WorldWideScience

Sample records for situ helium implanter

  1. Nanomechanical and in situ TEM characterization of boron carbide thin films on helium implanted substrates: Delamination, real-time cracking and substrate buckling

    Energy Technology Data Exchange (ETDEWEB)

    Framil Carpeño, David, E-mail: david.framil-carpeno@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Ohmura, Takahito; Zhang, Ling [Strength Design Group, Structural Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Leveneur, Jérôme [National Isotope Centre, GNS Science, 30 Gracefield Road, Gracefield, Lower Hutt 5010 (New Zealand); Dickinson, Michelle [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Seal, Christopher [International Centre for Advanced Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Kennedy, John [National Isotope Centre, GNS Science, 30 Gracefield Road, Gracefield, Lower Hutt 5010 (New Zealand); Hyland, Margaret [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand)

    2015-07-15

    Boron carbide coatings deposited on helium-implanted and unimplanted Inconel 600 were characterized using a combination of nanoindentation and transmission electron microscopy. Real-time coating, cracking and formation of slip bands were recorded using in situ TEM-nanoindentation, allowing site specific events to be correlated with specific features in their load–displacement curves. Cross-sections through the residual indent impression showed a correlation between pop-outs in the load–displacement curves and coating delamination, which was confirmed with cyclic indentation experiments. Inconel exhibits (-11-1) and (1-1-1) twin variants in its deformed region beneath the indenter, organized in bands with a ladder-like arrangement. The nanomechanical properties of the metal–ceramic coating combinations exhibit a marked substrate effect as a consequence of helium implantation.

  2. Nanomechanical and in situ TEM characterization of boron carbide thin films on helium implanted substrates: Delamination, real-time cracking and substrate buckling

    International Nuclear Information System (INIS)

    Framil Carpeño, David; Ohmura, Takahito; Zhang, Ling; Leveneur, Jérôme; Dickinson, Michelle; Seal, Christopher; Kennedy, John; Hyland, Margaret

    2015-01-01

    Boron carbide coatings deposited on helium-implanted and unimplanted Inconel 600 were characterized using a combination of nanoindentation and transmission electron microscopy. Real-time coating, cracking and formation of slip bands were recorded using in situ TEM-nanoindentation, allowing site specific events to be correlated with specific features in their load–displacement curves. Cross-sections through the residual indent impression showed a correlation between pop-outs in the load–displacement curves and coating delamination, which was confirmed with cyclic indentation experiments. Inconel exhibits (-11-1) and (1-1-1) twin variants in its deformed region beneath the indenter, organized in bands with a ladder-like arrangement. The nanomechanical properties of the metal–ceramic coating combinations exhibit a marked substrate effect as a consequence of helium implantation

  3. Behaviour of helium after implantation in molybdenum

    International Nuclear Information System (INIS)

    Viaud, C.; Maillard, S.; Carlot, G.; Valot, C.; Gilabert, E.; Sauvage, T.; Peaucelle, C.; Moncoffre, N.

    2009-01-01

    This study deals with the behaviour of helium in a molybdenum liner dedicated to the retention of fission products. More precisely this work contributes to evaluate the release of implanted helium when the gas has precipitated into nanometric bubbles close to the free surface. A simple model dedicated to calculate the helium release in such a condition is presented. The specificity of this model lays on the assumption that the gas is in equilibrium with a simple distribution of growing bubbles. This effort is encouraging since the calculated helium release fits an experimental dataset with a set of parameters in good agreement with the literature

  4. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  5. Neutron-induced helium implantation in GCFR cladding

    International Nuclear Information System (INIS)

    Yamada, H.; Poeppel, R.B.; Sevy, R.H.

    1980-10-01

    The neutron-induced implantation of helium atoms on the exterior surfaces of the cladding of a prototypic gas-cooled fast reactor (GCFR) has been investigated analytically. A flux of recoil helium particles as high as 4.2 x 10 10 He/cm 2 .s at the cladding surface has been calculated at the peak power location in the core of a 300-MWe GCFR. The calculated profile of the helium implantation rates indicates that although some helium is implanted as deep as 20 μm, more than 99% of helium particles are implanted in the first 2-μm-deep layer below the cladding surface. Therefore, the implanted helium particles should mainly affect surface properties of the GCFR cladding

  6. Lattice site of helium implanted in Si and diamond

    International Nuclear Information System (INIS)

    Allen, W.R.

    1993-01-01

    Single crystals of silicon and diamond were implanted at 300K with 70 keV 3 He. Ion channeling analyses were executed by application of Rutherford backscattering spectrometry and nuclear reaction analysis. Helium exhibits a non-random lattice site in the channeling angular distributions for silicon and diamond. A major fraction of the implanted He was qualitatively identified to be near to the tetrahedral interstice in both materials

  7. Helium implantation effects in SAP and aluminum

    International Nuclear Information System (INIS)

    Bauer, W.; Thomas, G.J.

    1976-02-01

    A series of 300 keV He implantations of Al and SAP 930 have been conducted at temperatures between 150 and 773K. The He re-emission was monitored during implantation and the samples were examined with a scanning electron microscope after implantation. Both Al and SAP 930 were found to blister after a critical He dose was reached at temperatures above 473K, both underwent flaking below that temperature, with blistering re-appearing in SAP 930 at an implantation temperature of 150K. The surface deformation and He re-emission are strongly dependent on microstructural effects in the intermediate temperature regime

  8. Structural changes in a copper alloy due to helium implantation

    International Nuclear Information System (INIS)

    Moreno, D.; Eliezer, D.

    1996-01-01

    The most suitable nuclear fusion reaction for energy production occurs between the two heavy hydrogen isotopes, deuterium and tritium. Structural materials in fusion reactors will be exposed to helium implantation over a broad range of energies. The deformation and partial exfoliation of surface layers due to hydrogen isotopes and helium contribute to the total erosion of the first wall. For this reason, one of the most important criteria in the choice of materials for the first wall of fusion reactors is the material's damage resistance. Recent advances in developing nuclear fusion reactors reveal that efficient heat removal from plasma-facing components is very important. Copper and copper alloys are considered an attractive choice for transporting such a high heat flux without thermal damage as they have high thermal conductivity. In the present study the authors report on the structural changes in a copper alloy, due to the helium implantation on the very near surface area, observed by transmission electron microscopy

  9. Lithium concentration dependence of implanted helium retention in lithium silicates

    Energy Technology Data Exchange (ETDEWEB)

    Szocs, D.E., E-mail: szocsd@rmki.kfki.h [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Szilagyi, E.; Bogdan, Cs.; Kotai, E. [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Horvath, Z.E. [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, P.O. Box 49 (Hungary)

    2010-06-15

    Helium ions of 500 keV were implanted with a fluence of 1.4 x 10{sup 17} ion/cm{sup 2} into various lithium silicates to investigate whether a threshold level of helium retention exists in Li-containing silicate ceramics similar to that found in SiO{sub x} in previous work. The composition and phases of the as prepared lithium silicates were determined by proton backscattering spectrometry (p-BS) and X-ray diffraction (XRD) methods with an average error of {+-}10%. Electrostatic charging of the samples was successfully eliminated by wrapping the samples in Al foil. The amounts of the retained helium within the samples were determined by subtracting the non-implanted spectra from the implanted ones. The experimental results show a threshold in helium retention depending on the Li concentration. Under 20 at.% all He is able to escape from the material; at around 30 at.% nearly half of the He, while over 65 at.% all implanted He is retained. With compositions expressed in SiO{sub 2} volume percentages, a trend similar to those reported of SiO{sub x} previously is found.

  10. Martensitic transformation in helium implanted 316 stainless steel

    International Nuclear Information System (INIS)

    Ishimatsu, Manabu; Tsukuda, Noboru

    1997-01-01

    In order to simulate surface deterioration phenomenon due to particle loading of SUS-316 steel which is one of candidate materials for nuclear fusion reactor vacuum wall structure material, helium ion implanting was conducted at room temperature, 473 K and 573 K. To martensitic phase formed as a results, implantation dose dependence, implanting temperature dependence, and annealing under 1073 K were conducted. Formation of the martensitic phase was suppressed at high implanting temperature. At room temperature implantation, the martensitic phase disappeared at more than 873 K, but at high temperature implantation, it increased abnormally near at 973 K. This showed that deterioration of materials depended extremely upon using temperature and temperature history. (G.K.)

  11. Defects induced by helium implantation in SiC

    International Nuclear Information System (INIS)

    Oliviero, E.; Barbot, J.F.; Declemy, A.; Beaufort, M.F.; Oliviero, E.

    2008-01-01

    SiC is one of the considered materials for nuclear fuel conditioning and for the fabrication of some core structures in future nuclear generation reactors. For the development of this advance technology, a fundamental research on this material is of prime importance. In particular, the implantation/irradiation effects have to be understood and controlled. It is with this aim that the structural alterations induced by implantation/irradiation in SiC are studied by different experimental techniques as transmission electron microscopy, helium desorption, X-ray diffraction and Rutherford backscattering spectrometry. In this work, the different types of defects induced by helium implantation in SiC, point or primary defects (obtained at low energy (∼100 eV) until spread defects (obtained at higher energy (until ∼2 MeV)) are exposed. The amorphization/recrystallization and swelling phenomena are presented too. (O.M.)

  12. Determination of migration of ion-implanted helium in silica by proton backscattering spectrometry

    International Nuclear Information System (INIS)

    Szakacs, G.; Szilagyi, E.; Paszti, F.; Kotai, E.

    2008-01-01

    Understanding the processes caused by ion implantation of light ions in dielectric materials such as silica is important for developing the diagnostic systems used in fusion and fission environments. Recently, it has been shown that ion-implanted helium is able to escape from SiO 2 films. To study this process in details, helium was implanted into the central part of a buried SiO 2 island up to a fluence of 4 x 10 17 He/cm 2 . The implanted helium could be detected in the SiO 2 island, if the oxide was insulated properly from the vacuum. The shape of the helium depth distributions was far from SRIM simulation because helium distributed in the whole 1 μm thick oxide layer. After the ion implantation, helium was observed only on the implanted spot. After nine months the implanted helium filled out the whole oxide island as it was expected from the high diffusivity

  13. High temperature indentation of helium-implanted tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, James S.K.-L., E-mail: james.gibson@materials.ox.ac.uk [Oxford University, Department of Materials, Parks Road, Oxford OX1 3PH (United Kingdom); Roberts, Steve G. [Oxford University, Department of Materials, Parks Road, Oxford OX1 3PH (United Kingdom); Culham Centre for Fusion Energy, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Armstrong, David E.J. [Oxford University, Department of Materials, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-02-11

    Nanoindentation has been performed on tungsten, unimplanted and helium-implanted to ~600 appm, at temperatures up to 750 °C. The hardening effect of the damage was 0.90 GPa at 50 °C, but is negligible above 450 °C. The hardness value at a given temperature did not change on re-testing after heating to 750 °C. This suggests that the helium is trapped in small vacancy complexes that are stable to at least 750 °C, but which can be bypassed due to increased dislocation mobility (cross slip or climb) above 450 °C.

  14. Low energy helium implantation of aluminum

    International Nuclear Information System (INIS)

    Wilson, K.L.; Thomas, G.J.

    1976-02-01

    A series of 20 keV He + implantations was conducted on well-annealed MARZ grade aluminum at fluxes of 6 x 10 14 and 6 x 10 13 He + /cm 2 sec. Three distinct, temperature dependent He release mechanisms were found by He re-emission measurements during implantation, and by subsequent SEM and TEM investigations. At 0.08 of the melting temperature (T/sub m/) gas re-emission rose smoothly after a critical dose of 3 x 10 17 He + /cm 2 , with extensive blistering. The intermediate temperature range (approximately 0.3 T/sub m/) was characterized by repeated flake exfoliation and bursts of He after a dose of 3 x 10 17 He + /cm 2 . Rapid He evolution, with hole formation was found above 0.7 T/sub m/. No significant differences in either gas re-emission or surface deformation were found between the two fluxes employed

  15. Helium implanted AlHf as studied by 181 Ta TDPAC

    Indian Academy of Sciences (India)

    Measurements on helium implanted sample indicate the binding of helium associated defects by Hf solute clusters. Isochronal annealing measurements indicate the dissociation of the helium implantation induced defects from Hf solute clusters for annealing treatments beyond 650 K. On comparison of the present results ...

  16. A description of bubble growth and gas release of helium implanted tungsten

    International Nuclear Information System (INIS)

    Sharafat, S.; Hu, Q.; Ghoniem, N.; Tkahashi, A.

    2007-01-01

    Full text of publication follows: Bubble growth and gas release during annealing of helium implanted tungsten is described using a Kinetic Monte Carlo approach. The implanted spatial profiles of stable bubble nuclei are first determined using the Kinetic Rate Theory based helium evolution code, HEROS. The effects of implantation energy, temperature, and bias forces, such as temperature- and stress gradients on bubble migration and coalescence are investigated to explain experimental gas release measurements. This comprehensive helium bubble evolution and release model, demonstrates the impact of near surface (< 1 um) versus deep helium implantation on bubble evolution. Near surface implanted helium bubbles readily attain large equilibrium sizes, while matrix bubbles remain small with high helium pressures. Using the computer simulation, the various stages of helium bubble nucleation, growth, coalescence, and migration are demonstrated and compared with available experimental results. (authors)

  17. Interface strength of SiC/SiC composites with and without helium implantation using micro-indentation test

    International Nuclear Information System (INIS)

    Saito, M.; Ohtsuka, S.

    1998-01-01

    Helium implantation effects on interface strength of SiC/SiC composite were studied using the micro-indentation fiber push-out method. Helium implantation was carried out with an accelerator at about 400 K. Total amount of implanted helium was approximately 10000 appm. Increase of the fiber push-in load was observed in as-implanted specimen. After post-implantation-annealing at 1673 K for 1 h, the change of the fiber push-in load by helium implantation was not observed. Effects of helium implantation on the interface are discussed. (orig.)

  18. Influence of ion implanted helium on deuterium trapping in Kh18N10T stainless steel

    International Nuclear Information System (INIS)

    Tolstolutskaya, G.D.; Ruzhitskij, V.V.; Kopanets, I.E.

    2004-01-01

    The results are presented on evolution of distribution profiles and helium and deuterium thermal desorption ion implanted in steel 18Cr10NiTi. Accumulation, trapping, retention and microstructure evolution are studied; effect helium and hydrogen simultaneous implantation on these processes is also studied

  19. A description of stress driven bubble growth of helium implanted tungsten

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Takahashi, Akiyuki; Nagasawa, Koji; Ghoniem, Nasr

    2009-01-01

    Low energy (<100 keV) helium implantation of tungsten has been shown to result in the formation of unusual surface morphologies over a large temperature range (700-2100 deg. C). Simulation of these macroscopic phenomena requires a multiscale approach to modeling helium transport in both space and time. We present here a multiscale helium transport model by coupling spatially-resolved kinetic rate theory (KRT) with kinetic Monte Carlo (KMC) simulation to model helium bubble nucleation and growth. The KRT-based HEROS Code establishes defect concentrations as well as stable helium bubble nuclei as a function of implantation parameters and position from the implanted surface and the KMC-based Mc-HEROS Code models the growth of helium bubbles due to migration and coalescence. Temperature- and stress-gradients can act as driving forces, resulting in biased bubble migration. The Mc-HEROS Code was modified to simulate the impact of stress gradients on bubble migration and coalescence. In this work, we report on bubble growth and gas release of helium implanted tungsten W/O stress gradients. First, surface pore densities and size distributions are compared with available experimental results for stress-free helium implantation conditions. Next, the impact of stress gradients on helium bubble evolution is simulated. The influence of stress fields on bubble and surface pore evolution are compared with stress-free simulations. It is shown that near surface stress gradients accelerate helium bubbles towards the free surface, but do not increasing average bubble diameters significantly.

