WorldWideScience

Sample records for situ instruments systems

  1. Instrument response measurements of ion mobility spectrometers in situ: maintaining optimal system performance of fielded systems

    Science.gov (United States)

    Wallis, Eric; Griffin, Todd M.; Popkie, Norm, Jr.; Eagan, Michael A.; McAtee, Robert F.; Vrazel, Danet; McKinly, Jim

    2005-05-01

    Ion Mobility Spectroscopy (IMS) is the most widespread detection technique in use by the military for the detection of chemical warfare agents, explosives, and other threat agents. Moreover, its role in homeland security and force protection has expanded due, in part, to its good sensitivity, low power, lightweight, and reasonable cost. With the increased use of IMS systems as continuous monitors, it becomes necessary to develop tools and methodologies to ensure optimal performance over a wide range of conditions and extended periods of time. Namely, instrument calibration is needed to ensure proper sensitivity and to correct for matrix or environmental effects. We have developed methodologies to deal with the semi-quantitative nature of IMS and allow us to generate response curves that allow a gauge of instrument performance and maintenance requirements. This instrumentation communicates to the IMS systems via a software interface that was developed in-house. The software measures system response, logs information to a database, and generates the response curves. This paper will discuss the instrumentation, software, data collected, and initial results from fielded systems.

  2. Systems analysis of instrumentation for in situ examination of rock properties. Final report

    International Nuclear Information System (INIS)

    1976-10-01

    If salt beds or shale beds are used for burial of nuclear wastes, then boreholes that penetrate the beds will be sealed to prevent transport of water into the beds via the boreholes. There will be interest in monitoring the environment in local regions of the borehole for years to come. Such monitoring may be aimed at providing assurance that the integrity of the borehole plug and the integrity of borehole wall seals have not degraded. Of course, there will be interest in monitoring the burial vault geology as well, and the results of this study are relevant to this requirement also. A study of buried instrumentation in boreholes without any wires between the buried instruments and the surface of the earth was performed. Consequently, buried power supplies and through-the-earth communications systems are required. Study ground rules included the following: burial depths to range between 150 m and 1500 m; maximum temperature of 100 0 C at the burial depth; and system target lifetime of 10 to 100 years. The instrumentation system is separable into four functional subsystems: (A) a basic instrument subsystem; (B) a command, control, and data processing (CCD) subsystem; (C) a communication subsystem; and (D) a power supply subsystem. The major findings of the study are listed by subsystem

  3. SEAMIST trademark in-situ instrumentation and vapor sampling system applications in the Sandia Mixed Waste Landfill Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Lowry, W.E.; Dunn, S.D.; Cremer, S.C.; Williams, C.

    1994-01-01

    The SEAMIST trademark inverting membrane deployment system has been used successfully at the Mixed Waste Landfill Integrated Demonstration (MWLID) for multipoint vapor sampling/pressure measurement/permeability measurement/sensor integration demonstrations and borehole lining. Several instruments were deployed inside the SEAMIST trademark lined boreholes to detect metals, radionuclides, moisture, and geologic variations. The liner protected the instruments from contamination, maintained support of the uncased borehole wall, and sealed the total borehole from air circulation. The current activities have included the installation of three multipoint vapor sampling systems and sensor integration systems in 100-foot-deep vertical boreholes. A long term pressure monitoring program has recorded barometric pressure effects at depth with relatively high spatial resolution. The SEAMIST trademark system has been integrated with a variety of hydrologic and chemical sensors for in-situ measurements, demonstrating its versatility as an instrument deployment system which allows easy emplacement and removal. Standard SEAMIST trademark vapor sampling systems were also integrated with state-of-the-art VOC analysis technologies (automated GC, UV laser fluorometer). The results and status of these demonstration tests are presented

  4. Combined Raman/Infrared Reflectance Instrument for In Situ Mineral Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Science Instruments, Observatories, and Sensor Systems Roadmap calls for instruments capable of in situ mineralogical analysis in support of planetary...

  5. Development of a generic system for real-time data access and remote control of multiple in-situ water quality monitoring instruments

    Science.gov (United States)

    Wright, S. A.; Bennett, G. E.; Andrews, T.; Melis, T. S.; Topping, D. J.

    2005-05-01

    Currently, in-situ monitoring of water quality parameters (e.g. water temperature, conductivity, turbidity) in the Colorado River ecosystem typically consists of deploying instruments in the river, retrieving them at a later date, downloading the datalogger, then examining the data; an arduous process in the remote settings of Grand Canyon. Under this protocol, data is not available real-time and there is no way to detect problems with the instrumentation until after retrieval. The next obvious stage in the development of in-situ monitoring in Grand Canyon was the advent of one-way telemetry, i.e. streaming data in real-time from the instrument to the office and/or the world-wide-web. This protocol allows for real-time access to data and the identification of instrumentation problems, but still requires a site visit to address instrument malfunctions, i.e. the user does not have the ability to remotely control the instrument. At some field sites, such as the Colorado River in Grand Canyon, site visitation is restricted by remoteness and lack of traditional access routes (i.e. roads). Even at less remote sites, it may still be desirable to have two-way communication with instruments in order to, for example, diagnose and potentially fix instrumentation problems, change sampling parameters to save battery power, etc., without having to visit the site. To this end, the U.S. Geological Survey, Grand Canyon Monitoring and Research Center, is currently developing and testing a high-speed, two-way communication system that allows for real-time data access and remote control of instrumentation. The approach tested relies on internet access and may be especially useful in areas where land-line or cellular connections are unavailable. The system is composed of off-the-shelf products, uses a commercial broadband satellite service, and is designed in a generic way such that any instrument that communicates through RS-232 communication (i.e. a serial port) is compatible with

  6. Development of a Compact, Deep-Penetrating Heat Flow Instrument for Lunar Landers: In-Situ Thermal Conductivity System

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.

  7. PERFORMANCE CONFIRMATION IN-SITU INSTRUMENTATION

    International Nuclear Information System (INIS)

    N.T. Raczka

    2000-01-01

    The purpose of this document is to identify and analyze the types of in-situ instruments and methods that could be used in support of the data acquisition portion of the Performance Confirmation (PC) program at the potential nuclear waste repository at Yucca Mountain. The PC program will require geomechanical , geophysical, thermal, and hydrologic instrumentation of several kinds. This analysis is being prepared to document the technical issues associated with each type of measurement during the PC period. This analysis utilizes the ''Performance Confirmation Input Criteria'' (CRWMS M andO 1999a) as its starting point. The scope of this analysis is primarily on the period after the start of waste package emplacement and before permanent closure of the repository, a period lasting between 15 and 300 years after last package emplacement (Stroupe 2000, Attachment 1, p. 1). The primary objectives of this analysis are to: (1) Review the design criteria as presented in the ''Performance Confirmation Input Criteria'' (CRWMS M andO 1999a). The scope of this analysis will be limited to the instrumentation related to parameters that require continuous monitoring of the conditions underground. (2) Preliminary identification and listing of the data requirements and parameters as related to the current repository layout in support of PC monitoring. (3) Preliminary identification of methods and instrumentation for the acquisition of the required data. Although the ''Performance Confirmation Input Criteria'' (CRWMS M andO 1999a) defines a broad range of data that must be obtained from a variety of methods, the focus of this analysis is on instrumentation related to the performance of the rock mass and the formation of water in the repository environment, that is obtainable from in-situ observation, testing, and monitoring

  8. Development of the magnescope as an instrument for in situ evaluation of steel components of nuclear systems

    International Nuclear Information System (INIS)

    Jiles, D.C.; Bi, Y.; Biner, S.B.

    1997-08-01

    Fatigue damage causes continuous, cumulative microstructural changes in materials and the magnetic properties of steels are sensitive to these microstructural changes. The work therefore focused on the relationship between fatigue damage and the measured magnetic properties of different steels under a variety of fatigue conditions. The project also investigated the feasibility and applicability of magnetic inspection techniques for non-destructive evaluation of fatigue damage. From the results of a series of fatigue tests, conducted on different steels under both low-cycle and high-cycle fatigue conditions, the magnetic properties, such as coercivity, remanence and Barkhausen effect, were found to change systematically with fatigue damage. The magnetic properties showed significant changes, especially during early stage of the fatigue and also at the end of the fatigue lifetime. An approximately linear relationship between the mechanical modulus and magnetic remanence was observed and was explained by a model developed in this study to describe the dynamic changes in magnetic and mechanical properties. The results of this research demonstrated that magnetic measurements are suitable for non-destructive evaluation of fatigue damage in steels such as A533B steel and Cr-Mo steels. The magnetic measurement techniques have been incorporated into instrumentation for in-situ evaluation of steel structures and components

  9. Standard NIM instrumentation system

    International Nuclear Information System (INIS)

    1990-05-01

    NIM is a standard modular instrumentation system that is in wide use throughout the world. As the NIM system developed and accommodations were made to a dynamic instrumentation field and a rapidly advancing technology, additions, revisions and clarifications were made. These were incorporated into the standard in the form of addenda and errata. This standard is a revision of the NIM document, AEC Report TID-20893 (Rev. 4) dated July 1974. It includes all the addenda and errata items that were previously issued as well as numerous additional items to make the standard current with modern technology and manufacturing practice

  10. Neutron instrumentation system

    International Nuclear Information System (INIS)

    Akiyama, Takao; Arita, Setsuo; Yuchi, Hiroyuki

    1989-01-01

    The neutron instrumentation system of this invention can greatly reduce the possibility that the shutdown flux is increased greater than a predetermiend value to cause scram due to vibrations caused by earthquakes or shocks in the neutron instrumentation system without injuring the reactor safety. That is, a sensor having a zero sensitivity to a neutron flux which is an object to be detected by the sensor (dummy sensor) is used together with a conventional sensor (a sensor having predetermined sensitivity to a neutron flux as an object to be measured ----- true sensor). Further, identical signal transmission cables, connector and the signal processing circuits are used for both of true sensor and the dummy sensor. The signal from the dummy sensor is subtracted from the signal from the true sensor at the output of the signal processing circuit. Since the output of the dummy sensor is zero during normal operation, the subtracted value is the same as the value from the true sensor. If the true sensor causes an output with the reason other than the neutron flux, this is outputted also from the dummy sensor but does not appear in the subtracted value. (I.S.)

  11. Field instruments for real time in-situ crude oil concentration measurements

    International Nuclear Information System (INIS)

    Fuller, C.B.; Bonner, J.S.; Page, C.A.; Arrambide, G.; Sterling, M.C.Jr.; Ojo, T.O.

    2003-01-01

    Accidental oil spills, contaminant release during resuspension, storms, and harmful algal blooms are all episodic events that can effect coastal margins. It is important to quantitatively describe water and ecological quality evolution and predict the impact to these areas by such events, but traditional sampling methods miss environmental activity during cyclical events. This paper presents a new sampling approach that involves continuous, real-time in-situ monitoring to provide data for development of comprehensive modeling protocols. It gives spill response coordinators greater assurance in making decisions using the latest visualization tools which are based on a good understanding of the physical processes at work in pulsed events. Five sensors for rapid monitoring of crude oil concentrations in aquatic systems were described. The in-situ and ex-situ sensors can measure plume transport and estimate polycyclic aromatic hydrocarbon exposure concentrations to assess risk of toxicity. A brief description and evaluation of the following 5 sensors was provided: the LISST-100 by Sequoia Instrument, a submersible multi-angle laser scattering instrument; the AU-10 field fluorometer by Turner Designs, an ex-situ single wavelength fluorometer; the Flashlamp by WET Labs Inc., an in-situ single wavelength fluorometer; and, the ECO-FL3 and SAFire by WET Labs Inc., two in-situ multiple wavelength fluorometers. These instruments were used to analyze crude oil emissions of various concentrations. All of the instruments followed a linear response within the tested concentration range. At the lowest concentrations the LISST-100 was not as effective as the fluorometers because of limited particle volume for scatter. For the AU-10 field fluorometer, the highest concentrations tested were above the measurement range of the instrument. 6 refs., 5 figs

  12. TFTR CAMAC instrumentation system

    International Nuclear Information System (INIS)

    Del Gatto, H.J.; Bradish, C.J.

    1983-01-01

    The TFTR Central Instrumentation Control and Data Acquisition (CICADA) system makes extensive use of CAMAC equipment. The system consists of eight CAMAC highways operating from eight Gould 75/32 computers. Links up to 3.5 miles in length with more than fifty CAMAC crates have been implemented and are currently in use. Data transfer along the highway is implemented in bit serial format. The link speed is run at 5MHz. The length and complexity of the link requires the reformatting of the NRZ input/output format of the L-2 crate controller. U-Port adapter modules are used to interface the modified serial highway to the L-2 controllers. The modified serial highway uses a transmission technique that requires the distribution of both Bi-Phase encoded data and a 5MHz clock. The Serial Driver interfaces to the GOULD computer through use of a High Speed Data (HSD) interface board which attaches to the computers internal bus. All transfers to and from the computer are accomplished by direct memory access (DMA). In addition to the standard CAMAC link the system also includes a Block Transfer (BT) system. This system provides an alternate path for transferring data between the computers and the CAMAC modules. The BT system is interfaced to the host computers through HSD boards and to the CAMAC crates through use of an auxiliary crate controllers

  13. Experimental design and quality assurance: in situ fluorescence instrumentation

    Science.gov (United States)

    Conmy, Robyn N.; Del Castillo, Carlos E.; Downing, Bryan D.; Chen, Robert F.

    2014-01-01

    Both instrument design and capabilities of fluorescence spectroscopy have greatly advanced over the last several decades. Advancements include solid-state excitation sources, integration of fiber optic technology, highly sensitive multichannel detectors, rapid-scan monochromators, sensitive spectral correction techniques, and improve data manipulation software (Christian et al., 1981, Lochmuller and Saavedra, 1986; Cabniss and Shuman, 1987; Lakowicz, 2006; Hudson et al., 2007). The cumulative effect of these improvements have pushed the limits and expanded the application of fluorescence techniques to numerous scientific research fields. One of the more powerful advancements is the ability to obtain in situ fluorescence measurements of natural waters (Moore, 1994). The development of submersible fluorescence instruments has been made possible by component miniaturization and power reduction including advances in light sources technologies (light-emitting diodes, xenon lamps, ultraviolet [UV] lasers) and the compatible integration of new optical instruments with various sampling platforms (Twardowski et at., 2005 and references therein). The development of robust field sensors skirt the need for cumbersome and or time-consuming filtration techniques, the potential artifacts associated with sample storage, and coarse sampling designs by increasing spatiotemporal resolution (Chen, 1999; Robinson and Glenn, 1999). The ability to obtain rapid, high-quality, highly sensitive measurements over steep gradients has revolutionized investigations of dissolved organic matter (DOM) optical properties, thereby enabling researchers to address novel biogeochemical questions regarding colored or chromophoric DOM (CDOM). This chapter is dedicated to the origin, design, calibration, and use of in situ field fluorometers. It will serve as a review of considerations to be accounted for during the operation of fluorescence field sensors and call attention to areas of concern when making

  14. Ocean Optics Instrumentation Systems

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation suites for a wide variety of measurements to characterize the ocean’s optical environment. These packages have been developed to...

  15. PEP instrumentation and control system

    Energy Technology Data Exchange (ETDEWEB)

    Melen, R.

    1980-06-01

    This paper describes the operating characteristics of the primary components that form the PEP Instrumentation and Control System. Descriptions are provided for the computer control system, beam monitors, and other support systems.

  16. PEP instrumentation and control system

    International Nuclear Information System (INIS)

    Melen, R.

    1980-06-01

    This paper describes the operating characteristics of the primary components that form the PEP Instrumentation and Control System. Descriptions are provided for the computer control system, beam monitors, and other support systems

  17. Astronomical Instrumentation System Markup Language

    Science.gov (United States)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  18. Using the in situ lift-out technique to prepare TEM specimens on a single-beam FIB instrument

    International Nuclear Information System (INIS)

    Lekstrom, M; McLachlan, M A; Husain, S; McComb, D W; Shollock, B A

    2008-01-01

    Transmission electron microscope (TEM) specimens are today routinely prepared using focussed ion beam (FIB) instruments. Specifically, the lift-out method has become an increasingly popular technique and involves removing thin cross-sections from site-specific locations and transferring them to a TEM grid. This lift-out process can either be performed ex situ or in situ. The latter is mainly carried out on combined dual-beam FIB and scanning electron microscope (SEM) systems whereas conventional single-beam instruments often are limited to the traditional ex situ method. It is nevertheless desirable to enhance the capabilities of existing single-beam instruments to allow for in situ lift-out preparation to be performed since this technique offers a number of advantages over the older ex situ method. A single-beam FIB instrument was therefore modified to incorporate an in situ micromanipulator fitted with a tungsten needle, which can be attached to a cut-out FIB section using ion beam induced platinum deposition. This article addresses the issues of using an ion beam to monitor the in situ manipulation process as well as approaches that can be used to create stronger platinum welds between two objects, and finally, views on how to limit the extent of ion beam damage to the specimen surface.

  19. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth.

    Science.gov (United States)

    Karouia, Fathi; Peyvan, Kianoosh; Pohorille, Andrew

    2017-11-15

    Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis. Published by Elsevier Inc.

  20. Management system of instrument database

    International Nuclear Information System (INIS)

    Zhang Xin

    1997-01-01

    The author introduces a management system of instrument database. This system has been developed using with Foxpro on network. The system has some characters such as clear structure, easy operation, flexible and convenient query, as well as the data safety and reliability

  1. In-situ Planetary Subsurface Imaging System

    Science.gov (United States)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments

  2. SMAP Instrument Mechanical System Engineering

    Science.gov (United States)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  3. In-situ Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Villanueva, Héctor

    This report presents the result of the lidar in-situ calibration performed at DTU’s test site for large wind turbine at Østerild, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement uncertainties provided by mea...

  4. Quantification of human epidermal growth factor receptor 2 immunohistochemistry using the Ventana Image Analysis System: correlation with gene amplification by fluorescence in situ hybridization: the importance of instrument validation for achieving high (>95%) concordance rate.

    Science.gov (United States)

    Dennis, Jake; Parsa, Rezvaneh; Chau, Donnie; Koduru, Prasad; Peng, Yan; Fang, Yisheng; Sarode, Venetia Rumnong

    2015-05-01

    The use of computer-based image analysis for scoring human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) has gained a lot of interest recently. We investigated the performance of the Ventana Image Analysis System (VIAS) in HER2 quantification by IHC and its correlation with fluorescence in situ hybridization (FISH). We specifically compared the 3+ IHC results using the manufacturer's machine score cutoffs versus laboratory-defined cutoffs with the FISH assay. Using the manufacturer's 3+ cutoff (VIAS score; 2.51 to 3.5), 181/536 (33.7%) were scored 3+, and FISH was positive in 147/181 (81.2%), 2 (1.1%) were equivocal, and 32 (17.6%) were FISH (-). Using the laboratory-defined 3+ cutoff (VIAS score 3.5), 52 (28.7%) cases were downgraded to 2+, of which 29 (55.7%) were FISH (-), and 23 (44.2%) were FISH (+). With the revised cutoff, there were improvements in the concordance rate from 89.1% to 97.0% and in the positive predictive value from 82.1% to 97.6%. The false-positive rate for 3+ decreased from 9.0% to 0.8%. Six of 175 (3.4%) IHC (-) cases were FISH (+). Three cases with a VIAS score 3.5 showed polysomy of chromosome 17. In conclusion, the VIAS may be a valuable tool for assisting pathologists in HER2 scoring; however, the positive cutoff defined by the manufacturer is associated with a high false-positive rate. This study highlights the importance of instrument validation/calibration to reduce false-positive results.

  5. Knowledge based expert system approach to instrumentation selection (INSEL

    Directory of Open Access Journals (Sweden)

    S. Barai

    2004-08-01

    Full Text Available The selection of appropriate instrumentation for any structural measurement of civil engineering structure is a complex task. Recent developments in Artificial Intelligence (AI can help in an organized use of experiential knowledge available on instrumentation for laboratory and in-situ measurement. Usually, the instrumentation decision is based on the experience and judgment of experimentalists. The heuristic knowledge available for different types of measurement is domain dependent and the information is scattered in varied knowledge sources. The knowledge engineering techniques can help in capturing the experiential knowledge. This paper demonstrates a prototype knowledge based system for INstrument SELection (INSEL assistant where the experiential knowledge for various structural domains can be captured and utilized for making instrumentation decision. In particular, this Knowledge Based Expert System (KBES encodes the heuristics on measurement and demonstrates the instrument selection process with reference to steel bridges. INSEL runs on a microcomputer and uses an INSIGHT 2+ environment.

  6. Instrumentation and process control development for in situ coal gasification. Fourth quarterly report, September--November 1975

    Energy Technology Data Exchange (ETDEWEB)

    Northrop, D.A. (ed.)

    1976-01-01

    The instrumentation effort for Phases 2 and 3 of the Second Hanna In Situ Coal Gasification Experiment was fielded and background data obtained prior to the initiation of Phase 2 on November 25, 1975. A total of over 600 channels of instrumentation in 15 instrumentation wells and two surface arrays was fielded for the instrumentation techniques under evaluation. The feasibility of the passive acoustic technique to locate the source of process-related noises has been demonstrated; its utility is presently hampered by the inexact definition of signal arrivals and the lack of automated signal monitoring and analysis systems. A revised mathematical model for the electrical techniques has been developed which demonstrates the potential for remote monitoring. (auth)

  7. Instrumentation, Control, and Intelligent Systems

    Energy Technology Data Exchange (ETDEWEB)

    2005-09-01

    Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a major center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.

  8. Instrumentation, Control, and Intelligent Systems

    International Nuclear Information System (INIS)

    Not Available

    2005-01-01

    Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a major center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems

  9. Confucian "Creatio in Situ"--Philosophical Resource for a Theory of Creativity in Instrumental Music Education

    Science.gov (United States)

    Tan, Leonard

    2016-01-01

    In this philosophical essay, I propose a theory of creativity for instrumental music education inspired by Confucian "creatio in situ" ("situational creativity"). Through an analysis of three major texts from classical Confucianism--the "Analects," the "Zhongyong" ("Doctrine of the Mean"), and the…

  10. Software-Enabled Modular Instrumentation Systems

    NARCIS (Netherlands)

    Soijer, M.W.

    2003-01-01

    Like most other types of instrumentation systems, flight test instrumentation is not produced in series; its development is a one-time achievement by a test department. With the introduction of powerful digital computers, instrumentation systems have included data analysis tasks that were previously

  11. Instrumentation of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Div.; Hoag, D.L.; Blankenship, D.A.; DeYonge, W.F.; Schiermeister, D.M. [RE/SPEC, Inc., Albuquerque, NM (United States); Jones, R.L.; Baird, G.T. [Tech Reps, Inc., Albuquerque, NM (United States)

    1997-04-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories had the responsibility for the experimental activities at the WIPP and fielded several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The instrumentation of these tests involved the placement of over 4,200 gages including room closure gages, borehole extensometers, stress gages, borehole inclinometers, fixed reference gages, borehole strain gages, thermocouples, thermal flux meters, heater power gages, environmental gages, and ventilation gages. Most of the gages were remotely read instruments that were monitored by an automated data acquisition system, but manually read instruments were also used to provide early deformation information and to provide a redundancy of measurement for the remote gages. Instruments were selected that could operate in the harsh environment of the test rooms and that could accommodate the ranges of test room responses predicted by pretest calculations. Instruments were tested in the field prior to installation at the WIPP site and were modified to improve their performance. Other modifications were made to gages as the TSI tests progressed using knowledge gained from test maintenance. Quality assurance procedures were developed for all aspects of instrumentation including calibration, installation, and maintenance. The instrumentation performed exceptionally well and has produced a large quantity of quality information.

  12. Instrumentation of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Munson, D.E.; Jones, R.L.; Baird, G.T.

    1997-04-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories had the responsibility for the experimental activities at the WIPP and fielded several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The instrumentation of these tests involved the placement of over 4,200 gages including room closure gages, borehole extensometers, stress gages, borehole inclinometers, fixed reference gages, borehole strain gages, thermocouples, thermal flux meters, heater power gages, environmental gages, and ventilation gages. Most of the gages were remotely read instruments that were monitored by an automated data acquisition system, but manually read instruments were also used to provide early deformation information and to provide a redundancy of measurement for the remote gages. Instruments were selected that could operate in the harsh environment of the test rooms and that could accommodate the ranges of test room responses predicted by pretest calculations. Instruments were tested in the field prior to installation at the WIPP site and were modified to improve their performance. Other modifications were made to gages as the TSI tests progressed using knowledge gained from test maintenance. Quality assurance procedures were developed for all aspects of instrumentation including calibration, installation, and maintenance. The instrumentation performed exceptionally well and has produced a large quantity of quality information

  13. A Finescale Lagrangian Instrument System

    National Research Council Canada - National Science Library

    Toole, John

    2003-01-01

    ... from conventional, bottom-anchored moorings. An initial trial of the concept targeting the upper ocean was carried out off Bermuda in November 2001 with an instrument profiling between 12 and 28O-m depth...

  14. Airflow resistivity instrument for in situ measurement on the earth's ground surface

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    An airflow resistivity instrument features a novel specimen holder, especially designed for in situ measurement on the earth's ground surface. This capability eliminates the disadvantages of prior intrusive instruments, which necessitate the removal of a test specimen from the ground. A prototype instrument can measure airflow resistivities in the range 10-5000 cgs rayl/cm, at specimen depths up to 15.24 cm (6 in.), and at differential pressures up to 2490.8 dyn sq cm (1 in. H2O) across the specimen. Because of the close relationship between flow resistivity and acoustic impedance, this instrument should prove useful in acoustical studies of the earth's ground surface. Results of airflow resistivity measurements on an uncultivated grass field for varying values of moisture content are presented.

  15. Development of the Potassium-Argon Laser Experiment (KArLE) Instrument for In Situ Geochronology

    Science.gov (United States)

    Cohen, Barbara A.; Li, Z.-H.; Miller, J. S.; Brinckerhoff, W. B.; Clegg, S. M.; Mahaffy, P. R.; Swindle, T. D.; Wiens, R. C.

    2012-01-01

    Absolute dating of planetary samples is an essential tool to establish the chronology of geological events, including crystallization history, magmatic evolution, and alteration. Traditionally, geochronology has only been accomplishable on samples from dedicated sample return missions or meteorites. The capability for in situ geochronology is highly desired, because it will allow one-way planetary missions to perform dating of large numbers of samples. The success of an in situ geochronology package will not only yield data on absolute ages, but can also complement sample return missions by identifying the most interesting rocks to cache and/or return to Earth. In situ dating instruments have been proposed, but none have yet reached TRL 6 because the required high-resolution isotopic measurements are very challenging. Our team is now addressing this challenge by developing the Potassium (K) - Argon Laser Experiment (KArLE) under the NASA Planetary Instrument Definition and Development Program (PIDDP), building on previous work to develop a K-Ar in situ instrument [1]. KArLE uses a combination of several flight-proven components that enable accurate K-Ar isochron dating of planetary rocks. KArLE will ablate a rock sample, determine the K in the plasma state using laser-induced breakdown spectroscopy (LIBS), measure the liberated Ar using quadrupole mass spectrometry (QMS), and relate the two by the volume of the ablated pit using an optical method such as a vertical scanning interferometer (VSI). Our preliminary work indicates that the KArLE instrument will be capable of determining the age of several kinds of planetary samples to +/-100 Myr, sufficient to address a wide range of geochronology problems in planetary science.

  16. HTGR Measurements and Instrumentation Systems

    International Nuclear Information System (INIS)

    Ball, Sydney J.; Holcomb, David Eugene; Cetiner, Mustafa Sacit

    2012-01-01

    This report provides an integrated overview of measurements and instrumentation for near-term future high-temperature gas-cooled reactors (HTGRs). Instrumentation technology has undergone revolutionary improvements since the last HTGR was constructed in the United States. This report briefly describes the measurement and communications needs of HTGRs for normal operations, maintenance and inspection, fuel fabrication, and accident response. The report includes a description of modern communications technologies and also provides a potential instrumentation communications architecture designed for deployment at an HTGR. A principal focus for the report is describing new and emerging measurement technologies with high potential to improve operations, maintenance, and accident response for the next generation of HTGRs, known as modular HTGRs, which are designed with passive safety features. Special focus is devoted toward describing the failure modes of the measurement technologies and assessing the technology maturity.

  17. Instrument validation system of general application

    International Nuclear Information System (INIS)

    Filshtein, E.L.

    1990-01-01

    This paper describes the Instrument Validation System (IVS) as a software system which has the capability of evaluating the performance of a set of functionally related instrument channels to identify failed instruments and to quantify instrument drift. Under funding from Combustion Engineering (C-E), the IVS has been developed to the extent that a computer program exists whose use has been demonstrated. The initial development work shows promise for success and for wide application, not only to power plants, but also to industrial manufacturing and process control. Applications in the aerospace and military sector are also likely

  18. Digital instrumentation system for nuclear research reactors

    International Nuclear Information System (INIS)

    Aghina, Mauricio A.C.; Carvalho, Paulo Vitor R.

    2002-01-01

    This work describes a proposal for a system of nuclear instrumentation and safety totally digital for the Argonauta Reactor. The system divides in the subsystems: channel of pulses, channel of current, conventional instrumentation and safety system. The connection of the subsystems is made through redundant double local net, using the protocol modbus/rtu. So much the channel of pulses, the current channel and safety's system use modules operating in triple redundancy. (author)

  19. Mobile system for in-situ imaging of cultural objects

    International Nuclear Information System (INIS)

    Zemlicka, J; Jakubek, J; Krejci, F; Hradil, D; Hradilova, J; Mislerova, H

    2012-01-01

    Non-invasive analytical techniques recently developed with the Timepix pixel detector have shown great potential for the inspection of objects of cultural heritage. We have developed new instrumentation and methodology for in-situ X-ray transmission radiography and X-ray fluorescence imaging and successfully tested and evaluated a mobile system for remote terrain tasks. The prototype portable imaging device comprises the radiation source tube and the spectral sensitive X-ray camera. Both components can be moreover mounted on independent motorized positioning systems allowing adaptation of irradiation geometry to the object shape. Both parts are placed onto a pair of universal portable holders (tripods). The detector is placed in a shielded box with exchangeable entrance window (beam filters and pinhole collimator). This adjustable setup allows performing in-situ measurements for both transmission and emission (XRF) radiography. The assembled system has been successfully tested in our laboratory with phantoms and real samples. The obtained and evaluated results are presented in this paper. Future work will include successive adaptation of the current system for real in-situ utilization and preparation of software allowing semi-automatic remote control of measurements.

  20. Plans for Selection and In-Situ Investigation of Return Samples by the Supercam Instrument Onboard the Mars 2020 Rover

    Science.gov (United States)

    Wiens, R. C.; Maurice, S.; Mangold, N.; Anderson, R.; Beyssac, O.; Bonal, L.; Clegg, S.; Cousin, A.; DeFlores, L.; Dromart, G.; Fisher, W.; Forni, O.; Fouchet, T.; Gasnault, O.; Grotzinger, J.; Johnson, J.; Martinez-Frias, J.; McLennan, S.; Meslin, P.-Y.; Montmessin, F.; Poulet, F.; Rull, F.; Sharma, S.

    2018-04-01

    The SuperCam instrument onboard Rover 2020 still provides a complementary set of analyses with IR reflectance and Raman spectroscopy for mineralogy, LIBS for chemistry, and a color imager in order to investigate in-situ samples to return.

  1. The NSTX Central Instrumentation and Control System

    International Nuclear Information System (INIS)

    G. Oliaro; J. Dong; K. Tindall; P. Sichta

    1999-01-01

    Earlier this year the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory achieved ''first plasma''. The Central Instrumentation and Control System was used to support plasma operations. Major elements of the system include the Process Control System, Plasma Control System, Network System, Data Acquisition System, and Synchronization System. This paper will focus on the Process Control System. Topics include the architecture, hardware interface, operator interface, data management, and system performance

  2. In-Situ Wire Damage Detection System

    Science.gov (United States)

    Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor); Tate, Lanetra C. (Inventor); Smith, Trent M. (Inventor); Gibson, Tracy L. (Inventor); Jolley, Scott T. (Inventor); Medelius, Pedro J. (Inventor)

    2014-01-01

    An in-situ system for detecting damage in an electrically conductive wire. The system includes a substrate at least partially covered by a layer of electrically conductive material forming a continuous or non-continuous electrically conductive layer connected to an electrical signal generator adapted to delivering electrical signals to the electrically conductive layer. Data is received and processed to identify damage to the substrate or electrically conductive layer. The electrically conductive material may include metalized carbon fibers, a thin metal coating, a conductive polymer, carbon nanotubes, metal nanoparticles or a combination thereof.

  3. Instrumentation & Data Acquisition System (D AS) Engineer

    Science.gov (United States)

    Jackson, Markus Deon

    2015-01-01

    The primary job of an Instrumentation and Data Acquisition System (DAS) Engineer is to properly measure physical phenomenon of hardware using appropriate instrumentation and DAS equipment designed to record data during a specified test of the hardware. A DAS system includes a CPU or processor, a data storage device such as a hard drive, a data communication bus such as Universal Serial Bus, software to control the DAS system processes like calibrations, recording of data and processing of data. It also includes signal conditioning amplifiers, and certain sensors for specified measurements. My internship responsibilities have included testing and adjusting Pacific Instruments Model 9355 signal conditioning amplifiers, writing and performing checkout procedures, writing and performing calibration procedures while learning the basics of instrumentation.

  4. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  5. Advances in luminescence instrument systems

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Bulur, E.; Duller, G.A.T.

    2000-01-01

    We report on recent advances in the development of luminescence measurement systems and techniques at Riso. These include: (1) optical stimulation units based on new-generation powerful blue light (470 nm) emitting diodes providing up to 28 mW/cm(2) for OSL measurements; (2) an infrared (830 nm...

  6. Instrumentation for Power System Disturbance Monitoring, Data ...

    African Journals Online (AJOL)

    In this paper, the level of instrumentation for power system disturbance monitoring, data acquisition and control in Nigerian Electric Power System; National Electric Power Authority (NEPA) is presented. The need for accurate power system disturbance monitoring is highlighted. A feature of an adequate monitoring, data ...

  7. Development of in-situ monitoring system

    International Nuclear Information System (INIS)

    Lee, Bong Soo; Cho, Dong Hyun; Yoo, Wook Jae; Heo, Ji Yeon

    2010-03-01

    Development of in-situ monitoring system using an optical fiber to measure the real time temperature variation of subsurface water for the evaluation of flow characteristics. We describe the feasibility of developing a fiber-optic temperature sensor using a thermochromic material. A sensor-tip is fabricated by mixing of a thermochromic material powder. The relationships between the temperatures and the output voltages of detectors are determined to measure the temperature of water. It is expected that the fiber-optic temperature monitoring sensor using thermochromic material can be used to measure the real time temperature variation of subsurface water

  8. Novel Instrumentation for Rocket Propulsion Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed SBIR Phase II program is to develop, deploy and deliver novel laser-based instruments that provide rapid, in situ, simultaneous...

  9. Novel Instrumentation for Rocket Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed SBIR Phase I program is to develop novel laser-based instruments that provide rapid, in situ, simultaneous measurements of gas...

  10. Pragmatic electrical engineering systems and instruments

    CERN Document Server

    Eccles, William

    2011-01-01

    Pragmatic Electrical Engineering: Systems and Instruments is about some of the non-energy parts of electrical systems, the parts that control things and measure physical parameters. The primary topics are control systems and their characterization, instrumentation, signals, and electromagnetic compatibility. This text features a large number of completely worked examples to aid the reader in understanding how the various principles fit together.While electric engineers may find this material useful as a review, engineers in other fields can use this short lecture text as a modest introduction

  11. New Platforms for Suborbital Astronomical Observations and In Situ Atmospheric Measurements: Spacecraft, Instruments, and Facilities

    Science.gov (United States)

    Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.

    2014-12-01

    Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers

  12. CAMAC instrumentation system: introduction and general description

    International Nuclear Information System (INIS)

    Costrell, L.

    1976-01-01

    The CAMAC instrumentation system is described in a general way in this introductory paper which is followed by papers that discuss the system in greater detail. This paper is an updated version of the introductory paper that appeared in the April 1973 IEEE Transactions on Nuclear Science

  13. Fuel fabrication instrumentation and control system overview

    International Nuclear Information System (INIS)

    Bennett, D.W.; Fritz, R.L.

    1980-10-01

    A process instrumentation and control system is being developed for automated fabrication of breeder reactor fuel at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington. The basic elements of the control system are a centralized computer system linked to distributed local computers, which direct individual process applications. The control philosophy developed for the equipment automation program stresses system flexibility and inherent levels of redundant control capabilities. Four different control points have been developed for each unit process operation

  14. Applying improved instrumentation and computer control systems

    International Nuclear Information System (INIS)

    Bevilacqua, F.; Myers, J.E.

    1977-01-01

    In-core and out-of-core instrumentation systems for the Cherokee-I reactor are described. The reactor has 61m-core instrument assemblies. Continuous computer monitoring and processing of data from over 300 fixed detectors will be used to improve the manoeuvering of core power. The plant protection system is a standard package for the Combustion Engineering System 80, consisting of two independent systems, the reactor protection system and the engineering safety features activation system, both of which are designed to meet NRC, ANS and IEEE design criteria or standards. The plants protection system has its own computer which provides plant monitoring, alarming, logging and performance calculations. (U.K.)

  15. Systems for tracking minimally invasive surgical instruments.

    Science.gov (United States)

    Chmarra, M K; Grimbergen, C A; Dankelman, J

    2007-01-01

    Minimally invasive surgery (e.g. laparoscopy) requires special surgical skills, which should be objectively assessed. Several studies have shown that motion analysis is a valuable assessment tool of basic surgical skills in laparoscopy. However, to use motion analysis as the assessment tool, it is necessary to track and record the motions of laparoscopic instruments. This article describes the state of the art in research on tracking systems for laparoscopy. It gives an overview on existing systems, on how these systems work, their advantages, and their shortcomings. Although various approaches have been used, none of the tracking systems to date comes out as clearly superior. A great number of systems can be used in training environment only, most systems do not allow the use of real laparoscopic instruments, and only a small number of systems provide force feedback.

  16. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  17. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  18. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  19. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  20. Airborne In-Situ Measurements of Formaldehyde over California: First Results from the COFFEE Instrument

    Science.gov (United States)

    Marrero, Josette; St. Clair, Jason; Yates, Emma; Swanson, Andrew; Gore, Warren; Iraci, Laura; Hanisco, Thomas

    2016-04-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. We will present results from flights performed over the Central Valley of California, including boundary layer measurements and vertical profiles in the tropospheric column. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. These results will be presented in conjunction with formaldehyde. Targets in the Central Valley consist of an oil field, agricultural areas, and highways, each of which can emit HCHO primarily and generate HCHO through secondary production. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  1. Electronic instrumentation system for pulsed neutron measurements

    International Nuclear Information System (INIS)

    Burda, J.; Igielski, A.; Kowalik, W.

    1982-01-01

    An essential point of pulsed neutron measurement of thermal neutron parameters for different materials is the registration of the thermal neutron die-away curve after a fast neutron bursts have been injected into the system. An electronic instrumentation system which is successfully applied for pulsed neutron measurements is presented. An important part of the system is the control unit which has been designed and built in the Laboratory of Neutron Parameters of Materials. (author)

  2. Evaluation of spinal instrumentation rod bending characteristics for in-situ contouring.

    Science.gov (United States)

    Noshchenko, Andriy; Xianfeng, Yao; Armour, Grant Alan; Baldini, Todd; Patel, Vikas V; Ayers, Reed; Burger, Evalina

    2011-07-01

    Bending characteristics were studied in rods used for spinal instrumentation at in-situ contouring conditions. Five groups of five 6 mm diameter rods made from: cobalt alloy (VITALLIUM), titanium-aluminum-vanadium alloy (SDI™), β-titanium alloy (TNTZ), cold worked stainless steel (STIFF), and annealed stainless steel (MALLEABLE) were studied. The bending procedure was similar to that typically applied for in-situ contouring in the operating room and included two bending cycles: first--bending to 21-24° under load with further release of loading for 10 min, and second--bending to 34-37° at the previously bent site and release of load for 10 min. Applied load, bending stiffness, and springback effect were studied. Statistical evaluation included ANOVA, correlation and regression analysis. TNTZ and SDI™ rods showed the highest (p under load (p < 0.001). To reach the necessary bend angle after unloading, over bending should be 37-40% of the required angle in TNTZ and SDI™ rods, 27-30% in VITALLIUM and STIFF rods, and around 20% in MALLEABLE rods. Copyright © 2011 Wiley Periodicals, Inc.

  3. Neutronic control instrumentation of protection systems

    International Nuclear Information System (INIS)

    Furet, J.

    1977-01-01

    The aims of neutronic control instrumentation are briefly recalled and the present status of materials research and development is presented. As for the out-of-pile instrumentation, emphasis is put on the reliability and efficiency of the detectors and the new solutions of electric signal processing. The possible reactivity measurements at rest are examined. As for in-pile instrumentation results relating to mobile detectors of the type of miniaturized fission chambers are presented. The radiation tests on course of development for several years in the working conditions of neutron self-powdered detectors are analyzed so as to show that their use as built-in in-core instrumentation is to be envisaged at short term. Basic options inherent to the 'Nuclear Safety' philosophy that define the protection system are recalled. A definition and a justification of the performance testing of the instrumentation at rest and in-service are then derived. Some new solutions are envisaged for processing the digital data obtained from the various sensors . A quality control of the materials setting conditions (especially electric noise) ensures a high reliability and availability of the materials involved in the neutron control and the protection system in working conditions [fr

  4. A Novel Penetration System for in situ Astrobiological Studies

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2005-12-01

    Full Text Available Due to ultraviolet flux in the surface layers of most solar bodies, future astrobiological research is increasingly seeking to conduct subsurface penetration and drilling to detect chemical signature for extant or extinct life. To address this issue, we present a micro-penetrator concept (mass < 10 kg that is suited for extraterrestrial planetary deployment and in situ investigation of chemical and physical properties. The instrumentation in this concept is a bio-inspired drill to access material beneath sterile surface layer for biomarker detection. The proposed drill represents a novel concept of two-valve-reciprocating motion, inspired by the working mechanism of wood wasp ovipositors. It is lightweight (0.5 kg, driven at low power (3 W, and able to drill deep (1-2 m. Tests have shown that the reciprocating drill is feasible and has potential of improving drill efficiency without using any external force. The overall penetration system provides a small, light and energy efficient solution to in situ astrobiological studies, which is crucial for space engineering. Such a micro-penetrator can be used for exploration of terrestrial-type planets or other small bodies of the solar system with the minimum of modifications.

  5. A Novel Penetration System for in situ Astrobiological Studies

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2008-11-01

    Full Text Available Due to ultraviolet flux in the surface layers of most solar bodies, future astrobiological research is increasingly seeking to conduct subsurface penetration and drilling to detect chemical signature for extant or extinct life. To address this issue, we present a micro-penetrator concept (mass < 10 kg that is suited for extraterrestrial planetary deployment and in situ investigation of chemical and physical properties. The instrumentation in this concept is a bio-inspired drill to access material beneath sterile surface layer for biomarker detection. The proposed drill represents a novel concept of two-valve-reciprocating motion, inspired by the working mechanism of wood wasp ovipositors. It is lightweight (0.5 kg, driven at low power (3 W, and able to drill deep (1-2 m. Tests have shown that the reciprocating drill is feasible and has potential of improving drill efficiency without using any external force. The overall penetration system provides a small, light and energy efficient solution to in situ astrobiological studies, which is crucial for space engineering. Such a micro-penetrator can be used for exploration of terrestrial-type planets or other small bodies of the solar system with the minimum of modifications.

  6. Nuclear instrumentation for the industrial measuring systems

    International Nuclear Information System (INIS)

    Normand, S.

    2010-01-01

    This work deals with nuclear instrumentation and its application to industry, power plant fuel reprocessing plant and finally with homeland security. The first part concerns the reactor instrumentation, in-core and ex-core measurement system. Ionization Uranium fission chamber will be introduced with their acquisition system especially Campbell mode system. Some progress have been done on regarding sensors failure foresee. The second part of this work deals with reprocessing plant and associated instrumentation for nuclear waste management. Proportional counters techniques will be discussed, especially Helium-3 counter, and new development on electronic concept for reprocessing nuclear waste plant (one electronic for multipurpose acquisition system). For nuclear safety and security for human and homeland will be introduce. First we will explain a new particular approach on operational dosimetric measurement and secondly, we will show new kind of organic scintillator material and associated electronics. Signal treatment with real time treatment is embedded, in order to make neutron gamma discrimination possible even in solid organic scintillator. Finally, the conclusion will point out future, with most trends in research and development on nuclear instrumentation for next years. (author) [fr

  7. Tax system competition – instruments and beneficiaries

    OpenAIRE

    Krzysztof Biernacki

    2014-01-01

    Tax competition among states and jurisdictions has already been examined many times in the economic literature. However, the main scope of the research was focused on a tax rates competition in income taxes and its consequences in bringing direct investments. This scripture/commentary tries to analyze various instruments and beneficiaries of the tax system competition and provide a general overview on this subject.

  8. Reconstruction of instrumentation and control system (SKR)

    International Nuclear Information System (INIS)

    Wiening, K.-H.

    2001-01-01

    For the first time extensive upgrades have been performed in all safety related areas of units with WWER 440/230 reactors. One of the most important actions was the replacement of the safety and safety related instrumentation and control. The state of the art digital safety instrumentation and control system TELEPERM XS has been implemented in units 1 and 2 of the Bohunice V1 power plant. The requirements as deduced from safety assessments conducted by commissions of international experts have been fulfilled, so that Bohunice V1 after this gradual reconstruction has been upgraded to an internationally accepted safety level for the remainder of its service life. (author)

  9. In-situ measurements of the secondary electron yield in an accelerator environment: Instrumentation and methods

    International Nuclear Information System (INIS)

    Hartung, W.H.; Asner, D.M.; Conway, J.V.; Dennett, C.A.; Greenwald, S.; Kim, J.-S.; Li, Y.; Moore, T.P.; Omanovic, V.; Palmer, M.A.; Strohman, C.R.

    2015-01-01

    The performance of a particle accelerator can be limited by the build-up of an electron cloud (EC) in the vacuum chamber. Secondary electron emission from the chamber walls can contribute to EC growth. An apparatus for in-situ measurements of the secondary electron yield (SEY) in the Cornell Electron Storage Ring (CESR) was developed in connection with EC studies for the CESR Test Accelerator program. The CESR in-situ system, in operation since 2010, allows for SEY measurements as a function of incident electron energy and angle on samples that are exposed to the accelerator environment, typically 5.3 GeV counter-rotating beams of electrons and positrons. The system was designed for periodic measurements to observe beam conditioning of the SEY with discrimination between exposure to direct photons from synchrotron radiation versus scattered photons and cloud electrons. The samples can be exchanged without venting the CESR vacuum chamber. Measurements have been done on metal surfaces and EC-mitigation coatings. The in-situ SEY apparatus and improvements to the measurement tools and techniques are described

  10. In-situ measurements of the secondary electron yield in an accelerator environment: Instrumentation and methods

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, W.H., E-mail: wh29@cornell.edu; Asner, D.M.; Conway, J.V.; Dennett, C.A.; Greenwald, S.; Kim, J.-S.; Li, Y.; Moore, T.P.; Omanovic, V.; Palmer, M.A.; Strohman, C.R.

    2015-05-21

    The performance of a particle accelerator can be limited by the build-up of an electron cloud (EC) in the vacuum chamber. Secondary electron emission from the chamber walls can contribute to EC growth. An apparatus for in-situ measurements of the secondary electron yield (SEY) in the Cornell Electron Storage Ring (CESR) was developed in connection with EC studies for the CESR Test Accelerator program. The CESR in-situ system, in operation since 2010, allows for SEY measurements as a function of incident electron energy and angle on samples that are exposed to the accelerator environment, typically 5.3 GeV counter-rotating beams of electrons and positrons. The system was designed for periodic measurements to observe beam conditioning of the SEY with discrimination between exposure to direct photons from synchrotron radiation versus scattered photons and cloud electrons. The samples can be exchanged without venting the CESR vacuum chamber. Measurements have been done on metal surfaces and EC-mitigation coatings. The in-situ SEY apparatus and improvements to the measurement tools and techniques are described.

  11. A multimodal instrument for real-time in situ study of ultrasound and cavitation mediated drug delivery

    OpenAIRE

    Bian, S; Seth, A; Daly, D; Carlisle, R; Stride, E

    2017-01-01

    The development of a multimodal instrument capable of real-time in situ measurements of cavitation activity and effect in tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments is described here. The instrument features an acoustic arm that can expose phantoms to high-intensity focused-ultrasound while measuring cavitation activity and an optical arm that monitors cavitation effect using confocal microscopy. This combination of modalities allows real-tim...

  12. Instrument failure monitoring in nuclear power systems

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1982-01-01

    Methods of monitoring dynamic systems for instrument failures were developed and evaluated. In particular, application of these methods to nuclear power plant components is addressed. For a linear system, statistical tests on the innovations sequence of a Kalman filter driven by all system measurements provides a failure detection decision and identifies any failed sensor. This sequence (in an unfailed system) is zero-mean with calculable covariance; hence, any major deviation from these properties is assumed to be due to an instrument failure. Once a failure is identified, the failed instrument is replaced with an optimal estimate of the measured parameter. This failure accommodation is accomplished using optimally combined data from a bank of accommodation Kalman filters (one for each sensor), each driven by a single measurement. Using such a sensor replacement allows continued system operation under failed conditions and provides a system operator with information otherwise unavailable. To demonstrate monitor performance, a liner failure monitor was developed for the pressurizer in the Loss-of-Fluid Test (LOFT) reactor plant. LOFT is a small-scale pressurized water reactor (PWR) research facility located at the Idaho National Engineering Laboratory. A linear, third-order model of the pressurizer dynamics was developed from first principles and validated. Using data from the LOFT L6 test series, numerous actual and simulated water level, pressure, and temperature sensor failures were employed to illustrate monitor capabilities. Failure monitor design was applied to nonlinear dynamic systems by replacing all monitor linear Kalman filters with extended Kalman filters. A nonlinear failure monitor was derived for LOFT reactor instrumentation. A sixth-order reactor model, including descriptions of reactor kinetics, fuel rod heat transfer, and core coolant dynamics, was obtained and verified with test data

  13. Performance parameters for ex situ bioremediation systems

    International Nuclear Information System (INIS)

    Wade, D.R.

    1994-01-01

    The potential of biotechnology to reduce the concentration of undesirable hydrocarbons, i.e. gasoline and diesel fuel pollution, is very attractive due to its apparent benign nature and potentially low cost. When good industrial practices are used in the design, construction, and administration of the bioremediation system, the performance of the technology can be predicted and monitored. Some of the principles behind the design, construction, and operation of ex situ bioremediation systems and facilities are described. Biological considerations include creation of a favorable environment for hydrocarbon degrading bacteria in the soils, selection of bacteria, and bacterial byproducts. Chemical considerations include nutrient augmentation, oxygen availability, and the use of surfactants and dispersants. Physical considerations include soil textures and structures, soil temperatures, moisture content, and the use of bulking agents. Experience has shown that indigenous microbes will usually be sufficient to implement bioremediation of petroleum hydrocarbons if encouraged through the application of fertilizers. The introduction of additional carbon sources may be considered if rapid bioremediation rates are desired or if soil conditions are poor. Adjustments to a bioremediation system may be made to enhance the performance of the bacterial community by introducing bulking agents and external temperature sources. Surfactants may be helpful in promoting bacteria-hydrocarbon contact and may be particularly useful for mobilization of free-phase hydrocarbons. 7 refs

  14. Application of expert system in measurement instrument instrumentation's maintenance on a acquisition system

    International Nuclear Information System (INIS)

    Pinastiko, W.S.

    1997-01-01

    Expert system is a part of the artificial intelligence, a solution software for complicated problems, which solving the problems need experiences and knowledge. This paper discussed about the research's result, that is a design of expert system to help instrumentation's maintenance on a data acquisition system. By using application of expert system, the system can do health monitoring, automatic trouble trouble tracing ang gives advise toward the trouble. this instrumentation's maintenance system is a tool which has an analytic and inference ability toward th trouble. This smart system is a very useful tool to get a good data acquisition system quality. the model system also can be developed to be a specific application as a remote instrumentation's management system

  15. A Light-Weight Instrumentation System Design

    International Nuclear Information System (INIS)

    Kidner, Ronald

    1999-01-01

    To meet challenging constraints on telemetry system weight and volume, a custom Light-Weight Instrumentation System was developed to collect vehicle environment and dynamics on a short-duration exo-atmospheric flight test vehicle. The total telemetry system, including electronics, sensors, batteries, and a 1 watt transmitter weighs about 1 kg. Over 80 channels of measurement, housekeeping, and telemetry system diagnostic data are transmitted at 128 kbps. The microcontroller-based design uses the automotive industry standard Controller Area Network to interface with and support in-flight control fimctions. Operational parameters are downloaded via a standard asynchronous serial communications intefiace. The basic design philosophy and functionality is described here

  16. New type of radiation instrumentation system

    International Nuclear Information System (INIS)

    Matsuo, Keichi; Takaoka, Akira; Uranaka, Yasuo

    2000-01-01

    The Mitsubishi Electric Co., Ltd. developed a radiation instrumentation system introduced some recent techniques such as computation technique, network technique and so on into conventional radiation detection aiming at general market except power generation company. In a conventional system, a detector and an operation processing board was placed at a field and center, respectively, and a feeble pulse signal from the detector was transferred to the operation processing board. Then, on establishment of cables, detectors and operation processing board, it is essential to carry out engineering planning and field engineering conceiving on noise countermeasure. Noise resistance of the new type of radiation instrumentation system, not by adding operation processing function and network interface function into a detector unit in a field to transfer feeble signal, but by transferring testing result as a digital signal. And, noise removing function capable of selectively passing only signal pulse waveform from the detector to judge its signal waveform was also added to a detector unit in the field, to carry out a thoroughly removing noise. In addition, by connecting between each apparatus placed at the field with a network a system capable of reducing some cable engineering could be executed. Here were introduced on abstract of this new type of radiation instrumentation system and on noise removing function of its characteristics. (G.K.)

  17. Cold Vacuum Drying Instrument Air System Design Description. System 12

    International Nuclear Information System (INIS)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-01-01

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed and Instrument Air PandID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid PandID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility

  18. Signal conditioning circuitry design for instrumentation systems.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Cory A.

