

  15. Using geophysical techniques to control in situ thermal remediation

    International Nuclear Information System (INIS)

    Boyd, S.; Daily, W.; Ramirez, A.; Wilt, M.; Goldman, R.; Kayes, D.; Kenneally, K.; Udell, K.; Hunter, R.

    1994-01-01

    Monitoring the thermal and hydrologic processes that occur during thermal environmental remediation programs in near real-time provides essential information for controlling the process. Geophysical techniques played a crucial role in process control as well as for characterization during the recent Dynamic Underground Stripping Project demonstration in which several thousand gallons of gasoline were removed from heterogeneous soils both above and below the water table. Dynamic Underground Stripping combines steam injection and electrical heating for thermal enhancement with ground water pumping and vacuum extraction for contaminant removal. These processes produce rapid changes in the subsurface properties including changes in temperature fluid saturation, pressure and chemistry. Subsurface imaging methods are used to map the heated zones and control the thermal process. Temperature measurements made in wells throughout the field reveal details of the complex heating phenomena. Electrical resistance tomography (ERT) provides near real-time detailed images of the heated zones between boreholes both during electrical heating and steam injection. Borehole induction logs show close correlation with lithostratigraphy and, by identifying the more permeable gravel zones, can be used to predict steam movement. They are also useful in understanding the physical changes in the field and in interpreting the ERT images. Tiltmeters provide additional information regarding the shape of the steamed zones in plan view. They were used to track the growth of the steam front from individual injectors

  16. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    International Nuclear Information System (INIS)

    Macdonald, D. D.; Lvov, S. N.

    2000-01-01

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system

  17. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  18. 3D interferometric shape measurement technique using coherent fiber bundles

    Science.gov (United States)

    Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen

    2017-06-01

    In-situ 3-D shape measurements with submicron shape uncertainty of fast rotating objects in a cutting lathe are expected, which can be achieved by simultaneous distance and velocity measurements. Conventional tactile methods, coordinate measurement machines, only support ex-situ measurements. Optical measurement techniques such as triangulation and conoscopic holography offer only the distance, so that the absolute diameter cannot be retrieved directly. In comparison, laser Doppler distance sensors (P-LDD sensor) enable simultaneous and in-situ distance and velocity measurements for monitoring the cutting process in a lathe. In order to achieve shape measurement uncertainties below 1 μm, a P-LDD sensor with a dual camera based scattered light detection has been investigated. Coherent fiber bundles (CFB) are employed to forward the scattered light towards cameras. This enables a compact and passive sensor head in the future. Compared with a photo detector based sensor, the dual camera based sensor allows to decrease the measurement uncertainty by the order of one magnitude. As a result, the total shape uncertainty of absolute 3-D shape measurements can be reduced to about 100 nm.

  19. Initial tests on in situ vitrification using electrode feeding techniques

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Oma, K.H.; Bigelow, C.E.

    1990-05-01

    This report summarizes the results of an engineering-scale in situ vitrification (ISV) test conducted to demonstrate the potential for electrode feeding in soils with a high concentration of metals. The engineering-scale test was part of a Pacific Northwest Laboratory (PNL) program to assist Idaho National Engineering Laboratory (INEL) in conducting treatability studies of the potential for applying ISV to the mixed transuranic waste buried at the INEL subsurface disposal area. The purpose of this test was to evaluate the effectiveness of both gravity fed and operator-controlled electrode feeding in reducing or eliminating many of the potential problems associated with fixed-electrode processing of soils with high concentrations of metal. Actual site soils from INEL were mixed with representative concentrations of carbon steel and stainless steel for this engineering-scale test. 18 refs., 14 figs., 3 tabs

  20. In situ measurement of tritium permeation through stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Walter G., E-mail: walter.luscher@pnnl.gov [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); Senor, David J., E-mail: david.senor@pnnl.gov [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); Clayton, Kevin K., E-mail: kevin.clayton@inl.gov [Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States); Longhurst, Glen R., E-mail: glenlonghurst@suu.edu [Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States)

    2013-06-15

    Highlights: ► In situ tritium permeation measurements collected over broad pressure range. ► Test conditions relevant to 316 SS in commercial light water reactors. ► Comparisons between in- and ex-reactor measurements provided. ► Correlation between tritium permeation, temperature, and pressure developed. -- Abstract: The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a {sup 4}He carrier gas mixed with a specified quantity of tritium (T{sub 2}) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He–Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of {sup 3}He to T, was also evaluated by introducing a {sup 4}He carrier gas mixed with {sup 3}He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from {sup 3}He transmutation contributed to tritium permeation.

  1. Development of in-situ trap characterisation techniques for EMCCDs

    Science.gov (United States)

    Bush, N.; Hall, D.; Holland, A.; Burgon, R.; Jordan, D.; Morrissey, P.; Demers, R.; Harding, L. K.; Nemati, B.; Effinger, R.; Bottom, M.

    2018-02-01

    The "trap pumping" technique has seen considerable use over recent years as a means to probe the intrinsic properties of silicon defects that can impact charge transfer performance within CCD-based technologies. While the theory behind the technique is reasonably well understood, it has to date only been applied to relatively simple pixel designs where the motion of charge between pixel phases is fairly easy to predict. For some devices, the intrinsic pixel architecture is more complex and can consist of unequal phase sizes and additional implants that deform the electronic potential. Here, we present the implementation of the trap pumping technique for the CCD201-20, a 2-phase Teledyne e2v EMCCD. Clocking schemes are presented that can provide the location of silicon defects to sub-micron resolution. Experimental techniques that allow determination of trap energy levels and emission cross sections are presented. These are then implemented on an irradiated CCD201-20 to determine the energy level and emission cross section for defects thought to be the double acceptor state of the silicon divacancy (VV--) and carbon-phosphorus (CiPs) pairs. An improvement in charge transfer performance through optimised parallel clock delay is demonstrated and found to correlate with the properties of defects found using the trap pumping technique.

  2. Measurement Techniques for Clock Jitter

    Science.gov (United States)

    Lansdowne, Chatwin; Schlesinger, Adam

    2012-01-01

    NASA is in the process of modernizing its communications infrastructure to accompany the development of a Crew Exploration Vehicle (CEV) to replace the shuttle. With this effort comes the opportunity to infuse more advanced coded modulation techniques, including low-density parity-check (LDPC) codes that offer greater coding gains than the current capability. However, in order to take full advantage of these codes, the ground segment receiver synchronization loops must be able to operate at a lower signal-to-noise ratio (SNR) than supported by equipment currently in use.

  3. In situ mechanical TEM: seeing and measuring under stress with electrons

    International Nuclear Information System (INIS)

    Legros, M.

    2014-01-01

    From the first observation of moving dislocations in 1956 to the latest developments of piezo-actuated sample holders and direct electron sensing cameras in modern transmission electron microscopes (TEM), in situ mechanical testing has brought an unequaled view of the involved mechanisms during the plastic deformation of materials. Although MEMS-based or load-cell equipped holders provide an almost direct measure of these quantities, deriving stress and strain from in situ TEM experiments has an extensive history. Nowadays, the realization of a complete mechanical test while observing the evolution of a dislocation structure is possible, and it constitutes the perfect combination to explore size effects in plasticity. New cameras, data acquisition rates and intrinsic image-related techniques, such as holography, should extend the efficiency and capabilities of in situ deformation inside a TEM. (author)

  4. In situ measurement of tritium permeation through stainless steel

    Science.gov (United States)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  5. Direct push driven in situ color logging tool (CLT): technique, analysis routines, and application

    Science.gov (United States)

    Werban, U.; Hausmann, J.; Dietrich, P.; Vienken, T.

    2014-12-01

    Direct push technologies have recently seen a broad development providing several tools for in situ parameterization of unconsolidated sediments. One of these techniques is the measurement of soil colors - a proxy information that reveals to soil/sediment properties. We introduce the direct push driven color logging tool (CLT) for real-time and depth-resolved investigation of soil colors within the visible spectrum. Until now, no routines exist on how to handle high-resolved (mm-scale) soil color data. To develop such a routine, we transform raw data (CIEXYZ) into soil color surrogates of selected color spaces (CIExyY, CIEL*a*b*, CIEL*c*h*, sRGB) and denoise small-scale natural variability by Haar and Daublet4 wavelet transformation, gathering interpretable color logs over depth. However, interpreting color log data as a single application remains challenging. Additional information, such as site-specific knowledge of the geological setting, is required to correlate soil color data to specific layers properties. Hence, we exemplary provide results from a joint interpretation of in situ-obtained soil color data and 'state-of-the-art' direct push based profiling tool data and discuss the benefit of additional data. The developed routine is capable of transferring the provided information obtained as colorimetric data into interpretable color surrogates. Soil color data proved to correlate with small-scale lithological/chemical changes (e.g., grain size, oxidative and reductive conditions), especially when combined with additional direct push vertical high resolution data (e.g., cone penetration testing and soil sampling). Thus, the technique allows enhanced profiling by means of providing another reproducible high-resolution parameter for analysis subsurface conditions. This opens potential new areas of application and new outputs for such data in site investigation. It is our intention to improve color measurements by means method of application and data

  6. An in-situ measuring method for planar straightness error

    Science.gov (United States)

    Chen, Xi; Fu, Luhua; Yang, Tongyu; Sun, Changku; Wang, Zhong; Zhao, Yan; Liu, Changjie

    2018-01-01

    According to some current problems in the course of measuring the plane shape error of workpiece, an in-situ measuring method based on laser triangulation is presented in this paper. The method avoids the inefficiency of traditional methods like knife straightedge as well as the time and cost requirements of coordinate measuring machine(CMM). A laser-based measuring head is designed and installed on the spindle of a numerical control(NC) machine. The measuring head moves in the path planning to measure measuring points. The spatial coordinates of the measuring points are obtained by the combination of the laser triangulation displacement sensor and the coordinate system of the NC machine, which could make the indicators of measurement come true. The method to evaluate planar straightness error adopts particle swarm optimization(PSO). To verify the feasibility and accuracy of the measuring method, simulation experiments were implemented with a CMM. Comparing the measurement results of measuring head with the corresponding measured values obtained by composite measuring machine, it is verified that the method can realize high-precise and automatic measurement of the planar straightness error of the workpiece.

  7. Advanced in-flight measurement techniques

    CERN Document Server

    Lawson, Nicholas; Jentink, Henk; Kompenhans, Jürgen

    2013-01-01

    The book presents a synopsis of the main results achieved during the 3 year EU-project "Advanced Inflight Measurement Techniques (AIM)" which applied advanced image based measurement techniques to industrial flight testing. The book is intended to be not only an overview on the AIM activities but also a guide on the application of advanced optical measurement techniques for future flight testing. Furthermore it is a useful guide for engineers in the field of experimental methods and flight testing who face the challenge of a future requirement for the development of highly accurate non-intrusive in-flight measurement techniques.

  8. Use of tensiometer for in situ measurement of nitrate leaching

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Reddy, M.R.

    1999-07-01

    In order to monitor nitrate leaching from non-point source pollution, this study used tensiometers to measure in situ nitrate concentration and soil-moisture potential. Instead of filling the tensiometers with pure water, the study filled the tensiometers with nitrate ionic strength adjuster (ISA, 1 M (NH{sub 4}){sub 2}SO{sub 4}). After the installation of the tensiometers at various depths along soil profiles, a portable pressure transducer was used to measure the soil moisture potential, and a nitrate electrode attached to an ion analyzer was used to measure the nitrate concentration in situ. The measurement was continuous and non-destructive. To test this method in the laboratory, eight bottles filled with pure sand were treated with known nitrate solutions, and a tensiometer was placed in each bottle. Measurements were taken every day for 30 days. Laboratory test showed a linear relationship between the known nitrate concentration and the tensiometer readings (R{sup 2} = 0.9990). Then a field test was conducted in a watermelon field with green manure mulch. Field data indicated a potential of nitrate leaching below the soil depth of 100 cm when crop uptake of nutrients was low.

  9. Development of an in situ calibration technique for combustible gas detectors

    Science.gov (United States)

    Shumar, J. W.; Wynveen, R. A.; Lance, N., Jr.; Lantz, J. B.

    1977-01-01

    This paper describes the development of an in situ calibration procedure for combustible gas detectors (CGD). The CGD will be a necessary device for future space vehicles as many subsystems in the Environmental Control/Life Support System utilize or produce hydrogen (H2) gas. Existing calibration techniques are time-consuming and require support equipment such as an environmental chamber and calibration gas supply. The in situ calibration procedure involves utilization of a water vapor electrolysis cell for the automatic in situ generation of a H2/air calibration mixture within the flame arrestor of the CGD. The development effort concluded with the successful demonstration of in situ span calibrations of a CGD.

  10. A computer program (COSTUM) to calculate confidence intervals for in situ stress measurements. V. 1

    International Nuclear Information System (INIS)

    Dzik, E.J.; Walker, J.R.; Martin, C.D.

    1989-03-01

    The state of in situ stress is one of the parameters required both for the design and analysis of underground excavations and for the evaluation of numerical models used to simulate underground conditions. To account for the variability and uncertainty of in situ stress measurements, it is desirable to apply confidence limits to measured stresses. Several measurements of the state of stress along a borehole are often made to estimate the average state of stress at a point. Since stress is a tensor, calculating the mean stress and confidence limits using scalar techniques is inappropriate as well as incorrect. A computer program has been written to calculate and present the mean principle stresses and the confidence limits for the magnitudes and directions of the mean principle stresses. This report describes the computer program, COSTUM

  11. Experimental techniques of conversion coefficient measurements

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1975-01-01

    Discusses briefly the history of conversion electron spectra measurements, and the interpretation of the collected data. Then provides a comprehensive review of techniques presently available to measure the conversion coefficients. (Auth.)

  12. In situ surface roughness measurement using a laser scattering method

    Science.gov (United States)

    Tay, C. J.; Wang, S. H.; Quan, C.; Shang, H. M.

    2003-03-01

    In this paper, the design and development of an optical probe for in situ measurement of surface roughness are discussed. Based on this light scattering principle, the probe which consists of a laser diode, measuring lens and a linear photodiode array, is designed to capture the scattered light from a test surface with a relatively large scattering angle ϕ (=28°). This capability increases the measuring range and enhances repeatability of the results. The coaxial arrangement that incorporates a dual-laser beam and a constant compressed air stream renders the proposed system insensitive to movement or vibration of the test surface as well as surface conditions. Tests were conducted on workpieces which were mounted on a turning machine that operates with different cutting speeds. Test specimens which underwent different machining processes and of different surface finish were also studied. The results obtained demonstrate the feasibility of surface roughness measurement using the proposed method.

  13. Method for in situ carbon deposition measurement for solid oxide fuel cells

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2014-01-01

    Previous methods to measure carbon deposition in solid oxide fuel cell (SOFC) anodes do not permit simultaneous electrochemical measurements. Electrochemical measurements supplemented with carbon deposition quantities create the opportunity to further understand how carbon affects SOFC performance and electrochemical impedance spectra (EIS). In this work, a method for measuring carbon in situ, named here as the quantification of gasified carbon (QGC), was developed. TGA experiments showed that carbon with a 100 h residence time in the SOFC was >99.8% gasified. Comparison of carbon mass measurements between the TGA and QGC show good agreement. In situ measurements of carbon deposition in SOFCs at varying molar steam/carbon ratios were performed to further validate the QGC method, and suppression of carbon deposition with increasing steam concentration was observed, in agreement with previous studies. The technique can be used to investigate in situ carbon deposition and gasification behavior simultaneously with electrochemical measurements for a variety of fuels and operating conditions, such as determining conditions under which incipient carbon deposition is reversible.

  14. Implementation of the Fluorescent in Situ Hybridization technique in the Faculty of Medicine, UdelaR

    Directory of Open Access Journals (Sweden)

    Andrea Cairus

    2017-11-01

    Full Text Available The Cytogenetic Laboratory of the Faculty of Medicine processes, on average, 300 annual samples of public and private healthcare centers by conventional cytogenetics. It is essential to implement new techniques to improve the quality of the service offered. The purpose of this work was to implement the Fluorescent in situ Hybridization technique (FISH. An observational, cross-sectional, analytical study was performed. Peripheral blood samples from patients with sex chromosomopathies diagnosed by conventional cytogenetics were analyzed. Fluorescent in situ hybridization technique was applied, comparing results with FISH and with conventional cytogenetics. The percentage of mosaicism detected by conventional cytogenetics and Fluorescent in situ Hybridization was studied: 24 samples were analyzed; 19 presented numerical alterations, 3 structural and 2 both. Numerical alterations were Turner syndrome, Klinefelter syndrome, XXX syndrome and XYY syndrome. Concordance in diagnoses was found for both techniques. For Turner syndrome, 8 of 12 samples corresponded to mosaicism, and there were no significant differences between conventional cytogenetics and the technique studied (p0.05. Klinefelter syndrome and XYY were both presented in a non-mosaic karyotype. For XXX syndrome, a normal line (46, XX was observed in three of the samples, in a percentage close to the cut off. From this research, it will be possible to implement Fluorescent in situ Hybridization in this service, to extend it to other pathologies and to enable the training of human resources; consolidating this laboratory as a national academic reference center.

  15. Industrial level measurement techniques - a review

    International Nuclear Information System (INIS)

    Schaudel, D.E.

    1984-01-01

    The outlined methods of industrial level measurement technique are nowadays in current use. In correspondence with the technical evolution the mechanical techniques are mentioned first, followed by a description of the more modern electronic methods. These measurement methods comply especially to the requirements of computer aided process guiding systems, i.e. compatibility of signals, self-checking and reliability. (orig.) [de

  16. Two-phase flow measurement by pulsed neutron activation techniques

    International Nuclear Information System (INIS)

    Kehler, P.

    1978-01-01

    The Pulsed Neutron Activation (PNA) technique for measuring the mass flow velocity and the average density of two-phase mixtures is described. PNA equipment can be easily installed at different loops, and PNA techniques are non-intrusive and independent of flow regimes. These features of the PNA technique make it suitable for in-situ measurement of two-phase flows, and for calibration of more conventional two-phase flow measurement devices. Analytic relations governing the various PNA methods are derived. The equipment and procedures used in the first air-water flow measurement by PNA techniques are discussed, and recommendations are made for improvement of future tests. In the present test, the mass flow velocity was determined with an accuracy of 2 percent, and average densities were measured down to 0.08 g/cm 3 with an accuracy of 0.04 g/cm 3 . Both the accuracy of the mass flow velocity measurement and the lower limit of the density measurement are functions of the injected activity and of the total number of counts. By using a stronger neutron source and a larger number of detectors, the measurable density can be decreased by a factor of 12 to .007 g/cm 3 for 12.5 cm pipes, and to even lower ranges for larger pipes

  17. In situ measurements of dose rates from terrestrial gamma rays

    International Nuclear Information System (INIS)

    Horng, M.C.; Jiang, S.H.

    2002-01-01

    A portable, high purity germanium (HPGe) detector was employed for the performance of in situ measurements of radionuclide activity concentrations in the ground in Taiwan, at altitudes ranging from sea level to 3900 m. The absolute peak efficiency of the HPGe detector for a gamma-ray source uniformly distributed in the semi-infinite ground was determined using a semi-empirical method. The gamma-ray dose rates from terrestrial radionuclides were calculated from the measured activity levels using recently published dose rate conversion factors. The absorbed dose rate in air due to cosmic rays was derived by subtracting the terrestrial gamma-ray dose rate from the overall absorbed dose rate in air measured using a high-pressure ionization chamber. The cosmic-ray dose rate calculated as a function of altitude, was found to be in good agreement with the data reported by UNSCEAR. (orig.)

  18. Airborne remote sensing and in situ measurements of atmospheric CO2 to quantify point source emissions

    Science.gov (United States)

    Krings, Thomas; Neininger, Bruno; Gerilowski, Konstantin; Krautwurst, Sven; Buchwitz, Michael; Burrows, John P.; Lindemann, Carsten; Ruhtz, Thomas; Schüttemeyer, Dirk; Bovensmann, Heinrich

    2018-02-01

    Reliable techniques to infer greenhouse gas emission rates from localised sources require accurate measurement and inversion approaches. In this study airborne remote sensing observations of CO2 by the MAMAP instrument and airborne in situ measurements are used to infer emission estimates of carbon dioxide released from a cluster of coal-fired power plants. The study area is complex due to sources being located in close proximity and overlapping associated carbon dioxide plumes. For the analysis of in situ data, a mass balance approach is described and applied, whereas for the remote sensing observations an inverse Gaussian plume model is used in addition to a mass balance technique. A comparison between methods shows that results for all methods agree within 10 % or better with uncertainties of 10 to 30 % for cases in which in situ measurements were made for the complete vertical plume extent. The computed emissions for individual power plants are in agreement with results derived from emission factors and energy production data for the time of the overflight.

  19. In situ measurement of some gamma-emitting radionuclides in plant communities of the South Carolina coastal plain

    International Nuclear Information System (INIS)

    Ragsdale, H.L.; Tanner, B.K.; Coleman, R.N.; Palms, J.M.; Wood, R.E.

    1978-01-01

    In situ and laboratory gamma-ray spectroscopy measurements were taken in nine scrub oak forests and nine old fields to determine the applicability of in situ analysis in the coastal plain. Data collected at each of the 18 sites included a 2-hr count, soil density and moisture estimates, and vegetation measurements. Samples returned to the laboratory for radiometric analysis included litter and herbaceous vegetation and soil cores. Analysis of the gamma-emitter detection frequencies, concentrations, and burdens showed good to excellent agreement between laboratory and in situ methods. Generally, forests were determined to be superior in situ sampling systems. Laboratory analysis of collected samples may be a superior technique for gamma emitters with low energies, low concentrations, or nonuniform distributions in the soil. Three potential uses of in situ Ge(Li) spectrometers were identified and discussed in terms of their limits and of the replicate ecosystems appropriate for in situ analyses. Although the variety and the biogeochemical cycling regimes of southeastern coastal plain ecosystems complicate in situ analyses, it was concluded that comparable and probably accurate results can be achieved using in situ technology

  20. Thermal simulation of drift emplacement (TSS): In-situ instrumentation and numerical modeling of stress measurement methods

    International Nuclear Information System (INIS)

    Heusermann, S.

    1988-01-01

    In the course of the planned demonstration test Thermal Simulation of Drift Emplacement (TSS) BGR is carrying out in-situ-measurements of rock stresses, rock deformability and permeability of salt rock and backfill material. The following techniques developed and proved by BGR during the last years are planned to be used in the TSS project: overcoring technique, dilatometer technique, hard inclusion technique, slot-cutting techniques, large-flatjack technique, compensation tests in laboratory, vacuum tests, injection tests, and tracer tests. The purpose of measurements is to determine: the initial stress state; stress gradients around test drifts; stress change caused by mining activities, by creep and stress relaxation and by temperature; the in-situ load-deformation behavior of rock salt; the permeability of rock salt around test drifts; the compaction behavior of backfill material; and the load-deformation behavior of rock salt and borehole grout in laboratory tests

  1. Modular enrichment measurement system for in-situ enrichment assay

    International Nuclear Information System (INIS)

    Stewart, J.P.

    1976-01-01

    A modular enrichment measurement system has been designed and is in operation within General Electric's Nuclear Fuel Fabrication Facility for the in-situ enrichment assay of uranium-bearing materials in process containers. This enrichment assay system, which is based on the ''enrichment meter'' concept, is an integral part of the site's enrichment control program and is used in the in-situ assay of the enrichment of uranium dioxide (UO 2 ) powder in process containers (five gallon pails). The assay system utilizes a commercially available modular counting system and a collimnator designed for compatability with process container transport lines and ease of operator access. The system has been upgraded to include a microprocessor-based controller to perform system operation functions and to provide data acquisition and processing functions. Standards have been fabricated and qualified for the enrichment assay of several types of uranium-bearing materials, including UO 2 powders. The assay system has performed in excess of 20,000 enrichment verification measurements annually and has significantly contributed to the facility's enrichment control program

  2. In-situ gamma spectroscopic measurement of natural waters in Bulgaria

    International Nuclear Information System (INIS)

    Manushev, B.; Mandzhukov, I.; Tsankov, L.; Boshkova, T.; Gurev, V.; Mandzhukova, B.; Kozhukharov, I.; Grozev, G.

    1983-01-01

    In-situ gamma spectrometric measurements are carried out to record differences higher than the errors of measurement in the gamma-field spectra in various basins in Bulgaria - two high mountain lakes, dam and the Black sea. A standard scintillation gamma spectrometer, consisting of a scintillation detector ND-424 type, a channel analyzer NP-424 and a 128 channel Al-128 type analyzer, has been used. The sensitivity of the procedure used is sufficient to detect the transfer of nuclides by dissolution from rocks, forming the bottom and the water-collecting region of the water basin. The advancement of the experimental techniques defines the future use of the procedure. In-situ gamma spectrometric determination may be used in cases of continuous and automated control of the radiation purity of the cooling water in atomic power plants or the water basins located close to such plants and of radioactive contamination of the sea and ocean water

  3. In situ Micrometeorological Measurements during RxCADRE

    Science.gov (United States)

    Clements, C. B.; Hiers, J. K.; Strenfel, S. J.

    2009-12-01

    The Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment (RxCADRE) was a collaborative research project designed to fully instrument prescribed fires in the Southeastern United States. Data were collected on pre-burn fuel loads, post burn consumption, ambient weather, in situ atmospheric dynamics, plume dynamics, radiant heat release (both from in-situ and remote sensors), in-situ fire behavior, and select fire effects. The sampling was conducted at Eglin Air Force Base, Florida, and the Joseph W. Jones Ecological Research Center in Newton, Georgia, from February 29 to March 6, 2008. Data were collected on 5 prescribed burns, totaling 4458 acres. The largest aerial ignition totaled 2,290 acres and the smallest ground ignition totaled 104 acres. Quantifying fire-atmospheric interactions is critical for understanding wildland fire dynamics and enhancing modeling of smoke plumes. During Rx-CADRE, atmospheric soundings using radiosondes were made at each burn prior to ignition. In situ micrometeorological measurements were made within each burn unit using five portable, 10-m towers equipped with sonic and prop anemometers, fine-wire thermocouples, and a carbon dioxide probes. The towers were arranged within the burn units to capture the wind and temperature fields as the fire front and plume passed the towers. Due to the interaction of fire lines following ignition, several of the fire fronts that passed the towers were backing fires and thus less intense. Preliminary results indicate that the average vertical velocities associated with the fire front passage were on the order of 3-5 m s-1 and average plume temperatures were on the order of 30-50 °C above ambient. During two of the experimental burns, radiosondes were released into the fire plumes to determine the vertical structure of the plume temperature, humidity, and winds. A radiosonde released into the plume during the burn conducted on 3 March 2008 indicated a definite plume boundary in the

  4. In-situ measurements of the secondary electron yield in an accelerator environment: Instrumentation and methods

    International Nuclear Information System (INIS)

    Hartung, W.H.; Asner, D.M.; Conway, J.V.; Dennett, C.A.; Greenwald, S.; Kim, J.-S.; Li, Y.; Moore, T.P.; Omanovic, V.; Palmer, M.A.; Strohman, C.R.

    2015-01-01

    The performance of a particle accelerator can be limited by the build-up of an electron cloud (EC) in the vacuum chamber. Secondary electron emission from the chamber walls can contribute to EC growth. An apparatus for in-situ measurements of the secondary electron yield (SEY) in the Cornell Electron Storage Ring (CESR) was developed in connection with EC studies for the CESR Test Accelerator program. The CESR in-situ system, in operation since 2010, allows for SEY measurements as a function of incident electron energy and angle on samples that are exposed to the accelerator environment, typically 5.3 GeV counter-rotating beams of electrons and positrons. The system was designed for periodic measurements to observe beam conditioning of the SEY with discrimination between exposure to direct photons from synchrotron radiation versus scattered photons and cloud electrons. The samples can be exchanged without venting the CESR vacuum chamber. Measurements have been done on metal surfaces and EC-mitigation coatings. The in-situ SEY apparatus and improvements to the measurement tools and techniques are described

  5. In-situ measurements of the secondary electron yield in an accelerator environment: Instrumentation and methods

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, W.H., E-mail: wh29@cornell.edu; Asner, D.M.; Conway, J.V.; Dennett, C.A.; Greenwald, S.; Kim, J.-S.; Li, Y.; Moore, T.P.; Omanovic, V.; Palmer, M.A.; Strohman, C.R.

    2015-05-21

    The performance of a particle accelerator can be limited by the build-up of an electron cloud (EC) in the vacuum chamber. Secondary electron emission from the chamber walls can contribute to EC growth. An apparatus for in-situ measurements of the secondary electron yield (SEY) in the Cornell Electron Storage Ring (CESR) was developed in connection with EC studies for the CESR Test Accelerator program. The CESR in-situ system, in operation since 2010, allows for SEY measurements as a function of incident electron energy and angle on samples that are exposed to the accelerator environment, typically 5.3 GeV counter-rotating beams of electrons and positrons. The system was designed for periodic measurements to observe beam conditioning of the SEY with discrimination between exposure to direct photons from synchrotron radiation versus scattered photons and cloud electrons. The samples can be exchanged without venting the CESR vacuum chamber. Measurements have been done on metal surfaces and EC-mitigation coatings. The in-situ SEY apparatus and improvements to the measurement tools and techniques are described.

  6. Towards a more realistic picture of in situ biocide actions: Combining physiological and microscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Speranza, M., E-mail: speranzamariela@gmail.com [Museo Nacional de Ciencias Naturales, MNCN-CSIC, Serrano 115 bis, 28006 Madrid (Spain); Wierzchos, J.; De Los Rios, A.; Perez-Ortega, S. [Museo Nacional de Ciencias Naturales, MNCN-CSIC, Serrano 115 bis, 28006 Madrid (Spain); Souza-Egipsy, V. [Instituto de Ciencias Agrarias, ICA-CSIC, Serrano 115 bis, 28006 Madrid (Spain); Ascaso, C., E-mail: ascaso@mncn.csic.es [Museo Nacional de Ciencias Naturales, MNCN-CSIC, Serrano 115 bis, 28006 Madrid (Spain)

    2012-11-15

    In this study, we combined chlorophyll a fluorescence (ChlaF) measurements, using pulse-amplitude-modulate (PAM) equipment, with scanning electron microscopy in backscattered electron mode (SEM-BSE) and transmission electron microscopy (TEM) images to evaluate the actions of Koretrel at lower concentrations on Verrucaria nigrescens colonising a dolostone. ChlaF measurements are good indicators of the damaging effects of biocides. However, these indicators only provide an incomplete view of the mechanism of biocides used to control biodeterioration agents. The death of the V. nigrescens photobiont at two biocide concentrations was revealed by PAM, SEM-BSE and TEM. Once Koretrel was applied, the Fv/Fm ratios markedly fell in the first few hours after the 1.5% treatment, and ratios for the 3% dilution remained close to zero throughout the study. The algal zone shows the plasmolysed appearance of the photobiont cells, and important aspects related to the action of the biocide on free and lichenised fungi were also detected using SEM-BSE. Many of the mycobiont cells had only their cell walls preserved; although, some fungal hyphae in lichen thalli and some microorganisms in endolithic clusters maintained lipid storage in their cytoplasm. These results indicated that the combination of physiological and microscopy techniques improves the assessment of biocide action in situ and this will help to optimize protocols in order to reduce the emission of these compounds to the environment. -- Highlights: Black-Right-Pointing-Pointer We combined ChlaF measurements with EM images to analyses the biocides action on stone biodeterioration agents. Black-Right-Pointing-Pointer At lower biocide concentrations damage to photobiont and mycobiont cells integrity, ultrastructure and vitality were observed. Black-Right-Pointing-Pointer The limited action of biocides on fungi and algae were detected using SEM-BSE. Black-Right-Pointing-Pointer The combination of physiological and microscopy

  7. Magnetic field measurements and mapping techniques

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    These lectures will present an overview of the most common techniques used for the measurement of magnetic field in accelerator magnets. The formalism for a harmonic description of the magnetic field will be presented, including a discussion of harmonics allowed under various types of symmetries in the magnet. The harmonic coil technique for measurement of field harmonics will be covered in depth. Using examples from recent projects, magnetic measurements will be shown to be a powerful tool for monitoring magnet production. Measurements of magnetic axis using extensions of the harmonic coil technique, as well as other techniques, such as the colloidal cell and stretched wire, will be covered. Topics of interest in superconducting magnets, such as time decay and snapback, requiring relatively fast measurements of the harmonics, will also be described.

  8. In-situ real time measurements of net erosion rates of copper during hydrogen plasma exposure

    Science.gov (United States)

    Kesler, Leigh; Wright, Graham; Peterson, Ethan; Whyte, Dennis

    2013-10-01

    In order to properly understand the dynamics of net erosion/deposition in fusion reactors, such as tokamaks, a diagnostic measuring the real time rates of net erosion/deposition during plasma exposure is necessary. The DIONISOS experiment produces real time measurements of net erosion/deposition by using Rutherford backscattering spectroscopy (RBS) ion beam analysis simultaneously with plasma exposure from a helicon plasma source. This in-situ method improves on ex-situ weight loss measurements by allowing measurement of possible synergistic effects of high ion implantation rates and net erosion rate and by giving a real time response to changes in plasma parameters. Previous work has validated this new technique for measuring copper (Cu) erosion from helium (He) plasma ion bombardment. This technique is now extended to measure copper erosion due to deuterium and hydrogen plasma ion exposure. Targets used were a 1.5 μm Cu layer on an aluminum substrate. Cu layer thickness is tracked in real time using 1.2 MeV proton RBS. Measured erosion rates will be compared to results from literature and He erosion rates. Supported by US DoE award DE-SC00-02060.

  9. Application of in situ x-ray diffraction techniques in heterogenous catalytic systems

    International Nuclear Information System (INIS)

    Sharifah Bee Abd Hamid

    2002-01-01

    A broad range of techniques is available today for the characterisation of catalysts and the investigation of catalyst reaction mechanisms. However, only a limited number of those are suitable for in situ studies, i.e experiments performed in conditions mimicking or close as possible to real operating conditions. Various commercially and in-house developed in situ X-Ray diffraction (XRD) cells have been used to obtain information on the phase and structure of materials at the initial formation stage, activation methodology, calcination, reduction and carburization. A major advantage of the in situ X-ray cells is that it allows direct observations on the decomposition of precursors leading to various phases in a controlled environment, i.e. controlled temperature and pressure under specified gases. The cells can be operated both at high temperatures and high pressures, equipped with Position Sensitive Detector (PSD), feature which was used to study phase transformation occurring during the activation of various solids. In MoO 3 , XRD results provide detailed information on the hydrogen insertion into its lattice, followed by carburization providing good understanding on the mechanism in the solid transformation leading to the metastable MoC 1 -x phase. For the Bi-SnO x systems, the environmental cell coupled with XRD and PSD allow the design of activation procedure to obtain the active Bi 2 Sn 2 O 7 . The in situ XRD technique reveals crucial information on the initial stage of oxides formations prior to condensation reaction shown in MCM-41 and titania systems. In this presentation, discussions on general achievements and problems relating to the use of in situ XRD techniques as well as of specific examples selected to illustrate the use and potential of in situ XRD are made. It is not intended to be a review of the art but a highlight of the challenges which the catalytic and material scientists face when entering the avenue. (Author)

  10. Contact sponge water absorption test implemented for in situ measures

    Science.gov (United States)

    Gaggero, Laura; Scrivano, Simona

    2016-04-01

    The contact sponge method is a non-destructive in-situ methodology used to estimate a water uptake coefficient. The procedure, unlike other in-situ measurement was proven to be directly comparable to the water uptake laboratory measurements, and was registered as UNI 11432:2011. The UNI Normal procedure requires to use a sponge with known density, soaked in water, weighed, placed on the material for 1 minute (UNI 11432, 2011; Pardini & Tiano, 2004), then weighed again. Difficulties arise in operating on test samples or on materials with porosity varied for decay. While carrying on the test, fluctuations in the bearing of the environmental parameters were negligible, but not the pressure applied to the surface, that induced the release of different water amounts towards the material. For this reason we designed a metal piece of the same diameter of the plate carrying the sponge, to be screwed at the tip of a pocket penetrometer. With this instrument the sponge was kept in contact with the surface for 1 minute applying two different loads, at first pushed with 0.3 kg/cm2 in order to press the sponge, but not its holder, against the surface. Then, a load of 1.1 kg/ cm2 was applied, still avoiding deviating the load to the sponge holder. We applied both the current and our implemented method to determine the water absorption by contact sponge on 5 fresh rock types (4 limestones: Fine - and Coarse grained Pietra di Vicenza, Rosso Verona, Breccia Aurora, and the silicoclastic Macigno sandstone). The results show that 1) the current methodology imply manual skill and experience to produce a coherent set of data; the variable involved are in fact not only the imposed pressure but also the compression mechanics. 2) The control on the applied pressure allowed reproducible measurements. Moreover, 3) the use of a thicker sponge enabled to apply the method even on rougher surfaces, as the device holding the sponge is not in contact with the tested object. Finally, 4) the

  11. Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Moda)

    Science.gov (United States)

    Hartwig, Z. S.; Whyte, D. G.

    2010-10-01

    The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot (˜10 min) time scale with ˜1 μm depth and ˜1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic—nuclear scattering of MeV ions—to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.

  12. Evaluating Acoustic Emission Signals as an in situ process monitoring technique for Selective Laser Melting (SLM)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Karl A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Candy, Jim V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Guss, Gabe [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mathews, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-14

    In situ real-time monitoring of the Selective Laser Melting (SLM) process has significant implications for the AM community. The ability to adjust the SLM process parameters during a build (in real-time) can save time, money and eliminate expensive material waste. Having a feedback loop in the process would allow the system to potentially ‘fix’ problem regions before a next powder layer is added. In this study we have investigated acoustic emission (AE) phenomena generated during the SLM process, and evaluated the results in terms of a single process parameter, of an in situ process monitoring technique.

  13. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    Directory of Open Access Journals (Sweden)

    Rymantas Kazys

    2015-08-01

    Full Text Available An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%.

  14. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    Science.gov (United States)

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-01-01

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%). PMID:26262619

  15. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions.

    Science.gov (United States)

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-08-07

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10(-3) g/cm(3) (1%).

  16. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Baier, S.; Rochet, A.; Hofmann, G. [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Kraut, M. [Institute for Micro Process Engineering, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen (Germany); Grunwaldt, J.-D., E-mail: grunwaldt@kit.edu [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen (Germany)

    2015-06-15

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  17. Laser Based In Situ Techniques: Novel Methods for Generating Extreme Conditions in TEM Samples

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, M; Lagrange, T; Reed, B; Armstrong, M; Campbell, G; DeHope, W; Kim, J; King, W; Masiel, D; Browning, N

    2008-02-25

    The Dynamic Transmission Electron Microscope (DTEM) is introduced as a novel tool for in situ processing of materials. Examples of various types of dynamic studies outline the advantages and differences of laser-based heating in the DTEM in comparison to conventional (resistive) heating in situ TEM methods. We demonstrate various unique capabilities of the drive laser, namely, in situ processing of nanoscale materials, rapid and high temperature phase transformations, and controlled thermal activation of materials. These experiments would otherwise be impossible without the use of the DTEM drive laser. Thus, the potential of the DTEM to as a new technique to process and characterize the growth of a myriad of micro and nanostructures is demonstrated.

  18. The development of an electrochemical technique for in situ calibrating of combustible gas detectors

    Science.gov (United States)

    Shumar, J. W.; Lantz, J. B.; Schubert, F. H.

    1976-01-01

    A program to determine the feasibility of performing in situ calibration of combustible gas detectors was successfully completed. Several possible techniques for performing the in situ calibration were proposed. The approach that showed the most promise involved the use of a miniature water vapor electrolysis cell for the generation of hydrogen within the flame arrestor of a combustible gas detector to be used for the purpose of calibrating the combustible gas detectors. A preliminary breadboard of the in situ calibration hardware was designed, fabricated and assembled. The breadboard equipment consisted of a commercially available combustible gas detector, modified to incorporate a water vapor electrolysis cell, and the instrumentation required for controlling the water vapor electrolysis and controlling and calibrating the combustible gas detector. The results showed that operation of the water vapor electrolysis at a given current density for a specific time period resulted in the attainment of a hydrogen concentration plateau within the flame arrestor of the combustible gas detector.

  19. Three types of photon detectors for in situ measurements

    Science.gov (United States)

    Helmer, R. G.; Gehrke, R. J.; Carpenter, M. V.

    1999-02-01

    The authors have been involved in the calibration and use of three types of γ- and X-ray detectors for in situ measurements of soil contamination. These three detectors are an N-type, thin-window Ge semiconductor detector (5.0 cm diam.× 2.0 cm deep), a plastic scintillator (30.5 cm × 30.5 cm × 3.8 cm thick), and an array of six CaF 2 detectors (each 7.6 cm × 7.6 cm × 0.15 cm thick). The latter two detectors have been used with scanning systems that allow significant areas (say, >100 m 2) to be surveyed completely with the aid of either laser-based triangulation or a global positioning system (GPS) to record the precise position for each measurement. Typically, these systems scan at a rate of 15-30 cm/s which allows an area of 100 m 2 to covered with the plastic scintillator in about 15 min. The data are telemetered or transferred via RS232 protocol to a computer, providing operators with real-time mapping of the area surveyed and of the measured detector count rate. The "efficiencies" of these detectors have been determined by a combination of measurements of calibrated planar sources and Monte Carlo transport calculations for a variety of source sizes and depths in soil, as well as by comparing these field measurements with independent laboratory sample analysis.

  20. Measurement of void fractions by nuclear techniques

    International Nuclear Information System (INIS)

    Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A.

    1997-01-01

    In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)

  1. In situ measured elimination of Vibrio cholerae from brackish water.

    Science.gov (United States)

    Pérez, María Elena Martínez; Macek, Miroslav; Galván, María Teresa Castro

    2004-01-01

    In situ elimination of fluorescently labelled Vibrio cholerae (FLB) was measured in two saline water bodies in Mexico: in a brackish water lagoon, Mecoacán (Gulf of Mexico; State of Tabasco) and an athalassohaline lake, Alchichica (State of Puebla). Disappearance rates of fluorescently labelled V. cholera O1 showed that they were eliminated from the environment at an average rate of 32% and 63%/day, respectively (based on the bacterial standing stocks). The indirect immunofluorescence method confirmed the presence of V. cholerae O1 in the lagoon. However, the elimination of FLB was not directly related either to the presence or absence of the bacterium in the water body or to the phytoplankton concentration.

  2. In situ measurements of oxygen dynamics in unsaturated archaeological deposits

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hollesen, Jørgen; Dunlop, Rory

    2015-01-01

    Oxygen is a key parameter in the degradation of archaeological material, but little is known of its dynamics in situ. In this study, 10 optical oxygen sensors placed in a 2 m deep test pit in the cultural deposits at Bryggen in Bergen have monitored oxygen concentrations every half hour for more ...... of the soil exceeds 10–15% vol, while oxygen dissolved in infiltrating rainwater is of less importance for the supply of oxygen in the unsaturated zone....... than a year. It is shown that there is a significant spatial and temporal variation in the oxygen concentration, which is correlated to measured soil characteristics, precipitation, soil water content and degradation of organic material. In these deposits oxygen typically occurs when the air content...

  3. Monitoring groundwater variation by satellite and implications for in-situ gravity measurements

    International Nuclear Information System (INIS)

    Fukuda, Yoichi; Yamamoto, Keiko; Hasegawa, Takashi; Nakaegawa, Toshiyuki; Nishijima, Jun; Taniguchi, Makoto

    2009-01-01

    In order to establish a new technique for monitoring groundwater variations in urban areas, the applicability of precise in-situ gravity measurements and extremely high precision satellite gravity data via GRACE (Gravity Recovery and Climate Experiment) was tested. Using the GRACE data, regional scale water mass variations in four major river basins of the Indochina Peninsula were estimated. The estimated variations were compared with Soil-Vegetation-Atmosphere Transfer Scheme (SVATS) models with a river flow model of 1) globally uniform river velocity, 2) river velocity tuned by each river basin, 3) globally uniform river velocity considering groundwater storage, and 4) river velocity tuned by each river basin considering groundwater storage. Model 3) attained the best fit to the GRACE data, and the model 4) yielded almost the same values. This implies that the groundwater plays an important role in estimating the variation of total terrestrial storage. It also indicates that tuning river velocity, which is based on the in-situ measurements, needs further investigations in combination with the GRACE data. The relationships among GRACE data, SVATS models, and in-situ measurements were also discussed briefly.

  4. Analysis for In-situ Fission Rate Measurements using 4He Gas Scintillation Detectors

    International Nuclear Information System (INIS)

    Lewis, Jason M.; Raetz, Dominik; Jordan, Kelly A.; Murer, David

    2013-06-01

    Active neutron interrogation is a powerful NDA technique that relies on detecting and analyzing fission neutrons produced in a fuel sample by an interrogating high neutron flux. 4 He scintillation gas fast neutron detectors are investigated in this paper for use in a novel fission rate measurement technique The He-4 detectors have excellent gamma rejection, a fast response time, and give significant information on incident neutron energy allowing for energy cuts to be applied to the detected signal. These features are shown in this work to allow for the detection of prompt fission neutrons in-situ during active neutron interrogation of a 238 U sample. The energy spectrum from three different neutrons sources ( 252 Cf, AmBe, AmLi) is measured using the 4 He detection system and analyzed. An initial response matrix for the detector is determined using these measurements and the kinematic interaction properties of the elastic scattering with the 4 He. (authors)

  5. Review of current capabilities for the measurement of stress, displacement, and in situ deformation modulus

    International Nuclear Information System (INIS)

    Schrauf, T.W.; Pratt, H.R.

    1979-12-01

    Current capabilities for the measurement of stress, displacement, and in situ deformation modulus in rock masses are reviewed as to their accuracy, sensitivity, advantages, and limitations. Consideration is given to both the instruments themselves and the measurement technique. Recommendations concerning adaptation of existing measurement techniques to repository monitoring are also discussed. These recommendations include: (1) development of a modified borehole deformation gage with improved long-term stability and reliability and reduced thermal sensitivity; (2) development of a downhole transducer type of extensometer; (3) development of a rigid inclusion type gage; (4) development of an improved vibrating wire stressmeter with greater accuracy and simplified calibration and installation requirements; and (5) modification of standard rod extensometers to improve their sensitivity

  6. Review of in situ derivatization techniques for enhanced bioanalysis using liquid chromatography with mass spectrometry.

    Science.gov (United States)

    Baghdady, Yehia Z; Schug, Kevin A

    2016-01-01

    Accurate and specific analysis of target molecules in complex biological matrices remains a significant challenge, especially when ultra-trace detection limits are required. Liquid chromatography with mass spectrometry is often the method of choice for bioanalysis. Conventional sample preparation and clean-up methods prior to the analysis of biological fluids such as liquid-liquid extraction, solid-phase extraction, or protein precipitation are time-consuming, tedious, and can negatively affect target recovery and detection sensitivity. An alternative or complementary strategy is the use of an off-line or on-line in situ derivatization technique. In situ derivatization can be incorporated to directly derivatize target analytes in their native biological matrices, without any prior sample clean-up methods, to substitute or even enhance the extraction and preconcentration efficiency of these traditional sample preparation methods. Designed appropriately, it can reduce the number of sample preparation steps necessary prior to analysis. Moreover, in situ derivatization can be used to enhance the performance of the developed liquid chromatography with mass spectrometry-based bioanalysis methods regarding stability, chromatographic separation, selectivity, and ionization efficiency. This review presents an overview of the commonly used in situ derivatization techniques coupled to liquid chromatography with mass spectrometry-based bioanalysis to guide and to stimulate future research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fragrance composition of Dendrophylax lindenii (Orchidaceae using a novel technique applied in situ

    Directory of Open Access Journals (Sweden)

    James J. Sadler

    2012-02-01

    Full Text Available The ghost orchid, Dendrophylax lindenii (Lindley Bentham ex Rolfe (Orchidaceae, is one of North America’s rarest and well-known orchids. Native to Cuba and SW Florida where it frequents shaded swamps as an epiphyte, the species has experienced steady decline. Little information exists on D. lindenii’s biology in situ, raising conservation concerns. During the summer of 2009 at an undisclosed population in Collier County, FL, a substantial number (ca. 13 of plants initiated anthesis offering a unique opportunity to study this species in situ. We report a new technique aimed at capturing floral headspace of D. lindenii in situ, and identified volatile compounds using gas chromatography mass spectrometry (GC/MS. All components of the floral scent were identified as terpenoids with the exception of methyl salicylate. The most abundant compound was the sesquiterpene (E,E-α-farnesene (71% followed by (E-β-ocimene (9% and methyl salicylate (8%. Other compounds were: linalool (5%, sabinene (4%, (E-α-bergamotene (2%, α-pinene (1%, and 3-carene (1%. Interestingly, (E,E-α-farnesene has previously been associated with pestiferous insects (e.g., Hemiptera. The other compounds are common floral scent constituents in other angiosperms suggesting that our in situ technique was effective. Volatile capture was, therefore, possible without imposing physical harm (e.g., inflorescence detachment to this rare orchid.

  8. Recent developments in magnet measuring techniques

    International Nuclear Information System (INIS)

    Billan, J.; Henrichsen, K.N.; Walckiers, L.