  20. In situ Transmission Electron Microscopy He{sup +} implantation and thermal aging of nanocrystalline iron

    Energy Technology Data Exchange (ETDEWEB)

    Muntifering, Brittany, E-mail: brmunti@sandia.gov [Sandia National Laboratories, Albuquerque, NM, 87185 (United States); Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208 (United States); Fang, Youwu [Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208 (United States); Leff, Asher C. [Department of Materials Science & Engineering, Drexel University, Philadelphia, PA, 19104 (United States); Dunn, Aaron [Sandia National Laboratories, Albuquerque, NM, 87185 (United States); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, UMI 2958 Georgia Tech CNRS, 57070, Metz (France); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208 (United States); School of Engineering, Tufts University, Medford, MA, 02155 (United States); Taheri, Mitra L. [Department of Materials Science & Engineering, Drexel University, Philadelphia, PA, 19104 (United States); Dingreville, Remi; Hattar, Khalid [Sandia National Laboratories, Albuquerque, NM, 87185 (United States)

    2016-12-15

    The high density of interfaces in nanostructured materials are hypothesized to improve radiation tolerance compared to coarse-grained materials. In order to investigate the roles of vacancies, self-interstitials, and helium, both room temperature in situ TEM He{sup +} implantation and annealing, as well as high temperature He{sup +} implantation was performed on nanocrystalline iron. Dislocation loops are formed by the accumulation of mobile point defects rather than by displacement cascades at intermediate temperatures. Around 600 °C, loops disappeared through gradual shrinking, which is hypothesized to correspond to the annihilation of self-interstitial atoms by mobile vacancies that also resulted in cavity formation. The room temperature implantation resulted in cavities evenly distributed throughout the grain after annealing, whereas cavities were predominately observed at grain boundaries for the elevated temperature implantation. This difference is associated with the formation of stable helium-vacancy complexes in the grains during room temperature implantation, which is not present during high temperature implantation. - Highlights: • In situ TEM He{sup +} implantation and annealing was performed on nanocrystalline iron. • Small grains limited loop size and resulted in complete disappearance of loops by 600 °C. • Implantation followed by annealing resulted in cavities evenly distributed through grain. • Cavities predominately observed at grain boundaries after He{sup +} implantation at 600 °C.

  1. Determination of migration of ion-implanted helium in silica by proton backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Szakacs, G. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary); Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)], E-mail: szilagyi@rmki.kfki.hu; Paszti, F.; Kotai, E. [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2008-04-15

    Understanding the processes caused by ion implantation of light ions in dielectric materials such as silica is important for developing the diagnostic systems used in fusion and fission environments. Recently, it has been shown that ion-implanted helium is able to escape from SiO{sub 2} films. To study this process in details, helium was implanted into the central part of a buried SiO{sub 2} island up to a fluence of 4 x 10{sup 17} He/cm{sup 2}. The implanted helium could be detected in the SiO{sub 2} island, if the oxide was insulated properly from the vacuum. The shape of the helium depth distributions was far from SRIM simulation because helium distributed in the whole 1 {mu}m thick oxide layer. After the ion implantation, helium was observed only on the implanted spot. After nine months the implanted helium filled out the whole oxide island as it was expected from the high diffusivity.

  2. Fission neutron irradiation of copper containing implanted and transmutation produced helium

    DEFF Research Database (Denmark)

    Singh, B.N.; Horsewell, A.; Eldrup, Morten Mostgaard

    1992-01-01

    High purity copper containing approximately 100 appm helium was produced in two ways. In the first, helium was implanted by cyclotron at Harwell at 323 K. In the second method, helium was produced as a transmutation product in 800 MeV proton irradiation at Los Alamos, also at 323 K. The distribut......High purity copper containing approximately 100 appm helium was produced in two ways. In the first, helium was implanted by cyclotron at Harwell at 323 K. In the second method, helium was produced as a transmutation product in 800 MeV proton irradiation at Los Alamos, also at 323 K...... as well as the effect of the presence of other transmutation produced impurity atoms in the 800 MeV proton irradiated copper will be discussed....

  3. Effect of implanted helium on tensile properties and hardness of 9% Cr martensitic stainless steels

    Science.gov (United States)

    Jung, P.; Henry, J.; Chen, J.; Brachet, J.-C.

    2003-05-01

    Hundred micrometer thick specimens of 9% Cr martensitic steels EM10 and T91 were homogeneously implanted with He 4 to concentrations up to 0.5 at.% at temperatures from 150 to 550 °C. The specimens were tensile tested at room temperature and at the respective implantation temperatures. Subsequently the fracture surfaces were analysed by scanning electron microscopy and some of the specimens were examined in an instrumented hardness tester. The implanted helium caused hardening and embrittlement which both increased with increasing helium content and with decreasing implantation temperature. Fracture surfaces showed intergranular brittle appearance with virtually no necking at the highest implantation doses, when implanted below 250 °C. The present tensile results can be scaled to tensile data after irradiation in spallation sources on the basis of helium content but not on displacement damage. An interpretation of this finding by microstructural examination is given in a companion paper [J. Nucl. Mater., these Proceedings].

  4. High temperature tensile properties of 316 stainless steel implanted with helium

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Yamamoto, Norikazu; Shiraishi, Haruki

    1993-01-01

    Helium embrittlement is one of the problems in structural materials for fusion reactors. Recently, martensitic steels have been developed which have a good resistance to high-temperature helium embrittlement, but the mechanism has not yet been clarified. In this paper, tensile behaviors of helium implanted austenitic stainless steels, which are sensitive to the helium embrittlement, were studied and compared with those of martensitic steels under the same experimental conditions, and the effect of microstructure on helium embrittlement was discussed. Helium was implanted by 300 appm at 573-623 K to miniature tensile speciments of 316 austenitic steels using a cyclotron accelerator. Solution annealed (316SA) and 20% cold worked (316CW) specimens were used. Post-implantation tensile tests were carried out at 573, 873 and 973 K. Yield stress at 573 K increased with the helium implantation in 316SA and 316CW, but the yield stress changes of 316SA at 873 and 973 K were different from that of 316CW. Black-dots were observed in the as-implanted specimen and bubbles were observed in the speciments tensile-tested at 873 and 973 K. Intergranular fracture was observed at only 973 K in both of the 316SA and 316CW specimens. Therefore, cold work did not suppress the high-temperature helium embrittlement under this experimental condition. The difference in the influence of helium on type 316 steel and 9Cr martensitic steels were discussed. Test temperature change of reduction in are showed clearly that helium embrittlement did not occur in 9Cr martensitic steels but occurred in 316 austenitic steels. Fine microstructures of 9Cr martensitic steels should suppress helium embrittlement at high temperatures. (author)

  5. Relation between the conditions of helium ion implantation and helium void equilibrium parameters

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Rybalko, V.F.; Ruzhitskij, V.V.; Tolstolutskaya, G.D.

    1981-01-01

    The conditions of helium thermodynamic equilibrium in a system of voids produced by helium ion bombardment of a metal sample are studied. As an initial equation for description of the equilibrium the Clapeyron equation was used. The equation is obtained relating basic parameters of helium voids (average diameter and density) to irradiation parameters (dose, ion energy (straggling)) and properties of the metal (surface tension coefficient, yield strength). Comparison of the calculations with experimental data on helium in nickel found in literature shows that the equation yields satisfactory resutls for the dose range 1.10 16 -1x10 17 cm -2 and temperatures T [ru

  6. TEM investigation of the microstructural evolution in nickel during MeV helium implantation

    International Nuclear Information System (INIS)

    Gadalla, A.A.; Jaeger, W.; Ehrhart, P.

    1986-01-01

    In a recent TEM investigation of high energy He-implanted copper the low average helium density could be understood by the observation of the coexistence of two types of vacancy agglomerates i.e. relaxed vacancy agglomerates in the form of stacking fault tetrahedra (SFT) and small bubbles. In order to arrive at a more systematic understanding of the evolution of the microstructure during high energy helium implantation we extended these TEM investigations to nickel. Of particular interest was also the minimum implantation dose necessary to precipitate bubbles that are large enough to be visible in the TEM. (orig./RK)

  7. ERDA, RBS, TEM and SEM characterization of microstructural evolution in helium-implanted Hastelloy N alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jie [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China); Bao, Liangman [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huang, Hefei, E-mail: huanghefei@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Yan, E-mail: liyan@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Lei, Qiantao [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Deng, Qi [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Liu, Zhe; Yang, Guo [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China); Shi, Liqun [Institute of Modern Physics, Fudan University, Shanghai 200433 (China)

    2017-05-15

    Hastelloy N alloy was implanted with 30 keV, 5 × 10{sup 16} ions/cm{sup 2} helium ions at room temperature, and subsequent annealed at 600 °C for 1 h and further annealed at 850 °C for 5 h in vacuum. Using elastic recoil detection analysis (ERDA) and transmission electron microscopy (TEM), the depth profiles of helium concentration and helium bubbles in helium-implanted Hastelloy N alloy were investigated, respectively. The diffusion of helium and molybdenum elements to surface occurred during the vacuum annealing at 850 °C (5 h). It was also observed that bubbles in molybdenum-enriched region were much larger in size than those in deeper region. In addition, it is worth noting that plenty of nano-holes can be observed on the surface of helium-implanted sample after high temperature annealing by scanning electron microscope (SEM). This observation provides the evidence for the occurrence of helium release, which can be also inferred from the results of ERDA and TEM analysis.

  8. The formation of microvoids in MgO by helium ion implantation and thermal annealing

    International Nuclear Information System (INIS)

    Veen, A. van; Schut, H.; Fedorov, A.V.; Labohm, F.; Neeft, E.A.C.; Konings, R.J.M.

    1999-01-01

    The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV 3 He ions with doses varying from 10 15 to 10 16 cm -2 and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2x10 15 cm -2 annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed

  9. The formation of microvoids in MgO by helium ion implantation and thermal annealing

    Science.gov (United States)

    van Veen, A.; Schut, H.; Fedorov, A. V.; Labohm, F.; Neeft, E. A. C.; Konings, R. J. M.

    1999-01-01

    The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV 3He ions with doses varying from 10 15 to 10 16 cm -2 and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2 × 10 15 cm -2 annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed.

  10. The formation of microvoids in MgO by helium ion implantation and thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Veen, A. van E-mail: avveen@iri.tudelft.nl; Schut, H.; Fedorov, A.V.; Labohm, F.; Neeft, E.A.C.; Konings, R.J.M

    1999-01-02

    The formation of microvoids in metal oxides by helium implantation and thermal annealing is observed under similar conditions as has been shown earlier for silicon. Cleaved MgO (1 0 0) single crystals were implanted with 30 keV {sup 3}He ions with doses varying from 10{sup 15} to 10{sup 16} cm{sup -2} and subsequently thermally annealed from RT to 1500 K. Monitoring of the defect depth profile and the retained amount of helium was performed by positron beam analysis and neutron depth profiling, respectively. For a dose larger than 2x10{sup 15} cm{sup -2} annealing of the defects was observed in two stages: at 1000 K helium filled monovacancies dissociated, and other defects still retaining the helium were formed, and at 1300 K all helium left the sample while an increase of positron-valence-electron annihilations was observed, indicating an increase of the volume available in the defects. The voids of nm size were located at shallower depth than the implanted helium. At lower dose no voids were left after high temperature annealing. Voids can also be created, and even more effectively, by hydrogen or deuterium implantation. The voids are stable to temperatures of 1500 K. The use of the nanovoids as a precursor state for nanoprecipitates of metals or other species is discussed.

  11. Preservation and release dose of helium implanted in nanocrystal titanium film

    International Nuclear Information System (INIS)

    Long Xinggui; Luo Shunzhong; Peng Shuming; Zheng Sixiao; Liu Zhongyang; Wang Peilu; Liao Xiaodong; Liu Ning

    2003-01-01

    Helium concentration profile, preservation dose and release rate from a nanocrystal titanium film implanted with helium at an energy of 100 keV and dose of 2.2 x 10 18 cm -2 are measured by proton Rutherford backscattering technique in a range from room temperature to 400 degree C. The implanted helium may be stably preserved up to the 68 percent after keeping a long time of 210 d in the nanocrystal titanium film at the room temperature environment, and the He-Ti atomic ratio reaches to 52.6%. When the temperature of specimen increases to 100 degree C, the helium concentration can be preserved to 89.6% of the keeping helium dose at room temperature and He-Ti atomic ratio reaches 44%. Even if the specimen temperature up to 400 degree C, the helium concentration still can be preserved to 32.6% of the keeping helium dose at room temperature and the He-Ti atomic ratio is 17.1%. Possible mechanism of helium effectively preserved in the nanocrystal titanium film is discussed based on the energy stability viewpoint

  12. Martensitic transformations in 304 stainless steel after implantation with helium, hydrogen and deuterium

    International Nuclear Information System (INIS)

    Johnson, E.; Grabaek, L.; Johansen, A.; Sarholt-Kristensen, L.; Hayashi, N.; Sakamoto, I.

    1988-01-01

    Using conversion electron Moessbauer spectroscopy (CEMS) and glancing angle X-ray diffraction, martensitic transformations have been studied in type 304 austenitic stainless steels implanted with 8 keV helium, hydrogen and deuterium. Furthermore, using CEMS in the energy selective mode (DCEMS), the distribution of martensite in the implantation zone has been analysed as a function of depth. Transformation of the implanted layer occurs after implantation with 10 21 m -2 He + ions while 100 times higher fluence is required for the implanted layer to transform after hydrogen or deuterium implantations. This difference is due to the ability of helium to form high pressure gas bubbles, while implanted hydrogen is continuously lost by back diffusion to the surface. The helium bubbles, which are confined under pressures as high as 60 GPa, will induce extremely high stress levels in the implanted layer, by which the martensitic transformation is directly induced. The fact that a much higher fluence of hydrogen or deuterium is required to induce the transformation, shows that radiation damage plays only a minor role. In this case, the martensitic transformation first occurs when the implanted layer resembles the state of a cathodically charged surface. (orig.)

  13. Annealing dislocation loops in OKh16N15M3T steel implanted by helium

    International Nuclear Information System (INIS)

    Utkelbaev, B.D.; Reutov, V.F.; Zhdan, G.T.

    1993-01-01

    With the use of electron microscopy a study was made into the influence of preliminary thermomechanical treatment on the process of dislocation loop development in austenitic stainless steel type OKh16N15M3T with helium on annealing. Preliminary treatment was shown to prevent dislocation loop formation to a greater or lesser extent. Preliminary 'cold' working and thermal ageing of the material are the most effective ways to suppress radiation defect formation when annealing helium implanted steel

  14. Impact of helium implantation and ion-induced damage on reflectivity of molybdenum mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Carrasco, A., E-mail: alvarogc@kth.se [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, 100 44 Stockholm (Sweden); Petersson, P.; Hallén, A. [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, 100 44 Stockholm (Sweden); Grzonka, J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw (Poland); Institute of Electronic Materials Technology, 133 Wolczynska Str., 01-919 Warsaw (Poland); Gilbert, M.R. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Fortuna-Zalesna, E. [Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw (Poland); Rubel, M. [Department of Fusion Plasma Physics, Royal Institute of Technology (KTH), Teknikringen 31, 100 44 Stockholm (Sweden)

    2016-09-01

    Molybdenum mirrors were irradiated with Mo and He ions to simulate the effect of neutron irradiation on diagnostic first mirrors in next-generation fusion devices. Up to 30 dpa were produced under molybdenum irradiation leading to a slight decrease of reflectivity in the near infrared range. After 3 × 10{sup 17} cm{sup −2} of helium irradiation, reflectivity decreased by up to 20%. Combined irradiation by helium and molybdenum led to similar effects on reflectivity as irradiation with helium alone. Ion beam analysis showed that only 7% of the implanted helium was retained in the first 40 nm layer of the mirror. The structure of the near-surface layer after irradiation was studied with scanning transmission electron microscopy and the extent and size distribution of helium bubbles was documented. The consequences of ion-induced damage on the performance of diagnostic components are discussed.

  15. Interaction of implanted deuterium and helium with beryllium: radiation enhanced oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R.A.

    1979-01-01

    The interaction of implanted deuterium and helium with beryllium is of significant interest in the application of first wall coatings and other components of fusion reactors. Electropolished polycrystalline beryllium was first implanted with an Xe backscatter marker at 1.98 MeV followed by either implantation with 5 keV diatomic deuterium or helium. A 2.0 MeV He beam was used to analyze for impurity buildup; namely oxygen. The oxide layer thickness was found to increase linearly with increasing implant fluence. A 2.5 MeV H/sup +/ beam was used to depth profile the D and He by ion backscattering. In addition the retention of the implant was measured as a function of the implant fluence. The mean depth of the implant was found to agree with theoretical range calculations. Scanning electron microscopy was used to observe blister formation. No blisters were observed for implanted D but for implanted He blisters occurred at approx. 1.75 x 10/sup 17/ He cm/sup -2/. The blister diameter increased with increasing implant fluence from about 0.8 ..mu..m at 10/sup 18/ He cm/sup -2/ to 5.5 ..mu..m at 3 x 10/sup 18/ He cm/sup -2/.

  16. Interaction of implanted deuterium and helium with beryllium: radiation enhanced oxidation

    International Nuclear Information System (INIS)

    Langley, R.A.