    2012-01-01

    This report details the current progress in the design, implementation, and validation of the signal conditioning circuitry used in a measurement instrumentation system. The purpose of this text is to document the current progress of a particular design in signal conditioning circuitry in an instrumentation system. The input of the signal conditioning circuitry comes from a piezoresistive transducer and the output will be fed to a 250 ksps, 12-bit analog-to-digital converter (ADC) with an input range of 0-5 V. It is assumed that the maximum differential voltage amplitude input from the sensor is 20 mV with an unknown, but presumably high, sensor bandwidth. This text focuses on a specific design; however, the theory is presented in such a way that this text can be used as a basis for future designs.

  19. Multipotenciostat System Based on Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Arrieta-Almario Álvaro Angel

    2014-07-01

    Full Text Available To carry out this project an electronic multichannel system of electrochemical measurement or multipotenciostat was developed. It is based on the cyclic voltammetry measurement technique, controlled by a computer that monitors, by means of an electronic circuit, both the voltage generated from the Pc and supplied to an electrolytic cell, and the current that flows through the electrodes of it. To design the application software and the user interface, Virtual Instrumentation was used. On the other hand, to perform the communication between the multipotenciostat circuit and the designed software, the National Instruments NI9263 and NI9203 acquisition modules were used. The system was tested on a substance with a known REDOX property, as well as to discriminate and classify some samples of coffee.

  20. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  1. An electromechanical material testing system for in situ electron microscopy and applications.

    Science.gov (United States)

    Zhu, Yong; Espinosa, Horacio D

    2005-10-11

    We report the development of a material testing system for in situ electron microscopy (EM) mechanical testing of nanostructures. The testing system consists of an actuator and a load sensor fabricated by means of surface micromachining. This previously undescribed nanoscale material testing system makes possible continuous observation of the specimen deformation and failure with subnanometer resolution, while simultaneously measuring the applied load electronically with nanonewton resolution. This achievement was made possible by the integration of electromechanical and thermomechanical components based on microelectromechanical system technology. The system capabilities are demonstrated by the in situ EM testing of free-standing polysilicon films, metallic nanowires, and carbon nanotubes. In particular, a previously undescribed real-time instrumented in situ transmission EM observation of carbon nanotubes failure under tensile load is presented here.

  2. A multimodal instrument for real-time in situ study of ultrasound and cavitation mediated drug delivery.

    Science.gov (United States)

    Bian, Shuning; Seth, Anjali; Daly, Dan; Carlisle, Robert; Stride, Eleanor

    2017-03-01

    The development of a multimodal instrument capable of real-time in situ measurements of cavitation activity and effect in tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments is described here. The instrument features an acoustic arm that can expose phantoms to high-intensity focused-ultrasound while measuring cavitation activity and an optical arm that monitors cavitation effect using confocal microscopy. This combination of modalities allows real-time in situ characterisation of drug delivery in tissue and tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments. A representative result, obtained with a tissue mimicking phantom and acoustically activated droplets, is presented here as a demonstration of the instrument's capabilities and potential applications.

  3. CARMENES instrument control system and operational scheduler

    Science.gov (United States)

    Garcia-Piquer, Alvaro; Guàrdia, Josep; Colomé, Josep; Ribas, Ignasi; Gesa, Lluis; Morales, Juan Carlos; Pérez-Calpena, Ana; Seifert, Walter; Quirrenbach, Andreas; Amado, Pedro J.; Caballero, José A.; Reiners, Ansgar

    2014-07-01

    The main goal of the CARMENES instrument is to perform high-accuracy measurements of stellar radial velocities (1m/s) with long-term stability. CARMENES will be installed in 2015 at the 3.5 m telescope in the Calar Alto Observatory (Spain) and it will be equipped with two spectrographs covering from the visible to the near-infrared. It will make use of its near-IR capabilities to observe late-type stars, whose peak of the spectral energy distribution falls in the relevant wavelength interval. The technology needed to develop this instrument represents a challenge at all levels. We present two software packages that play a key role in the control layer for an efficient operation of the instrument: the Instrument Control System (ICS) and the Operational Scheduler. The coordination and management of CARMENES is handled by the ICS, which is responsible for carrying out the operations of the different subsystems providing a tool to operate the instrument in an integrated manner from low to high user interaction level. The ICS interacts with the following subsystems: the near-IR and visible channels, composed by the detectors and exposure meters; the calibration units; the environment sensors; the front-end electronics; the acquisition and guiding module; the interfaces with telescope and dome; and, finally, the software subsystems for operational scheduling of tasks, data processing, and data archiving. We describe the ICS software design, which implements the CARMENES operational design and is planned to be integrated in the instrument by the end of 2014. The CARMENES operational scheduler is the second key element in the control layer described in this contribution. It is the main actor in the translation of the survey strategy into a detailed schedule for the achievement of the optimization goals. The scheduler is based on Artificial Intelligence techniques and computes the survey planning by combining the static constraints that are known a priori (i.e., target

  4. Research on Web-Based Networked Virtual Instrument System

    International Nuclear Information System (INIS)

    Tang, B P; Xu, C; He, Q Y; Lu, D

    2006-01-01

    The web-based networked virtual instrument (NVI) system is designed by using the object oriented methodology (OOM). The architecture of the NVI system consists of two major parts: client-web server interaction and instrument server-virtual instrument (VI) communication. The web server communicates with the instrument server and the clients connected to it over the Internet, and it handles identifying the user's name, managing the connection between the user and the instrument server, adding, removing and configuring VI's information. The instrument server handles setting the parameters of VI, confirming the condition of VI and saving the VI's condition information into the database. The NVI system is required to be a general-purpose measurement system that is easy to maintain, adapt and extend. Virtual instruments are connected to the instrument server and clients can remotely configure and operate these virtual instruments. An application of The NVI system is given in the end of the paper

  5. Sub-assembly accident protection instrumentation systems

    International Nuclear Information System (INIS)

    Vaughan, G.J.; Lunt, A.R.W.; Evans, N.J.; Lawrence, L.A.J.

    1982-01-01

    The possibility of an incident in a sub-assembly progressing to the stage at which the whole core may be at hazard has to be guarded against. It is proposed that for CDFR specific instrumentation will be provided to protect against this incident. Three such systems are described, these are: Acoustic Boiling Noise Detection, Burst Pin Detection and Individual Sub-Assembly Thermocouple (ISAT) monitoring. In the ISAT case, multiplexers and microprocessors are employed, using novel techniques to ensure failure-to-safety. The role of these systems and the implementation of them in the reactor design are also considered. It is concluded that sufficient protection can be provided for both core and breeder sub-assemblies

  6. Advanced instrumentation for Solar System gravitational physics

    Science.gov (United States)

    Peron, Roberto; Bellettini, G.; Berardi, S.; Boni, A.; Cantone, C.; Coradini, A.; Currie, D. G.; Dell'Agnello, S.; Delle Monache, G. O.; Fiorenza, E.; Garattini, M.; Iafolla, V.; Intaglietta, N.; Lefevre, C.; Lops, C.; March, R.; Martini, M.; Nozzoli, S.; Patrizi, G.; Porcelli, L.; Reale, A.; Santoli, F.; Tauraso, R.; Vittori, R.

    2010-05-01

    The Solar System is a complex laboratory for testing gravitational physics. Indeed, its scale and hierarchical structure make possible a wide range of tests for gravitational theories, studying the motion of both natural and artificial objects. The usual methodology makes use of tracking information related to the bodies, fitted by a suitable dynamical model. Different equations of motion are provided by different theories, which can be therefore tested and compared. Future exploration scenarios show the possibility of placing deep-space probes near the Sun or in outer Solar System, thereby extending the available experimental data sets. In particular, the Earth-Moon is the most accurately known gravitational three-body laboratory, which is undergoing a new, strong wave of research and exploration (both robotic and manned). In addition, the benefits of a synergetic study of planetary science and gravitational physics are of the greatest importance (as shown by the success of the Apollo program), especially in the Earth-Moon, Mars-Phobos, Jovian and Saturnian sub-suystems. This scenarios open critical issues regarding the quality of the available dynamical models, i.e. their capability of fitting data without an excessive number of empirical hypotheses. A typical case is represented by the non-gravitational phenomena, which in general are difficult to model. More generally, gravitation tests with Lunar Laser Ranging, inner or outer Solar System probes and the appearance of the so-called 'anomalies'(like the one indicated by the Pioneers), whatever their real origin (either instrumental effects or due to new physics), show the necessity of a coordinated improvement of tracking and modelization techniques. A common research path will be discussed, employing the development and use of advanced instrumentation to cope with current limitations of Solar System gravitational tests. In particular, the use of high-sensitivity accelerometers, combined with microwave and laser

  7. Instrumentation of dynamic gas pulse loading system

    Energy Technology Data Exchange (ETDEWEB)

    Mohaupt, H.

    1992-04-14

    The overall goal of this work is to further develop and field test a system of stimulating oil and gas wells, which increases the effective radius of the well bore so that more oil can flow into it, by recording pressure during the gas generation phase in real time so that fractures can be induced more predictably in the producing formation. Task 1: Complete the laboratory studies currently underway with the prototype model of the instrumentation currently being studied. Task 2: Perform field tests of the model in the Taft/Bakersfield area, utilizing operations closest to the engineers working on the project, and optimize the unit for various conditions encountered there. Task 3: Perform field test of the model in DGPL jobs which are scheduled in the mid-continent area, and optimize the unit for downhole conditions encountered there. Task 4: Analyze and summarize the results achieved during the complete test series, documenting the steps for usage of downhole instrumentation in the field, and compile data specifying use of the technology by others. Task 5: Prepare final report for DOE, and include also a report on the field tests completed. Describe and estimate the probability of the technology being commercialized and in what time span. The project has made substantial technical progress, though we are running about a month behind schedule. Expenditures are in line with the schedule. Increased widespread interest in the use of DGPL stimulation has kept us very busy. The computer modeling and test instrumentation developed under this program is already being applied to commercial operations.

  8. In Situ Identification of Mineral Resources with an X-Ray-Optical "Hands-Lens" Instrument

    Science.gov (United States)

    Marshall, J.; Koppel, L.; Bratton, C.; Metzger, E.; Hecht, M.

    1999-09-01

    so forth. These data can immediately distinguish sedimentary from igneous rocks, for example, and can thus eliminate geochemical or mineral ambiguities arising, say between arkose and granite. It would be important to know if the clay being analyzed was part of a uniform varve deposit laid down in a quiescent lake, or the matrix of a megabreccia diamictite deposited as a catastrophic impact ejecta blanket. The unique design of the instrument, which combines Debye-Scherrer geometry with elements of standard goniometry, negates the need for sample preparation of any kind, and thus negates the need for power-hungry and mechanically-complex sampling systems that would have to chip, crush, sieve, and mount the sample for x-ray analysis. Instead, the instrument is simply rested on the sample surface of interest (like a hand lens); the device can interrogate rough rock surfaces, coarse granular material, or fine rock flour. A breadboard version of the instrument has been deployed from the robotic arm of the Marsokhod rover in field trials at NASA Ames, where large vesicular boulders were x-rayed to demonstrate the functionality of the instrument design, and the ability of such a device to comply with constraints imposed by a roving platform. Currently under development is a flight prototype concept of this instrument that will weigh 0.3 kg, using about 4500 J of energy per sample analysis. It requires about 5 min. for XRD analysis, and about 30 min. for XRF interrogation. Its small mass and rugged design make it ideal for deployment on small rovers of the type currently envisaged for the exploration of Mars (e.g., Sojourner-scale platforms). The design utilizes a monolithic P-N junction photodiode pixel array for XRD, a Si PIN photodiode/avalanche photodiode system for XRF, and an endoscopic imaging camera system unobtrusively embedded between the detectors and the x-ray source (the endoscope with its board-mounted camera can be adapted for IR light in addition to visible

  9. Instrumentation for in situ sampling and analysis of compounds of interest to Astrobiology in the lower atmosphere and surface of Titan

    Science.gov (United States)

    Holland, Paul M.; Kojiro, Daniel R.; Stimac, Robert; Kaye, William; Takeuchi, Nori

    2006-01-01

    Instrumentation for exploration of the solar system will require new enabling technology for in situ sample acquisition and analysis of pre-biotic chemistry in extreme planetary environments, such as that encountered at the surface of Titan. The potential use of balloon aero-rovers for Titan places special emphasis on the importance of miniaturization, low power and low usage of consumables. To help meet this need, we are developing a miniature gas chromatograph coupled with a new Mini-Cell ion mobility spectrometer (GC-IMS), and one of us (PMH) has begun development work on a miniaturized cryogenic inlet system with sampling probes for Titan. This instrumentation, and its approach for meeting measurement needs for the analysis of prebiotic chemistry on Titan, will be discussed.

  10. Instrument air system - Aging impact on system availability

    International Nuclear Information System (INIS)

    Villaran, M.; Subudhi, M.

    1989-01-01

    As part of ongoing efforts to understand and manage the effects of aging in nuclear power plants, an aging assessment was performed for the Instrument Air (IA) system, a system that has been the subject of much scrutiny in recent years. Despite its non-safety classification, instrument air has been a factor in a number of potentially serious events. This report presents the results of the assessment and discusses the impact of instrument air system aging on system availability and plant safety. This work was performed for the US Nuclear Regulatory Commission (NRC) as part of the Nuclear Plant Aging Research (NPAR) program. To perform the complex task of analyzing an entire system, the Aging and Life Extension Assessment Program (ALEAP) System Level Plan was developed by Brookhaven National Laboratory and applied successfully in previous system aging studies. The work presented herein was performed using two parallel work paths, as described in the ALEAP plant. One path used deterministic techniques to assess the impact of aging on compressed air system performance, while the second path used probabilistic methods. Results from both paths then were used to characterize aging in the instrument air system. Some conclusions from this work are: compressors, air system valves, and air dryers were found to make up the majority of failures; the effectiveness and quantity of preventive maintenance devoted to a component significantly affected the amount of failures experienced; review of compressed air system designs and studies using a PRA-based system model revealed that the redundancy of key components (compressors, dryers, IA/SA crossconnect valve) was an important factor in system availability; total loss of air events are uncommon

  11. Rotary mode system initial instrument calibration

    International Nuclear Information System (INIS)

    Johns, B.R.

    1994-01-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files

  12. Development of Interactive Monitoring System for Neutron Scattering Instrument

    Energy Technology Data Exchange (ETDEWEB)

    So, Ji Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Neutron scattering instruments in HANARO research reactor have been contributed to various fields of basic science and material engineering. These instruments are open to publics and researchers can apply beam-time and do experiments with instrument scientists. In most cases, these instruments run for several weeks without stopping, and therefore instrument scientist wants to see the instrument status and receive information if the instruments have some problem. This is important for the safety. However, it is very hard to get instrument information outside of instruments. Access from external site is strongly forbidden in the institute due to the network safety, I developed another way to send instrument status information using commercial short messaging service(SMS). In this presentation, detailed features of this system will be shown. As a prototype, this system is being developed for the single instrument: Disk-chopper time-of-flight instruments (DC-TOF). I have successfully developed instruments and operate for several years. This information messaging system can be used for other neutron scattering instruments.

  13. Nanoparticles laden in situ gelling system for ocular drug targeting

    Directory of Open Access Journals (Sweden)

    Divya Kumar

    2013-01-01

    Full Text Available Designing an ophthalmic drug delivery system is one of the most difficult challenges for the researchers. The anatomy and physiology of eye create barriers like blinking which leads to the poor retention time and penetration of drug moiety. Some conventional ocular drug delivery systems show shortcomings such as enhanced pre-corneal elimination, high variability in efficiency, and blurred vision. To overcome these problems, several novel drug delivery systems such as liposomes, nanoparticles, hydrogels, and in situ gels have been developed. In situ-forming hydrogels are liquid upon instillation and undergo phase transition in the ocular cul-de-sac to form viscoelastic gel and this provides a response to environmental changes. In the past few years, an impressive number of novel temperature, pH, and ion-induced in situ-forming systems have been reported for sustain ophthalmic drug delivery. Each system has its own advantages and drawbacks. Thus, a combination of two drug delivery systems, i.e., nanoparticles and in situ gel, has been developed which is known as nanoparticle laden in situ gel. This review describes every aspects of this novel formulation, which present the readers an exhaustive detail and might contribute to research and development.

  14. In-situ trainable intrusion detection system

    Energy Technology Data Exchange (ETDEWEB)

    Symons, Christopher T.; Beaver, Justin M.; Gillen, Rob; Potok, Thomas E.

    2016-11-15

    A computer implemented method detects intrusions using a computer by analyzing network traffic. The method includes a semi-supervised learning module connected to a network node. The learning module uses labeled and unlabeled data to train a semi-supervised machine learning sensor. The method records events that include a feature set made up of unauthorized intrusions and benign computer requests. The method identifies at least some of the benign computer requests that occur during the recording of the events while treating the remainder of the data as unlabeled. The method trains the semi-supervised learning module at the network node in-situ, such that the semi-supervised learning modules may identify malicious traffic without relying on specific rules, signatures, or anomaly detection.

  15. EM TASK 24 - DEVELOPMENT OF AN IN SITU INSTRUMENT FOR MEASURING MERCURY IN A GAS STREAM

    International Nuclear Information System (INIS)

    Laudal, Dennis L.

    2001-01-01

    As part of its overall Environmental Management Program, the U.S. Department of Energy (DOE) has developed thermal and incineration processes for treating hazardous mixed wastes. These mixed wastes often contain mercury that is released into the atmosphere during the incineration process. The U.S. Environmental Protection Agency (EPA), as well as many states, clearly views mercury emissions from incinerators and combustion systems as a potential human health problem (1). Although validated batch measurement methods such as EPA Method 29, the Ontario Hydro mercury speciation method, and EPA Method 101A exist for total and specialted mercury, they are difficult and costly to perform. In addition, the data are not available for use until several days later. Continuous emission monitors (CEMs) are a very attractive option because the data are in near real-time, allowing the data to be used as feedback control for mercury control strategies. Also, a properly designed analyzer should require minimal operator input. However, based on the current state of the art, mercury CEMs are not without problems, as demonstrated in recent field tests (2). In addition, they are often bulky and costly to purchase. Sensor Research and Development Corporation (SRD) was contracted by DOE's National Energy Technology Laboratory (formerly the Federal Energy Technology Center [FETC]) to develop a prototype instrument for thermal treatment process continuous emission monitoring applications. The work by SRD for DOE on the mercury CEM was conducted under two different contracts. Work under the first contract began October 1, 1997, and ended June 2000, with a second contract continuing until June 2001. The SRD process has the potential to be the basis for a very low-cost mercury CEM. The initial cost estimates provided by SRD are an order of magnitude lower than any other proposed mercury CEM. Although the instrument will be low-cost, it still has the potential to detect low limits of mercury

  16. Nuclear electronic instrument systems using the Harwell 6000 series

    International Nuclear Information System (INIS)

    Seymour, F.D.; Snelling, G.F.; Hawthorn, I.

    1980-01-01

    This report describes some of the more recent equipment designed by the Systems Instrumentation Unit (AERE, Harwell), in the Harwell 6000 modular format. The units include: Laboratory Instruments (alpha monitors, beta-gamma detectors, spectrometers, automatic sample changer systems, automated counting laboratory systems, low power systems). Environmental Monitors (nuclear plant monitor, air monitor, sea bed monitor). Process Instruments (plutonium waste control, x-ray fluorescence monitor, process monitor, beam current monitor, effluent monitors). (U.K.)

  17. Instrumentation control system in nuclear power plant

    International Nuclear Information System (INIS)

    Hanai, Koi; Tai, Ichiro.

    1982-01-01

    Purpose: To improve the reliability of instrumentation control system in a nuclear power plant by using an optical fiber cable as a transmission path between a multiplexer and a central control room to thereby eliminate noises resulted from electromagnetic inductions or the likes. Constitution: Signals from neutron detectors are sent by way of ceramic-insulated cables to pre-amplifiers disposed outside of the pressure vessel of a nuclear reactor, converted into voltage pulse signals and then sent by way of coaxial cables to a multiplexer. The multiplexer receives a plurality of voltage pulse signals corresponding to the neutron detectors respectively, converts them into a time-shared electric signal train and sends it to an optical pulse transmitter. The transmitter converts the supplied signals into an optical pulse signal train corresponding to the electric signal train from the multiplexer and sends it by way of an optical fiber cable to an optical pulse receiver disposed in a central control room. (Kawakami, Y.)

  18. Designing communication and remote controlling of virtual instrument network system

    Science.gov (United States)

    Lei, Lin; Wang, Houjun; Zhou, Xue; Zhou, Wenjian

    2005-01-01

    In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful.

  19. Designing communication and remote controlling of virtual instrument network system

    International Nuclear Information System (INIS)

    Lei Lin; Wang Houjun; Zhou Xue; Zhou Wenjian

    2005-01-01

    In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful

  20. Augmenting traditional instruments with a motion capture system

    DEFF Research Database (Denmark)

    Götzen, Amalia De; Vidolin, Alvise; Bernardini, Nicola

    2013-01-01

    This paper describes some composition works where the real instruments have been augmented through a motion capture system (Phasespace). While playing his instrument in the traditional way, the player is also controlling some other sound effects by moving his hands: the instrument becomes totally...

  1. Instrumentation for environmental monitoring in biological systems

    International Nuclear Information System (INIS)

    Amer, N.M.; Graven, R.M.; Budnitz, R.J.; Mack, D.A.

    1975-01-01

    A brief review of the status of instrumentation for monitoring environmental pollutants is given. Pollutants are divided into six broad categories: trace elements, pesticides and herbicides, ionizing radiation and radionuclides, asbestos and other microparticulates, and gaseous pollutants. (U.S.)

  2. The nuclear instrumentation system of the French 1400 MWe reactors

    International Nuclear Information System (INIS)

    Bourgerette, A.; Mauduit, J.P.

    1993-01-01

    The nuclear instrumentation systems in power reactors in France have made considerable advances thanks to technological progress. The appearance of an integrated digital protection system (SPIN) and the extension of digital techniques have considerably improved performance and operating flexibility. Working on the basis of technology developed jointly with the Nuclear Electronics and Instrumentation Department at the French Atomic Energy Commission (CEA), Framatome and Merlin Gerin have designed the new nuclear instrumentation system for 1400 MW reactors. (authors). 4 figs

  3. Update on Development of the Potassium-Argon Laser Experiment (KArLE) Instrument for In Situ Geochronology

    Science.gov (United States)

    Cohen, Barbara A.; Li, Z.-H.; Miller, J. S.; Brinckerhoff, W. B.; Clegg, S. M.; Mahaffy, P. R.; Swindle, T. D.; Wiens, R. C.

    2013-01-01

    Absolute dating of planetary samples is an essential tool to establish the chronology of geological events, including crystallization history, magmatic evolution, and alteration. We are addressing this challenge by developing the Potassium (K) -- Argon Laser Experiment (KArLE), building on previous work to develop a K-Ar in situ instrument. KArLE ablates a rock sample, determines the K in the plasma state using laser-induced breakdown spectroscopy (LIBS), measures the liberated Ar using quadrupole mass spectrometry (QMS), and relates the two by the volume of the ablated pit using laser confocal microscopy (LCM). Our goal is for the KArLE instrument to be capable of determining the age of several kinds of planetary samples to address a wide range of geochronolgy problems in planetary science.

  4. Instrumentation for Basic Research in Communication and Hearing Protection Systems

    National Research Council Canada - National Science Library

    Ray, Laura

    2004-01-01

    .... The instrumentation provided by this grant consists of an Artificial Head Measurement System, a Low Frequency Acoustic Test Cell, a vibration isolation table, and digital signal processing equipment...

  5. Radon-daughter chamber instrumentation system reference manual

    International Nuclear Information System (INIS)

    Showalter, R.; Johnson, L.

    1985-01-01

    The radon-daughter chamber instrumentation system collects environmental data from the radon-daughter chamber. These data are then recorded on a Tandberg system tape cartridge and transmitted to the HP-1000 computer for processing. Generators which inject radon and condensation nuclei into the chamber are also included with the instrumentation system

  6. Instrumentation of air conditioning and ventilation system - R-5 project

    International Nuclear Information System (INIS)

    Kulkarni, P.B.; Naik, C.D.; Narasingha Rao, S.N.

    1977-01-01

    A detailed account of instrumentation proposed for airconditioning and ventilation system in the R-5, 100 MW thermal research reactor, under construction is presented. Controls and instrumentation provided in this system are electronic, pneumatic and hydraulic in nature depending on the application. They cater to the accurate operation of the system and maintain the conditions strictly within desired tolerances. (S.K.K.)

  7. CoMA, an instrument for the detailed in-situ analysis of collected cometary particulates

    International Nuclear Information System (INIS)

    Kissel, J.; Fechtig, H.; Jessberger, E.K.; Krueger, F.R.; Niemczyk, N.; Schaefer, G.; Zscheeg, H.

    1988-01-01

    The proposal for CoMA, a pulsed time-of-flight SIMS instrument to be flown onboard CRAF to rendezvous with a comet, had been accepted by NASA in October 1986. After several attempts it seems that funding by BMFT for the instrument pre-development phase can be obtained. Apart from that we made first essential progress in producing the primary ion pulses from an indium liquid metal ion source. Those pulses are needed to operate CoMA. (orig.)

  8. Portable in situ NaI(Tl) γ spectroscopy system

    International Nuclear Information System (INIS)

    Wang Bairong; Dong Binjiang; Zeng Liping; Shen Tingyun

    2000-01-01

    The author describes a portable in situ NaI(Tl) γ spectroscopy system, which consists of a NaI (Tl) scintillation detector, an integrative spectroscopy card, a notebook computer and spectroscopy software. The spectrometer addresses applications in environmental or nuclear accident in situ γ spectroscopy measurements, and gives valid quantitative results of radionuclide concentrations per unit volume (Bq/kg) or unit area (Bq/cm 2 ) in the soil and absorbed dose rate in air at 1 m above ground (Gy/h)

  9. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  10. Mineralogical In-situ Investigation of Acid-Sulfate Samples from the Rio Tinto River, Spain, with a Portable XRD/XRF Instrument

    Science.gov (United States)

    Sarrazin, P.; Ming, D. W.; Morris, R. V.; Fernandez-Remolar, D.; Amils, R.; Arvidson, R. E.; Blake, D.; Bish, D. L.

    2007-01-01

    A field campaign was organized in September 2006 by Centro de Astobiologica (Spain) and Washington University (St Louis, USA) for the geological study of the Rio Tinto river bed sediments using a suite of in-situ instruments comprising an ASD reflectance spectrometer, an emission spectrometer, panoramic and close-up color imaging cameras, a life detection system and NASA's CheMin 4 XRD/XRF prototype. The primary objectives of the field campaign were to study the geology of the site and test the potential of the instrument suite in an astrobiological investigation context for future Mars surface robotic missions. The results of the overall campaign will be presented elsewhere. This paper focuses on the results of the XRD/XRF instrument deployment. The specific objectives of the CheMin 4 prototype in Rio Tinto were to 1) characterize the mineralogy of efflorescent salts in their native environments; 2) analyze the mineralogy of salts and oxides from the modern environment to terraces formed earlier as part of the Rio Tinto evaporative system; and 3) map the transition from hematite-dominated terraces to the mixed goethite/salt-bearing terraces where biosignatures are best preserved.

  11. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  12. Final report, Ames Mobile Laboratory Project: The development and operation of instrumentation in a mobile laboratory for in situ, real-time screening and characterization of soils using the laser ablation sampling technique

    International Nuclear Information System (INIS)

    Anderson, M.S.; Braymen, S.D.

    1995-01-01

    The main focus of the Ames Laboratory's Technology Integration Program, TIP, from May 1991 through December 1994 was the development, fabrication, and demonstration of a mobile instrumentation laboratory incorporating rapid in situ sampling systems for safe, rapid, and cost effective soil screening/characterization. The Mobile Demonstration Laboratory for Environmental Screening Technologies, MDLEST, containing the analysis instrumentation, along with surface and subsurface sampling probe prototypes employing the laser ablation sampling technique were chosen to satisfy the particular surface and subsurface soil characterization needs of the various Department of Energy facilities for determining the extent of heavy metal and radionuclide contamination. The MDLEST, a 44 foot long 5th wheel trailer, is easily configured for the analysis instrumentation and sampling system required for the particular site work. This mobile laboratory contains all of the utilities needed to satisfy the operating requirements of the various instrumentation installed. These utilities include, an electric generator, a chilled water system, process gases, a heating/air conditioning system, and computer monitoring and automatic operating systems. Once the MDLEST arrives at the job site, the instrumentation is aligned and calibration is completed, sampling and analysis operations begin. The sample is acquired, analyzed and the results reported in as little as 10 minutes. The surface sampling probe is used in two modes to acquire samples for analysis. It is either set directly on the ground over the site to be sampled, in situ sampling, or in a special fixture used for calibrating the sampling analysis system with standard soil samples, having the samples brought to the MDLEST. The surface sampling probe was used to in situ sample a flat concrete surface (nondestructively) with the ablated sample being analyzed by the instrumentation in the MDLEST

  13. Method and apparatus for continuous fluid leak monitoring and detection in analytical instruments and instrument systems

    Science.gov (United States)

    Weitz, Karl K [Pasco, WA; Moore, Ronald J [West Richland, WA

    2010-07-13

    A method and device are disclosed that provide for detection of fluid leaks in analytical instruments and instrument systems. The leak detection device includes a collection tube, a fluid absorbing material, and a circuit that electrically couples to an indicator device. When assembled, the leak detection device detects and monitors for fluid leaks, providing a preselected response in conjunction with the indicator device when contacted by a fluid.

  14. Cold Vacuum Drying Instrument Air System Design Description (SYS 12)

    Energy Technology Data Exchange (ETDEWEB)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-06-05

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed & Instrument Air P&ID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid P&ID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility.

  15. Design principles for radiological protection instrumentation systems

    International Nuclear Information System (INIS)

    Wells, F.H.; Powell, R.G.

    1981-02-01

    This Code of Practice takes the form of recommendations intended for designers and installers of Radiological Protection Instrumentation, and should also be of value to the newcomer to the R.P.I. field. Topics are discussed under the following headings: outline of R.P.I. requirements, specifying the requirement, satisfying the requirements, (overall design, availability and reliability, information display, human factors, power supplies, manufacture, quality assurance, testing, and cost analysis), supply, location and operation of the equipment, importance of documentation. (U.K.)

  16. In-core instrumentation and in-situ measurement in connection with fuel behaviour. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    The subject of this meeting has been touched on briefly in most of the Specialist's and topical meetings related to fuel behaviour. On the basis of the conclusions and recommendations of these meetings the International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended the Agency to organize a dedicated Specialist's Meeting on the subject. The twenty one papers covered the instrumentation, sensors, methods and computer codes currently used in Material Test Reactor (MTR) and power reactors as well as improved instrumentation and methods. The meeting acknowledged the fast development of fuel modelling and therefore the growing need of dedicated high burnup fuel experiments carried out in MTR reactors on refabricated rods from power reactors. In order to reduce safety margins in power reactors, thus improving economics, the necessity to develop more sophisticated on-line calculations, based on improved sensors, was recognized, although this development is limited by insufficient knowledge of the mechanisms involved. Refs, figs, tabs

  17. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  18. Malaysian Preparation for Nuclear Power Plant Instrumentation and Control System

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Nurfarhana Ayuni Joha; Kamarudin Sulaiman; Izhar Abu Hussin

    2011-01-01

    Instrumentation and Control System is required in Nuclear Power Plant for their safe and effective operation. The system is combination and integrated from detectors, actuators, analog system as well as digital system. Current design of system definitely follows of electronic as well as computer technology, with strictly follow regulation and guideline from local regulator as well as International Atomic Energy Agency. Commercial Off-The-Shelf products are extensively used with specific nucleonic instrumentation. Malaysian experiences depend on Reactor TRIGA PUSPATI Instrumentation and Control, Power Plant Instrumentation and Control as well as Process Control System. However Malaysians have capabilities to upgrade themself from Electronics, Computers, Electrical and Mechanical based. Proposal is presented for Malaysian preparation. (author)

  19. Instrument for x-ray absorption spectroscopy with in situ electrical control characterizations

    International Nuclear Information System (INIS)

    Huang, Chun-Chao; Chang, Shu-Jui; Yang, Chao-Yao; Tseng, Yuan-Chieh; Chou, Hsiung

    2013-01-01

    We report a synchrotron-based setup capable of performing x-ray absorption spectroscopy and x-ray magnetic circular dichroism with simultaneous electrical control characterizations. The setup can enable research concerning electrical transport, element- and orbital-selective magnetization with an in situ fashion. It is a unique approach to the real-time change of spin-polarized electronic state of a material/device exhibiting magneto-electric responses. The performance of the setup was tested by probing the spin-polarized states of cobalt and oxygen of Zn 1-x Co x O dilute magnetic semiconductor under applied voltages, both at low (∼20 K) and room temperatures, and signal variations upon the change of applied voltage were clearly detected

  20. Instrumentation for in situ flow electrochemical Scanning Transmission X-ray Microscopy (STXM)

    Science.gov (United States)

    Prabu, Vinod; Obst, Martin; Hosseinkhannazer, Hooman; Reynolds, Matthew; Rosendahl, Scott; Wang, Jian; Hitchcock, Adam P.

    2018-06-01

    We report the design and performance of a 3-electrode device for real time in situ scanning transmission X-ray microscopy studies of electrochemical processes under both static (sealed, non-flow) conditions and with a continuous flow of electrolytes. The device was made using a combination of silicon microfabrication and 3D printing technologies. The performance is illustrated by results of a study of copper deposition and stripping at a gold working electrode. X-ray absorption spectromicroscopy at the Cu 2p edge was used to follow the evolution as a function of potential and time of the spatial distributions of Cu(0) and Cu(i) species electro-deposited from an aqueous solution of copper sulphate. The results are interpreted in terms of competing mechanisms for the reduction of Cu(ii).

  1. Airborne In-Situ Measurements of Formaldehyde Over California: First Results from the Compact Formaldehyde Fluorescence Experiment (COFFEE) Instrument

    Science.gov (United States)

    Marrero, Josette Elizabeth; Saint Clair, Jason; Yates, Emma L.; Gore, Warren; Swanson, Andrew K.; Iraci, Laura T.; Hanisco, Thomas F.

    2016-01-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. Results of the first COFFEE science flights preformed over the California's Central Valley will be presented. Boundary layer measurements and vertical profiles in the tropospheric column will both be included. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  2. A Secure System Architecture for Measuring Instruments in Legal Metrology

    Directory of Open Access Journals (Sweden)

    Daniel Peters

    2015-03-01

    Full Text Available Embedded systems show the tendency of becoming more and more connected. This fact combined with the trend towards the Internet of Things, from which measuring instruments are not immune (e.g., smart meters, lets one assume that security in measuring instruments will inevitably play an important role soon. Additionally, measuring instruments have adopted general-purpose operating systems to offer the user a broader functionality that is not necessarily restricted towards measurement alone. In this paper, a flexible software system architecture is presented that addresses these challenges within the framework of essential requirements laid down in the Measuring Instruments Directive of the European Union. This system architecture tries to eliminate the risks general-purpose operating systems have by wrapping them, together with dedicated applications, in secure sandboxes, while supervising the communication between the essential parts and the outside world.

  3. Remote diagnosis system for control and instrumentation systems

    International Nuclear Information System (INIS)

    Ito, Tetsuo; Suzuki, Satoshi; Nagaoka, Yukio.

    1990-01-01

    Control and instrumentation (C and I) systems for nuclear power plants tend to consist of many distributed digital controllers connected with transmission networks. Important parts of the C and I systems are redundantly constructed so that the failure of a component does not readily have a critical effect on the plant operation. It is necessary, however, to localize the faulty component for establishing better availability and maintainability of the plant. To diagnose failure of the C and I systems effectively, a remote diagnosis system is required that diagnoses anomalies of their controllers remotely from a central control room and identifies the fault location. Various fault diagnosis methods that apply artificial intelligence have been proposed for electronic circuits. Their knowledge bases are classified into two categories. One is rule-based knowledge, describing relations between anomaly phenomena and causes. The other is structure-based knowledge, which represents the configuration and functions of diagnosed objects. Though the latter is more suitable for deep inference, it is difficult to use for describing the detailed structure of large-scaled digital C and I systems. Then, a fault diagnosis system was developed that uses both knowledge bases and offers substantial man/machine interface functions for practical use

  4. Long-Lived In-Situ Solar System Explorer (LLISSE)

    Science.gov (United States)

    Kremic, Tibor; Hunter, Gary; Rock, Jennifer

    2017-01-01

    This presentation provides an update on development of the Long-Lived In-situ Solar System Explorer (LLISSE). LLISSE is a small probe being developed to provide long-term measurements of simple but important scientific parameters from the surface of Venus. High level summary of recent activities and progress is provided. LLISSE is a small and completely independent probe for Venus surface applications

  5. Evolution of the VLT instrument control system toward industry standards

    Science.gov (United States)

    Kiekebusch, Mario J.; Chiozzi, Gianluca; Knudstrup, Jens; Popovic, Dan; Zins, Gerard

    2010-07-01

    The VLT control system is a large distributed system consisting of Linux Workstations providing the high level coordination and interfaces to the users, and VME-based Local Control Units (LCU's) running the VxWorks real-time operating system with commercial and proprietary boards acting as the interface to the instrument functions. After more than 10 years of VLT operations, some of the applied technologies used by the astronomical instruments are being discontinued making it difficult to find adequate hardware for future projects. In order to deal with this obsolescence, the VLT Instrumentation Framework is being extended to adopt well established Commercial Off The Shelf (COTS) components connected through industry standard fieldbuses. This ensures a flexible state of the art hardware configuration for the next generation VLT instruments allowing the access to instrument devices via more compact and simpler control units like PC-based Programmable Logical Controllers (PLC's). It also makes it possible to control devices directly from the Instrument Workstation through a normal Ethernet connection. This paper outlines the requirements that motivated this work, as well as the architecture and the design of the framework extension. In addition, it describes the preliminary results on a use case which is a VLTI visitor instrument used as a pilot project to validate the concepts and the suitability of some COTS products like a PC-based PLCs, EtherCAT8 and OPC UA6 as solutions for instrument control.

  6. Seeing the light: Applications of in situ optical measurements for understanding DOM dynamics in river systems (Invited)

    Science.gov (United States)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.; Fleck, J.; Shanley, J. B.; Aiken, G.; Boss, E.; Fujii, R.

    2009-12-01

    A critical challenge for understanding the sources, character and cycling of dissolved organic matter (DOM) is making measurements at the time scales in which changes occur in aquatic systems. Traditional approaches for data collection (daily to monthly discrete sampling) are often limited by analytical and field costs, site access and logistical challenges, particularly for long-term sampling at a large number of sites. The ability to make optical measurements of DOM in situ has been known for more than 50 years, but much of the work on in situ DOM absorbance and fluorescence using commercially-available instruments has taken place in the last few years. Here we present several recent examples that highlight the application of in situ measurements for understanding DOM dynamics in riverine systems at intervals of minutes to hours. Examples illustrate the utility of in situ optical sensors for studies of DOM over short-duration events of days to weeks (diurnal cycles, tidal cycles, storm events and snowmelt periods) as well as longer-term continuous monitoring for months to years. We also highlight the application of in situ optical DOM measurements as proxies for constituents that are significantly more difficult and expensive to measure at high frequencies (e.g. methylmercury, trihalomethanes). Relatively simple DOM absorbance and fluorescence measurements made in situ could be incorporated into short and long-term ecological research and monitoring programs, resulting in advanced understanding of organic matter sources, character and cycling in riverine systems.

  7. Sandia Laboratories technical capabilities: instrumentation and data systems

    International Nuclear Information System (INIS)

    Lundergain, C.D.; Mead, P.L.

    1975-12-01

    This report characterizes the instrumentation and data systems capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  8. A measuring instrument for evaluation of quality systems.

    NARCIS (Netherlands)

    Wagner, C.; Bakker, D.H. de; Groenewegen, P.P.

    1999-01-01

    Objective: To develop an instrument for provider organizations, consumers, purchasers, and policy makers to measure and compare the development of quality systems in provider organizations. Design: Cross-sectional study of provider organizations using a structured questionnaire to survey managers.

  9. Modernization of the Ukrainian NPP instrumentation and control systems

    International Nuclear Information System (INIS)

    Yastrebenetsky, M.

    1998-01-01

    Modernization of many instrumentation and control systems for all type of reactors is under way now in Ukraine. Main principles of modernization, standards that are used for modernization are described in the report. (author)

  10. Modular Architecture for the Deep Space Habitat Instrumentation System

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is focused on developing a continually evolving modular backbone architecture for the Deep Space Habitat (DSH) instrumentation system by integrating new...

  11. Concluding from operating experience to instrumentation and control systems

    International Nuclear Information System (INIS)

    Pleger, H.; Heinsohn, H.

    1997-01-01

    Where conclusions are drawn from operating experience to instrumentation and control systems, two general statements should be made. First: There have been braekdowns, there have also been deficiencies, but in principle operating experience with the instrumentation and control systems of German nuclear power plants has been good. With respect to the debates about the use of modern digital instrumentation and control systems it is safe to say, secondly, that the instrumentation and control systems currently in use are working reliably. Hence, there is no need at present to replace existing systems for reasons of technical safety. However, that time will come. It is a good thing, therefore, that the use of modern digital instrumentation and control systems is to begin in the field of limiting devices. The operating experience which will thus be accumulated will benefit digital instrumentation and control systems in their qualification process for more demanding applications. This makes proper logging of operating experience an important function, even if it cannot be transferred in every respect. All parties involved therefore should see to it that this operating experience is collected in accordance with criteria agreed upon so as to prevent unwanted surprises later on. (orig.) [de

  12. In Situ Analysis of Martian Phyllosilicates Using the Chemin Minerological Instrument on Mars Science Laboratory

    Science.gov (United States)

    Blake, David F.

    2008-01-01

    The CheMin minerological instrument on Mars Science Laboratory (MSL'09) [1] will return quantitive Xray diffraction data (XRD) and quantative X-ray fluorescence data (XRF;14

  13. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  14. Conceptual design for the NSTX Central Instrumentation and Control System

    International Nuclear Information System (INIS)

    Bashore, D.; Oliaro, G.; Roney, P.; Sichta, P.; Tindall, K.

    1997-01-01

    The design and construction phase for the National Spherical Torus Experiment (NSTX) is under way at the Princeton Plasma Physics Laboratory (PPPL). Operation is scheduled to begin on April 30, 1999. This paper describes the conceptual design for the NSTX Central Instrumentation and Control (I and C) System. Major elements of the Central I and C System include the Process Control System, Plasma Control System, Network System, Data Acquisition System, and Synchronization System to support the NSTX experimental device

  15. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  16. In situ conditioning for proton storage ring vacuum systems

    International Nuclear Information System (INIS)

    Blechschmidt, D.

    1978-01-01

    Average pressure and vacuum-stability limit as expected in the presence of a proton beam were measured after in situ treatments such as bakeout under various conditions, argon glow-discharge cleaning and sputter deposition of titanium. Measurements were carried out for test pipes made of stainless steel (untreated, electropolished, or cooled to 77 K), pure titanium and aluminum alloy. The measurement method used to obtain the vacuum-stability limit in the laboratory and in a prototype system is described. The results can be applied also to other systems of different geometry by use of scaling laws. In situ conditioning generally has a stronger influence on vacuum performance than a particular choice of material. Bakeout gives low average pressures and rather good vacuum stability. Glow discharges also increase the vacuum stability but have only a small effect on the static pressure. Coating the beam-pipe wall with titanium by in situ sputtering provides large linear pumping, thus a lower pressure and an extremely good vacuum stability

  17. CAMAC: a standardized modular instrumentation system

    International Nuclear Information System (INIS)

    Michot, Felicia

    1978-01-01

    In view of its modular aspect and its standardization at the international level, the CAMAC system appears as a very interesting system every time that there is a need for fastly constructing an experiment or a mounting in the laboratory or industry. As it can be connected to a computer interface CAMAC may be used for data acquisition, with machine-tools or for industrial process control. The operation mode of said system is discussed in the paper, together with its constituting elements and performance [fr

  18. Modular enrichment measurement system for in-situ enrichment assay

    International Nuclear Information System (INIS)

    Stewart, J.P.

    1976-01-01

    A modular enrichment measurement system has been designed and is in operation within General Electric's Nuclear Fuel Fabrication Facility for the in-situ enrichment assay of uranium-bearing materials in process containers. This enrichment assay system, which is based on the ''enrichment meter'' concept, is an integral part of the site's enrichment control program and is used in the in-situ assay of the enrichment of uranium dioxide (UO 2 ) powder in process containers (five gallon pails). The assay system utilizes a commercially available modular counting system and a collimnator designed for compatability with process container transport lines and ease of operator access. The system has been upgraded to include a microprocessor-based controller to perform system operation functions and to provide data acquisition and processing functions. Standards have been fabricated and qualified for the enrichment assay of several types of uranium-bearing materials, including UO 2 powders. The assay system has performed in excess of 20,000 enrichment verification measurements annually and has significantly contributed to the facility's enrichment control program

  19. Rocket-borne thermal plasma instrument "MIPEX" for the ionosphere D, E layer in-situ measurements

    Science.gov (United States)

    Fang, H. K.; Chen, A. B. C.; Lin, C. C. H.; Wu, T. J.; Liu, K. S.; Chuang, C. W.

    2017-12-01

    In this presentation, the design concepts, performances and status of a thermal plasma particle instrument package "Mesosphere and Ionosphere Plasma Exploration complex (MIPEX)", which is going to be installed onboard a NSPO-funded hybrid rocket, to investigate the electrodynamic processes in ionosphere D, E layers above Taiwan are reported. MIPEX is capable of measuring plasma characteristics including ion temperature, ion composition, ion drift, electron temperature and plasma density at densities as low as 1-10 cm-1. This instrument package consists of an improved retarding potential analyzer with a channel electron multiplier (CEM), a simplified ion drift meter and a planar Langmuir probe. To achieve the working atmospheric pressure of CEM at the height of lower D layer ( 70km), a portable vacuum pump is also placed in the package. A prototype set of the MIPEX has been developed and tested in the Space Plasma Operation Chamber (SPOC) at NCKU, where in ionospheric plasma is generated by back-diffusion plasma sources. A plasma density of 10-106 cm-1, ion temperature of 300-1500 K and electron temperature of 1000-3000K is measured and verified. Limited by the flight platform and the performance of the instruments, the in-situ plasma measurements at the Mesosphere and lower Thermosphere is very challenging and rare. MIPEX is capable of extending the altitude of the effective plasma measurement down to 70 km height and this experiment can provide unique high-quality data of the plasma environment to explore the ion distribution and the electrodynamic processes in the Ionosphere D, E layers at dusk.

  20. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    Science.gov (United States)

    Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schöch, A.; Schuck, T. J.

    2014-03-01

    A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyser (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne operation. It was characterised in the laboratory with respect to instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation, a calibration strategy is described that utilises CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppb for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppb. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately determined and the uncertainty is estimated to be 12.4 ppb. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppb at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

  1. Safety Evaluation of Kartini Reactor Based on Instrumentation System Design

    International Nuclear Information System (INIS)

    Tjipta Suhaemi; Djen Djen Dj; Itjeu K; Johnny S; Setyono

    2003-01-01

    The safety of Kartini reactor has been evaluated based on instrumentation system aspect. The Kartini reactor is designed by BATAN. Design power of the reactor is 250 kW, but it is currently operated at 100 kW. Instrumentation and control system function is to monitor and control the reactor operation. Instrumentation and control system consists of safety system, start-up and automatic power control, and process information system. The linear power channel and logarithmic power channel are used for measuring power. There are 3 types of control rod for controlling the power, i.e. safety rod, shim rod, and regulating rod. The trip and interlock system are used for safety. There are instrumentation equipment used for measuring radiation exposure, flow rate, temperature and conductivity of fluid The system of Kartini reactor has been developed by introducing a process information system, start-up system, and automatic power control. It is concluded that the instrumentation of Kartini reactor has followed the requirement and standard of IAEA. (author)

  2. A mucoadhesive in situ gel delivery system for paclitaxel

    OpenAIRE

    Jauhari, Saurabh; Dash, Alekha K.

    2006-01-01

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at d...

  3. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  4. Safety regulations concerning instrumentation and control systems for research reactors

    International Nuclear Information System (INIS)

    El-Shanshoury, A.I.

    2009-01-01

    A brief study on the safety and reliability issues related to instrumentation and control systems in nuclear reactor plants is performed. In response, technical and strategic issues are used to accomplish instrumentation and control systems safety. For technical issues there are ; systems aspects of digital I and C technology, software quality assurance, common-mode software, failure potential, safety and reliability assessment methods, and human factors and human machine interfaces. The strategic issues are the case-by-case licensing process and the adequacy of the technical infrastructure. The purpose of this work was to review the reliability of the safety systems related to these technical issues for research reactors

  5. CAMAC-controlled calibration system for nuclear reactor instruments

    International Nuclear Information System (INIS)

    McDowell, W.P.; Cornella, R.J.

    1977-01-01

    The hardware and the software which have been developed to implement a nuclear instrument calibration system for the Argonne National Laboratory ZPR-VI and ZPR-IX reactor complex are described. The system is implemented using an SEL-840 computer with its associated CAMAC crates and a hardware interface to generate input parameters and measure the required outputs on the instrument under test. Both linear and logarithmic instruments can be calibrated by the system and output parameters can be measured at various automatically selected values of ac line voltage. A complete report on each instrument is printed as a result of the calibration and out-of-tolerance readings are flagged. Operator interface is provided by a CAMAC-controlled Hazeltine terminal. The terminal display leads the operator through the complete calibration procedure. This computer-controlled system is a significant improvement over previously used methods of calibrating nuclear instruments since it reduces reactor downtime and allows rapid detection of long-term changes in instrument calibration

  6. Development of intelligent system for a thermal analysis instrument

    International Nuclear Information System (INIS)

    Xu Xiaoli; Wu Guoxin; Shi Yongchao

    2005-01-01

    The key techniques for the intelligent analysis instrument developed are proposed. Based on the technique of virtual instrumentation, the intelligent PID control algorithm to control the temperature of thermal analysis instrument is described. The dynamic character and the robust performance of traditional PID controls are improved through the dynamic gain factor, temperature rate change factor, the forecast factor, and the temperature correction factor is introduced. Using the graphic development environment of LabVIEW, the design of system modularization and the graphic display are implemented. By means of multiple mathematical modules, intelligent data processing is realized

  7. Design type testing for digital instrumentation and control systems

    International Nuclear Information System (INIS)

    Bastl, W.; Mohns, G.

    1997-01-01

    The design type qualification of digital safety instrumentation and control is outlined. Experience shows that the concepts discussed, derived from codes, guidelines and standards, achieve useful results. It has likewise become clear that the systematics of design type qualification of the hardware components is also applicable to the software components. Design type qualification of the software, a premiere, could be performed unexpectedly smoothly. The hardware design type qualification proved that the hardware as a substrate of functionality and reliability is an issue that demands full attention, as compared to conventional systems. Another insight is that design qualification of digital instrumentation and control systems must include plant-independent systems tests. Digital instrumentation and control systems simply work very differently from conventional control systems, so that this testing modality is inevitable. (Orig./CB) [de

  8. Use of modern software - based instrumentation in safety critical systems

    International Nuclear Information System (INIS)

    Emmett, J.; Smith, B.

    2005-01-01

    Many Nuclear Power Plants are now ageing and in need of various degrees of refurbishment. Installed instrumentation usually uses out of date 'analogue' technology and is often no longer available in the market place. New technology instrumentation is generally un-qualified for nuclear use and specifically the new 'smart' technology contains 'firmware', (effectively 'soup' (Software of Uncertain Pedigree)) which must be assessed in accordance with relevant safety standards before it may be used in a safety application. Particular standards are IEC 61508 [1] and the British Energy (BE) PES (Programmable Electronic Systems) guidelines EPD/GEN/REP/0277/97. [2] This paper outlines a new instrument evaluation system, which has been developed in conjunction with the UK Nuclear Industry. The paper concludes with a discussion about on-line monitoring of Smart instrumentation in safety critical applications. (author)

  9. Active Sensing System with In Situ Adjustable Sensor Morphology

    Science.gov (United States)

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  10. Active sensing system with in situ adjustable sensor morphology.

    Science.gov (United States)

    Nurzaman, Surya G; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed.

  11. In situ conversion process utilizing a closed loop heating system

    Science.gov (United States)

    Sandberg, Chester Ledlie [Palo Alto, CA; Fowler, Thomas David [Houston, TX; Vinegar, Harold J [Bellaire, TX; Schoeber, Willen Jan Antoon Henri

    2009-08-18

    An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

  12. A Virtual Instrument System for Determining Sugar Degree of Honey

    Directory of Open Access Journals (Sweden)

    Qijun Wu

    2015-01-01

    Full Text Available This study established a LabVIEW-based virtual instrument system to measure optical activity through the communication of conventional optical instrument with computer via RS232 port. This system realized the functions for automatic acquisition, real-time display, data processing, results playback, and so forth. Therefore, it improved accuracy of the measurement results by avoiding the artificial operation, cumbersome data processing, and the artificial error in optical activity measurement. The system was applied to the analysis of the batch inspection on the sugar degree of honey. The results obtained were satisfying. Moreover, it showed advantages such as friendly man-machine dialogue, simple operation, and easily expanded functions.

  13. A Virtual Instrument System for Determining Sugar Degree of Honey.

    Science.gov (United States)

    Wu, Qijun; Gong, Xun

    2015-01-01

    This study established a LabVIEW-based virtual instrument system to measure optical activity through the communication of conventional optical instrument with computer via RS232 port. This system realized the functions for automatic acquisition, real-time display, data processing, results playback, and so forth. Therefore, it improved accuracy of the measurement results by avoiding the artificial operation, cumbersome data processing, and the artificial error in optical activity measurement. The system was applied to the analysis of the batch inspection on the sugar degree of honey. The results obtained were satisfying. Moreover, it showed advantages such as friendly man-machine dialogue, simple operation, and easily expanded functions.

  14. Instrumentation and control of turbine, generator and associated systems

    International Nuclear Information System (INIS)

    Vogtland, U.