    1985-01-01

    The main problems related to magnetic measurements of particle accelerator components are discussed. Measurements of the properties of magnetic materials as well as the measurements of field distribution in the electromagnets for the Large Electron-Positron Collider (LEP) are illustrated. The fluxmeter method is extensively employed in this work. The impact of recent advances in electronic technology on measurement techniques is explained. Magnetic measurements (including the harmonic coil method) can be performed with improved accuracy applying modern technology to the classical methods. New methods for the non-destructive testing of magnetic materials and for the measurement of magnetic geometry are described. (orig.) [de

  9. Complex technique for materials hardness measurement

    Energy Technology Data Exchange (ETDEWEB)

    Krashchenko, V P; Oksametnaya, O B

    1984-01-01

    A review of existing methods of measurement of material hardness in national and foreign practice has been made. A necessity of improving the technique of material hardness measurement in a wide temperature range and insuring load change with indenting, continuity of imprint application, smooth changing of temperatures along a sample length, and deformation rate control has been noted.

  10. Isotope measurement techniques for atmospheric methane

    International Nuclear Information System (INIS)

    Lowe, D.; White, J.; Levin, I.; Wahlen, M.; Miller, J.B.; Bergamaschi, P.

    2002-01-01

    Measurement techniques for the carbon isotopic composition of atmospheric methane (δ 13 C) are described in detail as applied in several leading institutions active in this field since many years. The standard techniques with offline sample preparation and subsequent measurement by dual inlet isotope ratio mass spectrometry (IRMS) are compared with continuous flow IRMS. The potential use of infrared absorption spectroscopy is briefly discussed. Details on quality control and calibration are provided. Basic analytical aspects for the measurement of other species, 2 H and 14 C, are also given. (author)

  11. Advanced electron holography techniques for in situ observation of solid-state lithium ion conductors

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Tsukasa, E-mail: t-hirayama@jfcc.or.jp [Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Aizawa, Yuka; Yamamoto, Kazuo; Sato, Takeshi [Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Murata, Hidekazu [Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502 (Japan); Yoshida, Ryuji; Fisher, Craig A.J. [Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Kato, Takehisa; Iriyama, Yasutoshi [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan)

    2017-05-15

    Advanced techniques for overcoming problems encountered during in situ electron holography experiments in which a voltage is applied to an ionic conductor are reported. The three major problems encountered were 1) electric-field leakage from the specimen and its effect on phase images, 2) high electron conductivity of damage layers formed by the focused ion beam method, and 3) chemical reaction of the specimen with air. The first problem was overcome by comparing experimental phase distributions with simulated images in which three-dimensional leakage fields were taken into account, the second by removing the damage layers using a low-energy narrow Ar ion beam, and the third by developing an air-tight biasing specimen holder. - Highlights: • Phase distributions derived by comparing experimental and simulated measurements. • Simulations take into account leakage electric fields. • Electric potential distributions inside Li-ion conductors are obtained. • FIB damage layers are removed using a low-energy narrow Ar ion beam. • An air-tight biasing TEM holder for protecting air-sensitive specimens is reported.

  12. In situ flume measurements of resuspension in the North Sea

    Science.gov (United States)

    Thompson, C. E. L.; Couceiro, F.; Fones, G. R.; Helsby, R.; Amos, C. L.; Black, K.; Parker, E. R.; Greenwood, N.; Statham, P. J.; Kelly-Gerreyn, B. A.

    2011-07-01

    The in situ annular flume, Voyager II, was deployed at three sites in the North Sea in order to investigate resuspension events, to determine the physical characteristics of the seabed, to determine the threshold of resuspension of the bed and to quantify erosion rates and erosion depths. These are the first controlled, in situ flume experiments to study resuspension in the North Sea, and were combined with long-term measurements of waves and currents. Resuspension experiments were undertaken at two muddy, and one sandy site: north of the Dogger Bank (DG: water depths ˜80 m, very fine, poorly sorted, very fine-skewed sediment experiencing seasonal thermal stratification of the water column along with oxygen depletion); the Oyster Grounds (OG: ˜40 m, similar bed properties, year round water column thermal stratification, Atlantic forcing); and in the Sean Gas Field (SGF: ˜20 m, moderately sorted, very coarse-skewed sand, and well mixed water column). The erosion thresholds of the bed were found to be 0.66-1.04 Pa (DG) and 0.91-1.27 Pa (OG), with corresponding erosion depths of 0.1-0.15 mm and 0.02-0.06 mm throughout the experiments. Evaluation of a year of current velocities from 2007 indicated that at OG, resuspension of the consolidated bed was limited to on average ˜8% of the time as a result of tidal forcing alone for short (properties of the bed. Therefore, while complex variations in biogeophysical factors affected the critical threshold of erosion, once exceeded, erosion rates were related to the nature of the sediment.

  13. Comparative review of techniques used for in situ remediation of contaminated soils

    International Nuclear Information System (INIS)

    Escusol Tomey, M.; Rodriguez Abad, R.

    2014-01-01

    Soil pollution may influence the geotechnical parameters of the soil itself, properties such as solid particle density or water within its pores. It may also vary its friction angle, modify its structure and texture, or change the properties of its constitutive minerals due to the inclusion of polluting components. For these reasons, soil decontamination is an important factor to consider in geotechnics. This work focuses on those soil decontamination techniques carried out in situ, since they allow to eliminate soil pollutants in a less invasive way than confinement, containment or ex situ remediation techniques, causing a minor soil alteration and, therefore, affecting less to its mechanical properties. These factors should be taken into account when carrying out a geotechnical performance on a previously decontaminated soil. (Author)

  14. Nuclear techniques for in situ evaluation of coal and mineral deposits

    International Nuclear Information System (INIS)

    Borsaru, M.

    1993-01-01

    This paper reviews developments in in situ analysis of minerals and coal by nuclear borehole logging. Developments in the oil, gas and uranium industries are not discussed in the present paper unless they have direct applications in the mineral industry (e.g. multi-element analysis and development of spectral litho-density tools). The review covers techniques developed mostly in the last decade and is based on work published in North America, Europe and Australia. (author)

  15. A new technique for infrared scintillation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Chiossi, F., E-mail: federico.chiossi@studenti.unipd.it [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Brylew, K. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Borghesani, A.F. [CNISM Unit and Dip. di Fisica e Astronomia, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Braggio, C.; Carugno, G. [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Drozdowski, W. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Guarise, M. [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy)

    2017-05-21

    We propose a new technique to measure the infrared scintillation light yield of rare earth doped crystals by comparing it to near UV–visible scintillation of a calibrated Pr:(Lu{sub 0.75}Y{sub 0.25}){sub 3}Al{sub 5}O{sub 12} sample. As an example, we apply this technique to provide the light yield in visible and infrared range up to 1700 nm of this crystal.

  16. A new technique for infrared scintillation measurements

    International Nuclear Information System (INIS)

    Chiossi, F.; Brylew, K.; Borghesani, A.F.; Braggio, C.; Carugno, G.; Drozdowski, W.; Guarise, M.

    2017-01-01

    We propose a new technique to measure the infrared scintillation light yield of rare earth doped crystals by comparing it to near UV–visible scintillation of a calibrated Pr:(Lu_0_._7_5Y_0_._2_5)_3Al_5O_1_2 sample. As an example, we apply this technique to provide the light yield in visible and infrared range up to 1700 nm of this crystal.

  17. A review on creatinine measurement techniques.

    Science.gov (United States)

    Mohabbati-Kalejahi, Elham; Azimirad, Vahid; Bahrami, Manouchehr; Ganbari, Ahmad

    2012-08-15

    This paper reviews the entire recent global tendency for creatinine measurement. Creatinine biosensors involve complex relationships between biology and micro-mechatronics to which the blood is subjected. Comparison between new and old methods shows that new techniques (e.g. Molecular Imprinted Polymers based algorithms) are better than old methods (e.g. Elisa) in terms of stability and linear range. All methods and their details for serum, plasma, urine and blood samples are surveyed. They are categorized into five main algorithms: optical, electrochemical, impedometrical, Ion Selective Field-Effect Transistor (ISFET) based technique and chromatography. Response time, detection limit, linear range and selectivity of reported sensors are discussed. Potentiometric measurement technique has the lowest response time of 4-10 s and the lowest detection limit of 0.28 nmol L(-1) belongs to chromatographic technique. Comparison between various techniques of measurements indicates that the best selectivity belongs to MIP based and chromatographic techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Spacecraft navigation at Mars using earth-based and in situ radio tracking techniques

    Science.gov (United States)

    Thurman, S. W.; Edwards, C. D.; Kahn, R. D.; Vijayaraghavan, A.; Hastrup, R. C.; Cesarone, R. J.

    1992-08-01

    A survey of earth-based and in situ radiometric data types and results from a number of studies investigating potential radio navigation performance for spacecraft approaching/orbiting Mars and for landed spacecraft and rovers on the surface of Mars are presented. The performance of Doppler, ranging and interferometry earth-based data types involving single or multiple spacecraft is addressed. This evaluation is conducted with that of in situ data types, such as Doppler and ranging measurements between two spacecraft near Mars, or between a spacecraft and one or more surface radio beacons.

  19. In situ measurement of inelastic light scattering in natural waters

    Science.gov (United States)

    Hu, Chuanmin

    Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to macrophytes, have been measured and have been found to vary with time possibly due to nonphotochemical quenching

  20. VALUATION TECHNIQUES USED IN FAIR VALUE MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Cristina-Aurora, BUNEA-BONTAS

    2013-12-01

    Full Text Available Valuation of assets and liabilities involves significant judgements and estimates, especially when fair value measurement is required. Currently, IFRS 13 Fair Value Measurement offers a single and more comprehensive source of guidance that is applied to almost all fair value estimates. When measuring fair value of fixed assets, intangible assets, specified financial assets or liabilities, different valuation techniques may be used: the market approach, the cost approach and the income approach. This article reviews these techniques and points out that different valuation practices may provide different results depending on the item being fair valued and on the inputs used. Also it emphasizes that, in particular circumstances, there is the possibility that a certain technique may be more appropriate than other.

  1. Solar Cell Calibration and Measurement Techniques

    Science.gov (United States)

    Bailey, Sheila; Brinker, Dave; Curtis, Henry; Jenkins, Phillip; Scheiman, Dave

    2004-01-01

    The increasing complexity of space solar cells and the increasing international markets for both cells and arrays has resulted in workshops jointly sponsored by NASDA, ESA and NASA. These workshops are designed to obtain international agreement on standardized values for the AMO spectrum and constant, recommend laboratory measurement practices and establish a set of protocols for international comparison of laboratory measurements. A working draft of an ISO standard, WD15387, "Requirements for Measurement and Calibration Procedures for Space Solar Cells" was discussed with a focus on the scope of the document, a definition of primary standard cell, and required error analysis for all measurement techniques. Working groups addressed the issues of Air Mass Zero (AMO) solar constant and spectrum, laboratory measurement techniques, and te international round robin methodology. A summary is presented of the current state of each area and the formulation of the ISO document.

  2. In situ electrical measurements of polytypic silver nanowires

    International Nuclear Information System (INIS)

    Liu Xiaohua; Zhu Jing; Jin Chuanhong; Peng Lianmao; Tang Daiming; Cheng Huiming

    2008-01-01

    Novel 4H structure silver nanowires (4H-AgNWs) have been reported to coexist with the usual face-centered cubic (FCC) ones. Here we report the electrical properties of these polytypic AgNWs for the first time. AgNWs with either 4H or FCC structures in the diameter range of 20-80 nm were measured in situ inside a transmission electron microscope (TEM). Both kinds of AgNW in the diameter range show metallic conductance. The average resistivity of the 4H-AgNWs is 19.9 μΩ cm, comparable to the 11.9 μΩ cm of the FCC-AgNWs. The failure current density can be up to ∼10 8 A cm -2 for both 4H-and FCC-AgNWs. The maximum stable current density (MSCD) is introduced to estimate the AgNWs' current-carrying ability, which shows diameter-dependence with a peak around 34 nm in diameter. It is attributed to fast annihilation of the current-induced vacancies and the enhanced surface scattering. Our investigations also suggest that the magnetic field of the electromagnetic lens may also introduce some influence on the measurements inside the TEM

  3. Hysteresis in YHx films observed with in situ measurements

    International Nuclear Information System (INIS)

    Remhof, A.; Kerssemakers, J.W.J.; Molen, S.J. van der; Griessen, R.; Kooij, E.S.

    2002-01-01

    Giant hysteretic effects in the YH x hydrogen switchable mirror system are observed between x=1.9 and x=3 in pressure composition isotherms, optical and electrical properties, and mechanical stress. Polycrystalline Y films are studied by simultaneous in situ measurements of electrical resistivity, optical transmittance and x-ray diffractometry. These experiments are linked to optical microscopy of the samples. During hydrogen loading above x=1.9 the films stay in the metallic fcc phase until the optical transmittance reaches its minimum and the electrical resistance curve exhibits a characteristic feature at x=2.1. Upon further loading the system crosses the miscibility gap in which the fcc phase coexists with the hcp phase before hydrogen saturation is reached in the pure hcp phase. While the fcc phase stays at a concentration of x=2.1 in the coexistence region during loading, it remains at a concentration of x=1.9 during unloading. The hysteretic effects observed in optical transmission and electrical resistivity result from the different properties of the low concentration fcc phase YH 1.9 and the high concentration fcc phase YH 2.1 . They can be explained on the basis of the bulk phase diagram if the different stress states during loading and unloading are taken into account. These results contradict earlier interpretations of the hysteresis in thin film YH x , based on nonsimultaneous measurements of the optical and structural properties on different films

  4. In situ measurement of the energy gap of a semiconductor using a microcontroller-based system

    International Nuclear Information System (INIS)

    Mukaro, R; Taele, B M; Tinarwo, D

    2006-01-01

    This paper describes a microcontroller-based laboratory technique for automatic in situ measurement of the energy gap of germanium. The design is based on the original undergraduate laboratory experiment in which students manually measure the variation of the reverse saturation current of a germanium diode with temperature using a current-to-voltage converter. After collecting the results students later analyse them to determine the energy gap of the semiconductor. The objective of this work was to introduce interfacing and computerized measurement systems in the undergraduate laboratory. The microcontroller-based data acquisition system and its implementation in automatic in situ measurement of the band gap of germanium diode is presented. The system which uses an LM335 temperature sensor for measuring temperature transmits the measured data to the computer via the RS232 serial port while a C++ software program developed to run on the computer monitors the serial port for incoming information sent by the microcontroller. This information is displayed on the computer screen as it comes and automatically saved to a data file. Once all the data are received, the computer performs least-squares fit to the data to compute the energy gap which is displayed on the screen together with its error estimate. For the IN34A germanium diode used the value of the energy gap obtained was 0.50 ± 0.02 eV

  5. In situ measurement of the energy gap of a semiconductor using a microcontroller-based system

    Energy Technology Data Exchange (ETDEWEB)

    Mukaro, R [Department of Physics, Bindura University of Science, P/Bag 1020, Bindura (Zimbabwe); Taele, B M [Department of Physics and Electronics, National University of Lesotho, Roma 180 (Lesotho); Tinarwo, D [Department of Physics, Bindura University of Science, P/Bag 1020, Bindura (Zimbabwe)

    2006-05-01

    This paper describes a microcontroller-based laboratory technique for automatic in situ measurement of the energy gap of germanium. The design is based on the original undergraduate laboratory experiment in which students manually measure the variation of the reverse saturation current of a germanium diode with temperature using a current-to-voltage converter. After collecting the results students later analyse them to determine the energy gap of the semiconductor. The objective of this work was to introduce interfacing and computerized measurement systems in the undergraduate laboratory. The microcontroller-based data acquisition system and its implementation in automatic in situ measurement of the band gap of germanium diode is presented. The system which uses an LM335 temperature sensor for measuring temperature transmits the measured data to the computer via the RS232 serial port while a C++ software program developed to run on the computer monitors the serial port for incoming information sent by the microcontroller. This information is displayed on the computer screen as it comes and automatically saved to a data file. Once all the data are received, the computer performs least-squares fit to the data to compute the energy gap which is displayed on the screen together with its error estimate. For the IN34A germanium diode used the value of the energy gap obtained was 0.50 {+-} 0.02 eV.

  6. In situ measurement of ceramic vacuum chamber conductive coating quality

    International Nuclear Information System (INIS)

    Doose, C.; Harkay, K.; Kim, S.; Milton, S.

    1997-01-01

    A method for measuring the relative surface resistivity and quality of conductive coatings on ceramic vacuum chambers was developed. This method is unique in that it allows one to test the coating even after the ceramic chamber is installed in the accelerator and under vacuum; furthermore, the measurement provides a localized surface reading of the coating conductance. The method uses a magnetic probe is calibrated using the measured DC end-to-end resistance of the tube under test and by comparison to a high quality test surface. The measurement method has also been verified by comparison to high frequency impedance measurements. A detailed description, results, and sensitivity of the technique are given here

  7. Deformation processes in functional materials studied by in situ neutron diffraction and ultrasonic techniques

    International Nuclear Information System (INIS)

    Sittner, P.; Novak, V.; Landa, M.; Lukas, P.

    2007-01-01

    The unique thermomechanical functions of shape memory alloys (hysteretic stress-strain-temperature responses) not their structural properties (as strength, fatigue, corrosion resistance, etc.) are primarily utilized in engineering applications. In order to better understand and predict the functional behavior, we have recently employed two dedicated non-invasive in situ experimental methods capable to follow the deformation/transformation processes in thermomechanically loaded polycrystalline samples. The in situ neutron diffraction method takes advantage of the ability of thermal neutrons to penetrate bulk samples. As a diffraction technique sensitive to interplanar spacings in crystalline solids, it provides in situ information on the changes in crystal structure, phase composition, phase stress and texture in the transforming samples. The combined in situ ultrasonic and electric resistance method follows variations of the electric resistance as well as speed and attenuation of acoustic waves propagating through the transforming sample. The acoustic waves are mainly sensitive to changes of elastic properties accompanying the deformation/transformation processes. The latter method thus follows the changes in interatomic bonds rather than changes in the interplanar lattice spacings focused in the neutron diffraction method. The methods are thus complementary. They are briefly described and selected experimental results obtained recently on NiTi alloys are presented and discussed

  8. Measurement techniques for radio frequency nanoelectronics

    CERN Document Server

    Wallis, T Mitch

    2017-01-01

    Connect basic theory with real-world applications with this practical, cross-disciplinary guide to radio frequency measurement of nanoscale devices and materials.• Learn the techniques needed for characterizing the performance of devices and their constituent building blocks, including semiconducting nanowires, graphene, and other two dimensional materials such as transition metal dichalcogenides• Gain practical insights into instrumentation, including on-wafer measurement platforms and scanning microwave microscopy• Discover how measurement techniques can be applied to solve real-world problems, in areas such as passive and active nanoelectronic devices, semiconductor dopant profiling, subsurface nanoscale tomography, nanoscale magnetic device engineering, and broadband, spatially localized measurements of biological materialsFeaturing numerous practical examples, and written in a concise yet rigorous style, this is the ideal resource for researchers, practicing engineers, and graduate students new to ...

  9. Evaluation of turbulence measurement techniques from a single Doppler lidar

    Directory of Open Access Journals (Sweden)

    T. A. Bonin

    2017-08-01

    Full Text Available Measurements of turbulence are essential to understand and quantify the transport and dispersal of heat, moisture, momentum, and trace gases within the planetary boundary layer (PBL. Through the years, various techniques to measure turbulence using Doppler lidar observations have been proposed. However, the accuracy of these measurements has rarely been validated against trusted in situ instrumentation. Herein, data from the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA are used to verify Doppler lidar turbulence profiles through comparison with sonic anemometer measurements. For 17 days at the end of the experiment, a single scanning Doppler lidar continuously cycled through different turbulence measurement strategies: velocity–azimuth display (VAD, six-beam scans, and range–height indicators (RHIs with a vertical stare.Measurements of turbulence kinetic energy (TKE, turbulence intensity, and stress velocity from these techniques are compared with sonic anemometer measurements at six heights on a 300 m tower. The six-beam technique is found to generally measure turbulence kinetic energy and turbulence intensity the most accurately at all heights (r2  ≈  0.78, showing little bias in its observations (slope of  ≈  0. 95. Turbulence measurements from the velocity–azimuth display method tended to be biased low near the surface, as large eddies were not captured by the scan. None of the methods evaluated were able to consistently accurately measure the shear velocity (r2 =  0.15–0.17. Each of the scanning strategies assessed had its own strengths and limitations that need to be considered when selecting the method used in future experiments.

  10. In-situ optical and acoustical measurements of the buoyant cyanobacterium p. Rubescens: spatial and temporal distribution patterns.

    Directory of Open Access Journals (Sweden)

    Hilmar Hofmann

    Full Text Available Optical (fluorescence and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP and a Seapoint Chlorophyll Fluorometer (SCF. In-situ measurements of the acoustic backscatter strength (ABS were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV. The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes and spatial (decimeters resolution or covering large temporal (seasonal and spatial (basin scale scales.

  11. Factors influencing in situ gamma-ray measurements

    Science.gov (United States)

    Loonstra, E. H.; van Egmond, F. M.

    2009-04-01

    Introduction In situ passive gamma-ray sensors are very well suitable for mapping physical soil properties. In order to make a qualitative sound soil map, high quality input parameters for calibration are required. This paper will focus on the factors that affect the output of in situ passive gamma-ray sensors, the primary source, soil, not taken into account. Factors The gamma-ray spectrum contains information of naturally occurring nuclides 40K, 238U and 232Th and man-made nuclides like 137Cs, as well as the total count rate. Factors that influence the concentration of these nuclides and the count rate can be classified in 3 categories. These are sensor design, environmental conditions and operational circumstances. Sensor design The main elements of an in situ gamma-ray sensor that influence the outcome and quality of the output are the crystal and the spectrum analysis method. Material and size of the crystal determine the energy resolution. Though widely used, NaI crystals are not the most efficient capturer of gamma radiation. Alternatives are BGO and CsI. BGO has a low peak resolution, which prohibits use in cases where man-made nuclides are subject of interest. The material is expensive and prone to temperature instability. CsI is robust compared to NaI and BGO. The density of CsI is higher than NaI, yielding better efficiency, especially for smaller crystal sizes. More volume results in higher energy efficiency. The reduction of the measured spectral information into concentration of radionuclides is mostly done using the Windows analysis method. In Windows, the activities of the nuclides are found by summing the intensities of the spectrum found in a certain interval surrounding a peak. A major flaw of the Windows method is the limited amount of spectral information that is incorporated into the analysis. Another weakness is the inherent use of ‘stripping factors' to account for contributions of radiation from nuclide A into the peak of nuclide B. This

  12. Retrievals of Cloud Droplet Size from the RSP Data: Validation Using in Situ Measurements

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Sinclair, Kenneth; Wasilewski, Andrzej P.; Ziemba, Luke; Crosbie, Ewan; Hair, John; Hu, Yongxiang; Hostetler, Chris; Stamnes, Snorre

    2016-01-01

    We present comparisons of cloud droplet size distributions retrieved from the Research Scanning Polarimeter (RSP) data with correlative in situ measurements made during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). This field experiment was based at St. Johns airport, Newfoundland, Canada with the latest deployment in May - June 2016. RSP was onboard the NASA C-130 aircraft together with an array of in situ and other remote sensing instrumentation. The RSP is an along-track scanner measuring polarized and total reflectances in9 spectral channels. Its unique high angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135 and 165 degrees. A parametric fitting algorithm applied to the polarized reflectances provides retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT), which allows us to retrieve the droplet size distribution (DSD) itself. The latter is important in the case of clouds with complex structure, which results in multi-modal DSDs. During NAAMES the aircraft performed a number of flight patterns specifically designed for comparison of remote sensing retrievals and in situ measurements. These patterns consisted of two flight segments above the same straight ground track. One of these segments was flown above clouds allowing for remote sensing measurements, while the other was at the cloud top where cloud droplets were sampled. We compare the DSDs retrieved from the RSP data with in situ measurements made by the Cloud Droplet Probe (CDP). The comparisons show generally good agreement with deviations explainable by the position of the aircraft within cloud and by presence of additional cloud layers in RSP view that do not contribute to the in situ DSDs. In the

  13. Neutron flux measurement utilizing Campbell technique

    International Nuclear Information System (INIS)

    Kropik, M.

    2000-01-01

    Application of the Campbell technique for the neutron flux measurement is described in the contribution. This technique utilizes the AC component (noise) of a neutron chamber signal rather than a usually used DC component. The Campbell theorem, originally discovered to describe noise behaviour of valves, explains that the root mean square of the AC component of the chamber signal is proportional to the neutron flux (reactor power). The quadratic dependence of the reactor power on the root mean square value usually permits to accomplish the whole current power range of the neutron flux measurement by only one channel. Further advantage of the Campbell technique is that large pulses of the response to neutrons are favoured over small pulses of the response to gamma rays in the ratio of their mean square charge transfer and thus, the Campbell technique provides an excellent gamma rays discrimination in the current operational range of a neutron chamber. The neutron flux measurement channel using state of the art components was designed and put into operation. Its linearity, accuracy, dynamic range, time response and gamma discrimination were tested on the VR-1 nuclear reactor in Prague, and behaviour under high neutron flux (accident conditions) was tested on the TRIGA nuclear reactor in Vienna. (author)

  14. High-voltage test and measuring techniques

    CERN Document Server

    Hauschild, Wolfgang

    2014-01-01

    It is the intent of this book to combine high-voltage (HV) engineering with HV testing technique and HV measuring technique. Based on long-term experience gained by the authors as lecturer and researcher as well as member in international organizations, such as IEC and CIGRE, the book will reflect the state of the art as well as the future trends in testing and diagnostics of HV equipment to ensure a reliable generation, transmission and distribution of electrical energy. The book is intended not only for experts but also for students in electrical engineering and high-voltage engineering.

  15. Applications of in situ optical measurements in ecological and biogeochemical studies - a framework for a user-driven national network

    Science.gov (United States)

    Bergamaschi, B. A.; Pellerin, B. A.; Downing, B. D.; Saraceno, J.; Aiken, G.; Stumpner, P.

    2010-12-01

    A critical challenge for understanding the dynamics between water quality, and ecological processes is obtaining data at time scales in which changes occur. Traditional, discrete sampling, approaches for data collection are often limited by analytical and field costs, site access, and logistical challenges, for long-term sampling at a large number of sites. The timescales of change, however, are often minutes, hours, or years. In situ optical (absorbance and fluorescence) instruments offer opportunities to help overcome these difficulties by directly or indirectly measuring constituents of interest. In situ optical instrumentation have been in use in oceanographic studies for well over 50 years, and as advances in the science, engineering and technology of these sensors have improved, optical sensors have become more commercially viable and available for research. We present several examples that highlight applications of in situ optical measurements for understanding dynamics in stream, river, and estuary systems. Examples illustrate the utility of in situ optical sensors for studies over short-duration events of days to weeks (diurnal cycles, tidal cycles, storm events and snowmelt periods) as well as longer-term continuous monitoring for months to years. We also highlight applied in situ optical measurements as proxies for constituents that are difficult and expensive to measure at high spatiotemporal resolution, for example, dissolved organic carbon, dissolved organic nitrogen, mercury and methylmercury, trihalomethane precursors, harmful algal blooms, and others. We propose that relatively simple absorbance and fluorescence measurements made in situ could be incorporated into short and long-term ecological research and monitoring programs, resulting in advanced understanding of sources that contribute to water quality improvements or degradation, contaminant and carbon cycling, and the occurrence and persistence of harmful algal blooms. Linking these efforts

  16. Manipulation of Samples at Extreme Temperatures for Fast in-situ Synchrotron Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Richard [Materials Development, Inc., Arlington Heights, IL (United States)

    2016-04-22

    An aerodynamic sample levitation system with laser beam heating was integrated with the APS beamlines 6 ID-D, 11 ID-C and 20 BM-B. The new capability enables in-situ measurements of structure and XANES at extreme temperatures (300-3500 °C) and in conditions that completely avoid contact with container surfaces. In addition to maintaining a high degree of sample purity, the use of aerodynamic levitation enables deep supercooling and greatly enhanced glass formation from a wide variety of melts and liquids. Development and integration of controlled extreme sample environments and new measurement techniques is an important aspect of beamline operations and user support. Processing and solidifying liquids is a critical value-adding step in manufacturing semiconductors, optical materials, metals and in the operation of many energy conversion devices. Understanding structural evolution is of fundamental importance in condensed materials, geology, and biology. The new capability provides unique possibilities for materials research and helps to develop and maintain a competitive materials manufacturing and energy utilization industry. Test samples were used to demonstrate key features of the capability including experiments on hot crystalline materials, liquids at temperatures from about 500 to 3500 °C. The use of controlled atmospheres using redox gas mixtures enabled in-situ changes in the oxidation states of cations in melts. Significant innovations in this work were: (i) Use of redox gas mixtures to adjust the oxidation state of cations in-situ (ii) Operation with a fully enclosed system suitable for work with nuclear fuel materials (iii) Making high quality high energy in-situ x-ray diffraction measurements (iv) Making high quality in-situ XANES measurements (v) Publishing high impact results (vi) Developing independent funding for the research on nuclear materials This SBIR project work led to a commercial instrument product for the niche market of processing and

  17. In Situ Local Measurement of Austenite Mechanical Stability and Transformation Behavior in Third-Generation Advanced High-Strength Steels

    Science.gov (United States)

    Abu-Farha, Fadi; Hu, Xiaohua; Sun, Xin; Ren, Yang; Hector, Louis G.; Thomas, Grant; Brown, Tyson W.

    2018-05-01

    Austenite mechanical stability, i.e., retained austenite volume fraction (RAVF) variation with strain, and transformation behavior were investigated for two third-generation advanced high-strength steels (3GAHSS) under quasi-static uniaxial tension: a 1200 grade, two-phase medium Mn (10 wt pct) TRIP steel, and a 980 grade, three-phase TRIP steel produced with a quenching and partitioning heat treatment. The medium Mn (10 wt pct) TRIP steel deforms inhomogeneously via propagative instabilities (Lüders and Portevin Le Châtelier-like bands), while the 980 grade TRIP steel deforms homogenously up to necking. The dramatically different deformation behaviors of these steels required the development of a new in situ experimental technique that couples volumetric synchrotron X-ray diffraction measurement of RAVF with surface strain measurement using stereo digital image correlation over the beam impingement area. Measurement results with the new technique are compared to those from a more conventional approach wherein strains are measured over the entire gage region, while RAVF measurement is the same as that in the new technique. A determination is made as to the appropriateness of the different measurement techniques in measuring the transformation behaviors for steels with homogeneous and inhomogeneous deformation behaviors. Extension of the new in situ technique to the measurement of austenite transformation under different deformation modes and to higher strain rates is discussed.

  18. In-Situ Measurement of Hall Thruster Erosion Using a Fiber Optic Regression Probe

    Science.gov (United States)

    Polzin, Kurt; Korman, Valentin

    2009-01-01

    One potential life-limiting mechanism in a Hall thruster is the erosion of the ceramic material comprising the discharge channel. This is especially true for missions that require long thrusting periods and can be problematic for lifetime qualification, especially when attempting to qualify a thruster by analysis rather than a test lasting the full duration of the mission. In addition to lifetime, several analytical and numerical models include electrode erosion as a mechanism contributing to enhanced transport properties. However, there is still a great deal of dispute over the importance of erosion to transport in Hall thrusters. The capability to perform an in-situ measurement of discharge channel erosion is useful in addressing both the lifetime and transport concerns. An in-situ measurement would allow for real-time data regarding the erosion rates at different operating points, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over a thruster s operating envelope would also be useful in the modeling of the detailed physics inside the discharge chamber. There are many different sensors and techniques that have been employed to quantify discharge channel erosion in Hall thrusters. Snapshots of the wear pattern can be obtained at regular shutdown intervals using laser profilometry. Many non-intrusive techniques of varying complexity and sensitivity have been employed to detect the time-varying presence of erosion products in the thruster plume. These include the use quartz crystal microbalances, emission spectroscopy, laser induced flourescence, and cavity ring-down spectroscopy. While these techniques can provide a very accurate picture of the level of eroded material in the thruster plume, it is more difficult to use them to determine the location from which the material was eroded. Furthermore, none of the methods cited provide a true in-situ measure of erosion at the channel surface while

  19. In situ gamma-ray spectrometric measurements of uranium in phosphates soil

    International Nuclear Information System (INIS)

    Lavi, N.; Ne'eman, E.; Brenner, S.; Haquin, G.; Nir-El, Y.

    1997-01-01

    Abstract Radioactivity concentration of 238 U in a phosphate ores quarry was measured in situ. Independently, soil samples collected in the site were measured in the laboratory. It was disclosed that radon emanation from the soil lowers in situ results that are derived from radon daughters. Uranium concentration was found to be 121.6±1.9 mg kg -1 (authors)

  20. Experimental and mathematical simulation techniques for determining an in-situ response testing method for neutron sensors used in reactor power plant protection systems

    International Nuclear Information System (INIS)

    Behbahani, A.

    1983-01-01

    An analytical neutron sensor response model and methods for transient response measurements of neutron sensors (compensated ionization chamber), including possible in-situ techniques have been developed and evaluated to meet the provisions of Draft Standard ISA Sd67.06, IEEE 338-1977, and NRC Guide 1.118. One in-situ method requires the perturbation of the high voltage detector (sensor) power supply and measurement of the sensor response. The response to a perturbation of the power supply is related to the response of the sensor to a transient change in neutron flux. Random signal analysis is another in-situ technique to monitor the neutron sensor response. In this method the power spectrum of the inherent fluctuations from the neutron sensor output (current in CIC) are measured and evaluated. Transient response techniques (including in-situ methods) are experimentally and analytically evaluated to identify the mechanisms which may cause degradation in the response of the neutron sensors. The objective of the experimental evaluation was to correlate the measured response time using transient radiation flux changes and power supply perturbation. The objective of the analytical model of the different sensor response was to predict response time and degradation mechanisms

  1. Seminar on Detectors and measurements techniques

    International Nuclear Information System (INIS)

    Holm, E.

    2002-01-01

    A Nordic Seminar on detectors and radionuclide measurement techniques was held in Lund, Sweden, May 3-4, 2001. The objective was to highlight recent progress and problems for techniques to study environmental radioactivity. It covered the aspect of detector sample geometry's and methods for evaluation of gamma gamma pulse height distributions. Within the field of alpha-spectrometric techniques gridded ionisation chambers, semiconductor detectors and a general description for analysis of alpha-particle-spectra were presented. Recent development in mass spectrometric techniques, AMS (Accelerator Mass Spectrometry) and ICPMS (Inductively Coupled Plasma mass Spectrometry) for long-lived radionuclides was described. Principles for analysis of beta particle emitters, especially by liquid scintillation were presented. The seminar also covered radiochemistry such advantages and disadvantages between ion exchange, solvent extraction and extraction chromatography. The use of controlled laboratory conditions for discerning the dynamics of accumulation in organisms was demonstrated. Other techniques such as neutron activation were also shown to be useful analytical tool for certain long-lived radionuclides. The results of the intercalibration exercises within the Nordic countries showed the importance of such analytical quality control. (au)

  2. Seminar on Detectors and measurements techniques

    Energy Technology Data Exchange (ETDEWEB)

    Holm, E. (ed.) [Risoe National Lab., Roskilde (Denmark)

    2002-07-01

    A Nordic Seminar on detectors and radionuclide measurement techniques was held in Lund, Sweden, May 3-4, 2001. The objective was to highlight recent progress and problems for techniques to study environmental radioactivity. It covered the aspect of detector sample geometry's and methods for evaluation of gamma gamma pulse height distributions. Within the field of alpha-spectrometric techniques gridded ionisation chambers, semiconductor detectors and a general description for analysis of alpha-particle-spectra were presented. Recent development in mass spectrometric techniques, AMS (Accelerator Mass Spectrometry) and ICPMS (Inductively Coupled Plasma mass Spectrometry) for long-lived radionuclides was described. Principles for analysis of beta particle emitters, especially by liquid scintillation were presented. The seminar also covered radiochemistry such advantages and disadvantages between ion exchange, solvent extraction and extraction chromatography. The use of controlled laboratory conditions for discerning the dynamics of accumulation in organisms was demonstrated. Other techniques such as neutron activation were also shown to be useful analytical tool for certain long-lived radionuclides. The results of the intercalibration exercises within the Nordic countries showed the importance of such analytical quality control. (au)

  3. Description of measurement techniques for surface contaminations

    International Nuclear Information System (INIS)

    Bourrez, E.

    2001-01-01

    The needs of evaluation of the surface contamination are numerous in the processes of production and management of radioactive waste. The market of radiation protection materials proposes a lot of devices answering to the almost all these needs. These device have however their conditions and particular limits for use. To realize correct measurements it is use the device, the technique and the methods adapted to the need, by taking into account the optimization of economical aspect. (N.C.)

  4. Novel Sensor for the In Situ Measurement of Uranium Fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Hatfield, Kirk [Univ. of Florida, Gainesville, FL (United States)

    2015-02-10

    The goal of this project was to develop a sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of flux for uranium and groundwater in porous media. Measurable contaminant fluxes [J] are essentially the product of concentration [C] and groundwater flux or specific discharge [q ]. The sensor measures [J] and [q] by changes in contaminant and tracer amounts respectively on a sorbent. By using measurement rather than inference from static parameters, the sensor can directly advance conceptual and computational models for field scale simulations. The sensor was deployed in conjunction with DOE in obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) at the Rifle IFRC Site in Rifle, Colorado. Project results have expanded our current understanding of how field-scale spatial variations in fluxes of uranium, groundwater and salient electron donor/acceptors are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The coupling between uranium, various nutrients and micro flora can be used to estimate field-scale rates of uranium attenuation and field-scale transitions in microbial communities. This research focuses on uranium (VI), but the sensor principles and design are applicable to field-scale fate and transport of other radionuclides. Laboratory studies focused on sorbent selection and calibration, along with sensor development and validation under controlled conditions. Field studies were conducted at the Rifle IFRC Site in Rifle, Colorado. These studies were closely coordinated with existing SBR (formerly ERSP) projects to complement data collection. Small field tests were conducted during the first two years that focused on evaluating field-scale deployment procedures and validating sensor performance under

  5. Drag balance Cubesat attitude motion effects on in-situ thermosphere density measurements

    Science.gov (United States)

    Felicetti, Leonard; Santoni, Fabio

    2014-08-01

    The dynamics of Cubesats carrying a drag balance instrument (DBI) for in situ atmosphere density measurements is analyzed. Atmospheric drag force is measured by the displacement of two light plates exposed to the incoming particle flow. This system is well suited for a distributed sensor network in orbit, to get simultaneous in situ local (non orbit averaged) measurements in multiple positions and orbit heights, contributing to the development and validation of global atmosphere models. The implementation of the DBI leads to orbit normal pointing spinning two body system. The use of a spin-magnetic attitude control system is suggested, based only on magnetometer readings, contributing to making the system simple, inexpensive, and reliable. It is shown, by an averaging technique, that this system provides for orbit normal spin axis pointing. The effect of the coupling between the attitude dynamics and the DBI is evaluated, analyzing its frequency content and showing that no frequency components arise, affecting the DBI performance. The analysis is confirmed by Monte Carlo numerical simulation results.

  6. Testing coordinate measuring arms with a geometric feature-based gauge: in situ field trials

    Science.gov (United States)

    Cuesta, E.; Alvarez, B. J.; Patiño, H.; Telenti, A.; Barreiro, J.

    2016-05-01

    This work describes in detail the definition of a procedure for calibrating and evaluating coordinate measuring arms (AACMMs or CMAs). CMAs are portable coordinate measuring machines that have been widely accepted in industry despite their sensitivity to the skill and experience of the operator in charge of the inspection task. The procedure proposed here is based on the use of a dimensional gauge that incorporates multiple geometric features, specifically designed for evaluating the measuring technique when CMAs are used, at company facilities (workshops or laboratories) and by the usual operators who handle these devices in their daily work. After establishing the procedure and manufacturing the feature-based gauge, the research project was complemented with diverse in situ field tests performed with the collaboration of companies that use these devices in their inspection tasks. Some of the results are presented here, not only comparing different operators but also comparing different companies. The knowledge extracted from these experiments has allowed the procedure to be validated, the defects of the methodologies currently used for in situ inspections to be detected, and substantial improvements for increasing the reliability of these portable instruments to be proposed.

  7. Testing coordinate measuring arms with a geometric feature-based gauge: in situ field trials

    International Nuclear Information System (INIS)

    Cuesta, E; Alvarez, B J; Patiño, H; Telenti, A; Barreiro, J

    2016-01-01

    This work describes in detail the definition of a procedure for calibrating and evaluating coordinate measuring arms (AACMMs or CMAs). CMAs are portable coordinate measuring machines that have been widely accepted in industry despite their sensitivity to the skill and experience of the operator in charge of the inspection task. The procedure proposed here is based on the use of a dimensional gauge that incorporates multiple geometric features, specifically designed for evaluating the measuring technique when CMAs are used, at company facilities (workshops or laboratories) and by the usual operators who handle these devices in their daily work. After establishing the procedure and manufacturing the feature-based gauge, the research project was complemented with diverse in situ field tests performed with the collaboration of companies that use these devices in their inspection tasks. Some of the results are presented here, not only comparing different operators but also comparing different companies. The knowledge extracted from these experiments has allowed the procedure to be validated, the defects of the methodologies currently used for in situ inspections to be detected, and substantial improvements for increasing the reliability of these portable instruments to be proposed. (paper)

  8. An automated, noncontact laser profile meter for measuring soil roughness in situ

    International Nuclear Information System (INIS)

    Bertuzzi, P.; Caussignac, J.M.; Stengel, P.; Morel, G.; Lorendeau, J.Y.; Pelloux, G.

    1990-01-01

    This paper describes a new optical technique for measuring in situ soil surface roughness profiles using a laser profile meter. The described method uses a low-power HeNe (helium-neon) laser as a laser source and a matrix-array detector, as the laser image. The matrix-array detector gives a defect-of-focus laser image of the soil. Soil elevation is measured by projecting a laser beam normally onto the soil surface and measuring the ratio (Ir/It) on the matrix-array detector between the referenced intensity of the return Laser beam (Ir), measured by the central cell of the detector and the total intensity (It), measured by all the cells of the detector. The measured profile leads to 1001 sampled values (volt, range 0 to 10 V) of the surface height profile, at a constant increment of 0.002 m, registered automatically on a microcomputer. A calibration is made in the laboratory in order to convert the electrical measurements into elevation data. The method is universal and can be adapted to different scales of soil surface roughness. Changing the scale is done by changing the lens. Tests were carried out to improve this method for field use and to compare this technique with a method of reference. This technique is considerably quicker and causes no disturbance to the soil. The accuracy on height measurement depends on the choice of the lens. The small focal lens is convenient for smooth soil surfaces. The accuracy on height measurement is less than 0.75 mm. The wide focal lens is convenient for rough soil surfaces. The accuracy on height measurement is estimated at about 1.0 to 1.5 mm

  9. In situ tagging technique for fishes provides insight into growth and movement of invasive lionfish.

    Science.gov (United States)

    Akins, John L; Morris, James A; Green, Stephanie J

    2014-10-01

    Information on fish movement and growth is primarily obtained through the marking and tracking of individuals with external tags, which are usually affixed to anesthetized individuals at the surface. However, the quantity and quality of data obtained by this method is often limited by small sample sizes owing to the time associated with the tagging process, high rates of tagging-related mortality, and displacement of tagged individuals from the initial capture location. To address these issues, we describe a technique for applying external streamer and dart tags in situ, which uses SCUBA divers to capture and tag individual fish on the sea floor without the use of anesthetic. We demonstrate this method for Indo-Pacific lionfish (Pterois volitans/P. miles), species which are particularly vulnerable to barotrauma when transported to and handled at the surface. To test our method, we tagged 161 individuals inhabiting 26 coral reef locations in the Bahamas over a period of 3 years. Our method resulted in no instances of barotrauma, reduced handling and recovery time, and minimal post-tagging release displacement compared with conventional ex situ tag application. Opportunistic resighting and recapture of tagged individuals reveals that lionfish exhibit highly variable site fidelity, movement patterns, and growth rates on invaded coral reef habitats. In total, 24% of lionfish were resighted between 29 and 188 days after tagging. Of these, 90% were located at the site of capture, while the remaining individuals were resighted between 200 m and 1.1 km from initial site of capture over 29 days later. In situ growth rates ranged between 0.1 and 0.6 mm/day. While individuals tagged with streamer tags posted slower growth rates with increasing size, as expected, there was no relationship between growth rate and fish size for individuals marked with dart tags, potentially because of large effects of tag presence on the activities of small bodied lionfish (i.e., lionfish

  10. Savannah River Site Experiences in In Situ Field Measurements of Radioactive Materials

    International Nuclear Information System (INIS)

    Moore, F.S.

    1999-01-01

    This paper discusses some of the field gamma-ray measurements made at the Savannah River Site, the equipment used for the measurements, and lessons learned during in situ identification and characterization of radioactive materials

  11. Comparison of in-situ gamma ray spectrometry measurements with conventional methods in determination natural and artificial nuclides in soil

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Doubal, A. W.

    2010-12-01

    Two nuclear analytical techniques (In-Situ Gamma ray spectrometry and laboratory gamma ray spectrometry) for determination of natural and artificial radionuclides in soil have been validated. The first technique depends on determination of radioactivity content of representative samples of the studied soil after laboratory preparation, while the second technique is based on direct determination of radioactivity content of soil using in-situ gamma-ray spectrometer. Analytical validation parameter such as detection limits, repeatability, reproducibility in addition to measurement uncertainties were estimated and compared for both techniques. Comparison results have shown that the determination of radioactivity in soil should apply the two techniques together where each of techniques is characterized by its low detection limit and uncertainty suitable for defined application of measurement. Radioactive isotopes in various locations were determined using the two methods by measuring 40 k, 238 U,and 137 Cs. The results showed that there are differences in attenuation factors due to soil moisture content differences; wet weight corrections should be applied when the two techniques are compared. (author)

  12. Intercomparison test of various aerosol measurement techniques

    International Nuclear Information System (INIS)

    Cherdron, W.; Hassa, C.; Jordan, S.

    1984-01-01

    At the suggestion of the CONT group (Containment Loading and Response), which is a subgroup of the Safety Working Group of the Fast Reactor Coordinating Committee, a group of experts undertook a comparison of the techniques of sodium aerosol measurement used in various laboratories in the EC. The following laboratories took part in the exercise: CEN-Mol (Belgium), CEA-Cadarache (France), CEA-Fontenay-aux-Roses (France), KfK-Karlsruhe (Federal Republic of Germany), ENEA-Bologna (Italy), and UKAEA-Winfrith (United Kingdom). The objective of the aerosol measurement workshop was to assess the applicability and reliability of specific aerosol measuring instruments. Measurements performed with equipment from the participating laboratories were evaluated using a standard procedure. This enabled an estimate of the accuracy of the experimental data to be provided for the verification of aerosol codes. Thus these results can be used as input for the physical modelling of aerosol behaviour, and the work reported here is a contribution to the definition of the radioactive source term for severe accidents in LMFBRs. The aerosol experts participating in the exercise agreed to concentrate on the techniques of measuring aerosol particle size distributions. The tests were performed at the FAUNA test facility using the aerosol loop. A sodium spray fire, which provides a continuous aerosol source of variable concentration, was produced under open-loop conditions in this facility. Although the primary objective of the workshop was to determine the particle size distributions of the aerosols, measurements of the sodium mass concentration were also made

  13. Steel research using neutron beam techniques. In-situ neutron diffraction, small-angle neutron scattering and residual stress analysis

    International Nuclear Information System (INIS)

    Sueyoshi, Hitoshi; Ishikawa, Nobuyuki; Yamada, Katsumi; Sato, Kaoru; Nakagaito, Tatsuya; Matsuda, Hiroshi; Arakaki, Yu; Tomota, Yo

    2014-01-01

    Recently, the neutron beam techniques have been applied for steel researches and industrial applications. In particular, the neutron diffraction is a powerful non-destructive method that can analyze phase transformation and residual stress inside the steel. The small-angle neutron scattering is also an effective method for the quantitative evaluation of microstructures inside the steel. In this study, in-situ neutron diffraction measurements during tensile test and heat treatment were conducted in order to investigate the deformation and transformation behaviors of TRIP steels. The small-angle neutron scattering measurements of TRIP steels were also conducted. Then, the neutron diffraction analysis was conducted on the high strength steel weld joint in order to investigate the effect of the residual stress distribution on the weld cracking. (author)

  14. An improved in situ measurement of offset phase shift towards quantitative damping-measurement with AFM

    International Nuclear Information System (INIS)

    Minary-Jolandan, Majid; Yu Minfeng

    2008-01-01

    An improved approach is introduced in damping measurement with atomic force microscope (AFM) for the in situ measurement of the offset phase shift needed for determining the intrinsic mechanical damping in nanoscale materials. The offset phase shift is defined and measured at a point of zero contact force according to the deflection part of the AFM force plot. It is shown that such defined offset phase shift is independent of the type of sample material, varied from hard to relatively soft materials in this study. This improved approach allows the self-calibrated and quantitative damping measurement with AFM. The ability of dynamic mechanical analysis for the measurement of damping in isolated one-dimensional nanostructures, e.g. individual multiwalled carbon nanotubes, was demonstrated

  15. New application technology for 'in situ' pipeline protection using pigging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pretorius, Louis Charles [Corrocoat SA (PTY) Ltd., Durban (South Africa)

    2005-07-01

    Pigging of long pipelines is a technique for in situ (field) coating, creating seamless internal structural linings. Originally developed for cleaning pipes, the system was adapted to apply internal anti-corrosion protection to pipes using a thin epoxy layer, which had some problems in weld coverage, stress cracking, poor cold weather curing and the inability to fill pitting corrosion metal loss. New coating materials, revised application methods and modified pigging equipment have made it possible to apply in situ liquid film coatings up to 1 mm thick, as an internal corrosion barrier to pipes, in a single application (similar to continuous screeding) resulting in a bonded 'GRP pipe within a steel pipe'. The method can be used for new projects on fully welded pipe lines avoiding coating problems associated with flange joints and/or couplings, or for refurbishment of old pipelines, varying from 150-900 mm diameter, up to 12 km long. Pipes can be buried, submerged, continuously welded or flanged. Many different pipes, such as oil platform to shore based pipelines, can all be treated using this method. Thick film polymer pigging techniques create new possibilities for Engineers to extend the life of pipeline systems, with significant cost savings compared to replacement pipe. (author)

  16. A Novel FCC Catalyst Based on a Porous Composite Material Synthesized via an In Situ Technique

    Directory of Open Access Journals (Sweden)

    Shu-Qin Zheng

    2015-11-01

    Full Text Available To overcome diffusion limitations and improve transport in microporous zeolite, the materials with a wide-pore structure have been developed. In this paper, composite microspheres with hierarchical porous structure were synthesized by an in situ technique using sepiolite, kaolin and pseudoboehmite as raw material. A novel fluid catalytic cracking (FCC catalyst for maximizing light oil yield was prepared based on the composite materials. The catalyst was characterized by XRD, FT-IR, SEM, nitrogen adsorption-desorption techniques and tested in a bench FCC unit. The results indicated that the catalyst had more meso- and macropores and more acid sites than the reference catalyst, and thus can increase light oil yield by 1.31 %, while exhibiting better gasoline and coke selectivity.