    1979-01-01

    The interaction of implanted deuterium and helium with beryllium is of significant interest in the application of first wall coatings and other components of fusion reactors. Electropolished polycrystalline beryllium was first implanted with an Xe backscatter marker at 1.98 MeV followed by either implantation with 5 keV diatomic deuterium or helium. A 2.0 MeV He beam was used to analyze for impurity buildup; namely oxygen. The oxide layer thickness was found to increase linearly with increasing implant fluence. A 2.5 MeV H + beam was used to depth profile the D and He by ion backscattering. In addition the retention of the implant was measured as a function of the implant fluence. The mean depth of the implant was found to agree with theoretical range calculations. Scanning electron microscopy was used to observe blister formation. No blisters were observed for implanted D but for implanted He blisters occurred at approx. 1.75 x 10 17 He cm -2 . The blister diameter increased with increasing implant fluence from about 0.8 μm at 10 18 He cm -2 to 5.5 μm at 3 x 10 18 He cm -2

  17. Structure and micro-mechanical properties of helium-implanted layer on Ti by plasma-based ion implantation

    International Nuclear Information System (INIS)

    Ma Xinxin; Li Jinlong; Sun Mingren

    2008-01-01

    The present paper concentrates on structure and micro-mechanical properties of the helium-implanted layer on titanium treated by plasma-based ion implantation with a pulsed voltage of -30 kV and doses of 3, 6, 9 and 12 x 10 17 ions/cm 2 , respectively. X-ray photoelectron spectroscopy and transmission electron microscopy are employed to characterize the structure of the implanted layer. The hardnesses at different depths of the layer were measured by nano-indentation. We found that helium ion implantation into titanium leads to the formation of bubbles with a diameter from a few to more than 10 nm and the bubble size increases with the increase of dose. The primary existing form of Ti is amorphous in the implanted layer. Helium implantation also enhances the ingress of O, C and N and stimulates the formations of TiO 2 , Ti 2 O 3 , TiO, TiC and TiN in the near surface layer. And the amount of the ingressed oxygen is obviously higher than those of nitrogen and carbon due to its higher activity. At the near surface layer, the hardnesses of all implanted samples increases remarkably comparing with untreated one and the maximum hardness has an increase by a factor of up to 3.7. For the samples implanted with higher doses of 6, 9 and 12 x 10 17 He/cm 2 , the local displacement bursts are clearly found in the load-displacement curves. For the samples implanted with a lower dose of 3 x 10 17 He/cm 2 , there is no obvious displacement burst found. Furthermore, the burst width increases with the increase of the dose

  18. A simple method to produce quasi-simultaneous multiple energy helium implantation

    International Nuclear Information System (INIS)

    Paszti, F.; Fried, M.; Manuaba, A.; Mezey, G.; Kotai, E.; Lohner, T.

    1982-11-01

    If a monoenergetic ion beam is bombarding a target through an absorber foil tilted continuously (i.e. its effective thickness changing continuously), the depth distribution of the implanted ions in the sample depends on the way the absorber is moving. The present paper describes a way of absorber tilting for obtaining a uniform depth distribution and its experimental verification in the case of MeV energy helium ions implanted into aluminium target. (author)

  19. Helium behaviour in UO{sub 2} through low fluence ion implantation studies

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, P., E-mail: philippe.garcia@cea.fr [CEA – DEN/DEC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Gilabert, E. [Centre d’Et' udes Nucleáires de Bordeaux-Gradignan, Le Haut Vigneau, 33175 Gradignan (France); Martin, G.; Carlot, G.; Sabathier, C. [CEA – DEN/DEC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Sauvage, T.; Desgardin, P.; Barthe, M.-F. [CNRS-CEMHTI, UPR3079, 45071 Orleáns (France)

    2014-05-01

    In this work we focus on experiments involving implantation of 500 keV {sup 3}He ions in sintered polycrystalline material. Samples are implanted at low fluences (∼2 ×10{sup 13} ions/cm{sup 2}) and subsequently isothermally annealed in a highly sensitive thermal desorption spectrometry (TDS) device PIAGARA (Plateforme Interdisciplinaire pour l’Analyse des GAz Rares en Aquitaine). The helium fluencies studied are two to three orders of magnitude lower than previous Nuclear Reaction Analysis (NRA) experiments carried out on identical samples implanted at identical energies. The fractional release of helium obtained in the TDS experiments is interpreted using a three-dimensional axisymmetric diffusion model which enables results to be quantitatively compared to previous NRA data. The analysis shows that helium behaviour is qualitatively independent of ion fluency over three orders of magnitude: helium diffusion appears to be strongly inhibited below 1273 K within the centre of the grains presumably as a result of helium bubble precipitation. The scenario involving diffusion at grain boundaries and in regions adjacent to them observed at higher fluencies is quantitatively confirmed at much lower doses. The main difference lies in the average width of the region in which uninhibited diffusion occurs.

  20. Effects of helium implantation on fatigue properties of F82H-IEA heat

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, N.; Murase, Y.; Nagakawa, J. [National Research Institute for Metals, Tsukuba, Ibaraki (Japan)

    2007-07-01

    Full text of publication follows: Ferritic steels including reduced activation ones that have been recognized as attractive structural candidates for DEMO reactors and the beyond are known to be highly resistant to helium embrittlement. However, almost studies that deduced this behavior have been carried out by means of short time experiments such as tensile tests, and a few results are available concerning long term inspections, although the detrimental helium effect appears more severely in the latter. The aim of this work is to obtain further information on the influence of helium on fatigue properties of a representative reduced activation ferritic/martensitic steel F82H (8Cr2WVTa) using helium implantation technique with a cyclotron. The material examined is an IEA heat version of F82H. In order to realize a fine grain size due to thin specimens (0.08 mm thick) for ion irradiation, normalizing was conducted at rather low temperature of 1213 K, followed by tempering at 1023 K. Helium was implanted by {alpha}-particle irradiation at 823 K, a desired highest temperature of this material for first wall application, to the concentration of 100 appm He with an implantation rate of about 1.7 x 10{sup -3} appm He/s. Subsequent fatigue tests were conducted at the same temperature as that of irradiation, not only on implanted specimens but also on reference controls which were not implanted with helium but experienced the same metallurgical histories as those of irradiated ones. After fracture, samples were observed with electron microscopes. In short time periods, it has been notified that helium introduction caused no significant deterioration of both fatigue life and extension at fracture. In addition, all specimens failed in a fully trans-crystalline and ductile manner, irrespective of whether helium was present or not. Indication of grain boundary embrittlement was therefore not discerned. These facts would reflect insusceptible characteristics of this material to

  1. Effects of helium implantation on fatigue properties of F82H-IEA heat

    International Nuclear Information System (INIS)

    Yamamoto, N.; Murase, Y.; Nagakawa, J.

    2007-01-01

    Full text of publication follows: Ferritic steels including reduced activation ones that have been recognized as attractive structural candidates for DEMO reactors and the beyond are known to be highly resistant to helium embrittlement. However, almost studies that deduced this behavior have been carried out by means of short time experiments such as tensile tests, and a few results are available concerning long term inspections, although the detrimental helium effect appears more severely in the latter. The aim of this work is to obtain further information on the influence of helium on fatigue properties of a representative reduced activation ferritic/martensitic steel F82H (8Cr2WVTa) using helium implantation technique with a cyclotron. The material examined is an IEA heat version of F82H. In order to realize a fine grain size due to thin specimens (0.08 mm thick) for ion irradiation, normalizing was conducted at rather low temperature of 1213 K, followed by tempering at 1023 K. Helium was implanted by α-particle irradiation at 823 K, a desired highest temperature of this material for first wall application, to the concentration of 100 appm He with an implantation rate of about 1.7 x 10 -3 appm He/s. Subsequent fatigue tests were conducted at the same temperature as that of irradiation, not only on implanted specimens but also on reference controls which were not implanted with helium but experienced the same metallurgical histories as those of irradiated ones. After fracture, samples were observed with electron microscopes. In short time periods, it has been notified that helium introduction caused no significant deterioration of both fatigue life and extension at fracture. In addition, all specimens failed in a fully trans-crystalline and ductile manner, irrespective of whether helium was present or not. Indication of grain boundary embrittlement was therefore not discerned. These facts would reflect insusceptible characteristics of this material to high

  2. Depth-dependence recovery of helium-implanted 18 carats gold-silver alloy

    Energy Technology Data Exchange (ETDEWEB)

    Thome, T.; Grynszpan, R.I. [DCE-CTA-LOT, Arcueil (France); Lab. de Chimie Metallurgique des Terres Rares, Thiais (France); Fradin, J. [DCE-CTA-LOT, Arcueil (France); SINUMEF, Ecole Nationale Superieure d' Arts et Metiers, Paris (France); Anwand, W.; Brauer, G. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    2001-07-01

    Helium diffusion in Au{sub 60}Ag{sub 40} is investigated using a variable energy positron beam. The positron diffusion length of the annealed material (66 {+-} 1 nm) is reduced after implantation of 2.2 x 10{sup 14} He ions/cm{sup 2} at 300 keV. During isochronal annealing up to 600 K, the recovery rate of the Doppler broadening lineshape parameter S strongly depends on the distance to the helium implantation peak, indicating an increase of the defect stabilization by He atoms. In contrast, for subsequent annealing, and irrespective of the depth, a maximum in S occurs at 670 K (around 0.5 T{sub m}) resulting from competing processes of growth and breaking up of helium bubbles. (orig.)

  3. Thermal desorption of deuterium from polycrystalline nickel pre-implanted with helium

    International Nuclear Information System (INIS)

    Shi, S.Q.; Abramov, E.; Thompson, D.A.

    1990-01-01

    The thermal desorption technique has been used to study the trapping of deuterium atoms in high-purity polycrystalline nickel pre-implanted with helium for 1 x 10 19 to 5 x 10 20 ions/m 2 . The effect of post-implantation annealing at 703 K and 923 K on the desorption behavior was investigated. Measured values of the total amount of detrapped deuterium (Q T ) and helium concentration were used in a computer simulation of the desorption curve. It was found that the simulation using one or two discrete trap energies resulted in an inadequate fit between the simulated and the measured data. Both experimental and simulation results are explained using a stress-field trapping model. The effective binding energy, E b eff , was estimated to be in the range of 0.4-0.6 eV. Deuterium charging was found to stimulate a release of helium at a relatively low temperature

  4. On depth profiling of hydrogen and helium isotopes and its application to ion-implantation studies

    International Nuclear Information System (INIS)

    Boettiger, J.

    1979-01-01

    The thesis is divided into two parts, the first being a general review of the experimental methods for depth profiling of light isotopes, where ion beams are used. In the second part, studies of ion implantation of hydrogen and helium isotopes, applying the techniques discussed in the first part, are described. The paper summarizes recent experimental results and discusses recent developments. (Auth.)

  5. Positron and nanoindentation study of helium implanted high chromium ODS steels

    Science.gov (United States)

    Veternikova, Jana Simeg; Fides, Martin; Degmova, Jarmila; Sojak, Stanislav; Petriska, Martin; Slugen, Vladimir

    2017-12-01

    Three oxide dispersion strengthened (ODS) steels with different chromium content (MA 956, MA 957 and ODM 751) were studied as candidate materials for new nuclear reactors in term of their radiation stability. The radiation damage was experimentally simulated by helium ion implantation with energy of ions up to 500 keV. The study was focused on surface and sub-surface structural change due to the ion implantation observed by mostly non-destructive techniques: positron annihilation lifetime spectroscopy and nanoindentation. The applied techniques demonstrated the best radiation stability of the steel ODM 751. Blistering effect occurred due to high implantation dose (mostly in MA 956) was studied in details.

  6. Development of an in situ polymeric hydrogel implant of ...

    African Journals Online (AJOL)

    Purpose: To prepare and characterize in situ gel-forming implants of methylprednisolone for the treatment of spinal cord injuries. Methods: In situ hydrogels of methylprednisolone were prepared by dispersing polylactide glycolic acid (PLGA) polymer and methylprednisolone in N-methyl-pyrrolidone solvent, and subsequent ...

  7. On the blister formation in copper alloys due to the helium ion implantation

    International Nuclear Information System (INIS)

    Moreno, D.; Eliezer, D.

    1997-01-01

    Structural materials in fusion reactors will be exposed to alpha radiation and helium implantation over a broad range of energies. A new approach to the blister-formation phenomenon is discussed by means of the mathematical solution on a uniformly loaded circular plate with clamped edges (circular diaphragm). In the present investigation, it was found that blister formation depends on the mechanical properties of the alloys and the near-surface concentration of the implanted gas, which itself is contingent on the crystallographic orientation by means of the stopping power of the implanted atoms. The reported model is based on the fact that at certain depths from the surface, the pressure in the cavities approaches the yield stress of the metal and blistering starts. The thickness of this thin film depends on the mechanical properties of the specific metal. Once a blister cavity is formed, the deformation of the thin film to form a blister cap depends on the buildup of pressure in the cavity contingent on the implanted dose. For the present model, it is sufficient to say that the thickness of the blister's cap cannot be correlated with the projected range of the implantation, as assumed by other authors. The implanted helium concentration needed to build up enough gas pressure to create a blister at a depth which is close to the projected range is higher by 50 times than the gas helium concentration in the cavity. Experimental results, such as the fact that the blisters have burst at the edge of the circular skin, where the maximum stresses are developed, and the fact that at high implantation energy (large projected range), the bursting of the blisters occurs by multilayer caps, support the present model

  8. Low flux and low energy helium ion implantation into tungsten using a dedicated plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Pentecoste, Lucile [GREMI, CNRS/Université d’Orléans, 14 rue d’Issoudun, B.P. 6744, 45067 Orléans Cedex2 (France); Thomann, Anne-Lise, E-mail: anne-lise.thomann@univ-orleans.fr [GREMI, CNRS/Université d’Orléans, 14 rue d’Issoudun, B.P. 6744, 45067 Orléans Cedex2 (France); Melhem, Amer; Caillard, Amael; Cuynet, Stéphane; Lecas, Thomas; Brault, Pascal [GREMI, CNRS/Université d’Orléans, 14 rue d’Issoudun, B.P. 6744, 45067 Orléans Cedex2 (France); Desgardin, Pierre; Barthe, Marie-France [CNRS, UPR3079 CEMHTI, 1D avenue de la Recherche Scientifique, 45071 Orléans Cedex2 (France)

    2016-09-15

    The aim of this work is to investigate the first stages of defect formation in tungsten (W) due to the accumulation of helium (He) atoms inside the crystal lattice. To reach the required implantation conditions, i.e. low He ion fluxes (10{sup 11}–10{sup 14} ions.cm{sup 2}.s{sup −1}) and kinetic energies below the W atom displacement threshold (about 500 eV for He{sup +}), an ICP source has been designed and connected to a diffusion chamber. Implantation conditions have been characterized by means of complementary diagnostics modified for measurements in this very low density helium plasma. It was shown that lowest ion fluxes could only be reached for the discharge working in capacitive mode either in α or γ regime. Special attention was paid to control the energy gained by the ions by acceleration through the sheath at the direct current biased substrate. At very low helium pressure, in α regime, a broad ion energy distribution function was evidenced, whereas a peak centered on the potential difference between the plasma and the biased substrate was found at higher pressures in the γ mode. Polycrystalline tungsten samples were exposed to the helium plasma in both regimes of the discharge and characterized by positron annihilation spectroscopy in order to detect the formed vacancy defects. It was found that W vacancies are able to be formed just by helium accumulation and that the same final implanted state is reached, whatever the operating mode of the capacitive discharge.

  9. Positron annihilation investigation and nuclear reaction analysis of helium and oxygen-implanted zirconia

    International Nuclear Information System (INIS)

    Grynszpan, R.I.; Saude, S.; Anwand, W.; Brauer, G.

    2005-01-01

    Since irradiation affects in-service properties of zirconia, we investigated the fluence dependence on production and thermal stability of defects induced by helium and oxygen-ion implantation in single crystals of yttria-fully-stabilized zirconia. In either case, depth profiling by slow positron implantation spectroscopy (SPIS) detects a distribution of vacancy-type defects peaking at 60% of the projected ion range R p . Owing to the saturation of positron-trapping occurring for low fluences, which depends on the ion mass, we could estimate a critical size of clusters ranging from 0.4 to 1.6 nm. The lack of SPIS-evidence of an open-volume excess at R p is explained by the presence of over-pressurized gas bubbles. This assumption is confirmed by Nuclear Reaction Analysis of 3 He concentration profiles, which shows that helium remains partly trapped at R p , even after annealing above 400 o C

  10. Study of diffusion mechanisms of helium atoms in face-centered cubic metals after α - implantation in a cyclotron

    International Nuclear Information System (INIS)

    Sciani, V.; Lucki, G.; Jung, P.