    1982-01-01

    The purpose of this presentation is to give some information on Instrumentation and Control (I and C) for turbine-generators, in this case for nuclear application. The I and C scope of supply for such a turbine-generator can be divided as follows: - Closed-loop controls - Turbine stress control systems - Supervisory instrumentation - Protection systems - Open-loop controls. The main systems used for nuclear application are presented by means of examples taken from these a.m. categories. (orig./RW)

  15. A Modular Instrumentation System for NASA's Habitat Demonstration Unit

    Science.gov (United States)

    Rojdev, Kristina; Kennedy, Kriss; Yim, Hester; Wagner, Raymond S.; Hong, Todd; Studor, George; Delaune, Paul

    2010-01-01

    NASA's human spaceflight program is focused on developing technologies to expand the reaches of human exploration and science activities beyond low earth orbit. A critical aspect of living in space or on planetary surfaces is habitation, which provides a safe and comfortable space in which humans can live and work. NASA is seeking out the best option for habitation by exploring several different concepts through the Habitat Demonstration Unit (HDU) project. The purpose of this HDU is to develop a fully autonomous habitation system that enables human exploration of space. One critical feature of the HDU project that helps to accomplish its mission of autonomy is the instrumentation system that monitors key subsystems operating within a Habitat configuration. The following paper will discuss previous instrumentation systems used in analog habitat concepts and how the current instrumentation system being implemented on the HDU1-PEM, or pressurized excursion module, is building upon the lessons learned of those previous systems. Additionally, this paper will discuss the benefits and the limitations of implementing a wireless sensor network (WSN) as the basis for data transport in the instrumentation system. Finally, this paper will address the experiences and lessons learned with integration, testing prior to deployment, and field testing at the JSC rock yard. NASA is developing the HDU1-PEM as a step towards a fully autonomous habitation system that enables human exploration of space. To accomplish this purpose, the HDU project is focusing on development, integration, testing, and evaluation of habitation systems. The HDU will be used as a technology pull, testbed, and integration environment in which to advance NASA's understanding of alternative mission architectures, requirements, and operations concepts definition and validation. This project is a multi-year effort. In 2010, the HDU1-PEM will be in a pressurized excursion module configuration, and in 2011 the

  16. In Situ Modular Waste Retrieval and Treatment System

    International Nuclear Information System (INIS)

    Walker, M.S.

    1996-10-01

    As part of the Comprehensive Environmental Response, Compensation, and Liability Act process from remediation of Waste Area Grouping (WAG 6) at ORNL, a public meeting was held for the Proposed Plan. It was recognized that contaminant releases from WAG 6 posed minimal potential risk to the public and the environment. The US DOE in conjunction with the US EPA and the TDEC agreed to defer remedial action at WAG 6 until higher risk release sites were first remediated. This report presents the results of a conceptual design for an In Situ Modular Retrieval and Treatment System able to excavate, shred, and process buried waste on site, with minimum disturbance and distribution of dust and debris. the system would bring appropriate levels of treatment to the waste then encapsulate and leave it in place. The system would be applicable to areas in which waste was disposed in long trenches

  17. Application of portable in situ UV fluorescence sensors in natural and engineered aquatic systems.

    Science.gov (United States)

    Fox, Bethany; Rushworth, Cathy; Atrridge, John

    2016-04-01

    Natural organic matter (NOM) is ubiquitous throughout aquatic systems. This heterogeneous mixture of organic matter is central for aquatic ecosystems and, both local and global, biogeochemical cycling. Improvements in technology and data analysis has allowed for advances in the understanding and characterisation of aquatic organic matter. However, much of the technological expansions have focussed on benchtop instruments. In recent years, there has been interest in the continued development of portable in situ sensors for monitoring NOM characteristics within a wide range of applications, spanning both natural and engineered systems. The UviLux (Chelsea Technologies Group Ltd., UK) is an in situ portable UV fluorescence sensor that can be configured to monitor a range of NOM in aquatic systems, as well as anthropogenic inputs such as polycyclic aromatic hydrocarbons (PAH) and optical brighteners. Here we will focus on the use of the Tryptophan and CDOM UviLux sensors across a variety of applications in both natural systems, such as rivers and leachate into groundwater, and engineered systems, including drinking water and waste water treatment. Recent work has focused on standardising the fluorescence output across the UviLux range of sensors, reporting data in quinine sulphate units (QSU), which enables the output from two different fluorometers to be directly compared both to each other, and to bench-top data. A key advantage of deploying multiple sensors is the ability to fingerprint the fluorescence, by providing, for example, a Tryptophan/CDOM ratio. From the data collected, the ratio of the different fluorescence regions has been shown to provide more robust in situ data and help identify true temporal variations and patterns across multiple applications and sampling locations.

  18. The beam synchronous timing system for the LEP instrumentation

    International Nuclear Information System (INIS)

    Baribaud, G.; Brahy, D.; Cojan, A.; Momal, F.; Rabany, M.; Saban, R.; Wolles, J.C.

    1990-01-01

    The beam instrumentation group of LEP has constructed a number of detectors distributed around the collider: these instruments are interfaced to approximately 100 VME-based computers which acquire and process data autonomously. In order to ensure the coherence of a measurement and to correlate measurements of different instruments, it is essential that the data are acquired at the same moment on all the systems. The beam synchronous timing system ensures this by broadcasting messages that describe to all instruments the action to be performed. The instructions are guaranteed to arrive at exactly the same moment to all stations around the 27 km circumference by careful compensation of the delay for each station. The heart of the system is a commercial 25 MHz 68020-based VME module coupled to an in-house designed message assembler: these are able to synthesize instructions for up to six different kinds of instruments in a single LEP revolution (89 μs). Each listening station provides the hardware with pulses derived from the incoming message, filters the messages according to the addresses and passes them to real-time tasks which set the hardware or acquire the data. A reverse channel, peripheral station to the control room, allows up to eight different signals to inform the master of locally detected events such as beam loss or high background. Special recovery instructions can then be broadcast. (orig.)

  19. Spectral Aerosol Extinction (SpEx): A New Instrument for In situ Ambient Aerosol Extinction Measurements Across the UV/Visible Wavelength Range

    Science.gov (United States)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; hide

    2015-01-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. In addition, the spectra obtained by SpEx carry more information than can be conveyed by a simple power law fit that is typically defined by the use of Angstrom Exponents. Future improvements aim at lowering detection limits and ruggedizing the instrument for mobile operation.

  20. Tests of in situ formation scenarios for compact multiplanet systems

    Energy Technology Data Exchange (ETDEWEB)

    Schlaufman, Kevin C., E-mail: kschlauf@mit.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-08-01

    Kepler has identified over 600 multiplanet systems, many of which have several planets with orbital distances smaller than that of Mercury. Because these systems may be difficult to explain in the paradigm of core accretion and disk migration, it has been suggested that they formed in situ within protoplanetary disks with high solid surface densities. The strong connection between giant planet occurrence and stellar metallicity is thought to be linked to enhanced solid surface densities in disks around metal-rich stars, so the presence of a giant planet can be a sign of planet formation in a high solid surface density disk. I formulate quantitative predictions for the frequency of long-period giant planets in these in situ models by translating the proposed increase in disk mass into an equivalent metallicity enhancement. I rederive the scaling of giant planet occurrence with metallicity as P{sub gp}=0.05{sub −0.02}{sup +0.02}×10{sup (2.1±0.4)[M/H]}=0.08{sub −0.03}{sup +0.02}×10{sup (2.3±0.4)[Fe/H]} and show that there is significant tension between the frequency of giant planets suggested by the minimum mass extrasolar nebula scenario and the observational upper limits. Consequently, high-mass disks alone cannot explain the observed properties of the close-in Kepler multiplanet systems and therefore migration is still important. More speculatively, I combine the metallicity scaling of giant planet occurrence with small planet occurrence rates to estimate the number of solar system analogs in the Galaxy. I find that in the Milky Way there are perhaps 4 × 10{sup 6} true solar system analogs with an FGK star hosting both a terrestrial planet in the habitable zone and a long-period giant planet companion.

  1. Portable fluorescence lifetime spectroscopy system for in-situ interrogation of biological tissues.

    Science.gov (United States)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Teixeira Rosa, Ramon Gabriel; Salvio, Ana Gabriela; Pratavieira, Sebastião; Kurachi, Cristina

    2017-10-01

    Fluorescence spectroscopy and lifetime techniques are potential methods for optical diagnosis and characterization of biological tissues with an in-situ, fast, and noninvasive interrogation. Several diseases may be diagnosed due to differences in the fluorescence spectra of targeted fluorophores, when, these spectra are similar, considering steady-state fluorescence, others may be detected by monitoring their fluorescence lifetime. Despite this complementarity, most of the current fluorescence lifetime systems are not robust and portable, and not being feasible for clinical applications. We describe the assembly of a fluorescence lifetime spectroscopy system in a suitcase, its characterization, and validation with clinical measurements of skin lesions. The assembled system is all encased and robust, maintaining its mechanical, electrical, and optical stability during transportation, and is feasible for clinical measurements. The instrument response function measured was about 300 ps, and the system is properly calibrated. At the clinical study, the system showed to be reliable, and the achieved spectroscopy results support its potential use as an auxiliary tool for skin diagnostics. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. The strategy for intelligent integrated instrumentation and control system development

    International Nuclear Information System (INIS)

    Kwon, Kee Choon; Ham, Chang Shik

    1995-01-01

    All of the nuclear power plants in Korea are operating with analog instrumentation and control ( I and C) equipment which are increasingly faced with frequent troubles, obsolescence and high maintenance expenses. Electrical and computer technology has improved rapidly in recent years and has been applied to other industries. So it is strongly recommended we adopt modern digital and computer technology to improve plant safety and availability. The advanced I and C system, namely, Integrated Intelligent Instrumentation and Control System (I 3 Cs) will be developed for beyond the next generation nuclear power plant. I 3 CS consists of three major parts, the advanced compact workstation, distributed digital control and protection system including Automatic Start-up/Shutdown Intelligent Control System (ASICS) and the computer-based alarm processing and operator support system, namely, Diagnosis, Response, and operator Aid Management System (DREAMS)

  3. The contribution of instrumentation and control software to system reliability

    International Nuclear Information System (INIS)

    Fryer, M.O.

    1984-01-01

    Advanced instrumentation and control systems are usually implemented using computers that monitor the instrumentation and issue commands to control elements. The control commands are based on instrument readings and software control logic. The reliability of the total system will be affected by the software design. When comparing software designs, an evaluation of how each design can contribute to the reliability of the system is desirable. Unfortunately, the science of reliability assessment of combined hardware and software systems is in its infancy. Reliability assessment of combined hardware/software systems is often based on over-simplified assumptions about software behavior. A new method of reliability assessment of combined software/hardware systems is presented. The method is based on a procedure called fault tree analysis which determines how component failures can contribute to system failure. Fault tree analysis is a well developed method for reliability assessment of hardware systems and produces quantitative estimates of failure probability based on component failure rates. It is shown how software control logic can be mapped into a fault tree that depicts both software and hardware contributions to system failure. The new method is important because it provides a way for quantitatively evaluating the reliability contribution of software designs. In many applications, this can help guide designers in producing safer and more reliable systems. An application to the nuclear power research industry is discussed

  4. CAMAC modular instrumentation system for information processing (ESONE committee document)

    International Nuclear Information System (INIS)

    1969-03-01

    Under the auspices of the ESONE committee, European laboratories have collaborated to define the essential characteristics of a modular instrumentation system. This system will be used online with digital controllers and calculators. It comprises an interconnection system for the transfer of data and commands. The specifications given in this note refer to the standards regarding the mechanical dimensions and the characteristics of the signals necessary to ensure the compatibility between elements developed in different laboratories [fr

  5. Satellite-instrument system engineering best practices and lessons

    Science.gov (United States)

    Schueler, Carl F.

    2009-08-01

    This paper focuses on system engineering development issues driving satellite remote sensing instrumentation cost and schedule. A key best practice is early assessment of mission and instrumentation requirements priorities driving performance trades among major instrumentation measurements: Radiometry, spatial field of view and image quality, and spectral performance. Key lessons include attention to technology availability and applicability to prioritized requirements, care in applying heritage, approaching fixed-price and cost-plus contracts with appropriate attention to risk, and assessing design options with attention to customer preference as well as design performance, and development cost and schedule. A key element of success either in contract competition or execution is team experience. Perhaps the most crucial aspect of success, however, is thorough requirements analysis and flowdown to specifications driving design performance with sufficient parameter margin to allow for mistakes or oversights - the province of system engineering from design inception to development, test and delivery.

  6. In-situ observation system for dual ion irradiation damage

    International Nuclear Information System (INIS)

    Furuno, Shigemi; Hojou, Kiichi; Otsu, Hitoshi; Sasaki, T.A.; Izui, Kazuhiko; Tukamoto, Tetsuo; Hata, Takao.

    1992-01-01

    We have developed an in-situ observation and analysis system during dual ion beam irradiation in an electron microscope. This system consists of an analytical electron microscope of JEM-4000FX type equipped with a parallel EELS and an EDS attachments and linked with two sets of ion accelerators of 40 kV. Hydrogen and helium dual-ion beam irradiation experiments were performed for SiC crystals. The result of dual-ion beam irradiation was compared with those of helium and hydrogen single ion irradiations. It is clearly seen that the dual-ion irradiation has the effect of suppressing bubble formation and growth in comparison with the case of single helium ion irradiation. (author)

  7. The Aspects Of Inventory Controlling Instruments Implementation In The System Of Retail Chains Finance Management

    OpenAIRE

    Nataliya Buratchuk

    2014-01-01

    The article deals with issues of implementation of inventory controlling instruments in the system of retail chains finance management. The author suggests expanded classification of methods and instruments of inventory controlling distinguishing 3 groups of specific instruments: logistic controlling instruments, expenditures and supply chains controlling instruments and inventory special controlling mechanisms. Based on investigation of controlling methods and instruments, the approximate li...

  8. NPP Temelin instrumentation and control system upgrade and verification

    International Nuclear Information System (INIS)

    Ubra, O.; Petrlik, J.

    1998-01-01

    Two units of Ver 1000 type of the Czech nuclear power plant Temelin, which are under construction are being upgraded with the latest instrumentation and control system delivered by WEC. To confirm that the functional design of the new Reactor Control and Limitation System, Turbine Control System and Plant Control System are in compliance with the Czech customer requirements and that these requirements are compatible with NPP Temelin upgraded technology, the verification of the control systems has been performed. The method of transient analysis has been applied. Some details of the NPP Temelin Reactor Control and Limitation System verification are presented.(author)

  9. Development of retrieval, reservation and management system for measuring instruments

    International Nuclear Information System (INIS)

    Tsuda, Kenzo; Ito, Emi.

    1985-08-01

    In order to computerize the lending and management of measuring instruments, at first, the specification of the software was examined, but thereafter, the development was begun. The largest aim of the computerization was the automation and labor saving of the lending works of diverse measuring instruments and the automatic management. From user side, it is desirable to know the specification and the state of use and reservation of measuring instruments and to be able to easily make reservation based on the information. Besides, from management side, it is desirable to know the location and the state of use and reservation of measuring instruments, to immediately prepare for lending and returning, and to automate the recording of lending and returning. So as to satisfy those conditions, the automatic reservation and management system for measuring instruments was developed. At the same time, the means to simply input required data such as specification, names of manufacturers and equipment number was developed. The input of data was carried out for three months from October, 1984, and the system was almost completed in December, 1984. The full scale operation was started in Junuary, 1985. (Kako, I.)

  10. Flight experience with lightweight, low-power miniaturized instrumentation systems

    Science.gov (United States)

    Hamory, Philip J.; Murray, James E.

    1992-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. The purpose of this paper is to report NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs. The paper will describe the data loggers, the sensors, and the hardware and software developed to complete the systems. The paper also describes how the systems were used and covers the challenges encountered to make them work. Examples of raw data and derived results will be shown as well. Finally, future plans for these systems will be discussed.

  11. Implementation of an ultrasonic instrument for simultaneous mixture and flow analysis of binary gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Alhroob, M.; Boyd, G.; Hasib, A.; Pearson, B.; Srauss, M.; Young, J. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, (United States); Bates, R.; Bitadze, A. [School of Physics and Astronomy, University of Glasgow, G12 8QQ, (United Kingdom); Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; Bozza, G.; Crespo-Lopez, O.; DiGirolamo, B.; Favre, G.; Godlewski, J.; Lombard, D.; Zwalinski, L. [CERN, 1211 Geneva 23, (Switzerland); Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09, (France); Deterre, C.; O' Rourke, A. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, (Germany); Doubek, M.; Vacek, V. [Czech Technical University, Technick 4, 166 07 Prague 6, (Czech Republic); Degeorge, C. [Physics Department, Indiana University, Bloomington, IN 47405, (United States); Katunin, S. [B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), 188300 St. Petersburg, (Russian Federation); Langevin, N. [Institut Universitaire de Technologie of Marseille, University of Aix-Marseille, 142 Traverse Charles Susini, 13013 Marseille, (France); McMahon, S. [Rutherford Appleton Laboratory - Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 OQX, (United Kingdom); Nagai, K. [Department of Physics, Oxford University, Oxford OX1 3RH, (United Kingdom); Robinson, D. [Department of Physics and Astronomy, University of Cambridge, (United Kingdom); Rossi, C. [INFN - Genova, Via Dodecaneso 33, 16146 Genova, (Italy)

    2015-07-01

    Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature and pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)

  12. System 80+ instrumentation and controls - certification of a reliable design

    International Nuclear Information System (INIS)

    Matzie, R.A.; Scarola, K.; Turk, R.S.

    1993-01-01

    ABB Combustion Engineering's (ABB) System 80+ advanced light water plant design includes a modern, fully digitized instrumentation and controls complex, Nuplex 80+. This complex incorporates an evolutionary advanced control room, replacing conventional analog instruments with more capable computer driven components. As a result, Nuplex 80+ results in significant improvements in operator information handling and control to enhance plant safety and availability. The design implements features which the U.S. NRC has determined to be acceptable for addressing the potential for common mode failure in software implemented for protective functions. (author)

  13. A Simple Instrumentation System for Large Structure Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Didik R. Santoso

    2010-12-01

    Full Text Available Traditional instrumentation systems used for monitoring vibration of large-scale infrastructure building such as bridges, railway, and others structural building, generally have a complex design. Makes it simple would be very useful both in terms of low-cost and easy maintenance. This paper describes how to develop the instrumentation system. The system is built based on distributed network, with field bus topology, using single-master multi-slave architecture. Master is a control unit, built based on a PC equipped with RS-485 interface. Slave is a sensing unit; each slave was built by integrating a 3-axis vibration sensor with a microcontroller based data acquisition system. Vibration sensor is designed using the main components of a MEMS accelerometer. While the software is developed for two functions: as a control system hardware and data processing. To verify performance of the developed instrumentation system, several laboratory tests have been performed. The result shows that the system has good performance.

  14. Improvements and Revamping of In-Core Instrumentation Systems

    International Nuclear Information System (INIS)

    Garam, Eric De

    1993-01-01

    The results of the improvements done by Fumarate Tia in these domains are really satisfying and it is clear that the problems of leakage existing in the old units on the thermocouples sealing systems and on the seal table of the income instrumentation, cannot exist on the French Units or on the units equipped with Fumarate Tia equipment. At the same time, all the equipment which constitute the Income instrumentation have been improved with the aim of reliability and safety. The equipment used to perform maintenance activities has also been improved to both reduce doses and increase efficiency. The purpose of this paper is to describe the principal improvements and revamping of income instrumentation systems, and to summarize the principal lessons learned from our experience on all designs of PWR. Fumarate Tia, is permanently looking for improving the existing systems of instrumentation with the aim of reduction of the dosimetry during the maintenance services, improvement of the liability and lifetime of the equipment, and of course reduction of the duration of the outages in keeping always the same level of quality

  15. Strategy for the development of EU Test Blanket Systems instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Calderoni, P., E-mail: Pattrick.Calderoni@f4e.europa.eu; Ricapito, I.; Poitevin, Y.

    2013-10-15

    Highlights: • We developed a strategy for the development of instrumentation for EU ITER TBSs. • TBSs instrumentation functions: safety, operation and scientific mission. • Described activities are in support of ITER design review process. -- Abstract: The instrumentation of the HCLL and HCPB Test Blanket System is fundamental in ensuring that ITER safety and operational requirements are satisfied as well as in enabling the scientific mission of the TBM program. It carries out three essential functions: (i) safety, intended as compliance with ITER requirements toward public and workers protection; (ii) system control, intended as compliance with ITER operational requirements and investment protection; and (iii) scientific mission, intended as validating technology and predictive tools for blanket concepts relevant to fusion energy systems. This paper describes the strategy for instrumentation development by providing details of the following five steps to be implemented in procured activities in the short to mid-term (3–4 years): (i) provide mapping of sensors requirements based on critical review of preliminary design data; (ii) develop functional specifications for TBS sensors based on the analysis of operative conditions in the various ITER buildings in which they are located; (iii) assess availability of commercial sensors against developed specifications; (iv) develop prototypes when no available solution is identified; and (v) perform single effect tests for the most critical solicitations and post-test examination of commercial products and prototypes. Examples of technology assessment in two technical areas are included to reinforce and complement the strategy description.

  16. Nuclear instrumentation system operating experience and nuclear instrument testing in the EBR-II

    International Nuclear Information System (INIS)

    Yingling, G.E.; Curran, R.N.

    1980-01-01

    In March of 1972 three wide range nuclear channels were purchased from Gulf Atomics Corporation and installed in EBR-II as a test. The three channels were operated as a test until April 1975 when they became a permanent part of the reactor shutdown system. Also described are the activities involved in evaluating and qualifying neutron detectors for LMFBR applications. Included are descriptions of the ANL Components Technology Division Test Program and the EBR-II Nuclear Instrument Test Facilities (NITF) used for the in-reactor testing and a summary of program test results from EBR-II

  17. Powertrain instrumentation and test systems development, hybridization, electrification

    CERN Document Server

    Paulweber, Michael

    2016-01-01

    The book deals with the increasingly complex test systems for powertrain components and systems giving an overview of the diverse types of test beds for all components of an advanced powertrain focusing on specific topics such as instrumentation, control, simulation, hardware-in-the-loop, automation or test facility management. This book is intended for powertrain (component) development engineers, test bed planners, test bed operators and beginners.

  18. Instrument accuracy in reactor vessel inventory tracking systems

    International Nuclear Information System (INIS)

    Anderson, J.L.; Anderson, R.L.; Morelock, T.C.; Hauang, T.L.; Phillips, L.E.

    1986-01-01

    Instrumentation needs for detection of inadequate core cooling. Studies of the Three Mile Island accident identified the need for additional instrumentation to detect inadequate core cooling (ICC) in nuclear power plants. Industry studies by plant owners and reactor vendors supported the conclusion that improvements were needed to help operators diagnose the approach to or existence of ICC as well as to provide more complete information for operator control of safety injection flow to minimize the consequences of such an accident. In 1980, the US Nuclear Regulatory Commission (NRC) required further studies by the industry and described ICC instrumentation design requirements that included human factors and environmental considerations. On December 10, 1982, NRC issued to Babcock and Wilcox (B and W) licensees orders for Modification of License and transmitted to pressurized water reactor licensees Generic Letter 82-28 to inform them of the revised NRC requirements. The instrumentation requirements include upgraded subcooling margin monitors (SMM), upgraded core exit thermocouples (CET), and installation of a reactor coolant inventory tracking system. NRC Regulatory Guide 1.97, which covers accident monitoring instrumentation, was revised (Rev. 3) to be consistent with the requirements of item II.F.2 of NUREG-0737

  19. Reliability Estimation for Digital Instrument/Control System

    International Nuclear Information System (INIS)

    Yang, Yaguang; Sydnor, Russell

    2011-01-01

    Digital instrumentation and controls (DI and C) systems are widely adopted in various industries because of their flexibility and ability to implement various functions that can be used to automatically monitor, analyze, and control complicated systems. It is anticipated that the DI and C will replace the traditional analog instrumentation and controls (AI and C) systems in all future nuclear reactor designs. There is an increasing interest for reliability and risk analyses for safety critical DI and C systems in regulatory organizations, such as The United States Nuclear Regulatory Commission. Developing reliability models and reliability estimation methods for digital reactor control and protection systems will involve every part of the DI and C system, such as sensors, signal conditioning and processing components, transmission lines and digital communication systems, D/A and A/D converters, computer system, signal processing software, control and protection software, power supply system, and actuators. Some of these components are hardware, such as sensors and actuators, their failure mechanisms are well understood, and the traditional reliability model and estimation methods can be directly applied. But many of these components are firmware which has software embedded in the hardware, and software needs special consideration because its failure mechanism is unique, and the reliability estimation method for a software system will be different from the ones used for hardware systems. In this paper, we will propose a reliability estimation method for the entire DI and C system reliability using a recently developed software reliability estimation method and a traditional hardware reliability estimation method

  20. Reliability Estimation for Digital Instrument/Control System

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yaguang; Sydnor, Russell [U.S. Nuclear Regulatory Commission, Washington, D.C. (United States)

    2011-08-15

    Digital instrumentation and controls (DI and C) systems are widely adopted in various industries because of their flexibility and ability to implement various functions that can be used to automatically monitor, analyze, and control complicated systems. It is anticipated that the DI and C will replace the traditional analog instrumentation and controls (AI and C) systems in all future nuclear reactor designs. There is an increasing interest for reliability and risk analyses for safety critical DI and C systems in regulatory organizations, such as The United States Nuclear Regulatory Commission. Developing reliability models and reliability estimation methods for digital reactor control and protection systems will involve every part of the DI and C system, such as sensors, signal conditioning and processing components, transmission lines and digital communication systems, D/A and A/D converters, computer system, signal processing software, control and protection software, power supply system, and actuators. Some of these components are hardware, such as sensors and actuators, their failure mechanisms are well understood, and the traditional reliability model and estimation methods can be directly applied. But many of these components are firmware which has software embedded in the hardware, and software needs special consideration because its failure mechanism is unique, and the reliability estimation method for a software system will be different from the ones used for hardware systems. In this paper, we will propose a reliability estimation method for the entire DI and C system reliability using a recently developed software reliability estimation method and a traditional hardware reliability estimation method.

  1. Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation

    Directory of Open Access Journals (Sweden)

    A. E. Bedoya-Velásquez

    2018-05-01

    Full Text Available This study focuses on the analysis of aerosol hygroscopic growth during the Sierra Nevada Lidar AerOsol Profiling Experiment (SLOPE I campaign by using the synergy of active and passive remote sensors at the ACTRIS Granada station and in situ instrumentation at a mountain station (Sierra Nevada, SNS. To this end, a methodology based on simultaneous measurements of aerosol profiles from an EARLINET multi-wavelength Raman lidar (RL and relative humidity (RH profiles obtained from a multi-instrumental approach is used. This approach is based on the combination of calibrated water vapor mixing ratio (r profiles from RL and continuous temperature profiles from a microwave radiometer (MWR for obtaining RH profiles with a reasonable vertical and temporal resolution. This methodology is validated against the traditional one that uses RH from co-located radiosounding (RS measurements, obtaining differences in the hygroscopic growth parameter (γ lower than 5 % between the methodology based on RS and the one presented here. Additionally, during the SLOPE I campaign the remote sensing methodology used for aerosol hygroscopic growth studies has been checked against Mie calculations of aerosol hygroscopic growth using in situ measurements of particle number size distribution and submicron chemical composition measured at SNS. The hygroscopic case observed during SLOPE I showed an increase in the particle backscatter coefficient at 355 and 532 nm with relative humidity (RH ranged between 78 and 98 %, but also a decrease in the backscatter-related Ångström exponent (AE and particle linear depolarization ratio (PLDR, indicating that the particles became larger and more spherical due to hygroscopic processes. Vertical and horizontal wind analysis is performed by means of a co-located Doppler lidar system, in order to evaluate the horizontal and vertical dynamics of the air masses. Finally, the Hänel parameterization is applied to experimental data for

  2. Developing a data acquisition system for the Waste Isolation Pilot Plant's in situ tests

    International Nuclear Information System (INIS)

    McIlmoyle, J.T.; Matalucci, R.V.; Ogden, H.C.

    1986-01-01

    The US Department of Energy is developing the Waste Isolation Pilot Plant in southeastern New Mexico as an R and D facility to demonstrate the safe disposal of radioactive wastes from US defense programs. The in situ tests associated with this facility (659 m below the surface) address technical issues of thermal/structural interaction, waste package performance, and plugging and sealing. Data from these tests are collected by a Data Acquisition System (DAS) consisting of two distinct entities that use the IEEE-488 bus for communication. Up to 5000 data channels can be recorded every 4 hr from extensometers, stressmeters, thermocouples, closure gages, and other special gages. The DAS consists of a multitasking and multiuser ModComp computer housed in a surface trailer that converts the data to engineering units, stores the data in raw and converted form, and provides quick-look plots and data listings. The other part of the DAS consists of the seven underground remote enclosed instrument stations (sheds) located near each test room and up to 1800 m from the surface trailer that contains the instruments and signal conditioning to operate and monitor the tests. The ModComp system manages data acquisition and supports concurrently 12 on-line terminals and two dial-up access lines for data access, gage diagnostics, data handling and updating, and software development. Data are currently acquired from over 4000 gages with 15,000 defined measurands; the system can be expanded to 65,534 measurands. 4 refs., 7 figs

  3. Challenges for maintaining the modernization of instrumentation and control systems

    International Nuclear Information System (INIS)

    Rojas, V.

    2014-01-01

    Instrumentation and control system upgrades in nuclear power plants come with some challenges for their maintenance staff. It is important to have a long term modernization plant that derives from specific studies for each system. Training, spares, configuration control and cybersecurity are critical topics to take into account from the beginning of these projects. New system maintenance plans can require a new approach in accordance with the technology. FPGAs (Field Programmable Gate Array) appear as the alternative for the future, mainly in safety systems. (Author)

  4. Human machine interface for research reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Mohd Idris Taib; Izhar Abu Hussin; Zareen Khan Abdul Jalil Khan; Nurfarhana Ayuni Joha

    2010-01-01

    Most present design of Human Machine Interface for Research Reactor Instrumentation and Control System is modular-based, comprise of several cabinets such as Reactor Protection System, Control Console, Information Console as well as Communication Console. The safety, engineering and human factor will be concerned for the design. Redundancy and separation of signal and power supply are the main factor for safety consideration. The design of Operator Interface absolutely takes consideration of human and environmental factors. Physical parameters, experiences, trainability and long-established habit patterns are very important for user interface, instead of the Aesthetic and Operator-Interface Geometry. Physical design for New Instrumentation and Control System of RTP are proposed base on the state-of- the-art Human Machine Interface design. (author)

  5. Computer Security of NPP Instrumentation and Control Systems: Cyber Threats

    International Nuclear Information System (INIS)

    Klevtsov, A.L.; Trubchaninov, S.A.

    2015-01-01

    The paper is devoted to cyber threats, as one of the aspects in computer security of instrumentation and control systems for nuclear power plants (NPP). The basic concepts, terms and definitions are shortly addressed. The paper presents a detailed analysis of potential cyber threats during the design and operation of NPP instrumentation and control systems. Eleven major types of threats are considered, including: the malicious software and hardware Trojans (in particular, in commercial-off-the-shelf software and hardware), computer attacks through data networks and intrusion of malicious software from an external storage media and portable devices. Particular attention is paid to the potential use of lower safety class software as a way of harmful effects (including the intrusion of malicious fragments of code) on higher safety class software. The examples of actual incidents at various nuclear facilities caused by intentional cyber attacks or unintentional computer errors during the operation of software of systems important to NPP safety.

  6. Cognitive Success: Instrumental Justifications of Normative Systems of Reasoning

    Directory of Open Access Journals (Sweden)

    Gerhard eSchurz

    2014-07-01

    Full Text Available In the first part of the paper (sec. 1-4, I argue that Elqayam and Evan's (2011 distinction between normative and instrumental conceptions of cognitive rationality corresponds to deontological versus teleological accounts in meta-ethics. I suggest that Elqayam and Evans' distinction be replaced by the distinction between a-priori intuition-based versus a-posteriori success-based accounts of cognitive rationality. The value of cognitive success lies in its instrumental rationality for almost-all practical purposes. In the second part (sec. 5-7, I point out that the Elqayam and Evans's distinction between normative and instrumental rationality is coupled with a second distinction: between logically general versus locally adaptive accounts of rationality. I argue that these are two independent distinctions should be treated as independent dimensions. I also demonstrate that logically general systems of reasoning can be instrumentally justified. However, such systems can only be cognitively successful if they are paired with successful inductive reasoning, which is the area where the program of adaptive (ecological rationality emerged, because there are no generally optimal inductive reasoning methods. I argue that the practical necessity of reasoning under changing environments constitutes a dilemma for ecological rationality, which I attempt to solve a dual account of rationality.

  7. Cognitive success: instrumental justifications of normative systems of reasoning

    Science.gov (United States)

    Schurz, Gerhard

    2014-01-01

    In the first part of the paper (sec. 1–4), I argue that Elqayam and Evan's (2011) distinction between normative and instrumental conceptions of cognitive rationality corresponds to deontological vs. teleological accounts in meta-ethics. I suggest that Elqayam and Evans' distinction be replaced by the distinction between a-priori intuition-based vs. a-posteriori success-based accounts of cognitive rationality. The value of cognitive success lies in its instrumental rationality for almost-all practical purposes. In the second part (sec. 5–7), I point out that the Elqayam and Evans's distinction between normative and instrumental rationality is coupled with a second distinction: between logically general vs. locally adaptive accounts of rationality. I argue that these are two independent distinctions that should be treated as independent dimensions. I also demonstrate that logically general systems of reasoning can be instrumentally justified. However, such systems can only be cognitively successful if they are paired with successful inductive reasoning, which is the area where the program of adaptive (ecological) rationality emerged, because there are no generally optimal inductive reasoning methods. I argue that the practical necessity of reasoning under changing environments constitutes a dilemma for ecological rationality, which I attempt to solve within a dual account of rationality. PMID:25071624

  8. Cognitive success: instrumental justifications of normative systems of reasoning.

    Science.gov (United States)

    Schurz, Gerhard

    2014-01-01

    In the first part of the paper (sec. 1-4), I argue that Elqayam and Evan's (2011) distinction between normative and instrumental conceptions of cognitive rationality corresponds to deontological vs. teleological accounts in meta-ethics. I suggest that Elqayam and Evans' distinction be replaced by the distinction between a-priori intuition-based vs. a-posteriori success-based accounts of cognitive rationality. The value of cognitive success lies in its instrumental rationality for almost-all practical purposes. In the second part (sec. 5-7), I point out that the Elqayam and Evans's distinction between normative and instrumental rationality is coupled with a second distinction: between logically general vs. locally adaptive accounts of rationality. I argue that these are two independent distinctions that should be treated as independent dimensions. I also demonstrate that logically general systems of reasoning can be instrumentally justified. However, such systems can only be cognitively successful if they are paired with successful inductive reasoning, which is the area where the program of adaptive (ecological) rationality emerged, because there are no generally optimal inductive reasoning methods. I argue that the practical necessity of reasoning under changing environments constitutes a dilemma for ecological rationality, which I attempt to solve within a dual account of rationality.

  9. Development of a Microchannel In Situ Propellant Production System

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Rassat, Scot D.; TeGrotenhuis, Ward E.

    2005-09-01

    An in situ propellant production (ISPP) plant on future Mars robotic missions can produce oxygen (O2) and methane (CH4) that can be used for propellant for the return voyage. By producing propellants from Mars atmospheric carbon dioxide (CO2) and hydrogen (H2) brought from Earth, the initial mass launched in low Earth orbit can be reduced by 20% to 45%, as compared to carrying all of the propellant for a round-trip mission to the Mars surface from Earth. Pacific Northwest National Laboratory used microchannel architecture to develop a Mars-based In Situ Propellant Production (ISPP) system. This three year research and development effort focused on process intensification and system miniaturization of three primary subsystems: a thermochemical compressor, catalytic reactors, and components for separating gas phases from liquid phases. These systems were designed based on a robotic direct return mission scenario, but can be scaled up to human flight missions by simply numbering up the microchannel devices. The thermochemical compression was developed both using absorption and adsorption. A multichannel adsorption system was designed to meet the full-scale CO2 collection requirements using temperature swing adsorption. Each stage is designed to achieve a 10x compression of CO2. A compression ratio to collect Martian atmospheric CO2 at ~0.8 kPa and compress it to at least 100 kPa can be achieved with two adsorption stages in series. A compressor stage incorporates eight thermally coupled adsorption cells at various stages in the adsorption/desorption cycle to maximize the recuperation of thermal energy and provide a nearly continuous flow of CO2 to the downstream reactors. The thermochemically compressed CO2 is then mixed with hydrogen gas and fed to two reactors: a Sabatier Reaction unit and a Reverse Water/Gas Shift unit. The microchannel architecture allows better heat control than is possible in an adiabatic system, resulting in significantly higher conversion. The

  10. Magnetospheric Multiscale Instrument Suite Operations and Data System

    Science.gov (United States)

    Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.

    2016-03-01

    The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of ˜100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SDC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and "Scientist-in-the-Loop" (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.

  11. In-situ calibration: migrating control system IP module calibration from the bench to the storage ring

    International Nuclear Information System (INIS)

    Weber, Jonah M.; Chin, Michael

    2002-01-01

    The Control System for the Advanced Light Source (ALS) at Lawrence Berkeley National Lab (LBNL) uses in-house designed IndustryPack(registered trademark) (IP) modules contained in compact PCI (cPCI) crates with 16-bit analog I/O to control instrumentation. To make the IP modules interchangeable, each module is calibrated for gain and offset compensation. We initially developed a method of verifying and calibrating the IP modules in a lab bench test environment using a PC with LabVIEW. The subsequent discovery that the ADCs have significant drift characteristics over periods of days of installed operation prompted development of an ''in-situ'' calibration process--one in which the IP modules can be calibrated without removing them from the cPCI crates in the storage ring. This paper discusses the original LabVIEW PC calibration and the migration to the proposed in-situ EPICS control system calibration

  12. Backfitting in Rossendorf research reactor control and instrumentation system

    International Nuclear Information System (INIS)

    Klebau, J.; Seidler, S.

    1985-01-01

    The paper generally describes a decentralized Hierarchical Information System (HIS) which has been developed for backfitting in Rossendorf Research Reactor (RFR) control and instrumentation system. The RFR was put into operation in 1957 and reconstructed from 2 MW up to a thermal power of 10 MW at the end of the sixties. Backfitting is planned by use of an advanced computerized control system for the next years. Main tasks of HIS are: Processmonitoring, online-disturbance analysis, technical diagnosis, direct digital control and use of a special industrial robot for discharging of irradiated materials out of the reactor. Experiences obtained by HIS during a testperiod will be presented. (author)

  13. Astronomical Instrumentation Systems Quality Management Planning: AISQMP (Abstract)

    Science.gov (United States)

    Goldbaum, J.

    2017-12-01

    (Abstract only) The capability of small aperture astronomical instrumentation systems (AIS) to make meaningful scientific contributions has never been better. The purpose of AIS quality management planning (AISQMP) is to ensure the quality of these contributions such that they are both valid and reliable. The first step involved with AISQMP is to specify objective quality measures not just for the AIS final product, but also for the instrumentation used in its production. The next step is to set up a process to track these measures and control for any unwanted variation. The final step is continual effort applied to reducing variation and obtaining measured values near optimal theoretical performance. This paper provides an overview of AISQMP while focusing on objective quality measures applied to astronomical imaging systems.

  14. Software for the Local Control and Instrumentation System for MFTF

    International Nuclear Information System (INIS)

    Labiak, W.G.

    1979-01-01

    There are nine different systems requiring over fifty computers in the Local Control and Instrumentation System for the Mirror Fusion Test Facility. Each computer system consists of an LSI-11/2 processor with 32,000 words of memory, a serial driver that implements the CAMAC serial highway protocol. With this large number of systems it is important that as much software as possible be common to all systems. A serial communications system has been developed for data transfers between the LSI-11/2's and the supervisory computers. This system is based on the RS 232 C interface with modem control lines. Six modem control lines are used for hardware handshaking, which allows totally independent full duplex communications to occur. Odd parity on each byte and a 16-bit checksum are used to detect errors in transmission

  15. Safeguarding the functions and performance of instrumentation and control systems

    International Nuclear Information System (INIS)

    Koehler, M.; Schoerner, O.

    1996-01-01

    Based on an analysis of the existing nuclear power plant control technology, the necessity of providing in the medium-term advanced and future-oriented, digital control system, both for normal operation and for safety-relevant tasks of the reactor and safety control systems. Siemens KWU has been promoting the development, review and marketing of the digital instrumentation and control systems called TELEPERM XS and TELEPERM XP in addition to the measures taken for safeguarding the functions of existing, wired systems. The paper briefly explains the performance and advantages of digital systems and the progress in approval and pioneering of the TELEPERM XS safety control system. Many examples discussed show the diversity of applications of the systems both in new reactor plants and as retrofitting measures, for KWU power plants and those of other manufacturers. (orig.) [de

  16. Eddy current testing system for bottom mounted instrumentation welds

    OpenAIRE

    Kobayashi Noriyasu; Ueno Souichi; Suganuma Naotaka; Oodake Tatsuya; Maehara Takeshi; Kasuya Takashi; Ichikawa Hiroya

    2015-01-01

    The capability of eddy current testing (ECT) for the bottom mounted instrumentation (BMI) weld area of reactor vessel in a pressurized water reactor was demonstrated by the developed ECT system and procedure. It is difficult to position and move the probe on the BMI weld area because the area has complexly curved surfaces. The space coordinates and the normal vectors at the scanning points were calculated as the scanning trajectory of probe based on the measured results of surface shape on th...

  17. Temperature control system for optical elements in astronomical instrumentation

    Science.gov (United States)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  18. Upgrading instrumentation and control systems for plant safety and operation

    International Nuclear Information System (INIS)

    Martin, M.; Prehler, H.J.; Schramm, W.

    1997-01-01

    Upgrading the electrical systems and instrumentation and control systems has become increasingly more important in the past few years for nuclear power plants currently in operation. As the requirements to be met in terms of plant safety and availability have become more stringent in the past few years, Western plants built in the sixties and seventies have been the subject of manifold backfitting and upgrading measures in the past. In the meantime, however, various nuclear power plants are facing much more thorough upgrading phases because of the difficulties in obtaining spare parts for older equipment systems. As digital technology has become widespread in many areas because of its advantages, and as applications are continuously expanding, conventional equipment and systems are losing more and more ground as a consequence of decreasing demand. Merely because of the pronounced decline in demand for conventional electronic components it is possible for equipment manufacturers to guarantee spare parts deliveries for older systems only for specific future periods of time. In addition, one-off manufacture entails high costs in purchases of spare parts. As a consequence of current thinking more and more focusing on availability and economy, upgrading of electrical systems and instrumentation and control systems is becoming a more and more topical question, for older plants even to ensure completion of full service life. (orig.) [de

  19. In Situ Aerosol Detector, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is developing new platform systems that have the potential to benefit Earth science research activities, which include in situ instruments for atmospheric...

  20. Active cooling for downhole instrumentation: Preliminary analysis and system selection

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, G.A.

    1988-03-01

    A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

  1. THE SYSTEMIC RISK BUFFER – A CHALLENGING INSTRUMENT FOR ASSESSING

    Directory of Open Access Journals (Sweden)

    BADEA IRINA - RALUCA

    2015-08-01

    Full Text Available The consequences of the global financial crisis have changed the orientation of the regulators from the micro towards the macroeconomic level, which encompasses the financial system as a whole, with its components as individual financial institutions. Needless to say that there is an inherent risk to which every participant to the market is exposed, the systemic risk. Therefore, this paper aims at presenting systemic risk in a clear manner, paying attention to and highlighting several approaches regarding systemic risk in literature and practice. Moreover, the mechanism of systemic risk transmission points out the channels through which systemic risk spreads and affects the real economy. There is also presented a new component of the macroprudential regulation, i.e. the systemic risk buffer (SRB, which is an important instrument to fight against systemic risk along with the other buffers stipulated in the Basel III standards. Hence, the subject dealt in this paper represents a realistic outlook upon the situation of the financial system at the moment, in its struggle to forecast a potential systemic threat and the instruments needed to counteract it in order to diminish its negative effects. In the last part of the paper there is presented evidence from a few countries that started to implement the SRB and G-SII or O-SII buffers or are phased for implementation to the extent of 2019. Tracking the vulnerabilities of the system as a whole, of each of its components and the tranmission channels of systemic risk should be the first step to make before taking any measures against a monetary or financial phenomenon.

  2. Instrumentation for NBI SST-1 cooling water system

    International Nuclear Information System (INIS)

    Qureshi, Karishma; Patel, Paresh; Jana, M.R.

    2015-01-01

    Neutral Beam Injector (NBI) System is one of the heating systems for Steady state Superconducting Tokamak (SST-1). It is capable of generating a neutral hydrogen beam of power 0.5 MW at 30 kV. NBI system consists of following sub-systems: Ion source, Neutralizer, Deflection Magnet and Magnet Liner (ML), Ion Dump (ID), V-Target (VT), Pre Duct Scraper (PDS), Beam Transmission Duct (BTD) and Shine Through (ST). For better heat removal management purpose all the above sub-systems shall be equipped with Heat Transfer Elements (THE). During beam operation these sub-systems gets heated due to the received heat load which requires to be removed by efficient supplying water. The cooling water system along with the other systems (External Vacuum System, Gas Feed System, Cryogenics System, etc.) will be controlled by NBI Programmable Logic Control (PLC). In this paper instrumentation and its related design for cooling water system is discussed. The work involves flow control valves, transmitters (pressure, temperature and water flow), pH and conductivity meter signals and its interface with the NBI PLC. All the analog input, analog output, digital input and digital output signals from the cooling water system will be isolated and then fed to the NBI PLC. Graphical Users Interface (GUI) needed in the Wonderware SCADA for the cooling water system shall also be discussed. (author)

  3. DAS: A Data Management System for Instrument Tests and Operations

    Science.gov (United States)

    Frailis, M.; Sartor, S.; Zacchei, A.; Lodi, M.; Cirami, R.; Pasian, F.; Trifoglio, M.; Bulgarelli, A.; Gianotti, F.; Franceschi, E.; Nicastro, L.; Conforti, V.; Zoli, A.; Smart, R.; Morbidelli, R.; Dadina, M.

    2014-05-01

    The Data Access System (DAS) is a and data management software system, providing a reusable solution for the storage of data acquired both from telescopes and auxiliary data sources during the instrument development phases and operations. It is part of the Customizable Instrument WorkStation system (CIWS-FW), a framework for the storage, processing and quick-look at the data acquired from scientific instruments. The DAS provides a data access layer mainly targeted to software applications: quick-look displays, pre-processing pipelines and scientific workflows. It is logically organized in three main components: an intuitive and compact Data Definition Language (DAS DDL) in XML format, aimed for user-defined data types; an Application Programming Interface (DAS API), automatically adding classes and methods supporting the DDL data types, and providing an object-oriented query language; a data management component, which maps the metadata of the DDL data types in a relational Data Base Management System (DBMS), and stores the data in a shared (network) file system. With the DAS DDL, developers define the data model for a particular project, specifying for each data type the metadata attributes, the data format and layout (if applicable), and named references to related or aggregated data types. Together with the DDL user-defined data types, the DAS API acts as the only interface to store, query and retrieve the metadata and data in the DAS system, providing both an abstract interface and a data model specific one in C, C++ and Python. The mapping of metadata in the back-end database is automatic and supports several relational DBMSs, including MySQL, Oracle and PostgreSQL.

  4. Instrumentation and Controls evaluation for space nuclear power systems

    International Nuclear Information System (INIS)

    Anderson, J.L.; Oakes, L.C.

    1984-01-01

    Design of control and protection systems should be coordinated with the design of the neutronic, thermal-hydraulic, and mechanical aspects of the core and plant at the earliest possible stage of concept development. An integrated systematic design approach is necessary to prevent uncoordinated choices in one technology area from imposing impractical or impossible requirements in another. Significant development and qualification will be required for virtually every aspect of reactor control and instrumentation. In-core instrumentation widely used in commercial light water reactors will not likely be usable in the higher temperatures of a space power plant. Thermocouples for temperature measurement and gamma thermometers for flux measurement appear to be the only viable candidates. Recent developments in ex-core neutron detectors may provide achievable alternatives to in-core measurements. Reliable electronic equipment and high-temperature actuators will require major development efforts

  5. Application of in situ polymerization for design and development of oral drug delivery systems.

    Science.gov (United States)

    Ngwuluka, Ndidi

    2010-12-01

    Although preformed polymers are commercially available for use in the design and development of drug delivery systems, in situ polymerization has also been employed. In situ polymerization affords the platform to tailor and optimize the drug delivery properties of polymers. This review brings to light the benefits of in situ polymerization for oral drug delivery and the possibilities it provides to overcome the challenges of oral route of administration.

  6. Application of In Situ Polymerization for Design and Development of Oral Drug Delivery Systems

    OpenAIRE

    Ngwuluka, Ndidi

    2010-01-01

    Although preformed polymers are commercially available for use in the design and development of drug delivery systems, in situ polymerization has also been employed. In situ polymerization affords the platform to tailor and optimize the drug delivery properties of polymers. This review brings to light the benefits of in situ polymerization for oral drug delivery and the possibilities it provides to overcome the challenges of oral route of administration.

  7. Europa Kinetic Ice Penetrator System for Hyper Velocity Instrument Deposition

    Science.gov (United States)

    Robinson, Tessa

    Landing of a payload on any celestial body has only used a soft landing system. These systems use retro rockets and atmospheric components to match velocity and then overcome local gravity in order to land on the surface. This is a proposed system for depositing instrumentation on an icy surface at hypervelocity using the properties of different projectiles and ejecta properties that would negate the need for a soft landing system. This system uses two projectiles, a cylinder with inner aerodynamic surfaces and a payload section with a conical nose and aerodynamic surfaces. The cylinder lands first, creates a region of fractured ice, and directs that fractured material into a collimated ejecta stream. The payload travels through the ejecta and lands in the fractured region. The combination of the ejecta stream and the softened target material reduces the impact acceleration to within survivable levels.

  8. An automated instrument for controlled-potential coulometry: System documentation

    Energy Technology Data Exchange (ETDEWEB)

    Holland, M K; Cordaro, J V

    1988-06-01

    An automated controlled-potential coulometer has been developed at the Savannah River Plant for the determination of plutonium. Two such coulometers have been assembled, evaluated, and applied. The software is based upon the methodology used at the Savannah River Plant, however the system is applicable with minimal software modifications to any of the methodologies used throughout the nuclear industry. These state-of-the-art coulometers feature electrical calibration of the integration system, background current corrections, and control-potential adjustment capabilities. Measurement precision within 0.1% has been demonstrated. The systems have also been successfully applied to the determination of pure neptunium solutions. The design and documentation of the automated instrument are described herein. Each individual module's operation, wiring layout, and alignment are described. Interconnection of the modules and system calibration are discussed. A complete set of system prints and a list of associated parts are included. 9 refs., 10 figs., 6 tabs.

  9. Portable fluorescence lifetime spectroscopy system for in-situ interrogation of biological tissues

    Science.gov (United States)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Teixeira Rosa, Ramon Gabriel; Salvio, Ana Gabriela; Pratavieira, Sebastião; Kurachi, Cristina

    2017-12-01

    Fluorescence spectroscopy and lifetime techniques are potential methods for optical diagnosis and characterization of biological tissues with an in-situ, fast, and noninvasive interrogation. Several diseases may be diagnosed due to differences in the fluorescence spectra of targeted fluorophores, when, these spectra are similar, considering steady-state fluorescence, others may be detected by monitoring their fluorescence lifetime. Despite this complementarity, most of the current fluorescence lifetime systems are not robust and portable, and not being feasible for clinical applications. We describe the assembly of a fluorescence lifetime spectroscopy system in a suitcase, its characterization, and validation with clinical measurements of skin lesions. The assembled system is all encased and robust, maintaining its mechanical, electrical, and optical stability during transportation, and is feasible for clinical measurements. The instrument response function measured was about 300 ps, and the system is properly calibrated. At the clinical study, the system showed to be reliable, and the achieved spectroscopy results support its potential use as an auxiliary tool for skin diagnostics.

  10. A mucoadhesive in situ gel delivery system for paclitaxel.

    Science.gov (United States)

    Jauhari, Saurabh; Dash, Alekha K

    2006-06-02

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at drug loads of 0.18%, 0.30%, and 0.54% (wt/wt), in Sorensen's phosphate buffer (pH 7.4) at 37 degrees C. Different mucin-producing cell lines (Calu-3>Caco-2) were selected for PTX transport studies. Transport of PTX from solution and gel delivery system was performed in side by side diffusion chambers from apical to basal (A-B) and basal to apical (B-A) directions. In vitro release studies revealed that within 4 hours, only 7.61% +/- 0.19%, 12.0% +/- 0.98%, 31.7% +/- 0.40% of PTX were released from 0.18%, 0.30%, and 0.54% drug-loaded gel formulation, respectively, in absence of Tween 80. However, in presence of surfactant (0.05% wt/vol) in the dissolution medium, percentages of PTX released were 28.1% +/- 4.35%, 44.2% +/- 6.35%, and 97.1% +/- 1.22%, respectively. Paclitaxel has shown a polarized transport in all the cell monolayers with B-A transport 2 to 4 times higher than in the A-B direction. The highest mucin-producing cell line (Calu-3) has shown the lowest percentage of PTX transport from gels as compared with Caco-2 cells. Transport of PTX from mucoadhesive gels was shown to be influenced by the mucin-producing capability of cell.

  11. In-situ remediation system for groundwater and soils

    Science.gov (United States)

    Corey, John C.; Kaback, Dawn S.; Looney, Brian B.

    1993-01-01

    A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.

  12. Instrumentation Standard Architectures for Future High Availability Control Systems

    International Nuclear Information System (INIS)

    Larsen, R.S.

    2005-01-01

    Architectures for next-generation modular instrumentation standards should aim to meet a requirement of High Availability, or robustness against system failure. This is particularly important for experiments both large and small mounted on production accelerators and light sources. New standards should be based on architectures that (1) are modular in both hardware and software for ease in repair and upgrade; (2) include inherent redundancy at internal module, module assembly and system levels; (3) include modern high speed serial inter-module communications with robust noise-immune protocols; and (4) include highly intelligent diagnostics and board-management subsystems that can predict impending failure and invoke evasive strategies. The simple design principles lead to fail-soft systems that can be applied to any type of electronics system, from modular instruments to large power supplies to pulsed power modulators to entire accelerator systems. The existing standards in use are briefly reviewed and compared against a new commercial standard which suggests a powerful model for future laboratory standard developments. The past successes of undertaking such projects through inter-laboratory engineering-physics collaborations will be briefly summarized

  13. Preliminary investigations on TINI based distributed instrumentation systems

    International Nuclear Information System (INIS)

    Bezboruah, T.; Kalita, M.