  17. Concrete - Opalinus clay interaction: in-situ experiment and technique for coring undisturbed interfaces

    International Nuclear Information System (INIS)

    Maeder, U.; Dolder, F.; Jenni, A.; Schwyn, B.; Frieg, B.; Eul, A.

    2012-01-01

    Document available in extended abstract form only. Designs for deep geologic disposal of radioactive waste foresee cementitious materials as structural elements, backfill or waste matrix. Interactions near interfaces are driven by chemical gradients in pore water and resultant diffusive transport, and are predicted to lead to mineralogical alterations in the barrier system, which in turn influences properties like swelling pressure, permeability, or specific retention in case of clay materials. Reactive transport modelling predictions and laboratory and in situ studies revealed significant alteration in both cement and clay-stone. An increase in porosity in the cement close to the interface, and clogging in the clay-stone adjacent to the interface is commonly predicted and observed. The Cement-Clay Interaction (CI) Experiment at the Mont Terri Underground Laboratory (St. Ursanne, Switzerland) aims at demonstrating some of the processes at interfaces to be expected at a realistic spatial scale and under saturated conditions. A duration of 20 years is foreseen during which reaction progress should become measurable and thus comparable to laboratory experiments and modelling predictions. Companion studies address cement hydration, and develop new high-resolution techniques for phase identification using μ-X-ray diffraction at the Paul Scherrer Institut. The field experiment at Mont Terri comprises two vertical boreholes (384 mm diameter, up to 9 m length) in Opalinus Clay (OPA) filled with layers of three different concretes and bentonite. The concrete formulations are based on three different binders: Portland cement (OPC), ESDRED cement designed for repository applications (40% of cement substituted by silica fume), and low alkali cement (LAC, containing slag and nano-silica). The characterisation of the three concrete-OPA interfaces after 2 years of alteration are presented in a companion contribution (Jenni et al.). A key issue is the repeat recovery of

  18. In situ measurement of low-Z material coating thickness on high Z substrate for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D., E-mail: dmueller@pppl.gov; Roquemore, A. L.; Jaworski, M.; Skinner, C. H.; Miller, J.; Creely, A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Raman, P.; Ruzic, D. [Department of Nuclear, Plasma, and Radiological Engineering, Center for Plasma Material Interaction, University of Illinois, Urbana, Illinois 61801 (United States)

    2014-11-15

    Rutherford backscattering of energetic particles can be used to determine the thickness of a coating of a low-Z material over a heavier substrate. Simulations indicate that 5 MeV alpha particles from an {sup 241}Am source can be used to measure the thickness of a Li coating on Mo tiles between 0.5 and 15 μm thick. Using a 0.1 mCi source, a thickness measurement can be accomplished in 2 h of counting. This technique could be used to measure any thin, low-Z material coating (up to 1 mg/cm{sup 2} thick) on a high-Z substrate, such as Be on W, B on Mo, or Li on Mo. By inserting a source and detector on a moveable probe, this technique could be used to provide an in situ measurement of the thickness of Li coating on NSTX-U Mo tiles. A test stand with an alpha source and an annular solid-state detector was used to investigate the measurable range of low-Z material thicknesses on Mo tiles.

  19. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    C. Poix

    1996-01-01

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  20. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    Christophe Poix

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  1. Following the Formation of Active Co(III) Sites in Cobalt Substituted Aluminophosphates Catalysts by In-Situ Combined UV-VIS/XAFS/XRD Technique

    International Nuclear Information System (INIS)

    Sankar, Gopinathan; Fiddy, Steven; Harvey, Ian; Hayama, Shusaku; Bushnell-Wye, Graham; Beale, Andrew M.

    2007-01-01

    Cobalt substituted aluminophosphates, CoAlPO-34 (Chabazite structure) and DAF-8 (Phillipsite structure) were investigated by in situ combined XRD/EXAFS/UV-VIS technique. In-situ combined XRD, Co K-edge EXAFS and UV-Vis measurements carried out during the calcination process reveal that CoAlPO-34 containing 10 wt percent cobalt is stable and the cobalt ions are converted from Co(II) in the as synthesised form to Co(III); DAF-8 containing about 25 percent cobalt is not stable and does not show change in oxidation state

  2. Progress in automation, robotics and measuring techniques

    CERN Document Server

    Zieliński, Cezary; Kaliczyńska, Małgorzata

    2015-01-01

    This book presents recent progresses in control, automation, robotics, and measuring techniques. It includes contributions of top experts in the fields, focused on both theory and industrial practice. The particular chapters present a deep analysis of a specific technical problem which is in general followed by a numerical analysis and simulation, and results of an implementation for the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be useful for both researchers working in the area of engineering sciences and for practitioners solving industrial problems.    .

  3. Measuring techniques in emission computed tomography

    International Nuclear Information System (INIS)

    Jordan, K.; Knoop, B.

    1988-01-01

    The chapter reviews the historical development of the emission computed tomography and its basic principles, proceeds to SPECT and PET, special techniques of emission tomography, and concludes with a comprehensive discussion of the mathematical fundamentals of the reconstruction and the quantitative activity determination in vivo, dealing with radon transformation and the projection slice theorem, methods of image reconstruction such as analytical and algebraic methods, limiting conditions in real systems such as limited number of measured data, noise enhancement, absorption, stray radiation, and random coincidence. (orig./HP) With 111 figs., 6 tabs [de

  4. Techniques for beam impedance measurements above cutoff

    International Nuclear Information System (INIS)

    Lambertson, G.R.; Jacob, A.F.; Rimmer, R.A.; Voelker, F.

    1990-08-01

    Methods for measuring beam impedance above cutoff have been very limited. For design work on the ALS we have developed two techniques that yield data in the frequency domain with high sensitivity. The first is an extension of the wire method; the second utilizes traveling TM waves to simulate the beam's fields at the wall, and thus avoids the mechanical difficulties of mounting the wire. It is also more sensitive than the other method but the interpretation is complicated by the presence of higher order modes. With either method we were able to detect resonant peaks smaller than 1 Ohm at 10 GHz

  5. In situ stress measurement with the new LVDT - Cell - method description and verification

    International Nuclear Information System (INIS)

    Hakala, M.; Christiansson, R.; Martin, D.; Siren, T.; Kemppainen, K.

    2013-11-01

    Posiva Oy and SKB (Svensk Kaernbraenslehantering AB) tested the suitability a new LVDT-cell (Linear Variable Differential Transducer cell) to measure the induced stresses in the vicinity of an excavated surface and further to use these results to interpret the in situ state of stress. It utilises the overcoring methodology, measuring the radial convergence of four diameters using eight LVDTs, and is similar in concept to the USBM-gauge. A 127 mm diameter pilot-hole is required and the overcore diameter is 200 mm. The minimum overcoring length is 350 mm, and hence a compact drill can be utilised. Extensive testing of the LVDT-cell shows it to be robust and suitable for use in an underground environment. Sensitivity tests also show that the cell can withstand a range of operating conditions and still provide acceptable results. The in situ stress at the measurement location can be solved by numerical inversion using the results of at least three overcoring measurements around the three-dimensional tunnel section. The large dimensions of the measurement tool and the ability to utilise multiple measurements at various locations in a tunnel section, provides flexibility in selecting an appropriate rock mass volume. Because the inversion technique relies on knowing the exact location of the measurements and the geometry profile of the tunnel, modern survey techniques such as Lidar or photogrammetric technology should be used. Checks using traditional surveying techniques should also be used to ensure adequate survey resolution, specially in case of sidecoring measurements. To evaluate the suitability of the LVDT-cell to provide the in situ state of stress, tests were carried out in the drill-and-blast TASS tunnel and TBM tunnel at the Aespoe Hard Rock Laboratory in Sweden. The state of stress established using the LVDT-cell was in agreement with the state of stress established previously using traditional overcoring and hydraulic fracturing methods. In this study, the

  6. In situ stress measurement with the new LVDT - Cell - method description and verification

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [KMS Hakala Oy, Nokia (Finland); Christiansson, R. [Svensk Kaernbraenslehantering AB, Stockholm (Sweden); Martin, D. [Univ. of Alberta, Edmonton (Canada); Siren, T.; Kemppainen, K.

    2013-11-15

    Posiva Oy and SKB (Svensk Kaernbraenslehantering AB) tested the suitability a new LVDT-cell (Linear Variable Differential Transducer cell) to measure the induced stresses in the vicinity of an excavated surface and further to use these results to interpret the in situ state of stress. It utilises the overcoring methodology, measuring the radial convergence of four diameters using eight LVDTs, and is similar in concept to the USBM-gauge. A 127 mm diameter pilot-hole is required and the overcore diameter is 200 mm. The minimum overcoring length is 350 mm, and hence a compact drill can be utilised. Extensive testing of the LVDT-cell shows it to be robust and suitable for use in an underground environment. Sensitivity tests also show that the cell can withstand a range of operating conditions and still provide acceptable results. The in situ stress at the measurement location can be solved by numerical inversion using the results of at least three overcoring measurements around the three-dimensional tunnel section. The large dimensions of the measurement tool and the ability to utilise multiple measurements at various locations in a tunnel section, provides flexibility in selecting an appropriate rock mass volume. Because the inversion technique relies on knowing the exact location of the measurements and the geometry profile of the tunnel, modern survey techniques such as Lidar or photogrammetric technology should be used. Checks using traditional surveying techniques should also be used to ensure adequate survey resolution, specially in case of sidecoring measurements. To evaluate the suitability of the LVDT-cell to provide the in situ state of stress, tests were carried out in the drill-and-blast TASS tunnel and TBM tunnel at the Aespoe Hard Rock Laboratory in Sweden. The state of stress established using the LVDT-cell was in agreement with the state of stress established previously using traditional overcoring and hydraulic fracturing methods. In this study, the

  7. Novel XRD technique and equipment for in-situ monitoring of phase transformations in lithium batteries during cycling

    International Nuclear Information System (INIS)

    Nikolov, J.; Howlett, P.

    2002-01-01

    Full text: Safe, rechargeable batteries utilising a lithium metal electrode have not been realised due to phenomena, which occur on the lithium surface during the cycling of a battery. Lithium ion conduction inhomogeneities through the surface film give rise to uneven deposition of lithium, which can result in short circuits. The large potential increase in energy density that the use of the lithium electrode represents makes the nature of the surface film of interest to battery researchers. The lithium surface is highly reactive, particularly in the case of electrodes with a rough surface deposit. This presents difficulties to researchers hoping to obtain representative measurements of the lithium surface and requires the use of environmental sample chambers and in-situ techniques. X-ray diffraction techniques have been used to probe changes in cathode materials (typically transition metal oxides) for lithium batteries, but to our knowledge has not been successfully used to study changes taking place on the lithium surface during cycling. We present early results from work we have undertaken to develop a technique for characterising the surface film on lithium battery electrodes. The instrumentation was set-up as follows. An XRD was fitted with an INEL CPS 120 position sensitive detector (PSD), multilayer mirror and environmental chamber. The latter was specially developed in our laboratory for the purpose of these experiments. The lithium cells were sealed in laminated foil. Cycled and uncycled cells were investigated. Different radiation sources were used (Cu, Co and Cr). The in-situ measurements aiming at monitoring the phase transitions of cycled/uncycled cells at different angles (including grazing angles) in time were carried out in both transmission and reflection mode. Copyright (2002) Australian X-ray Analytical Association Inc

  8. Measurement of in situ sulfur isotopes by laser ablation multi-collector ICPMS: opening Pandora’s Box

    Science.gov (United States)

    Ridley, William I.; Pribil, Michael; Koenig, Alan E.; Slack, John F.

    2015-01-01

    Laser ablation multi-collector ICPMS is a modern tool for in situ measurement of S isotopes. Advantages of the technique are speed of analysis and relatively minor matrix effects combined with spatial resolution sufficient for many applications. The main disadvantage is a more destructive sampling mechanism relative to the ion microprobe technique. Recent advances in instrumentation allow precise measurement with spatial resolutions down to 25 microns. We describe specific examples from economic geology where increased spatial resolution has greatly expanded insights into the sources and evolution of fluids that cause mineralization and illuminated genetic relations between individual deposits in single mineral districts.

  9. Viscosity measurement techniques in Dissipative Particle Dynamics

    Science.gov (United States)

    Boromand, Arman; Jamali, Safa; Maia, Joao M.

    2015-11-01

    In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.

  10. Neutron measurement techniques for tokamak plasmas

    International Nuclear Information System (INIS)

    Jarvis, O.N.

    1994-01-01

    The present article reviews the neutron measurement techniques that are currently being applied to the study of tokamak plasmas. The range of neutron energies of primary interest is limited to narrow bands around 2.5 and 14 MeV, and the variety of measurements that can be made for plasma diagnostic purposes is also restricted. To characterize the plasma as a neutron source, it is necessary only to measure the total neutron emission, the relative neutron emissivity as a function of position throughout the plasma, and the energy spectra of the emitted neutrons. In principle, such measurements might be expected to be relatively easy. That this is not the case is, in part, attributable to practical problems of accessibility to a harsh environment but is mostly a consequence of the time-scale on which the measurements have to be made and of the wide range of neutron emission intensities that have to be covered: for tokamak studies, the time-scale is of the order of 1 to 100 ms and the neutron intensity ranges from 10 12 to 10 19 s -1 . (author)

  11. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [University of Massachusetts, Amherst

    2012-11-28

    The goal of these projects was to develop molecule tools to tract the metabolic activity and physiological status of microorganisms during in situ uranium bioremediation. Such information is important in able to design improved bioremediation strategies. As summarized below, the research was highly successful with new strategies developed for estimating in situ rates of metabolism and diagnosing the physiological status of the predominant subsurface microorganisms. This is a first not only for groundwater bioremediation studies, but also for subsurface microbiology in general. The tools and approaches developed in these studies should be applicable to the study of microbial communities in a diversity of soils and sediments.

  12. Measurement and characterization techniques for thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Tritt, T M

    1997-07-01

    Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

  13. In-situ neutron diffraction measurements of temperature and stresses during friction stir welding of 6061-T6 aluminum alloy

    International Nuclear Information System (INIS)

    Woo, Wan Chuck; Feng, Zhili; Wang, Xun-Li; Brown, D.W.; Clausen, B.; An, Ke; Choo, Hahn; Hubbard, Camden R.; David, Stan A.

    2007-01-01

    The evolution of temperature and thermal stresses during friction stir welding of Al6061-T6 was investigated by means of in-situ, time-resolved neutron diffraction technique. A method is developed to deconvolute the temperature and stress from the lattice spacing changes measured by neutron diffraction. The deep penetration capability of neutrons made it possible for the first time to obtain the temperature and thermal stresses inside a friction stir weld

  14. A simple technique for measuring buoyant weight increment of entire, transplanted coral colonies in the field.

    Science.gov (United States)

    Herler, Jürgen; Dirnwöber, Markus

    2011-10-31

    Estimating the impacts of global and local threats on coral reefs requires monitoring reef health and measuring coral growth and calcification rates at different time scales. This has traditionally been mostly performed in short-term experimental studies in which coral fragments were grown in the laboratory or in the field but measured ex situ. Practical techniques in which growth and measurements are performed over the long term in situ are rare. Apart from photographic approaches, weight increment measurements have also been applied. Past buoyant weight measurements under water involved a complicated and little-used apparatus. We introduce a new method that combines previous field and laboratory techniques to measure the buoyant weight of entire, transplanted corals under water. This method uses an electronic balance fitted into an acrylic glass underwater housing and placed atop of an acrylic glass cube. Within this cube, corals transplanted onto artificial bases can be attached to the balance and weighed at predetermined intervals while they continue growth in the field. We also provide a set of simple equations for the volume and weight determinations required to calculate net growth rates. The new technique is highly accurate: low error of weight determinations due to variation of coral density (corals. We outline a transplantation technique for properly preparing corals for such long-term in situ experiments and measurements.

  15. Uncertainty analysis technique for OMEGA Dante measurements

    International Nuclear Information System (INIS)

    May, M. J.; Widmann, K.; Sorce, C.; Park, H.-S.; Schneider, M.

    2010-01-01

    The Dante is an 18 channel x-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g., hohlraums, etc.) at x-ray energies between 50 eV and 10 keV. It is a main diagnostic installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the x-ray diodes, filters and mirrors, and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.

  16. Uncertainty Analysis Technique for OMEGA Dante Measurements

    International Nuclear Information System (INIS)

    May, M.J.; Widmann, K.; Sorce, C.; Park, H.; Schneider, M.

    2010-01-01

    The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the X-ray diodes, filters and mirrors and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte-Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.

  17. Measurement technique developments for LBE flows

    Energy Technology Data Exchange (ETDEWEB)

    Buchenau, D., E-mail: d.buchenau@fzd.de [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Eckert, S.; Gerbeth, G. [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Stieglitz, R. [Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Dierckx, M. [SCK-CEN, Belgian Nuclear Research Centre, 2400 Mol (Belgium)

    2011-08-31

    We report on the development of measurement techniques for flows in lead-bismuth eutectic alloys (LBE). This paper covers the test results of newly developed contactless flow rate sensors as well as the development and test of the LIDAR technique for operational free surface level detection. The flow rate sensors are based on the flow-induced disturbance of an externally applied AC magnetic field which manifests itself by a modified amplitude or a modified phase of the AC field. Another concept of a force-free contactless flow meter uses a single cylindrical permanent magnet. The electromagnetic torque on the magnet caused by the liquid metal flow sets the magnet into rotation. The operation of those sensors has been demonstrated at liquid metal test loops for which comparative flow rate measurements are available, as well as at the LBE loops THESYS at KIT and WEBEXPIR at SCK-CEN. For the level detection a commercial LIDAR system was successfully tested at the WEBEXPIR facility in Mol and the THEADES loop in Karlsruhe.

  18. A Novel Optical Diagnostic for In Situ Measurements of Lithium Polysulfides in Battery Electrolytes.

    Science.gov (United States)

    Saqib, Najmus; Silva, Cody J; Maupin, C Mark; Porter, Jason M

    2017-07-01

    An optical diagnostic technique to determine the order and concentration of lithium polysulfides in lithium-sulfur (Li-S) battery electrolytes has been developed. One of the major challenges of lithium-sulfur batteries is the problem of polysulfide shuttling between the electrodes, which leads to self-discharge and loss of active material. Here we present an optical diagnostic for quantitative in situ measurements of lithium polysulfides using attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy. Simulated infrared spectra of lithium polysulfide molecules were generated using computational quantum chemistry routines implemented in Gaussian 09. The theoretical spectra served as a starting point for experimental characterization of lithium polysulfide solutions synthesized by the direct reaction of lithium sulfide and sulfur. Attenuated total reflection FT-IR spectroscopy was used to measure absorption spectra. The lower limit of detection with this technique is 0.05 M. Measured spectra revealed trends with respect to polysulfide order and concentration, consistent with theoretical predictions, which were used to develop a set of equations relating the order and concentration of lithium polysulfides in a sample to the position and area of a characteristic infrared absorption band. The diagnostic routine can measure the order and concentration to within 5% and 0.1 M, respectively.

  19. The application of a shift theorem analysis technique to multipoint measurements

    OpenAIRE

    M. E. Dieckmann; M. E. Dieckmann; S. C. Chapman

    1999-01-01

    A Fourier domain technique has been proposed previously which, in principle, quantifies the extent to which multipoint in-situ measurements can identify whether or not an observed structure is time stationary in its rest frame. Once a structure, sampled for example by four spacecraft, is shown to be quasi-stationary in its rest frame, the structure's velocity vector can be determined with respect to the sampling spacecraft. We investigate the properties of this technique, wh...

  20. Continuous in-situ measurements of fission fragment irradiation induced void swelling in Ni

    International Nuclear Information System (INIS)

    Lefakis, H.

    1980-01-01

    A novel simulation technique has been developed to study the early stages of irradiation induced void formation in metals. The technique makes use of fission fragment irradiation produced by doping with 235 U and irradiating in a thermal neutron flux under highly controlled irradiation-environmental conditions. Employment of a computer and a high temperature radiation resistant LVDT resulted in a high volumetric sensitivity and the production of continuous, in-situ void swelling data for bulk specimens. Results for Ni, used as a test-metal served to corroborate the technique in a number of ways including comparisons with (a) reactor data, (b) direct post-irradiation specimen length measurements and (c) TEM examinations of irradiated samples. The technique has several unique advantages and, in conjunction with other conventional methods, it offers the possibility of detailed evaluation of void nucleation and growth theories. In view of the present results no definitive answer may be given on the issue of the incubation period while checks with two theoretical models have yielded an order-of-magnitude agreement

  1. Rapid characterization of agglomerate aerosols by in situ mass-mobility measurements.

    Science.gov (United States)

    Scheckman, Jacob H; McMurry, Peter H; Pratsinis, Sotiris E

    2009-07-21

    Transport and physical/chemical properties of nanoparticle agglomerates depend on primary particle size and agglomerate structure (size, fractal dimension, and dynamic shape factor). This research reports on in situ techniques for measuring such properties. Nanoparticle agglomerates of silica were generated by oxidizing hexamethyldisiloxane in a methane/oxygen diffusion flame. Upon leaving the flame, agglomerates of known electrical mobility size were selected with a differential mobility analyzer (DMA), and their mass was measured with an aerosol particle mass analyzer (APM), resulting in their mass fractal dimension, D(f), and dynamic shape factor, chi. Scanning and transmission electron microscopy (SEM/TEM) images were used to determine primary particle diameter and to qualitatively investigate agglomerate morphology. The DMA-APM measurements were reproducible within 5%, as determined by multiple measurements on different days under the same flame conditions. The effects of flame process variables (oxygen flow rate and mass production rate) on particle characteristics (D(f), and chi) were determined. All generated particles were fractal-like agglomerates with average primary particle diameters of 12-93 nm and D(f) = 1.7-2.4. Increasing the oxygen flow rate decreased primary particle size and D(f), while it increased chi. Increasing the production rate increased the agglomerate and primary particle sizes, and decreased chi without affecting D(f). The effects of oxygen flow rate and particle production rate on primary particle size reported here are in agreement with ex situ measurements in the literature, while the effect of process variables on agglomerate shape (chi) is demonstrated for the first time to our knowledge.

  2. Comparison between ex situ and in situ measurement methods for the assessment of radioactively contaminated land. Comparison between measurement methods for the characterisation of radioactively contaminated land

    International Nuclear Information System (INIS)

    Rostron, Peter D.; Ramsey, Michael H.; Heathcote, John A.

    2012-01-01

    In the UK, it is estimated that there may be 20,000,000 cubic metres of contaminated land at Sellafield alone. Harwell and Dounreay are known to have significant amounts of radioactive or nonradioactive contaminated land (NDA, 2006). It is therefore important to devise optimal methods for the characterisation of areas of land for radionuclide content, in order to enable cost-effective decommissioning. With chemical contaminants, ex situ measurements are made on a larger volume of soil than are in situ measurements, such as PXRF. However, the opposite is often true for the characterisation of radioactive contamination, when this involves the detection of penetrating radiation from γ-emitting radionuclides. This means that when investigating for hotspots of radioactive contamination at or near the ground surface, better coverage can be obtained using in situ methods. This leads to the question, what is the optimal strategy (e.g. percentage coverage, counting time) for in situ characterisation of radioactively contaminated land' Surveys on light-moderate contaminated areas of ground were conducted at Dounreay in order to compare the relative effectiveness of in situ and ex situ methods, both for the detection of radioactive hotspots and also for estimating the average radionuclide content of an area of ground. These surveys suggest that continuous coverage by in situ devices is more effective at hotspot detection, with ex situ laboratory measurements being less effective, although in one case elevated activity below 10 cm depth that was identified by ex situ measurement was not located by in situ measurement. The surveys also highlighted that careful choice of an appropriate spatial model is critical to the estimation of activity concentrations over averaging areas. Whereas continuous coverage may be considered necessary for hotspot identification, in the particular case of the detection of hot particles (where the particle is very small compared to the sampling

  3. Using the in situ lift-out technique to prepare TEM specimens on a single-beam FIB instrument

    International Nuclear Information System (INIS)

    Lekstrom, M; McLachlan, M A; Husain, S; McComb, D W; Shollock, B A

    2008-01-01

    Transmission electron microscope (TEM) specimens are today routinely prepared using focussed ion beam (FIB) instruments. Specifically, the lift-out method has become an increasingly popular technique and involves removing thin cross-sections from site-specific locations and transferring them to a TEM grid. This lift-out process can either be performed ex situ or in situ. The latter is mainly carried out on combined dual-beam FIB and scanning electron microscope (SEM) systems whereas conventional single-beam instruments often are limited to the traditional ex situ method. It is nevertheless desirable to enhance the capabilities of existing single-beam instruments to allow for in situ lift-out preparation to be performed since this technique offers a number of advantages over the older ex situ method. A single-beam FIB instrument was therefore modified to incorporate an in situ micromanipulator fitted with a tungsten needle, which can be attached to a cut-out FIB section using ion beam induced platinum deposition. This article addresses the issues of using an ion beam to monitor the in situ manipulation process as well as approaches that can be used to create stronger platinum welds between two objects, and finally, views on how to limit the extent of ion beam damage to the specimen surface.

  4. Measurement of in-situ hydraulic conductivity in the Cretaceous Pierre Shale

    International Nuclear Information System (INIS)

    Neuzil, C.E.; Bredehoeft, J.D.

    1981-01-01

    A recent study of the hydrology of the Cretaceous Pierre Shale utilized three techniques for measuring the hydraulic conductivity of tight materials. Regional hydraulic conductivity was obtained from a hydrodynamic model analysis of the aquifer-aquitard system which includes the Pierre Shale. Laboratory values were obtained from consolidation tests on core samples. In-situ values of hydraulic conductivity were obtained by using a borehole slug test designed specifically for tight formations. The test is conducted by isolating a portion of the borehole with one or two packers, abruptly pressurizing the shut-in portion, and recording the pressure decay with time. The test utilizes the analytical solution for pressure decay as water flows into the surrounding formation. Consistent results were obtained using the test on three successively smaller portions of a borehole in the Pierre Shale. The in-situ tests and laboratory tests yielded comparable values; the regional hydraulic conductivity was two to three orders of magnitude larger. This suggests that the lower values represent intergranular hydraulic conductivity of the intact shale and the regional values represent secondary permeability due to fractures. Calculations based on fracture flow theory demonstrate that small fractures could account for the observed differences

  5. In-situ membrane hydration measurement of proton exchange membrane fuel cells

    Science.gov (United States)

    Lai, Yeh-Hung; Fly, Gerald W.; Clapham, Shawn

    2015-01-01

    Achieving proper membrane hydration control is one of the most critical aspects of PEM fuel cell development. This article describes the development and application of a novel 50 cm2 fuel cell device to study the in-situ membrane hydration by measuring the through-thickness membrane swelling via an array of linear variable differential transducers. Using this setup either as an air/air (dummy) cell or as a hydrogen/air (operating) cell, we performed a series of hydration and dehydration experiments by cycling the RH of the inlet gas streams at 80 °C. From the linear relationship between the under-the-land swelling and the over-the-channel water content, the mechanical constraint within the fuel cell assembly can suppress the membrane water uptake by 11%-18%. The results from the air/air humidity cycling test show that the membrane can equilibrate within 120 s for all RH conditions and that membrane can reach full hydration at a RH higher than 140% in spite of the use of a liquid water impermeable Carbel MP30Z microporous layer. This result confirms that the U.S. DOE's humidity cycling mechanical durability protocol induces sufficient humidity swings to maximize hygrothermal mechanical stresses. This study shows that the novel experimental technique can provide a robust and accurate means to study the in-situ hydration of thin membranes subject to a wide range of fuel cell conditions.

  6. High temporal resolution in situ measurement of the effective particle size characteristics of fluvial suspended sediment.

    Science.gov (United States)

    Williams, N D; Walling, D E; Leeks, G J L

    2007-03-01

    This paper reports the use of a LISST-100 device to monitor the effective particle size characteristics of suspended sediment in situ, and at a quasi-continuous temporal resolution. The study site was located on the River Exe at Thorverton, Devon, UK. This device has not previously been utilized in studies of fluvial suspended sediment at the storm event scale, and existing studies of suspended sediment dynamics have not involved such a high temporal resolution for extended periods. An evaluation of the field performance of the instrument is presented, with respect to innovative data collection and analysis techniques. It was found that trends in the effective particle size distribution (EPSD) and degree of flocculation of suspended sediment at the study site were highly complex, and showed significant short-term variability that has not previously been documented in the fluvial environment. The collection of detailed records of EPSD facilitated interpretation of the dynamic evolution of the size characteristics of suspended sediment, in relation to its likely source and delivery and flocculation mechanisms. The influence of measurement frequency is considered in terms of its implications for future studies of the particle size of fluvial suspended sediment employing in situ data acquisition.

  7. A technique of measuring neutron spectrum

    International Nuclear Information System (INIS)

    Sarkar, P.K.; Kirthi, K.N.; Ganguly, A.K.

    1975-01-01

    Plastic scintillators have been used to measure fast neutron spectrum from various sources. Gamma background discrimination has been done by selecting thin scintillators and thereby achieving near 100% transmission of Compton-edge electrons. The measured distribution has been unfolded by using an iterative least square technique. This gives minimum variance and maximum likelihood estimate with error minimised. Smoothening of the observed distribution has been done by Fourier and time series analyses. The method developed is applicable in principle for the determination of spectra of high energy neutrons ranging from 1 MeV to 70 MeV and beyond. However, practical application of the method is limited by the non-availability of cross-section data for various neutron induced reactions with carbon and hydrogen present in the polymerised polystyrene scintillator. This procedure has been adopted in the present work for spectral determination up to 14 MeV neutrons using the published value of reaction and scattering cross-sections. The spectra of Po-Be, Pu-Be, Am-Be and Ra-Be arrived at agree well with the published spectra obtained by other methods. Spectrum from spontaneous fission of Cf-252 have also been measured and fitted to the expression N(E)=Esup(1/2)exp(-E/T). The fitted parameter T and spectral details agree well with those in published literature

  8. Helium-flow measurement using ultrasonic technique

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1983-01-01

    While designing cryogenic instrumentation for the Colliding Beam Accelerator (CBA) helium-distribution system it became clear that accurate measurement of mass flow of helium which varied in temperature from room to sub-cooled conditions would be difficult. Conventional venturi flow meters full scale differential pressure signal would decrease by more than an order of magnitude during cooldown causing unacceptable error at operating temperature. At sub-cooled temperatures, helium would be pumped around cooling loops by an efficient, low head pressure circulating compressor. Additional pressure drop meant more pump work was necessary to compress the fluid resulting in a higher outlet temperature. The ideal mass flowmeter for this application was one which did not add pressure drop to the system, functioned over the entire temperature range, has high resolution and delivers accurate mass flow measurement data. Ultrasonic flow measurement techniques used successfully by the process industry, seemed to meet all the necessary requirements. An extensive search for a supplier of such a device found that none of the commercial stock flowmeters were adaptable to cryogenic service so the development of the instrument was undertaken by the CBA Cryogenic Control and Instrumentation Engineering Group at BNL

  9. Nondestructive hall coefficient measurements using ACPD techniques

    Science.gov (United States)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2018-04-01

    Hall coefficient measurements offer great opportunities as well as major challenges for nondestructive materials characterization. The Hall effect is produced by the magnetic Lorentz force acting on moving charge carriers in the presence of an applied magnetic field. The magnetic perturbation gives rise to a Hall current that is normal to the conduction current but does not directly perturb the electric potential distribution. Therefore, Hall coefficient measurements usually exploit the so-called transverse galvanomagnetic potential drop effect that arises when the Hall current is intercepted by the boundaries of the specimen and thereby produce a measurable potential drop. In contrast, no Hall potential is produced in a large plate in the presence of a uniform normal field at quasi-static low frequencies. In other words, conventional Hall coefficient measurements are inherently destructive since they require cutting the material under tests. This study investigated the feasibility of using alternating current potential drop (ACPD) techniques for nondestructive Hall coefficient measurements in plates. Specifically, the directional four-point square-electrode configuration is investigated with superimposed external magnetic field. Two methods are suggested to make Hall coefficient measurements in large plates without destructive machining. At low frequencies, constraining the bias magnetic field can replace constraining the dimensions of the specimen, which is inherently destructive. For example, when a cylindrical permanent magnet is used to provide the bias magnetic field, the peak Hall voltage is produced when the diameter of the magnet is equal to the diagonal of the square ACPD probe. Although this method is less effective than cutting the specimen to a finite size, the loss of sensitivity is less than one order of magnitude even at very low frequencies. In contrast, at sufficiently high inspection frequencies the magnetic field of the Hall current induces a

  10. Evaluation of Uranium-235 Measurement Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kaspar, Tiffany C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dibert, Mark W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-23

    Monolithic U-Mo fuel plates are rolled to final fuel element form from the original cast ingot, and thus any inhomogeneities in 235U distribution present in the cast ingot are maintained, and potentially exaggerated, in the final fuel foil. The tolerance for inhomogeneities in the 235U concentration in the final fuel element foil is very low. A near-real-time, nondestructive technique to evaluate the 235U distribution in the cast ingot is required in order to provide feedback to the casting process. Based on the technical analysis herein, gamma spectroscopy has been recommended to provide a near-real-time measure of the 235U distribution in U-Mo cast plates.

  11. Hyperfine interactions measured by nuclear orientation technique

    International Nuclear Information System (INIS)

    Brenier, R.

    1982-01-01

    This report concerns the use of hyperfine interaction to magnetism measurements and to the determination of the nuclear structure of Terbium isotopes by the low temperature nuclear orientation technique. In the first part we show that the rhodium atom does not support any localized moment in the chromium matrix. The hyperfine magnetic field at the rhodium nuclear site follows the Overhauser distribution, and the external applied magnetic field supports a negative Knight shift of 16%. In the second part we consider the structure of neutron deficient Terbium isotopes. We introduce a coherent way of evaluation and elaborate a new nuclear thermometer. The magnetic moments allows to strike on the studied states configuration. The analysis of our results shows a decrease of the nuclear deformation for the lighter isotopes [fr

  12. Determination of the in situ modulus of the rockmass by the use of backfill measurements

    CSIR Research Space (South Africa)

    Gurtunca, RG

    1991-03-01

    Full Text Available In situ measurements and numerical modelling based on elastic theory showed that backfill stresses are considerably higher than originally thought. This has led to a change in understanding of rockmass behaviour. After describing previous work...

  13. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors

    Science.gov (United States)

    Griffin, John M.; Forse, Alexander C.; Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P.

    2015-08-01

    Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.

  14. In situ characterization of natural pyrite bioleaching using electrochemical noise technique

    Science.gov (United States)

    Chen, Guo-bao; Yang, Hong-ying; Li, Hai-jun

    2016-02-01

    An in situ characterization technique called electrochemical noise (ECN) was used to investigate the bioleaching of natural pyrite. ECN experiments were conducted in four active systems (sulfuric acid, ferric-ion, 9k culture medium, and bioleaching solutions). The ECN data were analyzed in both the time and frequency domains. Spectral noise impedance spectra obtained from power spectral density (PSD) plots for different systems were compared. A reaction mechanism was also proposed on the basis of the experimental data analysis. The bioleaching system exhibits the lowest noise resistance of 0.101 MΩ. The bioleaching of natural pyrite is considered to be a bio-battery reaction, which distinguishes it from chemical oxidation reactions in ferric-ion and culture-medium (9k) solutions. The corrosion of pyrite becomes more severe over time after the long-term testing of bioleaching.

  15. Combustion synthesis of advanced materials. [using in-situ infiltration technique

    Science.gov (United States)

    Moore, J. J.; Feng, H. J.; Perkins, N.; Readey, D. W.

    1992-01-01

    The combustion synthesis of ceramic-metal composites using an in-situ liquid infiltration technique is described. The effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e. solids, liquids and gases, with varying physical properties e.g. thermal conductivity, on the microstructure and morphology of synthesized products is also described. Alternatively, conducting the combustion synthesis reaction in a reactive gas environment is also discussed, in which advantages can be gained from the synergistic effects of combustion synthesis and vapor phase transport. In each case, the effect of the presence or absence of gravity (density) driven fluid flow and vapor transport is discussed as is the potential for producing new and perhaps unique materials by conducting these SHS reactions under microgravity conditions.

  16. Application of in situ measurement for site remediation and final status survey of decommissioning KRR site

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Bum; Nam, Jong Soo; Choi, Yong Suk; Seo, Bum Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    In situ gamma spectrometry has been used to measure environmental radiation, assumptions are usually made about the depth distribution of the radionuclides of interest in the soil. The main limitation of in situ gamma spectrometry lies in determining the depth distribution of radionuclides. The objective of this study is to develop a method for subsurface characterization by in situ measurement. The peak to valley method based on the ratio of counting rate between the photoelectric peak and Compton region was applied to identify the depth distribution. The peak to valley method could be applied to establish the relation between the spectrally derived coefficients (Q) with relaxation mass per unit area (β) for various depth distribution in soil. The in situ measurement results were verified by MCNP simulation and calculated correlation equation. In order to compare the depth distributions and contamination levels in decommissioning KRR site, in situ measurement and sampling results were compared. The in situ measurement results and MCNP simulation results show a good correlation for laboratory measurement. The simulation relationship between Q and source burial for the source layers have exponential relationship for a variety depth distributions. We applied the peak to valley method to contaminated decommissioning KRR site to determine a depth distribution and initial activity without sampling. The observed results has a good correlation, relative error between in situ measurement with sampling result is around 7% for depth distribution and 4% for initial activity. In this study, the vertical activity distribution and initial activity of {sup 137}Cs could be identifying directly through in situ measurement. Therefore, the peak to valley method demonstrated good potential for assessment of the residual radioactivity for site remediation in decommissioning and contaminated site.

  17. Cu-Ti Formation in Nb-Ti/Cu Superconducting Strand Monitored by in situ Techniques

    CERN Document Server

    Pong, I; Pong, Ian; Gerardin, Alexandre; Scheuerlein, Christian; Bottura, Luca

    2010-01-01

    In order to investigate the high temperature exposure effect on Nb-Ti/Cu superconducting strands, as might be encountered in joining by soldering and in cabling annealing, X-ray diffraction and resistometry measurements were performed in situ during heat treatment, and complemented by conventional metallography, mechanical tests and superconducting properties measurements. Changes of the Nb-Ti nanostructure at temperatures above 300 degrees C are manifested in the degradation of critical current in an applied external magnetic field, although degradation at self field was insignificant up to 400 degrees C for several minutes. Above 500 degrees C, the formation of various Cu-Ti intermetallic compounds, due to Ti diffusion from Nb-Ti into Cu, is detected by in situ XRD albeit not resolvable by SEM-EDS. There is a ductile to brittle transition near 600 degrees C, and liquid formation is observed below 900 degrees C. The formation of Cu-Ti causes a delayed reduction of the residual resistivity ratio (RRR) and adv...

  18. Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites

    International Nuclear Information System (INIS)

    Frick, C. M.; Farrell, R. E.; Germida, J. J.

    1999-01-01

    Literature on examples of phytoremediation techniques used in the in-situ remediation of soils contaminated by petroleum hydrocarbons is reviewed. The review includes discussion of the key mechanisms involved in each case, benefits, limitations and costs compared to alternative approaches, including natural attenuation, engineering and bioremediation. Review of the literature led to the conclusion that phytoremediation is an effective method for degrading and containing petroleum hydrocarbons in soil, and confirmed the ability of plants to transfer volatile petroleum hydrocarbons, such as napthalene, from the soil to the atmosphere via transpiration. The primary loss mechanism for the degradation of petroleum hydrocarbons appears to be microorganisms in the rhizosphere of plants. The available information also suggests that plants may degrade petroleum hydrocarbons directly, although the indirect role played by plants is far more common. These roles include supplying root exudates for microbial use, releasing root-associated enzymes that degrade contaminants in the soil, and altering soil to promote phytoremediation. BTEX compounds are most easily amenable to phytoremediation; large and lipophilic compounds such as four or five-ring polyaromatic hydrocarbons are more difficult to remediate. The limited information available suggests that phytoremediation is slightly less expensive than bioremediation, and several order of magnitude less than engineering techniques. In general, phytoremediation is faster than natural attenuation, but typically slower than engineering and bioremediation. On the other hand, it is less disruptive to the site than ex-situ engineering and bioremediation that involve excavation efforts. Phytoremediation is most effective with shallow contamination. Preliminary screenings indicate that there are several plant species, native and introduced, that may be used with some success for phytoremediation in the Prairie and Boreal Plains ecozones

  19. Comparative review of techniques used for in situ remediation of contaminated soils; Revision comparativa de tecnicas empleadas para la descontaminacion in situ de suelos contaminados

    Energy Technology Data Exchange (ETDEWEB)

    Escusol Tomey, M.; Rodriguez Abad, R.

    2014-07-01

    Soil pollution may influence the geotechnical parameters of the soil itself, properties such as solid particle density or water within its pores. It may also vary its friction angle, modify its structure and texture, or change the properties of its constitutive minerals due to the inclusion of polluting components. For these reasons, soil decontamination is an important factor to consider in geotechnics. This work focuses on those soil decontamination techniques carried out in situ, since they allow to eliminate soil pollutants in a less invasive way than confinement, containment or ex situ remediation techniques, causing a minor soil alteration and, therefore, affecting less to its mechanical properties. These factors should be taken into account when carrying out a geotechnical performance on a previously decontaminated soil. (Author)

  20. Measurement of thermal conductivity and diffusivity in situ: Literature survey and theoretical modelling of measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kukkonen, I.; Suppala, I. [Geological Survey of Finland, Espoo (Finland)

    1999-01-01

    In situ measurements of thermal conductivity and diffusivity of bedrock were investigated with the aid of a literature survey and theoretical simulations of a measurement system. According to the surveyed literature, in situ methods can be divided into `active` drill hole methods, and `passive` indirect methods utilizing other drill hole measurements together with cutting samples and petrophysical relationships. The most common active drill hole method is a cylindrical heat producing probe whose temperature is registered as a function of time. The temperature response can be calculated and interpreted with the aid of analytical solutions of the cylindrical heat conduction equation, particularly the solution for an infinite perfectly conducting cylindrical probe in a homogeneous medium, and the solution for a line source of heat in a medium. Using both forward and inverse modellings, a theoretical measurement system was analysed with an aim at finding the basic parameters for construction of a practical measurement system. The results indicate that thermal conductivity can be relatively well estimated with borehole measurements, whereas thermal diffusivity is much more sensitive to various disturbing factors, such as thermal contact resistance and variations in probe parameters. In addition, the three-dimensional conduction effects were investigated to find out the magnitude of axial `leak` of heat in long-duration experiments. The radius of influence of a drill hole measurement is mainly dependent on the duration of the experiment. Assuming typical conductivity and diffusivity values of crystalline rocks, the measurement yields information within less than a metre from the drill hole, when the experiment lasts about 24 hours. We propose the following factors to be taken as basic parameters in the construction of a practical measurement system: the probe length 1.5-2 m, heating power 5-20 Wm{sup -1}, temperature recording with 5-7 sensors placed along the probe, and

  1. Measurement of thermal conductivity and diffusivity in situ: Literature survey and theoretical modelling of measurements

    International Nuclear Information System (INIS)

    Kukkonen, I.; Suppala, I.

    1999-01-01

    In situ measurements of thermal conductivity and diffusivity of bedrock were investigated with the aid of a literature survey and theoretical simulations of a measurement system. According to the surveyed literature, in situ methods can be divided into 'active' drill hole methods, and 'passive' indirect methods utilizing other drill hole measurements together with cutting samples and petrophysical relationships. The most common active drill hole method is a cylindrical heat producing probe whose temperature is registered as a function of time. The temperature response can be calculated and interpreted with the aid of analytical solutions of the cylindrical heat conduction equation, particularly the solution for an infinite perfectly conducting cylindrical probe in a homogeneous medium, and the solution for a line source of heat in a medium. Using both forward and inverse modellings, a theoretical measurement system was analysed with an aim at finding the basic parameters for construction of a practical measurement system. The results indicate that thermal conductivity can be relatively well estimated with borehole measurements, whereas thermal diffusivity is much more sensitive to various disturbing factors, such as thermal contact resistance and variations in probe parameters. In addition, the three-dimensional conduction effects were investigated to find out the magnitude of axial 'leak' of heat in long-duration experiments. The radius of influence of a drill hole measurement is mainly dependent on the duration of the experiment. Assuming typical conductivity and diffusivity values of crystalline rocks, the measurement yields information within less than a metre from the drill hole, when the experiment lasts about 24 hours. We propose the following factors to be taken as basic parameters in the construction of a practical measurement system: the probe length 1.5-2 m, heating power 5-20 Wm -1 , temperature recording with 5-7 sensors placed along the probe, and

  2. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    Science.gov (United States)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  3. In situ investigation of dye adsorption on TiO2 films using a quartz crystal microbalance with a dissipation technique

    KAUST Repository

    Harms, Hauke A.

    2012-01-01

    Dye adsorption plays a crucial role in dye-sensitized solar cells. Herein, we demonstrate an in situ liquid-phase analytical technique to quantify in real time adsorption of dye and coadsorbates on flat and mesoporous TiO 2 films. For the first time, a molar ratio of co-adsorbed Y123 and chenodeoxycholic acid has been measured. © 2012 the Owner Societies.

  4. Design of a facility for the in situ measurement of catalytic reaction by neutron scattering spectroscopy

    Science.gov (United States)

    Tan, Shuai; Cheng, Yongqiang; Daemen, Luke L.; Lutterman, Daniel A.

    2018-01-01

    Catalysis is a critical enabling science for future energy needs. The next frontier of catalysis is to evolve from catalyst discovery to catalyst design, and for this next step to be realized, we must develop new techniques to better understand reaction mechanisms. To do this, we must connect catalytic reaction rates and selectivities to the kinetics, energetics, and dynamics of individual elementary steps and relate these to the structure and dynamics of the catalytic sites involved. Neutron scattering spectroscopies offer unique capabilities that are difficult or impossible to match by other techniques. The current study presents the development of a compact and portable instrumental design that enables the in situ investigation of catalytic samples by neutron scattering techniques. The developed apparatus was tested at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory and includes a gas handling panel that allows for computer hookups to control the panel externally and online measurement equipment such as coupled GC-FID/TCD (Gas Chromatography-Flame Ionization Detector/Thermal Conductivity Detector) and MS (Mass Spectrometry) to characterize offgassing while the sample is in the neutron scattering spectrometer. This system is flexible, modular, compact, and portable enabling its use for many types of gas-solid and liquid-solid reactions at the various beamlines housed at the SNS.

  5. Photoacoustic measurements of red blood cell oxygen saturation in blood bags in situ

    Science.gov (United States)

    Pinto, Ruben N.; Bagga, Karan; Douplik, Alexandre; Acker, Jason P.; Kolios, Michael C.

    2017-03-01

    Red blood cell (RBC) transfusion is a critical component of the health care services. RBCs are stored in blood bags in hypothermic temperatures for a maximum of 6 weeks post donation. During this in vitro storage period, RBCs have been documented to undergo changes in structure and function due to mechanical and biochemical stress. Currently, there are no assessment methods that monitor the quality of RBCs within blood bags stored for transfusion. Conventional assessment methods require the extraction of samples, consequently voiding the sterility of the blood bags and potentially rendering them unfit for transfusions. It is hypothesized that photoacoustic (PA) technology can provide a rapid and non-invasive indication of RBC quality. In this study, a novel PA setup was developed for the acquisition of oxygen saturation (SO2) of two blood bags in situ. These measurements were taken throughout the lifespan of the blood bags (42 days) and compared against the clinical gold standard method of the blood gas analyzer (BGA). SO2 values of the blood bags increased monotonically throughout the storage period. A strong correlation between PA SO2 and BGA SO2 was found, however, PA values were on average 3.5% lower. Both techniques found the bags to increase by an SO2 of approximately 20%, and measured very similar rates of SO2 change. Future work will be focused on determining the cause of discrepancy between SO2 values acquired from PA versus BGA, as well as establishing links between the measured SO2 increase and other changes in RBC in situ.