    1984-01-01

    Helium has been homogeneously introduced into gold foils at room temperature by alpha implantation in a CV-28 cyclotron. After implantation the helium release was observed in isothermal and linear heating experiments. The diffusion coefficient follows an Arrhenius behaviour with D sub(o) = 0.1 cm 2 /s and ΔH = 1.7 eV. Possible diffusion mechanisms are discussed. (Author) [pt

  11. Effect of helium implantation on mechanical properties of EUROFER97 evaluated by nanoindentation

    International Nuclear Information System (INIS)

    Roldán, M.; Fernández, P.; Rams, J.; Jiménez-Rey, D.; Ortiz, C.J.; Vila, R.

    2014-01-01

    Helium effects on EUROFER97 mechanical properties were studied by means of nanoindentation. The steel was implanted with He ions in a stair-like profile configuration using energies from 2 to 15 MeV at room temperature. Firstly, a deep nanoindentation study was carried out on as-received state (normalized + tempered) in order to obtain a reliable properties database at the nanometric scale, including aspects such as indentation size effect. The nanoindentation hardness of tests on He implanted samples showed a hardness increase depending on the He concentration. The hardness increase follows the He implantation concentration profile with a good accuracy according to BCA calculations using MARLOWE code, considering the whole volume affected by the nanoindentation tests. The results obtained in this work shown that nanoindentation technique permits to assess any change of hardness properties due to ion implantation

  12. Damage, trapping and desorption at the implantation of helium and deuterium in graphite, diamond and silicon carbide

    International Nuclear Information System (INIS)

    Lopez, G.A.R.

    1995-07-01

    The production, thermal stability and structure of ion induced defects have been studied by Rutherford backscattering in channeling geometry for the implantation of helium and deuterium in graphite, diamond and silicon carbide with energies of 8 and 20 keV. At the implantation of deuterium and helium ions more defects were measured in graphite than in diamond or silicon carbide at equal experimental conditions. This is due to increased backscattering in graphite, which is caused by the splitting and tilting of crystallites and a local reordering of lattice atoms around defects. At 300 K, Helium produces more defects in all three materials than deuterium with equal depth distribution of defects. The ratio of the defects produced by helium and deuterium agrees very well with the corresponding ratio of the energy deposited in nuclear collisions. In graphite, only small concentrations of deuterium induced defects anneal below 800 K, while in diamond small concentrations of deuterium as well as of helium induced defects anneal mostly below 800 K. This annealing behavior is considered to be due to recombination of point defects. The buildup of helium and deuterium in graphite is different. The trapping of deuterium proceeds until saturation is reached, while in the case of helium trapping is interrupted by flaking. In diamond, deuterium as well as helium are trapped almost completely until at higher fluences reemission starts and saturation is reached. Two desorption mechanisms were identified for the thermal desorption of helium from base-oriented graphite. Helium implanted at low fluences desorbs diffusing to the surface, while for the implantation of high fluences the release of helium due to blistering dominates. The desorption of deuterium from graphite and diamond shows differences. While in graphite the desorption starts already at 800 K, in diamond up to 1140 K only little desorption can be observed. These differences can be explained by the different transport

  13. In-situ observation of damage evolution in TiC crystals during helium ion irradiation

    International Nuclear Information System (INIS)

    Hojou, K.; Otsu, H.; Furuno, S.; Izui, K.; Tsukamoto, T.

    1994-01-01

    In-situ observations were performed on bubble formation and growth in TiC during 20 keV helium ion irradiation over the wide range of irradiation temperatures from 12 to 1523 K. No amorphization occurred over this temperature range. The bubble densities and sizes were almost independent of irradiation temperatures from 12 to 1273 K. Remarkable growth and coalescence occurred during irradiation at high temperature above 1423 K and during annealing above 1373 K after irradiation. ((orig.))

  14. Microstructure and thermomechanical pretreatment effects on creep behaviour of helium-implanted DIN 1.4970 austenitic stainless steel

    International Nuclear Information System (INIS)

    Matta, M.K.; Kesternich, W.

    1990-01-01

    Microstructure investigations were carried out on unimplanted and 150 at ppm helium implanted foil specimens of DIN 1.4970 austenitic stainless steel after various thermomechanical pretreatments. Creep test were also carried out for both helium-implanted and unimplanted specimens at 700degC and 800degC. The strength, ductility and rupture time are correalted with the dislocation and precipitate distributions. Helium embrittlement can be reduced in these experiments when dispersive TiC precipitate distributions are produced by proper pretreatments or allowed to form during creep test. (author). 14 refs., 11 figs

  15. Damage and in-situ annealing during ion implantation

    International Nuclear Information System (INIS)

    Sadana, D.K.; Washburn, J.; Byrne, P.F.; Cheung, N.W.

    1982-11-01

    Formation of amorphous (α) layers in Si during ion implantation in the energy range 100 keV-11 MeV and temperature range liquid nitrogen (LN)-100 0 C has been investigated. Cross-sectional transmission electron microscopy (XTEM) shows that buried amorphous layers can be created for both room temperature (RT) and LN temperature implants, with a wider 100 percent amorphous region for the LN cooled case. The relative narrowing of the α layer during RT implantation is attributed to in-situ annealing. Implantation to the same fluence at temperatures above 100 0 C does not produce α layers. To further investigate in situ annealing effects, specimens already containing buried α layers were further irradiated with ion beams in the temperature range RT-400 0 C. It was found that isolated small α zones (less than or equal to 50 diameter) embedded in the crystalline matrix near the two α/c interfaces dissolved into the crystal but the thickness of the 100 percent α layer was not appreciably affected by further implantation at 200 0 C. A model for in situ annealing during implantation is presented

  16. Comparison of platelet formation in hydrogen and helium-implanted silicon

    International Nuclear Information System (INIS)

    Hebras, X.; Nguyen, P.; Bourdelle, K.K.; Letertre, F.; Cherkashin, N.; Claverie, A.

    2007-01-01

    A comparative transmission electron microscopy study of the extended defects formed in (0 0 1) Si after hydrogen or helium implantation was performed. Quantitative data on the size and density of the defects with different crystallographic variants have been obtained. Common defects observed after implants with a dose of 1 x 10 16 cm -2 and isothermal anneals at 350 o C in the presence of a stiffener were platelet-like structures lying on {1 0 0} habit planes parallel and perpendicular to the wafer surface. The differences in the defect morphology and in the variant platelet population are correspondingly related to the different chemical reactivity of H and He and the different compressive biaxial stresses generated by the H and He implants

  17. Helium implanted Eurofer97 characterized by positron beam Doppler broadening and Thermal Desorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, I., E-mail: i.carvalho@m2i.nl [Materials Innovation Institute (M2i), Delft (Netherlands); Schut, H. [Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Fedorov, A.; Luzginova, N. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Desgardin, P. [CEMHTI-CNRS, 3A Rue de la Férolerie, 45071 Orléans Cedex (France); Sietsma, J. [Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, Delft (Netherlands)

    2013-11-15

    Reduced Activation Ferritic/Martensitic steels are being extensively studied because of their foreseen application in fusion and Generation IV fission reactors. To produce irradiation induced defects, Eurofer97 samples were implanted with helium at energies of 500 keV and 2 MeV and doses of 1 × 10{sup 15}–10{sup 16} He/cm{sup 2}, creating atomic displacements in the range 0.07–0.08 dpa. The implantation induced defects were characterized by positron beam Doppler Broadening (DB) and Thermal Desorption Spectroscopy (TDS). Results show that up to ∼600 K peaks that can be attributed to He desorption from overpressured He{sub n}V{sub m} (n > m) clusters and vacancy assisted mechanism in the case of helium in the substitutional position. The temperature range 600–1200 K is related to the formation of larger clusters He{sub n}V{sub m} (n < m). The dissociation of the HeV and the phase transition attributed to a sharp peak in the TDS spectra at 1200 K. Above this temperature, the release of helium from bubbles is observed.

  18. Effect of 3.0 MeV helium implantation on electrical characteristics of 4H-SiC BJTs

    International Nuclear Information System (INIS)

    Usman, Muhammad; Hallen, Anders; Ghandi, Reza; Domeij, Martin

    2010-01-01

    Degradation of 4H-SiC power bipolar junction transistors (BJTs) under the influence of a high-energy helium ion beam was studied. Epitaxially grown npn BJTs were implanted with 3.0 MeV helium in the fluence range of 10 10 -10 11 cm -2 . The devices were characterized by their current-voltage (I-V) behaviour before and after the implantation, and the results showed a clear degradation of the output characteristics of the devices. Annealing these implanted devices increased the interface traps between passivation oxide and the semiconductor, resulting in an increase of base current in the low-voltage operation range.

  19. Helium implanted RAFM steels studied by positron beam Doppler Broadening and Thermal Desorption Spectroscopy

    International Nuclear Information System (INIS)

    Carvalho, I; Schut, H; Fedorov, A; Luzginova, N; Desgardin, P; Sietsma, J

    2013-01-01

    Reduced Activation Ferritic/Martensitic steels are being extensively studied because of their foreseen application in fusion and Generation IV fission reactors. To mimic neutron irradiation conditions, Eurofer97 samples were implanted with helium ions at energies of 500 keV and 2 MeV and doses of 5x10 15 -10 16 He /cm 2 , creating atomic displacements in the range 0.07–0.08 dpa. The implantation induced defects were characterized by positron beam Doppler Broadening (DB) and Thermal Desorption Spectroscopy (TDS). The DB data could be fitted with one or two layers of material, depending on the He implantation energy. The S and W values obtained for the implanted regions suggest the presence of not only vacancy clusters but also positron traps of the type present in a sub-surface region found on the reference sample. The traps found in the implanted layers are expected to be He n V m clusters. For the 2 MeV, 10 16 He/cm 2 implanted sample, three temperature regions can be observed in the TDS data. Peaks below 450 K can be ascribed to He released from vacancies in the neighbourhood of the surface, the phase transition is found at 1180 K and the peak at 1350 K is likely caused by the migration of bubbles.

  20. Particle energy loss spectroscopy and SEM studies of topography development in thin aluminium films implanted with high doses of helium

    International Nuclear Information System (INIS)

    Barfoot, K.M.; Webb, R.P.; Donnelly, S.E.

    1984-01-01

    Development of topography in thin (55.5 μg cm -2 ) self-supporting aluminium films, caused by high fluence (approx. 10 17 ions cm -2 ) irradiation with 5 keV helium ions, has been observed. This has been achieved by measuring the topography-enhanced energy straggling of 0.40 MeV 4 He + ions transmitted through the foils and detected with an electrostatic analyser of resolution 0.2 keV. Features, about 0.7 μm in width, are observed with scanning electron microscopy. TRIM Monte Carlo calculations of the implantation processes are performed in order to follow the helium implantation and damage depth distributions. It is deduced that a form of thin film micro-wrinkling has occurred which is caused by the relief of stress brought about by the implantation of helium. (author)

  1. Study of helium diffusion, implanted at a cyclotron, in face-centered cubic metals: Au, Ag and Al

    International Nuclear Information System (INIS)

    Sciani, V.

    1985-01-01

    Helium in metals is produced by nuclear reactions of energetic particles. In nuclear technology the interest on helium in metals is import, due to its production by (n, α) reaction. Because helium has extremely low solubility in metals, the precipitation in the form of filled bubbles at elevated temperatures occurs, which have detrimental effects on mechanical properties and may limit the lifetime of structural components. One typical example is the high temperature embrittlement. The nucleation and growth of the bubbles strongly depends on the mobility of the helium. This work presents the study of helium diffusion in Au, Ag and Al at temperatures above room temperature. The helium created by (n, α) reactions has been simulated by homogeneous alpha particles implantation in cyclotron, at room temperature, in specimens of thicknesses between 5 and 50 μm and helium concentration between 10 -3 to 10 ppm. After implantation, the specimens were dropped in a furnace in a UHV-chamber and the diffusion was measured by observing the He-release during linear and isothermal annealings. The occurence of free diffusion was comparing the dependence of release kinetics on helium concentration, sample thickness, time and heating rate to diffusion theory and is clearly separeted from agglomeration process. The diffusion constants of helium in Au, Ag and Al follow an Arrhenius behavior, with: Au:D o =10 -1.0 cm 2 /s ΔH=1.70eV Ag:D 0 =10 -1.2 cm 2 /s ΔH=1.51eV Al:D o =10 +0.5 cm 2 /s ΔH=1.40eV. The results are compared to self-diffusion and to the diffusion of other gases in these metals. Comparison with theoretical estimates favours the vacancy mechanism for helium diffusion in Au, Ag and Al. (author) [pt

  2. Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation

    Science.gov (United States)

    Chen, Da; Tong, Y.; Li, H.; Wang, J.; Zhao, Y. L.; Hu, Alice; Kai, J. J.

    2018-04-01

    Face-centered cubic (FCC) high-entropy alloys (HEA), as emerging alloys with equal-molar or near equal-molar constituents, show a promising radiation damage resistance under heavy ion bombardment, making them potential for structural material application in next-generation nuclear reactors, but the accumulation of light helium ions, a product of nuclear fission reaction, has not been studied. The present work experimentally studied the helium accumulation and bubble formation at implantation temperatures of 523 K, 573 K and 673 K in a homogenized FCC FeCoNiCr HEA, a HEA showing excellent radiation damage resistance under heavy ion irradiation. The size and population density of helium bubbles in FeCoNiCr samples were quantitatively analyzed through transmission electron microscopy (TEM), and the helium content existing in bubbles were estimated from a high-pressure Equation of State (EOS). We found that the helium diffusion in such condition was dominated by the self-interstitial/He replacement mechanism, and the corresponding activation energy in FeCoNiCr is comparable with the vacancy migration energy in Ni and austenitic stainless steel but only 14.3%, 31.4% and 51.4% of the accumulated helium precipitated into helium bubbles at 523 K, 573 K and 673 K, respectively, smaller than the pure Ni case. Importantly, the small bubble size suggested that FeCoNiCr HEA has a high resistance of helium bubble formation compared with Ni and steels.

  3. SIMS as a new methodology to depth profile helium in as-implanted and annealed pure bcc metals?

    Energy Technology Data Exchange (ETDEWEB)

    Gorondy-Novak, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Jomard, F. [Groupe d' Etude de la Matière Condensée, CNRS, UVSQ, 45 avenue des Etats-Unis, 78035 Versailles cedex (France); Prima, F. [PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Lefaix-Jeuland, H., E-mail: helene.lefaix@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-05-01

    Reliable He profiles are highly desirable for better understanding helium behavior in materials for future nuclear applications. Recently, Secondary Ions Mass Spectrometry (SIMS) allowed the characterization of helium distribution in as-implanted metallic systems. The Cs{sup +} primary ion beam coupled with CsHe{sup +} molecular detector appeared to be a promising technique which overcomes the very high He ionization potential. In this study, {sup 4}He depth profiles in pure body centered cubic (bcc) metals (V, Fe, Ta, Nb and Mo) as-implanted and annealed, were obtained by SIMS. All as-implanted samples exhibited a projected range of around 200 nm, in agreement with SRIM theoretical calculations. After annealing treatment, SIMS measurements evidenced the evolution of helium depth profile with temperature. The latter SIMS results were compared to the helium bubble distribution obtained by Transmission Electron Microscopy (TEM). This study confirmed the great potential of this experimental procedure as a He-depth profiling technique in bcc metals. Indeed, the methodology described in this work could be extended to other materials including metallic and non-metallic compounds. Nevertheless, the quantification of helium concentration after annealing treatment by SIMS remains uncertain probably due to the non-uniform ionization efficiency in samples containing large bubbles.

  4. Estimated solar wind-implanted helium-3 distribution on the Moon

    Science.gov (United States)

    Johnson, J. R.; Swindle, T.D.; Lucey, P.G.

    1999-01-01

    Among the solar wind-implanted volatiles present in the lunar regolith, 3 He is possibly the most valuable resource because of its potential as a fusion fuel. The abundance of 3 He in the lunar regolith at a given location depends on surface maturity, the amount of solar wind fluence, and titanium content, because ilmenite (FeTiO3) retains helium much better than other major lunar minerals. Surface maturity and TiO2 maps from Clementine multispectral data sets are combined here with a solar wind fluence model to produce a 3He abundance map of the Moon. Comparison of the predicted 3He values to landing site observations shows good correlation. The highest 3He abundances occur in the farside maria (due to greater solar wind fluence received) and in higher TiO2 nearside mare regions.

  5. In-situ observation of weld joint of austenitic stainless steel due to helium irradiation

    International Nuclear Information System (INIS)

    Hamada, S.; Hojou, K.; Hishinuma, A.