    2006-04-01

    A prototype web enabled distributed instrumentation system is being proposed in the Department of Electronics Science, Gauhati University, Assam, India. The distributed instrumentation system contains sensors, legacy hardware, TCP/IP protocol converter, TCP/IP network Ethernet, Database Server, Web/Application Server and Client PCs. As part of the proposed work, Tiny Internet Interface (TINI, TBM390: Dallas Semiconductor) has been deployed as TCP/IP stack, and java programming language as software tools. A feature supported by Java, that is particularly relevant to the distributed system is its applet. An applet is a java class that can be downloaded from the web server and can be run in a context application such as web browser or an applet viewer. TINI has been installed as TCP/IP stack, as it is the best suited embedded system with java programming language and it has been uniquely designed for communicating over One Wire Devices (OWD) over network. Here we will discuss the hardware and software aspects of TINI with OWD for the present system. (author)

  14. Hardware design for new instrumentation and control system of RTP

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Izhar Abu Hussin; Zareen Khan Abdul Jalil Khan; Mohd Dzul Aiman Aslan; Mohd Khairulezwan Abdul Manan; Nurfarhana Ayuni Joha; Mohd Sabri Minhat

    2010-01-01

    The design for New Instrumentation and Control system of RTP are proposed. Physical system is modular-based, comprise of several cabinets such as Reactor Protection System 1 and 2, Control Console, Information Console 1 and 2 as well as Communication Console. Reactor Protection System automatically will shut-down reactor whenever safety limit setting was approach. Control console is where the reactor operator actually controls the reactor with control the movement of control rods. Information Consoles using Liquid Crystal Display to monitor the reactor parameters. Communication Console is where the communication tools such as telephone and intercom are located. This new system will incorporated analog, digital and computer-based. Reactor Protection System will use all analog system. Reactor Control System and Reactor Monitoring System will use analog as well as computer-based system. Wide-range channel will use digital signal processor as a main component. Controlling control rod movement is using control rod button via microprocessor-based control rod controller. Automatic Flux Controller is using embedded computer for flexibility of programming. Data Acquisition System is using Programmable Logic Controller and Industrial Computer. The main software for this system will be developed using WinCC software. (author)

  15. Investigation into the Use of the Concept Laser QM System as an In-Situ Research and Evaluation Tool

    Science.gov (United States)

    Bagg, Stacey

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) is using a Concept Laser Fusing (Cusing) M2 powder bed additive manufacturing system for the build of space flight prototypes and hardware. NASA MSFC is collecting and analyzing data from the M2 QM Meltpool and QM Coating systems for builds. This data is intended to aide in understanding of the powder-bed additive manufacturing process, and in the development of a thermal model for the process. The QM systems are marketed by Concept Laser GmbH as in-situ quality management modules. The QM Meltpool system uses both a high-speed near-IR camera and a photodiode to monitor the melt pool generated by the laser. The software determines from the camera images the size of the melt pool. The camera also measures the integrated intensity of the IR radiation, and the photodiode gives an intensity value based on the brightness of the melt pool. The QM coating system uses a high resolution optical camera to image the surface after each layer has been formed. The objective of this investigation was to determine the adequacy of the QM Meltpool system as a research instrument for in-situ measurement of melt pool size and temperature and its applicability to NASA's objectives in (1) Developing a process thermal model and (2) Quantifying feedback measurements with the intent of meeting quality requirements or specifications. Note that Concept Laser markets the system only as capable of giving an indication of changes between builds, not as an in-situ research and evaluation tool. A secondary objective of the investigation is to determine the adequacy of the QM Coating system as an in-situ layer-wise geometry and layer quality evaluation tool.

  16. The development and deployment of a ground-based, laser-induced fluorescence instrument for the in situ detection of iodine monoxide radicals

    Energy Technology Data Exchange (ETDEWEB)

    Thurlow, M. E., E-mail: thurlow@huarp.harvard.edu; Hannun, R. A.; Lapson, L. B.; Anderson, J. G. [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138 (United States); Co, D. T. [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138 (United States); Argonne-Northwestern Solar Energy Research Center and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113 (United States); O' Brien, A. S. [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138 (United States); Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Hanisco, T. F. [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138 (United States); NASA Goddard Space Flight Center, Code 614, Greenbelt, Maryland 20771 (United States)

    2014-04-15

    High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer. Of particular interest are the roles IO plays in the formation of new particles in coastal marine environments and in depletion episodes of ozone and mercury in the Arctic polar spring. This paper describes a ground-based instrument that measures IO at mixing ratios less than one part in 10{sup 12}. The IO radical is measured by detecting laser-induced fluorescence at wavelengths longer that 500 nm. Tunable visible light is used to pump the A{sup 2}Π{sub 3/2} (v{sup ′} = 2) ← X{sup 2}Π{sub 3/2} (v{sup ″} = 0) transition of IO near 445 nm. The laser light is produced by a solid-state, Nd:YAG-pumped Ti:Sapphire laser at 5 kHz repetition rate. The laser-induced fluorescence instrument performs reliably with very high signal-to-noise ratios (>10) achieved in short integration times (<1 min). The observations from a validation deployment to the Shoals Marine Lab on Appledore Island, ME are presented and are broadly consistent with in situ observations from European Coastal Sites. Mixing ratios ranged from the instrumental detection limit (<1 pptv) to 10 pptv. These data represent the first in situ point measurements of IO in North America.

  17. The development and deployment of a ground-based, laser-induced fluorescence instrument for the in situ detection of iodine monoxide radicals

    International Nuclear Information System (INIS)

    Thurlow, M. E.; Hannun, R. A.; Lapson, L. B.; Anderson, J. G.; Co, D. T.; O'Brien, A. S.; Hanisco, T. F.

    2014-01-01

    High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer. Of particular interest are the roles IO plays in the formation of new particles in coastal marine environments and in depletion episodes of ozone and mercury in the Arctic polar spring. This paper describes a ground-based instrument that measures IO at mixing ratios less than one part in 10 12 . The IO radical is measured by detecting laser-induced fluorescence at wavelengths longer that 500 nm. Tunable visible light is used to pump the A 2 Π 3/2 (v ′ = 2) ← X 2 Π 3/2 (v ″ = 0) transition of IO near 445 nm. The laser light is produced by a solid-state, Nd:YAG-pumped Ti:Sapphire laser at 5 kHz repetition rate. The laser-induced fluorescence instrument performs reliably with very high signal-to-noise ratios (>10) achieved in short integration times (<1 min). The observations from a validation deployment to the Shoals Marine Lab on Appledore Island, ME are presented and are broadly consistent with in situ observations from European Coastal Sites. Mixing ratios ranged from the instrumental detection limit (<1 pptv) to 10 pptv. These data represent the first in situ point measurements of IO in North America

  18. The Development and Deployment of a Ground-Based, Laser-Induced Fluorescence Instrument for the In Situ Detection of Iodine Monoxide Radicals

    Science.gov (United States)

    Thurlow, M. E.; Co, D. T.; O'Brien, A. S.; Hannun, R. A.; Lapson, L. B.; Hanisco, T. F.; Anderson, J. G.

    2014-01-01

    High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer. Of particular interest are the roles IO plays in the formation of new particles in coastal marine environments and in depletion episodes of ozone and mercury in the Arctic polar spring. This paper describes a ground-based instrument that measures IO at mixing ratios less than one part in 1012. The IO radical is measured by detecting laser-induced fluorescence at wavelengths longer that 500 nm. Tunable visible light is used to pump the A23/2 (v = 2) ? X23/2 (v = 0) transition of IO near 445 nm. The laser light is produced by a solid-state, Nd:YAG-pumped Ti:Sapphire laser at 5 kHz repetition rate. The laser-induced fluorescence instrument performs reliably with very high signal-to-noise ratios (>10) achieved in short integration times (<1 min). The observations from a validation deployment to the Shoals Marine Lab on Appledore Island, ME are presented and are broadly consistent with in situ observations from European Coastal Sites. Mixing ratios ranged from the instrumental detection limit (<1 pptv) to 10 pptv. These data represent the first in situ point measurements of IO in North America.

  19. Soil Water and Temperature System (SWATS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  20. Computer security of NPP instrumentation and control systems: categorization

    International Nuclear Information System (INIS)

    Klevtsov, A.L.; Simonov, A.A.; Trubchaninov, S.A.

    2016-01-01

    The paper is devoted to studying categorization of NPP instrumentation and control (I&C) systems from the point of view of computer security and to consideration of the computer security levels and zones used by the International Atomic Energy Agency (IAEA). The paper also describes the computer security degrees and zones regulated by the International Electrotechnical Commission (IEC) standard. The computer security categorization of the systems used by the U.S. Nuclear Regulatory Commission (NRC) is presented. The experts analyzed the main differences in I&C systems computer security categorization accepted by the IAEA, IEC and U.S. NRC. The approaches to categorization that should be advisably used in Ukraine during the development of regulation on NPP I&C systems computer security are proposed in the paper

  1. ANALYSIS OF OPERATING INSTRUMENT LANDING SYSTEM ACCURACY UNDER SIMULATED CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jerzy MERKISZ

    2017-03-01

    Full Text Available The instrument landing system (ILS is the most popular landing aid in the world. It is a distance-angled support system for landing in reduced visibility, while its task is the safe conduct of the aircraft from the prescribed course landing on the approach path. The aim of this study is to analyse the correctness of the ILS in simulated conditions. The study was conducted using a CKAS MotionSim5 flight simulator in the Simulation Research Laboratory of the Institute of Combustion Engines and Transport at Poznan University of Technology. With the advancement of technical equipment, it was possible to check the operation of the system in various weather conditions. Studies have shown that the impact of fog, rain and snow on the correct operation of the system is marginal. Significant influence has been observed, however, during landing in strong winds.

  2. Screw-in forces during instrumentation by various file systems.

    Science.gov (United States)

    Ha, Jung-Hong; Kwak, Sang Won; Kim, Sung-Kyo; Kim, Hyeon-Cheol

    2016-11-01

    The purpose of this study was to compare the maximum screw-in forces generated during the movement of various Nickel-Titanium (NiTi) file systems. Forty simulated canals in resin blocks were randomly divided into 4 groups for the following instruments: Mtwo size 25/0.07 (MTW, VDW GmbH), Reciproc R25 (RPR, VDW GmbH), ProTaper Universal F2 (PTU, Dentsply Maillefer), and ProTaper Next X2 (PTN, Dentsply Maillefer, n = 10). All the artificial canals were prepared to obtain a standardized lumen by using ProTaper Universal F1. Screw-in forces were measured using a custom-made experimental device (AEndoS- k , DMJ system) during instrumentation with each NiTi file system using the designated movement. The rotation speed was set at 350 rpm with an automatic 4 mm pecking motion at a speed of 1 mm/sec. The pecking depth was increased by 1 mm for each pecking motion until the file reach the working length. Forces were recorded during file movement, and the maximum force was extracted from the data. Maximum screw-in forces were analyzed by one-way ANOVA and Tukey's post hoc comparison at a significance level of 95%. Reciproc and ProTaper Universal files generated the highest maximum screw-in forces among all the instruments while M-two and ProTaper Next showed the lowest ( p files with smaller cross-sectional area for higher flexibility is recommended.

  3. 21 CFR 866.4700 - Automated fluorescence in situ hybridization (FISH) enumeration systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated fluorescence in situ hybridization (FISH... Laboratory Equipment and Reagents § 866.4700 Automated fluorescence in situ hybridization (FISH) enumeration... Hybridization (FISH) Enumeration Systems.” See § 866.1(e) for the availability of this guidance document. [70 FR...

  4. An Automated Sorting System Based on Virtual Instrumentation Techniques

    Directory of Open Access Journals (Sweden)

    Rodica Holonec

    2008-07-01

    Full Text Available The application presented in this paper represents an experimental model and it refers to the implementing of an automated sorting system for pieces of same shape but different sizes and/or colors. The classification is made according to two features: the color and weight of these pieces. The system is a complex combination of NI Vision hardware and software tools, strain gauges transducers, signal conditioning connected to data acquisition boards, motion and control elements. The system is very useful for students to learn and experiment different virtual instrumentation techniques in order to be able to develop a large field of applications from inspection and process control to sorting and assembly

  5. Real-time, high frequency (1 Hz), in situ measurement of HCl and HF gases in volcanic plumes with a novel cavity-enhanced, laser-based instrument

    Science.gov (United States)

    Kelly, P. J.; Sutton, A. J.; Elias, T.; Kern, C.; Clor, L. E.; Baer, D. S.

    2017-12-01

    Primary magmatic halogen-containing gases (HCl, HF, HBr, HI in characteristic order of abundance) are of great interest for volcano monitoring and research because, in general, they are more soluble in magma than other commonly-monitored volcanic volatiles (e.g. CO2, SO2, H2S) and thereby can offer unique insights into shallow magmatic processes. Nevertheless, difficulties in obtaining observations of primary volcanic halogens in gas plumes with traditional methods (e.g. direct sampling, Open-Path Fourier Transform Infrared spectroscopy, filter packs) have limited the number of observations reported worldwide, especially from explosive arc volcanoes. With this in mind, the USGS and Los Gatos Research, Inc. collaborated to adapt a commercially-available industrial in situ HCl-HF analyzer for use in airborne and ground-based measurements of volcanic gases. The new, portable instrument is based around two near-IR tunable diode lasers and uses a vibration-tolerant, enhanced-cavity approach that is well-suited for rugged field applications and yields fast (1 Hz) measurements with a wide dynamic range (0 -2 ppm) and sub-ppb precision (1σ: HCl: <0.4 ppb; HF: <0.1 ppb). In spring 2017 we conducted field tests at Kīlauea Volcano, Hawaii, to benchmark the performance of the new instrument and to compare it with an accepted method for halogen measurements (OP-FTIR). The HCl-HF instrument was run in parallel with a USGS Multi-GAS to obtain in situ H2O-CO2-SO2-H2S-HCl-HF plume compositions. The results were encouraging and quasi-direct comparisons of the in situ and remote sensing instruments showed good agreement (e.g. in situ SO2/HCl = 72 vs. OP-FTIR SO2/HCl = 88). Ground-based and helicopter-based measurements made 0 - 12 km downwind from the vent (plume age 0 - 29 minutes) show that plume SO2/HCl ratios increase rapidly from 60 to 300 around the plume edges, possibly due to uptake of HCl onto aerosols.

  6. EURATOM, the year 2000 and its impact on the reporting system and instrumentation

    International Nuclear Information System (INIS)

    Chare, P.J.

    1999-01-01

    Presentation includes the Y2K potential problem areas, its impact on the reporting system and instrumentation as well as achievements done so far. The potential problem areas are: reporting system, headquarters system, installed instrumentation and stand alone instrumentation. A complete list of EURATOM equipment is listed. Specific problem areas concerned include data acquisition programmes. Reporting system is Y2K compatible, headquarters systems will be after upgrading, problems concerning instrumentation are identified and will be upgraded in 1999

  7. Learning towards system innovation: Evaluating a systemic instrument

    NARCIS (Netherlands)

    Mierlo, B. van; Leeuwis, C.; Smits, R.; Klein Woolthuis, R.J.A.

    2010-01-01

    In this paper we develop an analytical framework for studying learning processes in the context of efforts to bring about system innovation by building new networks of actors who are willing to work on a change towards sustainable development. We then use it to evaluate two specific intervention

  8. Dissemination of Knowledge about NPP Instrumentation and Control Systems

    International Nuclear Information System (INIS)

    Yastrebenetsky, M.

    2016-01-01

    Full text: Instrumentation and control (I&C) systems are the most variable part in the nuclear power plants (NPP) comparatively with any other NPP systems. This statement is connected with the wide use of computers, rapid changes in information technologies, with the appearance of new computer complex electronic components, e.g., field programmable gate arrays (FPGA) and with appropriate point of their insertion into NPP I&C life cycle. The changes in NPP I&C systems require the dissemination of the knowledge about these systems. Lessons after Fukushima accident increase necessity of these actions. The elaboration and following dissemination of this knowledge took place in different directions: • Writing and issue of three new books about NPP I&C systems for specialists and for students which were issued in Ukrainian and USA public houses (the last book was issued in 2014); • Organization of five international scientific technical conferences, devoted to NPP I&C safety problems; • Elaboration of national (Ukrainian) standards and regulations pertaining to safety important NPP I&C systems (the last standard was issued in 2015) and participation in elaboration of international standards; • Lecturing for university students, NPP specialists and I&C designers. These actions in all directions are added to IAEA activity in the area NPP I&C systems (e.g., IAEA NP-T-3.12 “Core Knowledge on I&C systems in NPP”). (author

  9. Nuclear instrumentation system for the integrated digital I and C system

    International Nuclear Information System (INIS)

    Isobe, Yuji; Nakamura, Shingo

    2005-01-01

    Development of a new nuclear instrumentation (NI) system has been done. The new system is suitable for the digital instrumentation and control (I and C) systems. Higher reliability and lower development costs have been achieved by applying good performance circuits with sufficient experience of the conventional NI system. Human-system interface (HSI) and maintainability have been improved comparing with the conventional NI system because of the partial digitalisation. The new NI system has been manufactured and validated. We are finally verifying the total performance now

  10. Nuclear instrumentation system for the integrated digital I and C system

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, Yuji [Mitsubishi Heavy Industries, Tokyo (Japan); Nakamura, Shingo [Mitsubishi, Electric Corporation, Tokyo (Japan)

    2005-11-15

    Development of a new nuclear instrumentation (NI) system has been done. The new system is suitable for the digital instrumentation and control (I and C) systems. Higher reliability and lower development costs have been achieved by applying good performance circuits with sufficient experience of the conventional NI system. Human-system interface (HSI) and maintainability have been improved comparing with the conventional NI system because of the partial digitalisation. The new NI system has been manufactured and validated. We are finally verifying the total performance now.

  11. Toward an in-situ analytics and diagnostics framework for earth system models

    Science.gov (United States)

    Anantharaj, Valentine; Wolf, Matthew; Rasch, Philip; Klasky, Scott; Williams, Dean; Jacob, Rob; Ma, Po-Lun; Kuo, Kwo-Sen

    2017-04-01

    The development roadmaps for many earth system models (ESM) aim for a globally cloud-resolving model targeting the pre-exascale and exascale systems of the future. The ESMs will also incorporate more complex physics, chemistry and biology - thereby vastly increasing the fidelity of the information content simulated by the model. We will then be faced with an unprecedented volume of simulation output that would need to be processed and analyzed concurrently in order to derive the valuable scientific results. We are already at this threshold with our current generation of ESMs at higher resolution simulations. Currently, the nominal I/O throughput in the Community Earth System Model (CESM) via Parallel IO (PIO) library is around 100 MB/s. If we look at the high frequency I/O requirements, it would require an additional 1 GB / simulated hour, translating to roughly 4 mins wallclock / simulated-day => 24.33 wallclock hours / simulated-model-year => 1,752,000 core-hours of charge per simulated-model-year on the Titan supercomputer at the Oak Ridge Leadership Computing Facility. There is also a pending need for 3X more volume of simulation output . Meanwhile, many ESMs use instrument simulators to run forward models to compare model simulations against satellite and ground-based instruments, such as radars and radiometers. The CFMIP Observation Simulator Package (COSP) is used in CESM as well as the Accelerated Climate Model for Energy (ACME), one of the ESMs specifically targeting current and emerging leadership-class computing platforms These simulators can be computationally expensive, accounting for as much as 30% of the computational cost. Hence the data are often written to output files that are then used for offline calculations. Again, the I/O bottleneck becomes a limitation. Detection and attribution studies also use large volume of data for pattern recognition and feature extraction to analyze weather and climate phenomenon such as tropical cyclones

  12. In-Situ Measurements of Aerosol Optical Properties using New Cavity Ring-Down and Photoacoustics Instruments and Comparison with more Traditional Techniques

    Science.gov (United States)

    Strawa, A. W.; Arnott, P.; Covert, D.; Elleman, R.; Ferrare, R.; Hallar, A. G.; Jonsson, H.; Kirchstetter, T. W.; Luu, A. P.; Ogren, J.

    2004-01-01

    Carbonaceous species (BC and OC) are responsible for most of the absorption associated with aerosol particles. The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult aerosol properties to measure. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-ARC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Aerosol absorption coefficient is also measured by a photoacoustic (PA) instrument (DRI) that was operated on an aircraft for the first time during the DOE Aerosol Intensive Operating Period (IOP). This paper will report on measurements made with this new instrument and other in-situ instruments during two field recent field studies. The first field study was an airborne cam;oaign, the DOE Aerosol Intensive Operating Period flown in May, 2003 over northern Oklahoma. One of the main purposes of the IOP was to assess our ability to measure extinction and absorption coefficient in situ. This paper compares measurements of these aerosol optical properties made by the CRD, PA, nephelometer, and Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model. The second study was conducted in the Caldecott Tunnel, a heavily-used tunnel located north of San Francisco, Ca. The aerosol sampled in this study was

  13. Nuclear instrumentation systems in prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Vijayakumaran, P.M.; Nagaraj, C.P.; Paramasivan-Pillai, C.; Ramakrishnan, R.; Sivaramakrishna, M.

    2004-01-01

    The nuclear instrumentation systems of the Prototype Fast Breeder Reactor (PFBR) primarily comprise of global Neutron Flux Monitoring, Failed Fuel Detection and Location, Radiation Monitoring and Post-Accident Monitoring. High temperature fission chambers are provided at in-vessel locations for monitoring neutron flux. Failed fuel detection and location is by monitoring the cover gas for fission gases and primary sodium for delayed neutrons. Signals of the core monitoring detectors are used to initiate SCRAM (safety action) to protect the reactor from various postulated initiating events. Radiation levels in all potentially radioactive areas are monitored to act as an early warning system to keep the release of radioactivity to the environment and exposure to personnel well below the permissible limits. Fission Chambers and Gamma Ionisation Chambers are located in the reactor vault concrete for monitoring the neutron flux and gamma radiation levels during and after an accident. (authors)

  14. Instrumentation system for long-pulse MFTF neutral beams

    International Nuclear Information System (INIS)

    Risch, D.M.

    1981-01-01

    The instrumentation system for long pulse neutral beams for MFTFS consists of monitoring and protective circuitry. Global synchronization of high speed monitoring data across twenty-four neutral beams is achieved via an experiment wide fiber optic timing system. Fiber optics are also used as a means of isolating signals at elevated voltages. An excess current monitor, interrupt monitor, sparkdown detector, spot detector and gradient grid ratio detector form the primary protection for the neutral beam source. A unique hierarchical interlocking scheme allows other protective devices to be factored into the shutdown circuitry of the power supply so that the initiating cause of a shutdown can be isolated and even allows some non-critical devices to be safely ignored for a period of time

  15. Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments

    DEFF Research Database (Denmark)

    Ahlstrøm, A. P.; Andersen, S. B.; Andersen, M. L.

    2013-01-01

    We present 17 velocity records derived from in situ stand-alone single-frequency Global Positioning System (GPS) receivers placed on eight marine-terminating ice sheet outlet glaciers in South, West and North Greenland, covering varying parts of the period summer 2009 to summer 2012. Common to all...

  16. Effect of Instrumentation Length and Instrumentation Systems: Hand Versus Rotary Files on Apical Crack Formation - An In vitro Study.

    Science.gov (United States)

    Devale, Madhuri R; Mahesh, M C; Bhandary, Shreetha

    2017-01-01

    Stresses generated during root canal instrumentation have been reported to cause apical cracks. The smaller, less pronounced defects like cracks can later propagate into vertical root fracture, when the tooth is subjected to repeated stresses from endodontic or restorative procedures. This study evaluated occurrence of apical cracks with stainless steel hand files, rotary NiTi RaCe and K3 files at two different instrumentation lengths. In the present in vitro study, 60 mandibular premolars were mounted in resin blocks with simulated periodontal ligament. Apical 3 mm of the root surfaces were exposed and stained using India ink. Preoperative images of root apices were obtained at 100x using stereomicroscope. The teeth were divided into six groups of 10 each. First two groups were instrumented with stainless steel files, next two groups with rotary NiTi RaCe files and the last two groups with rotary NiTi K3 files. The instrumentation was carried out till the apical foramen (Working Length-WL) and 1 mm short of the apical foramen (WL-1) with each file system. After root canal instrumentation, postoperative images of root apices were obtained. Preoperative and postoperative images were compared and the occurrence of cracks was recorded. Descriptive statistical analysis and Chi-square tests were used to analyze the results. Apical root cracks were seen in 30%, 35% and 20% of teeth instrumented with K-files, RaCe files and K3 files respectively. There was no statistical significance among three instrumentation systems in the formation of apical cracks (p=0.563). Apical cracks were seen in 40% and 20% of teeth instrumented with K-files; 60% and 10% of teeth with RaCe files and 40% and 0% of teeth with K3 files at WL and WL-1 respectively. For groups instrumented with hand files there was no statistical significance in number of cracks at WL and WL-1 (p=0.628). But for teeth instrumented with RaCe files and K3 files significantly more number of cracks were seen at WL than

  17. Effect of Instrumentation Length and Instrumentation Systems: Hand Versus Rotary Files on Apical Crack Formation – An In vitro Study

    Science.gov (United States)

    Mahesh, MC; Bhandary, Shreetha

    2017-01-01

    Introduction Stresses generated during root canal instrumentation have been reported to cause apical cracks. The smaller, less pronounced defects like cracks can later propagate into vertical root fracture, when the tooth is subjected to repeated stresses from endodontic or restorative procedures. Aim This study evaluated occurrence of apical cracks with stainless steel hand files, rotary NiTi RaCe and K3 files at two different instrumentation lengths. Materials and Methods In the present in vitro study, 60 mandibular premolars were mounted in resin blocks with simulated periodontal ligament. Apical 3 mm of the root surfaces were exposed and stained using India ink. Preoperative images of root apices were obtained at 100x using stereomicroscope. The teeth were divided into six groups of 10 each. First two groups were instrumented with stainless steel files, next two groups with rotary NiTi RaCe files and the last two groups with rotary NiTi K3 files. The instrumentation was carried out till the apical foramen (Working Length-WL) and 1 mm short of the apical foramen (WL-1) with each file system. After root canal instrumentation, postoperative images of root apices were obtained. Preoperative and postoperative images were compared and the occurrence of cracks was recorded. Descriptive statistical analysis and Chi-square tests were used to analyze the results. Results Apical root cracks were seen in 30%, 35% and 20% of teeth instrumented with K-files, RaCe files and K3 files respectively. There was no statistical significance among three instrumentation systems in the formation of apical cracks (p=0.563). Apical cracks were seen in 40% and 20% of teeth instrumented with K-files; 60% and 10% of teeth with RaCe files and 40% and 0% of teeth with K3 files at WL and WL-1 respectively. For groups instrumented with hand files there was no statistical significance in number of cracks at WL and WL-1 (p=0.628). But for teeth instrumented with RaCe files and K3 files

  18. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  19. Thermal simulation of drift emplacement (TSS): In-situ instrumentation and numerical modeling of stress measurement methods

    International Nuclear Information System (INIS)

    Heusermann, S.

    1988-01-01

    In the course of the planned demonstration test Thermal Simulation of Drift Emplacement (TSS) BGR is carrying out in-situ-measurements of rock stresses, rock deformability and permeability of salt rock and backfill material. The following techniques developed and proved by BGR during the last years are planned to be used in the TSS project: overcoring technique, dilatometer technique, hard inclusion technique, slot-cutting techniques, large-flatjack technique, compensation tests in laboratory, vacuum tests, injection tests, and tracer tests. The purpose of measurements is to determine: the initial stress state; stress gradients around test drifts; stress change caused by mining activities, by creep and stress relaxation and by temperature; the in-situ load-deformation behavior of rock salt; the permeability of rock salt around test drifts; the compaction behavior of backfill material; and the load-deformation behavior of rock salt and borehole grout in laboratory tests

  20. Optical Manufacturing and Testing Requirements Identified by the NASA Science Instruments, Observatories and Sensor Systems Technology Assessment

    Science.gov (United States)

    Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; Mcleese, Dan; Singh, Upendra

    2011-01-01

    In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assess the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. The needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper reviews the optical manufacturing and testing technologies identified by SIOSS which require development in order to enable future NASA high priority missions.

  1. IN SITU STEAM ENHANCED RECOVERY PROCESS - HUGHES ENVIRONMENTAL SYSTEMS, INC. - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This Innovative Technology Evaluation report summarizes the findings of an evaluation of the in situ Steam Enhanced Recovery Process (SERP) operated by Hughes Environmental Systems, Inc. at the Rainbow Disposal facility in Huntington Beach, California. he technology demonstration...

  2. Electronics and instrumentation for the SST-1 superconducting magnet system

    International Nuclear Information System (INIS)

    Khristi, Yohan; Pradhan, Subrata; Varmora, Pankaj; Banaudha, Moni; Praghi, Bhadresh R.; Prasad, Upendra

    2015-01-01

    Steady State Superconducting Tokamak-1 (SST-1) at Institute for Plasma Research (IPR), India is now in operation phase. The SST-1 magnet system consists of sixteen superconducting (SC), D-shaped Toroidal Field (TF) coils and nine superconducting Poloidal Field (PF) coils together with a pair of resistive PF coils, inside the vacuum vessel of SST-1. The magnets were cooled down to 4.5 K using either supercritical or two-phase helium, after which they were charged up to 10 kA of transport current. Precise quench detection system, cryogenic temperature, magnetic field, strain, displacement, flow and pressure measurements in the Superconducting (SC) magnet were mandatory. The Quench detection electronics required to protect the SC magnets from the magnet Quench therefore system must be reliable and prompt to detect the quench from the harsh tokamak environment and high magnetic field interference. A ∼200 channels of the quench detection system for the TF magnet are working satisfactorily with its design criteria. Over ∼150 channels Temperature measurement system was implemented for the several locations in the magnet and hydraulic circuits with required accuracy of 0.1K at bellow 30K cryogenic temperature. Whereas the field, strain and displacement measurements were carried out at few predefined locations on the magnet. More than 55 channels of Flow and pressure measurements are carried out to know the cooling condition and the mass flow of the liquid helium (LHe) coolant for the SC Magnet system. This report identifies the different in-house modular signal conditioning electronics and instrumentation systems, calibration at different levels and the outcomes for the SST-1 TF magnet system. (author)

  3. Methods and systems for in-situ electroplating of electrodes

    Science.gov (United States)

    Zappi, Guillermo Daniel; Zarnoch, Kenneth Paul; Huntley, Christian Andrew; Swalla, Dana Ray

    2015-06-02

    The present techniques provide electrochemical devices having enhanced electrodes with surfaces that facilitate operation, such as by formation of a porous nickel layer on an operative surface, particularly of the cathode. The porous metal layer increases the surface area of the electrode, which may result in increasing the efficiency of the electrochemical devices. The formation of the porous metal layer is performed in situ, that is, after the assembly of the electrodes into an electrochemical device. The in situ process offers a number of advantages, including the ability to protect the porous metal layer on the electrode surface from damage during assembly of the electrochemical device. The enhanced electrode and the method for its processing may be used in any number of electrochemical devices, and is particularly well suited for electrodes in an electrolyzer useful for splitting water into hydrogen and oxygen.

  4. An Investigation of Digital Instrumentation and Control System Failure Modes

    International Nuclear Information System (INIS)

    Korsah, Kofi; Cetiner, Mustafa Sacit; Muhlheim, Michael David; Poore, Willis P. III

    2010-01-01

    A study sponsored by the Nuclear Regulatory Commission study was conducted to investigate digital instrumentation and control (DI and C) systems and module-level failure modes using a number of databases both in the nuclear and non-nuclear industries. The objectives of the study were to obtain relevant operational experience data to identify generic DI and C system failure modes and failure mechanisms, and to obtain generic insights, with the intent of using results to establish a unified framework for categorizing failure modes and mechanisms. Of the seven databases studied, the Equipment Performance Information Exchange database was found to contain the most useful data relevant to the study. Even so, the general lack of quality relative to the objectives of the study did not allow the development of a unified framework for failure modes and mechanisms of nuclear I and C systems. However, an attempt was made to characterize all the failure modes observed (i.e., without regard to the type of I and C equipment under consideration) into common categories. It was found that all the failure modes identified could be characterized as (a) detectable/preventable before failures, (b) age-related failures, (c) random failures, (d) random/sudden failures, or (e) intermittent failures. The percentage of failure modes characterized as (a) was significant, implying that a significant reduction in system failures could be achieved through improved online monitoring, exhaustive testing prior to installation, adequate configuration control or verification and validation, etc.

  5. A Universal Motor Performance Test System Based on Virtual Instrument

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-09-01

    Full Text Available With the development of technology universal motors play a more and more important role in daily life and production, they have been used in increasingly wide field and the requirements increase gradually. How to control the speed and monitor the real-time temperature of motors are key issues. The cost of motor testing system based on traditional technology platform is very high in many reasons. In the paper a universal motor performance test system which based on virtual instrument is provided. The system achieves the precise control of the current motor speed and completes the measurement of real-time temperature of motor bearing support in order to realize the testing of general-purpose motor property. Experimental result shows that the system can work stability in controlling the speed and monitoring the real-time temperature. It has advantages that traditional using of SCM cannot match in speed, stability, cost and accuracy aspects. Besides it is easy to expand and reconfigure.

  6. VLT instruments: industrial solutions for non-scientific detector systems

    Science.gov (United States)

    Duhoux, P.; Knudstrup, J.; Lilley, P.; Di Marcantonio, P.; Cirami, R.; Mannetta, M.

    2014-07-01

    . ESPRESSO is a fiber-fed, cross-dispersed echelle spectrograph that will be located in the Combined-Coudé Laboratory of the VLT in the Paranal Observatory in Chile. It will be able to operate either using the light of any of the UT's or using the incoherently combined light of up to four UT's. The stabilization of the incoming beam is achieved by dedicated piezo systems controlled via active loops closed on 4 + 4 dedicated TCCD's for the stabilization of the pupil image and of the field with a frequency goal of 3 Hz on a 2nd to 3rd magnitude star. An additional 9th TCCD system shall be used as an exposure-meter. In this paper we will present the technical CCD solution for future VLT instruments.

  7. A low cost modular control and instrumentation system for accelerators

    International Nuclear Information System (INIS)

    Shubaly, M.R.; Plato, J.G.; Davis, R.W.

    1984-01-01

    A modular control and instrumentation system, being developed for the RFQ1 accelerator and for ion beam test facilities, is based on an intelligent crate and interchangeable plug-in modules for specific applications. The 8085-based microcomputer used in the system can access up to 256 K of memory, has up to 64 levels of vectored interrupts and time of day, and supports terminals, printers, floppy discs and digital cassette drives. This computer is linked to a bus in the front of the crate which carries not only the usual address, data, and control signals, but also interrupt lines and interrupt chip control lines. This bus is designed for easy interfacing. Plug-in modules connect to the bus, and to monitored equipment via a separate connector leading to a terminal strip on the rear of the crate. These modules monitor absolute and differential temperature, flow-rate, voltages and currents and switch settings. A permanently installed module provides ac power switching, an RS232 serial link and full duplex fibre optic serial links for connection to a central computer. Software for the crate provides for task scheduling, data storage and limit tests, communication to higher levels of the control system and field configuration of the crate. (orig.)

  8. A Scalable Superconductor Bearing System For Lunar Telescopes And Instruments

    Science.gov (United States)

    Chen, Peter C.; Rabin, D.; Van Steenberg, M. E.

    2010-01-01

    We report on a new concept for a telescope mount on the Moon based on high temperature superconductors (HTS). Lunar nights are long (15 days), and temperatures range from 100 K to 30 K inside shadowed craters. Telescopes on the Moon therefore require bearing systems that can position and track precisely under cryogenic conditions, over long time periods, preferably with no maintenance, and preferably do not fail with loss of power. HTS bearings, consisting of permanent magnets levitated over bulk superconductors, are well suited to the task. The components do not make physical contact, hence there is no wear. The levitation is passive and stable; no power is required to maintain position. We report on the design and laboratory demonstration of a prototype two-axis pointing system. Unlike previous designs, this new configuration is simple and easy to implement. Most importantly, it can be scaled to accommodate instruments ranging in size from decimeters (laser communication systems) to meters (solar panels, communication dishes, optical telescopes, optical interferometers) to decameters and beyond (VLA-type radio interferometer elements).

  9. LSC - rapid methods with mobile instrument Triathler(TM) for in situ analytics of natural radionuclides in water - an overview

    International Nuclear Information System (INIS)

    Frenzel, E.

    2002-01-01

    The compact and mobile Triathler liquid scintillation counter enables in situ measurements of 222 Rn in water ( LLoD 226 Ra ( enrichment by filtering on special 3M RadDisks); (iv) 228 Ra (enrichment by filtering on special 3M RadDisks ). The special rapid method for radium 226 and 228 benefits from the availability of selective filters of 3M company. The filters were developed by US research centres ( like the Argonne National Laboratories) in collaboration with 3M. Up to 5 liters are filtered through the RadDisks and subsequently measured preferable by LSC, or Low Background Counting or α spectroscopy

  10. Modeling of coronal mass ejections with the STEREO heliospheric imagers verified with in situ observations by the Heliophysics System Observatory

    Science.gov (United States)

    Möstl, Christian; Isavnin, Alexey; Kilpua, Emilia; Bothmer, Volker; Mrotzek, Nicolas; Boakes, Peter; Rodriguez, Luciano; Krupar, Vratislav; Eastwood, Jonathan; Davies, Jackie; Harrison, Richard; Barnes, David; Winslow, Reka; Helcats Team

    2017-04-01

    We present the first study to verify modeling of CMEs as observed by the heliospheric imagers on the two STEREO spacecraft with a large scale dataset of in situ plasma and magnetic field observations from the Heliophysics System Observatory, including MESSENGER, VEX, Wind, and the in situ measurements on the two STEREO spacecraft. To this end, we have established a new interplanetary CME catalog (ICMECAT) for these spacecraft by gathering and updating individual ICME lists. In addition, we have re-calculated the in situ parameters in a consistent way, resulting in 668 events observed between 2007-2015. We then calculated the efficacy of the STEREO/HI instruments for predicting (in hindsight) with the SSEF30 model the arrival time and speed of CMEs as well as hit/miss ratios. We also show how ICMECAT gives decent statistics concerning CME impacts on all of the terrestrial planets, including Mars. The results show some major implications for future heliospheric imagers which may be used for space weather forecasting. Our effort should also serve as a baseline for the upcoming new era in heliospheric science with Solar Orbiter, Solar Probe Plus, BepiColombo returning partly comparable observations in the next decade. The presented work has received funding from the European Union Seventh Framework Programme (FP7/ 2007-2013) under grant agreement No. 606692 [HELCATS].

  11. In situ SEOP polarised {sup 3}He neutron spin filter for incident beam polarisation and polarisation analysis on neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Boag, S., E-mail: s.boag@rl.ac.u [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Babcock, E. [Institut Laue-langevin, 6 rue J. horowitz, BP 156, 38042, Grenoble Cedex 9 (France); Juelich Centre for Neutron Science at FRM II, Lichtenbergstrae 1, 85747 Garching (Germany); Andersen, K.H.; Becker, M. [Institut Laue-langevin, 6 rue J. horowitz, BP 156, 38042, Grenoble Cedex 9 (France); Charlton, T.R. [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Chen, W.C. [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Dalgliesh, R.M.; Elmore, S.D.; Frost, C.D. [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Gentile, T.R. [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Lopez Anton, R. [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); ICMA, CSIC-Universidad de Zaragoza, Zaragoza 50009 (Spain); Parnell, S.R. [Academic Unit of Radiology, University of Sheffield, S10 2JF (United Kingdom); Petoukhov, A.K. [Institut Laue-langevin, 6 rue J. horowitz, BP 156, 38042, Grenoble Cedex 9 (France); Skoda, M.W.A. [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Soldner, T. [Institut Laue-langevin, 6 rue J. horowitz, BP 156, 38042, Grenoble Cedex 9 (France)

    2009-09-01

    We discuss the development and characterisation of a new in situ spin exchange optical pumping (SEOP) based {sup 3}He neutron spin filter polarisation device. We present results from a recent test of the prototype system developed with the Institut Laue-Langevin. The polariser was installed on the polarised reflectometer CRISP at ISIS in the analyser position. The {sup 3}He was pumped continuously in situ on the beamline. The system also integrated a {sup 3}He adiabatic fast passage spin flipper that allowed reversal of the {sup 3}He and therefore neutron polarisation state, allowing for measurement of all four polarisation cross-sections. The system was run for a number of days reaching a {sup 3}He polarisation of 63%.

  12. A compact small-beam XRF instrument for in-situ analysis of objects of historical and/or artistic value

    Science.gov (United States)

    Vittiglio, G.; Janssens, K.; Vekemans, B.; Adams, F.; Oost, A.

    1999-11-01

    The analytical characteristics, possibilities and limitations of a compact and easily transportable small-beam XRF instrument are described. The instrument consists of a compact, mini-focus Mo X-ray tube that is collimated to produce a sub-mm beam and a peltier-cooled PIN diode detector. Relative MDLs in highly scattering matrices are situated in the 10-100-ppm range; for metallic matrices featuring strong matrix lines, the MDLs of the instrument are approximately a factor 2 higher. Since only a small irradiation area is required, a simple micro-polishing technique that may be performed in situ in combination with the measurements is shown to be effective for the determination of the bulk composition of corroded bronze objects. As an example, a series of Egyptian bronze objects date from XXII nd Egyptian Dynasty (ca. 1090 BC) to the Roman era (30 BC to 640 AD) was analyzed in order to contribute to the very limited database on Cu-alloy compositions from this period.

  13. Test plan for in situ stress measurement system development

    International Nuclear Information System (INIS)

    Kim, K.

    1981-09-01

    The tests are to be performed to provide information regarding the state of stress of the basalt rock beneath the Hanford Site. This test series is designed to obtain information necessary to determine if hydrofracturing stress measurement is feasible in a fractured basalt medium. During the course of these field tests, it will be attempted to adapt the conventional hydrofracturing test method and analysis techniques to the basalt medium. If the test is shown to be feasible, more holes will be identified for testing. A comprehensive in situ stress determination program will be initiated. 2 figs

  14. FMIT test-end instrumentation systems scoping study

    International Nuclear Information System (INIS)

    Fuller, J.L.; Dixon, N.E.; Sheen, E.M.

    1982-06-01

    For the Fusion Materials Irradiation Test facility (FMIT), the high power density of the accelerated deuteron beam and the unique nature of the liquid lithium target underscore the need for sensitive, fast and reliable test-end diagnostic instrumentation. The intense radiation environment in the test cell places severe limits on candidate systems, as to a lesser degree do thermal and lithium compatibility factors. A beam-target diagnostic station at 180 in the HEBT can facilitate source emission and spot-on-target imaging. Analyses support the feasibility of several candidate imaging systems. Incorporation of electromagnetic and electrostatic beam position detectors as part of the target assembly, as previously proposed, should also be feasible. The possibilities for on-line, real-time ultrasonic/acoustic target diagnosis are favorable. The use of redundant thermocouple and ion detector test assembly beam location detectors is also supported because of the possible problems with thermocouples in the intense 14-MeV neutron field and the simplicity of the ion detectors

  15. Replacement of the control and instrumentation system with the microprocessor based systems in Japanese PWR plants

    International Nuclear Information System (INIS)

    Hayashi, N.

    1998-01-01

    In Ohi Units 3 and 4, Ikata Unit 3, and Genkai Units 3 and 4, the latest of PWR plants now under operation in Japan, the reactor control system and turbine control system employ the microprocessor base digital control systems with a view to improving reliability, operability and maintainability. In the next stage plants, another application of such digital system is also planned for the instrumentation rack for the reactor protection system for further improvement. On the other hand, in Mihama Unit 1, the first of domestic PWR plants, and later plants except for the latest 5 plants, analog control systems are employed for the instrumentation racks. For the analog control systems of these plants, FOXBORO H-Line instruments, equivalent domestic box type instruments or WH7300 Series card type instruments were initially employed, and later replaced with domestic card type control systems after 10-15 year operation. However, 8-12 years have passed since these replacements, so the 15th year generally quoted as an interval for replacing C and I systems is near at hand. This is the time to consider next replacement. This replacement will be based on the latest digital technology. However, it is not practical way for the existing plants to apply the same integrated digital C and I system configuration for the next stage plants, because it requires the drastic change of the C and I system configuration and significant cost-up. Therefore, we must investigate the optimum digital C and I system configuration for the existing system. (author)

  16. A Powder Delivery System (PoDS) for Mars in situ Science

    Science.gov (United States)

    Bryson, C.; Blake, D.; Saha, C.; Sarrazin, P.

    2004-12-01

    Many instruments proposed for in situ Mars science investigations work best with fine-grained samples of rocks or soils. Such instruments include the mineral analyzer CheMin [1] and any instrument that requires samples having high surface areas (e.g., mass spectrometers, organic analyzers, etc). The Powder Delivery System (PoDS) is designed to deliver powders of selected grain sizes from a sample acquisition device such as an arm-deployed robotic driller or corer to an instrument suite located on the body of a rover/lander. PoDS is capable of size-selective sampling of crushed rocks, soil or drill powder for delivery to instruments that require specific grain sizes (e.g. 5-50 mg of less than150 micron powder for CheMin). Sample material is transported as an aerosol of particles and gas by vacuum advection. In the laboratory a venturi pump driven by compressed air provides the impulse. On Mars, the ambient atmosphere is a source of CO2 that can be captured and compressed by adsorption pumping during diurnal temperature cycling [2]. The lower atmospheric pressure on the surface of Mars (7 torr) will affect fundamental parameters of gas-particle interaction such as Reynolds, Stocks and Knudsen numbers [3]. However, calculations show that the PoDS will operate under both Martian and terrestrial atmospheric conditions. Cyclone separators with appropriate particle size selection ranges remove particles from the aerosol stream. The vortex flow inside the cyclone causes grains larger than a specific size to be collected, while smaller grains remain entrained in the gas. Cyclones are very efficient inertial and centrifugal particle separators with cut sizes (d50) as low as 4 microns. Depending on the particle size ranges desired, a series of cyclones with descending cut sizes may be used, the simplest case being a single cyclone for particle deposition without mass separation. Transmission / membrane filters of appropriate pore sizes may also be used to collect powder from

  17. Reviews of the In-situ Demonstration Test of the Engineered Barrier System in Many Countries

    International Nuclear Information System (INIS)

    Lee, Minsoo; Choi, Heui Joo

    2013-01-01

    Many nations considering the deep geologic disposal of HLW are now planning or executing in-situ demonstration experiments on their regional EBS (Engineering barrier system) at their deep underground research facilities. The main purpose of the in-situ EBS test is the experimental confirmation of its performance, and the prediction of its long-term evolution through the modeling of EBS based on the experimental data. Additionally, the engineering feasibility for the construction of an engineering barrier system can also be checked through full scale construction of an in-situ test. KAERI is currently preparing an in-situ test at a large 1/3 scale, called IN-DEBS (In-situ Demonstration of EBS) at KURT (KAERI Underground Research Tunnel) for the generic EBS suggested in A-KRS (Advanced KAERI Reference System), which was developed to treat the HLW from pyroprocessing. As the first step for the design of IN-DEBS, the foreign in-situ demonstrations of EBS were reviewed in this paper. The demonstration projects, which were completed or are still being executed in some countries such as Sweden, France, Finland, Canada, Belgium, Switzerland, Spain, and Japan, were surveyed and summarized. In particular, hardware constitutions such as the heating element or compact bentonite, and the experimental procedures, have focused more on reviews than on experimental results in this survey, since their hardware information is very important for the design of the IN-DEBS

  18. Reviews of the In-situ Demonstration Test of the Engineered Barrier System in Many Countries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minsoo; Choi, Heui Joo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Many nations considering the deep geologic disposal of HLW are now planning or executing in-situ demonstration experiments on their regional EBS (Engineering barrier system) at their deep underground research facilities. The main purpose of the in-situ EBS test is the experimental confirmation of its performance, and the prediction of its long-term evolution through the modeling of EBS based on the experimental data. Additionally, the engineering feasibility for the construction of an engineering barrier system can also be checked through full scale construction of an in-situ test. KAERI is currently preparing an in-situ test at a large 1/3 scale, called IN-DEBS (In-situ Demonstration of EBS) at KURT (KAERI Underground Research Tunnel) for the generic EBS suggested in A-KRS (Advanced KAERI Reference System), which was developed to treat the HLW from pyroprocessing. As the first step for the design of IN-DEBS, the foreign in-situ demonstrations of EBS were reviewed in this paper. The demonstration projects, which were completed or are still being executed in some countries such as Sweden, France, Finland, Canada, Belgium, Switzerland, Spain, and Japan, were surveyed and summarized. In particular, hardware constitutions such as the heating element or compact bentonite, and the experimental procedures, have focused more on reviews than on experimental results in this survey, since their hardware information is very important for the design of the IN-DEBS.

  19. In situ heat treatment process utilizing a closed loop heating system

    Science.gov (United States)

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  20. Advanced Water Purification System for In Situ Resource Utilization

    Science.gov (United States)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    One of NASA's goals is to enable longterm human presence in space, without the need for continuous replenishment of consumables from Earth. In situ resource utilization (ISRU) is the use of extraterrestrial resources to support activities such as human life-support, material fabrication and repair, and radiation shielding. Potential sources of ISRU resources include lunar and Martian regolith, and Martian atmosphere. Water and byproducts (including hydrochloric and hydrofluoric acids) can be produced from lunar regolith via a high-temperature hydrogen reduction reaction and passing the produced gas through a condenser. center dot Due to the high solubility of HCI and HF in water, these byproducts are expected to be present in the product stream (up to 20,000 ppm) and must be removed (less than 10 ppm) prior to water consumption or electrolysis.

  1. Eddy current testing system for bottom mounted instrumentation welds - 15206

    International Nuclear Information System (INIS)

    Kobayashi, N.; Ueno, S.; Suganuma, N.; Oodake, T.; Maehara, T.; Kasuya, T.; Ichikawa, H.

    2015-01-01

    We have demonstrated the scanning of eddy current testing (ECT) probe on the welds area including the nozzle, the J-welds and the buildup welds of the Bottom Mounted Instrumentation (BMI) mock-up using the developed ECT system and procedure. It is difficult to scan the probe on the BMI welds area because the area has a complex curved surface shape and narrow spaces. We made the space coordinates and the normal vectors on the scanning points as the scanning trajectory of probe on the welds area based on the measured results of welds surface shape on the mock-up. The multi-axis robot was used to scan the probe on the welds surface. Each motion axis position of the robot corresponding to each scanning point was calculated by the inverse kinematic algorithm. The BMI mock-up test was performed using the cross coil probe in the differential mode. The artificial stress corrosion cracking and the electrical discharge machining slits given on the mock-up surface were detected. The results show that the ECT can detect a defect of approximately 2.3 mm in length, 0.5 mm in depth and 0.2 mm in width for the BMI welds. From the output voltage of single coil, we estimated that the average and the maximum probe tilt angles on the mock-up surface under scanning were 2.6 degrees and 8.5 degrees, respectively

  2. Eddy current testing system for bottom mounted instrumentation welds

    Directory of Open Access Journals (Sweden)

    Kobayashi Noriyasu

    2015-01-01

    Full Text Available The capability of eddy current testing (ECT for the bottom mounted instrumentation (BMI weld area of reactor vessel in a pressurized water reactor was demonstrated by the developed ECT system and procedure. It is difficult to position and move the probe on the BMI weld area because the area has complexly curved surfaces. The space coordinates and the normal vectors at the scanning points were calculated as the scanning trajectory of probe based on the measured results of surface shape on the BMI mock-up. The multi-axis robot was used to move the probe on the mock-up. Each motion-axis position of the robot corresponding to each scanning point was calculated by the inverse kinematic algorithm. In the mock-up test, the probe was properly contacted with most of the weld surfaces. The artificial stress corrosion cracking of approximately 6 mm in length and the electrical-discharge machining slit of 0.5 mm in length, 1 mm in depth and 0.2 mm in width given on the weld surface were detected. From the probe output voltage, it was estimated that the average probe tilt angle on the surface under scanning was 2.6°.

  3. Building of a CAD system for instrumentation and control system of nuclear power plant

    International Nuclear Information System (INIS)

    Ma Zhicai; Hu Chunping; Zhang Dongsheng

    2012-01-01

    Base on the analysis of deign documents and process, a database for instrumentation and control system design can be developed with a popular desktop relational database management system (RDBMS). With the RDBMS, an instrumentation and control system CAD system can be built unitizing database link feature of popular CAD software, with the function of management of design data, output of list and forms. and design of drawings. A CAD system of this kind has been used in the design practice of nuclear power plant. With this system, it is shown that, the consistency of information has been controlled and the load on the engineer has been significantly reduced. The methodology used here can also be used in the CAD system for CAP1000 and CAP1400 plant. (authors) series

  4. In situ energetic particle observations at comet Halley recorded by instrumentation aboard the Giotto and Vega 1 missions

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S.; Daly, P.; Kirsch, E.; Wilken, B.; O' Sullivan, D.; Thompson, A.; Kecskemety, K.; Somogyi, A.; Coates, A.

    1989-04-01

    Three important observations recorded in the energetic particle data secured at Halley's comet during March 1986 are reviewed. These include (a) quasi periodic variations of cometary ion fluxes observed inbound and outbound by both the EPONA instrument aboard Giotto and by the Tunde-M instrument aboard Vega 1. A possible explanation of the results in terms of a spin modulation of the outgassing rate of the nucleus is discussed; (b) by combining the EPONA data with JPA-IIS data it is possible to infer that the ion fluxes measured at encounter by EPONA were of the water group. These particles displayed energies in excess of those attained by the pick-up process acting alone. Comparisons between energy spectra prepared using the composite observational data and, corresponding, theoretically derived plots suggest that, downstream of the shock (inbound), stochastic (second-order-Fermi) acceleration may have contributed to energizing the particles; (c) large fluxes of electrons (E>300keV) and ions (E>3.5 MeV) were unexpectedly recorded by EPONA in the magnetic cavity. The observed enhancements (up to approximately three orders of magnitude) appear to be cometary in origin.