  6. In situ/non-contact superfluid density measurement apparatus

    Science.gov (United States)

    Nam, Hyoungdo; Su, Ping-Hsang; Shih, Chih-Kang

    2018-04-01

    We present a double-coil apparatus designed to operate with in situ capability, which is strongly desired for superconductivity studies on recently discovered two-dimensional superconductors. Coupled with a scanning tunneling microscope, the study of both local and global superconductivity [for superconducting gap and superfluid density (SFD), respectively] is possible on an identical sample without sample degradations due to damage, contamination, or oxidation in an atmosphere. The performance of the double-coil apparatus was tested on atomically clean surfaces of non-superconducting Si(111)-7 × 7 and on superconducting films of 100 nm-thick Pb and 1.4 nm-ultrathin Pb. The results clearly show the normal-to-superconductor phase transition for Pb films with a strong SFD.

  7. Measurements of in situ produced 14C in terrestrial rocks

    International Nuclear Information System (INIS)

    Yokoyama, Yusuke; Caffee, Marc W.; Southon, John R.; Nishiizumi, Kunihiko

    2004-01-01

    We developed and are testing a system for extracting in situ produced 14 C from quartz. 14 C is liberated from quartz matrix using step-wise heating during which time a spiked carrier gas consisting O 2 -CO-CO 2 -He is flowed through the high-temperature chamber continuously. The total 14 C background is reproducible and typically (2.3 ± 0.2) x 10 6 atoms, and the recovery is consistently greater than 90%. To validate the performance of the system and determine the blank level, we are using quartz samples taken from the Homestake mine (1600 m below the surface), South Dakota. To determine the 14 C release pattern and recovery, we used samples taken from the Transantarctic Mountains, Antarctica

  8. In situ response time measurements of RTD temperature sensors

    International Nuclear Information System (INIS)

    Goncalves, I.M.P.

    1985-01-01

    The loop-current-step-response test provides a mean for determining the time constant of resistence thermometers. The test consist in heating the sensor a few degrees above ambient temperature by causing a step pertubation in the electric current that flows through the sensor leads. The developed mathematical transformation permits to use data collected during the internal heating transient to predict the sensor response to perturbations in fluid temperature. Experimental data obtained show that the time constant determined by method is within 15 percent of true value. The loop-current-step-response test is a remote in situ test, which can be performed with the sensor installed in the process. Consequently it takes account the local heat transfer conditions, and appropriated for nuclear power plants, where sensors are installed in points of difficult access. (author) [pt

  9. Burst mode trigger of STEREO in situ measurements

    Science.gov (United States)

    Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Curtis, D.; Schroeder, P.

    2013-06-01

    Since the launch of the STEREO spacecraft, the in situ instrument suites have continued to modify their burst mode trigger in order to optimize the collection of high-cadence magnetic field, solar wind, and suprathermal electron data. This report reviews the criteria used for the burst mode trigger and their evolution with time. From 2007 to 2011, the twin STEREO spacecraft observed 236 interplanetary shocks, and 54% of them were captured by the burst mode trigger. The capture rate increased remarkably with time, from 30% in 2007 to 69% in 2011. We evaluate the performance of multiple trigger criteria and investigate why some of the shocks were missed by the trigger. Lessons learned from STEREO are useful for future missions, because the telemetry bandwidth needed to capture the waveforms of high frequency but infrequent events would be unaffordable without an effective burst mode trigger.

  10. In situ stress measurements at 250m gallery off the ventilation shaft

    International Nuclear Information System (INIS)

    Nakamura, Takahiro; Sanada, Hiroyuki; Sugita, Yutaka; Kato, Harumi

    2011-06-01

    From FY2000 to FY2005, JAEA had been making research at ground surface of Horonobe town for repository of high-level radioactive waste. During this period, geological investigation, hydrogeology investigation, rock mechanics investigation, geochemical investigation using boreholes were carried out in Hokushin area which is about 3kmx3km in surface area of Horonobe town in order to construct a geological environment model and to confirm the methodology for safety assessment. Now the research program proceeds to the next stage where the underground drifts and shafts are under construction. In the underground rock mass, in situ stress is the sum of tectonic stress as well as overlying stress due to gravity. In situ stresses enter into excavation design and are required in order to predict the response of rock masses to the disturbance associated with those structures. For these reasons, JAEA has carried out in situ stress measurements using vertical boreholes drilled from ground surface to evaluate the state of horizontal stress in the area. In the research during the underground construction, comparison between the stress measurements carried out at surface and at underground is conducted. And if inconsistency between these two measurements is found, the state of stress will be updated based on more reliable information. In order to study the 3D in situ state of stress around Horonobe Underground Research Laboratory, hydraulic fracturing tests and stress relief method (Conical-ended borehole method) were conducted at the 250m gallery located near the bottom of the ventilation shaft. Three 20.0m long boreholes, 09-V250-M01(slightly upwards), 09-V250-M02(slightly upwards) and 09-V250-M03(vertical), were drilled from the gallery using 76mm diameter bit. The results of the measurements are summarized as follows: (1) Hydraulic fracturing technique. Hydraulic fracturing technique using the test equipment with sufficiently small compliance was carried out in the three

  11. Micro-Membrane Electrode Assembly Design to Precisely Measure the in Situ Activity of Oxygen Reduction Reaction Electrocatalysts for PEMFC.

    Science.gov (United States)

    Long, Zhi; Li, Yankai; Deng, Guangrong; Liu, Changpeng; Ge, Junjie; Ma, Shuhua; Xing, Wei

    2017-06-20

    An in situ micro-MEA technique, which could precisely measure the performance of ORR electrocatalyst using Nafion as electrolyte, was designed and compared with regular thin-film rotating-disk electrode (TFRDE) (0.1 M HClO 4 ) and normal in situ membrane electrode assembly (MEA) tests. Compared to the traditional TFRDE method, the micro-MEA technique makes the acquisition of catalysts' behavior at low potential values easily achieved without being limited by the solubility of O 2 in water. At the same time, it successfully mimics the structure of regular MEAs and obtains similar results to a regular MEA, thus providing a new technique to simply measure the electrode activity without being bothered by complicated fabrication of regular MEA. In order to further understand the importance of in situ measurement, Fe-N-C as a typical oxygen reduction reaction (ORR) free-Pt catalyst was evaluated by TFRDE and micro-MEA. The results show that the half wave potential of Fe-N-C only shifted negatively by -135 mV in comparison with state-of-the-art Pt/C catalysts from TFRDE tests. However, the active site density, mass transfer of O 2 , and the proton transfer conductivity are found to strongly influence the catalyst activity in the micro-MEA, thereby resulting in a much lower limiting current density than Pt/C (8.7 times lower). Hence, it is suggested that the micro-MEA is better in evaluating the in situ ORR performance, where the catalysts are characterized more thoroughly in terms of intrinsic activity, active site density, proton transfer, and mass transfer properties.

  12. Developing a western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing

    Directory of Open Access Journals (Sweden)

    K. Gribanov

    2014-06-01

    water cycle, affected by changes in air mass origin, non-convective and convective processes and continental recycling. Novel remote sensing and in situ measuring techniques have recently offered opportunities for monitoring atmospheric water vapour isotopic composition. Recently developed infrared laser spectrometers allow for continuous in situ measurements of surface water vapour δDv and δ18Ov. So far, very few intercomparisons of measurements conducted using different techniques have been achieved at a given location, due to difficulties intrinsic to the comparison of integrated with local measurements. Nudged simulations conducted with high-resolution isotopically enabled general circulation models (GCMs provide a consistent framework for comparison with the different types of observations. Here, we compare simulations conducted with the ECHAM5-wiso model with two types of water vapour isotopic data obtained during summer 2012 at the forest site of Kourovka, western Siberia: hourly ground-based FTIR total atmospheric columnar δDv amounts, and in situ hourly Picarro δDv measurements. There is an excellent correlation between observed and predicted δDv at surface while the comparison between water column values derived from the model compares well with FTIR estimates.

  13. A double labeling technique for performing immunocytochemistry and in situ hybridization in virus infected cell cultures and tissues

    International Nuclear Information System (INIS)

    Gendelman, H.E.; Moench, T.R.; Narayan, O.; Griffin, D.E.; Clements, J.E.

    1985-01-01

    This report describes a combined immunocytochemical and in situ hybridization procedure which allows visualization of cellular or viral antigens and viral RNA in the same cell. Cultures infected with visna or measles virus were fixed in periodate-lysine-paraformaldehyde-glutaraldehyde, stained by the avidin-biotin-peroxidase technique using antibodies to viral or cellular proteins and then incubated with radiolabeled specific DNA probes (in situ hybridization). This technique provides a new approach to the study of viral pathogenesis by: (1) identifying the types of cells which are infected in the host and (2) identifying points of blockade in the virus life cycle during persistent infections. (Auth.)

  14. In-situ measurements of seismic velocities in the San Francisco Bay Region; part III

    Science.gov (United States)

    Gibbs, James F.; Fumal, Thomas E.; Borcherdt, Roger D.; Roth, Edward F.

    1977-01-01

    Seismic wave velocities (compressional and shear) are important parameters for estimating the seismic response characteristics of various geologic units when subjected to strong earthquake ground shaking. Seismic velocities of various units often show a strong correlation with the amounts of damage following large earthquakes and have been used as a basis for certain types of seismic zonation studies. In the current program seismic velocities have been measured at 59 locations 1n the San Francisco Bay Region. This report is the third in a series of Open-File Reports and describes the in-situ velocity measurements at locations 35-59. At each location seismic travel times are measured in drill holes, normally at 2.5-m intervals to a depth of 30 m. Geologic logs are determined from drill cuttings, undisturbed (cored) samples, and penetrometer samples. The data provide a detailed comparison of geologic and seismic characteristics and provide parameters for estimating strong earthquake ground motions quantitatively at each of the sites. A major emphasis of this program is to obtain a detailed comparison of geologic and seismic data on a regional scale for use in seismic zonation. There is a variety of geologic and seismic data available in the San Francisco Bay Region for use 1n developing the general zoning techniques which can then be applied to other areas. Shear wave velocities 1n near-surface geologic materials are of especial interest for engineering seismology and seismic zonation studies, yet in general, they are difficult to measure because of contamination by compressional waves. A comparison of various in-situ techniques by Warrick (1974) establishes the reliability of the method utilizing a "horizontal traction" source for sites underlain by bay mud and alluvium. Gibbs, and others (1975a) present data from 12 holes and establishes the reliability of the method for sites underlain by a variety of different rock units and suggest extending the measurements to

  15. In situ growth rate measurements during plasma-enhanced chemical vapour deposition of vertically aligned multiwall carbon nanotube films

    International Nuclear Information System (INIS)

    Joensson, M; Nerushev, O A; Campbell, E E B

    2007-01-01

    In situ laser reflectivity measurements are used to monitor the growth of multiwalled carbon nanotube (MWCNT) films grown by DC plasma-enhanced chemical vapour deposition (PECVD) from an iron catalyst film deposited on a silicon wafer. In contrast to thermal CVD growth, there is no initial increase in the growth rate; instead, the initial growth rate is high (as much as 10 μm min -1 ) and then drops off rapidly to reach a steady level (2 μm min -1 ) for times beyond 1 min. We show that a limiting factor for growing thick films of multiwalled nanotubes (MWNTs) using PECVD can be the formation of an amorphous carbon layer at the top of the growing nanotubes. In situ reflectivity measurements provide a convenient technique for detecting the onset of the growth of this layer

  16. Determining of Degradation and Digestion Coefficients of Canola meal Using of In situ and Gas production Techniques

    Directory of Open Access Journals (Sweden)

    Younes Tahmazi

    2015-04-01

    Full Text Available This study was carried out to the determination of nutritive value of canola meal using naylon bag and cumulative gas production techniques in Gizel sheep. Tow fistulated Gizel sheep with average BW 45±2 kg used in a complete randomized design. The cumulative gas production was measured at 2, 4, 6, 8, 12, 16, 24, 36 and 48 h and ruminal DM and CP disappearance were measured up to 96 h. Coefficients of soluble CP degradation of canola meal (A, canola meal treated with 0.5% urea (B and canola meal treated with micro wave (C were 4.74, 15.81 and 15%, and for fermentable portion were 31.05, 39.62 and 65.55%, respectively. The cumulative gas production of soluble and insoluble portions (a+b were 252.13, 213.57 and 240.88 ml/g DM. Metabolizable protein of treatments A, B and C were 283.11, 329.33 and 284.39 g/kg DM, that were not significantly different. The relationship between dry matter and cumulative gas production values for treatments obtained about 0.958, 0.976 and 0.932 and this parameter for crude protein and cumulative gas production achieved 0.987, 0.994 and 0.989, respectively. High correlation between in situ and cumulative gas production techniques indicated that digestibility values can be predicted from cumulative gas production data.

  17. RF measurements I: signal receiving techniques

    CERN Document Server

    Caspers, F

    2011-01-01

    For the characterization of components, systems and signals in the RF and microwave range, several dedicated instruments are in use. In this paper the fundamentals of the RF-signal sampling technique, which has found widespread applications in 'digital' oscilloscopes and sampling scopes, are discussed. The key element in these front-ends is the Schottky diode which can be used either as an RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front-end is the RF mixer as the RF section of modern spectrum analysers has a rather complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown. A brief discussion of commonly used noise measurement techniq...

  18. Blending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yijian Zeng

    2016-03-01

    Full Text Available The inter-comparison of different soil moisture (SM products over the Tibetan Plateau (TP reveals the inconsistency among different SM products, when compared to in situ measurement. It highlights the need to constrain the model simulated SM with the in situ measured data climatology. In this study, the in situ soil moisture networks, combined with the classification of climate zones over the TP, were used to produce the in situ measured SM climatology at the plateau scale. The generated TP scale in situ SM climatology was then used to scale the model-simulated SM data, which was subsequently used to scale the SM satellite observations. The climatology-scaled satellite and model-simulated SM were then blended objectively, by applying the triple collocation and least squares method. The final blended SM can replicate the SM dynamics across different climatic zones, from sub-humid regions to semi-arid and arid regions over the TP. This demonstrates the need to constrain the model-simulated SM estimates with the in situ measurements before their further applications in scaling climatology of SM satellite products.

  19. [Molecular classification of breast cancer patients obtained through the technique of chromogenic in situ hybridization (CISH)].

    Science.gov (United States)

    Fernández, Angel; Reigosa, Aldo

    2013-12-01

    Breast cancer is a heterogeneous disease composed of a growing number of biological subtypes, with substantial variability of the disease progression within each category. The aim of this research was to classify the samples object of study according to the molecular classes of breast cancer: luminal A, luminal B, HER2 and triple negative, as a result of the state of HER2 amplification obtained by the technique of chromogenic in situ hybridization (CISH). The sample consisted of 200 biopsies fixed in 10% formalin, processed by standard techniques up to paraffin embedding, corresponding to patients diagnosed with invasive ductal carcinoma of the breast. These biopsies were obtained from patients from private practice and the Institute of Oncology "Dr. Miguel Pérez Carreño", for immunohistochemistry (IHC) of hormone receptors and HER2 made in the Hospital Metropolitano del Norte, Valencia, Venezuela. The molecular classification of the patient's tumors considering the expression of estrogen and progesterone receptors by IHC and HER2 amplification by CISH, allowed those cases originally classified as unknown, since they had an indeterminate (2+) outcome for HER2 expression by IHC, to be grouped into the different molecular classes. Also, this classification permitted that some cases, initially considered as belonging to a molecular class, were assigned to another class, after the revaluation of the HER2 status by CISH.

  20. N-isopropylacrylamide-based fine-dispersed thermosensitive ferrogels obtained via in-situ technique.

    Science.gov (United States)

    Korotych, O; Samchenko, Yu; Boldeskul, I; Ulberg, Z; Zholobak, N; Sukhodub, L

    2013-03-01

    Thermosensitive hydrogels with magnetic properties (ferrogels) are very promising for medical application, first of all, for the design of targeted delivery systems with controlled release of drugs and for magnetic hyperthermia and chemotherapy treatment of cancer. These magnetic hydrogels could be obtained using diverse techniques: ex- and in-situ syntheses. The present work is devoted to the study of magnetite (Fe(3)O(4)) formation inside the nanoreactors of (co)polymeric hydrogels. Polymeric templates (hydrogel films and fine-dispersed hydrogels) used for obtaining ferrogels were based on acrylic monomers: thermosensitive N-isopropylacrylamide, and hydrophilic acrylamide. Covalent cross-linking was accomplished using bifunctional monomer N,N'-methylenebisacrylamide. Influence of hydrophilic-lipophilic balance of polymeric templates and concentration of iron cations on the magnetite formation were investigated along with the development of ferrogel preparation technique. Cytotoxicity, physical and chemical properties of obtained magnetic hydrogels have been studied in this work. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Comparison of in situ polymerization and solution-dispersion techniques in the preparation of Polyimide/Montmorillonite (MMT) Nanocomposites.

    Science.gov (United States)

    Ahmad, Mansor Bin; Gharayebi, Yadollah; Salit, Mohd Sapuan; Hussein, Mohd Zobir; Shameli, Kamyar

    2011-01-01

    In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3',4,4'-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique.

  2. In Situ Measurement of Alkali Metals in an MSW Incinerator Using a Spontaneous Emission Spectrum

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-03-01

    Full Text Available This paper presents experimental investigations of the in situ diagnosis of the alkali metals in the municipal solid waste (MSW flame of an industrial grade incinerator using flame emission spectroscopy. The spectral radiation intensities of the MSW flame were obtained using a spectrometer. A linear polynomial fitting method is proposed to uncouple the continuous spectrum and the characteristic line. Based on spectra processing and a non-gray emissivity model, the flame temperature, emissivity, and intensities of the emission of alkali metals were calculated by means of measuring the spectral radiation intensities of the MSW flame. Experimental results indicate that the MSW flame contains alkali metals, including Na, K, and even Rb, and it demonstrates non-gray characteristics in a wavelength range from 500 nm to 900 nm. Peak intensities of the emission of the alkali metals were found to increase when the primary air was high, and the measured temperature varied in the same way as the primary air. The temperature and peak intensities of the lines of emission of the alkali metals may be used to adjust the primary airflow and to manage the feeding of the MSW to control the alkali metals in the MSW flame. It was found that the peak intensity of the K emission line had a linear relationship with the peak intensity of the Na emission line; this correlation may be attributed to their similar physicochemical characteristics in the MSW. The variation trend of the emissivity of the MSW flame and the oxygen content in the flue gas were almost opposite because the increased oxygen content suppressed soot formation and decreased soot emissivity. These results prove that the flame emission spectroscopy technique is feasible for monitoring combustion in the MSW incinerator in situ.

  3. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  4. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    KAUST Repository

    Parkes, Stephen; Wang,  Lixin; McCabe, Matthew

    2015-01-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a

  5. Estimation of the in situ degradation of the washout fraction of starch by using a modified in situ protocol and in vitro measurements

    NARCIS (Netherlands)

    Jonge, de L.H.; Laar, van H.; Dijkstra, J.

    2015-01-01

    The in situ degradation of the washout fraction of starch in six feed ingredients (i.e. barley, faba beans, maize, oats, peas and wheat) was studied by using a modified in situ protocol and in vitro measurements. In comparison with the washing machine method, the modified protocol comprises a milder

  6. Ultrasonic techniques for the in situ characterisation of 'legacy' Waste sludges and dispersions - 59111

    International Nuclear Information System (INIS)

    Hunter, Timothy; Biggs, Simon; Young, James; Fairweather, Michael; Peakall, Jeff

    2012-01-01

    Research being undertaken at the University of Leeds, as part of the DIAMOND university consortium, is exploring the effectiveness of various ultrasonic technologies as in situ probes to characterize and monitor nuclear waste slurries, such as the 'Legacy' Magnesium hydroxide sludges found in Sellafield, U.K. Through use of a commercial Acoustic Backscatter Sensor (ABS) with 1 - 5 MHz transducers, various properties of free-settling oxide simulant sludges were determined. Work was focused upon characterizing essentially 'static' sludges (to give prospective use as tools for the wastes in current deposits); although, the sensors also have potential as dispersion monitors during any future processing and storage of the Legacy wastes, as well as many other storage, clarifier or thickener systems across a wide range of industrial processing operations. ABS data of mixed glass powder dispersions was analysed and compared to scattering theory, to understand the correlations between acoustic attenuation and particulate concentration. The ABS was also calibrated to measure changes in average particulate concentration within a settling suspension over time, and showed the depth-wise segregation of the dispersion through the settling column at different particular time intervals. It was found that observed hindered settling also led to an increase in particulate concentration over the sludge zone and significant segregation occurred at moderate time intervals, due to the broad size distribution of the aggregates measured. It is hoped in future that these sensors may be able to be fitted to robotic handlers that have been installed onsite (and previously used for sampling), allowing fully automatic in situ sludge analysis. (authors)

  7. A transparent Pyrex μ-reactor for combined in situ optical characterization and photocatalytic reactivity measurements

    International Nuclear Information System (INIS)

    Dionigi, F.; Hansen, O.; Nielsen, M. G.; Chorkendorff, I.; Vesborg, P. C. K.; Pedersen, T.

    2013-01-01

    A new Pyrex-based μ-reactor for photocatalytic and optical characterization experiments is presented. The reactor chamber and gas channels are microfabricated in a thin poly-silicon coated Pyrex chip that is sealed with a Pyrex lid by anodic bonding. The device is transparent to light in the UV-vis-near infrared range of wavelengths (photon energies between ∼0.4 and ∼4.1 eV). The absorbance of a photocatalytic film obtained with a light transmission measurement during a photocatalytic reaction is presented as a proof of concept of a photocatalytic reactivity measurement combined with in situ optical characterization. Diffuse reflectance measurements of highly scattering photocatalytic nanopowders in a sealed Pyrex μ-reactor are also possible using an integrating sphere as shown in this work. These experiments prove that a photocatalyst can be characterized with optical techniques after a photocatalytic reaction without removing the material from the reactor. The catalyst deposited in the cylindrical reactor chamber can be illuminated from both top and bottom sides and an example of application of top and bottom illumination is presented

  8. Developing new understanding of photoelectrochemical water splitting via in-situ techniques: A review on recent progress

    Directory of Open Access Journals (Sweden)

    Jiajie Cen

    2017-04-01

    Full Text Available Photoelectrochemical (PEC water splitting is a promising technology for solar hydrogen production to build a sustainable, renewable and clean energy economy. Given the complexity of the PEC water splitting processes, it is important to note that developing in-situ techniques for studying PEC water splitting presents a formidable challenge. This review is aimed at highlighting advantages and disadvantages of each technique, while offering a pathway of potentially combining several techniques to address different aspects of interfacial processes in PEC water splitting. We reviewed recent progress in various techniques and approaches utilized to study PEC water splitting, focusing on spectroscopic and scanning-probe methods. Keywords: In-situ, Water splitting, IMPS, TAS, SPM

  9. DGT Passive Sampling for Quantitative in Situ Measurements of Compounds from Household and Personal Care Products in Waters.

    Science.gov (United States)

    Chen, Wei; Li, Yanying; Chen, Chang-Er; Sweetman, Andrew J; Zhang, Hao; Jones, Kevin C

    2017-11-21

    Widespread use of organic chemicals in household and personal care products (HPCPs) and their discharge into aquatic systems means reliable, robust techniques to monitor environmental concentrations are needed. The passive sampling approach of diffusive gradients in thin-films (DGT) is developed here and demonstrated to provide in situ quantitative and time-weighted average (TWA) measurement of these chemicals in waters. The novel technique is developed for HPCPs, including preservatives, antioxidants and disinfectants, by evaluating the performance of different binding agents. Ultrasonic extraction of binding gels in acetonitrile gave good and consistent recoveries for all test chemicals. Uptake by DGT with HLB (hydrophilic-lipophilic-balanced) as the binding agent was relatively independent of pH (3.5-9.5), ionic strength (0.001-0.1 M) and dissolved organic matter (0-20 mg L -1 ), making it suitable for applications across a wide range of environments. Deployment time and diffusion layer thickness dependence experiments confirmed DGT accumulated chemicals masses are consistent with theoretical predictions. The technique was further tested and applied in the influent and effluent of a wastewater treatment plant. Results were compared with conventional grab-sampling and 24-h-composited samples from autosamplers. DGT provided TWA concentrations over up to 18 days deployment, with minimal effects from biofouling or the diffusive boundary layer. The field application demonstrated advantages of the DGT technique: it gives in situ analyte preconcentration in a simple matrix, with more quantitative measurement of the HPCP analytes.

  10. A measurement technique for counting processes

    International Nuclear Information System (INIS)

    Cantoni, V.; Pavia Univ.; De Lotto, I.; Valenziano, F.

    1980-01-01

    A technique for the estimation of first and second order properties of a stationary counting process is presented here which uses standard instruments for analysis of a continuous stationary random signal. (orig.)

  11. Optical metrology techniques for dimensional stability measurements

    NARCIS (Netherlands)

    Ellis, Jonathan David

    2010-01-01

    This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.

  12. In situ measurements reveal extremely low pH in soil

    DEFF Research Database (Denmark)

    Nielsen, Knud Erik; Loibide, Amaia Irixar; Nielsen, Lars Peter

    2017-01-01

    We measured pH in situ in the top organic soil horizons in heathland and pine forest and found values between 2.6 and 3.2. This was 0.5e0.8 units lower than concurrent laboratory pH measurements of the same soil, which raises questions about the interpretation of pH measurements. We propose that ...... that the higher pH recorded by standard laboratory methods may be due to buffering ions from soil biota released from drying, grinding and rewetting of soil samples, whereas the in situ pH reflects the correct level of acidification....

  13. In-situ measurement of environment radioactivity by mobile nuclear field laboratory (MNFL)

    International Nuclear Information System (INIS)

    Gopalani, Deepak; Mathur, A.P.; Rawat, D.K.; Barala, S.S.; Singhal, K.P.; Singh, G.P.; Samant, R.P.

    2008-01-01

    In-situ measurement of environment radioactivity is useful tool for determine the unusual increase of radioactivity at any place due to any nuclear eventuality take place. A mobile nuclear field laboratory has been designed and developed for in-situ measurement of environment radioactivity at any desired location. This vehicle is equipped with different monitoring and analysis instruments. These equipment can be operated while vehicle is moving. The measured data can be stored in computer. This vehicle has the space for storage of various environmental matrices of affected area and these can analysis in laboratory. (author)

  14. Application of Fluorescence In Situ Hybridization (FISH) Technique for the Detection of Genetic Aberration in Medical Science

    OpenAIRE

    Ratan, Zubair Ahmed; Zaman, Sojib Bin; Mehta, Varshil; Haidere, Mohammad Faisal; Runa, Nusrat Jahan; Akter, Nasrin

    2017-01-01

    Fluorescence in situ hybridization (FISH) is a macromolecule recognition technique, which is considered as a new advent in the field of cytology.?Initially, it was developed as a physical mapping tool to delineate genes within chromosomes. The accuracy and versatility of FISH were subsequently capitalized upon in biological and medical research. This visually appealing technique provides an intermediate degree of resolution between DNA analysis and chromosomal investigations. FISH consists of...

  15. Synchrotron X-ray measurement techniques for thermal barrier coated cylindrical samples under thermal gradients

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Raghavan, Seetha [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Meid, Carla; Wischek, Janine; Bartsch, Marion [German Aerospace Center (DLR), Institute of Materials Research, 51147 Cologne (Germany); Okasinski, John; Almer, Jonathan [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Karlsson, Anette M. [Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 (United States)

    2013-08-15

    Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.

  16. Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Frick, C M; Germida, J J; Farrell, R E [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Soil Science

    1999-01-01

    The effectiveness of phytoremediation as a tool for cleaning up hydrocarbon contaminated soil and groundwater was evaluated by reviewing relative literature. Phytoremediation is an emerging technology which consists of the use of plants for in situ treatment of contaminated soils. Grasses, herbs, shrubs and deciduous trees were the main types of plants considered in this study. A database is presently under construction to act as an inventory of plant species that tolerate or phytoremediate petroleum hydrocarbons. This paper focused on the main mechanisms and special considerations involved in the phytoremediation alkanes, aromatics, polycyclic aromatic hydrocarbons, and creosote. While phytoremediation does not require intensive engineering techniques, it does involve human intervention to establish appropriate plants and microorganisms to enhance natural degradation processes. Plants such as canola, oats barley have been shown to tolerate and accumulate metals such as selenium, copper, cadmium and zinc. Hybrid poplar trees reduce the concentration of nitrate in surficial groundwater and degrade the herbicide atrazine. Forage grasses inoculated with bacteria can degrade chlorinated benzoic acids. Various grasses and leguminous plants can increase the removal of petroleum hydrocarbons from contaminated soils. 66 refs., 3 tabs., 2 figs.

  17. Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites

    International Nuclear Information System (INIS)

    Frick, C.M.; Germida, J.J.; Farrell, R.E.

    1999-01-01

    The effectiveness of phytoremediation as a tool for cleaning up hydrocarbon contaminated soil and groundwater was evaluated by reviewing relative literature. Phytoremediation is an emerging technology which consists of the use of plants for in situ treatment of contaminated soils. Grasses, herbs, shrubs and deciduous trees were the main types of plants considered in this study. A database is presently under construction to act as an inventory of plant species that tolerate or phytoremediate petroleum hydrocarbons. This paper focused on the main mechanisms and special considerations involved in the phytoremediation alkanes, aromatics, polycyclic aromatic hydrocarbons, and creosote. While phytoremediation does not require intensive engineering techniques, it does involve human intervention to establish appropriate plants and microorganisms to enhance natural degradation processes. Plants such as canola, oats barley have been shown to tolerate and accumulate metals such as selenium, copper, cadmium and zinc. Hybrid poplar trees reduce the concentration of nitrate in surficial groundwater and degrade the herbicide atrazine. Forage grasses inoculated with bacteria can degrade chlorinated benzoic acids. Various grasses and leguminous plants can increase the removal of petroleum hydrocarbons from contaminated soils. 66 refs., 3 tabs., 2 figs

  18. Prompt gamma-ray activation technique for in-situ analysis of mercury pollution in water

    International Nuclear Information System (INIS)

    Khouri, M.C.; Jayanthi, K.A.; Pascholati, P.R.

    1995-01-01

    Industrial and mining pollutants discharged into water are in general distributed homogeneously and we investigated a prompt neutron activation technique for the in-situ analysis, to start with of Hg content in water. The laboratory test employed a 252 Cf neutron source (of ∼ 3 x 10 6 n/s fluence) submerged in a test tank of water of ∼ 500 litres, and to monitor the gamma-ray emission a 4 x 4 NaI (Tl) detector system was employed. In 3000 is time interval trials, for a 46 ppm contamination level of Hg, we observed an excess of counts of ∼ 9.2 σ significance in the energy range of 4000-6500 keV, which can be attributed to the presence of mercury. This test system for a 10 hour monitoring can provide a minimum detectable sensitivity at 4.78 ppm. In the future experiments, we propose to replace the NaI(Tl) detector by a HPGe detector to facilitate simultaneous analyses of pollutants such as cadmium, chlorine, chromium etc for detection at few tenths to tens of ppm levels or better. (author). 5 refs., 2 figs., 2 tabs

  19. Identification of bacteria used for microbial enhanced oil recovery process by fluorescence in situ hybridization technique

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K.; Tanaka, S.; Otsuka, M. [Kansai Research Institute, Kyoto (Japan). Lifescience Lab.; Yonebayashi, H. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    A fluorescence in situ hybridization (FISH) technique using 16S rRNA-targeted oligonucleotide probes was developed for rapid detection of microorganisms for use in the microbial enhancement of oil recovery (MEOR) process. Two microorganisms, Enterobacter cloacae TRC-322 and Bacillus licheniformis TRC-18-2-a, were selected from a collection of Enterobacter sp. and Bacillus sp. which were screened in previous studies as candidate microorganisms for injection, and were used for this experiment. Oligonucleotide probes, design based on specific sequences in the 16S rRNA gene were labeled with either fluorescein isothiocyanate (FITC), or 6-car-boxy-X-rhodamine (ROX), and were allowed to hybridize with fixed cells of the two microorganisms noted above. The fluorescence signal emitted from each microorganism cells could clearly be detected by an epifluorescence microscope. Moreover, E. cloacae TRC-322 and B, licheniformis TRC-18-2-a, suspended in actual reservoir brine, including inorganic salts, oil and aboriginal cells of the reservoir brine, could be detected directly by this hybridization method, without the need for cultivation and isolation. (author)

  20. Kinetics of chloride ion adsorption on stainless alloys by in situ contact electric resistance technique

    International Nuclear Information System (INIS)

    Marichev, V.A.

    2008-01-01

    As the primary reason for pitting of stainless alloys, chloride adsorption is not adequately studied, e.g. kinetic investigations of chloride adsorption are actually absent. We discuss and partly reconsider some well-known facts (e.g. halides order: Cl - > Br - > I - ), disputed points (chloride penetration in passive film), and still unknown aspects of chloride adsorption. For the first time, we report kinetic studies of chloride adsorption on stainless alloys by in situ contact electric resistance technique. The peak-like character of kinetic curves has been found for all studied stainless alloys, but not for pure iron and nickel. This has been considered as a sequence of the substantial charge transfer during chloride adsorption. Opposite to typical d metals, stainless materials are alloys of early and late transition metals having unfilled d-bands with increased number of d-electron vacancies. Such electronic structure is favorable for adsorption of electron donating adsorbates like halide ions. Experimental data of this work are more compatible with possibility of chloride penetration into the passive films on stainless alloys that also might involve a transformation of primary oxy-hydroxide films into oxy-chloride films

  1. In-Vivo Techniques for Measuring Electrical Properties of Tissues.

    Science.gov (United States)

    1980-09-01

    probe Electromagnetic energy Dielectric properties Monopole antenna In-situ tissues , Antemortem/Pos tmortem studies Renal blood flow 10 ABSTRACT... mice or rats, which were positioned beneath a fixed measurement probe. Several alternative methods involving the use of semi-rigid or flexible coaxial

  2. The environmental radiation monitoring system and in-situ measurements for early notification and OIL (Operational Intervention Levels) calculations

    International Nuclear Information System (INIS)

    Haquin, G.; Ne'eman, E.; Brenner, S.; Lavi, N.

    1997-01-01

    The efficiency of the environmental radiation monitoring, low level laboratory and in-situ gamma-ray spectrometry are evaluated as the systems for early notification and for determination of dose rate in air, surface contamination and activity concentration in food during emergencies for Operational Intervention Levels (OIL) recalculation.The National Environmental Radiation Monitoring System has proved its efficiency in the early detection of unregistered radiography work. A mobile station of the network can be used for absorbed dose rate measurement during emergencies in contaminated areas. The calibrated in-situ gamma-ray spectrometry system in an open phosphate ore mine has showed the efficiency of this technique for fast and accurate determination of soil activity concentration. The calibration for an uniform depth distribution can be easily mathematically converted to an exponential depth distribution in cases of radioactive material fallout

  3. In situ high-pressure measurement of crystal solubility by using neutron diffraction

    Science.gov (United States)

    Chen, Ji; Hu, Qiwei; Fang, Leiming; He, Duanwei; Chen, Xiping; Xie, Lei; Chen, Bo; Li, Xin; Ni, Xiaolin; Fan, Cong; Liang, Akun

    2018-05-01

    Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.

  4. Quantitative comparison of in situ soil CO2 flux measurement methods

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose

    2002-01-01

    Development of reliable regional or global carbon budgets requires accurate measurement of soil CO2 flux. We conducted laboratory and field studies to determine the accuracy and comparability of methods commonly used to measure in situ soil CO2 fluxes. Methods compared included CO2...

  5. In situ beam angle measurement in a multi-wafer high current ion implanter

    International Nuclear Information System (INIS)

    Freer, B.S.; Reece, R.N.; Graf, M.A.; Parrill, T.; Polner, D.

    2005-01-01

    Direct, in situ measurement of the average angle and angular content of an ion beam in a multi-wafer ion implanter is reported for the first time. A new type of structure and method are described. The structures are located on the spinning disk, allowing precise angular alignment to the wafers. Current that passes through the structures is known to be within a range of angles and is detected behind the disk. By varying the angle of the disk around two axes, beam current versus angle is mapped and the average angle and angular spread are calculated. The average angle measured in this way is found to be consistent with that obtained by other techniques, including beam centroid offset and wafer channeling methods. Average angle of low energy beams, for which it is difficult to use other direct methods, is explored. A 'pencil beam' system is shown to give average angle repeatability of 0.13 deg. (1σ) or less, for two low energy beams under normal tuning variations, even though no effort was made to control the angle

  6. In situ real-time measurement of physical characteristics of airborne bacterial particles

    Science.gov (United States)

    Jung, Jae Hee; Lee, Jung Eun

    2013-12-01

    Bioaerosols, including aerosolized bacteria, viruses, and fungi, are associated with public health and environmental problems. One promising control method to reduce the harmful effects of bioaerosols is thermal inactivation via a continuous-flow high-temperature short-time (HTST) system. However, variations in bioaerosol physical characteristics - for example, the particle size and shape - during the continuous-flow inactivation process can change the transport properties in the air, which can affect particle deposition in the human respiratory system or the filtration efficiency of ventilation systems. Real-time particle monitoring techniques are a desirable alternative to the time-consuming process of microscopic analysis that is conventionally used in sampling and particle characterization. Here, we report in situ real-time optical scattering measurements of the physical characteristics of airborne bacteria particles following an HTST process in a continuous-flow system. Our results demonstrate that the aerodynamic diameter of bacterial aerosols decreases when exposed to a high-temperature environment, and that the shape of the bacterial cells is significantly altered. These variations in physical characteristics using optical scattering measurements were found to be in agreement with the results of scanning electron microscopy analysis.

  7. Molecular Tagging Velocimetry Development for In-situ Measurement in High-Temperature Test Facility

    Science.gov (United States)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2015-01-01

    The High Temperature Test Facility, HTTF, at Oregon State University (OSU) is an integral-effect test facility designed to model the behavior of a Very High Temperature Gas Reactor (VHTR) during a Depressurized Conduction Cooldown (DCC) event. It also has the ability to conduct limited investigations into the progression of a Pressurized Conduction Cooldown (PCC) event in addition to phenomena occurring during normal operations. Both of these phenomena will be studied with in-situ velocity field measurements. Experimental measurements of velocity are critical to provide proper boundary conditions to validate CFD codes, as well as developing correlations for system level codes, such as RELAP5 (http://www4vip.inl.gov/relap5/). Such data will be the first acquired in the HTTF and will introduce a diagnostic with numerous other applications to the field of nuclear thermal hydraulics. A laser-based optical diagnostic under development at The George Washington University (GWU) is presented; the technique is demonstrated with velocity data obtained in ambient temperature air, and adaptation to high-pressure, high-temperature flow is discussed.

  8. A novel in-situ sampling and VFA sensor technique for anaerobic systems

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2002-01-01

    A key information for understanding and controlling the anaerobic biogas process is the concentration of Volatile Fatty Acids (VFA). However, access to this information has so far been limited to off-line measurements by manual time and labour consuming methods. We have developed a new technique ...... than 1000 samples on both a fullscale biogas plant and lab-scale reactors. The measuring range covers specific measurements of acetate, propionate, iso-/n-butyrate and iso-/n-valerate from 0.1 to 50 mM (6–3,000 mg)....

  9. Caliper variable sonde for thermal conductivity measurements in situ

    Energy Technology Data Exchange (ETDEWEB)

    Oelsner, C; Leischner, H; Pischel, S

    1968-01-01

    For the measurement of the thermal conductivity of the formations surrounding a borehole, a sonde having variable diameter (consisting of an inflatable rubber cylinder with heating wires embedded in its wall) is described. The conditions for the usual sonde made of metal are no longer fulfilled, but the solution to the problem of determining the thermal conductivity from the temperature rise is given, based on an approach by Carslaw and Jaeger, which contains the Bessel functions of the second kind. It is shown that a simpler solution for large values of time can be obtained through the Laplace transformation, and the necessary series developments for computer application are also given. The sonde and the necessary measuring circuitry are described. Tests measurements have indicated that the thermal conductivity can be determined with this sonde with a precision of + 10%.

  10. In situ performance curves measurements of large pumps

    International Nuclear Information System (INIS)

    Anton, A

    2010-01-01

    The complex energetic system on the river Lotru in Romania comprises of a series of lakes and pumping stations and a major hydroelectric power plant: Lotru-Ciunget. All the efforts have been oriented towards the maintenance of the Pelton turbines and very little attention has been directed to the pumps. In the system, there are three large pumping stations and only in the last 5 years, the pump performances have become a concern. The performances where determined using portable ultrasonic flow meters, a Yates meter, precision manometers and appropriate electrical equipment for power measurement (Power Analiser - NORMA D4000 LEM). The measurements are not supposed to interfere with the normal operation so only a limited number of tests could be performed. Based on those tests, portions of the test curves have been measured and represented in specific diagrams.

  11. In situ performance curves measurements of large pumps

    Science.gov (United States)

    Anton, A.

    2010-08-01

    The complex energetic system on the river Lotru in Romania comprises of a series of lakes and pumping stations and a major hydroelectric power plant: Lotru-Ciunget. All the efforts have been oriented towards the maintenance of the Pelton turbines and very little attention has been directed to the pumps. In the system, there are three large pumping stations and only in the last 5 years, the pump performances have become a concern. The performances where determined using portable ultrasonic flow meters, a Yates meter, precision manometers and appropriate electrical equipment for power measurement (Power Analiser - NORMA D4000 LEM). The measurements are not supposed to interfere with the normal operation so only a limited number of tests could be performed. Based on those tests, portions of the test curves have been measured and represented in specific diagrams.

  12. Combining soundscape analysis with in situ observations and oceanographic data for future ecosystem evaluation techniques.

    Science.gov (United States)

    Freeman, S. E.; Freeman, L. A.

    2016-02-01

    Coral reef ecosystems face many anthropogenic threats. There are urgent requirements for improved monitoring and management. Conventional assessment methods using SCUBA are costly and prone to bias and under-sampling. Here, three approaches to understanding coral reef ecology are combined to aid the goal of enhanced passive monitoring in the future: statistical analysis of oceanographic habitats, remote cameras for nocturnal surveys of benthic fauna, and soundscape analysis in the context of oceanographic setting and ecological metrics collected in-situ. Hawaiian reefs from Kure Atoll to the island of Hawaii, an area spanning two oceanographic habitats, are assessed. Multivariate analysis of acoustic, remote camera, and in-situ observational data showed significant differences in more than 20 percent of ecological and acoustic variables when grouped by oceanic regime, suggesting that large-scale oceanography substantially influences local ecological states and associated soundscapes. Acoustic variables further delineated sites by island, suggesting local conditions influence the soundscape to a greater degree. While the number of invertebrates (with an emphasis on crustaceans and echinoderms) imaged using remote cameras correlated with a number of acoustic metrics, an increasingly higher correlation between invertebrate density and spectral level was observed as acoustic bands increased in frequency from 2 to 20 kHz. In turn, correlation was also observed between the number of predatory fish and sound levels above 2 kHz, suggesting a connection between the number of invertebrates, sound levels at higher frequencies, and the presence of their predators. Comparisons between sound recordings and diversity indices calculated from observational and remote camera data indicate that greater diversity in fishes and benthic invertebrates is associated with a larger change in sound levels between day and night. Interdisciplinary analyses provide a novel view to underwater

  13. The in situ permeable flow sensor: A device for measuring groundwater flow velocity

    International Nuclear Information System (INIS)

    Ballard, S.; Barker, G.T.; Nichols, R.L.

    1994-03-01

    A new technology called the In Situ Permeable Flow Sensor has been developed at Sandia National Laboratories. These sensors use a thermal perturbation technique to directly measure the direction and magnitude of the full three dimensional groundwater flow velocity vector in unconsolidated, saturated, porous media. The velocity measured is an average value characteristic of an approximately 1 cubic meter volume of the subsurface. During a test at the Savannah River Site in South Carolina, two flow sensors were deployed in a confined aquifer in close proximity to a well which was screened over the entire vertical extent of the aquifer and the well was pumped at four different pumping rates. In this situation horizontal flow which is radially directed toward the pumping well is expected. The flow sensors measured horizontal flow which was directed toward the pumping well, within the uncertainty in the measurements. The observed magnitude of the horizontal component of the flow velocity increased linearly with pumping rate, as predicted by theoretical considerations. The measured horizontal component of the flow velocity differed from the predicted flow velocity, which was calculated with the assumptions that the hydraulic properties of the aquifer were radially homogeneous and isotropic, by less than a factor of two. Drawdown data obtained from other wells near the pumping well during the pump test indicate that the hydraulic properties of the aquifer are probably not radially homogeneous but the effect of the inhomogeneity on the flow velocity field around the pumping well was not modeled because the degree and distribution of the inhomogeneity are unknown. Grain size analysis of core samples from wells in the area were used to estimate the vertical distribution of hydraulic conductivity

  14. Calibration and application of a HPGe gamma spectrometer for in-situ measurements

    International Nuclear Information System (INIS)

    Xiao Xuefu; Yue Qingyu

    1992-02-01

    The principle and methods of the calibration for an in-situ γ spectrometer are introduced. The calibration for a portable HPGe γ spectrometer has been completed. The N f /A(peak count rate per unit activity in soil) and N f /D(peak count rate per unit absorbed dose rate in the air) are listed. The uncertainties of the calibration factors are estimated. The in-situ measurements have been carried out in surroundings near the nuclear facilities and the data are compared with those measured by other methods

  15. Cataclastic effects in rock salt laboratory and in situ measurements

    International Nuclear Information System (INIS)

    Gramberg, J.; Roest, J.P.A.

    1984-01-01

    The aim of the research is the determination of eventual cataclastic effects in environmental rock salt of a heated part of a vertical deep test bore hole, a model for HLW disposal. Known cataclastic systems from hard rock mining and rock salt mines will form the starting point for the explanation of convergence of underground cavity walls. In rock salt, however, different elements seem to prevail: crystal plasticity and micro-cataclasis. The environmental measurements at the deep bore hole have to be carried out from a distance. To this end the acoustic micro-seismic method will be a suitable one. The appropriate equipment for micro-seismic cross hole measurement is designed, constructed and tested in the laboratory as well as underground. Acoustic velocity data form a crucial point. A micro-seismic acoustic P-wave model, adapted to the process of structural changes, is developed. P-wave velocity measurements in rock salt cubes in the laboratory are described. An underground cross hole measurement in the wall of a gallery with semi-circular section is treated and analysed. A conclusion was that, in this case, no macro-cataclasis (systematic large fractures) will be involved in the process of gallery convergence, but that the mechanism proved to be a combination of crystal plasticity and micro-cataclasis. The same mechanism might be expected to be present in the environmental rock salt of the HLW-disposal deep bore hole. As a result this environmental rock salt might be expected to be impermeable. A plan for the application of the developed equipment during the heating test on the ECN-deep-bore-hole is shown. A theory on ''disking'' or ''rim cracks'' is presented in an annex

  16. Infrared technique for measuring steam density

    International Nuclear Information System (INIS)

    Snyder, S.C.; Baker, A.G.

    1982-01-01

    A prototype infrared steam densitometer using a two-wavelength, dual-beam technique was developed. Tests were performed on dry steam flows with this technique, which uses two narrow bandwidths of infrared light in the region of 0.9 to 3.0 μm. One wavelength is absorbed by steam, while the other is not. The latter wavelength is used to account for nonabsorptive light losses. In addition to the beam that traverses the steam flow, a reference beam that does not traverse the flow allows the light source to be monitored. The theory of the device is presented, along with a description of the components and of the system's operation. Test results are also presented

  17. The evolution of radioprotection measuring techniques

    International Nuclear Information System (INIS)

    Blanc, D.

    1995-01-01

    We have reviewed the main issues that must now be faced in radiological protection. Many of them are linked to the ICRP recommendations in the report number 60. The impact of microelectronics in this field is significant and is leading to rapidly improved techniques and increasing sensitivity. A particularly important advance is the ''credit card'' dosemeter for X and gamma rays. (author). 2 refs., 4 figs., 2 tab

  18. SPEED ROLLER STAND MEASUREMENT SYSTEM CHECKING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Y. Zybtsev

    2011-01-01

    Full Text Available The study has shown that the accuracy of brakes checking by inertial stands depends upon the applied methods of measurement of braking parameters (stand slowing down, braking distance, brakes triggering time, current speed as well as the methods of metrological checking of measuring system canals.

  19. A new probe for in situ TDR moisture measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yokuda, E. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Smith, R. (Sonsub Services, Inc., Houston, TX (United States))

    1993-01-01

    This paper explains the development of a new Time Domain Reflectometry (TDR) probe which can be inserted through waste and soil to a depth of 14 feet with minimal labor and minimal soil disturbance. TDR has been used for 10 years as a method for measuring soil moisture contents. Conventional TDR probes are 30 centimeters long and therefore are difficult to insert at depths below a few feet. Recently, a probe has been developed which can be inserted to depths of 14 feet with the use of a vibratory drill. Quality objectives for the instrument, preliminary data, and suggestions for future developments are presented.

  20. A new probe for in situ TDR moisture measurement

    International Nuclear Information System (INIS)

    Yokuda, E.; Smith, R.