    1992-01-01

    Microstructural evolution during helium ions irradiation in a weld metal containing 10% delta-ferrite of a weld joint of Ti-modified austenitic stainless steel were in-situ observed through a transmission electron microcopy. Very fine helium bubbles were observed in high number density in both a delta ferrite phase and a matrix to a dose of 3 x 10 19 ions·m -2 . Entirely different behavior appeared in both phases with increasing dose. Bubbles in a delta-ferrite phase were readily converted into voids during slight increment of dose, and these rapidly grew with additional increasing of dose. On the other hand, finer bubbles in a matrix were very stable during irradiation and did not grow any more up to 2 x 10 20 ions·m -2 . Swelling became much larger in a delta-ferrite phase than in a fcc matrix phase, resultantly ; This means an inverse phenomenon for conventional results that swelling is smaller in a ferrite phase than in a fcc phase. Sigma phase radiation-enhanced precipitated at the grain boundary between a delta-ferrite phase and a matrix at a dose 9 x 10 19 ions·m -2 . This phase grew in two dimensions with increasing dose. The chemical composition of the sigma phase observed during irradiation showed Cr and Mo enrichment, and Fe and Ni depletion compared with those of a sigma phase thermally produced. (author)

  6. Effect of 3.0 MeV helium implantation on electrical characteristics of 4H-SiC BJTs

    Energy Technology Data Exchange (ETDEWEB)

    Usman, Muhammad; Hallen, Anders; Ghandi, Reza; Domeij, Martin, E-mail: musman@kth.s [Microelectronics and Applied Physics, School of Communication and Information Technology, Royal Institute of Technology (KTH), Electrum 229, 16440 Kista (Sweden)

    2010-11-01

    Degradation of 4H-SiC power bipolar junction transistors (BJTs) under the influence of a high-energy helium ion beam was studied. Epitaxially grown npn BJTs were implanted with 3.0 MeV helium in the fluence range of 10{sup 10}-10{sup 11} cm{sup -2}. The devices were characterized by their current-voltage (I-V) behaviour before and after the implantation, and the results showed a clear degradation of the output characteristics of the devices. Annealing these implanted devices increased the interface traps between passivation oxide and the semiconductor, resulting in an increase of base current in the low-voltage operation range.

  7. Temperature dependence of helium-implantation-induced lattice swelling in polycrystalline tungsten: X-ray micro-diffraction and Eigenstrain modelling

    International Nuclear Information System (INIS)

    Broglie, I. de; Beck, C.E.; Liu, W.; Hofmann, F.

    2015-01-01

    Using synchrotron X-ray micro-diffraction and Eigenstrain analysis the distribution of lattice swelling near grain boundaries in helium-implanted polycrystalline tungsten is quantified. Samples heat-treated at up to 1473 K after implantation show less uniform lattice swelling that varies significantly from grain to grain compared to as-implanted samples. An increase in lattice swelling is found in the vicinity of some grain boundaries, even at depths beyond the implanted layer. These findings are discussed in terms of the evolution of helium-ion-implantation-induced defects

  8. Charge collection in Si detectors irradiated in situ at superfluid helium temperature

    Science.gov (United States)

    Verbitskaya, Elena; Eremin, Vladimir; Zabrodskii, Andrei; Dehning, Bernd; Kurfürst, Christoph; Sapinski, Mariusz; Bartosik, Marcin R.; Egorov, Nicolai; Härkönen, Jaakko

    2015-10-01

    Silicon and diamond detectors operated in a superfluid helium bath are currently being considered for the upgrade of the LHC beam loss monitoring system. The detectors would be installed in immediate proximity of the superconducting coils of the triplet magnets. We present here the results of the in situ irradiation test for silicon detectors using 23 GeV protons while keeping the detectors at a temperature of 1.9 K. Red laser (630 nm) Transient Current Technique and DC current measurements were used to study the pulse response and collected charge for silicon detectors irradiated to a maximum radiation fluence of 1×1016 p/cm2. The dependence between collected charge and irradiation fluence was parameterized using the Hecht equation and assumption of a uniform electric field distribution. The collected charge was found to degrade with particle fluence for both bias polarities. We observed that the main factor responsible for this degradation was related to trapping of holes on the donor-type radiation-induced defects. In contrast to expectations, along with formation of donors, acceptor-type defects (electron traps) are introduced into the silicon bulk. This suggests that the current models describing charge collection in irradiated silicon detectors require an extension for taking into account trapping at low temperatures with a contribution of shallow levels. New in situ irradiation tests are needed and planned now to extend statistics of the results and gain a deeper insight into the physics of low temperature detector operation in harsh radiation environment.

  9. Final Report on Investigations of the influence of Helium concentration and implantation rate on Cavity Nucleation and Growth during neutron irradiation of Fe and EUROFER 97

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, Bachu Narain; Golubov, S.

    This report presents results of investigations of damage accumulation during neutron irradiation of pure iron and EUROFER 97 steel with or without prior helium implantation. The defect microstructure, in particular the cavities, was characterized using Positron Annihilation Spectroscopy (PAS) and...

  10. Complementary study of the internal porous silicon layers formed under high-dose implantation of helium ions

    Energy Technology Data Exchange (ETDEWEB)

    Lomov, A. A., E-mail: lomov@ftian.ru; Myakon’kikh, A. V. [Russian Academy of Sciences, Institute of Physics and Technology (Russian Federation); Chesnokov, Yu. M. [National Research Centre “Kurchatov Institute” (Russian Federation); Shemukhin, A. A.; Oreshko, A. P. [Moscow State University (Russian Federation)

    2017-03-15

    The surface layers of Si(001) substrates subjected to plasma-immersion implantation of helium ions with an energy of 2–5 keV and a dose of 5 × 10{sup 17} cm{sup –2} have been investigated using high-resolution X-ray reflectivity, Rutherford backscattering, and transmission electron microscopy. The electron density depth profile in the surface layer formed by helium ions is obtained, and its elemental and phase compositions are determined. This layer is found to have a complex structure and consist of an upper amorphous sublayer and a layer with a porosity of 30–35% beneath. It is shown that the porous layer has the sharpest boundaries at a lower energy of implantable ions.

  11. Charge collection in Si detectors irradiated in situ at superfluid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Verbitskaya, Elena, E-mail: elena.verbitskaya@cern.ch [Ioffe Institute, 26 Politekhnicheskaya str., St. Petersburg 194021 (Russian Federation); Eremin, Vladimir; Zabrodskii, Andrei [Ioffe Institute, 26 Politekhnicheskaya str., St. Petersburg 194021 (Russian Federation); Dehning, Bernd; Kurfürst, Christoph; Sapinski, Mariusz; Bartosik, Marcin R. [CERN, CH-1211, Geneva 23 (Switzerland); Egorov, Nicolai [Research Institute of Material Science and Technology, 4 Passage 4806, Moscow, Zelenograd 124460 (Russian Federation); Härkönen, Jaakko [Helsinki Institute of Physics, P.O.Box 64 (Gustaf Hallströmin katu 2) FI-00014 University of Helsinki (Finland)

    2015-10-01

    Silicon and diamond detectors operated in a superfluid helium bath are currently being considered for the upgrade of the LHC beam loss monitoring system. The detectors would be installed in immediate proximity of the superconducting coils of the triplet magnets. We present here the results of the in situ irradiation test for silicon detectors using 23 GeV protons while keeping the detectors at a temperature of 1.9 K. Red laser (630 nm) Transient Current Technique and DC current measurements were used to study the pulse response and collected charge for silicon detectors irradiated to a maximum radiation fluence of 1×10{sup 16} p/cm{sup 2}. The dependence between collected charge and irradiation fluence was parameterized using the Hecht equation and assumption of a uniform electric field distribution. The collected charge was found to degrade with particle fluence for both bias polarities. We observed that the main factor responsible for this degradation was related to trapping of holes on the donor-type radiation-induced defects. In contrast to expectations, along with formation of donors, acceptor-type defects (electron traps) are introduced into the silicon bulk. This suggests that the current models describing charge collection in irradiated silicon detectors require an extension for taking into account trapping at low temperatures with a contribution of shallow levels. New in situ irradiation tests are needed and planned now to extend statistics of the results and gain a deeper insight into the physics of low temperature detector operation in harsh radiation environment. - Highlights: • Si detectors irradiated in situ at 1.9 K by 23 GeV protons are further studied. • Trapping parameters are derived from the fits of collected charge vs. fluence data. • Acceptor-type defects are likely to be induced along with donor-type ones. • Trapping of holes has a dominating effect on the collected charge degradation. • New tests are planned to gain deeper insight

  12. Visualization of spiral ganglion neurites within the scala tympani with a cochlear implant in situ.

    Science.gov (United States)

    Chikar, Jennifer A; Batts, Shelley A; Pfingst, Bryan E; Raphael, Yehoash

    2009-05-15

    Current cochlear histology methods do not allow in situ processing of cochlear implants. The metal components of the implant preclude standard embedding and mid-modiolar sectioning, and whole mounts do not have the spatial resolution needed to view the implant within the scala tympani. One focus of recent auditory research is the regeneration of structures within the cochlea, particularly the ganglion cells and their processes, and there are multiple potential benefits to cochlear implant users from this work. To facilitate experimental investigations of auditory nerve regeneration performed in conjunction with cochlear implantation, it is critical to visualize the cochlear tissue and the implant together to determine if the nerve has made contact with the implant. This paper presents a novel histological technique that enables simultaneous visualization of the in situ cochlear implant and neurofilament-labeled nerve processes within the scala tympani, and the spatial relationship between them.

  13. In situ microradioscopy and microtomography of fatigue-loaded dental two-piece implants.

    Science.gov (United States)

    Wiest, Wolfram; Zabler, Simon; Rack, Alexander; Fella, Christian; Balles, Andreas; Nelson, Katja; Schmelzeisen, Rainer; Hanke, Randolf

    2015-11-01

    Synchrotron real-time radioscopy and in situ microtomography are the only techniques providing direct visible information on a micrometre scale of local deformation in the implant-abutment connection (IAC) during and after cyclic loading. The microgap formation at the IAC has been subject to a number of studies as it has been proposed to be associated with long-term implant success. The next step in this scientific development is to focus on the in situ fatigue procedure of two-component dental implants. Therefore, an apparatus has been developed which is optimized for the in situ fatigue analysis of dental implants. This report demonstrates both the capability of in situ radioscopy and microtomography at the ID19 beamline for the study of cyclic deformation in dental implants. The first results show that it is possible to visualize fatigue loading of dental implants in real-time radioscopy in addition to the in situ fatigue tomography. For the latter, in situ microtomography is applied during the cyclic loading cycles in order to visualize the opening of the IAC microgap. These results concur with previous ex situ studies on similar systems. The setup allows for easily increasing the bending force, to simulate different chewing situations, and is, therefore, a versatile tool for examining the fatigue processes of dental implants and possibly other specimens.

  14. In situ microradioscopy and microtomography of fatigue-loaded dental two-piece implants

    Energy Technology Data Exchange (ETDEWEB)

    Wiest, Wolfram; Zabler, Simon, E-mail: simon.zabler@physik.uni-wuerzburg.de [University of Würzburg (Germany); Rack, Alexander [European Synchrotron Radiation Facility (France); Fella, Christian; Balles, Andreas [University of Würzburg (Germany); Nelson, Katja; Schmelzeisen, Rainer [Medical Centre – University of Freiburg (Germany); Hanke, Randolf [University of Würzburg (Germany); Fraunhofer EZRT, Fürth (Germany)

    2015-10-09

    Results of a novel in situ microradiography and microtomography setup for the study of fatigue processes are presented. This setup is optimized for the requirements of dental implants and use at synchrotron imaging beamlines. Synchrotron real-time radioscopy and in situ microtomography are the only techniques providing direct visible information on a micrometre scale of local deformation in the implant–abutment connection (IAC) during and after cyclic loading. The microgap formation at the IAC has been subject to a number of studies as it has been proposed to be associated with long-term implant success. The next step in this scientific development is to focus on the in situ fatigue procedure of two-component dental implants. Therefore, an apparatus has been developed which is optimized for the in situ fatigue analysis of dental implants. This report demonstrates both the capability of in situ radioscopy and microtomography at the ID19 beamline for the study of cyclic deformation in dental implants. The first results show that it is possible to visualize fatigue loading of dental implants in real-time radioscopy in addition to the in situ fatigue tomography. For the latter, in situ microtomography is applied during the cyclic loading cycles in order to visualize the opening of the IAC microgap. These results concur with previous ex situ studies on similar systems. The setup allows for easily increasing the bending force, to simulate different chewing situations, and is, therefore, a versatile tool for examining the fatigue processes of dental implants and possibly other specimens.

  15. In situ microradioscopy and microtomography of fatigue-loaded dental two-piece implants

    International Nuclear Information System (INIS)

    Wiest, Wolfram; Zabler, Simon; Rack, Alexander; Fella, Christian; Balles, Andreas; Nelson, Katja; Schmelzeisen, Rainer; Hanke, Randolf

    2015-01-01

    Results of a novel in situ microradiography and microtomography setup for the study of fatigue processes are presented. This setup is optimized for the requirements of dental implants and use at synchrotron imaging beamlines. Synchrotron real-time radioscopy and in situ microtomography are the only techniques providing direct visible information on a micrometre scale of local deformation in the implant–abutment connection (IAC) during and after cyclic loading. The microgap formation at the IAC has been subject to a number of studies as it has been proposed to be associated with long-term implant success. The next step in this scientific development is to focus on the in situ fatigue procedure of two-component dental implants. Therefore, an apparatus has been developed which is optimized for the in situ fatigue analysis of dental implants. This report demonstrates both the capability of in situ radioscopy and microtomography at the ID19 beamline for the study of cyclic deformation in dental implants. The first results show that it is possible to visualize fatigue loading of dental implants in real-time radioscopy in addition to the in situ fatigue tomography. For the latter, in situ microtomography is applied during the cyclic loading cycles in order to visualize the opening of the IAC microgap. These results concur with previous ex situ studies on similar systems. The setup allows for easily increasing the bending force, to simulate different chewing situations, and is, therefore, a versatile tool for examining the fatigue processes of dental implants and possibly other specimens

  16. Cavity nucleation and growth during helium implantation and neutron irradiation of Fe and steel

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, Bachu Narain

    In order to investigate the role of He in cavity nucleation in neutron irradiated iron and steel, pure iron and Eurofer-97 steel have been He implanted and neutron irradiated in a systematic way at different temperatures, to different He and neutron doses and with different He implantation rates....

  17. In-situ deposition of sacrificial layers during ion implantation

    International Nuclear Information System (INIS)

    Anders, A.; Anders, S.; Brown, I.G.; Yu, K.M.

    1995-02-01

    The retained dose of implanted ions is limited by sputtering. It is known that a sacrificial layer deposited prior to ion implantation can lead to an enhanced retained dose. However, a higher ion energy is required to obtain a similar implantation depth due to the stopping of ions in the sacrificial layer. It is desirable to have a sacrificial layer of only a few monolayers thickness which can be renewed after it has been sputtered away. We explain the concept and describe two examples: (i) metal ion implantation using simultaneously a vacuum arc ion source and filtered vacuum arc plasma sources, and (ii) Metal Plasma Immersion Ion Implantation and Deposition (MePIIID). In MePIIID, the target is immersed in a metal or carbon plasma and a negative, repetitively pulsed bias voltage is applied. Ions are implanted when the bias is applied while the sacrificial layer suffers sputtering. Low-energy thin film deposition - repair of the sacrificial layer -- occurs between bias pulses. No foreign atoms are incorporated into the target since the sacrificial film is made of the same ion species as used in the implantation phase

  18. In situ radiation test of silicon and diamond detectors operating in superfluid helium and developed for beam loss monitoring

    Science.gov (United States)

    Kurfürst, C.; Dehning, B.; Sapinski, M.; Bartosik, M. R.; Eisel, T.; Fabjan, C.; Rementeria, C. A.; Griesmayer, E.; Eremin, V.; Verbitskaya, E.; Zabrodskii, A.; Fadeeva, N.; Tuboltsev, Y.; Eremin, I.; Egorov, N.; Härkönen, J.; Luukka, P.; Tuominen, E.

    2015-05-01

    As a result of the foreseen increase in the luminosity of the Large Hadron Collider, the discrimination between the collision products and possible magnet quench-provoking beam losses of the primary proton beams is becoming more critical for safe accelerator operation. We report the results of ongoing research efforts targeting the upgrading of the monitoring system by exploiting Beam Loss Monitor detectors based on semiconductors located as close as possible to the superconducting coils of the triplet magnets. In practice, this means that the detectors will have to be immersed in superfluid helium inside the cold mass and operate at 1.9 K. Additionally, the monitoring system is expected to survive 20 years of LHC operation, resulting in an estimated radiation fluence of 1×1016 proton/cm2, which corresponds to a dose of about 2 MGy. In this study, we monitored the signal degradation during the in situ irradiation when silicon and single-crystal diamond detectors were situated in the liquid/superfluid helium and the dependences of the collected charge on fluence and bias voltage were obtained. It is shown that diamond and silicon detectors can operate at 1.9 K after 1×1016 p/cm2 irradiation required for application as BLMs, while the rate of the signal degradation was larger in silicon detectors than in the diamond ones. For Si detectors this rate was controlled mainly by the operational mode, being larger at forward bias voltage.