  5. In situ energetic particle observations at comet Halley recorded by instrumentation aboard the Giotto and Vega 1 missions

    International Nuclear Information System (INIS)

    McKenna-Lawlor, S.; Daly, P.; Kirsch, E.; Wilken, B.; O'Sullivan, D.; Thompson, A.; Kecskemety, K.; Somogyi, A.

    1989-01-01

    Three important observations recorded in the energetic particle data secured at Halley's comet during March 1986 are reviewed. These include (a) quasi periodic variations of cometary ion fluxes observed inbound and outbound by both the EPONA instrument aboard Giotto and by the Tunde-M instrument aboard Vega 1. A possible explanation of the results in terms of a spin modulation of the outgassing rate of the nucleus is discussed; (b) by combining the EPONA data with JPA-IIS data it is possible to infer that the ion fluxes measured at encounter by EPONA were of the water group. These particles displayed energies in excess of those attained by the pick-up process acting alone. Comparisons between energy spectra prepared using the composite observational data and, corresponding, theoretically derived plots suggest that, downstream of the shock (inbound), stochastic (second-order-Fermi) acceleration may have contributed to energizing the particles; (c) large fluxes of electrons (E>300keV) and ions (E>3.5 MeV) were unexpectedly recorded by EPONA in the magnetic cavity. The observed enhancements (up to approximately three orders of magnitude) appear to be cometary in origin

  6. The digital reactor protection system for the instrumentation and control of reactor TRIGA PUSPATI (RTP)

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Izhar Abu Hussin; Mohd Idris Taib; Zareen Khan Abdul Jalil Khan

    2010-01-01

    Reactor Protection System (RPS) is important for Reactor Instrumentation and Control System. The RPS comprises all redundant electrical devices and circuitry involved in the generation of those initiating signals associated to the trip protective function. The instrumentation system for the RPS provides automatic protection signals against unsafe and improper reactor operation. The physical separation is provided for all of the redundant instrumentation systems to preserve redundancy. The safety protection systems using circuits composed of analog instruments and relays with relay contacts is difficult to realize from various reasons. Therefore, an application of digital technology can be said a logical conclusion also in the light of its functional superiority. (author)

  7. Conditioning of the vacuum system of the TPS storage ring without baking in situ

    Energy Technology Data Exchange (ETDEWEB)

    Chan, C.K., E-mail: ckchan@nsrrc.org.tw; Chang, C.C.; Shueh, C.; Yang, I.C.; Wu, L.H.; Chen, B.Y.; Cheng, C.M.; Huang, Y.T.; Chuang, J.Y.; Cheng, Y.T.; Hsiao, Y.M.; Sheng, Albert

    2017-04-11

    To shorten the machine downtime, a maintenance procedure without baking in situ has been developed and applied to maintain and to upgrade the vacuum system of the TPS storage ring. The data of photon-stimulated desorption (PSD) reveal no obvious discrepancy between baking and not baking the vacuum system in situ. A beam-conditioning dose of extent only 11.8 A h is required to recover quickly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.

  8. Conditioning of the vacuum system of the TPS storage ring without baking in situ

    Science.gov (United States)

    Chan, C. K.; Chang, C. C.; Shueh, C.; Yang, I. C.; Wu, L. H.; Chen, B. Y.; Cheng, C. M.; Huang, Y. T.; Chuang, J. Y.; Cheng, Y. T.; Hsiao, Y. M.; Sheng, Albert

    2017-04-01

    To shorten the machine downtime, a maintenance procedure without baking in situ has been developed and applied to maintain and to upgrade the vacuum system of the TPS storage ring. The data of photon-stimulated desorption (PSD) reveal no obvious discrepancy between baking and not baking the vacuum system in situ. A beam-conditioning dose of extent only 11.8 A h is required to recover quickly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.

  9. Conditioning of the vacuum system of the TPS storage ring without baking in situ

    International Nuclear Information System (INIS)

    Chan, C.K.; Chang, C.C.; Shueh, C.; Yang, I.C.; Wu, L.H.; Chen, B.Y.; Cheng, C.M.; Huang, Y.T.; Chuang, J.Y.; Cheng, Y.T.; Hsiao, Y.M.; Sheng, Albert

    2017-01-01

    To shorten the machine downtime, a maintenance procedure without baking in situ has been developed and applied to maintain and to upgrade the vacuum system of the TPS storage ring. The data of photon-stimulated desorption (PSD) reveal no obvious discrepancy between baking and not baking the vacuum system in situ. A beam-conditioning dose of extent only 11.8 A h is required to recover quickly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.

  10. Cognitive success: instrumental justifications of normative systems of reasoning

    OpenAIRE

    Schurz, Gerhard

    2014-01-01

    In the first part of the paper (sec. 1–4), I argue that Elqayam and Evan's (2011) distinction between normative and instrumental conceptions of cognitive rationality corresponds to deontological vs. teleological accounts in meta-ethics. I suggest that Elqayam and Evans' distinction be replaced by the distinction between a-priori intuition-based vs. a-posteriori success-based accounts of cognitive rationality. The value of cognitive success lies in its instrumental rationality for almost-all p...

  11. Managing modernization of nuclear power plant instrumentation and control systems

    International Nuclear Information System (INIS)

    2004-02-01

    There are many reasons why I and C systems need to be modernized in nuclear power plants, including obsolescence, results of aging technology, failure rates, and the need for additional functionality and improved performance. For many plants, Instrumentation and Control (I and C) modernization will be one of the largest and most important activities over the next decade or longer. Modernization of I and C systems will represent a major capital investment for the plants in the future. Therefore, good and informed management to determine what needs to be modernized, how it should be modernized, and then to do the actual modernization is essential in order to minimize the costs and maximize the benefits. While many reports have discussed I and C modernization topics, one topic that needs more work is how to management I and C modernization projects efficiently. In order to have an efficient modernization project, it is essential that the plant does strategic planning to determine what needs to be done with I and C systems in the context of the overall plant goals, objectives, and commitments. This includes determining what features the the overall I and C, and control room, of the plant should look like at the end of the time period considered by the strategic planning effort, what systems need to be modernized, what systems can be maintained, the priority order of the systems to be modernized, how the systems should be modernized, and so on. To ensure that the individual I and C and control room modernization projects are done consistently with the strategic plan and the overall plant goals, objectives, and commitments, it is important that management establishes a set of plant specific guidelines and generic requirements and processes that the project will need to follow and that can be used as part of the requirements specifications for the new systems. High level management leadership and support is needed for I and C modernization in order to maintain the high

  12. Managing modernization of nuclear power plant instrumentation and control systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    There are many reasons why I and C systems need to be modernized in nuclear power plants, including obsolescence, results of aging technology, failure rates, and the need for additional functionality and improved performance. For many plants, Instrumentation and Control (I and C) modernization will be one of the largest and most important activities over the next decade or longer. Modernization of I and C systems will represent a major capital investment for the plants in the future. Therefore, good and informed management to determine what needs to be modernized, how it should be modernized, and then to do the actual modernization is essential in order to minimize the costs and maximize the benefits. While many reports have discussed I and C modernization topics, one topic that needs more work is how to management I and C modernization projects efficiently. In order to have an efficient modernization project, it is essential that the plant does strategic planning to determine what needs to be done with I and C systems in the context of the overall plant goals, objectives, and commitments. This includes determining what features the the overall I and C, and control room, of the plant should look like at the end of the time period considered by the strategic planning effort, what systems need to be modernized, what systems can be maintained, the priority order of the systems to be modernized, how the systems should be modernized, and so on. To ensure that the individual I and C and control room modernization projects are done consistently with the strategic plan and the overall plant goals, objectives, and commitments, it is important that management establishes a set of plant specific guidelines and generic requirements and processes that the project will need to follow and that can be used as part of the requirements specifications for the new systems. High level management leadership and support is needed for I and C modernization in order to maintain the high

  13. In Situ Guided Wave Structural Health Monitoring System

    Science.gov (United States)

    Zhao, George; Tittmann, Bernhard R.

    2011-01-01

    Aircraft engine rotating equipment operates at high temperatures and stresses. Noninvasive inspection of microcracks in those components poses a challenge for nondestructive evaluation. A low-cost, low-profile, high-temperature ultrasonic guided wave sensor was developed that detects cracks in situ. The transducer design provides nondestructive evaluation of structures and materials. A key feature of the sensor is that it withstands high temperatures and excites strong surface wave energy to inspect surface and subsurface cracks. The sol-gel bismuth titanate-based surface acoustic wave (SAW) sensor can generate efficient SAWs for crack inspection. The sensor is very thin (submillimeter) and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. The sensor can be implemented on structures of various shapes. With a spray-coating process, the sensor can be applied to the surface of large curvatures. It has minimal effect on airflow or rotating equipment imbalance, and provides good sensitivity.

  14. Advanced Water Purification System for In Situ Resource Utilization Project

    Science.gov (United States)

    Anthony, Stephen M.

    2014-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extratrrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtrtion material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removable technique. Our studies have show a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  15. Formulation and evaluation of in situ gelling systems for intranasal administration of gastrodin.

    Science.gov (United States)

    Cai, Zheng; Song, Xiangrong; Sun, Feng; Yang, Zhaoxiang; Hou, Shixiang; Liu, Zhongqiu

    2011-12-01

    Gastrodin is the major bioactive constituent of the traditional Chinese drug "Tianma." It is used in the treatment of some nervous system diseases and can be transported to the brain via intranasal administration. In the current paper, the development of a novel ion-activated in situ gelling system for the nasal delivery of gastrodin is discussed. An in situ perfusion model was used to determine the absorption-rate constant of gastrodin through rat nasal mucosa. The optimal formulation was determined by measuring the critical cation concentration, anti-dilution capacity, gel expansion coefficient, water-holding capacity, and adhesive capacity. The best formulation consisted of 10% gastrodin, 0.5% deacetylated gellan gum as the gelatinizer, and 0.03% ethylparaben as the preservative. The rheological properties of gastrodin nasal in situ gels were also investigated. The viscosity and elasticity sharply increased at temperatures below 25°C. When physiological concentrations of cations were added into the preparation, the mixture gelled into a semi-solid. The results of an accelerated stability test show that gastrodin nasal in situ gels can be stable for more than 2 years. Mucociliary toxicity was evaluated using the in situ toad palate model and the rat nasal mucociliary method; both models demonstrated no measurable ciliotoxicity. Pharmacodynamic studies suggest that similar acesodyne and sedative effects were induced following intranasal administration of 50 mg/kg gastrodin nasal in situ gels or oral administration of 100 mg/kg gastrodin solution. The in situ gel preparation is a safe and effective nasal delivery system for gastrodin.

  16. In situ Volcanic Plume Monitoring with small Unmanned Aerial Systems for Cal/Val of Satellite Remote Sensing Data: CARTA-UAV 2013 Mission (Invited)

    Science.gov (United States)

    Diaz, J. A.; Pieri, D. C.; Bland, G.; Fladeland, M. M.

    2013-12-01

    The development of small unmanned aerial systems (sUAS) with a variety of sensor packages, enables in situ and proximal remote sensing measurements of volcanic plumes. Using Costa Rican volcanoes as a Natural Laboratory, the University of Costa Rica as host institution, in collaboration with four NASA centers, have started an initiative to develop low-cost, field-deployable airborne platforms to perform volcanic gas & ash plume research, and in-situ volcanic monitoring in general, in conjunction with orbital assets and state-of-the-art models of plume transport and composition. Several gas sensors have been deployed into the active plume of Turrialba Volcano including a miniature mass spectrometer, and an electrochemical SO2 sensor system with temperature, pressure, relative humidity, and GPS sensors. Several different airborne platforms such as manned research aircraft, unmanned aerial vehicles, tethered balloons, as well as man-portable in-situ ground truth systems are being used for this research. Remote sensing data is also collected from the ASTER and OMI spaceborne instruments and compared with in situ data. The CARTA-UAV 2013 Mission deployment and follow up measurements successfully demonstrated a path to study and visualize gaseous volcanic emissions using mass spectrometer and gas sensor based instrumentation in harsh environment conditions to correlate in situ ground/airborne data with remote sensing satellite data for calibration and validation purposes. The deployment of such technology improves on our current capabilities to detect, analyze, monitor, model, and predict hazards presented to aircraft by volcanogenic ash clouds from active and impending volcanic eruptions.

  17. Review on the development of truly portable and in-situ capillary electrophoresis systems

    Science.gov (United States)

    Lewis, A. P.; Cranny, A.; Harris, N. R.; Green, N. G.; Wharton, J. A.; Wood, R. J. K.; Stokes, K. R.

    2013-04-01

    Capillary electrophoresis (CE) is a technique which uses an electric field to separate a mixed sample into its constituents. Portable CE systems enable this powerful analysis technique to be used in the field. Many of the challenges for portable systems are similar to those of autonomous in-situ analysis and therefore portable systems may be considered a stepping stone towards autonomous in-situ analysis. CE is widely used for biological and chemical analysis and example applications include: water quality analysis; drug development and quality control; proteomics and DNA analysis; counter-terrorism (explosive material identification) and corrosion monitoring. The technique is often limited to laboratory use, since it requires large electric fields, sensitive detection systems and fluidic control systems. All of these place restrictions in terms of: size, weight, cost, choice of operating solutions, choice of fabrication materials, electrical power and lifetime. In this review we bring together and critique the work by researchers addressing these issues. We emphasize the importance of a holistic approach for portable and in-situ CE systems and discuss all the aspects of the design. We identify gaps in the literature which require attention for the realization of both truly portable and in-situ CE systems.

  18. Review on the development of truly portable and in-situ capillary electrophoresis systems

    International Nuclear Information System (INIS)

    Lewis, A P; Cranny, A; Harris, N R; Green, N G; Wharton, J A; Wood, R J K; Stokes, K R

    2013-01-01

    Capillary electrophoresis (CE) is a technique which uses an electric field to separate a mixed sample into its constituents. Portable CE systems enable this powerful analysis technique to be used in the field. Many of the challenges for portable systems are similar to those of autonomous in-situ analysis and therefore portable systems may be considered a stepping stone towards autonomous in-situ analysis. CE is widely used for biological and chemical analysis and example applications include: water quality analysis; drug development and quality control; proteomics and DNA analysis; counter-terrorism (explosive material identification) and corrosion monitoring. The technique is often limited to laboratory use, since it requires large electric fields, sensitive detection systems and fluidic control systems. All of these place restrictions in terms of: size, weight, cost, choice of operating solutions, choice of fabrication materials, electrical power and lifetime. In this review we bring together and critique the work by researchers addressing these issues. We emphasize the importance of a holistic approach for portable and in-situ CE systems and discuss all the aspects of the design. We identify gaps in the literature which require attention for the realization of both truly portable and in-situ CE systems. (topical review)

  19. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.; Larson, Eric; Taylor, Mark A.; Siewenie, Joan [Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Xu, Hongwu [Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Zhu, Jinlong [High Pressure Science and Engineering Center, Department of Physics and Astronomy, The University of Nevada, Las Vegas, Nevada 89154, USA and National Lab for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Page, Katharine, E-mail: pagekl@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-12-15

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO{sub 2} measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO{sub 2} sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H{sub 2} and natural gas uptake/storage.

  20. [Design and implementation of medical instrument standard information retrieval system based on APS.NET].

    Science.gov (United States)

    Yu, Kaijun

    2010-07-01

    This paper Analys the design goals of Medical Instrumentation standard information retrieval system. Based on the B /S structure,we established a medical instrumentation standard retrieval system with ASP.NET C # programming language, IIS f Web server, SQL Server 2000 database, in the. NET environment. The paper also Introduces the system structure, retrieval system modules, system development environment and detailed design of the system.

  1. Application of AC servo motor on the in-core neutron flux instrumentation system

    International Nuclear Information System (INIS)

    Du Xiaoguang; Wang Mingtao

    2010-01-01

    The application of ac servo motor in the In-Core Neutron Flux Instrumentation System is described. The hardware component of ac servo motor control system is different from the dc motor control system. The effect of two control system on the instrumentation system is compared. The ac servo motor control system can improve the accuracy of the motion control, optimize the speed control and increase the reliability. (authors)

  2. Core-adjacent instrumentation systems for pebble bed reactors for process heat application - state of planning

    International Nuclear Information System (INIS)

    Benninghofen, G.; Serafin, N.; Spillekothen, H.G.; Hecker, R.; Brixy, H.; Serpekian, T.

    1982-06-01

    Planning and theoretical/experimental development work for core surveillance instrumentation systems is being performed to meet requirements of pebble bed reactors for process heat application. Detailed and proved instrumentation concepts are now available for the core-adjacent instrumentation systems. The current work and the results of neutron flux measurements at high temperatures are described. Operation devices for long-term accurate gas outlet temperature measurements up to approximately 1423 deg. K will also be discussed. (author)

  3. Calibration Transfer Between a Bench Scanning and a Submersible Diode Array Spectrophotometer for In Situ Wastewater Quality Monitoring in Sewer Systems.

    Science.gov (United States)

    Brito, Rita S; Pinheiro, Helena M; Ferreira, Filipa; Matos, José S; Pinheiro, Alexandre; Lourenço, Nídia D

    2016-03-01

    Online monitoring programs based on spectroscopy have a high application potential for the detection of hazardous wastewater discharges in sewer systems. Wastewater hydraulics poses a challenge for in situ spectroscopy, especially when the system includes storm water connections leading to rapid changes in water depth, velocity, and in the water quality matrix. Thus, there is a need to optimize and fix the location of in situ instruments, limiting their availability for calibration. In this context, the development of calibration models on bench spectrophotometers to estimate wastewater quality parameters from spectra acquired with in situ instruments could be very useful. However, spectra contain information not only from the samples, but also from the spectrophotometer generally invalidating this approach. The use of calibration transfer methods is a promising solution to this problem. In this study, calibration models were developed using interval partial least squares (iPLS), for the estimation of total suspended solids (TSS) and chemical oxygen demand (COD) in sewage from Ultraviolet-visible spectra acquired in a bench scanning spectrophotometer. The feasibility of calibration transfer to a submersible, diode array equipment, to be subsequently operated in situ, was assessed using three procedures: slope and bias correction (SBC); single wavelength standardization (SWS) on mean spectra; and local centering (LC). The results showed that SBC was the most adequate for the available data, adding insignificant error to the base model estimates. Single wavelength standardization was a close second best, potentially more robust, and independent of the base iPLS model. Local centering was shown to be inadequate for the samples and instruments used. © The Author(s) 2016.

  4. Application of Fiber Optic Instrumentation (Validation des systemes d’instrumentation a fibres optiques)

    Science.gov (United States)

    2012-07-01

    gratings per system. The O/E amplifier module combines negatively biased photodiodes with transimpedence SYSTEM DEVELOPMENT 3 - 4 RTO-AG-160-V22...3a). The sub-components that make up the system are as follows: c-band tunable laser, optical network, Optical-to-Electrical (O/E) amplifier ...resides on the cPCI bus and is configured, controlled, and monitored via the host cPCI processor. The optical network and the O/E amplifier were designed

  5. Modern systems of instrumentation and control of FRAMATOME ANP: instrument to the future

    International Nuclear Information System (INIS)

    Kraft, U.; Richter, S.

    2003-01-01

    Based on the applications of the TELEPERM XS and XP platforms, experience with these operating and safety I and C system in nuclear plants both in Europe and abroad is described here. To quote information from customers in the nuclear field, the positive results can be confirmed by specific nuclear plants from all over the world, so that with the application of these new digitial platforms alternatives exist for quasi all types of nuclear plant. The TELEPERM XS and XP system families can be easily applied for modernization projects for existing I and C systems, resulting in a high degree of availability and economic advantages, in accordance with modern technology. In order to demonstrate to the readers of this article the status of development of the TELEPERM XS safety I and C system, further important information regarding the general characteristics, to the architecture of the hardware and the engineering process as well as the development of the software is given. In this way one can obtain a general idea of the TELEPERM XS system as well as an outlook combined with the successful application of this modern safety I and C system for nuclear plants world wide. (Author)

  6. Atmospheric Measurements by Ultra-Light SpEctrometer (AMULSE Dedicated to Vertical Profile in Situ Measurements of Carbon Dioxide (CO2 Under Weather Balloons: Instrumental Development and Field Application

    Directory of Open Access Journals (Sweden)

    Lilian Joly

    2016-09-01

    Full Text Available The concentration of greenhouse gases in the atmosphere plays an important role in the radiative effects in the Earth’s climate system. Therefore, it is crucial to increase the number of atmospheric observations in order to quantify the natural sinks and emission sources. We report in this paper the development of a new compact lightweight spectrometer (1.8 kg called AMULSE based on near infrared laser technology at 2.04 µm coupled to a 6-m open-path multipass cell. The measurements were made using the Wavelength Modulation Spectroscopy (WMS technique and the spectrometer is hence dedicated to in situ measuring the vertical profiles of the CO2 at high precision levels (σAllan = 0.96 ppm in 1 s integration time (1σ and with high temporal/spatial resolution (1 Hz/5 m using meteorological balloons. The instrument is compact, robust, cost-effective, fully autonomous, has low-power consumption, a non-intrusive probe and is plug & play. It was first calibrated and validated in the laboratory and then used for 17 successful flights up to 10 km altitude in the region Champagne—Ardenne, France in 2014. A rate of 100% of instrument recovery was validated due to the pre-localization prediction of the Météo—France based on the flight simulation software.

  7. In situ gel systems as 'smart' carriers for sustained ocular drug delivery.

    Science.gov (United States)

    Agrawal, Ashish Kumar; Das, Manasmita; Jain, Sanyog

    2012-04-01

    In situ gel systems refer to a class of novel delivery vehicles, composed of natural, semisynthetic or synthetic polymers, which present the unique property of sol-gel conversion on receipt of biological stimulus. The present review summarizes the latest developments in in situ gel technology, with regard to ophthalmic drug delivery. Starting with the mechanism of ocular absorption, the review expands on the fabrication of various polymeric in situ gel systems, made up of two or more polymers presenting multi-stimuli sensitivity, coupled with other interesting features, such as bio-adhesion, enhanced penetration or sustained release. Various key issues and challenges in this area have been addressed and critically analyzed. The advent of in situ gel systems has inaugurated a new transom for 'smart' ocular delivery. By virtue of possessing stimuli-responsive phase transition properties, these systems can easily be administered into the eye, similar to normal eye drops. Their unique gelling properties endow them with special features, such as prolonged retention at the site of administration, followed by sustained drug release. Despite the superiority of these systems as compared with conventional ophthalmic formulations, further investigations are necessary to address the toxicity issues, so as to minimize regulatory hurdles during commercialization.

  8. Continuous in-situ methane measurements at paddy fields in a rural area of India with poor electric infrastructure, using a low-cost instrument based on open-path near-IR laser absorption spectroscopy

    Science.gov (United States)

    Hidemori, T.; Matsumi, Y.; Nakayama, T.; Kawasaki, M.; Sasago, H.; Takahashi, K.; Imasu, R.; Takeuchi, W.; Adachi, M.; Machida, T.; Terao, Y.; Nomura, S.; Dhaka, S. K.; Singh, J.

    2015-12-01

    In southeast and south Asia, the previous satellite observations suggest that the methane emission from rice paddies is significant and important source of methane during rainy season. Since it is difficult to measure methane stably and continuously at rural areas such as the paddy fields in terms of infrastructures and maintenances, there are large uncertainties in quantitative estimation of methane emission in these areas and there are needs for more certification between satellite and ground based measurements. To measure methane concentrations continuously at difficult situations such as the center of paddy fields and wetlands, we developed the continuous in-situ measurement system, not to look for your lost keys under the streetlight. The methane gas sensor is used an open-path laser based measurement instrument (LaserMethane, ANRITSU CORPORATION), which can quickly and selectively detect average methane concentrations on the optical path of the laser beam. The developed system has the power supply and telecommunication system to run the laser gas sensor in rural areas with poor electricity infrastructure.The methane measurement system was installed at paddy fields of Sonepat, Haryana on the north of Delhi in India and has been operated from the end of 2014. The air sampling along with our measurement has been carried out once a week during daytime to calibrate the laser instrument. We found that the seasonal variation of methane concentrations was different from the satellite observations and there were significant diurnal variations, which it was difficult to detect from occasional air samplings. We will present details of the measurement system and recent results of continuous methane measurements in India.

  9. Design of software platform based on linux operating system for γ-spectrometry instrument

    International Nuclear Information System (INIS)

    Hong Tianqi; Zhou Chen; Zhang Yongjin

    2008-01-01

    This paper described the design of γ-spectrometry instrument software platform based on s3c2410a processor with arm920t core, emphases are focused on analyzing the integrated application of embedded linux operating system, yaffs file system and qt/embedded GUI development library. It presented a new software platform in portable instrument for γ measurement. (authors)

  10. Project W-314 DST and DCRT instrument and control systems, initial assessment

    International Nuclear Information System (INIS)

    Acree, C.D.

    1996-01-01

    This report contains an assessment of the instrument and control systems in the Double Shell Tank Farms and the 244-A DCRT. The assessment report contains data from physical inspection activities and an overall engineering assessment of the instruments and control systems in use in the Double Shell Tanks

  11. Double barrier system for an in situ conversion process

    Science.gov (United States)

    McKinzie, Billy John [Houston, TX; Vinegar, Harold J [Bellaire, TX; Cowan, Kenneth Michael [Sugar land, TX; Deeg, Wolfgang Friedrich Johann [Houston, TX; Wong, Sau-Wai [Rijswijk, NL

    2009-05-05

    A barrier system for a subsurface treatment area is described. The barrier system includes a first barrier formed around at least a portion of the subsurface treatment area. The first barrier is configured to inhibit fluid from exiting or entering the subsurface treatment area. A second barrier is formed around at least a portion of the first barrier. A separation space exists between the first barrier and the second barrier.

  12. Injectable In-Situ Gelling Controlled Release Drug Delivery System

    OpenAIRE

    Kulwant Singh; S. L. HariKumar

    2012-01-01

    The administration of poorly bioavailable drug through parenteral route is regarded the most efficient for drug delivery. Parenteral delivery provides rapid onset even for the drug with narrow therapeutic window, but to maintain the systemic drug level repeated installation are required which cause the patient discomfort. This can be overcome by designing the drug into a system, which control the drug release even through parenteral delivery, which improve patient compliance as well as pharma...

  13. Apically extruded debris with reciprocating single-file and full-sequence rotary instrumentation systems.

    Science.gov (United States)

    Bürklein, Sebastian; Schäfer, Edgar

    2012-06-01

    The purpose of this in vitro study was to assess the amount of apically extruded debris using rotary and reciprocating nickel-titanium instrumentation systems. Eighty human mandibular central incisors were randomly assigned to 4 groups (n = 20 teeth per group). The root canals were instrumented according to the manufacturers' instructions using the 2 reciprocating single-file systems Reciproc (VDW, Munich, Germany) and WaveOne (Dentsply Maillefer, Ballaigues, Switzerland) and the 2 full-sequence rotary Mtwo (VDW, Munich, Germany) and ProTaper (Dentsply Maillefer, Ballaigues, Switzerland) instruments. Bidistilled water was used as irrigant. The apically extruded debris was collected in preweighted glass vials using the Myers and Montgomery method. After drying, the mean weight of debris was assessed with a microbalance and statistically analyzed using analysis of variance and the post hoc Student-Newman-Keuls test. The time required to prepare the canals with the different instruments was also recorded. The reciprocating files produced significantly more debris compared with both rotary systems (P rotary instruments (P > .05), the reciprocating single-file system Reciproc produced significantly more debris compared with all other instruments (P Instrumentation was significantly faster using Reciproc than with all other instrument (P rotary instrumentation was associated with less debris extrusion compared with the use of reciprocating single-file systems. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. An electromechanical material testing system for in situ electron microscopy and applications

    OpenAIRE

    Zhu, Yong; Espinosa, Horacio D.

    2005-01-01

    We report the development of a material testing system for in situ electron microscopy (EM) mechanical testing of nanostructures. The testing system consists of an actuator and a load sensor fabricated by means of surface micromachining. This previously undescribed nanoscale material testing system makes possible continuous observation of the specimen deformation and failure with subnanometer resolution, while simultaneously measuring the applied load electronically with nanonewton resolution...

  15. Design aid system for nuclear power plant instrumentations

    International Nuclear Information System (INIS)

    Hattori, Yoshiaki; Ito, Toshiichiro; Fujii, Makoto; Shimada, Nobuhide.

    1987-01-01

    Purpose: To enable to provide design aid for the nuclear power plant instrumentation of high reliability with the minimum cost while eliminating unrequired condition even if there are no data for the ground of the instrumentation design. Constitution: The information data base for the design of process radiation ray monitors are administrated by a data base administration device. The conditions to be satisfied in the process radiation monitors designed based on the data for the circumstances where particular predetermined process radiation monitors are installed, are derived by deduction using information obtained from the data base by way of the data base administration device. The derived design conditions are displayed and the optimum conditions are again reduced and displayed. In this way, the designers are assisted such that optimum designs can be obtained while sufficiently satisfying the safety and also in view of the cost. (Kamimura, M.)

  16. The Fiber Optic System for the Advanced Topographic Laser Altimeter System (ATLAS) Instrument

    Science.gov (United States)

    Ott, Melanie N.; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm. The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  17. The fiber optic system for the Advanced Topographic Laser Altimeter System (ATLAS) instrument.

    Science.gov (United States)

    Ott, Melanie N; Thomes, Joe; Onuma, Eleanya; Switzer, Robert; Chuska, Richard; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-08-28

    The Advanced Topographic Laser Altimeter System (ATLAS) Instrument has been in integration and testing over the past 18 months in preparation for the Ice, Cloud and Land Elevation Satellite - 2 (ICESat-2) Mission, scheduled to launch in 2017. ICESat-2 is the follow on to ICESat which launched in 2003 and operated until 2009. ATLAS will measure the elevation of ice sheets, glaciers and sea ice or the "cryosphere" (as well as terrain) to provide data for assessing the earth's global climate changes. Where ICESat's instrument, the Geo-Science Laser Altimeter (GLAS) used a single beam measured with a 70 m spot on the ground and a distance between spots of 170 m, ATLAS will measure a spot size of 10 m with a spacing of 70 cm using six beams to measure terrain height changes as small as 4 mm.[1] The ATLAS pulsed transmission system consists of two lasers operating at 532 nm with transmitter optics for beam steering, a diffractive optical element that splits the signal into 6 separate beams, receivers for start pulse detection and a wavelength tracking system. The optical receiver telescope system consists of optics that focus all six beams into optical fibers that feed a filter system that transmits the signal via fiber assemblies to the detectors. Also included on the instrument is a system that calibrates the alignment of the transmitted pulses to the receiver optics for precise signal capture. The larger electro optical subsystems for transmission, calibration, and signal receive, stay aligned and transmitting sufficiently due to the optical fiber system that links them together. The robust design of the fiber optic system, consisting of a variety of multi fiber arrays and simplex assemblies with multiple fiber core sizes and types, will enable the system to maintain consistent critical alignments for the entire life of the mission. Some of the development approaches used to meet the challenging optical system requirements for ATLAS are discussed here.

  18. A portable in situ NaI(Tl) γ spectroscopy system

    International Nuclear Information System (INIS)

    Wang Bairong; Dong Binjiang; Zeng Liping

    1999-01-01

    The author describes a portable in situ NaI(Tl) γ spectroscopy system, which consists of a NaI(Tl) scintillation detector, an integrative spectroscopy card, a notebook computer and the spectroscopy software. The spectrometer addresses applications in environmental or nuclear accident in situ γ spectroscopy measurements, and gives valid quantitative results of radionuclide concentrations per unit volume (Bq/kg) or per unit area (Bq/cm 2 ) in the soil and absorbed dose rate in air 1 m above ground (Gy/h)

  19. Standard guide for evaluating performance characteristics of phased-Array ultrasonic testing instruments and systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide describes procedures for evaluating some performance characteristics of phased-array ultrasonic examination instruments and systems. 1.2 Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this guide are expressed in terms that relate to their potential usefulness for ultrasonic examinations. Other electronic instrument characteristics in phased-array units are similar to non-phased-array units and may be measured as described in E 1065 or E 1324. 1.3 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be evaluated. 1.4 This guide establishes no performance limits for examination systems; if such acceptance criteria ar...

  20. Java Expert GUI framework for CERN beam instrumentation systems

    CERN Document Server

    Bart Pedersen, S; Jackson, S

    2011-01-01

    The CERN Beam Instrumentation Group’s software section has recently performed a study of the tools used to produce Java expert GUI applications. This paper will present the analysis that was made to understand the requirements for generic components and the resulting tools including a collection of Java components that have been made available for a wider audience. The paper will also discuss the prospect of using Maven as the deployment tool with its implications for developers and users.

  1. IPCS: An integrated process control system for enhanced in-situ bioremediation

    International Nuclear Information System (INIS)

    Huang, Y.F.; Wang, G.Q.; Huang, G.H.; Xiao, H.N.; Chakma, A.

    2008-01-01

    To date, there has been little or no research related to process control of subsurface remediation systems. In this study, a framework to develop an integrated process control system for improving remediation efficiencies and reducing operating costs was proposed based on physical and numerical models, stepwise cluster analysis, non-linear optimization and artificial neural networks. Process control for enhanced in-situ bioremediation was accomplished through incorporating the developed forecasters and optimizers with methods of genetic algorithm and neural networks modeling. Application of the proposed approach to a bioremediation process in a pilot-scale system indicated that it was effective in dynamic optimization and real-time process control of the sophisticated bioremediation systems. - A framework of process control system was developed to improve in-situ bioremediation efficiencies and reducing operating costs

  2. Thermodynamic modelling and in-situ neutron diffraction investigation of the (Ce + Mg + Zn) system

    International Nuclear Information System (INIS)

    Zhu, Zhijun; Gharghouri, Michael A.; Medraj, Mamoun; Lee, Soo Yeol; Pelton, Arthur D.

    2016-01-01

    Highlights: • All phase diagram and thermodynamic data critically assessed for the (Ce + Mg + Zn) system. • All phases described by optimized thermodynamic models. • In-situ neutron diffraction performed to identify phases and transition temperatures. • Assessments of other (RE + Mg + Zn) systems have been carried out simultaneously. • The final product is a thermodynamic database for multicomponent (Mg + RE + Zn) systems. - Abstract: All available phase diagram data for the (Ce + Mg + Zn) system were critically assessed. In-situ neutron diffraction (ND) experiments were performed on selected samples to identify phases and transition temperatures. A critical thermodynamic evaluation and optimization of the (Ce + Mg + Zn) system were carried out and model parameters for the thermodynamic properties of all phases were obtained. The phase transformation behaviour of selected samples was well resolved from the ND experiments and experimental data were used to refine the thermodynamic model parameters.

  3. Mobile system for in-situ imaging of cultural objects

    Czech Academy of Sciences Publication Activity Database

    Žemlička, J.; Jakůbek, J.; Krejčí, F.; Hradil, David; Hradilová, J.; Mislerová, H.

    2012-01-01

    Roč. 7, January (2012), C01108/1-C01108/8 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z40320502 Keywords : inspection with x-rays * X-ray fluorescence (XRF) systems Subject RIV: CA - Inorganic Chemistry Impact factor: 1.869, year: 2011

  4. Demonstration testing and evaluation of in situ soil heating. Revision 1, Demonstration system design

    International Nuclear Information System (INIS)

    Dev, H.

    1994-01-01

    Over the last nine years IIT Research Institute (IITRI) has been developing and testing the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. The vaporized contaminants, water vapor and air are recovered from the heated zone by means of a vacuum manifold system which collects gases from below surface as well as from the soil surface. A vapor barrier is used to prevent fugitive emissions of the contaminants and to control air infiltration to minimize dilution of the contaminant gases and vapors. The recovered gases and vapors are conveyed to an on site vapor treatment system for the clean up of the vent gases. Electrical energy is applied to the soil by forming an array of electrodes in the soil which are electrically interconnected and supplied with power. The electrodes are placed in drilled bore holes which are made through the contaminated zone. There are two versions of the in situ heating and soil treatment process: the f irst version is called the In Situ Radio Frequency (RF) Soil Decontamination Process and the second version is called the In Situ Electromagnetic (EM) Soil Decontamination Process. The first version, the RF Process is capable of heating the soil in a temperature range of 100 degrees to 400 degrees C. The soil temperature in the second version, the EM Process, is limited to the boiling point of water under native conditions. Thus the soil will be heated to a temperature of about 85 degrees to 95 degrees C. In this project IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site due to the fact that most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 degrees to 95 degrees C

  5. Application of in situ x-ray diffraction techniques in heterogenous catalytic systems

    International Nuclear Information System (INIS)

    Sharifah Bee Abd Hamid

    2002-01-01

    A broad range of techniques is available today for the characterisation of catalysts and the investigation of catalyst reaction mechanisms. However, only a limited number of those are suitable for in situ studies, i.e experiments performed in conditions mimicking or close as possible to real operating conditions. Various commercially and in-house developed in situ X-Ray diffraction (XRD) cells have been used to obtain information on the phase and structure of materials at the initial formation stage, activation methodology, calcination, reduction and carburization. A major advantage of the in situ X-ray cells is that it allows direct observations on the decomposition of precursors leading to various phases in a controlled environment, i.e. controlled temperature and pressure under specified gases. The cells can be operated both at high temperatures and high pressures, equipped with Position Sensitive Detector (PSD), feature which was used to study phase transformation occurring during the activation of various solids. In MoO 3 , XRD results provide detailed information on the hydrogen insertion into its lattice, followed by carburization providing good understanding on the mechanism in the solid transformation leading to the metastable MoC 1 -x phase. For the Bi-SnO x systems, the environmental cell coupled with XRD and PSD allow the design of activation procedure to obtain the active Bi 2 Sn 2 O 7 . The in situ XRD technique reveals crucial information on the initial stage of oxides formations prior to condensation reaction shown in MCM-41 and titania systems. In this presentation, discussions on general achievements and problems relating to the use of in situ XRD techniques as well as of specific examples selected to illustrate the use and potential of in situ XRD are made. It is not intended to be a review of the art but a highlight of the challenges which the catalytic and material scientists face when entering the avenue. (Author)

  6. An integrated numerical and physical modeling system for an enhanced in situ bioremediation process

    International Nuclear Information System (INIS)

    Huang, Y.F.; Huang, G.H.; Wang, G.Q.; Lin, Q.G.; Chakma, A.

    2006-01-01

    Groundwater contamination due to releases of petroleum products is a major environmental concern in many urban districts and industrial zones. Over the past years, a few studies were undertaken to address in situ bioremediation processes coupled with contaminant transport in two- or three-dimensional domains. However, they were concentrated on natural attenuation processes for petroleum contaminants or enhanced in situ bioremediation processes in laboratory columns. In this study, an integrated numerical and physical modeling system is developed for simulating an enhanced in situ biodegradation (EISB) process coupled with three-dimensional multiphase multicomponent flow and transport simulation in a multi-dimensional pilot-scale physical model. The designed pilot-scale physical model is effective in tackling natural attenuation and EISB processes for site remediation. The simulation results demonstrate that the developed system is effective in modeling the EISB process, and can thus be used for investigating the effects of various uncertainties. - An integrated modeling system was developed to enhance in situ bioremediation processes

  7. In-situ rehabilitation cleans, lines, and renews pipe systems

    International Nuclear Information System (INIS)

    Munden, B.A.

    1990-01-01

    This article discusses how, in the past five years, developments in coating and lining material technology have found their way into pipe line application and have yielded successful results. The thick film, high solids material often used to repair tanks, vessels and offshore structures has now been adapted for existing pipe lines. One of the most promising of these systems in successful service is an epoxy, high solids (95%) material originally developed for nuclear service as a lining for reactor containment vessels

  8. The Los Alamos accelerator control system data base: A generic instrumentation interface

    International Nuclear Information System (INIS)

    Dalesio, L.R.

    1990-01-01

    Controlling experimental-physics applications requires a control system that can be quickly integrated and easily modified. One aspect of the control system is the interface to the instrumentation. An instrumentation set has been chosen to implement the basic functions needed to monitor and control these applications. A data-driven interface to this instrumentation set provides the required quick integration of the control system. This type of interface is limited by its built-in capabilities. Therefore, these capabilities must provide an adequate range of functions to be of any use. The data-driven interface must support the instrumentation range requird, the events on which to read or control the instrumentation and a method for manipulating the data to calculate terms or close control loops. The database for the Los Alamos Accelerator Control System addresses these requirements. (orig.)

  9. Plans for the CIT [Compact Ignition Tokamak] instrumentation and control system

    International Nuclear Information System (INIS)

    Preckshot, G.G.

    1987-01-01

    Extensive experience with previous fusion experiments (TFTR, MFTF-B and others) is driving the design of the Instrumentation and Control System (I and C) for the Compact Ignition Tokamak (CIT) to be built at Princeton. The new design will reuse much equipment from TFTR and will be subdivided into six major parts: machine control, machine data acquisition, plasma diagnostic instrument control and instrument data acquisition, the database, shot sequencing and safety interlocks. In a major departure from previous fusion experiment control systems, the CIT machine control system will be a commercial process control system. Since the machine control system will be purchased as a completely functional product, we will be able to concentrate development manpower in plasma diagnostic instrument control, data acquisition, data processing and analysis, and database systems. We will discuss the issues driving the design, give a design overview and state the requirements upon any prospective commercial process control system

  10. System Definition of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip

    2008-01-01

    The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.

  11. Clinical Evaluation of Quality of Obturation and Instrumentation Time using Two Modified Rotary File Systems with Manual Instrumentation in Primary Teeth.

    Science.gov (United States)

    Govindaraju, Lavanya; Jeevanandan, Ganesh; Subramanian, Emg

    2017-09-01

    Pulp therapy in primary teeth has been performed using various instrumentation techniques. However, the conventional instrumentation technique used for root canal preparation in primary teeth is hand instrumentation. Various Nickel-Titanium (Ni-Ti) instruments are available to perform efficient root canal preparation in primary teeth. These Ni-Ti instruments has been designed to aid in better root canal preparation in permanent teeth but are rarely used in primary teeth. It is necessary to assess the feasibility of using these adult rotary files with a modified sequence in primary teeth. To compare the quality of obturation and instrumentation time during root canal preparation using hand files and modified rotary file systems in primary molars. Forty-five primary mandibular molars were randomly assigned to three experimental groups (n=15). Group I was instrumented using k-hand files, Group II with S2 ProTaper universal file and Group III with 0.25 tip 4% taper K3 rotary file. Standardized digital radiographs were taken before and after root canal instrumentation. Root canal preparation time was also recorded. Statistical analysis of the obtained data was done using SPSS Software version 17.0. An intergroup comparison of the instrumentation time and the quality of obturation was done using ANOVA and Chi-square test with the level of significance set at 0.05. No significant differences were noted with regard to the quality of obturation (p=0.791). However, a statistically significant difference was noted in the instrumentation time between the three groups (pProTaper rotary system had significantly lesser instrumentation time when compared to that of K3 rotary system and hand file system. The hand files, S2 ProTaper Universal and K3 0.25 tip 4% taper files systems performed similarly with respect to the quality of obturation. There was a significant difference in instrumentation time with manual instrumentation compared to the modified rotary file systems in primary

  12. Evaluation of REMTECH PA-2 phased array SODAR performance in Complex Terrain using in-situ turbulence instruments

    Energy Technology Data Exchange (ETDEWEB)

    Murray, D.R.; Catizone, P.A.; Hoffnagle, G.F. [TRC Environmental Corp., Windsor, CT (United States)

    1994-12-31

    The introduction of the Complex Terrain Dispersion Model Plus Algorithms for Unstable Situations (CTDMPLUS model) by the Environmental Protection Agency (EPA) has created a need for detailed vertical profiles of wind speed, direction and turbulence for regulatory modeling. Most EPA models use only a single level of wind data, assume wind direction within the boundary layer is uniform and extrapolate wind speed based on logarithmic profiles. CTDMPLUS offers a more realistic paradigm for transport and dispersion in the boundary layer by utilizing measured wind profiles if available. Profile data used by CTDMPLUS must include the layer in which the plume is dispersing. For tall stack, heated effluent plume, the profile must extend to heights of several hundred meters above stack top. Doppler SOund Detection And Ranging (SODAR) systems provide a cost effective method for collecting the profile data. While EPA has approved the use of mean wind speed and direction data from SODARs for regulatory modeling purposes, the use of turbulence data has not been unconditionally accepted. In order to use turbulence data from a SODAR, the user must obtain concurrence from the agency that the turbulence data are acceptable and may be required to demonstrate that the data are reliable. This paper presents the results of a SODAR data evaluation project.

  13. Novel wireless sensors for in situ measurement of sub-ice hydrologic systems

    OpenAIRE

    Bagshaw, E; Lishman, B; Wadham, J; Bowden, J; Burrow, S; Clare, L; Chandler, D

    2014-01-01

    Wireless sensors have the potential to provide significant insight into in situ physical and biogeochemical processes in sub-ice hydrologic systems. However, the nature of the glacial environment means that sensor deployment and data return is challenging. We describe two bespoke sensor platforms, electronic tracers or ‘ETracers’, and ‘cryoegg’, for untethered, wireless data collection from glacial hydrologic systems, including subglacial channels. Both employ radio frequencies for data trans...

  14. Aging assessment of reactor instrumentation and protection system components

    International Nuclear Information System (INIS)

    Gehl, A.C.; Hagen, E.W.

    1992-07-01

    A study of the aging-related operating experiences throughout a five-year period (1984--1988) of six generic instrumentation modules (indicators, sensors, controllers, transmitters, annunciators, and recorders) was performed as a part of the Nuclear Plant Aging Research Program. The effects of aging from operational and environmental stressors were characterized from results depicted in Licensee Event Reports (LERs). The data are graphically displayed as frequency of events per plant year for operating plant ages from 1 to 28 years to determine aging-related failure trend patterns. Three main conclusions were drawn from this study: (1) Instrumentation and control (I ampersand C) modules make a modest contribution to safety-significant events: 17% of LERs issued during 1984--1988 dealt with malfunctions of the six I ampersand C modules studied, and 28% of the LERs dealing with these I ampersand C module malfunctions were aging related (other studies show a range 25--50%); (2) Of the six modules studied, indicators, sensors, and controllers account for the bulk (83%) of aging-related failures; and (3) Infant mortality appears to be the dominant aging-related failure mode for most I ampersand C module categories (with the exception of annunciators and recorders, which appear to fail randomly)

  15. Machine and plasma diagnostic instrumentation systems for the Tandem Mirror Experiment Upgrade

    International Nuclear Information System (INIS)

    Coutts, G.W.; Coffield, F.E.; Lang, D.D.; Hornady, R.S.

    1981-01-01

    To evaluate performance of a second generation Tandem Mirror Machine, an extensive instrumentation system is being designed and installed as part of the major device fabrication. The systems listed will be operational during the start-up phase of the TMX Upgrade machine and provide bench marks for future performance data. In addition to plasma diagnostic instrumentation, machine parameter monitoring systems will be installed prior to machine operation. Simultaneous recording of machine parameters will permit evaluation of plasma parameters sensitive to machine conditions

  16. Operating experience with LAMPF main beam lines instrumentation and control system

    International Nuclear Information System (INIS)

    van Dyck, O.B.; Harvey, A.; Howard, H.H.; Roeder, D.L.

    1975-01-01

    Instrumentation and control (I and C) for the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) main beam line is based upon central computer control through remote stations which provide input and output to most devices. Operating experience shows that the ability of the computer to give high-quality graphical presentation of the measurements enhances operator performance and instrument usefulness. Experience also shows that operator efficiency degrades rapidly with increasing instrument response time, that is, with increasing delay between the time a control is changed and the result can be observed. For this reason, instrumentation upgrade includes speeding up data acquisition and display times to under 10 s. Similarly, television-viewed phosphors are being retained where possible since their instantaneous response is very useful. Other upgrading of the instrumentation system is planned to improve data accuracy, reliability, redundancy, and instrument radiation tolerance. Past experience is being applied in adding or relocating devices to simplify tuning procedures. (U.S.)

  17. A basic design of SR4 instrumentation and control system for research reactor

    International Nuclear Information System (INIS)

    Syahrudin Yusuf; M Subhan; Ikhsan Shobari; Sutomo Budihardjo

    2010-01-01

    An SR4 instrumentation and control systems of research reactor is the equipment of nuclear research reactors as power protection devices and control systems. The equipment is to monitor safety parameters and process parameters in the state of reactor shut down, start-up, and in operation at fixed power. In the engineering of Instrumentation and control systems SR4 research reactor, its basic design consists of technical specifications of the reactor protection system devices, technical specifications of the reactor power control system devices, technical specifications information system devices, and systems process termination cabling as a support system. This basic design is used as the basis for the preparation of detailed design and subsequent engineering development of instrumentation systems and control system integrated. (author)

  18. Design of in-situ reactive wall systems - a combined hydraulical-geochemical-economical simulation study

    International Nuclear Information System (INIS)

    Teutsch, G.; Tolksdorff, J.; Schad, H.

    1997-01-01

    The paper presents a coupled hydraulical-geochemical-economical simulation model for the design of in-situ reactive wall systems. More specific, the model is used for cost-optimization and sensitivity analysis of a funnel-and-gate system with an in-situ sorption reactor. The groundwater flow and advective transport are simulated under steady-state conditions using a finite-difference numerical model. This model is coupled to an analytical solution describing the sorption kinetics of hydrophobic organic compounds within the reactor (gate). The third part of the model system is an economical model which calculates (a) the investment costs for the funnel-and-gate construction and (b) the operation cost based on the number of reactor refills, which depends on the breakthrough time for a given contaminant and the anticipated total operation time. For practical applications a simplified approximation of the cost-function is derived and tested

  19. System of Rewards - Instrument of Fundamental Human Resource Management

    Directory of Open Access Journals (Sweden)

    Prof. Ph.D.Gheorghita Caprarescu

    2008-12-01

    Full Text Available Although not the only nor the most important factor of human motivation, reward remainsone of the oldest visible, direct and rapid tools for behavioral targeting to work towards a convergence ofindividual objectives with the group and organizational. Recognized as instrumental value right from thebeginning of civilization, projections of various cultures and religions - happiness and eternal life, Heaven,Nirvana - reward was to influence gift mentality, behavior and attitudes of individual plan at the company.In organizations, changes in rewards was a marked evolution of the human resources. If the initial rewardwas positive (money and praise and negative (punishment and blamu, and maximum value was of materialand financial subsequently reward was restricted only positive side, broadening the scope of the moral -whose spiritual values are increasingly appreciated, the more so as they have become, in fact, inexhaustible,as form, volume and ways of expression.

  20. Java expert GUI framework for CERN beam instrumentation systems

    International Nuclear Information System (INIS)

    Bart Pedersen, S.; Bozyigit, S.; Jackson, S.

    2012-01-01

    The CERN Beam Instrumentation Group's software section has recently performed a study of the tools used to produce Java expert GUI (Graphical User Interface) applications. This paper will present the analysis that was made to understand the requirements for generic components and the resulting tools including a collection of Java components that have been made available for a wider audience. The new expert GUI has already given very good results. Users can easily and quickly create a Java project with a pre-defined structure that will allow them to run an application in two mouse clicks. At the same time, they are able to add whatever components they need to libraries that are now common to all. The use of Maven is not completed and has led to some integration problems for our Java software architecture. Nevertheless, the handling of the library dependencies and the archetypes are very useful

  1. Supercooled Liquid Water Content Instrument Analysis and Winter 2014 Data with Comparisons to the NASA Icing Remote Sensing System and Pilot Reports

    Science.gov (United States)

    King, Michael C.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) has developed a system for remotely detecting the hazardous conditions leading to aircraft icing in flight, the NASA Icing Remote Sensing System (NIRSS). Newly developed, weather balloon-borne instruments have been used to obtain in-situ measurements of supercooled liquid water during March 2014 to validate the algorithms used in the NIRSS. A mathematical model and a processing method were developed to analyze the data obtained from the weather balloon soundings. The data from soundings obtained in March 2014 were analyzed and compared to the output from the NIRSS and pilot reports.

  2. Status report on the TSA Systems, Ltd., MCA465 gamma-ray confirmation instrument

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Rutherford, D.A.

    1994-01-01

    The TSA Systems, Ltd., MCA465 is hand-portable, low resolution, gamma-ray instrument for confirming special nuclear materials (SNM) and related applications. The instrument evolved from earlier TSA Systems hand-held instruments, and, since its inception in 1991, it has been undergoing cycles of evaluation and then repair or redesign to correct problems. Through the efforts of Los Alamos, Rocky Flats, and TSA Systems, the MCA465 now has achieved commendable progress toward achieving quality performance as a rapid confirmation tool for SNM

  3. Advanced instrumentation and control systems for CANDU refurbishment

    International Nuclear Information System (INIS)

    Sklyar, V.; Bakhmach, I.; Kharchenko, V.; Andrashov, A.; Baranova, O.

    2011-01-01

    The purpose of the work is to discuss opportunities to modernize I and C systems of CANDU reactors on the base of Radiy's digital safety platform. This paper discusses the following topics: a business model for CANDU, I and C systems refurbishment, FPGA technology issues, comparison of different approaches to refurbish obsolete I and C systems. (author)

  4. Feasibility study of using a 'travelling' CO2 and CH4 instrument to validate continuous in-situ measurement stations

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, S.; Konrad, G.; Levin, I. [Institut fuer Umweltphysik IUP, Heidelberg University (Germany); Vermeulen, A.T. [Energy research Center of the Netherlands ECN, Petten (Netherlands); Laurent, O.; Delmotte, M.; Hazan, L. [Laboratoire des Sciences du Climat et de l' Environnement LSCE, Gif-sur-Yvette (France); Jordan, A. [Max Planck Institute for Biogeochemistry, Jena (Germany); Conil, S. [Agence Nationale pour la gestion des Dechets Radioactifs ANDRA, Bure (France)

    2012-09-24

    In the course of the ICOS (Integrated Carbon Observation System) Demo Experiment a feasibility study on the usefulness of a Travelling Comparison Instrument (TCI) was conducted in order to evaluate continuous atmospheric CO2 and CH4 measurements at two European stations. The aim of the TCI is to independently measure ambient air in parallel to the standard station instrumentation, thus providing a comprehensive comparison that includes the sample intake system, the instrument itself as well as its calibration and data evaluation. Observed differences between the TCI and the Heidelberg gas chromatographic system, which acted as a reference for the TCI, were -0.02{+-}0.08{mu}mol mol{sup -1} for CO2 and -0.3{+-}2.3{mu}mol mol{sup -1} for CH4. Over a period of two weeks each, the continuous CO2 and CH4 measurements at two ICOS field stations, Cabauw and OPE, were compared to co-located TCI measurements. At Cabauw mean differences of 0.21{+-}0.06{mu}mol mol{sup -1} for CO2 and 0.41{+-}0.50{mu}mol mol{sup -1} for CH4 were found. For OPE the mean differences were 0.13{+-}0.07{mu}mol mol{sup -1} for CO2 and 0.44{+-}0.36{mu}mol mol{sup -1} for CH4. Potential causes of these observed differences are leakages or contaminations in the intake lines and/or there flushing pumps. At Cabauw station an additional error contribution originates from insufficient flushing of standard gases. Offsets arising from differences in the working standard calibrations or leakages/ contaminations in the drying systems are too small to explain the observed differences. Finally a comprehensive quality management strategy for atmospheric monitoring networks is proposed.