    1993-01-01

    This paper explains the development of a new Time Domain Reflectometry (TDR) probe which can be inserted through waste and soil to a depth of 14 feet with minimal labor and minimal soil disturbance. TDR has been used for 10 years as a method for measuring soil moisture contents. Conventional TDR probes are 30 centimeters long and therefore are difficult to insert at depths below a few feet. Recently, a probe has been developed which can be inserted to depths of 14 feet with the use of a vibratory drill. Quality objectives for the instrument, preliminary data, and suggestions for future developments are presented

  1. A new probe for in situ TDR moisture measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yokuda, E. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Smith, R. [Sonsub Services, Inc., Houston, TX (United States)

    1993-05-01

    This paper explains the development of a new Time Domain Reflectometry (TDR) probe which can be inserted through waste and soil to a depth of 14 feet with minimal labor and minimal soil disturbance. TDR has been used for 10 years as a method for measuring soil moisture contents. Conventional TDR probes are 30 centimeters long and therefore are difficult to insert at depths below a few feet. Recently, a probe has been developed which can be inserted to depths of 14 feet with the use of a vibratory drill. Quality objectives for the instrument, preliminary data, and suggestions for future developments are presented.

  2. In situ droplet surface tension and viscosity measurements in gas metal arc welding

    International Nuclear Information System (INIS)

    Bachmann, B; Siewert, E; Schein, J

    2012-01-01

    In this paper, we present an adaptation of a drop oscillation technique that enables in situ measurements of thermophysical properties of an industrial pulsed gas metal arc welding (GMAW) process. Surface tension, viscosity, density and temperature were derived expanding the portfolio of existing methods and previously published measurements of surface tension in pulsed GMAW. Natural oscillations of pure liquid iron droplets are recorded during the material transfer with a high-speed camera. Frame rates up to 30000 fps were utilized to visualize iron droplet oscillations which were in the low kHz range. Image processing algorithms were employed for edge contour extraction of the droplets and to derive parameters such as oscillation frequencies and damping rates along different dimensions of the droplet. Accurate surface tension measurements were achieved incorporating the effect of temperature on density. These are compared with a second method that has been developed to accurately determine the mass of droplets produced during the GMAW process which enables precise surface tension measurements with accuracies up to 1% and permits the study of thermophysical properties also for metals whose density highly depends on temperature. Thermophysical properties of pure liquid iron droplets formed by a wire with 1.2 mm diameter were investigated in a pulsed GMAW process with a base current of 100 A and a pulse current of 600 A. Surface tension and viscosity of a sample droplet were 1.83 ± 0.02 N m -1 and 2.9 ± 0.3 mPa s, respectively. The corresponding droplet temperature and density are 2040 ± 50 K and 6830 ± 50 kg m -3 , respectively. (paper)

  3. Liquidus temperature and optical properties measurement by containerless techniques

    Science.gov (United States)

    Anderson, Collin D.

    1993-01-01

    Reactive alloy liquidus temperatures measured by conventional, contained techniques are often in error due to reactions with containers and gaseous impurities. This paper describes a new liquidus temperature measurement technique that avoids these problems by employing containerless processing. This technique relies on precise and accurate noncontact temperature measurements (NCTM), which are made possible by spectral emissivity values. The spectral emissivities, epsilon(sub lambda), are measured along with the optical properties (real, n, and imaginary, k, components of the index of refraction) using polarimetric techniques on electromagnetically levitated specimens. Results from work done at Vanderbilt University and Intersonics on the Ti-Al system are presented to demonstrate the above techniques.

  4. Measurement techniques of LC display systems

    Science.gov (United States)

    Kosmowski, Bogdan B.; Becker, Michael E.; Neumeier, Juergen

    1993-10-01

    The strong increase of applications of liquid crystal displays in various areas (measuring, medical equipment, automotive, telecommunication, office, etc.) has forced the demand for the adequate specification of the LCDs performances. The optical, electro-optical and spectral properties of LCDs are strongly dependent on viewing direction, electrical driving conditions, illumination and temperature. All these quantities have to be precisely controlled, when one of them is varied, the resulting optical response of the object is recorded. In this paper we present measuring methods proposed for LCD panels and the computer controlled measuring system (DMS) for their evaluation.

  5. In situ measurements of thoron exhalation rate in Okinawa (Japan)

    International Nuclear Information System (INIS)

    Shiroma, Y.; Isa, N.; Hosoda, M.; Sorimachi, A.; Ishikawa, T.; Tokonami, S.; Furukawa, M.

    2010-01-01

    Thoron exhalation rates from the ground surface were measured at 57 sites on Okinawa Island (Japan), using a ZnS(Ag) scintillation detector equipped with photomultiplier. The arithmetic means ± SD, median ± SD, minimum and maximum of the rates (unit: Bq m -2 s -1 ) were estimated to be 1.9 ± 1.4, 1.6 ± 0.3, 0.04 and 6.2, respectively. The soils distributed on the island are generally classified into dark red soils, residual regosols, as well as red and yellow soils. While it was assumed that the soils were originated from the bedrock, recent studies suggested that the main material of dark red soils is the East Asian eolian dust. In the dark red soils area, the exhalation rate is relatively higher than that in the other areas. This suggested that the eolian dust was an enhancer for the environmental thoron concentration on Okinawa Island. (authors)

  6. In situ measurement of ash content by neutron activation analysis

    International Nuclear Information System (INIS)

    Chrusciel, E.; Palka, K.; Makhabane, J.L.

    1991-01-01

    The paper presents the results of spectrometric neutron activation logging. A scintillation spectrometer with the source-to-detector spacing of 1.5 m, together with a Po-Be neutron source, with the yield of about 10 7 n/s, were used to measure the intensity of gamma rays in two energy windows during continuous logging. The first energy window of 300 keV width was centered at the 843 keV energy and the second - of 500 keV width at 1779 keV. For ash content varying between 5-35 wt % the mean standard deviation was 2.5 wt %. (author). 22 refs, 6 figs, 1 tab

  7. Characterization of Platinum Electrodes and In-situ Cell Confluency Measurement Based on Current Changes of Cell-Electrodes

    Directory of Open Access Journals (Sweden)

    Chin Fhong SOON

    2015-04-01

    Full Text Available This study aimed at the development of a biosensor to examine the growth confluency of human derived keratinocytes (HaCaT cell lines in-situ. The biosensor consists of a sputter- coated glass substrate with platinum patterns. Cells were grown on the conductive substrates and the confluency of the cells were monitored in-situ based on the conductivity changes of the substrates. Characterization of the cell proliferation and confluency were interrogated using electrical cell-substrate impedance sensing (ECIS techniques and current change of cells using a pico-ammeter. The investigation was followed by the electrical characterization of the platinum electrode (PE using a two probe I-V measurement system. The surface morphology of platinum electrodes were studied using an atomic force microscopy (AFM and the HaCaT cell morphology was studied using Field-Emission Scanning Electron Microscopy (FE-SEM. The microscopy results showed that the cells coupled and proliferated on the platinum electrodes. For monitoring the conductivity and impedance changes of the cell-electrode in-situ, the cover of a Petri dish was inserted with pogo pins to be in contact with the platinum electrodes. The impedance was sampled using the ECIS technique at a twenty-four hour interval. In our findings, the cell proliferation rate can be measured by observing the changes in capacitance or impedance measured at low ac frequencies ranged from 10 - 1 kHz. In good agreement, the current measured at micro-ampere range by the biosensor decreased as the cell coverage area increased over the time. Thus, the percent of cell confluence was shown inversely proportional to the current changes.

  8. A novel technique for partial discharge measurement

    International Nuclear Information System (INIS)

    Farrokh, Fattahi; Navid, Tagizadegan; Ahmad, Zentabchi; Mehdi, Rashidi

    2005-01-01

    Full text : Partial discharges are a sensitive measure of local electrical stress and therefore the measurements is very often used as a quality check of the insulation. The inception of partial discharges gives information on the limit of the electrical strength of the insulating material before a complete discharge between the conductors takes place. Therefore the insulating material can be tested with high stress but without damaging or reducing the performance of the insulation. Also, for partial discharge measurements it should be taken into account that every stress of the insulation will have an influence on the life expectancy of the material, but a reasonable compromise between the stress during the measurement in order to get reliable results and the influence of he lifetime should be found and established in the relevant standard for the particular equipment, for example transformers, cables and so on

  9. Spectroscopic technique for measuring atmospheric CO2

    International Nuclear Information System (INIS)

    Stokes, G.M.; Stokes, R.A.

    1979-01-01

    As part of a continuing effort to identify areas in which astronomical techniques and data may be profitably applied to atmospheric problems, both new and archival solar spectra have been collected to prepare for an analysis of their use for studying the changes of the atmospheric CO 2 burden. This analysis has resulted in the initiation of an observing program using the Fourier Transform Spectrometer (FTS) of the McMath Solar Telescope at Kitt Peak National Observatory (KPNO). This program is generating spectra, the quality of which should not only aid the archival CO 2 study but also lead to analyses of other trace gases

  10. In situ characterization of organic matter in two primitive chondrites through correlated microanalytical techniques

    Science.gov (United States)

    Wende, A. M.; Nittler, L.; Steele, A.; Herd, C. D.

    2009-12-01

    Primitive meteorites contain up to 2 wt % C, much of it in the form of insoluble organic matter (IOM). Bulk analyses have revealed the IOM to be marked by large D and 15N enrichments relative to terrestrial values. Isotopic imaging studies have revealed the presence of `hotspots’, sub-μm to μm-sized regions of IOM exhibiting extreme isotope enrichments. An interesting subpopulation of organic grains, ’nanoglobules’, which have hollow, spherical morphologies, is known to account for a portion of these hot spots. Previous work has suggested that nanoglobules can be identified in situ by native UV fluorescence. The isotopic enrichments are believed to point to low-T chemical fractionations either in the interstellar medium (ISM) or the outer regions of the early Solar System. As part of a larger study investigating the origin and evolution of IOM in the Solar System, a correlated, in situ, microanalytical approach was employed to characterize local isotopic and morphological heterogeneities in IOM in the highly primitive chondrites QUE 99177 (CR3) and Tagish Lake (C-ung). Previous NanoSIMS ion imaging of a QUE 99177 section revealed the spatial and isotopic distribution of C in the matrix with a spatial resolution of 200 nm. Manual definition of >3300 C-rich regions in the NanoSIMS images indicates that grains smaller than 1 μm across, which account for 80% of the IOM area, have a size distribution that is similar to estimates of the size distribution of carbonaceous dust in the diffuse ISM, supporting an interstellar origin for the IOM. Micro-Raman spectroscopy, which is highly sensitive to the degree of disorder in carbonaceous materials, was attempted on the same regions analyzed by NanoSIMS in QUE 99177. Unfortunately, surface damage due to both the prior SIMS analyses and removal of a prior C coat precluded acquisition of useful Raman spectra. Consequently, future correlated work will entail performing Raman analyses on uncoated samples prior to SIMS

  11. Measuring techniques for continuous monitoring of bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlmann, W; Meyer, H D; Schuegerl, K

    1982-01-01

    Control apparatus for fermentation reactors is described. In the example of alcohol fermentation by Saccharomyces cerevisiae, mass spectrometry is used for measuring soluble volatile components (CO/sub 2/, EtOH, and H/sub 2/O) and low-molecular-weight soluble components are separated by cross flow membrane filtration for measurement: D glucose by polarimetry, phosphate by photometry, and NH/sup 4 +/ by potentiometry.

  12. In Situ Monitoring of Dispersion Dynamics of Carbon Nanotubes during Sonication Using Electrical Conductivity Measurements

    Directory of Open Access Journals (Sweden)

    Syed Sadiq Ali

    2015-01-01

    Full Text Available The main challenge in the fabrication of carbon nanotube- (CNT- based composite materials is the optimization of the sonication time in order to obtain homogenous and uniform dispersion of CNTs. Past studies mostly relied on postprocessing characterization techniques to address this issue. In the present, however, in situ monitoring of dispersion dynamics of CNTs in distilled water is carried out using instantaneous conductivity measurements. Using a computer controlled data acquisition system, the time evolution of the solution conductivity was carefully recorded. The data were then used to evaluate the intensity of turbulent fluctuations, which clearly highlighted the existence of three distinct sonication phases. During the first phase, the conductivity fluctuations initially increased attaining ultimately a maximum, thus indicating the occurrence of large agglomerates of CNTs. During the second phase of sonication, the solution conductivity showed a rather steep increase while fluctuations steadily declined. This phenomenon can be attributed to the breakdown of large CNT agglomerates, resulting in greater dispersion homogeneity of CNTs. During the third phase, after almost 650 kJ/L of sonication energy, the conductivity increase was almost negligible. The fluctuation intensity also remained constant during this phase signifying that the further sonication was no longer required.

  13. Application of microbial biomass and activity measures to assess in situ bioremediation of chlorinated solvents

    International Nuclear Information System (INIS)

    Phelps, T.J.; Herbes, S.E.; Palumbo, A.V.; Pfiffner, S.M.; Mackowski, R.; Ringelberg, D.; White, D.C.; Tennessee Univ., Knoxville, TN

    1993-01-01

    Evaluating the effectiveness of chlorinated solvent remediation in the subsurface can be a significant problem given uncertainties in estimating the total mass of contaminants present. If the remediation technique is a biological activity, information on the progress and success of the remediation may be gained by monitoring changes in the mass and activities of microbial populations. The in situ bioremediation demonstration at the US Department of Energy (DOE) Savannah River Site (SRS) is designed to test the effectiveness of methane injection for the stimulation of in sediments. Past studies have shown the potential for degradation by native microbial populations. The design and implementation of the SRS Integrated Demonstration is described in this volume. A control phase without treatment was followed by a phase withdrawing air. The next phase included vacuum extraction plus air injection into the lower horizontal well located below the water table. The next period included the injection of 1% methane in air followed by injection of 4% methane in air. Based on the literature, it was hypothesized that the injection of methane would stimulate methanotrophic populations and thus accelerate biological degradation of TCE. Measuring the success of bioremediation is a complex effort that includes monitoring of changes in microbial populations associated with TCE degradation. These monitoring efforts are described in this paper and in related papers in this volume

  14. Measuring the bioenergetic cost of fish activity in situ using a globally dispersed radiotracer (137Cs)

    International Nuclear Information System (INIS)

    Rowan, D.J.; Rasmussen, J.B.

    1996-01-01

    The energetic cost of activity is an important component of the bioenergetic budget of fish, yet this parameter has rarely been quantified for wild populations. Using a 137 Cs mass balance approach, we estimated the annual bioenergetic budgets for individual age-classes of 19 species of North American freshwater fish. Immature fish have low activity-related metabolic costs that agree with estimates based on swimming speed or integer multipliers. Mature fish have 2- to 4-fold higher activity than immature fish and 2- to 4-fold higher activity than estimates based on swimming speed or integer multipliers. The higher activity in mature fish may be due to reproductive efforts. Underestimation of activity in conventional bioenergetics models leads to underestimation of consumption rates. Thus, our in situ and age-specific estimates of activity costs provide a means to improve bioenergetic predictions. Although our analysis was done on an annual basis, it is possible to use the 137 Cs technique over shorter intervals (weeks). The 137 Cs method has general applicability to aquatic systems because 137 Cs is globally dispersed and can be accurately measured in all aquatic organisms using gamma spectrometry. (author). 62 refs., 4 tabs., 4 figs

  15. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    Science.gov (United States)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  16. Investigation of Lobular Carcinoma In Situ, Using Molecular Genetic Techniques, for the Involvement of Novel Genes

    National Research Council Canada - National Science Library

    Mastracci, Teresa

    2003-01-01

    Atypical lobular hyperplasia (ALH) and lobular carcinoma in situ (LCIS), i.e. lobular neoplasia, are lesions of significance in terms of implication of risk to the patient in the development of invasive carcinorna...

  17. The development of sensors and techniques for in situ water quality monitoring

    Science.gov (United States)

    Liu, C. C.

    1976-01-01

    Enzyme electrodes and chloride ion electrodes were investigated for in situ monitoring of water quality. Preliminary results show that miniature chloride ion electrodes and a phenol sensor are most promising in determining trace contaminants in water.

  18. A novel fluorescent in situ hybridization technique for detection of Rickettsia spp. in archival samples

    DEFF Research Database (Denmark)

    Svendsen, Claus Bo; Boye, Mette; Struve, Carsten

    2009-01-01

    A novel, sensitive and specific method for detecting Rickettsia spp. in archival samples is described. The method involves the use of fluorescently marked oligonucleotide probes for in situ hybridization. Specific hybridization of Ricekttsia was found without problems of cross-reactions with bact......A novel, sensitive and specific method for detecting Rickettsia spp. in archival samples is described. The method involves the use of fluorescently marked oligonucleotide probes for in situ hybridization. Specific hybridization of Ricekttsia was found without problems of cross...

  19. AUTOMATING THE MEASUREMENT OF RED CORAL IN SITU USING UNDERWATER PHOTOGRAMMETRY AND CODED TARGETS

    Directory of Open Access Journals (Sweden)

    P. Drap

    2013-07-01

    Full Text Available A photogrammetry tool dedicated to the monitoring of red coral populations in situ has been developed by LSIS in Marseille (France. This tool is used to collect in an efficient and precise manner key data for the study of the population dynamics of red coral. In selected red coral populations, scuba-divers obtain a series of photographs from the permanent plots (about 2 m2 on an annual basis. To facilitate the photographic sampling and measurements, the scuba-divers use a 20 x 20 cm quadrat to cover the permanent plots. The analysis of the photographs provides reliable measurements on colony sizes (basal diameter and maximum height, occurrence of breakage of colonies and the occurrence of necrosis. To minimize the divers' tasks during the acquisition phase, we opted for stereoscopic acquisition using a single device to easily adapt the measurement procedure to the scene configuration. The material is quite light, one camera and two electronic strobes and a simple procedure with two photographs taken for each site. To facilitate the measurement phase of colony sizes; the exploitation of photographs consists of four key steps: orientation, scaling, measurement of the characteristic points of coral colonies and result validation (checking measurement consistency to detect possible errors in measurement or interpretation. Since the context of the shooting can vary widely, dominant colors, contrast, etc. may often change. In order to have a stable and common reference in all photographs independently of the site, we decided to always include a quadrat in the scene which then will be used for the orientation and scaling phases. The automation of orientation and the lack of constraints to adapt the analytical technique to the features of each site offer the possibility to multiply field surveys and to measure hundreds of quadrats from several different populations in a very efficient manner. The measurement results are exported into a spreadsheet

  20. Radiotracer techniques for measuring fluid flow and calibrating flow meters

    International Nuclear Information System (INIS)

    Cooper, E.L.

    1987-08-01

    Radiotracer techniques can be used to measure accurately both gas and liquid flow rates under operating conditions in a wide range of flow systems. They are ideally suited for calibrating flow meters as well as for measuring unmetered flows in industrial plants. Applications of these techniques range from measuring the flows of fuels and process fluids for energy and mass balance studies to measuring the flows of liquid and airborne effluents for pollution control. This report describes the various radiotracer techniques which can be used to measure fluid flows. The range of application and inherent accuracy of each technique is discussed

  1. Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Koutsokeras, L. E.; Abadias, G.

    2012-01-01

    Low-mobility materials, like transition metal nitrides, usually undergo large residual stress when sputter-deposited as thin films. While the origin of stress development has been an active area of research for high-mobility materials, atomistic processes are less understood for low-mobility systems. In the present work, the contribution of grain boundary to intrinsic stress in reactively magnetron-sputtered ZrN films is evaluated by combining in situ wafer curvature measurements, providing information on the overall biaxial stress, and ex situ x-ray diffraction, giving information on elastic strain (and related stress) inside crystallites. The thermal stress contribution was also determined from the in situ stress evolution during cooling down, after deposition was stopped. The stress data are correlated with variations in film microstructure and growth energetics, in the 0.13-0.42 Pa working pressure range investigated, and discussed based on existing stress models. At low pressure (high energetic bombardment conditions), a large compressive stress is observed due to atomic peening, which induces defects inside crystallites but also promotes incorporation of excess atoms in the grain boundary. Above 0.3-0.4 Pa, the adatom surface mobility is reduced, leading to the build-up of tensile stress resulting from attractive forces between under-dense neighbouring column boundary and possible void formation, while crystallites can still remain under compressive stress.

  2. Styrene grafted natural rubber reinforced by in situ silica generated via sol–gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Sittiphan, Torpong [Program of Petrochemistry and Polymer Sciences, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Prasassarakich, Pattarapan [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Poompradub, Sirilux, E-mail: sirilux.p@chula.ac.th [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2014-02-15

    Highlights: • Sol–gel reaction by NR latex was the absence of use of organic solvent and base catalyst. • Well dispersed in situ formed silica particles in the rubber matrix were obtained. • In situ silica was better to improve mechanical properties of rubber vulcanizates. -- Abstract: The filling of styrene graft natural rubber (ST-GNR) with in situ formed silica was performed using the sol–gel reaction via the latex solution method. The mechanical properties of ST-GNR/NR vulcanizate were improved when using the in situ formed silica to levels higher than those obtained with the commercial ex situ formed silica filled ST-GNR/NR vulcanizates at a comparable silica content of 12 parts by weight per hundred parts of rubber. Transmission electron microscopy analysis revealed that the in situ silica particles were small (∼40 nm diameter) and well dispersed, while the commercial silica particles were larger (∼60 nm diameter) and markedly agglomerated in the rubbery matrix. The mechanical properties of the composites prepared via both the solid rubber and latex solution methods were comparable.

  3. Application of in-situ measurement to determine 137Cs in the Swiss Alps

    International Nuclear Information System (INIS)

    Schaub, M.; Konz, N.; Meusburger, K.; Alewell, C.

    2010-01-01

    Establishment of 137 Cs inventories is often used to gain information on soil stability. The latter is crucial in mountain systems, where ecosystem stability is tightly connected to soil stability. In-situ measurements of 137 Cs in steep alpine environments are scarce. Most studies have been carried out in arable lands and with Germanium (Ge) detectors. Sodium Iodide (NaI) detector system is an inexpensive and easy to handle field instrument, but its validity on steep alpine environments has not been tested yet. In this study, a comparison of laboratory measurements with GeLi detector and in-situ measurements with NaI detector of 137 Cs gamma soil radiation has been done in an alpine catchment with high 137 Cs concentration (Urseren Valley, Switzerland). The aim of this study was to calibrate the in-situ NaI detector system for application on steep alpine slopes. Replicate samples from an altitudinal transect through the Urseren Valley, measured in the laboratory with a GeLi detector, showed a large variability in 137 Cs activities at a meter scale. This small-scale heterogeneity determined with the GeLi detector is smoothed out by uncollimated in-situ measurements with the NaI detector, which provides integrated estimates of 137 Cs within the field of view (3.1 m 2 ) of each measurement. There was no dependency of 137 Cs on pH, clay content and carbon content, but a close relationship was determined between measured 137 Cs activities and soil moisture. Thus, in-situ data must be corrected for soil moisture. Close correlation (R 2 = 0.86, p 137 Cs activities (in Bq kg -1 ) estimated with in-situ (NaI detector) and laboratory (GeLi detector) methods. We thus concluded that the NaI detector system is a suitable tool for in-situ measurements in alpine environments. This paper describes the calibration of the NaI detector system for field application under elevated 137 Cs activities originating from Chernobyl fallout.

  4. Waste Measurement Techniques For Lean Companies

    Directory of Open Access Journals (Sweden)

    Maciej Pieńkowski

    2014-12-01

    Full Text Available The paper is dedicated to answer the problem of measuring waste in companies, which are implementing Lean Manufacturing concept. Lack of complex identification, quantification an visualization of waste significantly impedes Lean transformation efforts. This problem can be solved by a careful investigation of Muda, Muri and Mura, which represent the essence of waste in the Toyota Production System. Measuring them facilitates complete and permanent elimination of waste in processes. The paper introduces a suggestion of methodology, which should enable company to quantify and visualize waste at a shop floor level.

  5. On the theory of SODAR measurement techniques

    DEFF Research Database (Denmark)

    Antoniou, I.; Ejsing Jørgensen, Hans; Bradley, S.

    2003-01-01

    The need for alternative means to measure the wind speed for wind energy purposes has increased with the increase of the size of wind turbines. The cost and the technical difficulties for performing wind speed measurements has also increased with the sizeof the wind turbines, since it is demanded...... the objective has been to present and achieve thefollowing: An accurate theoretic model that describes all the relevant aspects of the interaction of the sound beam with the atmosphere in the level of detail needed for wind energy applications. Understanding of dependence of SODAR performance on hard...

  6. On the Transmission Line Pulse Measurement Technique

    OpenAIRE

    X. Rodriguez; M. Eduardo; M. Harington

    2015-01-01

    Transmission Line Pulse is a short pulse (25ns to 150ns) measurement of the current-voltage (I/V) characteristics of the ESD protection built into an integrated circuit. The short TLP pulses are used to simulate the short ESD pulse threats and integrated circuit must tolerate without being damaged. In this work the fundamental principles of how the TLP pulse is generated and used to create I-V characteristic plots will be explored. The measurement will be then used to characterize the I-V cha...

  7. A single well pumping and recovery test to measure in situ acrotelm transmissivity in raised bogs

    NARCIS (Netherlands)

    Schaaf, van der S.

    2004-01-01

    A quasi-steady-state single pit pumping and recovery test to measure in situ the transmissivity of the highly permeable upper layer of raised bogs, the acrotelm, is described and discussed. The basic concept is the expanding depression cone during both pumping and recovery. It is shown that applying

  8. Straylight measurements in laser in situ keratomileusis and laser-assisted subepithelial keratectomy for myopia

    NARCIS (Netherlands)

    Lapid-Gortzak, Ruth; van der Linden, Jan Willem; van der Meulen, Ivanka; Nieuwendaal, Carla; van den Berg, Tom

    2010-01-01

    PURPOSE: To compare straylight values before and 3 months after laser in situ keratomileusis (LASIK) and laser-assisted subepithelial keratectomy (LASEK) and to analyze the causes of any change. SETTING: Private refractive surgery clinic, Driebergen, The Netherlands. METHODS: Straylight was measured

  9. Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Ali, Syed Talat; Møller, Per

    2010-01-01

    The temperature is a very important operating parameter for all types of fuel cells. In the present work distributed in situ temperature measurements are presented on a polybenzimidazole based high temperature PEM fuel cell (HT-PEM). A total of 16 T-type thermocouples were embedded on both the an...

  10. Hazards and preventive measures of well deviation in well construction of in-situ leaching

    International Nuclear Information System (INIS)

    Zou Wenjie; Chen Shihe

    2006-01-01

    Whether the in-situ leaching method is successful depends on the quality of borehole engineering to a great extent. There are lots of factors that affect the quality, and the well deviation is one of notable problems. The hazards and causes of the well deviation are analyzed. The preventive measures and the methods of rectifying the deviation are put forward. (authors)

  11. In-situ measurement of the electrical conductivity of aluminum oxide in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; White, D.P.; Snead, L.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    A collaborative DOE/Monbusho irradiation experiment has been completed which measured the in-situ electrical resistivity of 12 different grades of aluminum oxide during HFIR neutron irradiation at 450{degrees}C. No evidence for bulk RIED was observed following irradiation to a maximum dose of 3 dpa with an applied dc electric field of 200 V/mm.

  12. Model measurements for new accelerating techniques

    International Nuclear Information System (INIS)

    Aronson, S.; Haseroth, H.; Knott, J.; Willis, W.

    1988-06-01

    We summarize the work carried out for the past two years, concerning some different ways for achieving high-field gradients, particularly in view of future linear lepton colliders. These studies and measurements on low power models concern the switched power principle and multifrequency excitation of resonant cavities. 15 refs., 12 figs

  13. Solid Layer Thermal-conductivity Measurement Techniques

    Science.gov (United States)

    1994-03-01

    deposited on the sample, and the absorption of laser radiation. Temperature-measurement tools include thermocouples, infrared (IR) pyrometers , and...A, Nishimura H, and Sawada T (1990), Laser-Induc~d Surface Acoustic Waves and Photothc:rmal Surfitce Gratings Generated by Crossing Two Pulsed

  14. Comparison of cardiac output measurement techniques

    DEFF Research Database (Denmark)

    Espersen, K; Jensen, E W; Rosenborg, D

    1995-01-01

    Simultaneously measured cardiac output obtained by thermodilution (TD), transcutaneous suprasternal ultrasonic Doppler (DOP), CO2-rebreathing (CR) and the direct Fick method (FI) were compared in eleven healthy subjects in a supine position (SU), a sitting position (SI), and during sitting exercise...

  15. In situ composition measurements of Bunsen reaction solution by radiation probes

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Shinji; Nagaya, Yasunobu [Japan Atomic Energy Agency (Japan)

    2010-07-01

    Measuring equipments are integral to chemical process controls. A stable hydrogen production by the Iodine-Sulfur thermochemical water-splitting process is relatively difficult because of lack of existing in situ composition measurement techniques for multiple components and corrosive solution. Composition regulations of Bunsen reaction solution is particularly important, since a closed cycle system provided with this process causes that the many streams with different composition return to this section. Accordingly Bunsen solution becomes changeable composition. Radiation probes have a potential for applications to determine this multiple component solution while the non-contact approach avoids the corrosive issues. Moreover the probes have features of the promptness, contact-less and sequential use. Laboratory scale experiments to evaluate these possibilities of the measurement were conducted with use of simulated Bunsen solution, HIx solution and H{sub 2}SO{sub 4} solution, containing HI, I2, H{sub 2}SO{sub 4} and H{sub 2}O and sealed radiation sources. Radiations were counted, which were interacted with the solutions in various compositions around room temperature contained in vessels. For HIx solution, the obtained counting rates were correlated with hydrogen volume concentrations; moreover, the application of the Monte Carlo method suggests possibilities that the detector responses for HIx solution by the radiation probes are predictable. For H{sub 2}SO{sub 4} solution, iodine atoms had significant influences on the relationship between output values of two gamma-ray density meters, cesium source as higher energy and barium source as lower energy. This results suggest that the neutron ray probe, the gamma-ray probes of both lower energy and higher energy have possibilities to determine the composition of Bunsen solution of HIx and H{sub 2}SO{sub 4} solutions. (orig.)

  16. Utilizing The Synergy of Airborne Backscatter Lidar and In-Situ Measurements for Evaluating CALIPSO

    Directory of Open Access Journals (Sweden)

    Tsekeri Alexandra

    2016-01-01

    Full Text Available Airborne campaigns dedicated to satellite validation are crucial for the effective global aerosol monitoring. CALIPSO is currently the only active remote sensing satellite mission, acquiring the vertical profiles of the aerosol backscatter and extinction coefficients. Here we present a method for CALIPSO evaluation from combining lidar and in-situ airborne measurements. The limitations of the method have to do mainly with the in-situ instrumentation capabilities and the hydration modelling. We also discuss the future implementation of our method in the ICE-D campaign (Cape Verde, August 2015.

  17. Techniques for measuring customers’ satisfaction in Banks

    Directory of Open Access Journals (Sweden)

    Elena Lidia MELNIC

    2016-07-01

    Full Text Available The major concern of banks today is to recover and maintain customer trust. Customers need to feel that banks are considering their best interests. Customers are seeking for easy and personalized information. They want to better understand their financial situation and to control it. They want to know both the benefits, as well as the risks. Clients want to work with banks that are concerned about them and about their personal goals. However, only an attractive offer of banks is not the key to success today if is not supported by a superior service culture, that can make notable differentiation in the market. Many banks all over the world are systematically measuring how well they treat customers, identifying the factors shaping satisfaction, and changing operations and marketing as a result. Wise banks measure customer satisfaction regularly because it is one key to customer retention.

  18. In situ radiation measurements at the former Soviet Nuclear Test Site

    International Nuclear Information System (INIS)

    Tipton, W.J.

    1996-06-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the former Soviet Nuclear Test Site near Semipalatinsk, Kazakhstan, during the period of July 21-30, 1994. The survey team measured the terrestrial gamma radiation at selected areas on the site to determine the levels of natural and man-made radiation. The survey was part of a cooperative effort between the United States team and teams of radiation scientists from the National Nuclear Center of the Republic of Kazakhstan and the V.G. Khlopin Radium Institute in St. Petersburg, Russia. In addition to in situ radiation measurements made by the United States and Russian teams, soil samples were collected and analyzed by the Russian and Kazakhstani teams. All teams conducted their measurements at ten locations within the test site. The United States team also made a number of additional measurements to locate and verify the positions of three potential fallout plumes containing plutonium contamination from nonnuclear tests. In addition, the United States team made several measurements in Kurchatov City, the housing area used by personnel and their families who work(ed) at the test sites. Comparisons between the United States and Russian in situ measurements and the soil sample results are presented as well as comparisons with a Soviet aerial survey conducted in 1990-1991. The agreement between the different types of measurements made by all three countries was quite good

  19. High current density ion beam measurement techniques

    International Nuclear Information System (INIS)

    Ko, W.C.; Sawatzky, E.

    1976-01-01

    High ion beam current measurements are difficult due to the presence of the secondary particles and beam neutralization. For long Faraday cages, true current can be obtained only by negative bias on the target and by summing the cage wall and target currents; otherwise, the beam will be greatly distorted. For short Faraday cages, a combination of small magnetic field and the negative target bias results in correct beam current. Either component alone does not give true current

  20. Extinction-to-Backscatter Ratios of Saharan Dust Layers Derived from In-Situ Measurements and CALIPSO Overflights During NAMMA

    Science.gov (United States)

    Omar, Ali H.; Liu, Zhaoyan; Vaughan, Mark A.; Hu, Yongxiang; Ismail, Syed; Powell, Kathleen A.; Winker, David M.; Trepte, Charles R.; Anderson, Bruce E.

    2010-01-01

    We determine the aerosol extinction-to-backscatter (Sa) ratios of dust using airborne in-situ measurements of microphysical properties, and CALIPSO observations during the NASA African Monsoon Multidisciplinary Analyses (NAMMA). The NAMMA field experiment was conducted from Sal, Cape Verde during Aug-Sept 2006. Using CALIPSO measurements of the attenuated backscatter of lofted Saharan dust layers, we apply the transmittance technique to estimate dust Sa ratios at 532 nm and a 2-color method to determine the corresponding 1064 nm Sa. Using this method, we found dust Sa ratios of 39.8 plus or minus 1.4 sr and 51.8 plus or minus 3.6 sr at 532 nm and 1064 nm, respectively. Secondly, Sa ratios at both wavelengths is independently calculated using size distributions measured aboard the NASA DC-8 and estimates of Saharan dust complex refractive indices applied in a T-Matrix scheme. We found Sa ratios of 39.1 plus or minus 3.5 sr and 50.0 plus or minus 4 sr at 532 nm and 1064 nm, respectively, using the T-Matrix calculations applied to measured size spectra. Finally, in situ measurements of the total scattering (550 nm) and absorption coefficients (532 nm) are used to generate an extinction profile that is used to constrain the CALIPSO 532 nm extinction profile.

  1. Transient particle emission measurement with optical techniques

    Science.gov (United States)

    Bermúdez, Vicente; Luján, José M.; Serrano, José R.; Pla, Benjamín

    2008-06-01

    Particulate matter is responsible for some respiratory and cardiovascular diseases. In addition, it is one of the most important pollutants of high-speed direct injection (HSDI) passenger car engines. Current legislation requires particulate dilution tunnels for particulate matter measuring. However for development work, dilution tunnels are expensive and sometimes not useful since they are not able to quantify real-time particulate emissions during transient operation. In this study, the use of a continuous measurement opacimeter and a fast response HFID is proven to be a good alternative to obtain instantaneous particle mass emissions during transient operation (due to particulate matter consisting mainly of soot and SOF). Some methods and correlations available from literature, but developed for steady conditions, are evaluated during transient operation by comparing with mini-tunnel measurements during the entire MVEG-A transient cycle. A new correlation was also derived from this evaluation. Results for soot and SOF (obtained from the new correlation proposed) are compared with soot and SOF captured with particulate filters, which have been separated by means of an SOF extraction method. Finally, as an example of ECU design strategies using these sort of correlations, the EGR valve opening is optimized during transient operation. The optimization is performed while simultaneously taking into account instantaneous fuel consumption, particulate emissions (calculated with the proposed correlation) and other regulated engine pollutants.

  2. Paloma: In-Situ Measurement of the Isotopic Composition of Mars Atmosphere

    Science.gov (United States)

    Jambon, A.; Quemerais, E.; Chassiefiere, E.; Berthelier, J. J.; Agrinier, P.; Cartigny, P.; Javoy, M.; Moreira, M.; Sabroux, J. -C.; Sarda, P.; Pineau, J. -F.

    2000-07-01

    Scientific objectives for an atmospheric analysis of Mars are presented in the DREAM project. Among the information presently available most are fragmentary or limited in their precision for both major element (H, C, O, N) and noble gas isotopes. These data are necessary for the understanding and modelling of Mars atmospheric formation and evolution, and consequently for other planets, particularly the Earth. To fulfill the above requirements, two approaches can be envisonned: 1) analysis of a returned sample (DREAM project) or 2) in situ analysis, e.g. PALOMA project presented here. Among the advantages of in situ analysis, we notice: the minimal terrestrial contamination, the unlimited availability of gas to be analyzed and the possibility of multiple analyses (replicates, daynight... ). Difficulties specific to in situ analyses are of a very different kind to those of returned samples. In situ analysis could also be viewed as a preparation to future analysis of returned samples. Finally, some of the measurements will not be possible on Earth: for instance, radon and its short lived decay products, will provide complementary information to 4-He analysis and can only be obtained in situ, independently of analytical capabilities.

  3. A multi-slice sliding cell technique for diffusion measurements in liquid metals

    Science.gov (United States)

    Zhong, Langxiang; Hu, Jinliang; Geng, Yongliang; Zhu, Chunao; Zhang, Bo

    2017-09-01

    The long capillary and shear-cell techniques are traditionally used for diffusion measurements in liquid metals. Inspired by the idea of the shear-cell method, we have built a multi-slice sliding cell device for inter-diffusion measurements in liquid metals. The device is designed based on a linear sliding movement rather than a rotational shearing as used in the traditional shear-cell method. Compared with the normal shear-cell method, the present device is a more compact setup thus easier to handle. Also, it is expected to be easier to monitor with X-rays or neutrons if used in in situ experiments. A series of benchmark time-dependent diffusion experiments in Al-Cu melts carried out with the present technique reveal that accurate diffusion constants can be achieved only after a sufficient time. For short annealing times, the initial shearing process causing convective flow dominates the measurement and leads to an increase of the measured diffusion coefficient by a factor three. The diffusion data obtained for Al-Cu liquids are consistent with the most accurate data measured by the in situ X-ray radiography method under well controlled conditions of no temperature gradient or other perturbation. High accuracy and easy handling as well as superior adaptability make the present technique suitable for diffusion studies in liquid metals.

  4. Field instruments for real time in-situ crude oil concentration measurements

    International Nuclear Information System (INIS)

    Fuller, C.B.; Bonner, J.S.; Page, C.A.; Arrambide, G.; Sterling, M.C.Jr.; Ojo, T.O.

    2003-01-01

    Accidental oil spills, contaminant release during resuspension, storms, and harmful algal blooms are all episodic events that can effect coastal margins. It is important to quantitatively describe water and ecological quality evolution and predict the impact to these areas by such events, but traditional sampling methods miss environmental activity during cyclical events. This paper presents a new sampling approach that involves continuous, real-time in-situ monitoring to provide data for development of comprehensive modeling protocols. It gives spill response coordinators greater assurance in making decisions using the latest visualization tools which are based on a good understanding of the physical processes at work in pulsed events. Five sensors for rapid monitoring of crude oil concentrations in aquatic systems were described. The in-situ and ex-situ sensors can measure plume transport and estimate polycyclic aromatic hydrocarbon exposure concentrations to assess risk of toxicity. A brief description and evaluation of the following 5 sensors was provided: the LISST-100 by Sequoia Instrument, a submersible multi-angle laser scattering instrument; the AU-10 field fluorometer by Turner Designs, an ex-situ single wavelength fluorometer; the Flashlamp by WET Labs Inc., an in-situ single wavelength fluorometer; and, the ECO-FL3 and SAFire by WET Labs Inc., two in-situ multiple wavelength fluorometers. These instruments were used to analyze crude oil emissions of various concentrations. All of the instruments followed a linear response within the tested concentration range. At the lowest concentrations the LISST-100 was not as effective as the fluorometers because of limited particle volume for scatter. For the AU-10 field fluorometer, the highest concentrations tested were above the measurement range of the instrument. 6 refs., 5 figs

  5. Optimality Measures for Monotone Equivariant Cluster Techniques.

    Science.gov (United States)

    1980-09-01

    complete linkage, u-clustering (u - .3, .5, .7), uv-clustering (uv = (.2,.4), (.2,.6), (.4,.6)) as well as the UPGMA algorithm. The idea will be to...Table 15. Notice that these measure-- do indeed pioduce difftxent verdicts. OPI rates UPGMA as best with uv = (.2,.4) R € second. By OP2, UPGMA is best...By OPI, UPGQA and uv = (.4,.6) are tied for first place, while by OP2, UPGMA is best with uv = (.2,.6), uv = (.2,.4) and uv = (.4,.6) close behind

  6. Characteristics of Laser Flash Technique for Thermal Diffusivity Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Park, D. G.; Kim, H. M.; Hong, G. P

    2008-08-15

    In relation to selection of thermal conductivity measurement technology, various thermal conductivity measurement technique are investigated for characteristics of each technique and it's measurable range. For the related laser flash techniques, various technical characteristics are reviewed and discussed. Especially, Parker adiabatic model are reviewed because of importance for basic theory of the thermal diffusivity determination. Finite pulse time effect, heat loss effect and non-uniform heating effect, which are main technical factors for laser flash technique, are considered. Finally, characteristics of constituent elements for laser flash measurement system are reviewed and investigated in detail.

  7. Remote measurement of corrosion using ultrasonic techniques

    International Nuclear Information System (INIS)

    Garcia, K.M.; Porter, A.M.

    1995-02-01

    Supercritical water oxidation (SCWO) technology has the potential of meeting the US Department of Energy's treatment requirements for mixed radioactive waste. A major technical constraint of the SCWO process is corrosion. Safe operation of a pilot plant requires monitoring of the corrosion rate of the materials of construction. A method is needed for measurement of the corrosion rate taking place during operation. One approach is to directly measure the change in wall thickness or growth of oxide layer at critical points in the SCWO process. In FY-93, a brief survey of the industry was performed to evaluate nondestructive evaluation (NDE) methods for remote corrosion monitoring in supercritical vessels. As a result of this survey, it was determined that ultrasonic testing (UT) methods would be the most cost-effective and suitable method of achieving this. Therefore, the objective for FY-94 was to prove the feasibility of using UT to monitor corrosion of supercritical vessels remotely during operation without removal of the insulation

  8. Tear film measurement by optical reflectometry technique

    Science.gov (United States)

    Lu, Hui; Wang, Michael R.; Wang, Jianhua; Shen, Meixiao

    2014-01-01

    Abstract. Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle. PMID:24500519

  9. Matrix diffusion studies by electrical conductivity methods. Comparison between laboratory and in-situ measurements

    International Nuclear Information System (INIS)

    Ohlsson, Y.; Neretnieks, I.

    1998-01-01

    Traditional laboratory diffusion experiments in rock material are time consuming, and quite small samples are generally used. Electrical conductivity measurements, on the other hand, provide a fast means for examining transport properties in rock and allow measurements on larger samples as well. Laboratory measurements using electrical conductivity give results that compare well to those from traditional diffusion experiments. The measurement of the electrical resistivity in the rock surrounding a borehole is a standard method for the detection of water conducting fractures. If these data could be correlated to matrix diffusion properties, in-situ diffusion data from large areas could be obtained. This would be valuable because it would make it possible to obtain data very early in future investigations of potentially suitable sites for a repository. This study compares laboratory electrical conductivity measurements with in-situ resistivity measurements from a borehole at Aespoe. The laboratory samples consist mainly of Aespoe diorite and fine-grained granite and the rock surrounding the borehole of Aespoe diorite, Smaaland granite and fine-grained granite. The comparison shows good agreement between laboratory measurements and in-situ data

  10. In-situ fluorimetry: A powerful non-invasive diagnostic technique for natural dyes used in artefacts. Part II. Identification of orcein and indigo in Renaissance tapestries

    Science.gov (United States)

    Clementi, C.; Miliani, C.; Romani, A.; Santamaria, U.; Morresi, F.; Mlynarska, K.; Favaro, G.

    2009-01-01

    In this paper, three Renaissance tapestries depicting scenes painted by Raffaello Sanzio, conserved at the Vatican Museum, were investigated using in-situ UV-Visible fluorimetric measurements. The results show that this technique is suitable for the detection of natural organic colorants used for dyeing the threads woven in these tapestries. The emission signals detected on red-purple colours were assigned to the colorant orcein and those on different nuances of blue and green colours to indigo by comparison with data from reference laboratory samples. The assignments were supported by chromatographic experiments carried out on threads taken from the back side of the tapestry in the same points analysed by spectrofluorimentry.

  11. Measurement uncertainty analysis techniques applied to PV performance measurements

    International Nuclear Information System (INIS)

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results

  12. Energy harvesting in high voltage measuring techniques

    International Nuclear Information System (INIS)

    Żyłka, Pawel; Doliński, Marcin

    2016-01-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed. (paper)

  13. Realization of a collection of reference minerals to develop a technique for in situ dating of the Martian rocks

    Science.gov (United States)

    Cattani, F.; Gillot, P. Y.; Hildenbrand, A.; Quidelleur, X.; Courtade, F.; Boukari, C.; Lefevre, J. C.

    2017-12-01

    Absolute dating within ± 20% is needed to check and to calibrate the relative Martian chronology presently available. For that purpose, a K-Ar dating system has been developed to experiment the feasibility of such dating in future landing planetary missions. It consists in a laser ablation-based system built to vaporize a reproducible volume of rock. Potassium content is measured by laser-induced breakdown spectroscopy (LIBS) and argon by quadrupole mass spectrometry (QMS). Improvements of LIBS acquisition (optimization of optics part and normalization by total intensity spectrum) and QMS calibration (by reproducible known amount of argon) have been achieved. In addition, we have test the determination of ablated mass from volume measurement performed by profilometry technique. Instrument calibration for Martian analyses requires terrestrial analogues to determine the most suitable analytical conditions. For that purpose, total chemistry, electron microprobe analyses, flame absorption spectrometry and mass spectrometry have been performed in order to qualify stoichiometry, mineralogy, K concentration and Ar content from a collection of old terrestrial rocks. These analyses coupled with those published have helped to select 14 mineral phases (e.g. feldspars) showing a large range of K content (0.15 - 11%). The objective is to calibrate the LIBS on different geological material with Mars-like %K values ( 0.4%), and assess the detection limit of the LIBS with extreme %K values. All these mineral phases display a K-Ar age older than 260 Ma. Hence, the content of radiogenic Ar atoms per gram is within the range of Martian samples (on the order of 1 Ga for 0.4 %K). Furthermore, the ablated mass is estimated by measurement of Ar extracted from an analogue mineral of known amount of radiogenic Ar content per gram. This quantification is then compared with the mass estimated from the volume measured by profilometry technique. Finally, it provides a well

  14. In situ recording of particle network formation in liquids by ion conductivity measurements.

    Science.gov (United States)

    Pfaffenhuber, Christian; Sörgel, Seniz; Weichert, Katja; Bele, Marjan; Mundinger, Tabea; Göbel, Marcus; Maier, Joachim

    2011-09-21

    The formation of fractal silica networks from a colloidal initial state was followed in situ by ion conductivity measurements. The underlying effect is a high interfacial lithium ion conductivity arising when silica particles are brought into contact with Li salt-containing liquid electrolytes. The experimental results were modeled using Monte Carlo simulations and tested using confocal fluorescence laser microscopy and ζ-potential measurements.

  15. Methane emissions from a Californian landfill, determined from airborne remote sensing and in situ measurements

    Science.gov (United States)

    Krautwurst, Sven; Gerilowski, Konstantin; Jonsson, Haflidi H.; Thompson, David R.; Kolyer, Richard W.; Iraci, Laura T.; Thorpe, Andrew K.; Horstjann, Markus; Eastwood, Michael; Leifer, Ira; Vigil, Samuel A.; Krings, Thomas; Borchardt, Jakob; Buchwitz, Michael; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2017-09-01

    Fugitive emissions from waste disposal sites are important anthropogenic sources of the greenhouse gas methane (CH4). As a result of the growing world population and the recognition of the need to control greenhouse gas emissions, this anthropogenic source of CH4 has received much recent attention. However, the accurate assessment of the CH4 emissions from landfills by modeling and existing measurement techniques is challenging. This is because of inaccurate knowledge of the model parameters and the extent of and limited accessibility to landfill sites. This results in a large uncertainty in our knowledge of the emissions of CH4 from landfills and waste management. In this study, we present results derived from data collected during the research campaign COMEX (CO2 and MEthane eXperiment) in late summer 2014 in the Los Angeles (LA) Basin. One objective of COMEX, which comprised aircraft observations of methane by the remote sensing Methane Airborne MAPper (MAMAP) instrument and a Picarro greenhouse gas in situ analyzer, was the quantitative investigation of CH4 emissions. Enhanced CH4 concentrations or CH4 plumes were detected downwind of landfills by remote sensing aircraft surveys. Subsequent to each remote sensing survey, the detected plume was sampled within the atmospheric boundary layer by in situ measurements of atmospheric parameters such as wind information and dry gas mixing ratios of CH4 and carbon dioxide (CO2) from the same aircraft. This was undertaken to facilitate the independent estimation of the surface fluxes for the validation of the remote sensing estimates. During the COMEX campaign, four landfills in the LA Basin were surveyed. One landfill repeatedly showed a clear emission plume. This landfill, the Olinda Alpha Landfill, was investigated on 4 days during the last week of August and first days of September 2014. Emissions were estimated for all days using a mass balance approach. The derived emissions vary between 11.6 and 17.8 kt CH4 yr-1

  16. A propagation tool to connect remote-sensing observations with in-situ measurements of heliospheric structures

    Science.gov (United States)

    Rouillard, A. P.; Lavraud, B.; Génot, V.; Bouchemit, M.; Dufourg, N.; Plotnikov, I.; Pinto, R. F.; Sanchez-Diaz, E.; Lavarra, M.; Penou, M.; Jacquey, C.; André, N.; Caussarieu, S.; Toniutti, J.-P.; Popescu, D.; Buchlin, E.; Caminade, S.; Alingery, P.; Davies, J. A.; Odstrcil, D.; Mays, L.