  19. Helium Tracer Tests for Assessing Air Recovery and Air Distribution During In Situ Air Sparging

    National Research Council Canada - National Science Library

    Johnson, Richard

    2001-01-01

    ...) systems for capturing contaminant vapors liberated by in situ air sparging (IAS). The tracer approach is simple to conduct and provides more direct and reliable measures than the soil-gas pressure approach...

  20. Development of an in situ polymeric hydrogel implant of ...

    African Journals Online (AJOL)

    All rights reserved. ... inflammatory activity (paw edema test) and in vivo motor function activity in a rat ... Conclusions: The in situ hydrogels of methylprednisolone developed may be .... in the left hind paw in all rats. .... Continuous brain-derived.

  1. Study of UO2 mechanical behaviour implanted with helium ions using X-ray micro-diffraction and mechanical modeling

    International Nuclear Information System (INIS)

    Ibrahim, Marcelle

    2015-01-01

    In order to study the mechanical behavior of nuclear fuel during direct long term storage, UO 2 polycrystals were implanted with Helium ions at a thin surface layer (1 μm approximately), which leads to stress and strain fields in the layer. Strains were measured, at the grains scale, by X-ray micro-diffraction, using synchrotron radiation (ESRF). Image analysis methods were developed for an automatic analysis of the large number of diffraction patterns. Applying statistical tools to Laue patterns allows an automatic detection of low quality images, and enhances the measurement precision. At low layer thickness, the mechanical interaction between grains can be neglected. At higher thickness, experimental results showed a higher mechanical interaction near grain boundaries that can be modeled using finite elements method. Geostatistical tools were used to quantify these interactions. The swelling and the elastic constants in the implanted layer can be estimated through the measured strains on a large number of grains with different orientations. This work allows the determination of the swelling of nuclear fuel in irradiation conditions, as well as the modification of its elastic properties. (author) [fr

  2. Hydrogen- and helium-implanted silicon: Low-temperature positron-lifetime studies

    DEFF Research Database (Denmark)

    Mäkinen, S.; Rajainmäki, H.; Linderoth, Søren

    1991-01-01

    High-purity single-crystal samples of float-zoned Si have been implanted with 6.95-MeV protons and with 25-MeV 3He2 ions at 15 K, and the positron-lifetime technique has been used to identify the defects created in the samples, and to study the effects of H and He on the annealing of point defects...... in Si. The results have been compared with those of proton-irradiated Si. A 100–300-K annealing stage was clearly observed in hydrogen (H+) -implanted Si, and this stage was almost identical to that in the p-irradiated Si. The final annealing state of the H+-implanted Si started at about 400 K......, and it is connected to annealing out of negatively charged divacancy-oxygen pairs. This stage was clearly longer than that for the p-irradiated Si, probably due to the breakup of Si-H bonds at about 550 K. The 100-K annealing stage was not seen with the He-implanted samples. This has been explained by assuming...

  3. Suppression of self-interstitials in silicon during ion implantation via in-situ photoexcitation

    International Nuclear Information System (INIS)

    Ravi, J.; Erokhin, Yu.; Christensen, K.; Rozgonyi, G.A.; Patnaik, B.K.; White, C.W.

    1995-02-01

    The influence of in-situ photoexcitation during low temperature implantation on self-interstitial agglomeration following annealing has been investigated using transmission electron microscopy (TEM). A reduction in the level of as-implanted damage determined by RBS and TEM occurs athermally during 150 keV self-ion implantation. The damage reduction following a 300 C anneal suggests that it is mostly divacancy related. Subsequent thermal annealing at 800 C resulted in the formation of (311) rod like defects or dislocation loops for samples with and without in-situ photoexcitation, respectively. Estimation of the number of self-interstitials bound by these defects in the sample without in-situ photoexcitation corresponds to the implanted dose; whereas for the in-situ photoexcitation sample a suppression of ∼2 orders in magnitude is found. The kinetics of the athermal annealing process are discussed within the framework of either a recombination enhanced defect reaction mechanism, or a charge state enhanced defect migration and Coulomb interaction

  4. In situ TEM-tandem/implanter interface facility in Wuhan University for investigation of radiation effects

    International Nuclear Information System (INIS)

    Guo Liping; Li Ming; Liu Chuansheng; Song Bo; Ye Mingsheng; Fan Xiangjun; Fu Dejun

    2007-01-01

    Transmission electron microscope (TEM) interfaced to one or more ion implanters and/or accelerators, i.e. in situ TEM, provides effective tools to observe microstructural changes of studied samples during the ion irradiation. Evolution of both radiation damages and irradiation-induced nano-sized microstructures can be investigated with this technique, much more convenient than conventional ex situ techniques. In situ TEM technique has been widely applied in various fields, especially in the study of radiation damages of structural materials of fission and fusion nuclear reactors, and in evaluation and qualification of radioactive waste forms. Nowadays there are more than a dozen such facilities located in Japan, France, and the United States. Recently, we have constructed the first TEM-Tandem/Implanter interface facility of China in Wuhan University. A modified Hitachi H800 TEM was interfaced to a 200 kV ion implanter and a 2 x 1.7 MV tandem accelerator. Effective steps were taken to isolate the TEM from mechanical vibration from the ion beam line, and no obvious wobbling of the TEM image was observed during the ion implantation. The amorphization process of Si crystal irradiated by 115 keV N + ion beam was observed in the primary experiments, demonstrating that this interface facility is capable of in situ study of radiation effects. An online low energy gaseous ion source which may provide 1-20 keV H + and He + is under construction. (authors)

  5. Iodine-125 orbital brachytherapy with a prosthetic implant in situ

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, Clare [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Radiation Oncology; Maree, Gert; Munro, Roger [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Medical Physics; Lecuona, Karin [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Ophthalmology; Sauerwein, Wolfgang [Universitaetsklinikum Essen (Germany). Strahlenklinik, NCTeam

    2011-05-15

    Purpose: Brachytherapy is one method of irradiating the orbit after enucleation of an eye with a malignant tumor that has a potential to recur. It consists of 6 trains of I-125 seeds placed around the periphery of the orbit, a shorter central train, and a metal disc, loaded with seeds, placed beneath the eyelids. The presence of a prosthetic orbital implant requires omission of the central train and adjustment of the activity of the seeds in the anterior orbit around the prosthesis. Patients and Methods: This is a retrospective review of the technical modifications and outcome of 12 patients treated in this manner: 6 with retinoblastoma, 5 with malignant melanoma, and 1 with an intraocular rhabdomyosarcoma. The median dose was 35.5 Gy in 73 hours for retinoblastoma and 56 Gy in 141 hours for malignant melanoma. Patients with retinoblastoma and rhabdomyosarcoma also received chemotherapy. Results: The tubes can be placed satisfactorily around the prosthesis. The increased activity in the anterior half of the tubes produced comparable dose distributions. There have been no orbital recurrences, no extrusion of the prosthesis, and cosmesis is good. Conclusion: Insertion of a prosthetic implant at the time of enucleation greatly enhances the subsequent cosmetic appearance. This should be encouraged unless there is frank tumor in the orbit. Orbital brachytherapy without the central train continues to give excellent local control. The short treatment time and good cosmesis are added advantages. The patient is spared the expense and inconvenience of removing and replacing the prosthetic implant. (orig.)

  6. A possible mechanism for electron-bombardment-induced loop punching in helium-implanted materials

    International Nuclear Information System (INIS)

    Donnelly, S.E.

    1983-01-01

    The recently proposed mechanism for the punching of dislocation loops by overpressurized helium bubbles in molybdenum is studied quantitatively. According to this mechanism, under the electron beam of the transmission microscope, He atoms are excited or ionized and the resulting excited species (excited He atoms and free electrons) are responsible for the pressure rise in the gas beyond the threshold for loop punching. In the model, the pressure increase is attributed to a reduction of the effective volume accessible to the gas due to the formation of a cavity around each excited species. The radius of this cavity is evaluated and, also, the excited fraction required to reach the threshold is discussed in terms of excitation life times. (author)

  7. In situ EELS and TEM observation of Al implanted with nitrogen ions

    International Nuclear Information System (INIS)

    Hojou, K.; Furuno, S.; Kushita, K.N.; Otsu, H.; Izui, K.

    1995-01-01

    Formation processes of Aluminum nitride (AIN) in Aluminum (AI) implanted with nitrogen were examined by in situ EELS and TEM observations during nitrogen ion implantation in an electron microscope at room temperature and 400 deg C. AIN phase was identified both by EDP and EELS after nitrogen ion implantation to 6 x 10 20 (N + )/m 2 . The observed peak (20.8 eV) in EELS spectra was identified as plasmon loss peak of AIN formed in AI. The binding energy of N ls in AI was found to shift by about 4 eV to the lower side with increasing nitrogen-ion fluence. Unreacted AI was also found to remain in the AIN films after high fluence implantation both at room temperature and 400 deg C. (authors). 11 refs., 5 figs., 2 tabs

  8. In situ radiation test of silicon and diamond detectors operating in superfluid helium and developed for beam loss monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kurfürst, C.; Dehning, B.; Sapinski, M.; Bartosik, M.R.; Eisel, T.; Fabjan, C.; Rementeria, C.A. [CERN, Geneva (Switzerland); Griesmayer, E. [CIVIDEC Instrumentation, GmbH, Vienna (Austria); Eremin, V. [Ioffe Institute, St. Petersburg (Russian Federation); Verbitskaya, E., E-mail: elena.verbitskaya@cern.ch [Ioffe Institute, St. Petersburg (Russian Federation); Zabrodskii, A.; Fadeeva, N.; Tuboltsev, Y.; Eremin, I. [Ioffe Institute, St. Petersburg (Russian Federation); Egorov, N. [Research Institute of Material Science and Technology, Zelenograd, Moscow (Russian Federation); Härkönen, J.; Luukka, P.; Tuominen, E. [Helsinki Institute of Physics, Helsinki (Finland)

    2015-05-11

    As a result of the foreseen increase in the luminosity of the Large Hadron Collider, the discrimination between the collision products and possible magnet quench-provoking beam losses of the primary proton beams is becoming more critical for safe accelerator operation. We report the results of ongoing research efforts targeting the upgrading of the monitoring system by exploiting Beam Loss Monitor detectors based on semiconductors located as close as possible to the superconducting coils of the triplet magnets. In practice, this means that the detectors will have to be immersed in superfluid helium inside the cold mass and operate at 1.9 K. Additionally, the monitoring system is expected to survive 20 years of LHC operation, resulting in an estimated radiation fluence of 1×10{sup 16} proton/cm{sup 2}, which corresponds to a dose of about 2 MGy. In this study, we monitored the signal degradation during the in situ irradiation when silicon and single-crystal diamond detectors were situated in the liquid/superfluid helium and the dependences of the collected charge on fluence and bias voltage were obtained. It is shown that diamond and silicon detectors can operate at 1.9 K after 1×10{sup 16} p/cm{sup 2} irradiation required for application as BLMs, while the rate of the signal degradation was larger in silicon detectors than in the diamond ones. For Si detectors this rate was controlled mainly by the operational mode, being larger at forward bias voltage. - Highlights: • Silicon and diamond detectors are proposed for beam loss monitoring at LHC. • The first in situ radiation test of Si and diamond detectors at 1.9 K is described. • Both diamond and silicon detectors survived after 1×10{sup 16} p/cm{sup 2} irradiation at 1.9 K. • The rate of Si detectors degradation depends on bias polarity and is larger at V{sub forw}. • Sensitivity of Si detectors irradiated to 1×10{sup 16} p/cm{sup 2} is independent on resistivity.

  9. In-Situ Photoexcitation-Induced Suppression of Point Defect Generation in Ion Implanted Silicon

    International Nuclear Information System (INIS)

    Cho, C.R.; Rozgonyi, G.A.; Yarykin, N.; Zuhr, R.A.

    1999-01-01

    The formation of vacancy-related defects in n-type silicon has been studied immediately after implantation of He, Si, or Ge ions at 85 K using in-situ DLTS. A-center concentrations in He-implanted samples reach a maximum immediately after implantation, whereas, with Si or Ge ion implanted samples they continuously increase during subsequent anneals. It is proposed that defect clusters, which emit vacancies during anneals, are generated in the collision cascades of Si or Ge ions. An illumination-induced suppression of A-center formation is seen immediately after implantation of He ions at 85 K. This effect is also observed with Si or Ge ions, but only after annealing. The suppression of vacancy complex formation via photoexcitation is believed to occur due to an enhanced recombination of defects during ion implantation, and results in reduced number of vacancies remaining in the defect clusters. In p-type silicon, a reduction in K-center formation and an enhanced migration of defects are concurrently observed in the illuminated sample implanted with Si ions. These observations are consistent with a model where the injection of excess carriers modifies the defect charge state and impacts their diffusion

  10. Effect of Annealing on Microstructures and Hardening of Helium-Hydrogen-Implanted Sequentially Vanadium Alloys

    Science.gov (United States)

    Jiang, Shaoning; Wang, Zhiming

    2018-03-01

    The effect of post-irradiation annealing on the microstructures and mechanical properties of V-4Cr-4Ti alloys was studied. Helium-hydrogen-irradiated sequentially V-4Cr-4Ti alloys at room temperature (RT) were undergone post-irradiation annealing at 450 °C over periods of up to 30 h. These samples were carried out by high-resolution transmission electron microscopy (HRTEM) observation and nanoindentation test. With the holding time, large amounts of point defects produced during irradiation at RT accumulated into large dislocation loops and then dislocation nets which promoted the irradiation hardening. Meanwhile, bubbles appeared. As annealing time extended, these bubbles grew up and merged, and finally broke up. In the process, the size of bubbles increased and the number density decreased. Microstructural changes due to post-irradiation annealing corresponded to the change of hardening. Dislocations and bubbles are co-contributed to irradiation hardening. With the holding time up to 30 h, the recovery of hardening is not obvious. The phenomenon was discussed by dispersed barrier hardening model and Friedel-Kroupa-Hirsch relationship.

  11. Radiation blistering of Nb implanted sequentially with helium ions of different energies (3-500 keV)

    International Nuclear Information System (INIS)

    Guseva, M.I.; Gusev, V.; Krasulin, U.L.; Martinenko, U.V.; Das, S.K.; Kaminsky, M.S.

    1976-01-01

    Cold rolled, polycrystalline niobium samples were irradiated at room temperature with 4 He + ions sequentially at 14 different energies over an energy range from 3 keV--500 keV in steps of 50 keV. The dose for each energy was chosen to give an approximately uniform concentration of helium between the implant depths corresponding to 3 keV and 500 keV. In one set of experiments the irradiations were started at the Kurchatov Institute with 3 keV 4 He + ions and extended up to 80 keV in several steps. Subsequently, the same target area was irradiated with 4 He + ions at Argonne National Laboratory (ANL) starting at 100 keV and increased to 500 keV in steps of 50 keV. Another set of irradiations were started at ANL with 500 keV 4 He + ions and continued with decreasing ion energies to 100 keV. Subsequently, the same area was irradiated at the Kurchatov Institute starting at 80 keV and continued with decreasing ion energies to 3 keV. Both sets of irradiations were completed for two different total doses, 0.5 C cm -2 and 1.0 C cm -2

  12. Binding of copper and nickel to cavities in silicon formed by helium ion implantation

    International Nuclear Information System (INIS)

    Myers, S.M.; Follstaedt, D.M.; Bishop, D.M.

    1993-01-01

    Cavities formed in Si by He ion implantation and annealing are shown to be strong traps for Cu and Ni impurities. Experiments utilizing ion-beam analysis and transmission electron microscopy indicate that Cu is trapped at the internal surfaces of cavities up to ∼1 monolayer coverage with a binding energy of 2.2±0.2 eV relative to solution. This is greater than the heat of solution from the precipitated Cu 3 Si phase, determined to be 1.7 eV in agreement with earlier work. Copper at cavity-wall sites is reversibly replaced by H during heating in H 2 gas, indicating the relative stability of the two surface terminations. Initial results for Ni impurities indicate that trapping at cavities is again energetically preferred to silicide formation. The saturation coverage of Ni on the internal surfaces, however, is an order of magnitude smaller for Ni than Cu, consistent with published studies of external-surface adsorption. These results suggest that cavity trapping may getter metallic impurities in Si more effectively than methods based on silicide precipitation

  13. Establishment of in situ TEM-implanter/accelerator interface facility at Wuhan University

    International Nuclear Information System (INIS)

    Guo, L.P.; Liu, C.S.; Li, M.; Song, B.; Ye, M.S.; Fu, D.J.; Fan, X.J.