  5. Description and field test of an in situ coliform monitoring system

    Science.gov (United States)

    Grana, D. C.; Wilkins, J. R.

    1979-01-01

    A prototype in situ system for monitoring the levels of fecal coliforms in shallow water bodies was developed and evaluated. This system was based on the known relationship between the concentration of the coliform bacteria and the amount of hydrogen they produce during growth in a complex organic media. The prototype system consists of a sampler platform, which sits on the bottom; a surface buoy, which transmits sampler-generated data; and a shore station, which receives, displays the data, and controls the sampler. The concept of remote monitoring of fecal coliform concentrations by utilizing a system based on the electrochemical method was verified during the evaluation of the prototype.

  6. Standard practice for evaluating performance characteristics of ultrasonic Pulse-Echo testing instruments and systems without the use of electronic measurement instruments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice describes procedures for evaluating the following performance characteristics of ultrasonic pulse-echo examination instruments and systems: Horizontal Limit and Linearity; Vertical Limit and Linearity; Resolution - Entry Surface and Far Surface; Sensitivity and Noise; Accuracy of Calibrated Gain Controls. Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this practice are expressed in terms that relate to their potential usefulness for ultrasonic testing. Instrument characteristics expressed in purely electronic terms may be measured as described in E1324. 1.2 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be ev...

  7. HOLIMO II: a digital holographic instrument for ground-based in situ observations of microphysical properties of mixed-phase clouds

    Science.gov (United States)

    Henneberger, J.; Fugal, J. P.; Stetzer, O.; Lohmann, U.

    2013-11-01

    Measurements of the microphysical properties of mixed-phase clouds with high spatial resolution are important to understand the processes inside these clouds. This work describes the design and characterization of the newly developed ground-based field instrument HOLIMO II (HOLographic Imager for Microscopic Objects II). HOLIMO II uses digital in-line holography to in situ image cloud particles in a well-defined sample volume. By an automated algorithm, two-dimensional images of single cloud particles between 6 and 250 μm in diameter are obtained and the size spectrum, the concentration and water content of clouds are calculated. By testing the sizing algorithm with monosized beads a systematic overestimation near the resolution limit was found, which has been used to correct the measurements. Field measurements from the high altitude research station Jungfraujoch, Switzerland, are presented. The measured number size distributions are in good agreement with parallel measurements by a fog monitor (FM-100, DMT, Boulder USA). The field data shows that HOLIMO II is capable of measuring the number size distribution with a high spatial resolution and determines ice crystal shape, thus providing a method of quantifying variations in microphysical properties. A case study over a period of 8 h has been analyzed, exploring the transition from a liquid to a mixed-phase cloud, which is the longest observation of a cloud with a holographic device. During the measurement period, the cloud does not completely glaciate, contradicting earlier assumptions of the dominance of the Wegener-Bergeron-Findeisen (WBF) process.

  8. HOLIMO II: a digital holographic instrument for ground-based in-situ observations of microphysical properties of mixed-phase clouds

    Science.gov (United States)

    Henneberger, J.; Fugal, J. P.; Stetzer, O.; Lohmann, U.

    2013-05-01

    Measurements of the microphysical properties of mixed-phase clouds with high spatial resolution are important to understand the processes inside these clouds. This work describes the design and characterization of the newly developed ground-based field instrument HOLIMO II (HOLographic Imager for Microscopic Objects II). HOLIMO II uses digital in-line holography to in-situ image cloud particles in a well defined sample volume. By an automated algorithm, two-dimensional images of single cloud particles between 6 and 250 μm in diameter are obtained and the size spectrum, the concentration and water content of clouds are calculated. By testing the sizing algorithm with monosized beads a systematic overestimation near the resolution limit was found, which has been used to correct the measurements. Field measurements from the high altitude research station Jungfraujoch, Switzerland, are presented. The measured number size distributions are in good agreement with parallel measurements by a fog monitor (FM-100, DMT, Boulder USA). The field data shows that HOLIMO II is capable of measuring the number size distribution with a high spatial resolution and determines ice crystal shape, thus providing a method of quantifying variations in microphysical properties. A case study over a period of 8 h has been analyzed, exploring the transition from a liquid to a mixed-phase cloud, which is the longest observation of a cloud with a holographic device. During the measurement period, the cloud does not completely glaciate, contradicting earlier assumptions of the dominance of the Wegener-Bergeron-Findeisen (WBF) process.

  9. A economic evaluation system software on in-situ leaching mining sandstone uranium deposits

    International Nuclear Information System (INIS)

    Yao Yixuan; Su Xuebin; Xie Weixing; Que Weimin

    2001-01-01

    The author presents the study results of applying computer technology to evaluate quantitatively the technical-economic feasibility of in-situ leaching mining sandstone uranium deposits. A computer system software have been developed. Under specifying deposit conditions and given production size per year, the application of the software will generate total capital and mine life operating costs as well as solve for the movable and static financial assessment targets through discounted cash flow analysis. According to the characters of two kinds of sandstone uranium deposits, a data bases of economic and technique parameters of in-situ leaching have been designed. Also the system software can be used to study the economic value of deposits and to optimize the key project parameters. Its features, data input method and demand, main functions, structure and operating environments are described

  10. On line instrument systems for monitoring steam turbogenerators

    Science.gov (United States)

    Clapis, A.; Giorgetti, G.; Lapini, G. L.; Benanti, A.; Frigeri, C.; Gadda, E.; Mantino, E.

    A computerized real time data acquisition and data processing for the diagnosis of malfunctioning of steam turbogenerator systems is described. Pressure, vibration and temperature measurements are continuously collected from standard or special sensors including startup or stop events. The architecture of the monitoring system is detailed. Examples of the graphics output are presented. It is shown that such a system allows accurate diagnosis and the possibility of creating a data bank to describe the dynamic characteristics of the machine park.

  11. Optimization criteria for control and instrumentation systems in nuclear power plants

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1978-01-01

    The system of dose limitation recently recommended by the International Commission on Radiation Protection includes, as a base for deciding what is reasonably achievable in dose reduction, the optimization of radioprotection systems. This paper, after compiling relevant points in the new system, discusses the application of optimization to control and instrumentation of radioprotection systems in nuclear power plants. Furthermore, an extension of the optimization criterion to nuclear safety systems is also presented and its application to control and instrumentation is discussed; systems including majority logics are particularly scrutinized. Finally, eventual regulatory implications are described. (author)

  12. Design and quality assurance of control and instrumentation systems, licensing practice in Austria

    International Nuclear Information System (INIS)

    Fasko, Peter.

    1978-01-01

    The practicised way how licensing of control and instrumentation systems is performed in Austria, is related. As there is no national regulations in Austria for licensing nuclear power plants, it tries to adopt international regulations for its own purpose. (author)

  13. Editorial: Special issue on smart optical instruments and systems for space applications

    Institute of Scientific and Technical Information of China (English)

    XING; Fei

    2015-01-01

    Optical systems are playing more and more important roles for space applications,such as high accurate attitude determination and remote sensing systems etc.Innovations in optical systems have brought great advantages,some even revolutionary for the space applications.Accordingly,in this special issue of Smart Optical systems and instruments

  14. Nuclear safety considerations with emphasis on instrumentation and control systems

    International Nuclear Information System (INIS)

    Beare, J.W.

    1978-01-01

    The conceptual model of a nuclear power plant in Canada is that it consists basically of two kinds of systems. The first kind is the process systems, that is, those structures and components associated with the production of nuclear energy and its conversion to other forms of energy. The second kind is the special safety systems, whose purpose it is to protect the public in the event of a serious failure in the process systems which might otherwise lead to unacceptable radiological consequences. Quantitative limits are set on the unavailability of the special safety systems. These limits are low enough to be consistent with low overall risk and yet can be demonstrated by test during operation of the plant. Low unavailability is an important but not the only condition required for low unrealiability for the special safety systems. The special safety systems minimize the chance of a cross-linked failure particularly under the conditions experienced as a result of the more severe types of postulated serious process failures. Nuclear power plants must also withstand, without a major hazard to the public, certain rare events associated with natural phenomena or man-made activities off-site and also certain in-plant events such as fire or break-up of a turbine-generator which might have a cross-linking effect on process and safety systems. In the latest designs, Canadian nuclear power plants have emergency systems to deal with such events. The emergency systems have an enhanced degree of physical and functional separation from other plant systems. (author)

  15. Highly Reliable Power and Communication System for Essential Instruments under a Severe Accident of NPPs

    International Nuclear Information System (INIS)

    Yoo, S. J.; Choi, B. H.; Jung, S. Y.; Rim, Chun T.

    2013-01-01

    In this paper, three survivable strategies to overcome the problems listed above are proposed for the essential instruments under the severe accident of NPPs. First, wire/wireless multi power systems are adopted to the essential instruments for continuous power supply. Second, wire/wireless communication systems are proposed for reliable transmission of measuring information among instruments and operators. Third, a physical protection system such as a harness and a heat isolation box is introduced to ensure operable conditions for the proposed systems. In this paper, a highly reliable strategy, which consists of wire/wireless multi power and communication systems and physical protection system is proposed to ensure the survival of the essential instruments under harsh external conditions. The wire/wireless multi power and communication systems are designed to transfer power and data in spite of the failure of conventional wired systems. The physical protection system provides operable environments to the instruments. Therefore, the proposed system can be considered as a candidate of practical and urgent remedy for NPPs under the severe accident. After the Fukushima nuclear accident, survivability of essential instruments has been emphasized for immediate and accurate response. The essential instruments can measure environment conditions such as temperature, pressure, radioactivity and corium behavior inside nuclear power plants (NPPs) under a severe accident. Access to the inside of NPPs is restricted to human beings because of hazardous environment such as high radioactivity, high temperature and high pressure. Thus, monitoring the inside of NPPs is necessary for avoiding damage from the severe accident. Even though there were a number of instruments in Fukushima Daiichi NPP, they failed to obtain exact monitoring information. According to the details of the Fukushima nuclear accident, following problems can be counted as strong candidates of this instruments

  16. Highly Reliable Power and Communication System for Essential Instruments under a Severe Accident of NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, S. J.; Choi, B. H.; Jung, S. Y.; Rim, Chun T. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, three survivable strategies to overcome the problems listed above are proposed for the essential instruments under the severe accident of NPPs. First, wire/wireless multi power systems are adopted to the essential instruments for continuous power supply. Second, wire/wireless communication systems are proposed for reliable transmission of measuring information among instruments and operators. Third, a physical protection system such as a harness and a heat isolation box is introduced to ensure operable conditions for the proposed systems. In this paper, a highly reliable strategy, which consists of wire/wireless multi power and communication systems and physical protection system is proposed to ensure the survival of the essential instruments under harsh external conditions. The wire/wireless multi power and communication systems are designed to transfer power and data in spite of the failure of conventional wired systems. The physical protection system provides operable environments to the instruments. Therefore, the proposed system can be considered as a candidate of practical and urgent remedy for NPPs under the severe accident. After the Fukushima nuclear accident, survivability of essential instruments has been emphasized for immediate and accurate response. The essential instruments can measure environment conditions such as temperature, pressure, radioactivity and corium behavior inside nuclear power plants (NPPs) under a severe accident. Access to the inside of NPPs is restricted to human beings because of hazardous environment such as high radioactivity, high temperature and high pressure. Thus, monitoring the inside of NPPs is necessary for avoiding damage from the severe accident. Even though there were a number of instruments in Fukushima Daiichi NPP, they failed to obtain exact monitoring information. According to the details of the Fukushima nuclear accident, following problems can be counted as strong candidates of this instruments

  17. The testing of the in situ fire extinction system of the Trawsfynydd splitter debris storage package

    International Nuclear Information System (INIS)

    Newman, R.N.

    1987-01-01

    The proposed design of a Magnox splitter debris storage drum for Trawsfynydd incorporates an in situ solid fire extinguishant Graphex CK23 on the debris surface. This is an interlamellar graphite residue compound that intumesces when heated to provide an air-restricting layer. Two series of fire tests with the extinguishant in place have been carried out on full sized drums containing unirradiated splitter debris, to demonstrate the effectiveness of the system. (author)

  18. Microcontroller-based data logging instrumentation system for wind ...

    African Journals Online (AJOL)

    In this study, a microcontroller based data logger for measuring wind speed and wind direction has been designed. The designed system uses the Atmel microcontroller family which consists of sensor inputs, a microcontroller and a data storage device. The system was designed and developed to measure the wind speed ...

  19. Selected nondestructive assay instrumentation for an international safeguards system at uranium enrichment plants

    International Nuclear Information System (INIS)

    Tape, J.W.; Baker, M.P.; Strittmatter, R.; Jain, M.; Evans, M.L.

    1979-01-01

    A selected set of nondestructive assay instruments for an international safeguards system at uranium enrichment plants is currently under development. These instruments are of three types: in-line enrichment meters for feed, product, and tails streams; area radiation monitors for direct detection of high-enriched uranium production, and an enrichment meter for spent alumina trap material. The current status of the development of each of these instruments is discussed, with supporting data, as well as the role each would play in a total international safeguards system. 5 figures

  20. REKO - Bohunice V-1. Experience with instrumentation and control system

    International Nuclear Information System (INIS)

    Arbet, L.; Ziska, D.; Golan, P.; Karaba, P.; Krupa, S.; Wiening, K.-H.

    2000-01-01

    In this paper and in presentation some results of upgrading of the NPP Bohunice V-1 are presented. For the first time, extensive upgrades are performed in all safety-related areas of both units with VVER 440/230 reactors. These upgrades focused on: - Expansion and upgrading of the process safety systems; - Replacement of the safety I and C system with a TELEPERM XS-based system; - Spatial separation of safety equipment; - Modernisation of the electrical auxiliary power systems; - Seismic upgrading and fire protection; - Improvement of the man-machine interface. This upgrade is considered exemplary around the world. The most extensive stage of gradual reconstruction of Unit 2 was completed according to the schedule in January 1999. For the first time, a reactor which incorporates state-of-the-art digital I and C in its reactor protection system is on-line. (author)

  1. Study on virtual instrument developing system based on intelligent virtual control

    International Nuclear Information System (INIS)

    Tang Baoping; Cheng Fabin; Qin Shuren

    2005-01-01

    The paper introduces a non-programming developing system of a virtual instrument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described

  2. Study on virtual instrument developing system based on intelligent virtual control

    Energy Technology Data Exchange (ETDEWEB)

    Tang Baoping; Cheng Fabin; Qin Shuren [Test Center, College of Mechanical Engineering, Chongqing University , Chongqing 400030 (China)

    2005-01-01

    The paper introduces a non-programming developing system of a virtual instrument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described.

  3. In-situ testing of HEPA filters in the nuclear Karlsruhe filter system

    International Nuclear Information System (INIS)

    Ohlmeyer, M.; Stotz, W.

    1977-01-01

    Nuclear plant operators and filter manufacturers are endeavouring to improve environmental protection by intensifying process control and/or improving filter quality. In-situ testing is an important element in these efforts since it represents a direct means of checking the success or otherwise of a particular development. The arrangements for in-situ testing should satisfy the following minimum requirements: the staff should not be exposed to risk during the test; the test method should be objective and reproducible as well as being as sensitive as possible; the test method should permit detection of individual leaks in the filter system so that they can be remedied as efficiently as possible; the test equipment should not necessitate modifications to the extract systems or plant construction; the test should be simple and capable of being carried out with a minimum of effort and equipment. GfK has developed the 'Nuclear-Karlsruhe' filter housing in accordance with these principles. This housing permits in-situ testing similar to the DIN 24184 visual oil-fog test or the DOP test. External visual checks on the general condition of the filter is also possible. A safe system of filter changing with a specially designed plastic bag attachment at an accessible height considerably increases the degree of protection of operating personnel

  4. Distributed control and instrumentation systems for future nuclear power plants

    International Nuclear Information System (INIS)

    Yan, G.; L'Archeveque, J.V.R.

    1976-01-01

    The centralized dual computer system philosophy has evolved as the key concept underlying the highly successful application of direct digital control in CANDU power reactors. After more than a decade, this basis philosophy bears re-examination in the light of advances in system concepts--notably distributed architectures. A number of related experimental programs, all aimed at exploring the prospects of applying distributed systems in Canadian nuclear power plants are discussed. It was realized from the outset that the successful application of distributed systems depends on the availability of a highly reliable, high capacity, low cost communications medium. Accordingly, an experimental facility has been established and experiments have been defined to address such problem areas as interprocess communications, distributed data base design and man/machine interfaces. The design of a first application to be installed at the NRU/NRX research reactors is progressing well

  5. Replacement of the instrumentation and control system of Tore Supra

    International Nuclear Information System (INIS)

    Leveque, P.

    1995-02-01

    The control system of the Tore-Supra is a wide and complex system that cannot be interrupted while running without significant consequences on the operating of the machine. Replacing the current system cannot be achieved in a global way without immobilisation and high costs. Therefore partial changes have been decided on. This work presents the detailed analysis of the arrangements and the operating of the system that will be replaced: the pro's and con's that have appeared through experience are related. The possibilities that the new apparatus offers are also examined. A method of step by step replacements had to be set up in order to assess the means, funds, term of achievement, performance and quality of the overall project. (TEC). 15 refs., 29 figs

  6. Key instruments of improving the export marketing system effectiveness

    OpenAIRE

    Yu.I. Prodius; V.Yu. Kolomiets

    2014-01-01

    There were considered the essence and definition of the marketing mix, marketing system in international business activity and defined the key tools to improve its performance on foreign markets in this article.

  7. A study of the modifications of nuclear instrumentation systems for JRR-2

    International Nuclear Information System (INIS)

    Azim, Mohammad; Horiki, Ooichiro; Sato, Mitsugu

    1978-04-01

    In this report a comparative study has been carried out between the original A.M.F. design and the modified design for the nuclear instrumentation systems of the Research Reactor JRR-2, at the Tokai Research Establishment of JAERI. Due to a fire accident in the control room, in July 1968, the originally designed nuclear instrumentation systems, using conventional vacuum tube circuits, were destroyed and were replaced by the modified design, incorporating solid state linear integrated circuits as basic circuit components. The results of the reactor instrumentation systems modification at JRR-2 are very encouraging as the operating efficiency of the Reactor registered an improvement of 43%. Moreover the safety aspects have been fully taken care of in the new design and the reactor is well guarded against all possible instrument failures and human errors. This report presents the basic theory of operation of the two designs alongwith a comparative safety analysis. (auth.)

  8. Demonstration testing and evaluation of in situ soil heating. Revision 1, Demonstration system design

    Energy Technology Data Exchange (ETDEWEB)

    Dev, H.

    1994-08-16

    Over the last nine years IIT Research Institute (IITRI) has been developing and testing the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. The vaporized contaminants, water vapor and air are recovered from the heated zone by means of a vacuum manifold system which collects gases from below surface as well as from the soil surface. A vapor barrier is used to prevent fugitive emissions of the contaminants and to control air infiltration to minimize dilution of the contaminant gases and vapors. The recovered gases and vapors are conveyed to an on site vapor treatment system for the clean up of the vent gases. Electrical energy is applied to the soil by forming an array of electrodes in the soil which are electrically interconnected and supplied with power. The electrodes are placed in drilled bore holes which are made through the contaminated zone. There are two versions of the in situ heating and soil treatment process: the f irst version is called the In Situ Radio Frequency (RF) Soil Decontamination Process and the second version is called the In Situ Electromagnetic (EM) Soil Decontamination Process. The first version, the RF Process is capable of heating the soil in a temperature range of 100{degrees} to 400{degrees}C. The soil temperature in the second version, the EM Process, is limited to the boiling point of water under native conditions. Thus the soil will be heated to a temperature of about 85{degrees} to 95{degrees}C. In this project IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site due to the fact that most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85{degrees} to 95{degrees}C.

  9. Process instrumentation and control for cryogenic system of VECC

    International Nuclear Information System (INIS)

    Pal, Sandip

    2017-01-01

    Superconducting Cyclotron, which comprises of superconducting main magnet and cryopanels operating at 4.3 K, are operational at VECC in three phases starting from 2005; finally without interruption from July, 2010 to November, 2016. Cryogenic loads of the Cyclotron are catered by any of the two helium liquefiers/refrigerators (250W and 415W @ 4.5K) and associated cryogen distribution system with extensive helium gas management system. The system also consists of 31 K liters of liquid Nitrogen (LN_2) storage and delivery system, necessary of radiation shield. EPICS (Experimental Physics and Industrial Control System) architecture is open source, flexible and has unlimited tags as compared to the commercial Supervisory control and data acquisition (SCADA) packages. Hence, it has been adopted to design the SCADA module. The EPICS Input Output Controller (IOC) communicates with four PLCs over Ethernet based control LAN to control/monitor 618 numbers of field Inputs/ Outputs (I/O). The control system is fully automated and does not require any human intervention for routine operation. Since these two liquefiers share the same high pressure (HP) and low pressure (LP) pipelines, any pressure fluctuation due to rapid change in flow sometimes causes trip of the liquefiers. Few modifications are made in the control scheme in HP and LP zones to avoid liquefier trip. The plant is running very reliably round the clock and the historical data of important parameters during plant operation are archived for plant maintenance, easy diagnosis and future modifications. Total pure helium cycle gas inventory is monitored through EPICS for early detection of helium loss from its trend

  10. Micro processor based research reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Hyde, W.K.

    1987-01-01

    The system consists of a Control System Computer (CSC) incorporated into a Reactor Control Console (RCC) and a Data Acquisition and Control Unit (DAC) adjacent to the reactor. The CSC has a high resolution color graphics CRT monitor which provides real-time graphic simulation of the reactor and a number of bar graphs displaying strategic parameters of the reactor system. In addition, abnormal or dangerous conditions are displayed. The CSC is equipped with two printers eliminating manual logging of reactor data. The reactor display and pulse mode display may also be printed. Historical data is saved in the system's large capacity memory and may be replayed and/or printed. Because of the CSC's inherent high speed math capability, raw reactor data will be quickly converted and displayed in real-time. Data can be presented in meaningful engineering units. The DAC provides a high speed data acquisition and control capability adjacent to the reactor. It continuously collects data from the reactor system, concentrates the data into a database and transmits it to the CSC when requested. Data transmission is over one of two data trunks to the CSC. The secondary trunk is used if the primary trunk fails. The data trunks drastically reduce the wiring requirements between the reactor and the Control Console. During steady-state operation of the reactor, operator commands to adjust the rod positions is transmitted from the CSC to the DAC which re-issues the commands to the drive mechanisms. In the automatic mode, the DAC will control the position of the rods via a PID algorithm. The system is independently monitored by two or more safety computers. Their function is to monitor the power level, the rate of change of power and fuel temperature of the reactor and to independently shut the reactor down in the event of a potentially dangerous (scram) condition. (author)

  11. Design concepts for a nuclear digital instrumentation and control system platform

    International Nuclear Information System (INIS)

    Ou, T. C.; Chen, C. K.; Chen, P. J.; Shyu, S. S.; Lee, C. L.; Hsieh, S. F.

    2010-10-01

    The objective of this paper is to present the development results of the nuclear instrumentation and control system in Taiwan. As the Taiwan nuclear power plants age, the need to consider upgrading of both their safety and non-safety-related instrumentation and control systems becomes more urgent. Meanwhile, the digital instrumentation and control system that is based on current fast evolving electronic and information technologies are difficult to maintain effectively. Therefore, Institute of Nuclear Energy Research was made a decision to promote the Taiwan Nuclear Instrumentation and Control System project to collaborate with domestic electronic industry to establish self-reliant capabilities on the design, manufacturing, and application of nuclear instrumentation and control systems with newer technology. In the case of safety-related applications like nuclear instrumentation and control, safety-oriented quality control is required. In order to establish a generic qualified digital platform, the world-wide licensing experience should be considered in the licensing process. This paper describes the qualification and certification tools by IEC 61508 for design and development of safety related equipment and explains the basis for many decisions made while performing the digital upgrade. (Author)

  12. Rotating cell for in situ Raman spectroelectrochemical studies of photosensitive redox systems.

    Science.gov (United States)

    Kavan, Ladislav; Janda, Pavel; Krause, Matthias; Ziegs, Frank; Dunsch, Lothar

    2009-03-01

    A recently developed rotating spectroelectrochemical cell for in situ Raman spectroscopic studies of photoreactive compounds without marked decomposition of the sample is presented. Photochemically and thermally sensitive redox systems are difficult to be studied under stationary conditions by in situ spectroelectrochemistry using laser excitation as in Raman spectroscopy. A rotating spectroelectrochemical cell can circumvent these difficulties. It can be used for any type of a planar electrode and for all electrode materials in contact with aqueous or nonaqueous solutions as well as with ionic liquids. The innovative technical solution consists of the precession movement of the spectroelectrochemical cell using an eccentric drive. This precession movement allows a fixed electrical connection to be applied for interfacing the electrochemical cell to a potentiostat. Hence, any electrical imperfections and noise, which would be produced by sliding contacts, are removed. A further advantage of the rotating cell is a dramatic decrease of the thermal load of the electrochemical system. The size of the spectroelectrochemical cell is variable and dependent on the thickness of the cuvettes used ranging up to approximately 10 mm. The larger measuring area causes a higher sensitivity in the spectroscopic studies. The as constructed spectroelectrochemical cell is easy to handle. The performance of the cell is demonstrated for ordered fullerene C(60) layers and the spectroelectrochemical behavior of nanostructured fullerenes. Here the charge transfer at highly ordered fullerene C(60) films was studied by in situ Raman spectroelectrochemistry under appropriate laser power and accumulation time without marked photodecomposition of the sample.

  13. A transportable magnetic resonance imaging system for in situ measurements of living trees: the Tree Hugger.

    Science.gov (United States)

    Jones, M; Aptaker, P S; Cox, J; Gardiner, B A; McDonald, P J

    2012-05-01

    This paper presents the design of the 'Tree Hugger', an open access, transportable, 1.1 MHz (1)H nuclear magnetic resonance imaging system for the in situ analysis of living trees in the forest. A unique construction employing NdFeB blocks embedded in a reinforced carbon fibre frame is used to achieve access up to 210 mm and to allow the magnet to be transported. The magnet weighs 55 kg. The feasibility of imaging living trees in situ using the 'Tree Hugger' is demonstrated. Correlations are drawn between NMR/MRI measurements and other indicators such as relative humidity, soil moisture and net solar radiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Recent control and instrumentation systems for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Fujii, Hiroaki; Higashikawa, Yuichi; Sato, Hideyuki

    1990-01-01

    For the needs of the more stable operation of nuclear power stations, the upgrading of the measurement and control system for BWRs has been promoted by positively introducing remarkably advancing electronic technology. Further, it is aimed at to construct the synthetic digitized measurement and control system for nuclear power stations to heighten the operation reliability in ABWRs. As the first step of the development in the synthetic digitization, the monitoring and control system for radioactive waste treatment was put in practical use for No.5 plant of Kashiwazaki, Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. Hitachi Ltd. has promoted the development and the application to actual plants of the measurement and control system for BWRs, in which digital control technology, optical information transmission technology and the operation-supporting technology using a computer were utilized. Hereafter, it is intended to expand the application of digital measurement and control aiming at improving the reliability, operation performance and maintainability. The nuclear power plant control complex with advanced man-machine interface-90 (NUCAMM-90) was developed, and its application to actual plants is planned. (K.I.)

  15. Instrumentation system for pulsed neutron generator. Pt. 1. Electronic control and data acquisition

    International Nuclear Information System (INIS)

    Burda, J.; Igielski, A.; Janik, W.; Kosik, M.; Kurowski, A.; Zaleski, T.

    1997-01-01

    The paper presents an electronic instrumentation system which is successfully applied for pulsed neutron generator and measurements. In the paper there are described in details all modernized parts of the system as well as new designed and applied ones. The set of diagrams is enclosed. An important part of the system has been designed and built in the Neutron Transport Physics Laboratory. (author)

  16. Control and instrumentation system of the Zero Power Reactor at IEA, Sao Paulo (Brazil)

    International Nuclear Information System (INIS)

    Peluso, M.A.V.; Matsuda, K.; Hukai, R.

    1974-01-01

    The control and instrumentation system of the Zero Power Reactor at the IEA (Institute of Atomic Energy - Sao Paulo, Brazil) is described. Technical specifications of the main items of equipment are presented in a general way. Information is also given on the connection between the system described and the electrical supply system of the IEA reactor physics laboratory [pt

  17. From scientific instrument to industrial machine : Coping with architectural stress in embedded systems

    NARCIS (Netherlands)

    Doornbos, R.; Loo, S. van

    2012-01-01

    Architectural stress is the inability of a system design to respond to new market demands. It is an important yet often concealed issue in high tech systems. In From scientific instrument to industrial machine, we look at the phenomenon of architectural stress in embedded systems in the context of a

  18. Modeling safety instrumented systems with MooN voting architectures addressing system reconfiguration for testing

    International Nuclear Information System (INIS)

    Torres-Echeverria, A.C.; Martorell, S.; Thompson, H.A.

    2011-01-01

    This paper addresses the modeling of probability of dangerous failure on demand and spurious trip rate of safety instrumented systems that include MooN voting redundancies in their architecture. MooN systems are a special case of k-out-of-n systems. The first part of the article is devoted to the development of a time-dependent probability of dangerous failure on demand model with capability of handling MooN systems. The model is able to model explicitly common cause failure and diagnostic coverage, as well as different test frequencies and strategies. It includes quantification of both detected and undetected failures, and puts emphasis on the quantification of common cause failure to the system probability of dangerous failure on demand as an additional component. In order to be able to accommodate changes in testing strategies, special treatment is devoted to the analysis of system reconfiguration (including common cause failure) during test of one of its components, what is then included in the model. Another model for spurious trip rate is also analyzed and extended under the same methodology in order to empower it with similar capabilities. These two models are powerful enough, but at the same time simple, to be suitable for handling of dependability measures in multi-objective optimization of both system design and test strategies for safety instrumented systems. The level of modeling detail considered permits compliance with the requirements of the standard IEC 61508. The two models are applied to brief case studies to demonstrate their effectiveness. The results obtained demonstrated that the first model is adequate to quantify time-dependent PFD of MooN systems during different system states (i.e. full operation, test and repair) and different MooN configurations, which values are averaged to obtain the PFD avg . Also, it was demonstrated that the second model is adequate to quantify STR including spurious trips induced by internal component failure and

  19. Control Engineering Embraces Instrumentation and Alarm Systems Of Navy

    Directory of Open Access Journals (Sweden)

    Gheorghe Samoilescu

    2008-10-01

    Full Text Available Control engineering can be applied not only to propelling and auxiliary machinery but also to electrical installations, refrigeration, cargo handling (especially in tankers and deck machinery, e.g. Windlass control. Opinion still vary on such matters as the relative merits of pneumatic versus electronic system and whether the control center should be in the engine room or adjacent to the navigating bridge. Arguments against the exclusion of the engineer officer from close contact with the machinery are countered by the fact that electronic systems are based on changes other than those of human response. Automated ships (UMS operate closer to prescribed standards and therefore operate with greater efficiency. The closer control of machinery operating conditions (cooling water temperatures and pressures, permits machinery to be run at its optimum design conditions, making for fuel economy and reduced maintenance.

  20. Hyperspectral and in situ data fusion for the steering of plant production systems

    Science.gov (United States)

    Verstraeten, W. W.; Coppin, P.

    2009-04-01

    Plant production systems are governed by biotic and a-biotic factors and by management practices. Some of the relevant parameters have already been identified and incorporated as inputs into existing models for production assessment, early-warning, and process management. These parameters originate nowadays primarily from in-situ measurements and observations. Non-invasive remotely sensed data, the diagnostic tools of excellence where it concerns the interaction of solar energy with biomass, have seldom been included and if so, mostly to support yield assessment and harvest monitoring only. The availability of new-generation hyperspectral/hypertemporal signatures will greatly facilitate their integration into full-fledged plant production model either via direct use, forcing, assimilation or re-initialization strategies. The main objective of IS-HS (Integration of In Situ data and HyperSpectral remote sensing for plant production modeling) is to set up a multidisciplinary research platform to deepen our system understanding and to develop production-oriented schemes to steer capital-intensive vegetation scenarios. Real-time steering in a 10-15 year timeframe is envisaged, where current system state is monitored, and steered towards an ideal state in terms of production quantity and quality. IS-HS focuses on hyperspectral sensor design, time series analysis tools for remote sensing data of vegetation systems, on the establishment of two stream communication between satellite and ground sensors, on the development of citrus plant production systems, and on the design of in-situ data sensor networks. The general framework of this system approach will be presented. In time, this integration should allow to cross the bridge from post-harvest assessment to near real-time potential and actual yield monitoring in terms of crop.

  1. Development of Instrumental ORAM System for Radiation Dosimetry

    International Nuclear Information System (INIS)

    Bogard, J.S.; Cullum, B.M.; Mobley, J.; Moscovitch, M.; Vo-Dinh, T.

    1999-01-01

    The development of an optical-based dosimeter for neutrons and heavy charged particles is described. It is based on the use of three dimensional (3-D) optical memory materials, used in optical computing applications, and multiphoton fluorescence of photochromic dyes. Development and characterization of various types of dosimeter materials are described as well as the optical readout system. In addition, various excitation geometries for ''reading'' and ''writing'' to the optical memories are also discussed

  2. Comparative study of six rotary nickel-titanium systems and hand instrumentation for root canal preparation.

    Science.gov (United States)

    Guelzow, A; Stamm, O; Martus, P; Kielbassa, A M

    2005-10-01

    To compare ex vivo various parameters of root canal preparation using a manual technique and six different rotary nickel-titanium (Ni-Ti) instruments (FlexMaster, System GT, HERO 642, K3, ProTaper, and RaCe). A total of 147 extracted mandibular molars were divided into seven groups (n = 21) with equal mean mesio-buccal root canal curvatures (up to 70 degrees), and embedded in a muffle system. All root canals were prepared to size 30 using a crown-down preparation technique for the rotary nickel-titanium instruments and a standardized preparation (using reamers and Hedströem files) for the manual technique. Length modifications and straightening were determined by standardized radiography and a computer-aided difference measurement for every instrument system. Post-operative cross-sections were evaluated by light-microscopic investigation and photographic documentation. Procedural errors, working time and time for instrumentation were recorded. The data were analysed statistically using the Kruskal-Wallis test and the Mann-Whitney U-test. No significant differences were detected between the rotary Ni-Ti instruments for alteration of working length. All Ni-Ti systems maintained the original curvature well, with minor mean degrees of straightening ranging from 0.45 degrees (System GT) to 1.17 degrees (ProTaper). ProTaper had the lowest numbers of irregular post-operative root canal diameters; the results were comparable between the other systems. Instrument fractures occurred with ProTaper in three root canals, whilst preparation with System GT, HERO 642, K3 and the manual technique resulted in one fracture each. Ni-Ti instruments prepared canals more rapidly than the manual technique. The shortest time for instrumentation was achieved with System GT (11.7 s). Under the conditions of this ex vivo study all Ni-Ti systems maintained the canal curvature, were associated with few instrument fractures and were more rapid than a standardized manual technique. Pro

  3. Data acquisition system for the neutron scattering instruments at the intense pulsed neutron source

    International Nuclear Information System (INIS)

    Crawford, R.K.; Daly, R.T.; Haumann, J.R.; Hitterman, R.L.; Morgan, C.B.; Ostrowski, G.E.; Worlton, T.G.

    1981-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a major new user-oriented facility which is now coming on line for basic research in neutron scattering and neutron radiation damage. This paper describes the data-acquisition system which will handle data acquisition and instrument control for the time-of-flight neutron-scattering instruments at IPNS. This discussion covers the scientific and operational requirements for this system, and the system architecture that was chosen to satisfy these requirements. It also provides an overview of the current system implementation including brief descriptions of the hardware and software which have been developed

  4. Diversity Strategies for Nuclear Power Plant Instrumentation and Control Systems

    International Nuclear Information System (INIS)

    Wood, Richard Thomas; Belles, Randy; Cetiner, Mustafa Sacit; Holcomb, David Eugene; Korsah, Kofi; Loebl, Andy; Mays, Gary T.; Muhlheim, Michael David; Mullens, James Allen; Poore, Willis P. III; Qualls, A.L.; Wilson, Thomas L.; Waterman, Michael E.

    2010-01-01

    This report presents the technical basis for establishing acceptable mitigating strategies that resolve diversity and defense-in-depth (D3) assessment findings and conform to U.S. Nuclear Regulatory Commission (NRC) requirements. The research approach employed to establish appropriate diversity strategies involves investigation of available documentation on D3 methods and experience from nuclear power and nonnuclear industries, capture of expert knowledge and lessons learned, determination of best practices, and assessment of the nature of common-cause failures (CCFs) and compensating diversity attributes. The research described in this report does not provide guidance on how to determine the need for diversity in a safety system to mitigate the consequences of potential CCFs. Rather, the scope of this report provides guidance to the staff and nuclear industry after a licensee or applicant has performed a D3 assessment per NUREG/CR-6303 and determined that diversity in a safety system is needed for mitigating the consequences of potential CCFs identified in the evaluation of the safety system design features. Succinctly, the purpose of the research described in this report was to answer the question, 'If diversity is required in a safety system to mitigate the consequences of potential CCFs, how much diversity is enough?' The principal results of this research effort have identified and developed diversity strategies, which consist of combinations of diversity attributes and their associated criteria. Technology, which corresponds to design diversity, is chosen as the principal system characteristic by which diversity criteria are grouped to form strategies. The rationale for this classification framework involves consideration of the profound impact that technology-focused design diversity provides. Consequently, the diversity usage classification scheme involves three families of strategies: (1) different technologies, (2) different approaches within the same

  5. Diversity Strategies for Nuclear Power Plant Instrumentation and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Thomas [ORNL; Belles, Randy [ORNL; Cetiner, Mustafa Sacit [ORNL; Holcomb, David Eugene [ORNL; Korsah, Kofi [ORNL; Loebl, Andy [ORNL; Mays, Gary T [ORNL; Muhlheim, Michael David [ORNL; Mullens, James Allen [ORNL; Poore III, Willis P [ORNL; Qualls, A L [ORNL; Wilson, Thomas L [ORNL; Waterman, Michael E. [U.S. Nuclear Regulatory Commission

    2010-02-01

    This report presents the technical basis for establishing acceptable mitigating strategies that resolve diversity and defense-in-depth (D3) assessment findings and conform to U.S. Nuclear Regulatory Commission (NRC) requirements. The research approach employed to establish appropriate diversity strategies involves investigation of available documentation on D3 methods and experience from nuclear power and nonnuclear industries, capture of expert knowledge and lessons learned, determination of best practices, and assessment of the nature of common-cause failures (CCFs) and compensating diversity attributes. The research described in this report does not provide guidance on how to determine the need for diversity in a safety system to mitigate the consequences of potential CCFs. Rather, the scope of this report provides guidance to the staff and nuclear industry after a licensee or applicant has performed a D3 assessment per NUREG/CR-6303 and determined that diversity in a safety system is needed for mitigating the consequences of potential CCFs identified in the evaluation of the safety system design features. Succinctly, the purpose of the research described in this report was to answer the question, 'If diversity is required in a safety system to mitigate the consequences of potential CCFs, how much diversity is enough?' The principal results of this research effort have identified and developed diversity strategies, which consist of combinations of diversity attributes and their associated criteria. Technology, which corresponds to design diversity, is chosen as the principal system characteristic by which diversity criteria are grouped to form strategies. The rationale for this classification framework involves consideration of the profound impact that technology-focused design diversity provides. Consequently, the diversity usage classification scheme involves three families of strategies: (1) different technologies, (2) different approaches within

  6. Double-theodolite measurement system used in the image calibration of space photographic instrument

    Institute of Scientific and Technical Information of China (English)

    LI Yan; QIAO Yan-feng; SU Wan-xin; LIU Ze-xun

    2005-01-01

    The purpose of characterizing the image of space photographic instrument is to gain the space included angles from three coordinate axes in the three-dimensional coordinate of the image and the directionality of the three axes of coordinate in the frame of axes of the instrument. The two reference frames will keep in the same direction finally by adjusting according to space angles. This problem was solved by a new high-precision measurement system composed of a double-theodolite and a set of communication system. In the survey system, two TDA5005 total stations from Leica Company will be selected as the double-theodolite and the interdependence of both coordinate systems can be achieved by moving the stations only at one time. Therefore, this measurement system provides a highly efficient and high-precision surveying method to the image calibration of the space photographic instrument. According to the experiment, its measuring accuracy can reach arc-second level.

  7. From scientific instrument to industrial machine coping with architectural stress in embedded systems

    CERN Document Server

    Doornbos, Richard

    2012-01-01

    Architectural stress is the inability of a system design to respond to new market demands. It is an important yet often concealed issue in high tech systems. In From scientific instrument to industrial machine, we look at the phenomenon of architectural stress in embedded systems in the context of a transmission electron microscope system built by FEI Company. Traditionally, transmission electron microscopes are manually operated scientific instruments, but they also have enormous potential for use in industrial applications. However, this new market has quite different characteristics. There are strong demands for cost-effective analysis, accurate and precise measurements, and ease-of-use. These demands can be translated into new system qualities, e.g. reliability, predictability and high throughput, as well as new functions, e.g. automation of electron microscopic analyses, automated focusing and positioning functions. From scientific instrument to industrial machine takes a pragmatic approach to the proble...

  8. Review of the Tandem Mirror Experiment-Upgrade (TMX-U) machine-parameter-instrumentation system

    International Nuclear Information System (INIS)

    Kane, R.J.; Coffield, F.E.; Coutts, G.W.; Hornady, R.S.

    1983-01-01

    The Tandem Mirror Experiment-Upgrade (TMX-U) machine consists of seven major machine subsystems: magnet system, neutral beam system, microwave heating (ECRH), ion heating (ICRH), gas fueling, stream guns, and vacuum system. Satisfactory performance of these subsystems is necessary to achieve the experimental objectives planned for TMX-U operations. Since the performance quality of the subsystem is important and can greatly affect plasma parameters, a 233-channel instrumentation system has been installed. Data from the instrumentation system are acquired and stored with the plasma diagnostic information. Thus, the details of the machine performance are available during post-shot analysis. This paper describes all the machine-parameter-instrumentation hardware, presents some typical data, and outlines how the data are used

  9. Control and acquisition system of a space instrument for cosmic ray measurement

    Science.gov (United States)

    Prieto, M.; Martín, C.; Quesada, M.; Meziat, D.; Medina, J.; Sánchez, S.; Rodríguez-Frías, M. D.

    2000-04-01

    The PESCA Instrument Control and Acquisition System (PICAS) design, building and tests are presented. The purpose of the PESCA instrument is the study of the Solar Energetic Particles and the Anomalous Cosmic Rays. It is, therefore, a satellite on-board instrument. The PICAS is basically a computer, composed of a microprocessor with a memory block and a set of interfaces for the communication with the rest of the instrument and the satellite. The PICAS manages all the comunication processes with the satellite, that comprises the order reception from the ground station, and the telemetry sending, that includes scientific data and housekeeping data. By means of telecommands, the PICAS is completely controllable from the ground. The PICAS is also a reliable data acquisition system that guarantees the correct reception of the Cosmic Rays data collected in the ground.

  10. The IceCube Neutrino Observatory: instrumentation and online systems

    International Nuclear Information System (INIS)

    Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ansseau, I.; Ahlers, M.; Auer, R.; Baccus, J.; Barnet, S.; Ahrens, M.; Altmann, D.; Anton, G.; Andeen, K.; Anderson, T.; Archinger, M.; Argüelles, C.; Axani, S.; Auffenberg, J.; Bai, X.; Barwick, S.W.

    2017-01-01

    The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.

  11. The rhesus measurement system: A new instrument for space research

    Science.gov (United States)

    Schonfeld, Julie E.; Hines, John W.

    1993-01-01

    The Rhesus Research Facility (RRF) is a research environment designed to study the effects of microgravity using rhesus primates as human surrogates. This experimental model allows investigators to study numerous aspects of microgravity exposure without compromising crew member activities. Currently, the RRF is slated for two missions to collect its data, the first mission is SLS-3, due to fly in late 1995. The RRF is a joint effort between the United States and France. The science and hardware portions of the project are being shared between the National Aeronautics and Space Administration (NASA) and France's Centre National D'Etudes Spatiales (CNES). The RRF is composed of many different subsystems in order to acquire data, provide life support, environmental enrichment, computer facilities and measurement capabilities for two rhesus primates aboard a nominal sixteen day mission. One of these subsystems is the Rhesus Measurement System (RMS). The RMS is designed to obtain in-flight physiological measurements from sensors interfaced with the subject. The RMS will acquire, preprocess, and transfer the physiologic data to the Flight Data System (FDS) for relay to the ground during flight. The measurements which will be taken by the RMS during the first flight will be respiration, measured at two different sites; electromyogram (EMG) at three different sites; electroencephalogram (EEG); electrocardiogram (ECG); and body temperature. These measurements taken by the RMS will assist the research team in meeting the science objectives of the RRF project.

  12. An integrated on-line irradiation and in situ live cell imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Ying; Fu, Qibin; Wang, Weikang; Liu, Yu; Liu, Feng; Yang, Gen, E-mail: gen.yang@pku.edu.cn; Wang, Yugang

    2015-09-01

    Ionizing radiation poses a threat to genome integrity by introducing DNA damages, particularly DNA double-strand breaks (DSB) in cells. Understanding how cells react to DSB and maintain genome integrity is of major importance, since increasing evidences indicate the links of DSB with genome instability and cancer predispositions. However, tracking the dynamics of DNA damages and repair response to ionizing radiation in individual cell is difficult. Here we describe the development of an on-line irradiation and in situ live cell imaging system based on isotopic sources at Institute of Heavy Ion Physics, Peking University. The system was designed to irradiate cells and in situ observe the cellular responses to ionizing radiation in real time. On-line irradiation was achieved by mounting a metal framework that hold an isotopic γ source above the cell culture dish for γ irradiation; or by integrating an isotopic α source to an objective lens under the specialized cell culture dish for α irradiation. Live cell imaging was performed on a confocal microscope with an environmental chamber installed on the microscope stage. Culture conditions in the environment chamber such as CO{sub 2}, O{sub 2} concentration as well as temperature are adjustable, which further extends the capacity of the system and allows more flexible experimental design. We demonstrate the use of this system by tracking the DSB foci formation and disappearance in individual cells after exposure to irradiation. On-line irradiation together with in situ live cell imaging in adjustable culture conditions, the system overall provides a powerful tool for investigation of cellular and subcellular response to ionizing radiation under different physiological conditions such as hyperthermia or hypoxia.

  13. An integrated on-line irradiation and in situ live cell imaging system

    International Nuclear Information System (INIS)

    Liang, Ying; Fu, Qibin; Wang, Weikang; Liu, Yu; Liu, Feng; Yang, Gen; Wang, Yugang

    2015-01-01

    Ionizing radiation poses a threat to genome integrity by introducing DNA damages, particularly DNA double-strand breaks (DSB) in cells. Understanding how cells react to DSB and maintain genome integrity is of major importance, since increasing evidences indicate the links of DSB with genome instability and cancer predispositions. However, tracking the dynamics of DNA damages and repair response to ionizing radiation in individual cell is difficult. Here we describe the development of an on-line irradiation and in situ live cell imaging system based on isotopic sources at Institute of Heavy Ion Physics, Peking University. The system was designed to irradiate cells and in situ observe the cellular responses to ionizing radiation in real time. On-line irradiation was achieved by mounting a metal framework that hold an isotopic γ source above the cell culture dish for γ irradiation; or by integrating an isotopic α source to an objective lens under the specialized cell culture dish for α irradiation. Live cell imaging was performed on a confocal microscope with an environmental chamber installed on the microscope stage. Culture conditions in the environment chamber such as CO 2 , O 2 concentration as well as temperature are adjustable, which further extends the capacity of the system and allows more flexible experimental design. We demonstrate the use of this system by tracking the DSB foci formation and disappearance in individual cells after exposure to irradiation. On-line irradiation together with in situ live cell imaging in adjustable culture conditions, the system overall provides a powerful tool for investigation of cellular and subcellular response to ionizing radiation under different physiological conditions such as hyperthermia or hypoxia

  14. An integrated on-line irradiation and in situ live cell imaging system

    Science.gov (United States)

    Liang, Ying; Fu, Qibin; Wang, Weikang; Liu, Yu; Liu, Feng; Yang, Gen; Wang, Yugang

    2015-09-01

    Ionizing radiation poses a threat to genome integrity by introducing DNA damages, particularly DNA double-strand breaks (DSB) in cells. Understanding how cells react to DSB and maintain genome integrity is of major importance, since increasing evidences indicate the links of DSB with genome instability and cancer predispositions. However, tracking the dynamics of DNA damages and repair response to ionizing radiation in individual cell is difficult. Here we describe the development of an on-line irradiation and in situ live cell imaging system based on isotopic sources at Institute of Heavy Ion Physics, Peking University. The system was designed to irradiate cells and in situ observe the cellular responses to ionizing radiation in real time. On-line irradiation was achieved by mounting a metal framework that hold an isotopic γ source above the cell culture dish for γ irradiation; or by integrating an isotopic α source to an objective lens under the specialized cell culture dish for α irradiation. Live cell imaging was performed on a confocal microscope with an environmental chamber installed on the microscope stage. Culture conditions in the environment chamber such as CO2, O2 concentration as well as temperature are adjustable, which further extends the capacity of the system and allows more flexible experimental design. We demonstrate the use of this system by tracking the DSB foci formation and disappearance in individual cells after exposure to irradiation. On-line irradiation together with in situ live cell imaging in adjustable culture conditions, the system overall provides a powerful tool for investigation of cellular and subcellular response to ionizing radiation under different physiological conditions such as hyperthermia or hypoxia.

  15. Family Triad Systemic Scale: An Instrument for Assessment of Relationships between Couple and Families of Origin

    OpenAIRE

    مونا چراغی; محمدعلی مظاهری; فرشته موتابی; لیلی پناغی; منصوره السادات صادقی; خدیجه سلمانی

    2017-01-01

    Because of noticeable role of relationships with in-laws in prediction of marital adjustment and satisfaction in Iran, it is necessary to provide an instrument based on Family Triad Systemic Model (FTSM) to assess the relationships between couple and two original families. The objective of present study was providing the instrument and checking the psychometric properties of it. An item pool (107 items) was created by using other related tools, interviews by experts and married people. Then 4...

  16. Models and error analyses of measuring instruments in accountability systems in safeguards control

    International Nuclear Information System (INIS)

    Dattatreya, E.S.

    1977-05-01

    Essentially three types of measuring instruments are used in plutonium accountability systems: (1) the bubblers, for measuring the total volume of liquid in the holding tanks, (2) coulometers, titration apparatus and calorimeters, for measuring the concentration of plutonium; and (3) spectrometers, for measuring isotopic composition. These three classes of instruments are modeled and analyzed. Finally, the uncertainty in the estimation of total plutonium in the holding tank is determined

  17. Maintenance quality surveillance for nuclear reactor instrument and control systems

    International Nuclear Information System (INIS)

    Clement, T.M.

    1976-01-01

    A description is given of a formal program of mandatory testing and inspection for assurance of reliability at the N-reactor. The techniques and procedures are called Equipment Maintenance Standards (EMS) and cover the nuclear plant systems which affect nuclear safety, environmental control, continuity of operation and reactor life. The scope of the program is such that all electrical, chemical, mechanical, and nuclear devices with interconnecting circuitry, linkages, and piping are functionally checked and/or inspected from sensors through actuating media necessary for carrying out the defined functions under startup, operating, and shutdown conditions and also under any credible accident condition. Records are kept of the AS FOUND results of the tests and inspections along with adjustments and repairs required to correct any out-of-limits conditions found. These records are accumulated and are used as a source for quantitative reliability information and for evaluating wear-out or design problems

  18. Designing an in-situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing

    Science.gov (United States)

    Nadimpalli, Venkata K.; Nagy, Peter B.

    2018-04-01

    Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.

  19. A Method for Modeling the Virtual Instrument Automatic Test System Based on the Petri Net

    Institute of Scientific and Technical Information of China (English)

    MA Min; CHEN Guang-ju

    2005-01-01

    Virtual instrument is playing the important role in automatic test system. This paper introduces a composition of a virtual instrument automatic test system and takes the VXIbus based a test software platform which is developed by CAT lab of the UESTC as an example. Then a method to model this system based on Petri net is proposed. Through this method, we can analyze the test task scheduling to prevent the deadlock or resources conflict. At last, this paper analyzes the feasibility of this method.

  20. Wear promoted in the apical third of simulated canals after instrumentation with protaper universal system

    Directory of Open Access Journals (Sweden)

    Kathrein Tapia da Silva

    2009-10-01

    Full Text Available OBJECTIVE: This study evaluated the wear in the apical third of simulate canals after preparation with ProTaper Universal Rotary System. MATERIAL AND METHODS: 24 sets of instruments were used in 24 simulated canals in transparent epoxy resin blocks with degree of curvature of either 20°or 40°. The canals were photographed preoperatively and after preparation of the apical stop with ProTaper F3, F4 and F5 instruments. The initial and final images were exported to Adobe Photoshop® software and superimposed to detect the root canal wall differences (in mm between them, in two points located 1 (A and 5 (B mm from the point where the working length was established. Data were subjected to analysis of variance to verify the existence of interaction among the factors: canal curvature, instrument size and curve location. Significant level was set at 5%. RESULTS: Regardless of the location and the canal curvature, F4 and F5 instruments produced the greatest wear (p<0.05. CONCLUSIONS: There was a deviation from the original pathway towards the outside of the root curvature in both analyzed points. All instruments produced canal transportation, but the F4 and F5 instruments produced more than the other instruments, and should thus be used with care in curved canals.