    2017-11-01

    The remoteness of the Sun and the harsh conditions prevailing in the solar corona have so far limited the observational data used in the study of solar physics to remote-sensing observations taken either from the ground or from space. In contrast, the 'solar wind laboratory' is directly measured in situ by a fleet of spacecraft measuring the properties of the plasma and magnetic fields at specific points in space. Since 2007, the solar-terrestrial relations observatory (STEREO) has been providing images of the solar wind that flows between the solar corona and spacecraft making in-situ measurements. This has allowed scientists to directly connect processes imaged near the Sun with the subsequent effects measured in the solar wind. This new capability prompted the development of a series of tools and techniques to track heliospheric structures through space. This article presents one of these tools, a web-based interface called the 'Propagation Tool' that offers an integrated research environment to study the evolution of coronal and solar wind structures, such as Coronal Mass Ejections (CMEs), Corotating Interaction Regions (CIRs) and Solar Energetic Particles (SEPs). These structures can be propagated from the Sun outwards to or alternatively inwards from planets and spacecraft situated in the inner and outer heliosphere. In this paper, we present the global architecture of the tool, discuss some of the assumptions made to simulate the evolution of the structures and show how the tool connects to different databases.

  17. Techniques for assessing the performance of in situ bioreduction and immobilization of metals and radionuclides in contaminated subsurface environments

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, P.M.; Watson, D.B.; Blake, D.A.; Beard, L.P.; Brooks, S.C.; Carley, J.M.; Criddle, C.S.; Doll, W.E.; Fields, M.W.; Fendorf, S.E.; Geesey, G.G.; Ginder-Vogel, M.; Hubbard, S.S.; Istok, J.D.; Kelly, S.; Kemner, K.M.; Peacock, A.D.; Spalding, B.P.; White, D.C.; Wolf, A.; Wu, W.; Zhou, J.

    2004-11-14

    monitoring of coupled hydrological, geochemical/geophysical, and microbial processes. In the following manuscript we will (1) discuss contaminant fate and transport problems in humid regimes, (2) efforts to immobilize metals and radionuclides in situ via bioremediation, and (3) state-of-the-art techniques for assessing the performance of in situ bioreduction and immobilization of metals and radionuclides. These included (a) in situ solution and solid phase monitoring, (b) in situ and laboratory microbial community analysis, (c) noninvasive geophysical methods, and (d) solid phase speciation via high resolution spectroscopy.

  18. New portable pipe wall thickness measuring technique

    Science.gov (United States)

    Pascente, Joseph E.

    1998-03-01

    One of the biggest inspection challenges facing many of the process industries; namely the petrochemical, refining, fossil power, and pulp and paper industries is: How to effectively examine their insulated piping? While there are a number of failure mechanisms involved in various process piping systems, piping degradation through corrosion and erosion are by far the most prevalent. This degradation can be in the form of external corrosion under insulation, internal corrosion through a variety of mechanisms, and internal erosion caused by the flow of the product through the pipe. Refineries, chemical plants and electrical power plants have MANY thousands of miles of pipe that are insulated to prevent heat loss or heat absorption. This insulation is often made up of several materials, with calcium based material being the most dense. The insulating material is usually wrapped with an aluminum or stainless steel outer wrap. Verification of wall thickness of these pipes can be accomplished by removing the insulation and doing an ultrasound inspection or by taking x- rays at a tangent to the edge of the pipe through the insulation. Both of these processes are slow and expensive. The time required to obtain data is measured in hours per meter. The ultrasound method requires that the insulation be plugged after the inspection. The surface needs to be cleaned or the resulting data will not be accurate. The tangent x-ray only shows two thicknesses and requires that the area be roped off because of radiation safety.

  19. Acoustic measuring techniques for suspended sediment

    Science.gov (United States)

    Gruber, P.; Felix, D.; Storti, G.; Lattuada, M.; Fleckenstein, P.; Deschwanden, F.

    2016-11-01

    Acoustic signals can be used in various ways for suspended sediment monitoring. One possibility which lends itself particularly well in the context of hydropower plants (HPPs), is to use installations for acoustic discharge measurement (ADM). Such installations already exist at waterways of many HPPs. Similar to certain turbidimeters, the attenuation of the forward scattered signal travelling through the water-sediment mixture is correlated with suspended sediment concentration (SSC). This correlation can be based on reference SSCs, e.g. from gravimetric analyses of bottle samples. Without the need of additional sensors and practically maintenance-free, this method is used successfully in the HPP Fieschertal to warn the HPP operator of high SSC to prevent excessive turbine abrasion. Acoustic methods and systems that allow for estimating both SSC and particle size distribution (PSD) are under development. The simultaneous determination of SSC and PSD is not possible using a single frequency. Therefore, multi-frequency approaches are investigated for generally scattered signals. When backscattered signals are used, a stronger frequency dependency can be exploited. However, the reliable simultaneous determination of particle size (and distribution) and concentration is still a major challenge due to a low signal-to-noise ratio and an ill- posed problem of estimating concentration and size from recorded signals. The optimal setup configuration (angles, frequencies) for such a system is not unique and further investigations are recommended.

  20. Techniques for transparent lattice measurement and correction

    Science.gov (United States)

    Cheng, Weixing; Li, Yongjun; Ha, Kiman

    2017-07-01

    A novel method has been successfully demonstrated at NSLS-II to characterize the lattice parameters with gated BPM turn-by-turn (TbT) capability. This method can be used at high current operation. Conventional lattice characterization and tuning are carried out at low current in dedicated machine studies which include beam-based measurement/correction of orbit, tune, dispersion, beta-beat, phase advance, coupling etc. At the NSLS-II storage ring, we observed lattice drifting during beam accumulation in user operation. Coupling and lifetime change while insertion device (ID) gaps are moved. With the new method, dynamical lattice correction is possible to achieve reliable and productive operations. A bunch-by-bunch feedback system excites a small fraction (∼1%) of bunches and gated BPMs are aligned to see those bunch motions. The gated TbT position data are used to characterize the lattice hence correction can be applied. As there are ∼1% of total charges disturbed for a short period of time (several ms), this method is transparent to general user operation. We demonstrated the effectiveness of these tools during high current user operation.

  1. Review of lattice measurement techniques at the SLC

    International Nuclear Information System (INIS)

    Barklow, T.; Emma, P.; Krejcik, P.; Walker, N.

    1991-11-01

    A technique is described for reconstructing the first order transport matrix (R) for a given beam line. Emphasis is placed on the rigorous error analysis of the data, and the use of powerful statistical techniques to estimate unknown systematic errors. The application of the technique to the measurement and subsequent correction of the SLC Arcs is briefly described. 5 refs., 4 figs

  2. Laboratory investigations of Titan haze formation: In situ measurement of gas and particle composition

    Science.gov (United States)

    Hörst, Sarah M.; Yoon, Y. Heidi; Ugelow, Melissa S.; Parker, Alex H.; Li, Rui; de Gouw, Joost A.; Tolbert, Margaret A.

    2018-02-01

    Prior to the arrival of the Cassini-Huygens spacecraft, aerosol production in Titan's atmosphere was believed to begin in the stratosphere where chemical processes are predominantly initiated by far ultraviolet (FUV) radiation. However, measurements taken by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and Cassini Plasma Spectrometer (CAPS) indicate that haze formation initiates in the thermosphere where there is a greater flux of extreme ultraviolet (EUV) photons and energetic particles available to initiate chemical reactions, including the destruction of N2. The discovery of previously unpredicted nitrogen species in measurements of Titan's atmosphere by the Cassini Ion and Neutral Mass Spectrometer (INMS) indicates that nitrogen participates in the chemistry to a much greater extent than was appreciated before Cassini. The degree of nitrogen incorporation in the haze particles is important for understanding the diversity of molecules that may be present in Titan's atmosphere and on its surface. We have conducted a series of Titan atmosphere simulation experiments using either spark discharge (Tesla coil) or FUV photons (deuterium lamp) to initiate chemistry in CH4/N2 gas mixtures ranging from 0.01% CH4/99.99% N2 to 10% CH4/90% N2. We obtained in situ real-time measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the particle composition as a function of particle size and a proton-transfer ion-trap mass spectrometer (PIT-MS) to measure the composition of gas phase products. These two techniques allow us to investigate the effect of energy source and initial CH4 concentration on the degree of nitrogen incorporation in both the gas and solid phase products. The results presented here confirm that FUV photons produce not only solid phase nitrogen bearing products but also gas phase nitrogen species. We find that in both the gas and solid phase, nitrogen is found in nitriles rather than amines and that both the

  3. Measurement uncertainty analysis techniques applied to PV performance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  4. Measurement uncertainty analysis techniques applied to PV performance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wells, C

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment`s final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  5. In situ calibration of an interferometric velocity sensor for measuring small scale flow structures using a Talbot-pattern

    Science.gov (United States)

    König, Jörg; Czarske, Jürgen

    2017-10-01

    Small scale flow phenomena play an important role across engineering, biological and chemical sciences. To gain deeper understanding of the influence of those flow phenomena involved, measurement techniques with high spatial resolution are often required, presuming a calibration of very low uncertainty. To enable such measurements, a method for the in situ calibration of an interferometric flow velocity profile sensor is presented. This sensor, with demonstrated spatial resolution better than 1 μm, allows for spatially-resolving measurements with low velocity uncertainty in flows with high velocity gradients, on condition that the spatial behavior of the interference fringe systems is well-known by calibration with low uncertainty, especially challenging to obtain at applications with geometries difficult to access. The calibration method described herein uses three interfering beams to form the interference fringe systems of the sensor, yielding Doppler burst signals exhibiting two peaks in the frequency domain whose amplitude ratio varies periodically along the measurement volume major z-axis, giving a further independent value of the axial tracer particle position that can be used to determine the calibration functions of the sensor during the flow measurement. A flow measurement in a microchannel experimentally validates that the presented approach allows for simultaneously estimating the calibration functions and the velocity profile, providing flow measurements with very low systematic measurement errors of the particle position of less than 400 nm (confidence interval 95%). In that way, the interferometric flow velocity profile sensor utilizing the in situ self-calibration method promises valuable insights on small scale flow phenomena, such as those given in shear and boundary layer flows, by featuring reliable flow measurements due to minimum systematic and statistical measurement errors.

  6. Ground-based intercomparison of two isoprene measurement techniques

    Directory of Open Access Journals (Sweden)

    E. Leibrock

    2003-01-01

    Full Text Available An informal intercomparison of two isoprene (C5H8 measurement techniques was carried out during Fall of 1998 at a field site located approximately 3 km west of Boulder, Colorado, USA. A new chemical ionization mass spectrometric technique (CIMS was compared to a well-established gas chromatographic technique (GC. The CIMS technique utilized benzene cation chemistry to ionize isoprene. The isoprene levels measured by the CIMS were often larger than those obtained with the GC. The results indicate that the CIMS technique suffered from an anthropogenic interference associated with air masses from the Denver, CO metropolitan area as well as an additional interference occurring in clean conditions. However, the CIMS technique is also demonstrated to be sensitive and fast. Especially after introduction of a tandem mass spectrometric technique, it is therefore a candidate for isoprene measurements in remote environments near isoprene sources.

  7. In situ measurements and transmission electron microscopy of carbon nanotube field-effect transistors

    International Nuclear Information System (INIS)

    Kim, Taekyung; Kim, Seongwon; Olson, Eric; Zuo Jianmin

    2008-01-01

    We present the design and operation of a transmission electron microscopy (TEM)-compatible carbon nanotube (CNT) field-effect transistor (FET). The device is configured with microfabricated slits, which allows direct observation of CNTs in a FET using TEM and measurement of electrical transport while inside the TEM. As demonstrations of the device architecture, two examples are presented. The first example is an in situ electrical transport measurement of a bundle of carbon nanotubes. The second example is a study of electron beam radiation effect on CNT bundles using a 200 keV electron beam. In situ electrical transport measurement during the beam irradiation shows a signature of wall- or tube-breakdown. Stepwise current drops were observed when a high intensity electron beam was used to cut individual CNT bundles in a device with multiple bundles

  8. Underwater in situ measurements of radionuclides in selected submarine groundwater springs, Mediterranean sea

    International Nuclear Information System (INIS)

    Tsabaris, C.; Scholten, J.; Karageorgis, A. P.; Comanducci, J. F.; Georgopoulos, D.; Liong Wee Kwong, L.; Patiris, D. L.; Papathanassiou, E.

    2010-01-01

    The application of the in situ measurement system 'KATERINA' for monitoring of radon progenies in submarine groundwater discharge (SGD) was investigated at different locations in the Mediterranean Sea (Chalkida, Stoupa, Korfos and Cabbe). At Chalkida and Stoupa radon progenies concentration exhibited almost constant values of 1.2±0.1 and 2.5±0.2 Bq l -1 , respectively. At Korfos these activities ranged between 1.4±0.1 and 2.3±0.2 Bq l -1 exhibiting inverse relationship with salinity. At Cabbe the in situ measured data were compared with radon measurements obtained by liquid scintillation counter. The system also resolved radon progeny variations of SGD on time scales above 1 h. The radioactivity levels of radon progenies from all sites were found considerably lower (approximately 2 orders of magnitude) than the commonly accepted limits for radon in drinking water. (authors)

  9. Combining Space-Based and In-Situ Measurements to Track Flooding in Thailand

    Science.gov (United States)

    Chien, Steve; Doubleday, Joshua; Mclaren, David; Tran, Daniel; Tanpipat, Veerachai; Chitradon, Royal; Boonya-aaroonnet, Surajate; Thanapakpawin, Porranee; Khunboa, Chatchai; Leelapatra, Watis; hide

    2011-01-01

    We describe efforts to integrate in-situ sensing, space-borne sensing, hydrological modeling, active control of sensing, and automatic data product generation to enhance monitoring and management of flooding. In our approach, broad coverage sensors and missions such as MODIS, TRMM, and weather satellite information and in-situ weather and river gauging information are all inputs to track flooding via river basin and sub-basin hydrological models. While these inputs can provide significant information as to the major flooding, targetable space measurements can provide better spatial resolution measurements of flooding extent. In order to leverage such assets we automatically task observations in response to automated analysis indications of major flooding. These new measurements are automatically processed and assimilated with the other flooding data. We describe our ongoing efforts to deploy this system to track major flooding events in Thailand.

  10. Improved design and in-situ measurements of new beam position monitors for Indus-2

    Science.gov (United States)

    Kumar, M.; Babbar, L. K.; Holikatti, A. C.; Yadav, S.; Tyagi, Y.; Puntambekar, T. A.; Senecha, V. K.

    2018-01-01

    Beam position monitors (BPM) are important diagnostic devices used in particle accelerators to monitor position of the beam for various applications. Improved version of button electrode BPM has been designed using CST Studio Suite for Indus-2 ring. The new BPMs are designed to replace old BPMs which were designed and installed more than 12 years back. The improved BPMs have higher transfer impedance, resonance free output signal, equal sensitivity in horizontal and vertical planes and fast decaying wakefield as compared to old BPMs. The new BPMs have been calibrated using coaxial wire method. Measurement of transfer impedance and time domain signals has also been performed in-situ with electron beam during Indus-2 operation. The calibration and beam based measurements results showed close agreement with the design parameters. This paper presents design, electromagnetic simulations, calibration result and in-situ beam based measurements of newly designed BPMs.

  11. Hole Drilling Technique – on site stress measurement

    OpenAIRE

    Schueremans, Luc

    2009-01-01

    2. Hole Drilling Technique for onsite stress measurement has been used to validate the stress level at 2 pillars of the Sint-Jacobschurch (Leuven, B). The technique allows estimating the stress in a stone from measuring deformation when a small hole is made. It is a low intrusive technique. The application of it is limited to local stress measurements and is a complement to stress estimate from calculations of from the use of –for example- flat jacks. In addition to the flat-jack technique...

  12. In situ measurement on TSV-Cu deformation with hotplate system based on sheet resistance

    Science.gov (United States)

    Sun, Yunna; Wang, Bo; Wang, Huiying; Wu, Kaifeng; Yang, Shengyong; Wang, Yan; Ding, Guifu

    2017-12-01

    The in situ measurement of TSVs deformation at different temperature is meaningful for learning more about the thermal deformation schemes of 3D TSVs in the microelectronic devices. An efficient and smart hotplate based on sheet resistance is designed for offering more heat, producing a uniform temperature distribution, relieving thermal stress and heat concentration issues, and reducing room space, which was optimized by the finite element method (FEM). The fabricated hotplate is efficient and smart (2.5 cm  ×  2.0 cm  ×  0.5 cm) enough to be located in the limited space during measuring. The thermal infrared imager was employed as the temperature sensor for monitoring the temperature distribution of TSVs sample. The 3D profilometry was adopted as the observer for TSVs profiles survey. The in situ 2D top surface profiles and 3D displacement profiles of TSVs sample at the different temperature were measured by 3D profilometer. The in situ average relative deformation and effective plastic deformation of the TSV sample were measured. With optical measurement method, 3D profilometry, the TSV sample can be tested repeatedly.

  13. The Sine Method: An Alternative Height Measurement Technique

    Science.gov (United States)

    Don C. Bragg; Lee E. Frelich; Robert T. Leverett; Will Blozan; Dale J. Luthringer

    2011-01-01

    Height is one of the most important dimensions of trees, but few observers are fully aware of the consequences of the misapplication of conventional height measurement techniques. A new approach, the sine method, can improve height measurement by being less sensitive to the requirements of conventional techniques (similar triangles and the tangent method). We studied...

  14. In situ vitrification - A potential remedial action technique for hazardous wastes

    International Nuclear Information System (INIS)

    Fitzpatrick, V.F.; Buelt, J.L.; Oma, K.H.; Timmerman, C.L.

    1984-01-01

    In situ vitrification (ISV) is an innovative technology being developed as a potential method for stabilizing transuranic (TRU) contaminated wastes in place. Although the process is being developed for TRU contaminated wastes, it is envisioned that the process could also be applied to hazardous chemical wastes. In situ vitrification (ISV) is the conversion of contaminated soil into a durable glass and crystalline wastes form through melting by joule heating. The technology for in situ vitrification is based upon electric melter technology developed at the Pacific Northwest Laboratory (PNL) for the immobilization of high-level nuclear waste. In situ vitrification was initially tested by researchers at PNL in August, 1980 (U.S. Patent 4,376,598). Since then, ISV has grown from a concept to an emerging technology through a series of 21 engineering-scale (laboratory) tests and 7 pilot-scale (field) tests. A large-scale system is currently being fabricated for testing. The program has been sponsored by the U.S. Department of Energy's (DOE) Richland Operations Office for potential application to Hanford TRU contaminated soil sites. A more detailed description outlining the power system design and the off-gas treatment system follows

  15. Slipped upper femoral epiphysis: Outcome after in situ fixation and capital realignment technique

    Directory of Open Access Journals (Sweden)

    Sanjay Arora

    2013-01-01

    Results: Clinical outcome as assessed by Merle d′ Aubigne score was excellent in 6, good in 10, fair in 6 and poor in 1. Half of the in situ fixation patients underwent osteoplasty procedure for femoroacetabular impingement and 5 more were symptomatic. The head neck offset and α angle after in situ pinning were -1.12 ± 3 mm and 66.05 ± 9.7°, respectively and this improved to 8.7 mm and 49°, respectively, after osteoplasty. One child in the pinning group had chondrolysis. Eight patients with severe slip underwent capital realignment. Mean followup was 20.15 months. The anterior head neck offset and α angle were corrected to 6.8 ± 1.72 mm and 44.6 ± 7.0° mm, respectively. Two children with unstable slip in the capital realignment group had avascular necrosis which was diagnosed at presentation by bone scan. Conclusion: High BMI, vitamin D deficiency and endocrine disorders are associated with SUFE in India and should be evaluated as some of these are amenable to prevention and treatment. Most patients treated with in situ pinning developed femoroacetabular impingement. The early results after capital realignment procedure are encouraging and help to avoid a second procedure which is needed in a majority of patients who underwent in situ pinning.

  16. Development and application of denuder sampling techniques with in situ derivatization for the determination of hydrogenbromide in volcanic plumes

    Science.gov (United States)

    Gutmann, Alexandra; Rüdiger, Julian; Hoffmann, Thorsten

    2016-04-01

    The composition of gases in volcanic plumes shifts with subsurface processes inside volcanoes. For monitoring volcanic activity by studying volcanic plumes it is essential to understand the chemical reactions inside the volcanic plume (Bobrowski and Platt, 2013). Measurements of BrO/SO2-ratio already enable insights into magmatic processes (Bobrowski and Giuffrida, 2012). Both, BrO and SO2, are measurable by Remote Sensing Techniques at a safe distance. Models suggest not a direct emission of BrO but formation due to photochemical and multiphase reactions in the gas and particle phase. These model presume HBr as first emitted species (Gerlach, 2004). So HBr is an important connecting link between easily measurable BrO/SO2-ratios and conclusions on a volcanic system. It is of high importance to know if there is a variation in the amount of HBr transformed into BrO and to gain knowledge on the factor of its dependence. Apart from depletion of surrounded ozone also decreasing or depletion of emitted HBr or even HCl could be responsible for the shift (Bobrowski and Giuffrida, 2012). Knowledge about complex processes in volcanic plumes will simplify interpretation and predictions. In this study, first applications of coated gas diffusion denuder (similar to Huang and Hoffmann, 2008) to derivatize gaseous HBr were successful. Due to the lack of adequate remote sensing techniques an in situ method was developed and will be presented in detail. The epoxide of oleic acid was determined as a suitable derivatization agent. The reaction with HBr gives 10-bromo-9-hydroxyoctadecanoic acid. Other hydrogenhalogens give corresponding products. Derivatized analytes were removed from denuder by solvent elution and subsequent analysed with gas chromatography-mass spectrometry. A limit of quantification below 1 ng was achieved. The method was applied on volcanic gas plumes at Mt. Etna in Italy in July and August 2015. The results showed HBr in higher ppt-range. These first proof

  17. Early in-situ measurements program for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Wowak, W.E.

    1979-06-01

    The technical basis and description of measurements for the early in-situ measurements program at the WIPP are described and a proposed organizational structure is presented. Measurements are needed for verification of design predictions and also for a prelude to the main experiment program. The design verification measurements will be concentrated in the first shaft and the underground support and access areas. Early experiments will be concentrated in the test drifts on the storage horizons. Recommendations are made to DOE for appropriate division of responsibility among Bechtel, the technical support contractor, the instrumentation contractor, and Sandia

  18. Use of multiple sensor technologies for quality control of in situ biogeochemical measurements: A SeaCycler case study

    Science.gov (United States)

    Atamanchuk, Dariia; Koelling, Jannes; Lai, Jeremy; Send, Uwe; Wallace, Douglas

    2017-04-01

    Over the last two decades observing capacity for the global ocean has increased dramatically. Emerging sensor technologies for dissolved gases, nutrients and bio-optical properties in seawater are allowing extension of in situ observations beyond the traditionally measured salinity, temperature and pressure (CTD). However the effort to extend observations using autonomous instruments and platforms carries the risk of losing the level of data quality achievable through conventional water sampling techniques. We will present results from a case study with the SeaCycler profiling winch focusing on quality control of the in-situ measurements. A total of 13 sensors were deployed from May 2016 to early 2017 on SeaCycler's profiling sensor float, including CTD, dissolved oxygen (O2, 3 sensors), carbon dioxide (pCO2, 2 sensors), nutrients, velocity sensors, fluorometer, transmissometer, single channel PAR sensor, and others. We will highlight how multiple measurement technologies (e.g. for O2 and CO2) complement each other and result in a high quality data product. We will also present an initial assessment of the bio-optical data, their implications for seasonal phytoplankton dynamics and comparisons to climatologies and ocean-color data products obtained from the MODIS satellite.

  19. A new in situ technique for studying deformation and fracture in thin film ductile/brittle laminates

    International Nuclear Information System (INIS)

    Hackney, S.A.; Milligan, W.W.

    1991-01-01

    A new technique for studying deformation and fracture of thin film ductile/brittle laminates is described. The laminates are prepared by sputtering a brittle coating on top of an electropolished TEM thin foil. The composites are then strained in situ in the TEM. In this preliminary investigation, the composites consisted of a ductile aluminum substrate and a brittle silicon coating. Cracks in the brittle film grew discontinuously in bursts several micrometers in length. The crack opening displacement initiated plastic deformation in the ductile film, thus dissipating energy and allowing crack arrest. The interface was well bonded, and delamination was not observed. Due to the good interfacial bond and the crack opening behind the crack tip, it was possible to study very large plastic deformations and ductile fracture in the aluminum in situ, without buckling of the foil. The possibility of micromechanical modeling of the fracture behavior is briefly discussed. (orig.)

  20. In-situ, real-time, studies of film growth processes using ion scattering and direct recoil spectroscopy techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Smentkowski, V. S.

    1999-04-22

    Time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) enables the characterization of the composition and structure of surfaces with 1-2 monolayer specificity. It will be shown that surface analysis is possible at ambient pressures greater than 3 mTorr using TOF-ISARS techniques; allowing for real-time, in situ studies of film growth processes. TOF-ISARS comprises three analytical techniques: ion scattering spectroscopy (ISS), which detects the backscattered primary ion beam; direct recoil spectroscopy (DRS), which detects the surface species recoiled into the forward scattering direction; and mass spectroscopy of recoiled ions (MSRI), which is 3 variant of DRS capable of isotopic resolution for all surface species--including H and He. The advantages and limitations of each of these techniques will be discussed. The use of the three TOF-ISARS methods for real-time, in situ film growth studies at high ambient pressures will be illustrated. It will be shown that MSRI analysis is possible during sputter deposition. It will be also be demonstrated that the analyzer used for MSRI can also be used for time of flight secondary ion mass spectroscopy (TOF-SIMS) under high vacuum conditions. The use of a single analyzer to perform the complimentary surface analytical techniques of MSRI and SIMS is unique. The dwd functionality of the MSRI analyzer provides surface information not obtained when either MSRI or SIMS is used independently.

  1. Intercomparison of MODIS Albedo Retrievals and In Situ Measurements Across the Global FLUXNET Network

    Science.gov (United States)

    Cescatti, Alessandro; Marcolla, Barbara; Vannan, Suresh K. Santhana; Pan, Jerry Yun; Roman, Miguel O.; Yang, Xiaoyuan; Ciais, Philippe; Cook, Robert B.; Law, Beverly E.; Matteucci, Girogio; hide

    2012-01-01

    Surface albedo is a key parameter in the Earth's energy balance since it affects the amount of solar radiation directly absorbed at the planet surface. Its variability in time and space can be globally retrieved through the use of remote sensing products. To evaluate and improve the quality of satellite retrievals, careful intercomparisons with in situ measurements of surface albedo are crucial. For this purpose we compared MODIS albedo retrievals with surface measurements taken at 53 FLUXNET sites that met strict conditions of land cover homogeneity. A good agreement between mean yearly values of satellite retrievals and in situ measurements was found (R(exp 2)= 0.82). The mismatch is correlated to the spatial heterogeneity of surface albedo, stressing the relevance of land cover homogeneity when comparing point to pixel data. When the seasonal patterns of MODIS albedo is considered for different plant functional types, the match with surface observation is extremely good at all forest sites. On the contrary, in non-forest sites satellite retrievals underestimate in situ measurements across the seasonal cycle. The mismatch observed at grasslands and croplands sites is likely due to the extreme fragmentation of these landscapes, as confirmed by geostatistical attributes derived from high resolution scenes.

  2. Development of a measurement technique to characterize erosion and redeposition in a tokamak by speckle interferometry

    International Nuclear Information System (INIS)

    Dore, P.

    2006-11-01

    This work aims at proving the feasibility of temporal phase shifting speckle interferometry to make erosion/redeposition measurements on plasma facing components in situ on a tokamak. Results show clearly that the interferometric technique can be implemented on a tokamak to provide erosion/redeposition measurements. The optical setup and the interferograms acquisition and processing have been developed and tested in laboratory before being suited to the complex tokamak environment. We finally have an optical technique able to characterize erosion/redeposition mechanisms (amount of eroded/redeposited material, location) on optically rough plasma facing components (carbon fibre composite, tungsten). These components, suffering from random displacements (as vibrations) during acquisition, are relatively large (∼ 50 x 50 cm 2 ) and could be situated far away from the CCD camera (∼ 3 m). Now, we need to define the regions of plasma facing components where we want to make erosion and redeposition measurements. After that, we propose a diagnostic to validate the optical technique in situ on a tokamak, allowing us to develop a diagnostic for ITER. (author)

  3. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    International Nuclear Information System (INIS)

    Macdonald, D.D.

    2000-01-01

    Super Critical Water Oxidation (SCWO) is a promising technology for destroying highly toxic organic waste (including physiological agents) and for reducing the volume of DOE's low-level nuclear waste. The major problem inhibiting the wide implementation of SCWO is the lack of fundamental knowledge about various physico-chemical and corrosion processes that occur in SCW environments. In particular, the lack of experimental techniques for accurately monitoring important parameters, such as pH, corrosion potential and corrosion rate, has severely hampered the development of a quantitative understanding of the degradation of materials in this extraordinarily aggressive environment. Accordingly, the principal objective of the present program has been to develop new, innovative methods for accurately measuring parameters that characterize corrosion processes under super critical conditions

  4. Vessel size measurements in angiograms: A comparison of techniques

    International Nuclear Information System (INIS)

    Hoffmann, Kenneth R.; Nazareth, Daryl P.; Miskolczi, Laszlo; Gopal, Anant; Wang Zhou; Rudin, Stephen; Bednarek, Daniel R.

    2002-01-01

    As interventional procedures become more complicated, the need for accurate quantitative vascular information increases. In response to this need, many commercial vendors provide techniques for measurement of vessel sizes, usually based on derivative techniques. In this study, we investigate the accuracy of several techniques used in the measurement of vessel size. Simulated images of vessels having circular cross sections were generated and convolved with various focal spot distributions taking into account the magnification. These vessel images were then convolved with Gaussian image detector line spread functions (LSFs). Additionally, images of a phantom containing vessels with a range of diameters were acquired for the 4.5'', 6'', 9'', and 12'' modes of an image intensifier-TV (II-TV) system. Vessel sizes in the images were determined using a first-derivative technique, a second-derivative technique, a linear combination of these two measured sizes, a thresholding technique, a densitometric technique, and a model-based technique. For the same focal spot size, the shape of the focal spot distribution does not affect measured vessel sizes except at large magnifications. For vessels with diameters larger than the full-width-at-half-maximum (FWHM) of the LSF, accurate vessel sizes (errors ∼0.1 mm) could be obtained by using an average of sizes determined by the first and second derivatives. For vessels with diameters smaller than the FWHM of the LSF, the densitometric and model-based techniques can provide accurate vessel sizes when these techniques are properly calibrated

  5. Decoupling pipeline influences in soil resistivity measurements with finite element techniques

    Science.gov (United States)

    Deo, R. N.; Azoor, R. M.; Zhang, C.; Kodikara, J. K.

    2018-03-01

    Periodic inspection of pipeline conditions is an important asset management strategy conducted by water and sewer utilities for efficient and economical operations of their assets in field. The Level 1 pipeline condition assessment involving resistivity profiling along the pipeline right-of-way is a common technique for delineating pipe sections that might be installed in highly corrosive soil environment. However, the technique can suffer from significant perturbations arising from the buried pipe itself, resulting in errors in native soil characterisation. To address this problem, a finite element model was developed to investigate the degree to which pipes of different a) diameters, b) burial depths, and c) surface conditions (bare or coated) can influence in-situ soil resistivity measurements using Wenner methods. It was found that the greatest errors can arise when conducting measurements over a bare pipe with the array aligned parallel to the pipe. Depending upon the pipe surface conditions, in-situ resistivity measurements can either be underestimated or overestimated from true soil resistivities. Following results based on simulations and decoupling equations, a guiding framework for removing pipe influences in soil resistivity measurements were developed that can be easily used to perform corrections on measurements. The equations require simple a-prior information on the pipe diameter, burial depth, surface condition, and the array length and orientation used. Findings from this study have immediate application and is envisaged to be useful for critical civil infrastructure monitoring and assessment.

  6. In situ measurements of HO{sub x} in super- and subsonic aircraft exhaust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hanisco, T F; Wennberg, P O; Cohen, R C; Anderson, J G [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry; Fahey, D W; Keim, E R; Gao, R S; Wamsley, R C; Donnelly, S G; Del Negro, L A [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; others, and

    1998-12-31

    Concentrations of HO{sub x} (OH and HO{sub 2}) have been obtained in the exhaust plumes of an Air France Concorde and a NASA ER-2 in the lower stratosphere and the NASA DC-8 in the upper troposphere using instruments aboard the NASA ER-2. These fast-time response in situ measurements are used in conjunction with simultaneous in situ measurements of other key exhaust species (NO, NO{sub 2}, NO{sub y}, H{sub 2}O, and CO) to analyze the emissions of HO{sub x} from each aircraft under a variety of conditions. The data are used to establish a general description of gas phase plume chemistry that is easily implemented in a photochemical model. This model is used to determine the amount of HO{sub x} emitted from the engines and the gas phase oxidation rates of nitrogen and sulfur species in the exhaust plumes. (author) 10 refs.

  7. In situ measurements of HO{sub x} in super- and subsonic aircraft exhaust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hanisco, T.F.; Wennberg, P.O.; Cohen, R.C.; Anderson, J.G. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry; Fahey, D.W.; Keim, E.R.; Gao, R.S.; Wamsley, R.C.; Donnelly, S.G.; Del Negro, L.A. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; and others

    1997-12-31

    Concentrations of HO{sub x} (OH and HO{sub 2}) have been obtained in the exhaust plumes of an Air France Concorde and a NASA ER-2 in the lower stratosphere and the NASA DC-8 in the upper troposphere using instruments aboard the NASA ER-2. These fast-time response in situ measurements are used in conjunction with simultaneous in situ measurements of other key exhaust species (NO, NO{sub 2}, NO{sub y}, H{sub 2}O, and CO) to analyze the emissions of HO{sub x} from each aircraft under a variety of conditions. The data are used to establish a general description of gas phase plume chemistry that is easily implemented in a photochemical model. This model is used to determine the amount of HO{sub x} emitted from the engines and the gas phase oxidation rates of nitrogen and sulfur species in the exhaust plumes. (author) 10 refs.

  8. Development of novel sol-gel indicators (SGI's) for in-situ environmental measurements

    International Nuclear Information System (INIS)

    Livingston, R.R.; Wicks, G.G.; Baylor, L.C.; Whitaker, M.J.

    1993-01-01

    Organic indicator molecules have been incorporated in a porous sol- gel matrix coated on the end of a fiber-optic lens assembly to create sensors for in situ environmental measurements. Probes have been made that are sensitive to pH and uranyl concentration. The use of fiber optics allows the probe to be lowered into a well or bore hole, while support equipment such as a spectrophotometer and computer may be situated hundreds of meters away

  9. Development of conductivity probe and temperature probe for in-situ measurements in hydrological studies

    International Nuclear Information System (INIS)

    Chandra, U.; Galindo, B.J.; Castagnet, A.C.G.

    1981-05-01

    A conductivity probe and a temperature probe have been developed for in-situ measurements in various hydrological field studies. The conductivity probe has platinum electrodes and is powered with two 12 volt batteries. The sensing element of the temperature probe consists of a resistor of high coefficient of temperature. Response of the conductivity probe is measured in a milliampere mater while the resistance of the thermistor is read by a digital meter. The values of conductivity and temperature are derived from respective calibration. The probes are prototype and their range of measurement can be improved depending upon the requirement of the field problem. (Author) [pt

  10. An in situ measurement of the radio-frequency attenuation in ice at Summit Station, Greenland

    OpenAIRE

    Avva, J.; Kovac, J. M.; Miki, C.; Saltzberg, D.; Vieregg, A. G.

    2014-01-01

    We report an in situ measurement of the electric field attenuation length Lα at radio frequencies for the bulk ice at Summit Station, Greenland, made by broadcasting radio-frequency signals vertically through the ice and measuring the relative power in the return ground bounce signal. We find the depth-averaged field attenuation length to be hLαi = 947+92 −85 m at 75 MHz. While this measurement has clear radioglaciological applications, the radio clarity of the ice also has implications for t...

  11. In-situ radiation measurements of the C1 and C2 waste storage tank vault

    International Nuclear Information System (INIS)

    Yong, L.K.; Womble, P.C.; Weems, L.D.

    1996-09-01

    In August of 1996, the Applied Radiation Measurements Department (ARMD) of the Waste Management and Remedial Action Division (WMRAD) at Oak Ridge National Laboratory (ORNL) was tasked with characterizing the radiation fields in the C 1 and C 2 Liquid Low Level Waste (LLLW) tank vault located at ORNL. These in-situ measurements were made to provide data for evaluating the potential radiological conditions for personnel working in or around the vault during future planned activities. This report describes the locations where measurements were made, the types of radiation detection instruments used, the methods employed, the problems encountered and resolved, and discusses the results obtained

  12. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Caitlin; Bufford, Daniel; Muntifering, Brittany; Senor, David; Steckbeck, Mackenzie; Davis, Justin; Doyle, Barney; Buller, Daniel; Hattar, Khalid

    2017-09-29

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.

  13. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    Directory of Open Access Journals (Sweden)

    Caitlin Anne Taylor

    2017-09-01

    Full Text Available Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM. This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs: zirconium alloys and LiAlO2.

  14. Development of new ultrafiltration techniques maintaining in-situ hydrochemical conditions for colloidal study

    International Nuclear Information System (INIS)

    Aosai, Daisuke; Yamamoto, Yuhei; Mizuno, Takashi

    2011-01-01

    Chemical state of elements in groundwater is one of the most important information for understanding behavior of elements in underground environment. Chemical state of elements controlled mainly by groundwater physico-chemical parameters. Because the change of physico-chemical parameters of groundwater, due to pressure release and oxidation during sampling, causes changes in chemical state of elements, systematic methodologies for understanding in situ chemical state is required. In this study, in order to understand chemical state of elements in groundwater, an ultrafiltration instrument for maintaining in-situ pressure and anaerobic conditions was developed. The instrument developed in this study for ultrafiltration made of passivated Stainless Used Steel (SUS) materials, was designed to keep groundwater samples maintaining in-situ pressure/anaerobic conditions. Ultrafiltration of groundwater was conducted at a borehole drilled from the 200 mbGL (meters below ground level) Sub-stage at a depth of 200 m at the Mizunami Underground Research Laboratory. Chemical analyses of groundwater were also conducted using samples filtered under both pressurized/anaerobic and atmospheric conditions and passivated SUS materials with different elapsed times after passivation. The results indicate that our ultrafiltration method is suitable for collection of filtered groundwater and passivation is an essential treatment before ultrafiltration. (author)

  15. A comparison of the energy use of in situ product recovery techniques for the Acetone Butanol Ethanol fermentation.

    Science.gov (United States)

    Outram, Victoria; Lalander, Carl-Axel; Lee, Jonathan G M; Davis, E Timothy; Harvey, Adam P

    2016-11-01

    The productivity of the Acetone Butanol Ethanol (ABE) fermentation can be significantly increased by application of various in situ product recovery (ISPR) techniques. There are numerous technically viable processes, but it is not clear which is the most economically viable in practice. There is little available information about the energy requirements and economics of ISPR for the ABE fermentation. This work compares various ISPR techniques based on UniSim process simulations of the ABE fermentation. The simulations provide information on the process energy and separation efficiency, which is fed into an economic assessment. Perstraction was the only technique to reduce the energy demand below that of a batch process, by approximately 5%. Perstraction also had the highest profit increase over a batch process, by 175%. However, perstraction is an immature technology, so would need significant development before being integrated to an industrial process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Aerosol Size Distributions During ACE-Asia: Retrievals From Optical Thickness and Comparisons With In-situ Measurements

    Science.gov (United States)

    Kuzmanoski, M.; Box, M.; Box, G. P.; Schmidt, B.; Russell, P. B.; Redemann, J.; Livingston, J. M.; Wang, J.; Flagan, R. C.; Seinfeld, J. H.

    2002-12-01

    As part of the ACE-Asia experiment, conducted off the coast of China, Korea and Japan in spring 2001, measurements of aerosol physical, chemical and radiative characteristics were performed aboard the Twin Otter aircraft. Of particular importance for this paper were spectral measurements of aerosol optical thickness obtained at 13 discrete wavelengths, within 354-1558 nm wavelength range, using the AATS-14 sunphotometer. Spectral aerosol optical thickness can be used to obtain information about particle size distribution. In this paper, we use sunphotometer measurements to retrieve size distribution of aerosols during ACE-Asia. We focus on four cases in which layers influenced by different air masses were identified. Aerosol optical thickness of each layer was inverted using two different techniques - constrained linear inversion and multimodal. In the constrained linear inversion algorithm no assumption about the mathematical form of the distribution to be retrieved is made. Conversely, the multimodal technique assumes that aerosol size distribution is represented as a linear combination of few lognormal modes with predefined values of mode radii and geometric standard deviations. Amplitudes of modes are varied to obtain best fit of sum of optical thicknesses due to individual modes to sunphotometer measurements. In this paper we compare the results of these two retrieval methods. In addition, we present comparisons of retrieved size distributions with in situ measurements taken using an aerodynamic particle sizer and differential mobility analyzer system aboard the Twin Otter aircraft.

  17. In-situ investigation of adsorption of dye and coadsorbates on TiO 2 films using QCM-D, fluorescence and AFM techniques

    KAUST Repository

    Harms, Hauke A.

    2013-09-11

    Simultaneous adsorption of dye molecules and coadsorbates is important for the fabrication of high-efficiency dyesensitized solar cells, but its mechanism is not well understood. Herein, we use a quartz crystal microbalance with dissipation technique (QCM-D) to study dynamically and quantitatively the sensitization of TiO2 in situ. We investigate dye loading for a ruthenium(II) polypyridyl complex (Z907), of a triphenylamine-based D-π-A dye (Y123), and of a ullazine sensitizer (JD21), as well as the simultaneous adsorption of the latter two with the coadsorbate chenodeoxycholic acid. By combining the QCM-D technique with fluorescence measurements, we quantify molar ratios between the dye and coadsorbate. Furthermore, we will present first studies using liquid-phase AFM on the adsorbed dye monolayer, thus obtaining complementary microscopic information that may lead to understanding of the adsorption mechanism on the molecular scale. © 2013 SPIE.

  18. Powder agglomeration study in RF silane plasmas by in situ polarization-sensitive laser light scattering and TEM measurements

    Energy Technology Data Exchange (ETDEWEB)

    Courteille, C; Hollenstein, C; Dorier, J L; Gay, P; Schwarzenbach, W; Howling, A A [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Bertran, E; Viera, G [Barcelona Univ., Dep. de de Fisica Aplicada I Electronica, Barcelona (Spain); Martins, R; Macarico, A [FCTUNL, Materials Science Dep., Monte de Caparica (Portugal)

    1966-03-01

    To determine self-consistently the time evolution of particle size and their number density in situ multi-angle polarization laser light scattering was used. Cross-polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135{sup o} and ex-situ TEM analysis demonstrate the existence of non-spherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross-polarization intensities is accompanied by low frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian Free Molecule Coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian Free Molecule Coagulation model including a log-normal particle size distribution. (author) 11 figs., 48 refs.

  19. Powder agglomeration study in RF silane plasmas by in situ polarization-sensitive laser light scattering and TEM measurements

    International Nuclear Information System (INIS)

    Courteille, C.; Hollenstein, C.; Dorier, J.L.; Gay, P.; Schwarzenbach, W.; Howling, A.A.; Bertran, E.; Viera, G.; Martins, R.; Macarico, A.

    1966-03-01

    To determine self-consistently the time evolution of particle size and their number density in situ multi-angle polarization laser light scattering was used. Cross-polarization intensities (incident and scattered light intensities with opposite polarization) measured at 135 o and ex-situ TEM analysis demonstrate the existence of non-spherical agglomerates during the early phase of agglomeration. Later in the particle time development both techniques reveal spherical particles again. The presence of strong cross-polarization intensities is accompanied by low frequency instabilities detected on the scattered light intensities and plasma emission. It is found that the particle radius and particle number density during the agglomeration phase can be well described by the Brownian Free Molecule Coagulation model. Application of this neutral particle coagulation model is justified by calculation of the particle charge whereby it is shown that particles of a few tens of nanometer can be considered as neutral under our experimental conditions. The measured particle dispersion can be well described by a Brownian Free Molecule Coagulation model including a log-normal particle size distribution. (author) 11 figs., 48 refs

  20. Texture evolution and microstructural changes during solid-state dewetting: A correlative study by complementary in situ TEM techniques

    International Nuclear Information System (INIS)

    Niekiel, Florian; Kraschewski, Simon M.; Schweizer, Peter; Butz, Benjamin; Spiecker, Erdmann

    2016-01-01

    The transition of a thin film into an energetically favorable set of particles at temperatures below the melting point of the bulk material is known as solid-state dewetting. In this work the dewetting behavior of 16 nm thick discontinuous Au thin films on amorphous silicon nitride membranes is quantitatively studied by complementary in situ transmission electron microscopy techniques taking advantage of the unique capabilities of a chip-based heating system. The combination of dedicated imaging and diffraction techniques is used to investigate the interplay of grain growth and texture evolution with the process of dewetting. The results show an initial coarsening of the microstructure preceding the other processes. Texture evolution is highly correlated to material retraction and agglomeration during the following dewetting process. In-plane grain rotation has been observed, acting as an additional mechanism for orientation changes. From a methodological perspective this work demonstrates the capabilities of today’s transmission electron microscopy in combination with state-of-the-art in situ instrumentation. In particular the combination of complementary information from different dedicated techniques in one and the same setup is demonstrated to be highly beneficial.

  1. Nitrogen budget of the northwestern Black Sea shelf inferred from modeling studies and in situ benthic measurements

    NARCIS (Netherlands)

    Grégoire, M.; Friedrich, J.

    2004-01-01

    A 3D eddy-resolving coupled biogeochemical-hydrodynamical model and in situ observations are used to investigate benthic processes on the Black Sea's NW shelf. Measurements of benthic fluxes (oxygen, nutrients, redox compounds) with in situ flux chambers are analyzed in regard to sediment dynamics

  2. Thin film thermocouples for in situ membrane electrode assembly temperature measurements in a polybenzimidazole-based high temperature proton exchange membrane unit cell

    DEFF Research Database (Denmark)

    Ali, Syed Talat; Lebæk, Jesper; Nielsen, Lars Pleth

    2010-01-01

    m thick layer of TFTCs on 75 mu m thick Kapton foil. The Kapton foil was treated with in situ argon plasma etching to improve the adhesion between TFTCs and the Kapton substrate. The TFTCs were covered with a 7 mu m liquid Kapton layer using spin coating technique to protect them from environmental......This paper presents Type-T thin film thermocouples (TFTCs) fabricated on Kapton (polyimide) substrate for measuring the internal temperature of PBI(polybenzimidazole)-based high temperature proton exchange membrane fuel cell (HT-PEMFC). Magnetron sputtering technique was employed to deposit a 2 mu...... degradation. This Kapton foil with deposited TFTCs was used as sealing inside a PBI (polybenzimidazole)-based single cell test rig, which enabled measurements of in situ temperature variations of the working fuel cell MEA. The performance of the TFTCs was promising with minimal interference to the operation...

  3. 3D shape measurements with a single interferometric sensor for in-situ lathe monitoring

    Science.gov (United States)

    Kuschmierz, R.; Huang, Y.; Czarske, J.; Metschke, S.; Löffler, F.; Fischer, A.

    2015-05-01

    Temperature drifts, tool deterioration, unknown vibrations as well as spindle play are major effects which decrease the achievable precision of computerized numerically controlled (CNC) lathes and lead to shape deviations between the processed work pieces. Since currently no measurement system exist for fast, precise and in-situ 3d shape monitoring with keyhole access, much effort has to be made to simulate and compensate these effects. Therefore we introduce an optical interferometric sensor for absolute 3d shape measurements, which was integrated into a working lathe. According to the spindle rotational speed, a measurement rate of 2,500 Hz was achieved. In-situ absolute shape, surface profile and vibration measurements are presented. While thermal drifts of the sensor led to errors of several mµm for the absolute shape, reference measurements with a coordinate machine show, that the surface profile could be measured with an uncertainty below one micron. Additionally, the spindle play of 0.8 µm was measured with the sensor.