    2008-01-01

    In order to perform in situ investigations on the evolution of microstructures during ion irradiation for the evaluation of irradiation-resistance performance of advanced materials, we have established a transmission electron microscope (TEM)-implanter/accelerator interface facility at Wuhan University, the first of its kind in China. A Hitachi H800 TEM was linked to a 200 kV ion implanter and a 2x1.7 MV tandem accelerator through the interface system designed on the basis of ion beam transportation calculations. Effective steps were taken to isolate the TEM from mechanical vibration transmitted from the ion beam lines, and no significant degradation of microscope resolution was observed when the TEM operated under high zoom modes during the ion implantation. In the test experiments, ion beams of N + , He + , Ar + , and H + were successfully transported from the implanter into the TEM chamber through the interface system, and the ion currents measured at the entrance of the TEM column were between 20 and 80 nA. The amorphisation process of Si crystal irradiated by N + ion beams was successfully observed in the preliminary experiments, demonstrating that this interface facility is capable of in situ study of ion irradiated samples

  14. Effects of helium on ductile brittle transition behavior of reduced activation ferritic steels after high concentration he implantation at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, A.; Ejiri, M.; Nogami, S.; Ishiga, M.; Abe, K. [Tohoku Univ., Dept. of Quantum Science and Energy Engr, Sendai (Japan); Kasada, R.; Kimura, A. [Kyoto Univ., Institute of Advanced Energy (Japan); Jitsukawa, S. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Influence of Helium (He) on fracture behavior of reduced activation ferritic/martensitic steels including Oxide Dispersion Strengthening (ODS) steels and F82H were examined. To study the He effects on fracture behavior of these steels after He bubble formation conditions, higher concentration of He implantation at around 550 C were performed and examined the relationship between microstructure evolution and fracture behavior of the steels. The 1.5CVN mini size Charpy specimens were used to evaluate impact test behavior. Reduced activation ferritic ODS steels, 9Cr-ODS and 12Cr-ODS steels were examine. F82H was also examined as reference material. Helium implantation was performed by a cyclotron of Tohoku University with a beam of 50 MeV {alpha}-particles at temperature around 550 C. A tandem-type energy degrader system was used to implant He into the specimen from the irradiated surface to the range of 50 MeV {alpha}-particles, that was about 380 {mu}m in iron. Implanted He concentration were about 1000 appm. Charpy impact test was performed using a instrumented impact test apparatus in Oarai branch of IMR, Tohoku University. Analyses of absorbed energy change and fracture surface were carried out. Vickers hardness test was also carried out on He implanted area of the 1.5CVN specimen to estimate irradiation hardening. Microstructural observation was performed by TEM. In the case of F82H, DBTT increased by the 1000 appm He implantation condition was about 80 C and grain boundary fracture surface was only observed in the He implanted area of all the ruptured specimens in brittle manner. On the other hand, DBTT shift and fracture mode change of He implanted 9Cr-ODS steel was not observed after He implantation. Microstructural observation showed that He bubble formation on the lath boundaries and grain boundaries were significant in F82H, but the bubble segregation on grain boundary in ODS steel was not apparent. The bubble formation

  15. Comparison of optical quality after implantable collamer lens implantation and wavefront-guided laser in situ keratomileusis.

    Science.gov (United States)

    Liu, Hong-Ting; Zhou, Zhou; Luo, Wu-Qiang; He, Wen-Jing; Agbedia, Owhofasa; Wang, Jiang-Xia; Huang, Jian-Zhong; Gao, Xin; Kong, Min; Li, Min; Li, Li

    2018-01-01

    To compare the optical quality after implantation of implantable collamer lens (ICL) and wavefront-guided laser in situ keratomileusis (WG-LASIK). The study included 40 eyes of 22 patients with myopia who accepted ICL implantation and 40 eyes of 20 patients with myopia who received WG-LASIK. Before surgery and three months after surgery, the objective scattering index (OSI), the values of modulation transfer function (MTF) cutoff frequency, Strehl ratio, and the Optical Quality Analysis System (OQAS) values (OVs) were accessed. The higher order aberrations (HOAs) data including coma, trefoil, spherical, 2 nd astigmatism and tetrafoil were also obtained. For patients with pupil size LASIK group, significant improvements in visual acuities were found postoperatively, with a significant reduction in spherical equivalent ( P LASIK group, the OSI significantly increased from 0.68±0.43 preoperatively to 0.91±0.53 postoperatively (Wilcoxon signed ranks test, P =0.000). None of the mean MTF cutoff frequency, Strehl ratio, OVs showed statistically significant changes in both ICL and WG-LASIK groups. In the ICL group, there were no statistical differences in the total HOAs for either 4 mm-pupil or 6 mm-pupil. In the WG-LASIK group, the HOA parameters increased significantly at 4 mm-pupil. The total ocular HOAs, coma, spherical and 2 nd astigmatism were 0.12±0.06, 0.06±0.03, 0.00±0.03, 0.02±0.01, respectively. After the operation, these values were increased into 0.16±0.07, 0.08±0.05, -0.04±0.04, 0.03±0.01 respectively (Wilcoxon signed ranks test, all P LASIK group. ICL implantation has a less disturbance to optical quality than WG-LASIK. The OQAS is a valuable complementary measurement to the wavefront aberrometers in evaluating the optical quality.

  16. Comparison of optical quality after implantable collamer lens implantation and wavefront-guided laser in situ keratomileusis

    Directory of Open Access Journals (Sweden)

    Hong-Ting Liu

    2018-04-01

    Full Text Available AIM: To compare the optical quality after implantation of implantable collamer lens (ICL and wavefront-guided laser in situ keratomileusis (WG-LASIK. METHODS: The study included 40 eyes of 22 patients with myopia who accepted ICL implantation and 40 eyes of 20 patients with myopia who received WG-LASIK. Before surgery and three months after surgery, the objective scattering index (OSI, the values of modulation transfer function (MTF cutoff frequency, Strehl ratio, and the Optical Quality Analysis System (OQAS values (OVs were accessed. The higher order aberrations (HOAs data including coma, trefoil, spherical, 2nd astigmatism and tetrafoil were also obtained. For patients with pupil size <6 mm, HOAs data were analyzed for 4 mm-pupil diameter. For patients with pupil size ≥6 mm, HOAs data were calculated for 6 mm-pupil diameter. Visual acuity, refraction, pupil size and intraocular pressures were also recorded. RESULTS: In both ICL and WG-LASIK group, significant improvements in visual acuities were found postoperatively, with a significant reduction in spherical equivalent (P< 0.001. After the ICL implantation, the OSI decreased slightly from 2.34±1.92 to 2.24±1.18 with no statistical significance (P=0.62. While in WG-LASIK group, the OSI significantly increased from 0.68±0.43 preoperatively to 0.91±0.53 postoperatively (Wilcoxon signed ranks test, P=0.000. None of the mean MTF cutoff frequency, Strehl ratio, OVs showed statistically significant changes in both ICL and WG-LASIK groups. In the ICL group, there were no statistical differences in the total HOAs for either 4 mm-pupil or 6 mm-pupil. In the WG-LASIK group, the HOA parameters increased significantly at 4 mm-pupil. The total ocular HOAs, coma, spherical and 2nd astigmatism were 0.12±0.06, 0.06±0.03, 0.00±0.03, 0.02±0.01, respectively. After the operation, these values were increased into 0.16±0.07, 0.08±0.05, -0.04±0.04, 0.03±0.01 respectively (Wilcoxon signed ranks test

  17. In-situ photopolymerized and monitored implants: successful application to an intervertebral disc replacement

    Science.gov (United States)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Bourban, Pierre-Etienne; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2016-02-01

    Photopolymerization is a common method to harden materials initially in a liquid state. A surgeon can directly trigger the solidification of a dental implant or a bone or tissue filler by using ultra-violet light. Traditionally, photopolymerization has been used mainly in dentistry. Over the last decade advances in material development including a wide range of biocompatible gel- and cement-systems open up a new avenue for in-situ photopolymerization. We designed a miniaturized light probe where a photoactive material can be 1) mixed, pressurized and injected 2) photopolymerized or photoactivated and 3) monitored during the chemical reaction. The device enables surgeries to be conducted through a hole smaller than 500 μm in diameter. Using a combination of Raman and fluorescence spectroscopy, the current state of the photopolymerization was inferred and monitored in real time within an in-vitro tissue model. It was also possible to determine roughly the position of the probe within the tissue cavity by analysing the fluorescence signal. Using the technique hydrogels were successfully implanted into a bovine intervertebral disc model. Mechanical tests could not obstruct the functionality of the implant. Finally, the device was also used for other application such as the implantation of a hydrogel into an aneurysm tissue cavity which will be presented at the conference.

  18. [In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].

    Science.gov (United States)

    Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei

    2015-08-01

    In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.

  19. Final Report on investigations of the influence of helium concentration and implantation rate on cavity nucleation and growth during neutron irradiation of Fe and EUROFER 97

    International Nuclear Information System (INIS)

    Eldrup, M.; Singh, B.N.; Golubov, S.

    2010-09-01

    This report presents results of investigations of damage accumulation during neutron irradiation of pure iron and EUROFER 97 steel with or without prior helium implantation. The defect microstructure, in particular the cavities, was characterized using Positron Annihilation Spectroscopy (PAS) and Transmission Electron Microscopy (TEM). The PAS investigations revealed a clear difference between the He implantation effects in Fe and EUROFER 97 at 623 K. For both materials the mean positron lifetimes increased with He dose in the range 1 - 100 appm, although the increase was stronger for Fe than for EUROFER 97 and for both materials smaller for implantation at 623 K than at 323 K. This lifetime increase is due primarily to the formation of He bubbles. For He doses of 10 - 100 appm cavity sizes and densities in Fe were estimated to be 1.7 - 2.8 nm and 4 - 14Oe10 21 m -3 , respectively. Neutron irradiation after He implantation in general leads to an increase of both cavity sizes and densities. Estimates of cavity sizes and densities in EUROFER 97 after neutron irradiation with or without prior helium implantation are rather uncertain, but lead to values of the same order as for iron. TEM cannot resolve any cavities in Fe or EUROFER 97 after implantation of 100 appm He neither at 323 K nor at 623 K. However, neutron irradiation at 623 K to a dose level of 0.23 dpa in Fe is observed to lead to cavities with sizes of about 4 nm and densities of about 1.5Oe10 21 m -3 . He implantation (100 appm) prior to neutron irradiation results in a cavity density increase to ∼1Oe10 22 m -3 . In EUROFER 97 a very inhomogeneous cavity distribution, formed at dislocations and interfaces, is observed after He implantation with subsequent neutron irradiation. In addition, a very low density of very large voids have been observed in Fe (without He) neutron irradiated at 323 K, already at a dose level of 0.036 dpa. Detailed numerical calculations within the framework of the Production Bias

  20. Thermal-hydraulic calculation and analysis on helium cooled ceramic breeder pebble bed assembly for in-pile irradiation and in-situ tritium extraction

    International Nuclear Information System (INIS)

    Guo Chunqiu; Xie Jiachun; Liu Xingmin

    2013-01-01

    In-pile irradiation and in-situ tritium extraction experiment is one of associated domestic research projects in ITER special program. According to the technical requirements of in-pile irradiation experiment of helium cooled ceramic breeder (ceramic) pebble bed assembly in a research reactor, the feasibility of the design for the in-pile irradiation and in-situ tritium extraction experiment of ceramic pebble bed assembly was evaluated. By conducting thermal-hydraulic design calculation with different in-pile irradiation channels, locations and structure parameters for ceramic pebble bed assembly, a reasonable design scheme of ceramic pebble bed assembly satisfying the design requirements for in-pile irradiation was obtained. (authors)

  1. In-situ photopolymerization and monitoring device for controlled shaping of tissue fillers, replacements, or implants

    Science.gov (United States)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Bourban, Pierre-Etienne; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2015-03-01

    Photopolymerization is a common tool to harden materials initially in a liquid state. A surgeon can directly trigger the solidification of a dental implant or a bone or tissue filler simply by illumination. Traditionally, photopolymerization has been used mainly in dentistry. Over the last decade advances in material development including a wide range of biocompatible gel- and cement-systems open up a new avenue for in-situ photopolymerization. However, at the device level, surgical endoscopic probes are required. We present a miniaturized light probe where a photoactive material can be 1) mixed, pressurized and injected 2) photopolymerized or photoactivated and 3) monitored during the chemical reaction. The device enables surgeries to be conducted through a hole smaller than 1 mm in diameter. Beside basic injection mechanics, the tool consists of an optical fiber guiding the light required for photopolymerization and for chemical analysis. Combining photorheology and fluorescence spectroscopy, the current state of the photopolymerization is inferred and monitored in real time. Biocompatible and highly tuneable Poly-Ethylene-Glycol (PEG) hydrogels were used as the injection material. The device was tested on a model for intervertebral disc replacement. Gels were successfully implanted into a bovine caudal model and mechanically tested in-vitro during two weeks. The photopolymerized gel was evaluated at the tissue level (adherence and mechanical properties of the implant), at the cellular level (biocompatibility and cytotoxicity) and ergonomic level (sterilization procedure and feasibility study). This paper covers the monitoring aspect of the device.

  2. Mechanistic analysis of Zein nanoparticles/PLGA triblock in situ forming implants for glimepiride

    Directory of Open Access Journals (Sweden)

    Ahmed OAA

    2016-02-01

    didodecyldimethylammonium bromide as a stabilizer at 0.1% and 90% ethanol as a common solvent. Moreover, incorporating this optimized formulation in triblock copolymers-based in situ gel demonstrated pseudoplastic behavior with reduction of drug release rate as the concentration of polymer increased. Conclusion: This approach to control the release of glimepiride using Zein nanoparticles/triblock copolymers-based in situ gel forming intramuscular implants could be useful for improving diabetes treatment effectiveness. Keywords: glimepiride, Zein, nanoparticles, quality by design, in situ implants

  3. Ion implantation as a method of studying inhomogeneities in superconductors: results for indium films with embedded helium particles

    International Nuclear Information System (INIS)

    Fogel, N.Ya.; Moshenski, A.A.; Dmitrenko, I.M.

    1978-01-01

    The paper considers the applicability of ion implantation into superconductors to investigate inhomogeneity effects on their macroscopic properties. Noble-gas-ion implantation into thin superconducting films is shown to be a unique means of systematically studying these effects in a single sample. Data demonstrating the effect of inhomogeneities on the critical current, Isub(c) in the mixed state and phase-transition smearing in He + -ion-irradiated indium films are presented. First, experimental evidence was obtained to support the Larkin-Ovchinnikov theory which relates Isub(c) and the phase-transition smearing to inhomogeneities of the electron-electron interaction constant g(r) and the electron mean free path (r). Results are presented for parallel critical field anomalies in He-implanted indium films which are due to an implantation-induced anisotropy of xi(t). Changes in the critical parameters for the film resulting from the implantation are compared to structural changes. (Auth.)

  4. Loading of deuterium and helium by Pilot-PSI plasma and their detection by in-situ LIBS

    NARCIS (Netherlands)

    Piip, K.; van der Meiden, H. J.; Bystrov, K.; Hämarik, L.; Karhunen, J.; Aints, M.; Laan, M.; Paris, P.; Seemen, H.; Hakola, A.; Brezinsek, S.

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) is a promising method for quantifying the fuel content of the plasma-facing components of ITER both in between plasma discharges (in-situ) and after maintenance operations. The aim of the present study is to test the applicability of in-situ LIBS for

  5. Co-Registered In Situ Secondary Electron and Mass Spectral Imaging on the Helium Ion Microscope Demonstrated Using Lithium Titanate and Magnesium Oxide Nanoparticles.

    Science.gov (United States)

    Dowsett, D; Wirtz, T

    2017-09-05

    The development of a high resolution elemental imaging platform combining coregistered secondary ion mass spectrometry and high resolution secondary electron imaging is reported. The basic instrument setup and operation are discussed and in situ image correlation is demonstrated on a lithium titanate and magnesium oxide nanoparticle mixture. The instrument uses both helium and neon ion beams generated by a gas field ion source to irradiate the sample. Both secondary electrons and secondary ions may be detected. Secondary ion mass spectrometry (SIMS) is performed using an in-house developed double focusing magnetic sector spectrometer with parallel detection. Spatial resolutions of 10 nm have been obtained in SIMS mode. Both the secondary electron and SIMS image data are very surface sensitive and have approximately the same information depth. While the spatial resolutions are approximately a factor of 10 different, switching between the different images modes may be done in situ and extremely rapidly, allowing for simple imaging of the same region of interest and excellent coregistration of data sets. The ability to correlate mass spectral images on the 10 nm scale with secondary electron images on the nanometer scale in situ has the potential to provide a step change in our understanding of nanoscale phenomena in fields from materials science to life science.