  1. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    Science.gov (United States)

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; Martin, Aiden A.; Depond, Philip J.; Guss, Gabriel M.; Thampy, Vivek; Fong, Anthony Y.; Weker, Johanna Nelson; Stone, Kevin H.; Tassone, Christopher J.; Kramer, Matthew J.; Toney, Michael F.; Van Buuren, Anthony; Matthews, Manyalibo J.

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ˜1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ˜50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.

  2. Ex vivo study on root canal instrumentation of two rotary nickel-titanium systems in comparison to stainless steel hand instruments.

    Science.gov (United States)

    Vaudt, J; Bitter, K; Neumann, K; Kielbassa, A M

    2009-01-01

    To investigate instrumentation time, working safety and the shaping ability of two rotary nickel-titanium (NiTi) systems (Alpha System and ProTaper Universal) in comparison to stainless steel hand instruments. A total of 45 mesial root canals of extracted human mandibular molars were selected. On the basis of the degree of curvature the matched teeth were allocated randomly into three groups of 15 teeth each. In group 1 root canals were prepared to size 30 using a standardized manual preparation technique; in group 2 and 3 rotary NiTi instruments were used following the manufacturers' instructions. Instrumentation time and procedural errors were recorded. With the aid of pre- and postoperative radiographs, apical straightening of the canal curvature was determined. Photographs of the coronal, middle and apical cross-sections of the pre- and postoperative canals were taken, and superimposed using a standard software. Based on these composite images the portion of uninstrumented canal walls was evaluated. Active instrumentation time of the Alpha System was significantly reduced compared with ProTaper Universal and hand instrumentation (P < 0.05; anova). No instrument fractures occurred in any of the groups. The Alpha System revealed significantly less apical straightening compared with the other instruments (P < 0.05; Mann-Whitney U test). In the apical cross-sections Alpha System resulted in significantly less uninstrumented canal walls compared with stainless steel files (P < 0.05; chi-squared test). Despite the demonstrated differences between the systems, an apical straightening effect could not be prevented; areas of uninstrumented root canal wall were left in all regions using the various systems.

  3. In situ radiological characterization to support a test excavation at a liquid waste disposal site

    International Nuclear Information System (INIS)

    Keele, B.D.; Bauer, R.G.; Blewett, G.R.; Troyer, G.L.

    1994-05-01

    An in situ radiological detection system was developed to support a small test excavation at a liquid waste disposal site at the Hanford Site in Richland, Washington. Instrumentation, calibration and comparisons to samples are discussed

  4. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-12-01

    Reverse osmosis (RO) and nanofiltration (NF) membrane systems are high-pressure membrane filtration processes that can produce high quality drinking water. Biofouling, biofilm formation that exceeds a certain threshold, is a major problem in spiral wound RO and NF membrane systems resulting in a decline in membrane performance, produced water quality, and quantity. In practice, detection of biofouling is typically done indirectly through measurements of performance decline. Existing direct biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar oxygen sensing optodes, in combination with a simple imaging system, can be used for in-situ, non-destructive biofouling characterization. Aspects of the study were early detection of biofouling, biofilm spatial patterning in spacer filled channels, and the effect of feed cross-flow velocity, and feed flow temperature. Oxygen sensing optode imaging was found suitable for studying biofilm processes and gave detailed spatial and quantitative biofilm development information enabling better understanding of the biofouling development process. The outcome of this study attests the importance of in-situ, non-destructive imaging in acquiring detailed knowledge on biofilm development in membrane systems contributing to the development of effective biofouling control strategies.

  5. 42 CFR 493.1252 - Standard: Test systems, equipment, instruments, reagents, materials, and supplies.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Test systems, equipment, instruments... SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY... storage of reagents and specimens, accurate and reliable test system operation, and test result reporting...

  6. Application of instrument platform based embedded Linux system on intelligent scaler

    International Nuclear Information System (INIS)

    Wang Jikun; Yang Run'an; Xia Minjian; Yang Zhijun; Li Lianfang; Yang Binhua

    2011-01-01

    It designs a instrument platform based on embedded Linux system and peripheral circuit, by designing Linux device driver and application program based on QT Embedded, various functions of the intelligent scaler are realized. The system architecture is very reasonable, so the stability and the expansibility and the integration level are increased, the development cycle is shorten greatly. (authors)

  7. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  8. Instrumentation development

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.

    1988-01-01

    Instrumentation is developed for the Civilian Radioactive Waste Management Program to meet several different (and sometimes conflicting) objectives. This paper addresses instrumentation development for data needs that are related either directly or indirectly to a repository site, but does not touch on instrumentation for work with waste forms or other materials. Consequently, this implies a relatively large scale for the measurements, and an in situ setting for instrument performance. In this context, instruments are needed for site characterization to define phenomena, develop models, and obtain parameter values, and for later design and performance confirmation testing in the constructed repository. The former set of applications is more immediate, and is driven by the needs of program design and performance assessment activities. A host of general technical and nontechnical issues have arisen to challenge instrumentation development. Instruments can be classed into geomechanical, geohydrologic, or other specialty categories, but these issues cut across artificial classifications. These issues are outlined. Despite this imposing list of issues, several case histories are cited to evaluate progress in the area

  9. The impact of the long-term playing of musical instruments on the stomatognathic system - review.

    Science.gov (United States)

    Głowacka, Arleta; Matthews-Kozanecka, Maja; Kawala, Maciej; Kawala, Beata

    2014-01-01

    In this article, we have made a review of the influence of playing musical instruments on the formation of malocclusion and TMJ disorders in musicians. Primary attention was paid to the effects of wind and stringed instruments. The aim of the article was the presentation of research and opinions about this problem in the last 25 years. It is reported that long-term and repetitive playing of musical instruments, particularly stringed (violin and viola) and wind instruments can cause dysfunctions of the stomatognathic system. The impact of wind instruments was assessed in terms of the type of mouthpiece. We studied the possibility of repositioning the front teeth and reducing the width of the upper dental arch and overbite. There were also reports on the use of a specific instrument to improve the child's occlusion. Studies have also been performed on the usefulness of relaxation plates in order to improve, and even prevent, dysfunction caused by the constant stress on the same parts of the stomatognathic system. The experiments were mainly based on interviews, dental cast analyses and cephalometric analyses. Additional methods were dynamometer tests and muscle tension palpation.

  10. Metrological Array of Cyber-Physical Systems. Part 7. Additive Error Correction for Measuring Instrument

    Directory of Open Access Journals (Sweden)

    Yuriy YATSUK

    2015-06-01

    Full Text Available Since during design it is impossible to use the uncertainty approach because the measurement results are still absent and as noted the error approach that can be successfully applied taking as true the nominal value of instruments transformation function. Limiting possibilities of additive error correction of measuring instruments for Cyber-Physical Systems are studied basing on general and special methods of measurement. Principles of measuring circuit maximal symmetry and its minimal reconfiguration are proposed for measurement or/and calibration. It is theoretically justified for the variety of correction methods that minimum additive error of measuring instruments exists under considering the real equivalent parameters of input electronic switches. Terms of self-calibrating and verification the measuring instruments in place are studied.

  11. In situ and ex situ electron microscopy and X-ray diffraction characterization of the evolution of a catalytic system - from synthesis to deactivation

    DEFF Research Database (Denmark)

    Gardini, Diego

    Heterogeneous catalysis represents a research field of undeniable importance for a multitude of technological and industrial processes. Supported catalysts are nowadays at the base of the large-scale production of most chemicals and are used for the removal of air pollutants from automotive engines...... the understanding of the structural properties and mechanisms at the origin of catalytic activity. This thesis presents the potential and uniqueness of ex situ and in situ transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques in the characterization of several supported material systems...... TEM (HRTEM) and electron energy loss spectroscopy (EELS) revealed the degradation of the supported carbide particles probably due to the formation of volatile molybdenum hydroxide species. The activity of silver nanoparticles as catalyst for soot oxidation was studied in operative conditions...

  12. Instruments and Methods: A Low-Cost Glacier-Mapping System

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Reeh, Niels; Forsberg, René

    2000-01-01

    the capability of acquiring accurate data on location and ice-surface elevation, and adequate-quality data on ice thickness. The system has been applied successfully in mapping the Nioghalvfjerdsfjorden glacier, northeast Greenland, in spite of the difficult conditions with melting water on the glacier surface....... The measurements from the floating part of the glacier have been evaluated by comparison of radar data with laser-altimeter and in situ measurements....

  13. Research on conceptual design of simplified nuclear safety instrument and control system

    International Nuclear Information System (INIS)

    Huang Jie

    2015-01-01

    The Nuclear safety instrument and control system is directly related to the safety of the reactor. So redundant and diversity design is used to ensure the system's security and reliability. This make the traditional safety system large, more cabinets and wiring complexity. To solve these problem, we can adopt new technology to make the design more simple. The simplify conceptual design can make the system less cabinets, less wiring, but high security, strong reliability. (author)

  14. Cleaning capacity promoted by motor-driven or manual instrumentation using ProTaper Universal system: Histological analysis

    OpenAIRE

    da Frota, Matheus Franco; Filho, Idomeo Bonetti; Berbert, F?bio Luiz Camargo Villela; Sponchiado, Emilio Carlos; Marques, Andr? Augusto Franco; Garcia, Lucas da Fonseca Roberti

    2013-01-01

    Aim: The aim of this study was to assess the cleaning capacity of the Protaper system using motor-driven or manual instrumentation. Materials and Methods: Ten mandibular molars were randomly separated into 2 groups (n = 5) according to the type of instrumentation performed, as follows: Group 1 - instrumentation with rotary nickel-titanium (Ni-Ti) files using ProTaper Universal System (Dentsply/Maillefer); and, Group 2 - instrumentation with Ni-Ti hand files using ProTaper Universal (Den...

  15. Shielding correction to bodywork of in-situ object counting system

    International Nuclear Information System (INIS)

    Feng Tiancheng; Chen Wei; Long Bin; Su Chuanying; Wu Rui; Jia Mingyan; Cheng Jianping

    2009-01-01

    This paper presents the methods of experiment and calculation for shielding correction to the bodywork of in-situ object counting system (ISOCS) using a plane source of 152 Eu. The shielding correction coefficients were obtained in the conditions that the HPGe detector of BE5030 with the collimators of 50 mm-90 degree, 50 mm-30 degree or 50 mm-180 degree, and the detector distance 58.2 cm from ground surface. The relationships between the shielding correction coefficients and γ-ray energies were fitted by the least square method, for the shielding correction calculation of any energy within 122-1 408 keV by interpolation. (authors)

  16. In situ vitrification of buried waste: Containment issues and suppression systems

    International Nuclear Information System (INIS)

    Luey, J.; Powell, T.D.

    1992-03-01

    Pacific Northwest Laboratory (PNL) and Idaho National Engineering Laboratory (INEL) are developing a remedial action technology for buried waste through the adaptation of the in situ vitrification (ISV) process. The ISV process is a thermal treatment process originally developed for the US Department of Energy (DOE) to stabilize soils contaminated with transuranic waste. ISV tests with buried waste forms have demonstrated that the processing of buried waste is more dynamic than the processing of soils. This paper will focus on the issue of containment of the gases released during the processing of buried waste and on engineered suppression systems to alleviate transient events associated with dynamic off-gassing from the ISV melt

  17. An in-situ RBS system for measuring nuclides adsorbed at the liquid-solid interface

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K; Yuhara, J; Ishigami, R [Nagoya Univ. (Japan). School of Engineering; and others

    1997-03-01

    An in-situ RBS system has been developed in which heavier nuclides adsorbed at the inner surface of a thin lighter window specimen of liquid container in order to determine the rate constants for their sorption and release at the interface. The testing of a thin silicon window of the sample assembly, in which Xe gas of one atmosphere was enclosed, against the bombardment of the probing ion beam has been performed. A desorption behavior of a lead layer adsorbed at the SiO{sub 2} layer of silicon window surface into deionized water has been measured as a preliminary experiment. (author)

  18. Evaluation of in-situ thermal energy storage for lunar based solar dynamic systems

    Science.gov (United States)

    Crane, Roger A.

    1991-01-01

    A practical lunar based thermal energy storage system, based on locally available materials, could significantly reduce transportation requirements and associated costs of a continuous, solar derived power system. The concept reported here is based on a unique, in-situ approach to thermal energy storage. The proposed design is examined to assess the problems of start-up and the requirements for attainment of stable operation. The design remains, at this stage, partially conceptional in nature, but certain aspects of the design, bearing directly on feasibility, are examined in some detail. Specifically included is an engineering evaluation of the projected thermal performance of this system. Both steady state and start-up power requirements are evaluated and the associated thermal losses are evaluated as a basis for establishing potential system performance.

  19. In situ permeability modification using gelled polymer systems. Topical report, June 10, 1996--April 10, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; McCool, C.S.; Heppert, J.A.; Vossoughi, S.

    1997-10-01

    Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program is focused on five areas: gel treatment in fractured systems; gel treatment in carbonate rocks; in-depth placement of gels; gel systems for application in carbon dioxide flooding; and gel treatment in production wells. The research program is primarily an experimental program directed at improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the first 10 months of a 28 month program is described in the following sections.

  20. In situ permeability modification using gelled polymer systems. Annual report, April 11, 1997--April 10, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; McCool, C.S.; Heppert, J.A.; Vossoughi, S.; Michnick, M.J.

    1998-09-01

    Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program focused on five areas: Gel treatment in fractured systems; Gel treatment in carbonate rocks; In-depth placement of gels; Gel systems for application in carbon dioxide flooding; and Gel treatment in production wells. The research program is primarily an experimental program directed toward improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the second 12 month period of a 28 month program is described.

  1. A Calculation of hydrodynamic noise of control valve on instrumentation and control system using smart plant

    International Nuclear Information System (INIS)

    Demon Handoyo; Djoko H Nugroho

    2012-01-01

    It has been calculated characteristics of the control valve Instrumentation and Control Systems using Smart Plant software. This calculation is done in order to control the valve that will be installed as part of the instrumentation and control systems to provide the performance according to the design. The characteristics that have been calculated are Reynolds number factors which are related to the flow regime in the valve. Critical pressure factor, Valve Hydrodynamic cavitation and noise index. In this paper the discussion will be limited to matters relating to Hydrodynamic noise generation process using model of the instrumentation and control system in the plant design in yellow cake PIPKPP activities in 2012. The results of the calculation of the noise on the valves design are in the range between 9.58~70.1 dBA. (author)

  2. A pumped, two-phase flow heat transport system for orbiting instrument payloads

    Science.gov (United States)

    Fowle, A. A.

    1981-01-01

    A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.

  3. Setup of an interface for operation of IAGOS (In-service Aircraft Global Observing System) CORE instruments onboard the IAGOS CARIBIC platform.

    Science.gov (United States)

    Bundke, Ulrich; Berg, Marcel; Franke, Harald; Zahn, Andreas; Boenisch, Harald; Perim de Faria, Julia; Berkes, Florian; Petzold, Andreas

    2017-04-01

    The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in-situ observational data by using commercial passenger aircraft as measurement platforms. The infrastructure is built from two complementary approaches: The "CORE" component comprises the implementation and operation of autonomous instruments installed on up to 20 long-range aircraft of international airlines for continuous measurements of important reactive gases and greenhouse gases, as well as aerosol particles, dust and cloud particles. The fully automated instruments are designed for operation aboard the aircraft in unattended mode for several months and the data are transmitted automatically. The complementary "CARIBIC" component consists of the monthly deployment of a cargo container equipped with instrumentation for a larger suite of components. The CARIBIC container has equipment for measuring ozone, carbon monoxide, nitrogen oxides, water vapor and airborne particles. Furthermore the container is equipped with a system for collecting air samples. These air samples are analyzed in the laboratory. For each sample measurements for more than 40 trace gases including CFC's prohibited by the Montreal protocol, and all greenhouse gases are performed. The Interface described in this work is designed to host one of IAGOS CORE (Package2) instruments. Available are: P2a, P2b, measuring { NO_y} and {NO_x} em P2c, measuring the aerosol size-distribution (0.25

  4. Solar System Exploration Augmented by In-Situ Resource Utilization: Mercury and Saturn Propulsion Investigations

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.

  5. In-situ synthesis of hydrogen peroxide in a novel Zn-CNTs-O2 system

    Science.gov (United States)

    Gong, Xiao-bo; Yang, Zhao; Peng, Lin; Zhou, An-lan; Liu, Yan-lan; Liu, Yong

    2018-02-01

    A novel strategy of in-situ synthesis of hydrogen peroxide (H2O2) was formulated and evaluated. Oxygen was selectively reduced to H2O2 combined with electrochemical corrosion of zinc in the Zn-CNTs-O2 system. The ratio of zinc and CNTs, heat treatment temperature, and operational parameters such as composite dosage, initial pH, solution temperature, oxygen flow rate were systematically investigated to improve the efficiency of H2O2 generation. The Zn-CNTs composite (weight ratio of 2.5:1) prepared at 500 °C showed the maximum H2O2 accumulation concentration of 293.51 mg L-1 within 60 min at the initial pH value of 3.0, Zn-CNTs dosage of 0.4 g and oxygen flow rate of 400 mL min-1. The oxygen was reduced through two-electron pathway to hydrogen peroxide on CNTs while the zinc was oxidized in the system and the dissolved zinc ions convert to zinc hydroxide and depositing on the surface of CNTs. It was proposed that the increment of direct H2O2 production was caused by the improvement of the formed Zn/CNTs corrosion cell. This provides promising strategy for in-situ synthesis and utilization of hydrogen peroxide in the novel Zn-CNTs-O2 system, which enhances the environmental and economic attractiveness of the use of H2O2 as green oxidant for wastewater treatments.

  6. Simulation on following Performance of High-Speed Railway In Situ Testing System

    Directory of Open Access Journals (Sweden)

    Fei-Long Zheng

    2013-01-01

    Full Text Available Subgrade bears both the weight of superstructures and the impacts of running trains. Its stability affects the line smoothness directly, but in situ testing method on it is inadequate. This paper presents a railway roadbed in situ testing device, the key component of which is an excitation hydraulic servo cylinder that can output the static pressure and dynamic pressure simultaneously to simulate the force of the trains to the subgrade. The principle of the excitation system is briefly introduced, and the transfer function of the closed-loop force control system is derived and simulated; that, it shows without control algorithm, the dynamic response is very low and the following performance is quite poor. So, the improvedadaptive model following control (AMFC algorithm based on direct state method is adopted. Then, control block diagram is built and simulated with the input of different waveforms and frequencies. The simulation results show that the system has been greatly improved; the output waveform can follow the input signal much better except for a little distortion when the signal varies severely. And the following performance becomes even better as the load stiffness increases.

  7. In situ measurement of the energy gap of a semiconductor using a microcontroller-based system

    International Nuclear Information System (INIS)

    Mukaro, R; Taele, B M; Tinarwo, D

    2006-01-01

    This paper describes a microcontroller-based laboratory technique for automatic in situ measurement of the energy gap of germanium. The design is based on the original undergraduate laboratory experiment in which students manually measure the variation of the reverse saturation current of a germanium diode with temperature using a current-to-voltage converter. After collecting the results students later analyse them to determine the energy gap of the semiconductor. The objective of this work was to introduce interfacing and computerized measurement systems in the undergraduate laboratory. The microcontroller-based data acquisition system and its implementation in automatic in situ measurement of the band gap of germanium diode is presented. The system which uses an LM335 temperature sensor for measuring temperature transmits the measured data to the computer via the RS232 serial port while a C++ software program developed to run on the computer monitors the serial port for incoming information sent by the microcontroller. This information is displayed on the computer screen as it comes and automatically saved to a data file. Once all the data are received, the computer performs least-squares fit to the data to compute the energy gap which is displayed on the screen together with its error estimate. For the IN34A germanium diode used the value of the energy gap obtained was 0.50 ± 0.02 eV

  8. In situ measurement of the energy gap of a semiconductor using a microcontroller-based system

    Energy Technology Data Exchange (ETDEWEB)

    Mukaro, R [Department of Physics, Bindura University of Science, P/Bag 1020, Bindura (Zimbabwe); Taele, B M [Department of Physics and Electronics, National University of Lesotho, Roma 180 (Lesotho); Tinarwo, D [Department of Physics, Bindura University of Science, P/Bag 1020, Bindura (Zimbabwe)

    2006-05-01

    This paper describes a microcontroller-based laboratory technique for automatic in situ measurement of the energy gap of germanium. The design is based on the original undergraduate laboratory experiment in which students manually measure the variation of the reverse saturation current of a germanium diode with temperature using a current-to-voltage converter. After collecting the results students later analyse them to determine the energy gap of the semiconductor. The objective of this work was to introduce interfacing and computerized measurement systems in the undergraduate laboratory. The microcontroller-based data acquisition system and its implementation in automatic in situ measurement of the band gap of germanium diode is presented. The system which uses an LM335 temperature sensor for measuring temperature transmits the measured data to the computer via the RS232 serial port while a C++ software program developed to run on the computer monitors the serial port for incoming information sent by the microcontroller. This information is displayed on the computer screen as it comes and automatically saved to a data file. Once all the data are received, the computer performs least-squares fit to the data to compute the energy gap which is displayed on the screen together with its error estimate. For the IN34A germanium diode used the value of the energy gap obtained was 0.50 {+-} 0.02 eV.

  9. Instrumental system for the quick relief of surface temperatures in fumaroles fields and steam heated soils

    Science.gov (United States)

    Diliberto, Iole; Cappuzzo, Santo; Inguaggiato, Salvatore; Cosenza, Paolo

    2014-05-01

    We present an instrumental system to measure and to map the space variation of the surface temperature in volcanic fields. The system is called Pirogips, its essential components are a Pyrometer and a Global Position System but also other devices useful to obtain a good performance of the operating system have been included. In the framework of investigation to define and interpret volcanic scenarios, the long-term monitoring of gas geochemistry can improve the resolution of the scientific approaches by other specific disciplines. Indeed the fluid phase is released on a continuous mode from any natural system which produces energy in excess respect to its geological boundaries. This is the case of seismic or magmatic active areas where the long-term geochemical monitoring is able to highlight, and to follow in real time, changes in the rate of energy release and/or in the feeding sources of fluids, thus contributing to define the actual behaviour of the investigated systems (e.g. Paonita el al., 2013; 2002; Taran, 2011; Zettwood and Tazieff, 1973). The demand of pirogips starts from the personal experience in long term monitoring of gas geochemistry (e.g. Diliberto I.S, 2013; 2011; et al., 2002; Inguaggiato et al.,2012a, 2012b). Both space and time variation of surface temperature highlight change of energy and mass release from the deep active system, they reveal the upraise of deep and hot fluid and can be easily detected. Moreover a detailed map of surface temperature can be very useful for establishing a network of sampling points or installing a new site for geochemical monitoring. Water is commonly the main component of magmatic or hydrothermal fluid release and it can reach the ground surface in the form of steam, as in the high and low temperature fumaroles fields, or it can even condense just below the ground surface. In this second case the water disperses in pores or circulates in the permeable layers while the un-condensable gases reach the surface (e

  10. Real-time simulation of ex-core nuclear instrumentation system

    International Nuclear Information System (INIS)

    Zhao Qiang; Zhang Zhijian; Cao Xinrong

    2005-01-01

    Real-time simulation of ex-core nuclear instrumentation system is an indispensable part of nuclear power plant (NPP) full-scope training simulator. The simulation method, which is based upon the theory of measurement, is introduced in the paper. The fitting formula between the measured data and the three-dimensional neutron flux distribution in the core is established. The fitting parameter is adjusted according to the reactor physical calculation or the experiment of power calibration. The simulation result shows that the method can simulate the ex-core neutron instrumentation system accurately in real-time and meets the needs of NPP full-scope training simulator. (authors)

  11. Data acquisition and control system for the IPNS time-of-flight neutron scattering instruments

    International Nuclear Information System (INIS)

    Daly, R.T.; Haumann, J.R.; Kraimer, M.R.; Lenkszus, F.R.; Lidinsky, W.P.; Morgan, C.B.; Rutledge, L.L.; Rynes, P.E.; Tippie, J.W.

    1979-01-01

    The Argonne Intense Pulsed Neutron System (IPNS-I) presently under construction at Argonne National Laboratory will include a number of neutron scattering instruments. This study investigates the data acquisition requirements of these instruments and proposes three alternative multiprocessor systems which will satisfy these requirements. All proposals are star configurations with a super-mini as the central node or HOST. The first proposal is based on front-ends composed of two or more 16-bit microcomputers, the second proposal is based on front ends consisting of a combination of a mini and microcomputers, and the third is based on a minicomputer with an intelligent CAMAC controller

  12. System for calibration of instruments of x-ray measurement (CIR-X) applying the PGCS

    International Nuclear Information System (INIS)

    Gaytan G, E.; Rivero G, T.; Cruz E, P.; Tovar M, V.M.; Vergara M, F.J.

    2007-01-01

    The Department of Metrology of Ionizing Radiations of the ININ carries out calibration of instruments for X-ray measurement that determine the operation parameters in X-ray diagnostic machines of the health and private sectors. To facilitate this task, the Department of Automation and Instrumentation developed a system for acquisition and signals processing coming from a reference voltage divider with traceability at NIST that is connected directly to the X-rays tube. The system is integrated by the X-ray unit, the X-ray measurement equipment Dynalizer IIIU of RADCAL, a data acquisition card, a personal computer and the acquisition software and signals processing. (Author)

  13. Pulse Wave Velocity Measuring System using Virtual Instrumentation on Mobile Device

    Directory of Open Access Journals (Sweden)

    Razvan Alin Ciobotariu

    2013-03-01

    Full Text Available Virtual instrumentation is a concept that permits customizable modular software measurement and the development of the user-defined tools for control, process and visualization of data, creating versatile systems, using modular programming, intuitive and easy to use. In this paper we investigate a possibility of using virtual instrumentation in the development of two physiological parameters monitoring system, in order to assess a cardiovascular parameter, the Pulse Wave Velocity (PWV. We choose to monitor this parameter due to major incidence and impact of cardiovascular diseases (CVD.

  14. Safety critical FPGA-based NPP instrumentation and control systems: assessment, development and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Bakhmach, E. S.; Siora, A. A.; Tokarev, V. I. [Research and Production Corporation Radiy, 29 Geroev Stalingrada Str., Kirovograd 25006 (Ukraine); Kharchenko, V. S.; Sklyar, V. V.; Andrashov, A. A., E-mail: marketing@radiy.co [Center for Safety Infrastructure-Oriented Research and Analysis, 37 Astronomicheskaya Str., Kharkiv 61085 (Ukraine)

    2010-10-15

    The stages of development, production, verification, licensing and implementation methods and technologies of safety critical instrumentation and control systems for nuclear power plants (NPP) based on FPGA (Field Programmable Gates Arrays) technologies are described. A life cycle model and multi-version technologies of dependability and safety assurance of FPGA-based instrumentation and control systems are discussed. An analysis of NPP instrumentation and control systems construction principles developed by Research and Production Corporation Radiy using FPGA-technologies and results of these systems implementation and operation at Ukrainian and Bulgarian NPP are presented. The RADIY{sup TM} platform has been designed and developed by Research and Production Corporation Radiy, Ukraine. The main peculiarity of the RADIY{sup TM} platform is the use of FPGA as programmable components for logic control operation. The FPGA-based RADIY{sup TM} platform used for NPP instrumentation and control systems development ensures sca lability of system functions types, volume and peculiarities (by changing quantity and quality of sensors, actuators, input/output signals and control algorithms); sca lability of dependability (safety integrity) (by changing a number of redundant channel, tiers, diagnostic and reconfiguration procedures); sca lability of diversity (by changing types, depth and method of diversity selection). (Author)

  15. Safety critical FPGA-based NPP instrumentation and control systems: assessment, development and implementation

    International Nuclear Information System (INIS)

    Bakhmach, E. S.; Siora, A. A.; Tokarev, V. I.; Kharchenko, V. S.; Sklyar, V. V.; Andrashov, A. A.

    2010-10-01

    The stages of development, production, verification, licensing and implementation methods and technologies of safety critical instrumentation and control systems for nuclear power plants (NPP) based on FPGA (Field Programmable Gates Arrays) technologies are described. A life cycle model and multi-version technologies of dependability and safety assurance of FPGA-based instrumentation and control systems are discussed. An analysis of NPP instrumentation and control systems construction principles developed by Research and Production Corporation Radiy using FPGA-technologies and results of these systems implementation and operation at Ukrainian and Bulgarian NPP are presented. The RADIY TM platform has been designed and developed by Research and Production Corporation Radiy, Ukraine. The main peculiarity of the RADIY TM platform is the use of FPGA as programmable components for logic control operation. The FPGA-based RADIY TM platform used for NPP instrumentation and control systems development ensures sca lability of system functions types, volume and peculiarities (by changing quantity and quality of sensors, actuators, input/output signals and control algorithms); sca lability of dependability (safety integrity) (by changing a number of redundant channel, tiers, diagnostic and reconfiguration procedures); sca lability of diversity (by changing types, depth and method of diversity selection). (Author)

  16. TELICS—A Telescope Instrument Control System for Small/Medium Sized Astronomical Observatories

    Science.gov (United States)

    Srivastava, Mudit K.; Ramaprakash, A. N.; Burse, Mahesh P.; Chordia, Pravin A.; Chillal, Kalpesh S.; Mestry, Vilas B.; Das, Hillol K.; Kohok, Abhay A.

    2009-10-01

    For any modern astronomical observatory, it is essential to have an efficient interface between the telescope and its back-end instruments. However, for small and medium-sized observatories, this requirement is often limited by tight financial constraints. Therefore a simple yet versatile and low-cost control system is required for such observatories to minimize cost and effort. Here we report the development of a modern, multipurpose instrument control system TELICS (Telescope Instrument Control System) to integrate the controls of various instruments and devices mounted on the telescope. TELICS consists of an embedded hardware unit known as a common control unit (CCU) in combination with Linux-based data acquisition and user interface. The hardware of the CCU is built around the ATmega 128 microcontroller (Atmel Corp.) and is designed with a backplane, master-slave architecture. A Qt-based graphical user interface (GUI) has been developed and the back-end application software is based on C/C++. TELICS provides feedback mechanisms that give the operator good visibility and a quick-look display of the status and modes of instruments as well as data. TELICS has been used for regular science observations since 2008 March on the 2 m, f/10 IUCAA Telescope located at Girawali in Pune, India.

  17. An overview of process instrumentation, protective safety interlocks and alarm system at the JET facilities active gas handling system

    International Nuclear Information System (INIS)

    Skinner, N.; Brennan, P.; Brown, K.; Gibbons, C.; Jones, G.; Knipe, S.; Manning, C.; Perevezentsev, A.; Stagg, R.; Thomas, R.; Yorkshades, J.

    2003-01-01

    The Joint European Torus (JET) Facilities Active Gas Handling System (AGHS) comprises ten interconnected processing sub-systems that supply, process and recover tritium from gases used in the JET Machine. Operations require a diverse range of process instrumentation to carry out a multiplicity of monitoring and control tasks and approximately 500 process variables are measured. The different types and application of process instruments are presented with specially adapted or custom-built versions highlighted. Forming part of the Safety Case for tritium operations, a dedicated hardwired interlock and alarm system provides an essential safety function. In the event of failure modes, each hardwired interlock will back-up software interlocks and shutdown areas of plant to a failsafe condition. Design of the interlock and alarm system is outlined and general methodology described. Practical experience gained during plant operations is summarised and the methods employed for routine functional testing of essential instrument systems explained

  18. Towards a Generic and Adaptive System-On-Chip Controller for Space Exploration Instrumentation

    Science.gov (United States)

    Iturbe, Xabier; Keymeulen, Didier; Yiu, Patrick; Berisford, Dan; Hand, Kevin; Carlson, Robert; Ozer, Emre

    2015-01-01

    This paper introduces one of the first efforts conducted at NASA’s Jet Propulsion Laboratory (JPL) to develop a generic System-on-Chip (SoC) platform to control science instruments that are proposed for future NASA missions. The SoC platform is named APEX-SoC, where APEX stands for Advanced Processor for space Exploration, and is based on a hybrid Xilinx Zynq that combines an FPGA and an ARM Cortex-A9 dual-core processor on a single chip. The Zynq implements a generic and customizable on-chip infrastructure that can be reused with a variety of instruments, and it has been coupled with a set of off-chip components that are necessary to deal with the different instruments. We have taken JPL’s Compositional InfraRed Imaging Spectrometer (CIRIS), which is proposed for NASA icy moons missions, as a use-case scenario to demonstrate that the entire data processing, control and interface of an instrument can be implemented on a single device using the on-chip infrastructure described in this paper. We show that the performance results achieved in this preliminary version of the instrumentation controller are sufficient to fulfill the science requirements demanded to the CIRIS instrument in future NASA missions, such as Europa.

  19. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Mercury and Saturn Exploration

    Science.gov (United States)

    Palaszewski, Bryan

    2015-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.

  20. Computer aided instrumented Charpy test applied dynamic fracture toughness evaluation system

    International Nuclear Information System (INIS)

    Kobayashi, Toshiro; Niinomi, Mitsuo

    1986-01-01

    Micro computer aided data treatment system and personal computer aided data analysis system were applied to the traditional instrumented Charpy impact test system. The analysis of Charpy absorbed energy (E i , E p , E t ) and load (P y , P m ), and the evaluation of dynamic toughness through whole fracture process, i.e. J Id , J R curve and T mat was examined using newly developed computer aided instrumented Charpy impact test system. E i , E p , E t , P y and P m were effectively analyzed using moving average method and printed out automatically by micro computer aided data treatment system. J Id , J R curve and T mat could be measured by stop block test method. Then, J Id , J R curve and T mat were effectively estimated using compliance changing rate method and key curve method on the load-load point displacement curve of single fatigue cracked specimen by personal computer aided data analysis system. (author)

  1. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    Science.gov (United States)

    Hu, Jian Zhi [Richland, WA; Sears, Jr., Jesse A.; Hoyt, David W [Richland, WA; Wind, Robert A [Kennewick, WA

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  2. Clinical system for non-invasive in situ monitoring of gases in the human paranasal sinuses.

    Science.gov (United States)

    Lewander, Märta; Guan, Zuguang; Svanberg, Katarina; Svanberg, Sune; Svensson, Tomas

    2009-06-22

    We present a portable system for non-invasive, simultaneous sensing of molecular oxygen (O(2)) and water vapor (H(2)O) in the human paranasal cavities. The system is based on high-resolution tunable diode laser spectroscopy (TDLAS) and digital wavelength modulation spectroscopy (dWMS). Since optical interference and non-ideal tuning of the diode lasers render signal processing complex, we focus on Fourier analysis of dWMS signals and procedures for removal of background signals. Clinical data are presented, and exhibit a significant improvement in signal-to-noise with respect to earlier work. The in situ detection limit, in terms of absorption fraction, is about 5x10(-5) for oxygen and 5x10(-4) for water vapor, but varies between patients due to differences in light attenuation. In addition, we discuss the use of water vapor as a reference in quantification of in situ oxygen concentration in detail. In particular, light propagation aspects are investigated by employing photon time-of-flight spectroscopy.

  3. In situ distributed diagnostics of flowable electrode systems: resolving spatial and temporal limitations.

    Science.gov (United States)

    Dennison, C R; Gogotsi, Y; Kumbur, E C

    2014-09-14

    In this study, we have developed an in situ distributed diagnostics tool to investigate spatial and temporal effects in electrochemical systems based on flowable electrodes. Specifically, an experimental approach was developed that enables spatially-resolved voltage measurements to be obtained in situ, in real-time. To extract additional data from these distributed measurements, an experimentally-parameterized equivalent circuit model with a new 'flow capacitor' circuit element was developed to predict the distributions of various system parameters during operation. As a case study, this approach was applied to investigate the behavior of the suspension electrodes used in an electrochemical flow capacitor under flowing and static conditions. The volumetric capacitance is reduced from 15.6 F ml(-1) to 1.1 F ml(-1) under flowing conditions. Results indicate that the majority of the charging in suspension electrodes occurs within ∼750 μm of the current collectors during flow, which gives rise to significant state-of-charge gradients across the cell, as well as underutilization of the available active material. The underlying cause of this observation is attributed to the relatively high electrical resistance of the slurry coupled with a stratified charging regime and insufficient residence time. The observations highlight the need to develop more conductive slurries and to design cells with reduced charge transport lengths.

  4. Highly integrated Pluto payload system (HIPPS): a sciencecraft instrument for the Pluto mission

    Science.gov (United States)

    Stern, S. Alan; Slater, David C.; Gibson, William; Reitsema, Harold J.; Delamere, W. Alan; Jennings, Donald E.; Reuter, D. C.; Clarke, John T.; Porco, Carolyn C.; Shoemaker, Eugene M.; Spencer, John R.

    1995-09-01

    We describe the design concept for the highly integrated Pluto payload system (HIPPS): a highly integrated, low-cost, light-weight, low-power instrument payload designed to fly aboard the proposed NASA Pluto flyby spacecraft destined for the Pluto/Charon system. The HIPPS payload is designed to accomplish all of the Pluto flyby prime (IA) science objectives, except radio science, set forth by NASA's Outer Planets Science Working Group (OPSWG) and the Pluto Express Science Definition Team (SDT). HIPPS contains a complement of three instrument components within one common infrastructure; these are: (1) a visible/near UV CCD imaging camera; (2) an infrared spectrograph; and (3) an ultraviolet spectrograph. A detailed description of each instrument is presented along with how they will meet the IA science requirements.

  5. Apically extruded debris with three contemporary Ni-Ti instrumentation systems: An ex vivo comparative study

    Directory of Open Access Journals (Sweden)

    Logani Ajay

    2008-01-01

    Full Text Available Aim: To comparatively evaluate the amount of apically extruded debris when ProTaper hand, ProTaper rotary and ProFile systems were used for the instrumentation of root canals. Materials and Methods: Thirty minimally curved, mature, human mandibular premolars with single canals were randomly divided into three groups of ten teeth each. Each group was instrumented using one of the three instrumentation systems: ProTaper hand, ProTaper rotary and ProFile. Five milliliters of sterile water were used as an irrigant. Debris extruded was collected in preweighed polyethylene vials and the extruded irrigant was evaporated. The weight of the dry extruded debris was established by comparing the pre- and postinstrumentation weight of polyethylene vials for each group. Statistical Analysis: The Kruskal-Wallis nonparametric test and Mann-Whitney U test were applied to determine if significant differences existed among the groups ( P < 0.05. Results: All instruments tested produced a measurable amount of debris. No statistically significant difference was observed between ProTaper hand and ProFile system ( P > 0.05. Although ProTaper rotary extruded a relatively higher amount of debris, no statistically significant difference was observed between this type and the ProTaper hand instruments ( P > 0.05. The ProTaper rotary extruded significantly more amount of debris compared to the ProFile system ( P < 0.05. Conclusion: Within the limitations of this study, it can be concluded that all instruments tested produced apical extrusion of debris. The ProTaper rotary extruded a significantly higher amount of debris than the ProFile.

  6. Retrofitting the instrumentation and control system of primary cooling circuit from TRIGA INR 14 MW reactor

    International Nuclear Information System (INIS)

    Preda, M.; Ciocanescu, M.; Ana, E. M.; Cristea, D.

    2008-01-01

    Activities of retrofitting the instrumentation and control system from TRIGA INR primary cooling circuit consists in replacement of actual system for: - parameter measurement; - safety; - reactor external scramming; - protection, command and supply for electrical elements of the system. This retrofitting project is designed to ensure the necessary features of reactor external safety and for technological parameter measurement. The new safety system of main cooling circuit is completely separated from its operating system and is arranged in a panel assembly in reactor control room. The operating system has the following features: - data acquisition; - parameter value and state of command elements displaying; - command elements on hierarchical levels; - operator information through visual and acoustic alarm. (authors)

  7. Analysis and upgrade of instrumentation and control systems for the modernization of research reactors

    International Nuclear Information System (INIS)

    1988-01-01

    This document provides assistance in the review and planning process for the upgrade of instrumentation and control systems (I and C systems) and related safety features of the reactor protection system for research reactors. In the interest of safety a need was realized to evaluate the performance of outdated I and C systems. An advisory group was assembled to develop guidelines and to provide recommendations for the upgrade of I and C systems. The recommendations on I and C systems upgrade contained in this document were developed by the advisory group using as guidelines the established safety criteria and operating standards for research reactors. 24 refs

  8. A digitized wide range channel for new instrumentation and control system of PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Izhar Abu Hussin; Mohd Idris Taib; Nurfarhana Ayuni Joha; Roslan Md Dan

    2010-01-01

    Wide Range Channel is one of very important part of Reactor Instrumentation and Control system. Current system is using all analog system. The main functions of the new system are to provide Wide-log power and Multi-range linear power. The other functions are to provide Percent power and Power rate of change. The linear power level range is up to 125 % and the log power system to cover from below source level to 150 %. The main function of digital signal processor is for pulse shaping, pulse counting and root mean square signal processing. The system employs automatic on-line self diagnostics and calibration verification. (author)

  9. A Reliability and Validity of an Instrument to Evaluate the School-Based Assessment System: A Pilot Study

    Science.gov (United States)

    Ghazali, Nor Hasnida Md

    2016-01-01

    A valid, reliable and practical instrument is needed to evaluate the implementation of the school-based assessment (SBA) system. The aim of this study is to develop and assess the validity and reliability of an instrument to measure the perception of teachers towards the SBA implementation in schools. The instrument is developed based on a…

  10. An Analysis of Ionospheric Thermal Ions Using a SIMION-based Forward Instrument Model: In Situ Observations of Vertical Thermal Ion Flows as Measured by the MICA Sounding Rocket

    Science.gov (United States)

    Fernandes, P. A.; Lynch, K. A.; Zettergren, M. D.; Hampton, D. L.; Fisher, L. E.; Powell, S. P.

    2013-12-01

    The MICA sounding rocket launched on 19 Feb. 2012 into several discrete, localized arcs in the wake of a westward traveling surge. In situ and ground-based observations provide a measured response of the ionosphere to preflight and localized auroral drivers. In this presentation we focus on in situ measurements of the thermal ion distribution. We observe thermal ions flowing both up and down the auroral field line, with upflows concentrated in Alfvénic and downward current regions. The in situ data are compared with recent ionospheric modeling efforts (Zettergren et al., this session) which show structured patterns of ion upflow and downflow consistent with these observations. In the low-energy thermal plasma regime, instrument response to the measured thermal ion population is very sensitive to the presence of the instrument. The plasma is shifted and accelerated in the frame of the instrument due to flows, ram, and acceleration through the payload sheath. The energies associated with these processes are large compared to the thermal energy. Rigorous quantitative analysis of the instrument response is necessary to extract the plasma properties which describe the full 3D distribution function at the instrument aperture. We introduce an instrument model, developed in the commercial software package SIMION, to characterize instrument response at low energies. The instrument model provides important insight into how we would modify our instrument for future missions, including fine-tuning parameters such as the analyzer sweep curve, the geometry factor, and the aperture size. We use the results from the instrument model to develop a forward model, from which we can extract anisotropic ion temperatures, flows, and density of the thermal plasma at the aperture. Because this plasma has transited a sheath to reach the aperture, we must account for the acceleration due to the sheath. Modeling of this complex sheath is being conducted by co-author Fisher, using a PIC code

  11. Software System for the Calibration of X-Ray Measuring Instruments

    International Nuclear Information System (INIS)

    Gaytan-Gallardo, E.; Tovar-Munoz, V. M.; Cruz-Estrada, P.; Vergara-Martinez, F. J.; Rivero-Gutierrez, T.

    2006-01-01

    A software system that facilities the calibration of X-ray measuring instruments used in medical applications is presented. The Secondary Standard Dosimetry Laboratory (SSDL) of the Nuclear Research National Institute in Mexico (ININ in Spanish), supports activities concerning with ionizing radiations in medical area. One of these activities is the calibration of X-ray measuring instruments, in terms of air kerma or exposure by substitution method in an X-ray beam at a point where the rate has been determined by means of a standard ionization chamber. To automatize this process, a software system has been developed, the calibration system is composed by an X-ray unit, a Dynalizer IIIU X-ray meter by RADCAL, a commercial data acquisition card, the software system and the units to be tested and calibrated. A quality control plan has been applied in the development of the software system, ensuring that quality assurance procedures and standards are being followed

  12. Implementation of programmable logic controller for proposed new instrumentation and control system of RTP

    International Nuclear Information System (INIS)

    Mohd Khairulezwan Abdul Manan; Mohd Idris Taib; Mohd Dzul Aiman Aslan

    2010-01-01

    Reactor Monitoring System is one of very important part of Reactor Instrumentation and Control system. Current monitoring system is using analog system whereby all circuits are discrete circuit and all displays and indicators are not digitalized. The proposed new system will use using a Commercial Off-The-Shelf, state of the art, Supervisory Control and Data Acquisition system such as Programmable Logic Controller as well as Computer System. The implementations of Programmable Logic Controller are used for Data Acquisition System and as a sub-system for Computer System where all the activities involved are stored for operation record and report as well as use for research purposes. Programmable Logic Controller receives galvanised or optically isolated signal from Reactor Protection System. Programmable Logic Controller also receives signal from other parameters as a digital and analog input related to reactor system. (author)

  13. The importance of instrumental, symbolic, and environmental attributes for the adoption of smart energy systems

    International Nuclear Information System (INIS)

    Noppers, Ernst H.; Keizer, Kees; Milovanovic, Marko; Steg, Linda

    2016-01-01

    The conceptual model on motivations to adopt sustainable innovations (Noppers et al., 2014) proved to be successful in explaining proxies of the adoption of sustainable innovations: positive evaluations of the utility (instrumental attributes), environmental impact (environmental attributes), and specifically the extent to which the innovation says something about a person (symbolic attributes) increased interest in and intention to adopt sustainable innovations. In this paper, we examined to what extent the evaluations of these three attributes can also explain the actual adoption of smart energy systems that facilitate sustainable energy use. Results showed that adopters of smart energy systems (who agreed to participate in a project in which these systems were tested) evaluated the symbolic attributes of these systems more positively than non-adopters (who did not participate in this project), while both groups did not differ in their evaluation of the instrumental and environmental attributes of smart energy systems. A logistic regression analysis indicated that only evaluations of the symbolic attributes explained actual adoption of smart energy systems. Policy could stress and enhance the symbolic attributes of sustainable innovations to encourage adoption. - Highlights: • What drives consumer adoption of a sustainable innovation? • Evaluation of its symbolic attributes explained adoption of smart energy systems. • Evaluations of its instrumental and environmental attributes did not explain adoption. • Policy could stress and enhance symbolic attributes of smart energy systems.

  14. The Orbitrap mass analyzer as a space instrument for the understanding of prebiotic chemistry in the Solar System

    Science.gov (United States)

    Vuitton, Véronique; Briois, Christelle; Makarov, Alexander

    Over the past decade, it has become apparent that organic molecules are widespread in our Solar System and beyond. The better understand of the prebiotic chemistry leading to their formation is a primary objective of many ongoing space missions. Cassini-Huygens revealed the existence of very large molecular structures in Titan's atmosphere as well as on its surface, in the form of dune deposits, but their exact nature remains elusive. One key science goal of the Mars Science Laboratory Curiosity rover is to assess the presence of organics on the red planet. Rosetta will characterize the elemental and isotopic composition of the gas and dust ejected from comet Churyumov-Gerasimenko, while amino acids have been detected in meteorites. This search for complex organics relies heavily on mass spectrometry, which has the remarkable ability to analyze and quantify species from almost any type of sample (provided that the appropriate sampling and ionizing method is used). Because of the harsh constraints of the spatial environment, the mass resolution of the spectrometers onboard current space probes is quite limited compared to laboratory instruments, leading to significant limitations in the scientific return of the data collected. Therefore, future in situ solar system exploration missions would significantly benefit from instruments relying on High Resolution Mass Spectrometry (HRMS). Since 2009, 5 French laboratories (LPC2E, IPAG, LATMOS, LISA, CSNSM) involved in the chemical investigation of solar system bodies form a Consortium to develop HRMS for future space exploration, based on the use of the Orbitrap technology (C. Briois et al., 2014, to be submitted). The work is undertaken in close collaboration with the Thermo Fisher Scientific Company, which commercializes Orbitrap based laboratory instruments. The Orbitrap is an electrostatic mass analyzer, it is compact, lightweight, and can reach a good sensitivity and dynamic range. A prototype is under development at

  15. A systematic review of instruments that assess the implementation of hospital quality management systems.

    NARCIS (Netherlands)

    Groene, O.; Botje, D.; Suñol, R.; Lopez, M.A.; Wagner, C.

    2013-01-01

    Purpose: Health-care providers invest substantial resources to establish and implement hospital quality management systems. Nevertheless, few tools are available to assess implementation efforts and their effect on quality and safety outcomes. This review aims to (i) identify instruments to assess

  16. Instrumentation and control systems for CANDU-PHW nuclear power plants

    International Nuclear Information System (INIS)

    Lepp, R.M.; Watkins, L.M.

    1982-02-01

    The instrumentation and control of CANDU nuclear power plants takes advantage of modern electronics technology in the extensive computerization of important control and man-machine functions. A description of these functions as well as those of the four Special Safety Systems is provided

  17. Development of Highly Survivable Power and Communication System for NPP Instruments under Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung J.; Gu, Beom W.; Nguyen, Duy T.; Choi, Bo H.; Rim, Chun T. [KAIST, Daejeon (Korea, Republic of); Lee, So I. [KHNP CRI, Daejeon (Korea, Republic of)

    2014-10-15

    According to the detail report from the Fukushima nuclear accident, the failure of conventional instruments is mainly due to the following reasons. 1) Insufficient backup battery capacity after the station black out (SBO) 2) The malfunction or damage of instruments due to the extremely harsh ambient condition after the severe accident 3) The cut-off of power and communication cable due to the physical shocks of hydrogen explosion after the severe accident Since the current equipment qualification (EQ) for the NPP instruments is based on the design basis accident such as loss of coolant accident (LOCA), conventional instruments, which are examined under EQ condition, cannot guarantee their normal operation during the severe accident. A 7m-long-distance wireless power transfer and a radio frequency (RF) communication were introduced with conventional wired system to increase a redundancy. A heat isolation box and a harness are adopted to provide a protection from the expected physical shocks such as missiles and drastic increase of ambient temperature and pressure. A detail design principle of the highly survivable power and communication system, which has 4 sub-systems of a DCRS wireless power transfer, a Zigbee wireless communication, a GFRP harness, and a passive type router with a fly back regulator, has been presented in this paper. Each sub-system has been designed to have a robust operation characteristic regardless of the estimated physical shocks after the severe accident.

  18. Cold Vacuum Drying Safety Class Instrumentation and Control System Design Description SYS 93-2

    International Nuclear Information System (INIS)

    WHITEHURST, R.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) Safety Class Instrumentation and Control system (SCIC). The SCIC provides safety functions and features to protect the environment, off-site and on-site personnel and equipment. The function of the SCIC is to provide automatic trip features, valve interlocks, alarms, indication and control for the cold vacuum drying process

  19. Cold Vacuum Drying Safety Class Instrumentation and Control System Design Description

    International Nuclear Information System (INIS)

    WHITEHURST, R.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) Safety Class Instrumentation and Control system (SCIC). The SCIC provides safety functions and features to protect the environment, off-site and on-site personnel and equipment. The function of the SCIC is to provide automatic trip features, valve interlocks, alarms, indication and control for the cold vacuum drying process

  20. Apically extruded debris with three contemporary Ni-Ti instrumentation systems: an ex vivo comparative study.

    Science.gov (United States)

    Logani, Ajay; Shah, Naseem

    2008-01-01

    To comparatively evaluate the amount of apically extruded debris when ProTaper hand, ProTaper rotary and ProFile systems were used for the instrumentation of root canals. Thirty minimally curved, mature, human mandibular premolars with single canals were randomly divided into three groups of ten teeth each. Each group was instrumented using one of the three instrumentation systems: ProTaper hand, ProTaper rotary and ProFile. Five milliliters of sterile water were used as an irrigant. Debris extruded was collected in preweighed polyethylene vials and the extruded irrigant was evaporated. The weight of the dry extruded debris was established by comparing the pre- and postinstrumentation weight of polyethylene vials for each group. The Kruskal-Wallis nonparametric test and Mann-Whitney U test were applied to determine if significant differences existed among the groups ( PProTaper hand and ProFile system ( P > 0.05). Although ProTaper rotary extruded a relatively higher amount of debris, no statistically significant difference was observed between this type and the ProTaper hand instruments ( P > 0.05). The ProTaper rotary extruded significantly more amount of debris compared to the ProFile system ( PProTaper rotary extruded a significantly higher amount of debris than the ProFile.

  1. Supervision of electrical and instrumentation systems and components at nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    The general guidelines for the supervision of nuclear facilities carried out by the Finnish Centre for Radiation and Nuclear Safety (STUK) are set forth in the guide YVL 1.1. This guide shows in more detail how STUK supervises the electrical and instrumentation systems and components of nuclear facilities

  2. Submicronic Particle Measurement Instrumentation Test Bench Data Acquisition and Control System

    International Nuclear Information System (INIS)

    Alberdi, J.; Barcala, J. M.; Sanz, D.; Gomez, F. J.; Molinero, A.; Navarrete, J. J.

    1999-01-01

    This document describes the SAD-100 system characteristics. The unit makes the instrumentation test bench data acquisition and control, SAD-100 was designed and developed by Electronic and Automation Area (CIEMAT) and Aerosol Technology in Energy Generation Project (CIEMAT). (Author) 2 refs

  3. On safety classification of instrumentation and control systems and their components

    International Nuclear Information System (INIS)

    Yastrebenetskij, M.A.; Rozen, Yu.V.

    2004-01-01

    Safety classification of instrumentation and control systems (I and C) and their components (hardware, software, software-hardware complexes) is described: - evaluation of classification principles and criteria in Ukrainian standards and rules; comparison between Ukrainian and international principles and criteria; possibility and ways of coordination of Ukrainian and international standards related to (I and C) safety classification

  4. Virtual Instrument Systems in Reality (VISIR) for Remote Wiring and Measurement of Electronic Circuits on Breadboard

    Science.gov (United States)

    Tawfik, M.; Sancristobal, E.; Martin, S.; Gil, R.; Diaz, G.; Colmenar, A.; Peire, J.; Castro, M.; Nilsson, K.; Zackrisson, J.; Hakansson, L.; Gustavsson, I.