  4. A microscopy approach for in situ inspection of micro-coordinate measurement machine styli for contamination

    Science.gov (United States)

    Feng, Xiaobing; Pascal, Jonathan; Lawes, Simon

    2017-09-01

    During the process of measurement using a micro-coordinate measurement machine (µCMM) contamination gradually builds up on the surface of the stylus tip and affects the dimensional accuracy of the measurement. Regular inspection of the stylus for contamination is essential to determine the appropriate cleaning interval and prevent the dimensional error from becoming significant. However, in situ inspection of a µCMM stylus is challenging due to the size, spherical shape, material and surface properties of a typical stylus. To address this challenge, this study evaluates several non-contact measurement technologies for in situ stylus inspection and, based on those findings, proposes a cost-effective microscopy approach. The operational principle is then demonstrated by an automated prototype, coordinated directly by the CMM software MCOSMOS, with an effective threshold of detection as low as 400 nm and a large field of view and depth of field. The level of contamination on the stylus has been found to increase steadily with the number of measurement contacts made. Once excessive contamination is detected on the stylus, measurement should be stopped and a stylus cleaning procedure should be performed to avoid affecting measurement accuracy.

  5. A microscopy approach for in situ inspection of micro-coordinate measurement machine styli for contamination

    International Nuclear Information System (INIS)

    Feng, Xiaobing; Lawes, Simon; Pascal, Jonathan

    2017-01-01

    During the process of measurement using a micro-coordinate measurement machine (µCMM) contamination gradually builds up on the surface of the stylus tip and affects the dimensional accuracy of the measurement. Regular inspection of the stylus for contamination is essential to determine the appropriate cleaning interval and prevent the dimensional error from becoming significant. However, in situ inspection of a µCMM stylus is challenging due to the size, spherical shape, material and surface properties of a typical stylus. To address this challenge, this study evaluates several non-contact measurement technologies for in situ stylus inspection and, based on those findings, proposes a cost-effective microscopy approach. The operational principle is then demonstrated by an automated prototype, coordinated directly by the CMM software MCOSMOS, with an effective threshold of detection as low as 400 nm and a large field of view and depth of field. The level of contamination on the stylus has been found to increase steadily with the number of measurement contacts made. Once excessive contamination is detected on the stylus, measurement should be stopped and a stylus cleaning procedure should be performed to avoid affecting measurement accuracy. (paper)

  6. An optode sensor array for long term in situ Oxygen measurements in soil and sediment

    DEFF Research Database (Denmark)

    Rickelt, Lars F; Jensen, Louise Askær; Walpersdorf, Eva Christine

    2013-01-01

    Long-term measurements of molecular oxygen (O2) dynamics in wetlands are highly relevant for understanding the eff ects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We construc......Long-term measurements of molecular oxygen (O2) dynamics in wetlands are highly relevant for understanding the eff ects of water level changes on net greenhouse gas budgets in these ecosystems. However, such measurements have been limited due to a lack of suitable measuring equipment. We...... constructed an O2 optode sensor array for long-term in situ measurements in soil and sediment. Th e new device consists of a 1.3-m-long, cylindrical, spear-shaped rod equipped with 10 sensor spots along the shaft . Each spot contains a thermocouple fi xed with a robust fi beroptic O2 optode made...... characteristics of the sensor array system are presented along with a novel approach for temperature compensation of O2 optodes. During in situ application over several months in a peat bog, we used the new device to document pronounced variations in O2 distribution aft er marked shift s in water level. Th e...

  7. Development of in-situ laser based cutting technique for shock absorber rear nut in pressurized heavy water reactors. CP-2.1

    International Nuclear Information System (INIS)

    Vishwakarma, S.C.; Jain, R.K.; Upadhyaya, B.N.; Choubey, Ambar; Agrawal, D.K.; Oak, S.M.

    2007-01-01

    We have developed a laser based cutting technique for shock absorber rear nuts in pressurized heavy water reactors (PHWRs). This technique has been successfully used for in-situ laser cutting at RAPS-3 reactor. The technique consists of a motorized compact fixture, which holds a fiber optic beam delivery cutting nozzle and can be operated remotely

  8. First in-situ measurements of a highly fragmented comet: ACE SWICS and WIND STICS measurements

    Science.gov (United States)

    Lepri, S. T.; Gilbert, J. A.; Rubin, M.; Zurbuchen, T.; Combi, M. R.

    2011-12-01

    While many of the characteristics of comets and their local plasma environment are obtained using remote sensing via spectroscopic methods, space-based mass spectrometers allow a unique opportunity to directly sample cometary material in situ. To date there have been only a handful of in-situ spacecraft encounters with comets, such as 1P/Halley, 103P/Hartley, 81P/Wild and others. Comet 73P/Schwassmann-Wachmann started to disintegrate in 1995, two major components B and C were recovered in 2001, and it burst into more than 36 pieces during its passage near the Earth in 2006. Serendipitously, some very distant fragmentation members, well-separated from the major identified fragments, passed between the Earth and Sun. Cometary pickup ions and possibly recombined solar wind minor ions convected past the Earth in late May 2006 and were observed by both the ACE/SWICS and WIND/STICS mass spectrometers, which are located in halo orbits around the Earth-Sun L1 Lagrange point. Most of these observations took place a few days after the main comet fragments passed through the ecliptic, when their orbits crossed the spacecraft-Sun line, suggesting additional pieces lagging far behind the main fragments. In this paper, we present the first in-situ observation of these pieces that passed very close to the spacecraft (<0.07AU) and conduct a comparative analysis of composition and characteristics of pick-up ions originating from a number of the cometary fragments. We find that the pick-up ion trail related to the comet fragments is much longer than expected. We constrain the C+/O+ and He+/He++ ratio and discuss the implications for the production rates of different fragments.

  9. Silt fences: An economical technique for measuring hillslope soil erosion

    Science.gov (United States)

    Peter R. Robichaud; Robert E. Brown

    2002-01-01

    Measuring hillslope erosion has historically been a costly, time-consuming practice. An easy to install low-cost technique using silt fences (geotextile fabric) and tipping bucket rain gauges to measure onsite hillslope erosion was developed and tested. Equipment requirements, installation procedures, statistical design, and analysis methods for measuring hillslope...

  10. Technique for measurements of plane waves of uniaxial strain

    International Nuclear Information System (INIS)

    Graham, R.A.

    1977-01-01

    The measurement of plane waves in uniaxial strain, in which large surface areas are loaded and the measurements are restricted to a central region that is not influenced by lateral boundaries, is discussed. Measuring techniques are covered and instruments are discussed

  11. A simple stir casting technique for the preparation of in situ Fe-aluminides reinforced Al-matrix composites

    Directory of Open Access Journals (Sweden)

    Susanta K. Pradhan

    2016-09-01

    Full Text Available This article presents a simple stir casting technique for the development of Fe-aluminides particulate reinforced Al-matrix composites. It has been demonstrated that stirring of super-heated Al-melt by a mild steel plate followed by conventional casting and hot rolled results in uniform dispersion of in situ Al13Fe4 particles in the Al matrix; the amount of reinforcement is found to increase with increasing melt temperature. With reference to base alloy, the developed composite exhibits higher hardness and improved tensile strength without much loss of ductility; since, composite like base alloy undergoes ductile mode of fracture.

  12. Shining a light on Jarosite: formation, alteration and stability studies using in situ experimental synchrotron and neutron techniques.

    Science.gov (United States)

    Brand, H. E. A.; Scarlett, N. V. Y.; Wilson, S. A.; Frierdich, A. J.; Grey, I. E.

    2016-12-01

    Jarosites and related minerals are critical to a range of mineral processing and research applications. They are used in the removal of iron species from smelting processes; they occur in metal bioleaching systems, and they are present in acid mine drainage environments. There has been a recent resurgence in interest in jarosites since their detection on Mars. In this context, the presence of jarosite has been recognised as a likely indicator of liquid water at the surface of Mars in the past & it is thought that their study will provide insight into the environmental history of Mars. Acid sulfate soils cover large areas of the Australian coastline and are likely to be a major constituent of the Martian environment. The oxidation of acid sulfate soils, coupled with potential release of heavy metals and acidic groundwaters, can have serious consequences for fragile ecosystems. Understanding these sediments will provide insight into the biogeochemical processes that affect the lifetimes of transient mineral species on Earth, and may be used to better understand soil acidification, contaminant mobility at sites affected by acid and metalliferous drainage, and even constrain past weathering and putative biosignatures on Mars. Knowledge of the behaviour of jarosite minerals under the actual conditions that they are found in is crucial to understanding their potential environmental impacts on both Earth and Mars. To this end, we are engaged in a program to study the formation, stability and alteration of natural and synthetic jarosite minerals using a complementary suite of in situ synchrotron and neutron techniques. There are 3 sections to this work that will introduce the experimental techniques and sample environments that make these measurements possible: Studying the nucleation and growth of jarosites under laboratory conditions. The experimentation consisted of time-resolved synchrotron small angle X-ray scattering and X-ray diffraction. Studying the stability of

  13. Measurement techniques for radiological characterization of contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Loos, M

    1996-09-18

    Once the decision is taken to characterize a contaminated site, appropriate measurement techniques must be selected. The choice will depend on the available information, on the nature and extent of the contamination, as well as on available resources (staff and budget). Some techniques are described on the basis of examples of characterization projects (e.g. Olen area in Belgium).

  14. Application of hydraulic fracturing to determine virgin in situ stress state around Waste Isolation Pilot Plant - in situ measurements

    International Nuclear Information System (INIS)

    Wawersik, W.R.; Stone, C.M.

    1985-10-01

    Hydraulic fracturing tests were carried out in horizontal drillholes in rock salt in the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. It was determined that the virgin in situ stress field is isotropic or nearly isotropic. The inferred magnitude of the isotropic in situ stress falls between bounds of 14.28 MPa and 17.9 MPa for the average breakdown/reopening pressures and driving pressures. The best estimate from instantaneous shut-in pressures is 16.61 MPa. Given some uncertainties about the interpretation of hydraulic fracturing data in salt, all of the foregoing values are in acceptable agreement with an average calculated isotropic in situ stress of 14.9 MPa at an average depth of 657 m below surface. Interpretations of breakdown and reopening pressures are based on finite element analyses of the relaxed stress field around a borehole in salt. This stress field varies little between approximately 50 and 200 days after drilling. The finite element analyses were also used to interpret the observed stable pressure-time signatures with little or no pressure drops during primary breakdown of the salt formation. The conclusion about the isotropic nature of the virgin in situ stress field is supported by observations of the induced fracture patterns. The report includes a comparison of the hydrofrac data in the WIPP with the published results of hydraulic fracturing tests in salt at three other locations. 75 refs., 21 figs., 4 tabs

  15. A transportable magnetic resonance imaging system for in situ measurements of living trees: the Tree Hugger.

    Science.gov (United States)

    Jones, M; Aptaker, P S; Cox, J; Gardiner, B A; McDonald, P J

    2012-05-01

    This paper presents the design of the 'Tree Hugger', an open access, transportable, 1.1 MHz (1)H nuclear magnetic resonance imaging system for the in situ analysis of living trees in the forest. A unique construction employing NdFeB blocks embedded in a reinforced carbon fibre frame is used to achieve access up to 210 mm and to allow the magnet to be transported. The magnet weighs 55 kg. The feasibility of imaging living trees in situ using the 'Tree Hugger' is demonstrated. Correlations are drawn between NMR/MRI measurements and other indicators such as relative humidity, soil moisture and net solar radiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Co-firing straw and coal in a 150-MWe utility boiler: in situ measurements

    DEFF Research Database (Denmark)

    Hansen, P. F.B.; Andersen, Karin Hedebo; Wieck-Hansen, K.

    1998-01-01

    A 2-year demonstration program is carried out by the Danish utility I/S Midtkraft at a 150-MWe PF-boiler unit reconstructed for co-firing straw and coal. As a part of the demonstration program, a comprehensive in situ measurement campaign was conducted during the spring of 1996 in collaboration...... with the Technical University of Denmark. Six sample positions have been established between the upper part of the furnace and the economizer. The campaign included in situ sampling of deposits on water/air-cooled probes, sampling of fly ash, flue gas and gas phase alkali metal compounds, and aerosols as well...... deposition propensities and high temperature corrosion during co-combustion of straw and coal in PF-boilers. Danish full scale results from co-firing straw and coal, the test facility and test program, and the potential theoretical support from the Technical University of Denmark are presented in this paper...

  17. Analysis of In Situ Thermal Ion Measurements from the MICA Sounding Rocket

    Science.gov (United States)

    Fernandes, P. A.; Lynch, K. A.; Zettergren, M. D.; Hampton, D. L.; Fisher, L. E.; Powell, S. P.

    2014-12-01

    The MICA sounding rocket launched on 19 Feb. 2012 into several discrete, localized arcs in the wake of a westward traveling surge. In situ and ground-based observations provide a measured response of the ionosphere to preflight and localized auroral drivers. Initial analysis of the in situ thermal ion data indicate possible measurement of an ion conic at low altitude (< 325 km). In the low-energy regime, the response of the instrument varies from the ideal because the measured thermal ion population is sensitive to the presence of the instrument. The plasma is accelerated in the frame of the instrument due to flows, ram, and acceleration through the sheath which forms around the spacecraft. The energies associated with these processes are large compared to the thermal energy. Correct interpretation of thermal plasma measurements requires accounting for all of these plasma processes and the non-ideal response of the instrument in the low-energy regime. This is an experimental and modeling project which involves thorough analysis of ionospheric thermal ion data from the MICA campaign. Analysis includes modeling and measuring the instrument response in the low-energy regime as well as accounting for the complex sheath formed around the instrument. This results in a forward model in which plasma parameters of the thermal plasma are propagated through the sheath and instrument models, resulting in an output which matches the in situ measurement. In the case of MICA, we are working toward answering the question of the initiating source processes that result, at higher altitudes, in well-developed conics and outflow on auroral field lines.

  18. Development of Measurement Techniques For Strengthening Nuclear Safeguards

    International Nuclear Information System (INIS)

    Badawy, I.

    2007-01-01

    The strategy of nuclear safeguards is based on the accounting and control of nuclear materials, nuclear technologies and activities in a State in order to attain its ''Legal'' goals of the application of atomic energy. The present paper investigates the development in the measurement techniques used in the verification and control of NMs for the purpose of strengthening safeguards. Its focus is to review the recent nuclear measurement techniques used for the identification and verification of nuclear materials.The different levels of verification and the accuracy of these techniques are discussed. The implementation of stregthened safeguards; and nuclear materials verification and control in the world are mentioned. Also, the recently proposed measures to enhance the ability to detect undeclared nuclear materials, nuclear activities and facilities that would need advanced measurement techniques are indicated.

  19. Calibration technique for the neutron surface moisture measurement system

    International Nuclear Information System (INIS)

    Watson, W.T.; Shreve, D.C.

    1996-01-01

    A technique for calibrating the response of a surface neutron moisture measurement probe to material moisture concentration has been devised. Tests to ensure that the probe will function in the expected in-tank operating environment are also outlined

  20. Fluid temperature measurement technique by using Raman scattering

    International Nuclear Information System (INIS)

    An, Jeong Soo; Yang, Sun Kyu; Min, Kyung Ho; Chung, Moon Ki; Choi, Young Don

    1999-06-01

    Temperature measurement technique by using Raman scattering was developed for the liquid water at temperature of 20 - 90 degree C and atmospheric pressure. Strong relationship between Raman scattering characteristics and liquid temperature change was observed. Various kinds of measurement techniques, such as Peak Intensity, Peak Wavelength, FWHM (Full Width at Half Maximum), PMCR ( Polymer Monomer Concentration RAte), TSIR (Temperature Sensitive Intensity Ratio), IDIA (Integral Difference Intensity Area) were tested. TSIR has the highest accuracy in mean error or 0.1 deg C and standard deviation of 0.1248 deg C. This report is one of the results in developing process of Raman temperature measurement technique. Next research step is to develop Raman temperature measurement technique at the high temperature and high pressure conditions in single or two phase flows. (author). 13 refs., 3 tabs., 38 figs

  1. Effects of equipment and technique on peak flow measurements

    Directory of Open Access Journals (Sweden)

    O'Driscoll B Ronan

    2006-06-01

    Full Text Available Abstract Background Different lung function equipment and different respiratory manoeuvres may produce different Peak Expiratory Flow (PEF results. Although the PEF is the most common lung function test, there have been few studies of these effects and no previous study has evaluated both factors in a single group of patients. Methods We studied 36 subjects (PEF range 80–570 l/min. All patients recorded PEF measurements using a short rapid expiration following maximal inspiration (PEF technique or a forced maximal expiration to residual volume (FVC technique. Measurements were made using a Wright's peak flow meter, a turbine spirometer and a Fleisch pneumotachograph spirometer. Results The mean PEF was 8.7% higher when the PEF technique was used (compared with FVC technique, p Conclusion Peak flow measurements are affected by the instruction given and by the device and Peak Flow scale used. Patient management decisions should not be based on PEF measurement made on different instruments.

  2. Quality assurance of in-situ measurements of land surface albedo: A model-based approach

    Science.gov (United States)

    Adams, Jennifer; Gobron, Nadine; Widlowski, Jean-Luc; Mio, Corrado

    2016-04-01

    This paper presents the development of a model-based framework for assessing the quality of in-situ measurements of albedo used to validate land surface albedo products. Using a 3D Monte Carlo Ray Tracing (MCRT) radiative transfer model, a quality assurance framework is built based on simulated field measurements of albedo within complex 3D canopies and under various illumination scenarios. This method provides an unbiased approach in assessing the quality of field measurements, and is also able to trace the contributions of two main sources of uncertainty in field-measurements of albedo; those resulting from 1) the field measurement protocol, such as height or placement of field measurement within the canopy, and 2) intrinsic factors of the 3D canopy under specific illumination characteristics considered, such as the canopy structure and landscape heterogeneity, tree heights, ecosystem type and season.

  3. In situ optoacoustic measurement of the pointing stability of femtosecond laser beams

    Science.gov (United States)

    Pushkarev, D.; Mitina, E.; Uryupina, D.; Volkov, R.; Karabytov, A.; Savel'ev, A.

    2018-02-01

    A new method for the in situ acoustic measurement of the beam pointing stability (BPS) of powerful pulsed lasers is tested. A broadband (~6 MHz) piezoelectric transducer placed a few millimeters from the laser spark produces an electric pulse. We show that variation in time of the position of this pulse can be used to assess the BPS down to 1 µrad in a few hundred laser shots. The estimated value coincides well with the BPS estimated using standard measurement in the far field.

  4. American National Standard: for safety in conducting subcritical neutron-multiplication measurements in-situ

    International Nuclear Information System (INIS)

    1983-01-01

    This standard provides safety guidance for conducting subcritical neutron-multiplication measurements where physical protection of personnel against the consequences of a criticality accident is not provided. The objectives of in-situ measurements are either to confirm an adequate safety margin or to improve an estimate of such a margin. The first objective may constitute a test of the criticality safety of a design that is based on calculations. The second may effect improved operating conditions by reducing the uncertainty of safety margins and providing guidance to new designs

  5. Development of a computational technique to measure cartilage contact area.

    Science.gov (United States)

    Willing, Ryan; Lapner, Michael; Lalone, Emily A; King, Graham J W; Johnson, James A

    2014-03-21

    Computational measurement of joint contact distributions offers the benefit of non-invasive measurements of joint contact without the use of interpositional sensors or casting materials. This paper describes a technique for indirectly measuring joint contact based on overlapping of articular cartilage computer models derived from CT images and positioned using in vitro motion capture data. The accuracy of this technique when using the physiological nonuniform cartilage thickness distribution, or simplified uniform cartilage thickness distributions, is quantified through comparison with direct measurements of contact area made using a casting technique. The efficacy of using indirect contact measurement techniques for measuring the changes in contact area resulting from hemiarthroplasty at the elbow is also quantified. Using the physiological nonuniform cartilage thickness distribution reliably measured contact area (ICC=0.727), but not better than the assumed bone specific uniform cartilage thicknesses (ICC=0.673). When a contact pattern agreement score (s(agree)) was used to assess the accuracy of cartilage contact measurements made using physiological nonuniform or simplified uniform cartilage thickness distributions in terms of size, shape and location, their accuracies were not significantly different (p>0.05). The results of this study demonstrate that cartilage contact can be measured indirectly based on the overlapping of cartilage contact models. However, the results also suggest that in some situations, inter-bone distance measurement and an assumed cartilage thickness may suffice for predicting joint contact patterns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Methyl mercury dynamics in a tidal wetland quantified using in situ optical measurements

    Science.gov (United States)

    Bergamaschi, B.A.; Fleck, J.A.; Downing, B.D.; Boss, E.; Pellerin, B.; Ganju, N.K.; Schoellhamer, D.H.; Byington, A.A.; Heim, W.A.; Stephenson, M.; Fujii, R.

    2011-01-01

    We assessed monomethylmercury (MeHg) dynamics in a tidal wetland over three seasons using a novel method that employs a combination of in situ optical measurements as concentration proxies. MeHg concentrations measured over a single spring tide were extended to a concentration time series using in situ optical measurements. Tidal fluxes were calculated using modeled concentrations and bi-directional velocities obtained acoustically. The magnitude of the flux was the result of complex interactions of tides, geomorphic features, particle sorption, and random episodic events such as wind storms and precipitation. Correlation of dissolved organic matter quality measurements with timing of MeHg release suggests that MeHg is produced in areas of fluctuating redox and not limited by buildup of sulfide. The wetland was a net source of MeHg to the estuary in all seasons, with particulate flux being much higher than dissolved flux, even though dissolved concentrations were commonly higher. Estimated total MeHg yields out of the wetland were approximately 2.5 μg m−2 yr−1—4–40 times previously published yields—representing a potential loading to the estuary of 80 g yr−1, equivalent to 3% of the river loading. Thus, export from tidal wetlands should be included in mass balance estimates for MeHg loading to estuaries. Also, adequate estimation of loads and the interactions between physical and biogeochemical processes in tidal wetlands might not be possible without long-term, high-frequency in situ measurements.

  7. In situ measurement of the effect of LiOH on the stability of zircaloy-2 surface film in PWR water

    International Nuclear Information System (INIS)

    Saario, T.; Taehtinen, S.

    1997-01-01

    Surface films on the metals play a major role in corrosion assisted cracking. A new method called Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films in high temperature and high pressure environments. The technique has been used to determine in situ the electric resistance of films on metals when in contact with water and dissolved anions, during formation and destruction of oxides and hydrides and during electroplating of metals. Electric resistance data can be measured with a frequency of the order of one hertz, which makes it possible to investigate in situ the kinetics of surface film related processes which are dependent on the environment, temperature, pH and electrochemical potential. This paper presents the results of the CER investigation on the effects of LiOH on the stability of Zircaloy-2 surface film in water with 2000 ppm H 3 BO 3 . At 300 deg. C the LiOH concentrations higher than 10 -2 M (roughly 70 ppm of Li + ) were found to markedly reduce the electric resistance of the Zircaloy-2 surface film during a test period of less than two hours. The decrease of the film resistance is very abrupt, possibly indicating a phase transformation. Moreover, the advantages of the CER technique over the other competing techniques which rely on the measurement of current are discussed. (author)

  8. In situ measurement of the effect of LiOH on the stability of zircaloy-2 surface film in PWR water

    Energy Technology Data Exchange (ETDEWEB)

    Saario, T; Taehtinen, S [Technical Research Centre of Finland, Espoo (Finland)

    1997-02-01

    Surface films on the metals play a major role in corrosion assisted cracking. A new method called Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films in high temperature and high pressure environments. The technique has been used to determine in situ the electric resistance of films on metals when in contact with water and dissolved anions, during formation and destruction of oxides and hydrides and during electroplating of metals. Electric resistance data can be measured with a frequency of the order of one hertz, which makes it possible to investigate in situ the kinetics of surface film related processes which are dependent on the environment, temperature, pH and electrochemical potential. This paper presents the results of the CER investigation on the effects of LiOH on the stability of Zircaloy-2 surface film in water with 2000 ppm H{sub 3}BO{sub 3}. At 300 deg. C the LiOH concentrations higher than 10{sup -2} M (roughly 70 ppm of Li{sup +}) were found to markedly reduce the electric resistance of the Zircaloy-2 surface film during a test period of less than two hours. The decrease of the film resistance is very abrupt, possibly indicating a phase transformation. Moreover, the advantages of the CER technique over the other competing techniques which rely on the measurement of current are discussed. (author).

  9. Residual stress evaluation in brittle coatings using indentation technique combined with in-situ bending

    International Nuclear Information System (INIS)

    Futakawa, Masatoshi; Steinbrech, R.W.; Tanabe, Yuji; Hara, Toshiaki

    2000-01-01

    The indentation crack length approach was adopted and further elaborated to evaluate residual stress and toughness of the brittle coatings: two kinds of glass coatings on steel. The influence of the residual stress on indentation cracking was examined in as-received coating condition and by in-situ superimposing a counteracting tensile stress. For purpose of providing reference toughness values stress-free pieces of separated coating material have also been examined. Thus results of the two complementary sets of experiments were assumed to prove self-consistently toughness and residual stress data of the coating. In particular, the in-situ bending of specimen in combination with the indentation test allowed us to vary deliberately the residual stress situation in glass coating. Thus experiments which utilized the combination of bending test and micro-indentation were introduced as a method to provide unambiguous information about residual compressive stress. Toughness and residual compressive stress of glass coatings used in this study were 0.46-0.50 MPa·m 1/2 and 94-111 MPa, respectively. Furthermore, a thermoelastic calculation of the residual compressive stress was performed and it is found that the value of residual compressive stress at coating surface of specimen was 90-102 MPa. (author)

  10. In-situ volumetric topography of IC chips for defect detection using infrared confocal measurement with active structured light

    International Nuclear Information System (INIS)

    Chen, Liang-Chia; Le, Manh-Trung; Phuc, Dao Cong; Lin, Shyh-Tsong

    2014-01-01

    The article presents the development of in-situ integrated circuit (IC) chip defect detection techniques for automated clipping detection by proposing infrared imaging and full-field volumetric topography. IC chip inspection, especially held during or post IC packaging, has become an extremely critical procedure in IC fabrication to assure manufacturing quality and reduce production costs. To address this, in the article, microscopic infrared imaging using an electromagnetic light spectrum that ranges from 0.9 to 1.7 µm is developed to perform volumetric inspection of IC chips, in order to identify important defects such as silicon clipping, cracking or peeling. The main difficulty of infrared (IR) volumetric imaging lies in its poor image contrast, which makes it incapable of achieving reliable inspection, as infrared imaging is sensitive to temperature difference but insensitive to geometric variance of materials, resulting in difficulty detecting and quantifying defects precisely. To overcome this, 3D volumetric topography based on 3D infrared confocal measurement with active structured light, as well as light refractive matching principles, is developed to detect defects the size, shape and position of defects in ICs. The experimental results show that the algorithm is effective and suitable for in-situ defect detection of IC semiconductor packaging. The quality of defect detection, such as measurement repeatability and accuracy, is addressed. Confirmed by the experimental results, the depth measurement resolution can reach up to 0.3 µm, and the depth measurement uncertainty with one standard deviation was verified to be less than 1.0% of the full-scale depth-measuring range. (paper)

  11. In-situ geophysical measurements in marine sediments: Applications in seafloor acoustics and paleoceanography

    Science.gov (United States)

    Gorgas, Thomas Joerg

    Acoustic in-situ sound speeds and attenuation were measured on the Eel River shelf, CA, with the Acoustic Lance between 5 and 15 kHz to 2.0 meters below seafloor (mbsf). A comparison with laboratory ultrasonic geoacoustic data obtained at 400 kHz on cored sediments showed faster in-situ and ultrasonic sound speeds in coarse-grained deposits in water depths to 60 m than in fine-grained deposits below that contour line. Ultrasonic attenuation was often greater than in-situ values and remained almost constant below 0.4 mbsf in these heterogeneous deposits. In-situ attenuation decreased with depth. These observations partly agree with results from other field studies, and with theoretical models that incorporate intergranular friction and dispersion from viscosity as main controls on acoustic wave propagation in marine sediments. Deviations among in-situ and laboratory acoustic data from the Eel Margin with theoretical studies were linked to scattering effects. Acoustic Lance was also deployed in homogeneous, fine-grained sediments on the inner shelf of SE Korea, where free gas was identified in late-September, but not in mid-September 1999. Free gas was evidenced by an abrupt decrease of in-situ sound speed and by characteristic changes in acoustic waveforms. These results suggest the presence of a gassy sediment layer as shallow as 2 mbsf along the 70 m bathymetry line, and was attributed to a variable abundance of free gas on short-term and/or small-regional scales on the SE Korea shelf. Bulk density variations in marine sediments obtained along the Walvis Ridge/Basin, SW Africa, at Ocean Drilling Program (ODP) Sites 1081 to 1084 were spectral-analyzed to compute high-resolution sedimentation rates (SRs) in both the time- and age domains by correctly identifying Milankovitch cycles (MCs). SRs for the ODP sites yielded age-depth models that often correlate positively with biostratigraphic data and with organic mass accumulation rates (MAR Corg), a proxy for

  12. Measurement Techniques for Radon in Mines, Dwellings and the Environment

    International Nuclear Information System (INIS)

    Snihs, J.O.

    1983-06-01

    Definitions and units appropriate for radon and radon daughters are given. The principle methods of detection are ionization chamber, scintillation technique, nuclear track detector, thermoluminescent discs and alpha spectrometry. The activity concentration is determined by grab sampling and subsequent measurement, frequent or continuous grab sampling and measurement and continuous sampling and long time integrated measurement. Sampling and measurement strategies for mines, dwellings and the environment are discussed. (author)

  13. In situ measurement of erosion/deposition in the DIII-D divertor by colorimetry

    International Nuclear Information System (INIS)

    Weschenfelder, F.; Wienhold, P.; Winter, J.

    1996-01-01

    Colorimetry was introduced into the DIII-D tokamak to measure in situ the growth and erosion of transparent wall coatings (a-C:H) on the divertor. The colorimetric measurement system consisting of a halogen light source, a set of three filters and a black/white camera is described together with a first erosion measurement. An insertable graphite sample with a diameter of 4.7 cm was precoated with a 300 nm thick amorphous carbon film and was exposed in the divertor for several discharges with its surface coplanar to the surrounding graphite tiles. For each of the discharges the plasma strike point was moved onto the sample for 1 s to erode the coating. Between the discharges a camera signal with each filter was recorded and the film thickness was evaluated along a radial line across the DIMES sample. Thus it has been possible for the first time to measure erosion and deposition of divertor material in situ and shot-by-shot. The average peak heat flux with the strike point on DIMES was about 110 W cm -2 . The measurement shows a strong decrease in the film thickness almost over the entire sample with an average erosion rate of ∼ 9 nm s -1 . (Author)

  14. Monitoring of In-Situ Remediation By Time Lapse 3D Geo-Electric Measurements

    Science.gov (United States)

    Kanli, A. I.; Tildy, P.; Neducza, B.; Nagy, P.; Hegymegi, C.

    2017-12-01

    Injection of chemical oxidant solution to degrade the subsurface contaminants can be used for hydrocarbon contamination remediation. In this study, we developed a non-destructive measurement strategy to monitor oxidative in-situ remediation processes. The difficulties of the presented study originate from the small volume of conductive solution that can be used due to environmental considerations. Due to the effect of conductive groundwater and the high clay content of the targeted layer and the small volume of conductive solution that can be used due to environmental considerations, a site specific synthetic modelling is necessary for measurement design involving the results of preliminary 2D ERT measurements, electrical conductivity measurements of different active agents and expected resistivity changes calculated by soil resistivity modelling. Because of chemical biodegradation, the results of soil resistivity modelling have suggested that the reagent have complex effects on contaminated soils. As a result the plume of resistivity changes caused by the injected agent was determined showing strong fracturing effect because of the high pressure of injection. 3D time-lapse geo-electric measurements were proven to provide a usable monitoring tool for in-situ remediation as a result of our sophisticated tests and synthetic modelling.

  15. Janus: Graphical Software for Analyzing In-Situ Measurements of Solar-Wind Ions

    Science.gov (United States)

    Maruca, B.; Stevens, M. L.; Kasper, J. C.; Korreck, K. E.

    2016-12-01

    In-situ observations of solar-wind ions provide tremendous insights into the physics of space plasmas. Instrument on spacecraft measure distributions of ion energies, which can be processed into scientifically useful data (e.g., values for ion densities and temperatures). This analysis requires a strong, technical understanding of the instrument, so it has traditionally been carried out by the instrument teams using automated software that they had developed for that purpose. The automated routines are optimized for typical solar-wind conditions, so they can fail to capture the complex (and scientifically interesting) microphysics of transient solar-wind - such as coronal mass ejections (CME's) and co-rotating interaction regions (CIR's) - which are often better analyzed manually.This presentation reports on the ongoing development of Janus, a new software package for processing in-situ measurement of solar-wind ions. Janus will provide user with an easy-to-use graphical user interface (GUI) for carrying out highly customized analyses. Transparent to the user, Janus will automatically handle the most technical tasks (e.g., the retrieval and calibration of measurements). For the first time, users with only limited knowledge about the instruments (e.g., non-instrumentalists and students) will be able to easily process measurements of solar-wind ions. Version 1 of Janus focuses specifically on such measurements from the Wind spacecraft's Faraday Cups and is slated for public release in time for this presentation.

  16. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    Science.gov (United States)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  17. Error reduction techniques for measuring long synchrotron mirrors

    International Nuclear Information System (INIS)

    Irick, S.

    1998-07-01

    Many instruments and techniques are used for measuring long mirror surfaces. A Fizeau interferometer may be used to measure mirrors much longer than the interferometer aperture size by using grazing incidence at the mirror surface and analyzing the light reflected from a flat end mirror. Advantages of this technique are data acquisition speed and use of a common instrument. Disadvantages are reduced sampling interval, uncertainty of tangential position, and sagittal/tangential aspect ratio other than unity. Also, deep aspheric surfaces cannot be measured on a Fizeau interferometer without a specially made fringe nulling holographic plate. Other scanning instruments have been developed for measuring height, slope, or curvature profiles of the surface, but lack accuracy for very long scans required for X-ray synchrotron mirrors. The Long Trace Profiler (LTP) was developed specifically for long x-ray mirror measurement, and still outperforms other instruments, especially for aspheres. Thus, this paper focuses on error reduction techniques for the LTP

  18. (Project 13-5292) Correlating thermal and mechanical coupling based multiphysics behavior of nuclear materials through in-situ measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2016-03-15

    Irradiations and post characterization experiments were performed first on Zr samples. This step will help understand the effect of the 2.5% alloying elements on the behavior of Zircaloy-4 (PWR cladding material) when compared to pure Zr. Irradiation flux measurements and sample temperature calibrations were performed at different energies prior to the irradiation experiments. Irradiations were performed with two different energy regimes1: non-displacment energies and displacement energies. Time was also dedicated to optimize transmission electron microscopy (TEM) sample preparation conditions via electropolishing technique. This step is crucial to prepare TEM samples for the in-situ TEM/irradiation experiments (Year 2). In addition, Zircaloy-4 samples are being prepared for irradiation, and a setup is built by one of our collaborators (Dr. Mert Efe) to prepare ultrafine (UF) and nanocrystalline (NC) Zircaloy-4 samples for comparison with the commercial Zircaloy-4 samples.

  19. High temperature in-situ observations of multi-segmented metal nanowires encapsulated within carbon nanotubes by in-situ filling technique.

    Science.gov (United States)

    Hayashi, Yasuhiko; Tokunaga, Tomoharu; Iijima, Toru; Iwata, Takuya; Kalita, Golap; Tanemura, Masaki; Sasaki, Katsuhiro; Kuroda, Kotaro

    2012-08-08

    Multi-segmented one-dimensional metal nanowires were encapsulated within carbon nanotubes (CNTs) through in-situ filling technique during plasma-enhanced chemical vapor deposition process. Transmission electron microscopy (TEM) and environmental TEM were employed to characterize the as-prepared sample at room temperature and high temperature. The selected area electron diffractions revealed that the Pd4Si nanowire and face-centered-cubic Co nanowire on top of the Pd nanowire were encapsulated within the bottom and tip parts of the multiwall CNT, respectively. Although the strain-induced deformation of graphite walls was observed, the solid-state phases of Pd4Si and Co-Pd remain even at above their expected melting temperatures and up to 1,550 ± 50°C. Finally, the encapsulated metals were melted and flowed out from the tip of the CNT after 2 h at the same temperature due to the increase of internal pressure of the CNT.

  20. Studies on In-situ Chelation/Supercritical Fluid Extraction of Lanthanides and Actinides Using a Radiotracer Technique

    International Nuclear Information System (INIS)

    Lin, Yuehe; Wu, Hong; Smart, Neil G.; Wai, Chien M.

    2001-01-01

    Radioisotope tracer techniques were used to study the process of in-situ chelation/supercritical fluid extraction(SFE) of La3+ and Lu3+ from solid matrix using mixed ligand hexafluoroacetylacetone (HFA) and tributylphosphate (TBP) as chelating agents. A lab-built SFE extactor was used in this study and the extractor design was optimized based on the experimental results. Quantitative recovery of La and Lu was achieved when the extrator design was optimized. Extraction of uranium from real world samples was also investigated to demonstrate the capability of this chelation/SFE technology for environmental remediation applications. A novel on-line back extraction technique for the recovery of metal ions and regeneration of ligands is also reported.

  1. Establishment of 60Co dose calibration curve using fluorescent in situ hybridization assay technique: Result of preliminary study

    International Nuclear Information System (INIS)

    Rahimah Abdul Rahim; Noriah Jamal; Noraisyah Mohd Yusof; Juliana Mahamad Napiah; Nelly Bo Nai Lee

    2010-01-01

    This study aims at establishing an in-vitro 60 Co dose calibration curve using Fluorescent In-Situ Hybridization assay technique for the Malaysian National Bio dosimetry Laboratory. Blood samples collected from a female healthy donor were irradiated with several doses of 60 Co radiation. Following culturing of lymphocytes, microscopic slides are prepared, denatured and hybridized. The frequencies of translocation are estimated in the metaphases. A calibration curve was then generated using a regression technique. It shows a good fit to a linear-quadratic model. The results of this study might be useful in estimating absorbed dose for the individual exposed to ionizing radiation retrospectively. This information may be useful as a guide for medical treatment for the assessment of possible health consequences. (author)

  2. In-situ measurements of a highly fragmented comet: WIND STICS Measurements

    Science.gov (United States)

    Lepri, S. T.; Gilbert, J. A.; Gruesbeck, J. R.; Rubin, M.; Gershman, D. J.; Zurbuchen, T.

    2013-12-01

    In this paper, we present in-situ observations of cometary fragments associated with Comet 73P/Schwassmann-Wachmann as it passed very close to the Earth (<0.07AU) in 2006. We examine the spatial distribution of the fragments and the characteristics of the picked up ion velocity distributions. Comet 73P started to disintegrate in 1995, two major components B and C were recovered in 2001, and it burst into more than 36 pieces during its passage near the Earth in 2006. Distant fragmentation members, well-separated from the major identified fragments, passed between the Earth and Sun so that cometary pickup ions and possibly recombined solar wind minor ions convected past the WIND spacecraft in late May 2006. The Suprathermal Ion Composition Spectrometer on WIND provides a rare and detailed 3D glimpse of the newly picked up ion properties.

  3. Fabrication and testing of an electrochemical microcell for in situ soft X-ray microspectroscopy measurements

    Science.gov (United States)

    Gianoncelli, A.; Kaulich, B.; Kiskinova, M.; Mele, C.; Prasciolu, M.; Sgura, I.; Bozzini, B.

    2013-03-01

    In this paper we report on the fabrication and testing of a novel concept of electrochemical microcell for in-situ soft X-ray microspectroscopy in transmission. The microcell, fabricated by electron-beam lithography, implements an improved electrode design, with optimal current density distribution and minimised ohmic drop, allowing the same three-electrode electrochemical control achievable with traditional cells. Moreover standard electroanalytical measurements, such as cyclic voltammetry, can be routinely performed. As far as the electrolyte is concerned, we selected a room-temperature ionic-liquid. Some of the materials belonging to this class, in addition to a broad range of outstanding electrochemical properties, feature two highlights that are crucial for in situ, soft X-ray transmission work: spinnability, enabling accurate thickness control, and stability to UHV, allowing operation of an open cell in the analysis chamber vacuum (10-6 mbar). The cell can, of course, be used also with non-vacuum stable electrolytes in the sealed version developed in previous work in our group. In this study, the microcell designed, fabricated and tested in situ by applying an anodic polarisation to a Au electrode and following the formation of a distribution of corrosion features. This specific material combination presented in this work does not limit the cell concept, that can implement any electrodic material grown by lithography, any liquid electrolyte and any spinnable solid electrolyte.

  4. Stability of silver nanoparticle monolayers determined by in situ streaming potential measurements

    International Nuclear Information System (INIS)

    Morga, Maria; Adamczyk, Zbigniew; Oćwieja, Magdalena

    2013-01-01

    A silver particle suspension obtained by a chemical reduction was used in this work. Monolayers of these particles (average size 28 nm) on mica modified by poly(allylamine hydrochloride) were produced under diffusion-controlled transport. Monolayer coverages, quantitatively determined by atomic force microscopy (AFM) and SEM, was regulated by adjusting the nanoparticle deposition time and the suspension concentration. The zeta potential of the monolayers was determined by streaming potential measurements carried out under in situ (wet) conditions. These measurements performed for various ionic strengths and pH were interpreted in terms of the three-dimensional (3D) electrokinetic model. The stability of silver monolayers was also investigated using streaming potential and the AFM methods. The decrease in the surface coverage of particles as a function of time and ionic strength varied between 10 −1 and 10 −4  M was investigated. This allowed one to determine the equilibrium adsorption constant K a and the binding energy of silver particles (energy minima depth). Energy minima depth were calculated that varied between −18 kT for I = 10 −1  M and −19 kT for I = 10 −4 for pH 5.5 and T = 298 K. Our investigations suggest that the interactions between surface and nanoparticles are controlled by the electrostatic interactions among ion pairs. It was also shown that the in situ electrokinetic measurements are in accordance with those obtained by more tedious ex situ AFM measurements. This confirmed the utility of the streaming potential method for direct kinetic studies of nanoparticle deposition/release processes.Graphical Abstract

  5. The environmental radiation monitoring system and in-situ measurements for early notification and OIL (Operational Intervention Levels) calculations

    Energy Technology Data Exchange (ETDEWEB)

    Haquin, G.; Ne`eman, E.; Brenner, S.; Lavi, N. [Tel Aviv Univ. (Israel). Sackler School of Medicine. Inst. for Environmental Research

    1997-12-31

    The efficiency of the environmental radiation monitoring, low level laboratory and in-situ gamma-ray spectrometry are evaluated as the systems for early notification and for determination of dose rate in air, surface contamination and activity concentration in food during emergencies for Operational Intervention Levels (OIL) recalculation.The National Environmental Radiation Monitoring System has proved its efficiency in the early detection of unregistered radiography work. A mobile station of the network can be used for absorbed dose rate measurement during emergencies in contaminated areas. The calibrated in-situ gamma-ray spectrometry system in an open phosphate ore mine has showed the efficiency of this technique for fast and accurate determination of soil activity concentration. The calibration for an uniform depth distribution can be easily mathematically converted to an exponential depth distribution in cases of radioactive material fallout 7 refs., 3 figs., 1 tab.; e-mail: envirad at post.tau.ac.il; env{sub r}ad at netvision,net.il

  6. Blower-door techniques for measuring interzonal leakage

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Erin L.; Sherman, Max H.; Walker, Iain

    2013-01-01

    Abstract The standard blower door test methods, such as ASTM E779, describe how to use a single blower door to determine the total leakage of a single-zone structure such as a detached single-family home. There are no standard test methods for measuring interzonal leakage in a two-zone or multi-zone building envelope such as might be encountered in with an attached garage or in a multifamily building. Some practitioners have been using techniques that involve making multiple measurements with a single blower door as well as combined measurements using multiple blower doors. Even for just two zones there are dozens of combinations of one-door and two-door test protocols that could conceivably be used to determine the interzonal air tightness. We examined many of these two-zone configurations using both simulation and measured data to estimate the accuracy and precision of each technique for realistic measurement scenarios. We also considered the impact of taking measurements at a single pressure versus over multiple pressures. We compared the various techniques and evaluated them for specific uses. Some techniques work better in one leakage regime; some are more sensitive to wind and other noise; some are more suited to determining only a subset of the leakage values. This paper makes recommendations on which techniques to use or not use for various cases and provides data that could be used to develop future test methods.

  7. Quantitative Analysis of Oxygen Gas Exhausted from Anode through In Situ Measurement during Electrolytic Reduction

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2017-01-01

    Full Text Available Quantitative analysis by in situ measurement of oxygen gas evolved from an anode was employed to monitor the progress of electrolytic reduction of simulated oxide fuel in a molten Li2O–LiCl salt. The electrolytic reduction of 0.6 kg of simulated oxide fuel was performed in 5 kg of 1.5 wt.% Li2O–LiCl molten salt at 650°C. Porous cylindrical pellets of simulated oxide fuel were used as the cathode by loading a stainless steel wire mesh cathode basket. A platinum plate was employed as the anode. The oxygen gas evolved from the anode was exhausted to the instrumentation for in situ measurement during electrolytic reduction. The instrumentation consisted of a mass flow controller, pump, wet gas meter, and oxygen gas sensor. The oxygen gas was successfully measured using the instrumentation in real time. The measured volume of the oxygen gas was comparable to the theoretically calculated volume generated by the charge applied to the simulated oxide fuel.

  8. An intensity-monitoring technique for measuring ellipsometric transients

    NARCIS (Netherlands)

    Droog, J.M.M.; Bootsma, G.A.

    1979-01-01

    Intensity-monitoring techniques make possible the measurement of rapid changes in the ellipsometric parameters. Methods used hitherto have been suitable for measuring slight changes only and require prior knowledge of the Δ and Ψ values for the initial surface. It is shown that larger changes can

  9. Design techniques for large scale linear measurement systems

    International Nuclear Information System (INIS)

    Candy, J.V.

    1979-03-01

    Techniques to design measurement schemes for systems modeled by large scale linear time invariant systems, i.e., physical systems modeled by a large number (> 5) of ordinary differential equations, are described. The techniques are based on transforming the physical system model to a coordinate system facilitating the design and then transforming back to the original coordinates. An example of a three-stage, four-species, extraction column used in the reprocessing of spent nuclear fuel elements is presented. The basic ideas are briefly discussed in the case of noisy measurements. An example using a plutonium nitrate storage vessel (reprocessing) with measurement uncertainty is also presented

  10. Spherical near-field antenna measurements — The most accurate antenna measurement technique

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2016-01-01

    The spherical near-field antenna measurement technique combines several advantages and generally constitutes the most accurate technique for experimental characterization of radiation from antennas. This paper/presentation discusses these advantages, briefly reviews the early history and present...

  11. In situ prompt gamma-ray measurement of river water salinity in northern Taiwan using HPGe-252Cf probe

    International Nuclear Information System (INIS)

    Jiunnhsing Chao; Chien Chung

    1991-01-01

    A portable HPGe- 252 Cf probe dedicated to in situ survey of river water salinity was placed on board a fishing boat to survey the Tamsui River in northern Taiwan. The variation of water salinity is surveyed by measuring the 6111 keV chlorine prompt photopeak along the river. Results indicate that the probe can be used as a salinometer for rapid, in situ measurement in polluted rivers or sea. (author)

  12. Ammonia slip measurements on ships with NO{sub x} converters. A study of different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fridell, Erik; Steen, Erica (IVL, Goeteborg (SE))

    2007-12-15

    A number of techniques to measure the concentration of ammonia in exhaust gas have been evaluated. The objective is to obtain reliable methods for measuring ammonia slip from ships equipped with SCR systems for cleaning of nitrogen oxide emissions. The methods tested are FTIR, laser absorption, a wet chemical method and a method where ammonia is oxidised into NO{sub x} over a catalyst. The laser method is an in-situ technique, where the transmitter and receiver are positioned on opposite flanges at the exhaust channel, while the other methods are ex-situ, i. e., a probe volume of gas is taken from the exhaust channel into the instrumentation. The laser method worked well in the field studies and gave results with high sensitivity and good time resolution. FTIR did not work well for low concentrations. The time resolution is good but with a delay. In cases with an uneven distribution of ammonia throughout the exhaust channel, the concentration will vary depending on the location of the probe. A strong influence of the oxygen concentration on the observed ammonia concentration was found in the laboratory study. The wet chemical method gave reliable results. The time resolution is poor and the method is sensitive to uneven distribution in the exhaust channel. The method with the oxidation catalyst worked well in the lab but not in field where the catalyst was deactivated, probably by sulphur

  13. In situ method for measurements of community clearance rate on shallow water bivalve populations

    DEFF Research Database (Denmark)

    Hansen, Benni W.; Dolmer, Per; Vismann, Bent

    2011-01-01

    An open-top chamber was designed for measuring ambient community clearance rate on undisturbed bivalve populations in the field. The chamber was pressed 5-10 cm down in the sediment on the mussel bed. It holds approximately 30-40 cm water column equal to a volume of 43-77 L. It was provided...... with an air lift connected to a SCUBA diver pressure tank generating a continuous and gentle water circulation. This ensures a complete mixture of suspended particles, and thereby, a maximum filtration by the bivalves. An in situ fluorometer was mounted to record plant pigment reduction due to mussel...

  14. First in situ plasma and neutral gas measurements at comet Halley: initial VEGA results

    International Nuclear Information System (INIS)

    Gringauz, K.I.; Remizov, A.P.; Gombosi, T.I.

    1986-04-01

    The first in situ observations and a description of the large scale behaviour of comet Halley's plasma environment are presented. The scientific objectives of the PLASMAG-1 experiment were as follows: to study the change of plasma parameters and distributions as a function of cometocentric distance; to investigate the existence and structure of the cometary bow shock; to determine the change in chemical composition of the heavily mass loaded plasma as the spacecraft approached the comet; and to measure the neutral gas distribution along the spacecraft trajectory. (author)

  15. An in-situ RBS system for measuring nuclides adsorbed at the liquid-solid interface

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K; Yuhara, J; Ishigami, R [Nagoya Univ. (Japan). School of Engineering; and others

    1997-03-01

    An in-situ RBS system has been developed in which heavier nuclides adsorbed at the inner surface of a thin lighter window specimen of liquid container in order to determine the rate constants for their sorption and release at the interface. The testing of a thin silicon window of the sample assembly, in which Xe gas of one atmosphere was enclosed, against the bombardment of the probing ion beam has been performed. A desorption behavior of a lead layer adsorbed at the SiO{sub 2} layer of silicon window surface into deionized water has been measured as a preliminary experiment. (author)

  16. Seeing the light: Applications of in situ optical measurements for understanding DOM dynamics in river systems (Invited)

    Science.gov (United States)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.; Fleck, J.; Shanley, J. B.; Aiken, G.; Boss, E.; Fujii, R.

    2009-12-01

    A critical challenge for understanding the sources, character and cycling of dissolved organic matter (DOM) is making measurements at the time scales in which changes occur in aquatic systems. Traditional approaches for data collection (daily to monthly discrete sampling) are often limited by analytical and field costs, site access and logistical challenges, particularly for long-term sampling at a large number of sites. The ability to make optical measurements of DOM in situ has been known for more than 50 years, but much of the work on in situ DOM absorbance and fluorescence using commercially-available instruments has taken place in the last few years. Here we present several recent examples that highlight the application of in situ measurements for understanding DOM dynamics in riverine systems at intervals of minutes to hours. Examples illustrate the utility of in situ optical sensors for studies of DOM over short-duration events of days to weeks (diurnal cycles, tidal cycles, storm events and snowmelt periods) as well as longer-term continuous monitoring for months to years. We also highlight the application of in situ optical DOM measurements as proxies for constituents that are significantly more difficult and expensive to measure at high frequencies (e.g. methylmercury, trihalomethanes). Relatively simple DOM absorbance and fluorescence measurements made in situ could be incorporated into short and long-term ecological research and monitoring programs, resulting in advanced understanding of organic matter sources, character and cycling in riverine systems.

  17. In situ measurement of the mass concentration of flame-synthesized nanoparticles using quartz-crystal microbalance

    International Nuclear Information System (INIS)

    Hevroni, A; Golan, H; Fialkov, A; Tsionsky, V; Markovich, G; Cheskis, S; Rahinov, I

    2011-01-01

    A novel in situ method for measurement of mass concentration of nanoparticles (NPs) formed in flames is proposed. In this method, the deposition rate of NPs collected by a molecular beam sampling system is measured by quartz-crystal microbalance (QCM). It is the only existing method which allows direct measurement of NP mass concentration profiles in flames. The feasibility of the method was demonstrated by studying iron oxide NP formation in low-pressure methane/oxygen/nitrogen flames doped with iron pentacarbonyl. The system was tested under fuel-lean and fuel-rich flame conditions. Good agreement between measured QCM deposition rates and their estimations obtained by the transmission electron microscopy analysis of samples collected from the molecular beam has been demonstrated. The sensitivity of the method is comparable to that of particle mass spectrometry (PMS). Combination of the QCM technique with PMS and/or optical measurements can provide new qualitative information which is important for elucidation of the mechanisms governing the NP flame synthesis

  18. On-line in-situ measurements in the boundary layer: Manned hydrogen balloons as quasi Lagrange platforms

    Energy Technology Data Exchange (ETDEWEB)

    Rappengluck, B.; Fabian, P. [Ludwig-Maximilian Univ., Dept. of Bioclimatology and Emission Research, Munich (Germany); Euskirchen, J. [Inst. for Scientific Balloonflight e.V., Waidhofen (Germany)

    1999-11-01

    In-situ measurements of atmospheric trace constituents such as nitrogen dioxide, ozone, peroxy acetyl nitrate (PAN), and non-methane hydrocarbon compounds (NMHC) are essential parameters for understanding photochemical processes. This paper discusses some of the lessons learned and some of the results of a field measurement project dubbed BERLIOZ (for Berlin Ozone), carried out in July/August 1998 in the Greater Berlin Area to investigate several key questions concerning the evolution of photochemical smog within an urban plume, and the role of advection and turbulence for oxidants. A comprehensive network of ground-based measurement sites, vertical sounding techniques such as tethered balloons and laser-based radar, mobile stations for profile measurements, five aircraft and one manned free-balloon were used in the project. BERLIOZ was the first major atmospheric research project to use a hydrogen balloon platform for quasi-Lagrangian measurements. It confirmed the balloon`s suitability as a tool for better understanding of large area information gathered by remote sensing missions. 5 refs., 6 figs.

  19. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    Directory of Open Access Journals (Sweden)

    G. Fu

    2016-07-01

    Full Text Available The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  20. Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy.

    Science.gov (United States)

    Vendelbo, S B; Kooyman, P J; Creemer, J F; Morana, B; Mele, L; Dona, P; Nelissen, B J; Helveg, S

    2013-10-01

    In situ high-resolution transmission electron microscopy (TEM) of solids under reactive gas conditions can be facilitated by microelectromechanical system devices called nanoreactors. These nanoreactors are windowed cells containing nanoliter volumes of gas at ambient pressures and elevated temperatures. However, due to the high spatial confinement of the reaction environment, traditional methods for measuring process parameters, such as the local temperature, are difficult to apply. To address this issue, we devise an electron energy loss spectroscopy (EELS) method that probes the local temperature of the reaction volume under inspection by the electron beam. The local gas density, as measured using quantitative EELS, is combined with the inherent relation between gas density and temperature, as described by the ideal gas law, to obtain the local temperature. Using this method we determined the temperature gradient in a nanoreactor in situ, while the average, global temperature was monitored by a traditional measurement of the electrical resistivity of the heater. The local gas temperatures had a maximum of 56 °C deviation from the global heater values under the applied conditions. The local temperatures, obtained with the proposed method, are in good agreement with predictions from an analytical model. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The Development of an In-Situ TEM Technique for Studying Corrosion Behavior as Applied to Zirconium-Based Alloys

    Science.gov (United States)

    Harlow, Wayne

    Zirconium-based alloys are a commonly used material for nuclear fuel rod cladding, due to its low neutron cross section and good corrosion properties. However, corrosion is still a limiting factor in fuel rod lifespan, which restricts burn up levels, and thus efficiency, that can be achieved. While long-term corrosion behavior has been studied through both reactor and autoclave samples, the oxide nucleation and growth behavior has not been extensively studied. This work develops a new technique to study the initial stages of corrosion in zirconium-based alloys and the microstructural effects on this process by developing an environmental cell system for the TEM. Nanoscale oxidation parameters are developed, as is a new FIB technique to support this method. Precession diffraction is used in conjunction with in-situ TEM to observe the initial stages of corrosion in these alloys, and oxide thickness is estimated using low-loss EELS. In addition, the stress stabilization of tetragonal ZrO 2 is explored in the context of sample preparation for TEM. It was found that in-situ environmental TEM using an environmental cell replicates the oxidation behavior observed in autoclaved samples in both oxide structure and phases. Utilizing this technique, it was shown that cracking of the oxide layer in zirconium-based alloys is related to oxide relaxation, and not thermal changes. The effect of secondary phase particles on oxidation behavior did not present significant results, however a new method for studying initial oxidation rates using low-loss EELS was developed.

  2. Comparison of in situ DGT measurement with ex situ methods for predicting cadmium bioavailability in soils with combined pollution to biotas.

    Science.gov (United States)

    Wang, Peifang; Liu, Cui; Yao, Yu; Wang, Chao; Wang, Teng; Yuan, Ye; Hou, Jun

    2017-05-01

    To assess the capabilities of the different techniques in predicting Cadmium (Cd) bioavailability in Cd-contaminated soils with the addition of Zn, one in situ technique (diffusive gradients in thin films; DGT) was compared with soil solution concentration and four widely used single-step extraction methods (acetic acid, EDTA, sodium acetate and CaCl 2 ). Wheat and maize were selected as tested species. The results demonstrated that single Cd-polluted soils inhibited the growth of wheat and maize significantly compared with control plants; the shoot and root biomasses of the plants both dropped significantly (P 0.9) between Cd concentrations in two plants and Cd bioavailability indicated by each method in soils. Consequently, the results indicated that the DGT technique could be regarded as a good predictor of Cd bioavailability to plants, comparable to soil solution concentration and the four single-step extraction methods. Because the DGT technique can offer in situ data, it is expected to be widely used in more areas.

  3. Concept, characteristics, and applications of important electrical measuring techniques

    International Nuclear Information System (INIS)

    Amberg, C.; Czaika, N.; Andreae, G.

    1978-01-01

    In the field of electrical measuring techniques the investigations were concentrated on the transducers. We investigated the time-temperature behaviour of the following transducers: The weldable, fully encapsulated high temperature strain gauges, inductance and transformer displacement transducers, and weldable capacitive strain transducers with distance sensor. A literatur-review showing the state of techniques reference the influence of nuclear radiation was put together. (orig./HP) [de

  4. Handbook of microwave component measurements with advanced VNA techniques

    CERN Document Server

    Dunsmore, Joel P

    2012-01-01

    This book provides state-of-the-art coverage for making measurements on RF and Microwave Components, both active and passive. A perfect reference for R&D and Test Engineers, with topics ranging from the best practices for basic measurements, to an in-depth analysis of errors, correction methods, and uncertainty analysis, this book provides everything you need to understand microwave measurements. With primary focus on active and passive measurements using a Vector Network Analyzer, these techniques and analysis are equally applicable to measurements made with Spectrum Analyzers or Noise Figure

  5. Lake Michigan sediments: in-situ tracer measurements using a rare-earth element

    International Nuclear Information System (INIS)

    Krezoski, J.R.

    1985-01-01

    A rare-earth-element (REE) tracer technique is used to describe in-situ biogenic and physical sediment reworking in Green Bay, Lake Michigan. Europium, a stable, high neutron capture cross section REE, added as Eu 2 O 3 to the sediment-water interface of quadrants of natural bottom muds, served as a tracer of surficial sediment redistribution in an oligochaete-chironomid-sphaerid benthic community. Sixty days after applying a millimeter thick layer of Eu to the undisturbed sediments, divers collected cores from within and around the experimental quadrants that were sectioned in 1 cm intervals to 10 cm and were analyzed by neutron activation analysis. Minute amounts of the activated REE in the sediment, detectable through high resolution gamma spectroscopy, revealed significant burial (to 2.4 cm) and broadening of the marked layer. A calculated bio-diffusion coefficient (K/sub B/ = 2.26 +/- 1.56 x 10 -6 cm 2 sec -1 ), based on a model from earlier microcosm studies, compares remarkably well with experimentally determined values and represents the first application of this model to field data. The method provides reliable estimates of in-situ reworking rates and is more accurate than time-averaged geochronology studies which rely on atmospherically derived radionuclides

  6. Preliminary Studies Of A Phase Modulation Technique For Measuring Chromaticity

    International Nuclear Information System (INIS)

    Tan, C.-Y.

    2006-01-01

    The classical method for measuring chromaticity is to slowly modulate the RF frequency and then measure the betatron tune excursion. The technique that is discussed in this paper instead modulates the phase of the RF and then the chromaticity is obtained by phase demodulating the betatron tune. This technique requires knowledge of the betatron frequency in real time in order for the phase to be demodulated. Fortunately, the Tevatron has a tune tracker based on the phase locked loop principle which fits this requirement. A preliminary study with this technique has showed that it is a promising method for doing continuous chromaticity measurement and raises the possibility of doing successful chromaticity feedback with it

  7. In situ measurements of contributions to the global electrical circuit by a thunderstorm in southeastern Brazil

    Science.gov (United States)

    Thomas, J.N.; Holzworth, R.H.; McCarthy, M.P.

    2009-01-01

    The global electrical circuit, which maintains a potential of about 280??kV between the earth and the ionosphere, is thought to be driven mainly by thunderstorms and lightning. However, very few in situ measurements of electrical current above thunderstorms have been successfully obtained. In this paper, we present dc to very low frequency electric fields and atmospheric conductivity measured in the stratosphere (30-35??km altitude) above an active thunderstorm in southeastern Brazil. From these measurements, we estimate the mean quasi-static conduction current during the storm period to be 2.5 ?? 1.25??A. Additionally, we examine the transient conduction currents following a large positive cloud-to-ground (+ CG) lightning flash and typical - CG flashes. We find that the majority of the total current is attributed to the quasi-static thundercloud charge, rather than lightning, which supports the classical Wilson model for the global electrical circuit.

  8. In situ measurement of solvent-mediated phase transformations during dissolution testing

    DEFF Research Database (Denmark)

    Aaltonen, Jaakko; Heinänen, Paula; Peltonen, Leena

    2006-01-01

    In this study, solvent-mediated phase transformations of theophylline (TP) and nitrofurantoin (NF) were measured in a channel flow intrinsic dissolution test system. The test set-up comprised simultaneous measurement of drug concentration in the dissolution medium (with UV-Vis spectrophotometry......) and measurement of the solid-state form of the dissolving solid (in situ with Raman spectroscopy). The solid phase transformations were also investigated off-line with scanning electron microscopy. TP anhydrate underwent a transformation to TP monohydrate, and NF anhydrate (form beta) to NF monohydrate (form II......). Transformation of TP anhydrate to TP monohydrate resulted in a clear decrease in the dissolution rate, while the transformation of NF anhydrate (form beta) to NF monohydrate (form II) could not be linked as clearly to changes in the dissolution rate. The transformation of TP was an order of magnitude faster than...

  9. Airflow resistivity instrument for in situ measurement on the earth's ground surface

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    An airflow resistivity instrument features a novel specimen holder, especially designed for in situ measurement on the earth's ground surface. This capability eliminates the disadvantages of prior intrusive instruments, which necessitate the removal of a test specimen from the ground. A prototype instrument can measure airflow resistivities in the range 10-5000 cgs rayl/cm, at specimen depths up to 15.24 cm (6 in.), and at differential pressures up to 2490.8 dyn sq cm (1 in. H2O) across the specimen. Because of the close relationship between flow resistivity and acoustic impedance, this instrument should prove useful in acoustical studies of the earth's ground surface. Results of airflow resistivity measurements on an uncultivated grass field for varying values of moisture content are presented.

  10. Temperature profiles by ground-based remote sensing and in situ measurements

    Energy Technology Data Exchange (ETDEWEB)

    Argentini, S; Pietroni, I; Conidi, A; Mastrantonio, G; Petenko, I; Viola, A [ISAC-CNR, Via del Fosso del Cavaliere, 100, 00133 Roma (Italy); Gariazzo, C; Pelliccioni, A; Amicarelli, A [ISPESL Dipartimento Insediamenti Produttivi e Interazione con l' Ambiente, Via Fontana Candida, 1, 00040 Monteporzio Catone (RM) (Italy)], E-mail: s.argentini@isac.cnr.it

    2008-05-01

    This study focuses on the accuracy of the temperature profiles measured with a Doppler Radio-Acoustic Sounding System and a Microwave Temperature Profiler during a period of about 3 months in winter 2007-2008. The experiment was carried on at the experimental facility of the Institute of Atmospheric Sciences and Climate (ISAC) of the Italian National Research Council (CNR). The temperature data measured with remote sensors were verified with in situ measurements on a mast as well as with tethered balloon data. The facsimile echograms obtained with the ISAC Doppler SODAR were analysed to understand to which extent the RASS and Radiometer temperature profiles behaviour can represent the real thermal structure of the atmosphere.

  11. Temperature profiles by ground-based remote sensing and in situ measurements

    International Nuclear Information System (INIS)

    Argentini, S; Pietroni, I; Conidi, A; Mastrantonio, G; Petenko, I; Viola, A; Gariazzo, C; Pelliccioni, A; Amicarelli, A

    2008-01-01

    This study focuses on the accuracy of the temperature profiles measured with a Doppler Radio-Acoustic Sounding System and a Microwave Temperature Profiler during a period of about 3 months in winter 2007-2008. The experiment was carried on at the experimental facility of the Institute of Atmospheric Sciences and Climate (ISAC) of the Italian National Research Council (CNR). The temperature data measured with remote sensors were verified with in situ measurements on a mast as well as with tethered balloon data. The facsimile echograms obtained with the ISAC Doppler SODAR were analysed to understand to which extent the RASS and Radiometer temperature profiles behaviour can represent the real thermal structure of the atmosphere

  12. In-situ-gamma ray spectrometry for measurements of environmental radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, I

    1994-12-31

    A detailed description of the method is presented. The range of application is shown. The calibration of the in-situ gamma ray spectrometer with a HPGe semiconductor detector and the evaluation of the spectra are described. A measuring time of about 15-30 min is sufficient to determine the specific natural and man-made radioactivity of the soil of some ten Bq/m{sup 2}. The results of soil contamination measurements in Germany after the Chernobyl accident are reported. A total of 22 nuclides are detected. The measured contamination for the first days after the accident was as follows: {sup 132}Te/{sup 132}I - 100 kBq/m{sup 2}, and {sup 131}I - 70 kBq/m{sup 2}. 6 figs., 4 tabs. (orig.).

  13. Measurement of particle velocity using a mutual inductance technique

    International Nuclear Information System (INIS)

    Kerr, Stephen; Kirkpatrick, Douglas; Garden, Steven

    2004-01-01

    Preliminary work on the development of a novel method for the measurement of particle velocity is described. The technique relies on measurement of the mutual inductance between two coaxial coils, one stationary and the other perturbed by the shock wave. The moving coil is the gauge and is deposited on thin film. The method was developed to assist in the study of particle velocities in large samples of porous media surrounding an explosive charge. The technique does not require measurements to be taken in a region of uniform magnetic field and therefore dispenses with the need for Helmholtz coils, the size and cost of which can become prohibitive for large experiments. This has the added advantage of allowing measurements to be taken at points widely dispersed through a sample with relative ease. Measurements of particle velocity in porous media have been compared with those from co-located conventional electromagnetic particle velocity gauges with reasonable agreement

  14. Radiometric measurement techniques in metallurgy and foundry technology

    International Nuclear Information System (INIS)

    1990-01-01

    The contributions contain informations concerning the present state and development of radiometric measurement techniques in metallurgy and foundry technology as well as their application to the solution of various problems. The development of isotope techniques is briefly described. Major applications of radiometric equipment in industrial measurement are presented together with the use of isotopes to monitor processes of industrial production. This is followed by a short description of numerous laboratory-scale applications. Another contribution deals with fundamental problems and methods of moisture measurement by neutrons. A complex moisture/density measurement device the practical applicability of which has been tested is described here. Possibilities for clay determination in used-up moulding materials are discussed in a further contribution. The clay content can be determined by real-time radiometric density measurement so that the necessary moisture or addition of fresh sand can be controlled. (orig.) With 20 figs., 9 tabs., 178 refs [de

  15. Mississippi River streamflow measurement techniques at St. Louis, Missouri

    Science.gov (United States)

    Wastson, Chester C.; Holmes, Robert R.; Biedenham, David S.

    2013-01-01

    Streamflow measurement techniques of the Mississippi River at St. Louis have changed through time (1866–present). In addition to different methods used for discrete streamflow measurements, the density and range of discrete measurements used to define the rating curve (stage versus streamflow) have also changed. Several authors have utilized published water surface elevation (stage) and streamflow data to assess changes in the rating curve, which may be attributed to be caused by flood control and/or navigation structures. The purpose of this paper is to provide a thorough review of the available flow measurement data and techniques and to assess how a strict awareness of the limitations of the data may affect previous analyses. It is concluded that the pre-1930s discrete streamflow measurement data are not of sufficient accuracy to be compared with modern streamflow values in establishing long-term trends of river behavior.

  16. Laser Ablation in situ (U-Th-Sm)/He and U-Pb Double-Dating of Apatite and Zircon: Techniques and Applications

    Science.gov (United States)

    McInnes, B.; Danišík, M.; Evans, N.; McDonald, B.; Becker, T.; Vermeesch, P.

    2015-12-01

    We present a new laser-based technique for rapid, quantitative and automated in situ microanalysis of U, Th, Sm, Pb and He for applications in geochronology, thermochronometry and geochemistry (Evans et al., 2015). This novel capability permits a detailed interrogation of the time-temperature history of rocks containing apatite, zircon and other accessory phases by providing both (U-Th-Sm)/He and U-Pb ages (+trace element analysis) on single crystals. In situ laser microanalysis offers several advantages over conventional bulk crystal methods in terms of safety, cost, productivity and spatial resolution. We developed and integrated a suite of analytical instruments including a 193 nm ArF excimer laser system (RESOlution M-50A-LR), a quadrupole ICP-MS (Agilent 7700s), an Alphachron helium mass spectrometry system and swappable flow-through and ultra-high vacuum analytical chambers. The analytical protocols include the following steps: mounting/polishing in PFA Teflon using methods similar to those adopted for fission track etching; laser He extraction and analysis using a 2 s ablation at 5 Hz and 2-3 J/cm2fluence; He pit volume measurement using atomic force microscopy, and U-Th-Sm-Pb (plus optional trace element) analysis using traditional laser ablation methods. The major analytical challenges for apatite include the low U, Th and He contents relative to zircon and the elevated common Pb content. On the other hand, apatite typically has less extreme and less complex zoning of parent isotopes (primarily U and Th). A freeware application has been developed for determining (U-Th-Sm)/He ages from the raw analytical data and Iolite software was used for U-Pb age and trace element determination. In situ double-dating has successfully replicated conventional U-Pb and (U-Th)/He age variations in xenocrystic zircon from the diamondiferous Ellendale lamproite pipe, Western Australia and increased zircon analytical throughput by a factor of 50 over conventional methods

  17. Investigating the Mechanical Behavior and Deformation Mechanisms of Ultrafinegrained Metal Films Using Ex-situ and In-situ TEM Techniques

    Science.gov (United States)

    Izadi, Ehsan

    Nanocrystalline (NC) and Ultrafine-grained (UFG) metal films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. These properties, such as very high strength, primarily arise from the change in the underlying deformation mechanisms. Experimental and simulation studies have shown that because of the small grain size, conventional dislocation plasticity is curtailed in these materials and grain boundary mediated mechanisms become more important. Although the deformation behavior and the underlying mechanisms in these materials have been investigated in depth, relatively little attention has been focused on the inhomogeneous nature of their microstructure (particularly originating from the texture of the film) and its influence on their macroscopic response. Furthermore, the rate dependency of mechanical response in NC/UFG metal films with different textures has not been systematically investigated. The objectives of this dissertation are two-fold. The first objective is to carry out a systematic investigation of the mechanical behavior of NC/UFG thin films with different textures under different loading rates. This includes a novel approach to study the effect of texture-induced plastic anisotropy on mechanical behavior of the films. Efforts are made to correlate the behavior of UFG metal films and the underlying deformation mechanisms. The second objective is to understand the deformation mechanisms of UFG aluminum films using in-situ transmission electron microscopy (TEM) experiments with Automated Crystal Orientation Mapping. This technique enables us to investigate grain rotations in UFG Al films and to monitor the microstructural changes in these films during deformation, thereby revealing detailed information about the deformation mechanisms prevalent in UFG metal films.

  18. Application of electrical capacitance measurement for in situ monitoring of competitive interactions between maize and weed plants

    Energy Technology Data Exchange (ETDEWEB)

    Cseresnyés, I.; Takács, T.; Füzy, A.; Végh, K.R.; Lehoczky, E.

    2016-11-01

    Applicability of root electrical capacitance (EC) measurement for monitoring of crop–weed competition was studied in a pot experiment. Maize (Zea mays L.) was grown both alone and with Echinochloa crus-galli or Abutilon theophrasti in different densities with regular measurement of root EC. Plants were harvested 42 days after planting to determine above- and belowground biomass. Depending on weed density, E. crus-galli-A. theophrasti interaction reduced the root EC of maize by 22–66% and 3–57%, respectively. Competitive effect of crop on weeds and intraspecific competition among weeds could also be detected by EC values: E. crus-galli was less sensitive both to the presence of maize and to intraspecific competition than A. theophrasti. Strong linear correlations between root dry mass and root EC for crop and weeds (with R2 from 0.901 to 0.956) were obtained by regression analyses at the end of the experiment. EC monitoring informed us on the emergence time of competition: E. crus-galli interfered with maize root growth a week earlier then A. theophrasti, and increasing weed densities accelerated the emergence of competition. In conclusion, the simple, non-destructive EC method should be considered a potential in situ technique for pot studies on crop–weed competition, which may partially substitute the intrusive techniques commonly used in agricultural researches. (Author)

  19. Photogrammetry: applications of a three-dimensional remote measurement technique

    International Nuclear Information System (INIS)

    Peak, K.

    1988-01-01

    Photogrammetry is defined as the precise art of abstracting measurements from photographic images. Used for many years as a means to produce the world's maps, it has, in recent years, been applied in many engineering environments. The nuclear industry has, in particular, benefitted from the close range applications of photogrammetry. This paper sets out to describe the techniques involved, from the site photography through to the analytical data extraction. It will include a number of examples of where photogrammetry has been used in the nuclear industry as a remote measurement technique, from simple monitoring exercises to the compilation of complex three-dimensional as-built computer models. (author)

  20. Introduction to electronic relaxation in solids: mechanisms and measuring techniques

    International Nuclear Information System (INIS)

    Bonville, P.

    1983-01-01

    The fluctuations of electronic magnetic moments in solids may be investigated by several techniques, either electronic or nuclear. This paper is an introduction of the most frequently encountered paramagnetic relaxation mechanisms (phonons, conduction electrons, exchange or dipolar interactions) in condensed matter, and to the different techniques used for measuring relaxation frequencies: electronic paramagnetic resonance, nuclear magnetic resonance, Moessbauer spectroscopy, inelastic neutron scattering, measurement of longitudinal ac susceptibility and γ-γ perturbed angular correlations. We mainly focus our attention on individual ionic fluctuation spectra, the majority of the experimental work refered to concerning rare earth systems [fr

  1. Radioisotope Sample Measurement Techniques in Medicine and Biology. Proceedings of the Symposium on Radioisotope Sample Measurement Techniques

    International Nuclear Information System (INIS)

    1965-01-01

    The medical and biological applications of radioisotopes depend on two basically different types of measurements, those on living subjects in vivo and those on samples in vitro. The International Atomic Energy Agency has in the past held several meetings on in vivo measurement techniques, notably whole-body counting and radioisotope scanning. The present volume contains the Proceedings of the first Symposium the Agency has organized to discuss the various aspects of techniques for sample measurement in vitro. The range of these sample measurement techniques is very wide. The sample may weigh a few milligrams or several hundred grams, and may be in the gaseous, liquid or solid state. Its radioactive content may consist of a single, known radioisotope or several unknown ones. The concentration of radioactivity may be low, medium or high. The measurements may be made manually or automatically and any one of the many radiation detectors now available may be used. The 53 papers presented at the Symposium illustrate the great variety of methods now in use for radioactive- sample measurements. The first topic discussed is gamma-ray spectrometry, which finds an increasing number of applications in sample measurements. Other sections of the Proceedings deal with: the use of computers in gamma-ray spectrometry and multiple tracer techniques; recent developments in activation analysis where both gamma-ray spectrometry and computing techniques are applied; thin-layer and paper radio chromatographic techniques for use with low energy beta-ray emitters; various aspects of liquid scintillation counting techniques in the measurement of alpha- and beta-ray emitters, including chemical and colour quenching; autoradiographic techniques; calibration of equipment; and standardization of radioisotopes. Finally, some applications of solid-state detectors are presented; this section may be regarded as a preview of important future developments. The meeting was attended by 203 participants

  2. In-situ Polymerization of Polyaniline/Polypyrrole Copolymer using Different Techniques

    Science.gov (United States)

    Hammad, A. S.; Noby, H.; Elkady, M. F.; El-Shazly, A. H.

    2018-01-01

    The morphology and surface area of the poly(aniline-co-pyrrole) copolymer (PANPY) are important properties which improve the efficiency of the copolymer in various applications. In this investigation, different techniques were employed to produce PANPY in different morphologies. Aniline and pyrrole were used as monomers, and ammonium peroxydisulfate (APS) was used as an oxidizer with uniform molar ratio. Rapid mixing, drop-wise mixing, and supercritical carbon dioxide (ScCO2) polymerization techniques were appointed. The chemical structure, crystallinity, porosity, and morphology of the composite were distinguished by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET) analysis, and transmission electron microscopy (TEM) respectively. The characterization tests indicated that the polyaniline/polypyrrole copolymer was successfully prepared with different morphologies. Based on the obtained TEM, hollow nanospheres were formed using rapid mixing technique with acetic acid that have a diameter of 75 nm and thickness 26 nm approximately. Also, according to the XRD, the produced structures have a semi- crystalline structure. The synthesized copolymer with ScCO2-assisted polymerization technique showed improved surface area (38.1 m2/g) with HCl as dopant.

  3. In-situ stress measurements in the earth's crust in the eastern United States

    International Nuclear Information System (INIS)

    Rundle, T.A.; Singh, M.M.; Baker, C.H.

    1987-04-01

    The US Nuclear Regulatory Commission requires that the design basis for vibratory ground motion should be determined through correlation of seismicity with tectonic structures or provinces (10CFR100, Appendix A). Such criteria are difficult to apply in the eastern United States, which experiences persistent low level seismicity, with occasional moderate to large earthquakes. This report presents the results of in-situ stress measurements conducted towards reducing this uncertainty at three (3) seismically active sites in the region, namely, near Moodus, Connecticut, around the Ramapo fault zone in New York and New Jersey, and in central Virginia. As far as possible, at each location one bore hole was drilled close to the ''apparent'' epicenter of the seismic activity and one outside the ''known'' seismic zone, so that the data obtained could be compared. The results obtained were very consistent both as to magnitude and direction. No attempt was made to correlate the in-situ stress measurements with the tectonic setting or seismic activity, since this was beyond the scope of this project. Extensive appendices report experimental data. 35 refs

  4. The measurement of oxygen in vivo using EPR techniques

    International Nuclear Information System (INIS)

    Swartz, Harold M.; Clarkson, Robert B.

    1998-01-01

    The measurement of pO 2 in vivo using EPR has some features which have already led to very useful applications and this approach is likely to have increasingly wide and effective use. It is based on the effect of oxygen on EPR spectra which provides a sensitive and accurate means to measure pO 2 quantitatively. The development of oxygen-sensitive paramagnetic materials which are very stable, combined with instrumental developments, has been crucial to the in vivo applications of this technique. The physical basis and biological applications of in vivo EPR oximetry are reviewed, with particular emphasis on the use of EPR spectroscopy at 1 GHz using particulate paramagnetic materials for the repetitive and non-invasive measurement of pO 2 in tissues. In vivo EPR has already produced some very useful results which have contributed significantly to solving important biological problems. The characteristics of EPR oximetry which appear to be especially useful are often complementary to existing techniques for measuring oxygen in tissues. These characteristics include the capability of making repeated measurements from the same site, high sensitivity to low levels of oxygen, and non-invasive options. The existing techniques are especially useful for studies in small animals, where the depth of measurements is not an overriding issue. In larger animals and potentially in human subjects, non-invasive techniques seem to be immediately applicable to study phenomena very near the surface (within 10 mm) while invasive techniques have some very promising uses. The clinical uses of EPR oximetry which seem especially promising and likely to be undertaken in the near future are long-term monitoring of the status and response to treatment of peripheral vascular disease and optimizing cancer therapy by enabling it to be modified on the basis of the pO 2 measured in the tumour. (author)

  5. An injection technique for in-situ remediation of abandoned underground coal mines

    International Nuclear Information System (INIS)

    Canty, G.A.; Everett, J.W.

    1998-01-01

    Remediation of underground mines can prove to be a difficult task, given the physical constraints associated with introducing amendments to a subterranean environment. An acid mine abatement project involving in-situ chemical treatment method was conducted by the University of Oklahoma. The treatment method involved the injection of an alkaline coal combustion by-product (CCB) slurry into a flooded mine void (pH 4.4) to create a buffered zone. Injection of the CCB slurry was possible through the use of equipment developed by the petroleum industry for grouting recovery wells. This technology was selected because the CCB slurry could be injected under significant pressure and at a high rate. With higher pressure and rates of injection, a large quantity of slurry can be introduced into the mine within a limited amount of time. Theoretically, the high pressure and rate would improve dispersal of the slurry within the void. In addition, the high pressure is advantageous in fracturing or breaking-down obstructions to injection. During the injection process, a total of 418 tons of CCB was introduced within 15 hours. The mine did not refuse any of the material, and it is likely that a much larger mass could have been added. One injection well was drilled into a pillar of coal. Normally this would pose a problem when introducing a slurry; however, the coal pillar was easily fractured during the injection process. Currently, the pH of the mine discharge is above 6.5 and the alkalinity is approximately 100 mg/L as CACO 3

  6. Probing absorption of deuterium into palladium cathodes during D2O electrolysis with an in situ electrochemical microbalance technique

    International Nuclear Information System (INIS)

    Oyama, Noboru; Yamamoto, Nobushige; Hatozaki, Osamu; Ohsaka, Takeo

    1990-01-01

    The in situ observation of the absorption of deuterium (or hydrogen) into the Pd cathode during D 2 O (or H 2 O) electrolysis was made by an electrochemical microbalance technique which is based on the quartz-crystal electrode. The resonant frequency of the Pd-coated quartz-crystal electrode decreased with increasing amount of charge passed during electrolysis, and the frequency change for the D 2 O electrolysis was about twice that for the H 2 O electrolysis. The atom ratios of H/Pd and D/Pd of the H-Pd and D-Pd compounds resulting from the electrolysis were estimated to be 0.59 and 0.57, respectively. (author)

  7. Application of fluorescence in situ hybridization technique in the diagnosis of acute promyelocytic leukemia with abnormal immunophenotype

    International Nuclear Information System (INIS)

    Chen Leilei; Sun Xuemei; Chen Junhao; Zhang Le

    2005-01-01

    To evaluate the utilization of fluorescence in situ hybridization (FISH) technique in the diagnosis of acute promyelocytic leukemia(APL) with abnormal immunophenotype, flow cytometry was used to detect the immunophenotype of mononuclear cells in APL patients and PML/RARα fusion gene was detected by FISH. The mononuclear cells of several APL patients showed abnormal immunophenotype: CD13 + , CD33 + , CD34 - , HLA-DR + and PML/RARα fusion gene was also detected, which was different from the regular result of APL: HLA- DR - , PML/RARα + . Therefore, the detection of immunophenotype in APL patients should not be regarded as the sole accurate target for diagnosing leukemia. FISH ,associated with traditional FAB classification, is a simple, rapid, accurate and direct method. It can be used to help confirm the diagnosis, to guide the formulation of a reasonable chemotherapy scheme and to supervise the efficacy of the treatment in patients with leukemia. (authors)

  8. Chemical composition and the nutritive value of pistachio epicarp (in situ degradation and in vitro gas production techniques

    Directory of Open Access Journals (Sweden)

    Somayeh Bakhshizadeh

    2014-04-01

    Full Text Available The nutritive value of pistachio epicarp (PE was evaluated by in situ and in vitro techniques. Chemical analysis indicated that PE was high in crude protein (11.30% and low in neutral detergent fiber (26.20%. Total phenols, total tannins, condensed tannins and hydrolysable tannins contents in PE were 8.29%, 4.48%, 0.49% and 3.79%, respectively. Ruminal dry matter and crude protein degradation after 48 hr incubation were 75.21% and 82.52%, respectively. The gas production volume at 48 hr for PE was 122.47 mL g-1DM. As a whole, adding polyethylene glycol (PEG to PE increased (p < 0.05 gas production volumes, organic matter digestibility and the metabolizable energy that illustrated inhibitory effect of phenolics on rumen microbial fermentation and the positive influence of PEG on digestion PE. The results showed that PE possessed potentials to being used as feed supplements.

  9. Chemical composition and the nutritive value of pistachio epicarp (in situ degradation and in vitro gas production techniques).

    Science.gov (United States)

    Bakhshizadeh, Somayeh; Taghizadeh, Akbar; Janmohammadi, Hossein; Alijani, Sadegh

    2014-01-01

    The nutritive value of pistachio epicarp (PE) was evaluated by in situ and in vitro techniques. Chemical analysis indicated that PE was high in crude protein (11.30%) and low in neutral detergent fiber (26.20%). Total phenols, total tannins, condensed tannins and hydrolysable tannins contents in PE were 8.29%, 4.48%, 0.49% and 3.79%, respectively. Ruminal dry matter and crude protein degradation after 48 hr incubation were 75.21% and 82.52%, respectively. The gas production volume at 48 hr for PE was 122.47 mL g(-1)DM. As a whole, adding polyethylene glycol (PEG) to PE increased (p gas production volumes, organic matter digestibility and the metabolizable energy that illustrated inhibitory effect of phenolics on rumen microbial fermentation and the positive influence of PEG on digestion PE. The results showed that PE possessed potentials to being used as feed supplements.

  10. Vibration measurement-based simple technique for damage detection of truss bridges: A case study

    Directory of Open Access Journals (Sweden)

    Sudath C. Siriwardane

    2015-10-01

    Full Text Available The bridges experience increasing traffic volume and weight, deteriorating of components and large number of stress cycles. Therefore, assessment of the current condition of steel railway bridges becomes necessary. Most of the commonly available approaches for structural health monitoring are based on visual inspection and non-destructive testing methods. The visual inspection is unreliable as those depend on uncertainty behind inspectors and their experience. Also, the non-destructive testing methods are found to be expensive. Therefore, recent researches have noticed that dynamic modal parameters or vibration measurement-based structural health monitoring methods are economical and may also provide more realistic predictions to damage state of civil infrastructure. Therefore this paper proposes a simple technique to locate the damage region of railway truss bridges based on measured modal parameters. The technique is discussed with a case study. Initially paper describes the details of considered railway bridge. Then observations of visual inspection, material testing and in situ load testing are discussed under separate sections. Development of validated finite element model of the considered bridge is comprehensively discussed. Hence, variations of modal parameters versus position of the damage are plotted. These plots are considered as the main reference for locating the damage of the railway bridge in future periodical inspection by comparing the measured corresponding modal parameters. Finally the procedure of periodical vibration measurement and damage locating technique are clearly illustrated.

  11. Measurements of He II Thermal Counterflow Using PIV Technique

    International Nuclear Information System (INIS)

    Zhang, T.; Van Sciver, S.W.

    2004-01-01

    Our previous experiments on the measurements of He II thermal counterflow using Particle Image Velocimetry (PIV) have shown that there exists a substantial discrepancy between the measured and theoretical values of normal fluid velocity. It was assumed that this is due to the slip velocity between tracer particles and liquid helium. In the present work, tracer particles with a much smaller mean diameter and a more uniform size distribution were selected in order to reduce the effect of slip velocity, and an improved two phase fluidized bed technique was used to introduce the particles into liquid helium. The normal fluid velocity of thermal counterflow was then measured using the PIV technique at various heat fluxes and bath temperatures. The experimental results, however, still show the existence of discrepancy between PIV measured particle velocities and the theoretical normal fluid velocity. A preliminary explanation of these results is given based on an interaction of tracer particles with the superfluid component in the He II

  12. In-situ Measurements and Analysis of Naturally Occurring Radioactive Materials

    International Nuclear Information System (INIS)

    Mueller, W.F.; Ilie, G.; Russ, W.R.; Lange, H.J.; Rotty, M.

    2013-06-01

    The measurement and quantification of naturally occurring radioactive materials (NORM) is an important element of workplace radioprotection in key industries such as oil and gas production, heavy metals mining and refining, coal burning waste, and water treatment. Monitoring of NORM content in home building materials is another challenge for human safety in the prevention of chronic dose uptake. Materials are classified NORM in case they contain significant amounts of the decay chains of U-238 (Ra-226 as a long lived daughter), U-235 or Th- 232 or the primordial nuclide K-40. Due to the decay of the radionuclides, gamma rays with a signature in the energy range from 45 keV up to 2615 keV are emitted. The most accurate method to measure NORM in a sample is to use a high resolution spectrometric instrument such as a germanium detector in a well-shielded laboratory environment. The shield is used to prevent background with the same signature from the building material of the laboratory. There are occasions in which one is required to assay samples in the field. These in situ field applications may require performing measurements with reduced (or no) background shielding conditions, or involve the use of medium resolution spectrometric instruments such as LaBr 3 or NaI detectors. In-situ analyses such as these have increased complexity. The reduced shielding enforces the subtraction of NORM events produced from the environment but the sample material and container can also shield the detector against this background thus biasing the measured results if not appropriately accounted. The use of medium resolution detectors has additional complications that the multiplicity of gamma-rays from NORM materials is such that most of the gamma-rays are interfering and thus require a very careful quantitative analysis. In this presentation, we will discuss the details of the NORM source term both in the environment and what could potentially be in the sample. We will also discuss

  13. Absorption kinetics of vitamin E nanoemulsion and green tea microstructures by intestinal in situ single perfusion technique in rats.

    Science.gov (United States)

    Saratale, Rijuta Ganesh; Lee, Hee-Seok; Koo, Yong Eui; Saratale, Ganesh Dattatraya; Kim, Young Jun; Imm, Jee Young; Park, Yooheon

    2018-04-01

    The absorption kinetics of food ingredients such as nanoemulsified vitamin E and green tea microstructures were evaluated by the intestinal in situ single perfusion technique. Absorption rate, sub-acute oral toxicity and organ morphology in a rat model were examined. The intestinal in situ single perfusion technique and HPLC analysis were applied to investigate the absorption rate of selected materials by examining time-dependent changes in the serum levels of catechin and dl-α-tocopherol. The acute toxicity test and histopathological evaluation were applied to analyze the safety of microsized green tea and nanosized vitamin E in a rat model. Total serum dl-α-tocopherol levels significantly increased with nanosized vitamin E administration (PE until 90min after administration showed significantly increased absorption rate of serum dl-α-tocopherol levels at each time point (10min interval) (PE and microsized green tea did not show signs of acute toxicity or death after 14days of observation. In addition, macroscopic analysis showed that there were no changes in representative organ sections of rats following the oral administration of food-related nanoscale materials. We successfully demonstrated that using nanosized vitamin E increased absorption rate to a greater extent than normal food-related material, and these results occurs via safety analyses on food-related nanoscale materials for human consumption. These results could be useful for the design and development of novel nanoemulsified vitamin E and microsized green tea formulations that can overcome the problem of their bioavailability and improve their efficacy while still maintaining their essential therapeutic efficacies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Fluvial sediment transport: Analytical techniques for measuring sediment load

    International Nuclear Information System (INIS)

    2005-07-01

    Sediment transport data are often used for the evaluation of land surface erosion, reservoir sedimentation, ecological habitat quality and coastal sediment budgets. Sediment transport by rivers is usually considered to occur in two major ways: (1) in the flow as a suspended load and (2) along the bed as a bed load. This publication provides guidance on selected techniques for the measurement of particles moving in both modes in the fluvial environment. The relative importance of the transport mode is variable and depends on the hydraulic and sedimentary conditions. The potential user is directed in the selection of an appropriate technique through the presentation of operating principles, application guidelines and estimated costs. Techniques which require laboratory analysis are grab sample, pump sample, depth sample, point integrated and radioactive tracers. Techniques which will continuously record data are optical backscattering, nuclear transmission, single frequency acoustic and laser diffraction

  15. Noncontact sheet resistance measurement technique for wafer inspection

    Science.gov (United States)

    Kempa, Krzysztof; Rommel, J. Martin; Litovsky, Roman; Becla, Peter; Lojek, Bohumil; Bryson, Frank; Blake, Julian

    1995-12-01

    A new technique, MICROTHERM, has been developed for noncontact sheet resistance measurements of semiconductor wafers. It is based on the application of microwave energy to the wafer, and simultaneous detection of the infrared radiation resulting from ohmic heating. The pattern of the emitted radiation corresponds to the sheet resistance distribution across the wafer. This method is nondestructive, noncontact, and allows for measurements of very small areas (several square microns) of the wafer.

  16. A novel experimental technique of nuclear lifetime measurements

    International Nuclear Information System (INIS)

    Yuminov, O.A.; D'Arrigo, A.; Giardina, G.; Taccone, A.; Vannini, G.; Moroni, A.; Ricci, R.A.; Vannucci, L.

    1995-01-01

    In the present paper a new experimental method to measure nuclear reaction time in the 10 -15 -10 -10 s region is presented. Measurements of the lifetimes of low-lying and long-lived states of 19 F and 20 Ne decaying via α-channel were carried out with the aim of checking the feasibility of the method. The results obtained in this way are compared with the lifetimes known from different techniques. ((orig.))

  17. Remote measurement of atmospheric pollutants with laser techniques

    Energy Technology Data Exchange (ETDEWEB)

    Corio, W; Querzola, B; Zanzottera, E

    1979-03-01

    Laser techniques for the remote sensing of atmospheric pollutants are reviewed, with attention given to lidars based on Rayleigh and Mie scattering, the Raman effect, or fluorescent scattering. Emphasis is placed on differential absorption lidars, which rely on Rayleigh or Mie scattering for measurements made in the IR or in the visible-UV range, respectively. A comprehensive air pollution monitoring program based on differential absorption lidars, together with systems using fluorescent backscattering and absorption measurements with topographic backscattering, is described.

  18. In Situ Local Contact Angle Measurement in a CO2-Brine-Sand System Using Microfocused X-ray CT.

    Science.gov (United States)

    Lv, Pengfei; Liu, Yu; Wang, Zhe; Liu, Shuyang; Jiang, Lanlan; Chen, Junlin; Song, Yongchen

    2017-04-11

    The wettability of porous media is of major interest in a broad range of natural and engineering applications. The wettability of a fluid on a solid surface is usually evaluated by the contact angle between them. While in situ local contact angle measurements are complicated by the topology of porous media, which can make it difficult to use traditional methods, recent advances in microfocused X-ray computed tomography (micro-CT) and image processing techniques have made it possible to measure contact angles on the scale of the pore sizes in such media. However, the effects of ionic strength, CO 2 phase, and flow pattern (drainage or imbibition) on pore-scale contact angle distribution are still not clear and have not been reported in detail in previous studies. In this study, we employed a micro-CT scanner for in situ investigation of local contact angles in a CO 2 -brine-sand system under various conditions. The effects of ionic strength, CO 2 phase, and flow pattern on the local contact-angle distribution were examined in detail. The results showed that the local contact angles vary over a wide range as a result of the interaction of surface contaminants, roughness, pore topology, and capillarity. The wettability of a porous surface could thus slowly weaken with increasing ionic strength, and the average contact angle could significantly increase when gaseous CO 2 (gCO 2 ) turns into supercritical CO 2 (scCO 2 ). Contact angle hysteresis also occurred between drainage and imbibition procedures, and the hysteresis was more significant under gCO 2 condition.

  19. Chromosome translocations measured by fluorescence in-situ hybridization: A promising biomarker

    International Nuclear Information System (INIS)

    Lucas, J.N.; Straume, T.

    1995-10-01

    A biomarker for exposure and risk assessment would be most useful if it employs an endpoint that is highly quantitative, is stable with time, and is relevant to human risk. Recent advances in chromosome staining using fluorescence in situ hybridization (FISH) facilitate fast and reliable measurement of reciprocal translocations, a kind of DNA damage linked to both prior exposure and risk. In contrast to other biomarkers available, the frequency of reciprocal translocations in individuals exposed to whole-body radiation is stable with time post exposure, has a rather small inter-individual variability, and can be measured accurately at the low levels. Here, the authors discuss results from their studies demonstrating that chromosome painting can be used to reconstruct radiation dose for workers exposed within the dose limits, for individuals exposed a long time ago, and even for those who have been diagnosed with leukemia but not yet undergone therapy

  20. Measuring caloric response: comparison of different analysis techniques.

    Science.gov (United States)

    Mallinson, A I; Longridge, N S; Pace-Asciak, P; Ngo, R

    2010-01-01

    Electronystagmography (ENG) testing has been supplanted by newer techniques of measuring eye movement with infrared cameras (VNG). Most techniques of quantifying caloric induced nystagmus measure the slow phase velocity in some manner. Although our analysis is carried out by very experienced assessors, some systems have computer algorithms that have been "taught" to locate and quantify maximum responses. We wondered what differences in measurement might show up when measuring calorics using different techniques and systems, the relevance of this being that if there was a change in slow phase velocity between ENG and VNG testing when measuring caloric response, then normative data would have to be changed. There are also some subjective but important aspects of ENG interpretation which comment on the nature of the response (e.g. responses which might be "sporadic" or "scant"). Our experiment compared caloric responses in 100 patients analyzed four different ways. Each caloric was analyzed by our old ENG system, our new VNG system, an inexperienced assessor and the computer algorithm, and data was compared. All four systems made similar measurements but our inexperienced assessor failed to recognize responses as sporadic or scant, and we feel this is a limitation to be kept in mind in the rural setting, as it is an important aspect of assessment in complex patients. Assessment of complex VNGs should be left to an experienced assessor.