    2013-01-01

    This paper reports on a state-of-the-art remote laboratory project called Virtual Instrument Systems in Reality (VISIR). VISIR allows wiring and measuring of electronic circuits remotely on a virtual workbench that replicates physical circuit breadboards. The wiring mechanism is developed by means of a relay switching matrix connected to a PCI…

  5. Incorporation of personal computers in a research reactor instrumentation system for data monitoring and analysis

    International Nuclear Information System (INIS)

    Leopando, L.S.

    1998-01-01

    The research contract was implemented by obtaining off-the shelf personal computer hardware and data acquisition cards, designing the interconnection with the instrumentation system, writing and debugging the software, and the assembling and testing the set-up. The hardware was designed to allow all variables monitored by the instrumentation system to be accessible to the computers, without requiring any major modification of the instrumentation system and without compromising reactor safety in any way. The computer hardware addition was also designed to have no effect on any existing function of the instrumentation system. The software was designed to implement only graphical display and automated logging of reactor variables. Additional functionality could be easily added in the future with software revision because all the reactor variables are already available in the computer. It would even be possible to ''close the loop'' and control the reactor through software. It was found that most of the effort in an undertaking of this sort will be in software development, but the job can be done even by non-computer specialized reactor people working with programming languages they are already familiar with. It was also found that the continuing rapid advance of personal computer technology makes it essential that such a project be undertaken with inevitability of future hardware upgrading in mind. The hardware techniques and the software developed may find applicability in other research reactors, especially those with a generic analog research reactor TRIGA console. (author)

  6. Development of Highly Survivable Power and Communication System for NPP Instruments under Severe Accident

    International Nuclear Information System (INIS)

    Yoo, Seung J.; Gu, Beom W.; Nguyen, Duy T.; Choi, Bo H.; Rim, Chun T.; Lee, So I.

    2014-01-01

    According to the detail report from the Fukushima nuclear accident, the failure of conventional instruments is mainly due to the following reasons. 1) Insufficient backup battery capacity after the station black out (SBO) 2) The malfunction or damage of instruments due to the extremely harsh ambient condition after the severe accident 3) The cut-off of power and communication cable due to the physical shocks of hydrogen explosion after the severe accident Since the current equipment qualification (EQ) for the NPP instruments is based on the design basis accident such as loss of coolant accident (LOCA), conventional instruments, which are examined under EQ condition, cannot guarantee their normal operation during the severe accident. A 7m-long-distance wireless power transfer and a radio frequency (RF) communication were introduced with conventional wired system to increase a redundancy. A heat isolation box and a harness are adopted to provide a protection from the expected physical shocks such as missiles and drastic increase of ambient temperature and pressure. A detail design principle of the highly survivable power and communication system, which has 4 sub-systems of a DCRS wireless power transfer, a Zigbee wireless communication, a GFRP harness, and a passive type router with a fly back regulator, has been presented in this paper. Each sub-system has been designed to have a robust operation characteristic regardless of the estimated physical shocks after the severe accident

  7. Summary of in-situ tests of filter systems in nuclear power stations

    International Nuclear Information System (INIS)

    Hesboel, R.; Persson, M.

    1980-04-01

    Iodine filter installations at nuclear power plants are systematically tested regarding light assembly and retention of iodine. Studsvik Energiteknik AB has collected a sizeable amount of test data over the years. The filter installations and test methods are described, followed by an analysis of test results and experience over the past 10 years. As a rule in-situ tests have been carried out at low relative humidity, in 90% of them below 50% relative humidity. Variations in flow have been larger than expected, and the variations in operative conditions affect test results. The test method is, however, regarded acceptable for off-gas filter systems. Additional test methods are required for the auxiliary and energency systems. (G.B.)

  8. In situ product removal in fermentation systems: improved process performance and rational extractant selection.

    Science.gov (United States)

    Dafoe, Julian T; Daugulis, Andrew J

    2014-03-01

    The separation of inhibitory compounds as they are produced in biotransformation and fermentation systems is termed in situ product removal (ISPR). This review examines recent ISPR strategies employing several classes of extractants including liquids, solids, gases, and combined extraction systems. Improvement through the simple application of an auxiliary phase are tabulated and summarized to indicate the breadth of recent ISPR activities. Studies within the past 5 years that have highlighted and have discussed "second phase" properties, and that have an effect on fermentation performance, are particular focus of this review. ISPR, as a demonstrably effective processing strategy, continues to be widely adopted as more applications are explored; however, focus on the properties of extractants and their rational selection based on first principle considerations will likely be key to successfully applying ISPR to more challenging target molecules.

  9. Novel Vacuum System for In-Situ Characterization of Fluorescence Properties of Thin Films

    Science.gov (United States)

    Onozuka, Kohei; Iwata, Nobuyuki; Yamamoto, Hiroshi

    We constructed a novel vacuum system in which the cathode luminescence properties of as-prepared films can be measured in-situ. It has been observed that the Zn-Ga-O films deposited on 500°C ITO by sputtering emits light with wavelength of about 500 nm from an ultra thin Zn-rich layer formed near film surface. The luminescence induced by irradiation of electrons has also been observed for the first time in the organic bilayered TPD/Alq3 films prepared in thermal evaporation. Its wavelength blue-shifts by about 120 nm in comparison with the electroluminescence of the same materials. The developed vacuum system is useful to characterize various thin films.

  10. Portable vibro-acoustic testing system for in situ microstructure characterization and metrology

    Science.gov (United States)

    Smith, James A.; Nichol, Corrie I.; Zuck, Larry D.; Fatemi, Mostafa

    2018-04-01

    There is a need in research reactors like the one at INL to inspect irradiated materials and structures. The goal of this work is to develop a portable scanning infrastructure for a material characterization technique called vibro-acoustography (VA) that has been developed by the Idaho National laboratory for nuclear applications to characterize fuel, cladding materials, and structures. The proposed VA technology is based on ultrasound and acoustic waves; however, it provides information beyond what is available from the traditional ultrasound techniques and can expand the knowledge on nuclear material characterization and microstructure evolution. This paper will report on the development of a portable scanning system that will be set up to characterize materials and components in open water reactors and canals in situ. We will show some initial laboratory results of images generated by vibro-acoustics of surrogate fuel plates and graphite structures and discuss the design of the portable system.

  11. The collection and analysis of transient test data using the mobile instrumentation data acquisition system (MIDAS)

    International Nuclear Information System (INIS)

    Uncapher, W.L.; Arviso, M.

    1995-01-01

    Packages designed to transport radioactive materials are required to survive exposure to environments defined in Code of Federal Regulations. Cask designers can investigate package designs through structural and thermal testing of full-scale packages, components, or representative models. The acquisition of reliable response data from instrumentation measurement devices is an essential part of this testing activity. Sandia National Laboratories, under the sponsorship of the US Department of Energy (DOE), has developed the Mobile Instrumentation Data Acquisition System (MIDAS) dedicated to the collection and processing of structural and thermal data from regulatory tests

  12. Portable Instrument to Measure CDOM Light Absorption in Aquatic Systems: WPI Success Story

    Science.gov (United States)

    2001-01-01

    World Precision Instruments, Inc. (WPI), of Sarasota, FL, in collaboration with NASA's John C. Stennis Space Center, has developed an innovative instrument to accurately measure Colored Dissolved Organic Matter (CDOM) absorption in the field. This successful collaboration has culminated in an exciting new device, called the UltraPath, now commercially available through WPI. Traditional methods of measuring absorption of dissolved materials require special handling and storage prior to measurement. Use of laboratory spectrophotometers as the measuring devices have proven time consuming, cumbersome, and delicate to handle. The UltraPath provides a low-cost, highly sensitive, rugged, portable system that is capable of high sensitivity measurements in widely divergent waters.

  13. In-situ study of hydriding kinetics in Pd-based thin film systems

    Energy Technology Data Exchange (ETDEWEB)

    Delmelle, Renaud; Proost, Joris [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium). Div. of Materials and Process Engineering

    2010-07-01

    The hydriding kinetics of Pd thin films has been investigated in detail. The key experimental technique used in this work consists of a high resolution curvature measurement setup, which continuously monitors the reflections of multiple laser beams coming off a cantilevered sample. After mounting the sample inside a vacuum chamber, a H-containing gas mixture is introduced to instantaneously generate a given hydrogen partial pressure (p{sub H2}) inside the chamber. The resulting interaction of H with the Pd layer then leads to a volume expansion of the thin film system. This induces in turn changes in the sample curvature as a result of internal stresses developing in the Pd film during a hydriding cycle. Based on such curvature date obtained in-situ at different p{sub H2}, a two-step model for the kinetics of Pd-hydride formation has been proposed and expressions for the hydrogen adsorption and absorption velocities have been derived. The rate-limiting steps have been identified by studying the p{sub H2}-dependence of these velocities. Furthermore, from our in-situ experimental data, relevant kinetic parameters have been calculated. The effect of dry air exposure of the Pd films on the hydriding kinetics has been considered as well. (orig.)

  14. In situ vitrification of transuranic wastes: systems evaluation and applications assessment

    International Nuclear Information System (INIS)

    Fitzpatrick, V.F.; Brown; Buelt, J.L.; King, S.E.; Napier, B.A.; Oma, K.H.; Silviera, D.J.; Timmerman, C.L.

    1984-01-01

    In situ vitrification is an emerging technology, suitable for the stabilization of radioactive waste. In just under three years in situ vitrification has moved from a concept tested in the laboratory to an achievable reality, with a series of 18 laboratory (engineering-scale) tests and 7 field (pilot-scale) tests. A radioactive make-up site of TRU wastes and mixed fission products has been stabilized with the pilot-scale system. In this test, approximately 25 kg of contaminated soil, containing about 600 nCi/g of 239 Pu/ 241 Am, was successfully vitrified without release of radionuclides to the environment. The ISV tests have been supplemented by public and occupational exposure calculations which show that releases fall below the limits set by the federal government for both routine and accident conditions. Performance analysis has verified the process effectiveness in terms of preventing the migration of radionuclides into the biosphere in the far-distant (1000 and 10,000 year) future under an array of intrusion scenarios including inadvertent and deliberate human intrusion. Cost analyses have shown that for both Hanford and a generic site, processing costs are less than the cost of disposal of low-level waste at U.S. Department of Energy disposal sites

  15. Automated systems help prevent operator error during [reactor] I and C [instrumentation and control] testing

    International Nuclear Information System (INIS)

    Courcoux, R.

    1989-01-01

    On a nuclear steam supply system, even a minor failure can involve actuation of the whole reactor protection system (RPS). To reduce the likelihood of human error leading to unwanted trips during the maintenance of instrumentation and control systems, Framatome has been developing and installing various automated testing systems. Such automated systems are particularly helpful when periodic tests with a potential for RPS actuation have to be carried out, or when the test is on the critical path for the refuelling outage. The Sensitive Channel Programme described is an example of the sort of work that has been done. (author)

  16. Effect of three different rotary instrumentation systems on postinstrumentation pain: A randomized clinical trial

    Science.gov (United States)

    Subbiya, Arunajatesan; Cherkas, Pavel S.; Vivekanandhan, Paramasivam; Geethapriya, Nagarajan; Malarvizhi, Dhakshinamoorthy; Mitthra, Suresh

    2017-01-01

    Background: Endodontic instrumentation is liable to cause some postinstrumentation pain (PIP). Rotary endodontic instruments differ in their design, metallurgy, surface treatment, etc. Aim: This randomized clinical trial aimed to assess the incidence of PIP after root canal instrumentation with three different rotary endodontic systems which differ in their design, namely, ProTaper, Mtwo, and K3. Materials and Methods: A total of 150 patients between the ages of 25 and 50 were chosen for the study. Teeth with asymptomatic irreversible pulpitis due to carious exposure were selected. The patients received local anesthesia by inferior alveolar nerve block. After preparing the access cavity, root canal instrumentation was done with one of the three instruments (n = 50) and closed dressing was given. PIP was assessed every 12 h for 5 days, and tenderness to percussion was analyzed at the end of 1, 3, and 7 days. Statistical Analysis: Mann–Whitney U-test to determine significant differences at P Rotary endodontic instrumentation causes some degree of PIP and tenderness to percussion. Among the instruments used, Mtwo causes less PIP and tenderness when compared to ProTaper and K3, and there was no difference between ProTaper and K3. Clinical Relevance: PIP is highly subjective and may vary among different subjects. The apical (3 mm) taper of ProTaper was 0.08 followed by a smaller taper, whereas, the other two files were of a constant 0.06 taper, which means there could have been a greater apical extrusion and therefore more PIP. Despite, the mean of the age was similar, there could have been a difference in the size of the canal and therefore a difference in apical extrusion and PIP. PMID:29430103

  17. Advanced Instrumentation, Information, and Control Systems Technologies Research in Support of Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, Bruce P.; Kenneth, Thomas [Idaho National Laboratory, Idaho (United States)

    2014-08-15

    The Advanced Instrumentation, Information, and Control (II and C) Systems Technologies Pathway conducts targeted research and development (R and D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals to ensure that legacy analog II and C systems are not life-limiting issues for the LWR fleet, and to implement digital II and C technology in a manner that enables broad innovation and business improvement in the nuclear power plant operating model. Resolving long-term operational concerns with the II and C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation's energy and environmental security.

  18. Advanced Instrumentation, Information, and Control Systems Technologies Research in Support of Light Water Reactors

    International Nuclear Information System (INIS)

    Hallbert, Bruce P.; Kenneth, Thomas

    2014-01-01

    The Advanced Instrumentation, Information, and Control (II and C) Systems Technologies Pathway conducts targeted research and development (R and D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals to ensure that legacy analog II and C systems are not life-limiting issues for the LWR fleet, and to implement digital II and C technology in a manner that enables broad innovation and business improvement in the nuclear power plant operating model. Resolving long-term operational concerns with the II and C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation's energy and environmental security

  19. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, Bruce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thomas, Ken [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-07-01

    The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway conducts targeted research and development (R&D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals: (1) to ensure that legacy analog II&C systems are not life-limiting issues for the LWR fleet, and (2) to implement digital II&C technology in a manner that enables broad innovation and business improvement in the nuclear power plant operating model. Resolving long-term operational concerns with the II&C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation's energy and environmental security.

  20. The standard calibration instrument automation system for the atomic absorption spectrophotometer. Part 3: Program documentation

    Science.gov (United States)

    Ryan, D. P.; Roth, G. S.

    1982-04-01

    Complete documentation of the 15 programs and 11 data files of the EPA Atomic Absorption Instrument Automation System is presented. The system incorporates the following major features: (1) multipoint calibration using first, second, or third degree regression or linear interpolation, (2) timely quality control assessments for spiked samples, duplicates, laboratory control standards, reagent blanks, and instrument check standards, (3) reagent blank subtraction, and (4) plotting of calibration curves and raw data peaks. The programs of this system are written in Data General Extended BASIC, Revision 4.3, as enhanced for multi-user, real-time data acquisition. They run in a Data General Nova 840 minicomputer under the operating system RDOS, Revision 6.2. There is a functional description, a symbol definitions table, a functional flowchart, a program listing, and a symbol cross reference table for each program. The structure of every data file is also detailed.

  1. Generic System for Remote Testing and Calibration of Measuring Instruments: Security Architecture

    Science.gov (United States)

    Jurčević, M.; Hegeduš, H.; Golub, M.

    2010-01-01

    Testing and calibration of laboratory instruments and reference standards is a routine activity and is a resource and time consuming process. Since many of the modern instruments include some communication interfaces, it is possible to create a remote calibration system. This approach addresses a wide range of possible applications and permits to drive a number of different devices. On the other hand, remote calibration process involves a number of security issues due to recommendations specified in standard ISO/IEC 17025, since it is not under total control of the calibration laboratory personnel who will sign the calibration certificate. This approach implies that the traceability and integrity of the calibration process directly depends on the collected measurement data. The reliable and secure remote control and monitoring of instruments is a crucial aspect of internet-enabled calibration procedure.

  2. Cleaning Effectiveness of a Reciprocating Single-file and a Conventional Rotary Instrumentation System.

    Science.gov (United States)

    de Carvalho, Fredson Marcio Acris; Gonçalves, Leonardo Cantanhede de Oliveira; Marques, André Augusto Franco; Alves, Vanessa; Bueno, Carlos Eduardo da Silveira; De Martin, Alexandre Sigrist

    2016-01-01

    To compare cleaning effectiveness by histological analysis of a reciprocating single-file system with ProTaper rotary instruments during the preparation of curved root canals in extracted teeth. A total of 40 root canals with curvatures ranging between 20 - 40 degrees were divided into two groups of 20 canals. Canals were prepared to the following apical sizes: Reciproc size 25 (n=20); ProTaper: F2 (n=20). The normal distribution of data was tested by the Kolmogorov-Smirnov test and the values obtained for the test (Mann-Whitney U test, P .05) between the two groups. The application of reciprocating motion during instrumentation did not result in increased debris when compared with continuous rotation motion, even in the apical part of curved canals. Both instruments resulted in debris in the canal lumen, irrespective of the movement kinematics applied.

  3. The upgraded control and instrumentation system of C5 irradiation device

    International Nuclear Information System (INIS)

    Iordache, A.; Ancuta, M.; Gruia, L.; Pulpa, A.; Salistean, E.; Gusescu, G.

    2013-01-01

    C5 capsule is an irradiation device of TRIGA SSR, which is designed for irradiation of structural materials in an inert environment for mechanical behavior characterization and the material microstructure evolution during irradiation. The paper presents the upgraded control and instrumentation system of the C5 irradiation device which was designed and manufactured to enhance the performance of this system for better surveillance and processing the acquired experimental data. (authors)

  4. AFRRI's conversion to a microprocessor-based reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Moore, Mark L.; Hodgdon, Kenneth M.

    1986-01-01

    The Armed Forces Radiobiology Research Institute (AFRRI) is procuring a state-of- the-art microprocessor-based instrumentation and control system to operate AFRRI's 1 MW (steady-state), 3000 MW (pulse) TRIGA Mark-F reactor. This system will replace the current control console while improving or maintaining the existing operational capabilities and safety characteristics. The new unit will have a 15-year design life using state-of-the-art components

  5. Instrumentation and control system for PLS-IM-T 60 MeV LINAC

    International Nuclear Information System (INIS)

    Liu, D.K.; Yei, K.R.; Cheng, H.J.

    1992-01-01

    The PLSIMT is a 60 MeV LINAC as a preinjector for 2 GeV LINAC of PLS project. The instrumentation and control system have been designed under the institutional collaboration between the IHEP (Beijing, China) and POSTECH (Pohang, Korea). So far, the I and C system are being set up nowadays at the POSTECH of Pohang. This paper describes its major characteristics and present status. (author)

  6. The control-and-instrumentation system of the IEA zero power reactor and its reliability calculation

    International Nuclear Information System (INIS)

    Peluso, M.A.V.

    1978-01-01

    The control-and instrumentation system for the Instituto de Energia Atomica Zero Power Reactor is described and the design criteria are presented and discussed. The reliability analysis for the reactor protection system was performed using the fault tree method. This was done using a computer code based on the Monte Carlo simulation. That code is an adaptation of the SAFTE-I, for the IBM 360/155 IEA Computer. (Author) [pt

  7. In situ sampling cart development engineering task plan

    International Nuclear Information System (INIS)

    DeFord, D.K.

    1995-01-01

    This Engineering Task Plan (ETP) supports the development for facility use of the next generation in situ sampling system for characterization of tank vapors. In situ sampling refers to placing sample collection devices (primarily sorbent tubes) directly into the tank headspace, then drawing tank gases through the collection devices to obtain samples. The current in situ sampling system is functional but was not designed to provide the accurate flow measurement required by today's data quality objectives (DQOs) for vapor characterization. The new system will incorporate modern instrumentation to achieve much tighter control. The next generation system will be referred to in this ETP as the New In Situ System (NISS) or New System. The report describes the current sampling system and the modifications that are required for more accuracy

  8. Cyanobacteria to Link Closed Ecological Systems and In-Situ Resources Utilization Processes

    Science.gov (United States)

    Brown, Igor

    Introduction: A major goal for the Vision of Space Exploration is to extend human presence across the solar sys-tem. With current technology, however, all required consumables for these missions (propellant, air, food, water) as well as habitable volume and shielding to support human explorers will need to be brought from Earth. In-situ pro-duction of consumables (In-Situ Resource Utilization-ISRU) will significantly facilitate current plans for human ex-ploration and colonization of the solar system, especially by reducing the logistical overhead such as recurring launch mass. The production of oxygen from lunar materials is generally recognized as the highest priority process for lunar ISRU, for both human metabolic and fuel oxidation needs. The most challenging technology developments for future lunar settlements may lie in the extraction of elements (O, Fe, Mn, Ti, Si, etc) from local rocks and soils for life support, industrial feedstock and the production of propellants. With few exceptions (e.g., Johannson, 1992), nearly all technology development to date has employed an ap-proach based on inorganic chemistry (e.g. Allen et al., 1996). None of these technologies include concepts for inte-grating the ISRU system with a bioregenerative life support system and a food production systems. Bioregenerative life support efforts have recently been added to the Constellation ISRU development program (Sanders et al, 2007). Methods and Concerns: The European Micro-Ecological Life Support System Alternative (MELiSSA) is an ad-vanced concept for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). However the MELiSSA system is a net consumer of ISRU products without a net return to in-situ technologies, e.g.. to extract elements as a result of complete closure of MELiSSA. On the other hand, the physical-chemical processes for ISRU are typically massive (relative to the rate of oxygen

  9. Advanced control and instrumentation systems in nuclear power plants. Design, verification and validation

    International Nuclear Information System (INIS)

    Haapanen, P.

    1995-01-01

    The Technical Committee Meeting on design, verification and validation of advanced control and instrumentation systems in nuclear power plants was held in Espoo, Finland on 20 - 23 June 1994. The meeting was organized by the International Atomic Energy Agency's (IAEA) International Working Group's (IWG) on Nuclear Power Plant Control and Instrumentation (NPPCI) and on Advanced Technologies for Water Cooled Reactors (ATWR). VTT Automation together with Imatran Voima Oy and Teollisuuden Voima Oy responded about the practical arrangements of the meeting. In total 96 participants from 21 countries and the Agency took part in the meeting and 34 full papers and 8 posters were presented. Following topics were covered in the papers: (1) experience with advanced and digital systems, (2) safety and reliability analysis, (3) advanced digital systems under development and implementation, (4) verification and validation methods and practices, (5) future development trends. (orig.)

  10. Design of improved detection instrumentation for the annulus gas system for wolsong 2

    International Nuclear Information System (INIS)

    Kim, Seog Nam; Koo, Jun Mo; Chang, Ik Ho; Jung, Ho Chang; Han, Sang Joon

    1996-01-01

    The improved and advanced Annulus Gas System (AGS) has been developed for Wolsong 2 to satisfy the requirements of the regulatory body. The Atomic Energy Control Board (AECB) required a shorter detection time following a small leak from a pressure tube and/or calandria tube. This paper describes licensing requirements, functional requirements and detail design description for the AGS. The Wolsong unit No. 1 AGS was designed to operate as a stagnant system normally requiring only pressure regulation and having provisions for purging. The improved AGS involves the adoption of gas recirculation in AGS, duplication of dew point indicators with additional instrumentation and sampling provisions to prompt operator action. The improved system operates in the recirculation mode with continuous dew point measurement for leak detection. An AGS with improved detection instrumentation is provided. 8 refs., 3 figs. (author)

  11. Preparing and Conducting Review Missions of Instrumentation and Control Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2016-07-01

    The IERICS (Independent Engineering Review of Instrumentation and Control Systems) mission is a comprehensive engineering review service directly addressing strategy and the key elements for implementation of modern instrumentation and control (I&C) systems, noting in applicable cases, specific concerns related to the implementation of advanced digital I&C systems and the use of software and/or digital logic in safety applications of a nuclear power plant. The guidelines outlined in this publication provide a basic structure, common reference and checklist across the various areas covered by an IERICS mission. Publications referenced in these guidelines could provide additional useful information for the counterpart while preparing for the IERICS mission. A structure for the mission report is given in the Appendix. In 2016, this publication was revised by international experts who had participated in previous IERICS missions. The revision reflects experiences and lessons learned from the preparation and conduct of those missions

  12. In situ examination of microbial populations in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Martiny, Adam Camillo; Nielsen, Alex Toftgaard; Arvin, Erik

    2002-01-01

    A flow cell set-up was used as a model drinking water distribution system to analyze the in situ microbial population. Biofilm growth was followed by transmission light microscopy for 81 days and showed a biofilm consisting of microcolonies separated by a monolayer of cells. Protozoans (ciliates...... of a mixed population of α- and β-Proteobacteria. 65 strains from the inlet water and 20 from the biofilm were isolated on R2A agar plates and sorted into groups with amplified rDNA restriction analysis. The 16S rDNA gene was sequenced for representatives of the abundant groups. A phylogenetic analysis...... revealed that the majority of the isolated strains from the bulk water and biofilm were affiliated to the family of Comamonadaceae in the β-lineage of Proteobacteria. The majority of the strains from the α-lineage were affiliated to the family of Sphingomonadaceae. We were unable to detect any strains from...

  13. In-situ short-circuit protection system and method for high-energy electrochemical cells

    Science.gov (United States)

    Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.

    2003-04-15

    An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

  14. In-situ short circuit protection system and method for high-energy electrochemical cells

    Science.gov (United States)

    Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.

    2000-01-01

    An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

  15. In situ vitrification of buried waste: Containment issues and suppression systems

    International Nuclear Information System (INIS)

    Luey, J.; Powell, T.D.

    1992-01-01

    Pacific Northwest Laboratory (PNL) and Idaho National Engineering Laboratory (INEL) are developing a remedial action technology for buried waste through the adaptation of the in situ vitrification (ISV) process. The ISV process is a thermal treatment process originally developed for the U.S. Department of Energy (DOE) to stabilize soils contaminated with transuranic waste. ISV tests with buried waste forms have demonstrated that the processing of buried waste is more dynamic than the processing of soils. This paper will focus on the issue of containment of the gases released during the processing of buried waste and on engineered suppression systems to alleviate transient events associated with dynamic off-gassing from the ISV melt. (author)

  16. A comparison of three rotary systems and hand instrumentation technique for the elimination of Enterococcus faecalis from the root canal.

    Science.gov (United States)

    Gorduysus, Melahat; Nagas, Emre; Torun, Ozgur Yildirim; Gorduysus, Omer

    2011-12-01

    The aim of this study was to compare the in vitro reduction of a bacterial population in a root canal by mechanical instrumentation using three rotary systems and hand instrumentation technique. The root canals contaminated with a suspension of Enterococcus faecalis were instrumented using ProTaper, K3, HeroShaper and K-file hand instrumentation technique. Later the root canals were sampled. After serial dilutions, samples were incubated in culture media for 24 h. Bacterial colonies were counted and the results were given as number of colony-forming units per millilitre. The results showed that all the canal instrumentation systems reduced the number of bacterial cells in the root canals. Statistically, ProTaper instruments were more effective in reducing the number of bacteria than the other rotary files or hand instruments. © 2010 The Authors. Australian Endodontic Journal © 2010 Australian Society of Endodontology.

  17. Apical extrusion of debris in four different endodontic instrumentation systems: A meta-analysis.

    Science.gov (United States)

    Western, J Sylvia; Dicksit, Daniel Devaprakash

    2017-01-01

    All endodontic instrumentation systems tested so far, promote apical extrusion of debris, which is one of the main causes of postoperative pain, flare ups, and delayed healing. Of this meta-analysis was to collect and analyze in vitro studies quantifying apically extruded debris while using Hand ProTaper (manual), ProTaper Universal (rotary), Wave One (reciprocating), and self-adjusting file (SAF; vibratory) endodontic instrumentation systems and to determine methods which produced lesser extrusion of debris apically. An extensive electronic database search was done in PubMed, Scopus, Cochrane, LILACS, and Google Scholar from inception until February 2016 using the key terms "Apical Debris Extrusion, extruded material, and manual/rotary/reciprocating/SAF systems." A systematic search strategy was followed to extract 12 potential articles from a total of 1352 articles. The overall effect size was calculated from the raw mean difference of weight of apically extruded debris. Statistically significant difference was seen in the following comparisons: SAF ProTaper. Apical extrusion of debris was invariably present in all the instrumentation systems analyzed. SAF system seemed to be periapical tissue friendly as it caused reduced apical extrusion compared to Rotary ProTaper and Wave One.

  18. Instrument control software development process for the multi-star AO system ARGOS

    Science.gov (United States)

    Kulas, M.; Barl, L.; Borelli, J. L.; Gässler, W.; Rabien, S.

    2012-09-01

    The ARGOS project (Advanced Rayleigh guided Ground layer adaptive Optics System) will upgrade the Large Binocular Telescope (LBT) with an AO System consisting of six Rayleigh laser guide stars. This adaptive optics system integrates several control loops and many different components like lasers, calibration swing arms and slope computers that are dispersed throughout the telescope. The purpose of the instrument control software (ICS) is running this AO system and providing convenient client interfaces to the instruments and the control loops. The challenges for the ARGOS ICS are the development of a distributed and safety-critical software system with no defects in a short time, the creation of huge and complex software programs with a maintainable code base, the delivery of software components with the desired functionality and the support of geographically distributed project partners. To tackle these difficult tasks, the ARGOS software engineers reuse existing software like the novel middleware from LINC-NIRVANA, an instrument for the LBT, provide many tests at different functional levels like unit tests and regression tests, agree about code and architecture style and deliver software incrementally while closely collaborating with the project partners. Many ARGOS ICS components are already successfully in use in the laboratories for testing ARGOS control loops.

  19. E-Smart System for In-Situ Detection of Environmental Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    S. Leffler

    2000-03-01

    A team of industrial, academic, and government organizations participated in the development of the Environmental Systems Management, Analysis and Reporting Network (E-SMART). E-SMART integrates diverse monitoring and control technologies by means of a modular, ''building block'' design approach to allow for flexible system configuration. The E-SMART network treats each smart device-whether a sensor, sampler, or actuator- as a black box that obeys the standard communication protocols and electrical interfaces for the network. This approach allows multiple vendors to produce different sensors which meet the same functional specification and which can be interchanged on the network without affecting operation. The project further developed and advanced the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces. Specifically, the E-SMART team developed the following three system elements: (1) Base technology for a new class of smart , highly sensitive, chemically-specific, in-situ, multichannel microsensors utilizing integrated optical interferometry technology, (2) A set of additional E-SMART-compatible sensors adapted from commercial off-the-shelf technologies, and (3) A Data Management and Analysis System (DMAS), including network management components and the user-friendly graphical user interface (GUI) for data evaluation and visualization.

  20. Specification of requirements for upgrades using digital instrument and control systems. Report prepared within the framework of the international working group on nuclear power plant control and instrumentation

    International Nuclear Information System (INIS)

    1999-01-01

    The need to develop good specifications of requirements for instrument and control (I and C) systems applies throughout the world and is becoming more and more important as more upgrades are planned. Better guidance on how to develop good requirements specifications would support safer, more effective and more economical refits and upgrades. The need for this was pointed out by the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI). This report is the result of a series of advisory and consultants meetings held by the IAEA in 1997 and 1998 in Vienna. The scope of the activities described covers a methodology for the determination of requirements and the development of the necessary specifications and plans needed through the life-cycle of digital instrumentation and control systems. It is restricted to technical aspects and indicates subjects which should be included in specifications and plans at different phases

  1. UPTF test instrumentation. Measurement system identification, engineering units and computed parameters

    International Nuclear Information System (INIS)

    Sarkar, J.; Liebert, J.; Laeufer, R.

    1992-11-01

    This updated version of the previous report /1/ contains, besides additional instrumentation needed for 2D/3D Programme, the supplementary instrumentation in the inlet plenum of SG simulator and hot and cold leg of broken loop, the cold leg of intact loops and the upper plenum to meet the requirements (Test Phase A) of the UPTF Programme, TRAM, sponsored by the Federal Minister of Research and Technology (BMFT) of the Federal Republic of Germany. For understanding, the derivation and the description of the identification codes for the entire conventional and advanced measurement systems classifying the function, and the equipment unit, key, as adopted in the conventional power plants, have been included. Amendments have also been made to the appendices. In particular, the list of measurement systems covering the measurement identification code, instrument, measured quantity, measuring range, band width, uncertainty and sensor location has been updated and extended to include the supplementary instrumentation. Beyond these amendments, the uncertainties of measurements have been precisely specified. The measurement identification codes which also stand for the identification of the corresponding measured quantities in engineering units and the identification codes derived therefrom for the computed parameters have been adequately detailed. (orig.)

  2. An Optimized Small Tissue Handling System for Immunohistochemistry and In Situ Hybridization.

    Directory of Open Access Journals (Sweden)

    Giovanni Anthony

    Full Text Available Recent development in 3D printing technology has opened an exciting possibility for manufacturing 3D devices on one's desktop. We used 3D modeling programs to design 3D models of a tissue-handling system and these models were "printed" in a stereolithography (SLA 3D printer to create precision histology devices that are particularly useful to handle multiple samples with small dimensions in parallel. Our system has been successfully tested for in situ hybridization of zebrafish embryos. Some of the notable features include: (1 A conveniently transferrable chamber with 6 mesh-bottomed wells, each of which can hold dozens of zebrafish embryos. This design allows up to 6 different samples to be treated per chamber. (2 Each chamber sits in a well of a standard 6-well tissue culture plate. Thus, up to 36 different samples can be processed in tandem using a single 6 well plate. (3 Precisely fitting lids prevent solution evaporation and condensation, even at high temperatures for an extended period of time: i.e., overnight riboprobe hybridization. (4 Flat bottom mesh maximizes the consistent treatment of individual tissue samples. (5 A magnet-based lifter was created to handle up to 6 chambers (= 36 samples in unison. (6 The largely transparent resin aids in convenient visual inspection both with eyes and using a stereomicroscope. (7 Surface engraved labeling enables an accurate tracking of different samples. (8 The dimension of wells and chambers minimizes the required amount of precious reagents. (9 Flexible parametric modeling enables an easy redesign of the 3D models to handle larger or more numerous samples. Precise dimensions of 3D models and demonstration of how we use our devices in whole mount in situ hybridization are presented. We also provide detailed information on the modeling software, 3D printing tips, as well as 3D files that can be used with any 3D printer.

  3. Extrusion of Debris from Primary Molar Root Canals following Instrumentation with Traditional and New File Systems.

    Science.gov (United States)

    Thakur, Bhagyashree; Pawar, Ajinkya M; Kfir, Anda; Neelakantan, Prasanna

    2017-11-01

    To assess the amount of debris extruded apically during instrumentation of distal canals of extracted primary molars by three instrument systems [ProTaper Universal (PTU), ProTaper NEXT (PTN), and self-adjusting file (SAF)] compared with conventional stainless steel hand K-files (HF, control). Primary mandibular molars (n = 120) with a single distal canal were selected and randomly divided into four groups (n = 30) for root canal instrumentation using group I, HF (to size 0.30/0.02 taper), group II, PTU (to size F3), group III, PTN (to size X3), and group IV, SAF. Debris extruded during instrumentation was collected in preweighed Eppendorf tubes, stored in an incubator at 70°C for 5 days and then weighed. Statistical analysis was performed by one-way analysis of variance (ANOVA), followed by Turkey's post hoc test (p = 0.05). All the groups resulted in extrusion of debris. There was statistically significant difference (p < 0.001) in the debris extrusion between the three groups: HF (0.00133 ± 0.00012), PTU (0.00109 ± 0.00005), PTN (0.00052 ± 0.00008), and SAF (0.00026 ± 0.00004). Instrumentation with SAF resulted in the least debris extrusion when used for shaping root canals of primary molar teeth. Debris extrusion in primary teeth poses an adverse effect on the stem cells and may also alter the permanent dental germ. Debris extrusion is rarely reported for primary teeth and it is important for the clinician to know which endodontic instrumentation leads to less extrusion of debris.

  4. A LabVIEW-Based Virtual Instrument System for Laser-Induced Fluorescence Spectroscopy.

    Science.gov (United States)

    Wu, Qijun; Wang, Lufei; Zu, Lily

    2011-01-01

    We report the design and operation of a Virtual Instrument (VI) system based on LabVIEW 2009 for laser-induced fluorescence experiments. This system achieves synchronous control of equipment and acquisition of real-time fluorescence data communicating with a single computer via GPIB, USB, RS232, and parallel ports. The reported VI system can also accomplish data display, saving, and analysis, and printing the results. The VI system performs sequences of operations automatically, and this system has been successfully applied to obtain the excitation and dispersion spectra of α-methylnaphthalene. The reported VI system opens up new possibilities for researchers and increases the efficiency and precision of experiments. The design and operation of the VI system are described in detail in this paper, and the advantages that this system can provide are highlighted.

  5. Instrumentation Needs for Integral Primary System Reactors (IPSRs) - Task 1 Final Report

    International Nuclear Information System (INIS)

    Gary D Storrick; Bojan Petrovic; Luca Oriani; Lawrence E Conway; Diego Conti

    2005-01-01

    This report presents the results of the Westinghouse work performed under Task 1 of this Financial Assistance Award and satisfies a Level 2 Milestone for the project. While most of the signals required for control of IPSRs are typical of other PWRs, the integral configuration poses some new challenges in the design or deployment of the sensors/instrumentation and, in some cases, requires completely new approaches. In response to this consideration, the overall objective of Task 1 was to establish the instrumentation needs for integral reactors, provide a review of the existing solutions where available, and, identify research and development needs to be addressed to enable successful deployment of IPSRs. The starting point for this study was to review and synthesize general characteristics of integral reactors, and then to focus on a specific design. Due to the maturity of its design and availability of design information to Westinghouse, IRIS (International Reactor Innovative and Secure) was selected for this purpose. The report is organized as follows. Section 1 is an overview. Section 2 provides background information on several representative IPSRs, including IRIS. A review of the IRIS safety features and its protection and control systems is used as a mechanism to ensure that all critical safety-related instrumentation needs are addressed in this study. Additionally, IRIS systems are compared against those of current advanced PWRs. The scope of this study is then limited to those systems where differences exist, since, otherwise, the current technology already provides an acceptable solution. Section 3 provides a detailed discussion on instrumentation needs for the representative IPSR (IRIS) with detailed qualitative and quantitative requirements summarized in the exhaustive table included as Appendix A. Section 3 also provides an evaluation of the current technology and the instrumentation used for measurement of required parameters in current PWRs. Section 4

  6. Comparative instrumental evaluation of efficacy and safety between a binary and a ternary system in chemexfoliation.

    Science.gov (United States)

    Cameli, Norma; Mariano, Maria; Ardigò, Marco; Corato, Cristina; De Paoli, Gianfranco; Berardesca, Enzo

    2017-09-20

    To instrumentally evaluate the efficacy and the safety of a new ternary system chemo exfoliating formulation (water-dimethyl isosorbide-acid) vs traditional binary systems (water and acid) where the acid is maintained in both the systems at the same concentration. Different peelings (binary system pyruvic acid and trichloroacetic acid-TCA, and ternary system pyruvic acid and TCA) were tested on the volar forearm of 20 volunteers of both sexes between 28 and 50 years old. The outcomes were evaluated at the baseline, 10 minutes, 24 hours, and 1 week after the peeling by means of noninvasive skin diagnosis techniques. In vivo reflectance confocal microscopy was used for stratum corneum evaluation, transepidermal waterloss, and Corneometry for skin barrier and hydration, Laser Doppler velocimetry in association with colorimetry for irritation and erythema analysis. The instrumental data obtained showed that the efficacy and safety of the new ternary system peel compounds were significantly higher compared with the binary system formulations tested. The new formulation peels improved chemexfoliation and reduced complications such as irritation, redness, and postinflammatory pigmentation compared to the traditional aqueous solutions. The study showed that ternary system chemexfoliation, using a controlled delivery technology, was able to provide the same clinical effects in term of stratum corneum reduction with a significantly reduced barrier alteration, water loss, and irritation/erythema compared to traditional binary system peels. © 2017 Wiley Periodicals, Inc.

  7. [System design of small intellectualized ultrasound hyperthermia instrument in the LabVIEW environment].

    Science.gov (United States)

    Jiang, Feng; Bai, Jingfeng; Chen, Yazhu

    2005-08-01

    Small-scale intellectualized medical instrument has attracted great attention in the field of biomedical engineering, and LabVIEW (Laboratory Virtual Instrument Engineering Workbench) provides a convenient environment for this application due to its inherent advantages. The principle and system structure of the hyperthermia instrument are presented. Type T thermocouples are employed as thermotransducers, whose amplifier consists of two stages, providing built-in ice point compensation and thus improving work stability over temperature. Control signals produced by specially designed circuit drive the programmable counter/timer 8254 chip to generate PWM (Pulse width modulation) wave, which is used as ultrasound radiation energy control signal. Subroutine design topics such as inner-tissue real time feedback temperature control algorithm, water temperature control in the ultrasound applicator are also described. In the cancer tissue temperature control subroutine, the authors exert new improvments to PID (Proportional Integral Differential) algorithm according to the specific demands of the system and achieve strict temperature control to the target tissue region. The system design and PID algorithm improvement have experimentally proved to be reliable and excellent, meeting the requirements of the hyperthermia system.

  8. Automatic creation of Markov models for reliability assessment of safety instrumented systems

    International Nuclear Information System (INIS)

    Guo Haitao; Yang Xianhui

    2008-01-01

    After the release of new international functional safety standards like IEC 61508, people care more for the safety and availability of safety instrumented systems. Markov analysis is a powerful and flexible technique to assess the reliability measurements of safety instrumented systems, but it is fallible and time-consuming to create Markov models manually. This paper presents a new technique to automatically create Markov models for reliability assessment of safety instrumented systems. Many safety related factors, such as failure modes, self-diagnostic, restorations, common cause and voting, are included in Markov models. A framework is generated first based on voting, failure modes and self-diagnostic. Then, repairs and common-cause failures are incorporated into the framework to build a complete Markov model. Eventual simplification of Markov models can be done by state merging. Examples given in this paper show how explosively the size of Markov model increases as the system becomes a little more complicated as well as the advancement of automatic creation of Markov models

  9. A systematic review of instruments that assess the implementation of hospital quality management systems.

    Science.gov (United States)

    Groene, Oliver; Botje, Daan; Suñol, Rosa; Lopez, Maria Andrée; Wagner, Cordula

    2013-10-01

    Health-care providers invest substantial resources to establish and implement hospital quality management systems. Nevertheless, few tools are available to assess implementation efforts and their effect on quality and safety outcomes. This review aims to (i) identify instruments to assess the implementation of hospital quality management systems, (ii) describe their measurement properties and (iii) assess the effects of quality management on quality improvement and quality of care outcomes. We performed a systematic literature search from 1990 to 2011 in PubMed, CINAHL, EMBASE, Cochrane Library and Web of Science. In addition, we used snowball strategies, screened the reference lists of eligible papers, reviewed grey literature and contacted experts in the field. and data extraction Two reviewers screened eligible papers based on pre-defined inclusion and exclusion criteria and all authors extracted data. Eligible papers are described in terms of general characteristics (settings, type and level of respondents, mode of data collection), methodological properties (sampling strategy, item derivation, conceptualization of quality management, assessment of reliability and validity, scoring) and application/implementation (accounting for context, organizational adaptations, sensitivity to change, deployment and effect size). Eighteen papers were deemed eligible for inclusion. While some common domains emerged in measurement conceptualization, substantial differences in scope persist. The instruments' measurement properties were insufficiently described and only few instruments assessed links between the implementation of quality management systems (QMS) and improvement strategies or outcomes. There is currently no well-established measure to assess the implementation and effectiveness of quality management systems. Future research should address this gap.

  10. Medium-resolution autonomous in situ gamma detection system for marine and coastal waters

    International Nuclear Information System (INIS)

    Schwantes, J.M.; Addleman, R.S.; Davidson, J.D.; Douglas, M.; Meier, D.; Mullen, O.D.; Myjak, M.; Jones, M.E.; Woodring, M.L.; Johnson, B.; Santschi, P.H.

    2009-01-01

    We are developing a medium-resolution autonomous in situ gamma detection system for marine and coastal waters. The system is designed to extract and preconcentrate isotopes of interest from natural waters prior to detection in order to eliminate signal attenuation of the gamma rays traveling through water and lower the overall background from the presence of naturally occurring radioactive isotopes ( 40 K and U-Th series radionuclides). Filtration is used to preconcentrate target isotopes residing on suspended particles, while chemosorption is employed to preferentially extract truly dissolved components from the water column. Used filter and chemosorbent media will be counted autonomously using two LaBr 3 detectors in a near 4-π configuration around the samples. A compact digital pulse processing system, developed in-house and capable of running in coincidence mode, is used to process the signal from the detectors to a small on-board computer. The entire system is extremely compact (9' dia. x 30' len.) and platform independent, but designed for initial deployment on a research buoy. A variety of commercial and in-house nano-porous chemosorbents have been selected, procured or produced, and these and filter and detector components have been tested. (author)

  11. Development and validation of climate change system thinking instrument (CCSTI) for measuring system thinking on climate change content

    Science.gov (United States)

    Meilinda; Rustaman, N. Y.; Firman, H.; Tjasyono, B.

    2018-05-01

    The Climate Change System Thinking Instrument (CCSTI) is developed to measure a system thinking ability in the concept of climate change. CCSTI is developed in four phase’s development including instrument draft development, validation and evaluation including readable material test, expert validation, and field test. The result of field test is analyzed by looking at the readability score in Cronbach’s alpha test. Draft instrument is tested on college students majoring in Biology Education, Physics Education, and Chemistry Education randomly with a total number of 80 college students. Score of Content Validation Index at 0.86, which means that the CCSTI developed are categorized as very appropriate with question indicators and Cronbach’s alpha about 0.605 which mean categorized undesirable to minimal acceptable. From 45 questions of system thinking, there are 37 valid questions spread in four indicators of system thinking, which are system thinking phase I (pre-requirement), system thinking phase II (basic), system thinking phase III (intermediate), and system thinking phase IV (coherent expert).

  12. Reusing Joint Polar Satellite System (jpss) Ground System Components to Process AURA Ozone Monitoring Instrument (omi) Science Products

    Science.gov (United States)

    Moses, J. F.; Jain, P.; Johnson, J.; Doiron, J. A.

    2017-12-01

    New Earth observation instruments are planned to enable advancements in Earth science research over the next decade. Diversity of Earth observing instruments and their observing platforms will continue to increase as new instrument technologies emerge and are deployed as part of National programs such as Joint Polar Satellite System (JPSS), Geostationary Operational Environmental Satellite system (GOES), Landsat as well as the potential for many CubeSat and aircraft missions. The practical use and value of these observational data often extends well beyond their original purpose. The practicing community needs intuitive and standardized tools to enable quick unfettered development of tailored products for specific applications and decision support systems. However, the associated data processing system can take years to develop and requires inherent knowledge and the ability to integrate increasingly diverse data types from multiple sources. This paper describes the adaptation of a large-scale data processing system built for supporting JPSS algorithm calibration and validation (Cal/Val) node to a simplified science data system for rapid application. The new configurable data system reuses scalable JAVA technologies built for the JPSS Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system to run within a laptop environment and support product generation and data processing of AURA Ozone Monitoring Instrument (OMI) science products. Of particular interest are the root requirements necessary for integrating experimental algorithms and Hierarchical Data Format (HDF) data access libraries into a science data production system. This study demonstrates the ability to reuse existing Ground System technologies to support future missions with minimal changes.

  13. A miniature TDCR system dedicated to in-situ activity assay

    International Nuclear Information System (INIS)

    Johansson, Lena; Bakhshandeiar, Eleanor; Pearce, Andy; Collins, Sean; Orlandini, Pascal; Sephton, John

    2014-01-01

    In the framework of the European Metrology Research Programme (EMRP), the Joint Research Project MetroFission has a dedicated work package for the development of a portable Triple-to-Double-Coincidence-Ratio (TDCR) system dedicated to in-situ activity measurements of low-energy beta emitters arising from the operation of the next generation of nuclear power plants. In the design phase of the NPL version of the mini-TDCR, a wide range of metrological aspects and detector types was considered. This paper summarizes these aspects of design, in the light of previous experience with the primary TDCR system at NPL. For example, in this miniature version of the TDCR, the optical chamber was simplified and cylindrical geometry was deemed sufficient. The reflectivity of the surface was increased by painted layers of Spectraflect ® , a specially formulated barium sulphate coating with high reflectivity across a wide range of wave lengths including UV. This option was chosen rather than the high performing and more expensive Spectralon ® material used for the primary NPL TDCR. The miniature TDCR system is intended for on-site monitoring and will not require as high a performance as the primary system. Other factors that were considered included sample changing, light tightness, type of photo detector, method for varying the detection efficiency, shielding and the possible addition of an internal gamma-ray source for determination of the quench parameter of the source. In this version, the sample changing is performed using a piston and an automatic shutter. Significant design effort has been applied to ensure minimal ingress of light from the piston. Efficiency variation is accomplished by increasing the vertical displacement of the vial. Provision has been made to automate this at a later stage. Maximum light transmission to the photo-multiplier tubes is obtained at the “zero” reference height. Validation measurements were successfully performed using four different

  14. A novel single-step, multipoint calibration method for instrumented Lab-on-Chip systems

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Patou, François; Zulfiqar, Azeem

    2014-01-01

    for instrument-based PoC blood biomarker analysis systems. Motivated by the complexity of associating high-accuracy biosensing using silicon nanowire field effect transistors with ease of use for the PoC system user, we propose a novel one-step, multipoint calibration method for LoC-based systems. Our approach...... specifically addresses the important interfaces between a novel microfluidic unit to integrate the sensor array and a mobile-device hardware accessory. A multi-point calibration curve is obtained by generating a defined set of reference concentrations from a single input. By consecutively splitting the flow...

  15. Integrated conception of hardware/software mixed systems used in nuclear instrumentation

    International Nuclear Information System (INIS)

    Dias, Ailton F.; Sorel, Yves; Akil, Mohamed

    2002-01-01

    Hardware/software codesign carries out the design of systems composed by a hardware portion, with specific components, and a software portion, with microprocessor based architecture. This paper describes the Algorithm Architecture Adequation (AAA) design methodology - originally oriented to programmable multicomponent architectures, its extension to reconfigurable circuits and its application to design and development of nuclear instrumentation systems composed by programmable and configurable circuits. AAA methodology uses an unified model to describe algorithm, architecture and implementation, based on graph theory. The great advantage of AAA methodology is the utilization of a same model from the specification to the implementation of hardware/software systems, reducing the complexity and design time. (author)

  16. Technical requirements on knowledge base and instrumentation system for decision making in plant operation and maintenance

    International Nuclear Information System (INIS)

    Kitamura, Masaharu; Yoshikawa, Shinji; Hasegawa, Makoto

    1998-03-01

    A series of technical surveys and studies are described in this report to examine and identify technical requirements to be posed on knowledge base and instrumentation system as the fundamental in high reliability computational decision making in operation and maintenance of nuclear power plants. Monitoring and diagnosis are focused as the important tasks among the operation/maintenance-related tasks. A concrete monitoring and diagnosis system configuration has been proposed consisting of distributed symptom database and of on-demand measurement subsystem. An prototype of the proposed system configuration has been successfully verified. (author)

  17. Development, structure and qualification of a new digital instrumentation and control system

    International Nuclear Information System (INIS)

    Hofmann, H.; Sauer, H.J.

    1991-01-01

    Introduction of digital instrumentation and control in nuclear power plants is characterized by the need to meet numerous requirements concerning reliability, ergonomic design of the main control room and comprehensive qualification. The system described here is distinguished by a hierarchical and modular structure, being redundant throughout. Ergonomic considerations dominate the layout of the screen-based main control room. Powerful computer-aided engineering tools are employed for planning of the entire system and for generation of the user software. Qualification is performed in step with the development of the system, based on the applicable national and international rules and regulations and in close cooperation with an independent expert. (orig.) [de

  18. Collecting soil vapor from the Vadose Zone with an instrumented membrane system

    International Nuclear Information System (INIS)

    Martins, S.A.

    1992-07-01

    As part of an on-going program to monitor ground water pollution, the SEAMIST instrumented membrane system was purchased and installed in two boreholes at the Lawrence Livermore National Laboratory (LLNL). SEAMIST is a flexible, removable, polyvinylchloride-coated, nylon membrane tube used to seal the sides of a borehole and to which sampling devices and other types of instrumentation may be attached. This paper describes a method to sample soil vapor (a component of soil gas) with the SEAMIST system from a borehole at several depths simultaneously. The cryotraps used with this technique were tested for their collection efficiency, and those data are presented. Data on the integrity of the SEAMIST borehole seal are also reported

  19. Instrumentation and control of the Doublet III Neutral Beam Injector System

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, J.C.; Moore, C.D.; Drobnis, D.D.; Elischer, V.P.; Kilgore, R.; Uber, D.

    1980-03-01

    The hardware and software required for the operation of the Doublet III Neutral Beam Injector System (NBIS) are described. Development and implementation of this Instrumentation and Control System was divided between the major participants - General Atomic Company and Lawrence Berkeley Laboratory. The subdivision of responsibilities and the coordination of the participants' activities are described with reference to hardware and software requirements in support of the entire system. Included are a description of the operators' consoles, the interlock system and the CAMAC system. One feature of the control software is source modeling. This feature includes feedback on a shot to shot basis and adaptive control. Adaptive control permits the computer system to automatically adjust parameters after a shot, and to control the system to automatically compensate for time varying NBIS components. The Neutral Beam Power Supply features power supply modeling, fiber optic transmission of analog signals and digital control of power supply power-up/interlocks.

  20. Cost benefit analysis of instrumentation, supervision and control systems for nuclear power plants

    International Nuclear Information System (INIS)

    Hagen, P.

    1973-08-01

    A cost benefit analysis is carried out on a BWR type reactor power plant in which an on-line computer performs plant supervision, reporting, logging, calibration and control functions, using display devices and plotters, while an off-line computer is available for bigger jobs such as fuel management calculations. All on-line functions are briefly described and specified. Three types of computer system are considered, a simplex system, a dual computer system and a multi-processor system. These systems are analysed with respect to reliability, back-up instrumentation requirements and costs. While the multiprocessor system gave in all cases the lowest annual failure costs, the margin to the duplex system was so small that hardware, maintenance and software costs would play an important role in making a decision. (JIW)