  6. In-situ irradiation studies on the effects of helium on the microstructural evolution of V-3.8Cr-3.9Ti

    International Nuclear Information System (INIS)

    Doraiswamy, N.; Kestel, B.; Alexander, D.E.

    1996-11-01

    Role of He in microstructural evolution of V-3.8Cr-3.9Ti was investigated by in-situ TEM of as-prepared and He implanted (<10 appM) samples subjected to 200 keV He irradiation at RT. Quantitative analysis showed an increase in defect density and size with irradiation in both. The unimplanted sample showed a defect density consistent with electron irradiation experiments. The He preimplanted sample had slightly larger defects and a substantially greater increase in number density of defects. This is consistent with a mechanism of He trapping by formation of He-vacancy-X (X=C,N,O) complexes

  7. [Hyperopic Laser-in-situ-Keratomileusis after trifocal intraocular lens implantation : Aberration-free femto-Laser-in-situ-Keratomileusis treatment after implantation of a diffractive, multifocal, toric intraocular lens-case analysis].

    Science.gov (United States)

    Hemkeppler, E; Böhm, M; Kohnen, T

    2018-05-29

    A 52-year-old highly myopic female patient was implanted with a multifocal, diffractive, toric intraocular lens because of the wish to be independent of eyeglasses. Despite high-quality, extensive preoperative examinations, a hyperopic refractive error remained postoperatively, which led to the patient's dissatisfaction. This error was treated with Laser-in-situ-Keratomileusis (LASIK). After corneal LASIK treatment and implantation of a diffractive toric multifocal intraocular lens the patient showed a good postoperative visual result without optical phenomena.

  8. Influence of implanted helium on nickel resistance under simulation of plasma flux disruption in nuclear fusion reactor

    International Nuclear Information System (INIS)

    Kadin, B.A.; Pol'skij, V.I.; Yakushin, V.L.; Markin, A.V.; Tserevitinov, S.S.; Vasil'ev, V.I.

    1992-01-01

    Investigation results are presented of radiation erosion of constructive materials of the first wall of a thermonuclear reactor. The erosion is conditioned by successive repeated action of pulse processes, imitating plasma disruption, and helium ion fluxes at 40 keV and 2 x 10 21 -10 22 m -2 fluence. As imitating processes are used fluxes of deuterium high-temperature plasma. It is shown that preliminary action by high-temperature plasma leads to substantial suppression of radiation erosion, included by subsequent ion irradiation

  9. Effects of Helium Implantation on the Mechanical Behavior of 100nm-diameter Iron Nano-pillars

    International Nuclear Information System (INIS)

    Landau, Peri; Guo, Qiang; Hosemann, Peter; Wang, Yongqiang; Greer, Julia R.

    2014-01-01

    Ferritic and ferritic-martensitic steels are being considered for cladding in the next generation nuclear reactors as well as fusion applications and spallation source materials. For these applications, helium (He) accumulation due to the high appmHe/dpa ratio, represent a matter of concern rooted in the detrimental effects of irradiation on the mechanical performance. The investigations of the effects of ion beam irradiation on mechanical properties of iron represent a useful way to simplify the complexity of irradiation process. This study is focused on the effects of mostly He bubbles on the mechanical behavior and deformation mechanisms

  10. Extended deep level defects in Ge-condensed SiGe-on-Insulator structures fabricated using proton and helium implantations

    International Nuclear Information System (INIS)

    Kwak, D.W.; Lee, D.W.; Oh, J.S.; Lee, Y.H.; Cho, H.Y.

    2012-01-01

    SiGe-on-Insulator (SGOI) structures were created using the Ge condensation method, where an oxidation process is performed on the SiGe/Si structure. This method involves rapid thermal chemical vapor deposition and H + /He + ion-implantations. Deep level defects in these structures were investigated using deep level transient spectroscopy (DLTS) by varying the pulse injection time. According to the DLTS measurements, a deep level defect induced during the Ge condensation process was found at 0.28 eV above the valence band with a capture cross section of 2.67 × 10 −17 cm 2 , two extended deep levels were also found at 0.54 eV and 0.42 eV above the valence band with capture cross sections of 3.17 × 10 −14 cm 2 and 0.96 × 10 −15 cm 2 , respectively. In the SGOI samples with ion-implantation, the densities of the newly generated defects as well as the existing defects were decreased effectively. Furthermore, the Coulomb barrier heights of the extended deep level defects were drastically reduced. Thus, we suggest that the Ge condensation method with H + ion implantation could reduce deep level defects generated from the condensation and control the electrical properties of the condensed SiGe layers. - Highlights: ► We have fabricated low-defective SiGe-on-Insulator (SGOI) with implantation method. ► H + and He + -ions are used for ion-implantation method. ► We have investigated the deep level defects of SGOI layers. ► Ge condensation method using H + ion implantation could reduce extended defects. ► They could enhance electrical properties.

  11. Improvement of the operational performance of SRF cavities via in situ helium processing and waveguide vacuum processing

    International Nuclear Information System (INIS)

    Reece, C.E.; Drury, M.; Rao, M.G.; Nguyen-Tuong, V.

    1997-01-01

    The useful performance range of the superconducting rf (SRF) cavities in the CEBAF accelerator at Jefferson Lab is frequently limited by electron field emission and derived phenomena. Improvements are required to support future operation of the accelerator at higher than 5 GeV. Twelve operational cryomodules have been successfully processed to higher useful operating gradients via rf-helium processing. Progress against field emission was evidenced by improved high-field Q, reduced x-ray production and greatly reduced incidence of arcing at the cold ceramic window. There was no difficulty reestablishing beamline vacuum following the processing. Cavities previously limited to 4-6 MV/m are now operating stably at 6-9 MV/m. By applying a pulsed-rf processing technique, we have also improved the pressure stability of the thermal transition region of the input waveguide for several cavities

  12. Helium diffusion in nickel at high temperatures

    International Nuclear Information System (INIS)

    Philipps, V.

    1980-09-01

    Helium has been implanted at certain temperatures between 800 and 1250 0 C into single and polycrystalline Ni-samples with implantation depths between 15 and 90 μm. Simultaneously the helium reemission from the sample is measured by a mass-spectrometer. It has been shown that the time dependence of the observed reemission rate is governed by volume diffusion of the helium. Measuring this time dependence as a function of temperature the helium diffusion constant has been determined. The He-diffusion is interpreted as a interstitial diffusion hindered by thermal vacancies. Depending on the implantation depth more or less of the implanted helium remains in the sample and forms large helium bubbles. (orig./GSCH)

  13. Characterization of the bone-metal implant interface by Digital Volume Correlation of in-situ loading using neutron tomography.

    Science.gov (United States)

    Le Cann, Sophie; Tudisco, Erika; Perdikouri, Christina; Belfrage, Ola; Kaestner, Anders; Hall, Stephen; Tägil, Magnus; Isaksson, Hanna

    2017-11-01

    Metallic implants are commonly used as surgical treatments for many orthopedic conditions. The long-term stability of implants relies on an adequate integration with the surrounding bone. Unsuccessful integration could lead to implant loosening. By combining mechanical loading with high-resolution 3D imaging methods, followed by image analysis such as Digital Volume Correlation (DVC), we aim at evaluating ex vivo the mechanical resistance of newly formed bone at the interface. X-rays tomography is commonly used to image bone but induces artefacts close to metallic components. Utilizing a different interaction with matter, neutron tomography is a promising alternative but has not yet been used in studies of bone mechanics. This work demonstrates that neutron tomography during in situ loading is a feasible tool to characterize the mechanical response of bone-implant interfaces, especially when combined with DVC. Experiments were performed where metal screws were implanted in rat tibiae during 4 weeks. The screws were pulled-out while the samples were sequentially imaged in situ with neutron tomography. The images were analyzed to quantify bone ingrowth around the implants. DVC was used to track the internal displacements and calculate the strain fields in the bone during loading. The neutron images were free of metal-related artefacts, which enabled accurate quantification of bone ingrowth on the screw (ranging from 60% to 71%). DVC allowed successful identification of the deformation and cracks that occurred during mechanical loading and led to final failure of the bone-implant interface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. In situ beam angle measurement in a multi-wafer high current ion implanter

    International Nuclear Information System (INIS)

    Freer, B.S.; Reece, R.N.; Graf, M.A.; Parrill, T.; Polner, D.

    2005-01-01

    Direct, in situ measurement of the average angle and angular content of an ion beam in a multi-wafer ion implanter is reported for the first time. A new type of structure and method are described. The structures are located on the spinning disk, allowing precise angular alignment to the wafers. Current that passes through the structures is known to be within a range of angles and is detected behind the disk. By varying the angle of the disk around two axes, beam current versus angle is mapped and the average angle and angular spread are calculated. The average angle measured in this way is found to be consistent with that obtained by other techniques, including beam centroid offset and wafer channeling methods. Average angle of low energy beams, for which it is difficult to use other direct methods, is explored. A 'pencil beam' system is shown to give average angle repeatability of 0.13 deg. (1σ) or less, for two low energy beams under normal tuning variations, even though no effort was made to control the angle

  15. Structure-property and composition-property relationships for poly(ethylene terephthalate) surfaces modified by helium plasma-based ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Toth, A., E-mail: totha@chemres.hu [Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17 (Hungary); Veres, M. [Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49 (Hungary); Kereszturi, K.; Mohai, M.; Bertoti, I.; Szepvoelgyi, J. [Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17 (Hungary)

    2011-10-01

    The surfaces of untreated and helium plasma-based ion implantation (He PBII) treated poly(ethylene terephthalate) (PET) samples were characterised by reflectance colorimetry, contact angle studies and measurements of surface electrical resistance. The results were related to the structural and compositional data obtained by the authors earlier on parallel samples by XPS and Raman spectroscopy. Inverse correlations between lightness and I{sub D}/I{sub G} ratio and between chroma and I{sub D}/I{sub G} ratio were obtained, suggesting that the PBII-treated PET samples darken and their colourfulness decreases with the increase of the portion of aromatic sp{sup 2} carbon rings in the chemical structure of the modified layer. Direct correlation between water contact angle and the I{sub D}/I{sub G} ratio and inverse correlations between surface energy and I{sub D}/I{sub G} ratio and between dispersive component of surface energy and I{sub D}/I{sub G} ratio were found, reflecting that surface wettability, surface energy and its dispersive component decrease with the formation of surface structure, characterised again by enhanced portion of aromatic sp{sup 2} carbon rings. The surface electrical resistance decreased with the increase of the surface C-content determined by XPS and also with the increase of the surface concentration of conjugated double bonds, reflected by the increase of the {pi} {yields} {pi}* shake-up satellite of the C 1s peak.

  16. In situ investigation of helium fuzz growth on tungsten in relation to ion flux, fluence, surface temperature and ion energy using infrared imaging in PSI-2

    International Nuclear Information System (INIS)

    Möller, S; Kachko, O; Rasinski, M; Kreter, A; Linsmeier, Ch

    2017-01-01

    Tungsten is a candidate material for plasma-facing components in nuclear fusion reactors. In operation it will face temperatures >800 K together with an influx of helium ions. Previously, the evolution of special surface nanostructures called fuzz was found under these conditions in a limited window of surface temperature, ion flux and ion energy. Fuzz potentially leads to lower heat load tolerances, enhanced erosion and dust formation, hence should be avoided in a fusion reactor. Here the fuzz growth is reinvestigated in situ during its growth by considering its impact on the surfaces infrared emissivity at 4 μ m wavelength with an infrared camera in the linear plasma device PSI-2. A hole in the surface serves as an emissivity reference to calibrate fuzz thickness versus infrared emissivity. Among new data on the above mentioned relations, a lower fuzz growth threshold of 815 ± 24 K is found. Fuzz is seen to grow on rough and polished surfaces and even on the hole’s side walls alike. Literature scalings for thickness, flux and time relations of the fuzz growth rate could not be reproduced, but for the temperature scaling a good agreement to the Arrhenius equation was found. (paper)

  17. Liquid helium

    CERN Document Server

    Atkins, K R

    1959-01-01

    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  18. The problem of helium in structural materials for fusion reactor

    International Nuclear Information System (INIS)

    Nikiforov, A.S.; Zakharov, A.P.; Chuev, V.I.

    1982-01-01

    The processes of helium buildup in some metals and alloys at different energy neutron flux irradiation under thermonuclear reactor conditions are considered. The data on high temperature helium embrittlement of a number of stainless steels, titanium and aluminium alloys etc. are given A review of experiments concerning the implanted helium behaviour is presented. Possible reactions between helium atoms and point defects or their clusters are discussed. Analysed are material structure variations upon buildup in them up to 1 at % of helium

  19. In situ ion irradiation/implantation studies in the HVEM-Tandem Facility at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Allen, C.W.; Funk, L.L.; Ryan, E.A.; Taylor, A.

    1988-09-01

    The HVEM-Tandem User Facility at Argonne National Laboratory interfaces two ion accelerators, a 2 MV tandem accelerator and a 650 kV ion implanter, to a 1.2 MV high voltage electron microscope. This combination allows experiments involving simultaneous ion irradiation/ion implantation, electron irradiation and electron microscopy/electron diffraction to be performed. In addition the availability of a variety of microscope sample holders permits these as well as other types of in situ experiments to be performed at temperatures ranging from 10-1300 K, with the sample in a stressed state or with simultaneous determination of electrical resistivity of the specimen. This paper summarizes the details of the Facility which are relevant to simultaneous ion beam material modification and electron microscopy, presents several current applications and briefly describes the straightforward mechanism for potential users to access this US Department of Energy supported facility. 7 refs., 1 fig., 1 tab

  20. Biological in situ Dose Painting for Image-Guided Radiation Therapy Using Drug-Loaded Implantable Devices

    International Nuclear Information System (INIS)

    Cormack, Robert A.; Sridhar, Srinivas; Suh, W. Warren; D'Amico, Anthony V.; Makrigiorgos, G. Mike

    2010-01-01

    Purpose: Implantable devices routinely used for increasing spatial accuracy in modern image-guided radiation treatments (IGRT), such as fiducials or brachytherapy spacers, encompass the potential for in situ release of biologically active drugs, providing an opportunity to enhance the therapeutic ratio. We model this new approach for two types of treatment. Methods and Materials: Radiopaque fiducials used in IGRT, or prostate brachytherapy spacers ('eluters'), were assumed to be loaded with radiosensitizer for in situ drug slow release. An analytic function describing the concentration of radiosensitizer versus distance from eluters, depending on diffusion-elimination properties of the drug in tissue, was developed. Tumor coverage by the drug was modeled for tumors typical of lung stereotactic body radiation therapy treatments for various eluter dimensions and drug properties. Six prostate 125 I brachytherapy cases were analyzed by assuming implantation of drug-loaded spacers. Radiosensitizer-induced subvolume boost was simulated from which biologically effective doses for typical radiosensitizers were calculated in one example. Results: Drug distributions from three-dimensional arrangements of drug eluters versus eluter size and drug properties were tabulated. Four radiosensitizer-loaded fiducials provide adequate radiosensitization for ∼4-cm-diameter lung tumors, thus potentially boosting biologically equivalent doses in centrally located stereotactic body treated lesions. Similarly, multiple drug-loaded spacers provide prostate brachytherapy with flexible shaping of 'biologically equivalent doses' to fit requirements difficult to meet by using radiation alone, e.g., boosting a high-risk region juxtaposed to the urethra while respecting normal tissue tolerance of both the urethra and the rectum. Conclusions: Drug loading of implantable devices routinely used in IGRT provides new opportunities for therapy modulation via biological in situ dose painting.

  1. Phase separation of in situ forming poly (lactide-co-glycolide acid) implants investigated using a hydrogel-based subcutaneous tissue surrogate and UV-vis imaging.

    Science.gov (United States)

    Sun, Yu; Jensen, Henrik; Petersen, Nickolaj J; Larsen, Susan W; Østergaard, Jesper

    2017-10-25

    Phase separation of in situ forming poly (lactide-co-glycolide acid) (PLGA) implants with agarose hydrogels as the provider of nonsolvent (water) mimicking subcutaneous tissue was investigated using a novel UV-vis imaging-based analytical platform. In situ forming implants of PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin representing fast and slow phase separating systems, respectively, were evaluated using this platform. Upon contact with the agarose hydrogel, the phase separation of the systems was followed by the study of changes in light transmission and absorbance as a function of time and position. For the PLGA-1-methyl-2-pyrrolidinone system, the rate of spatial phase separation was determined and found to decrease with increasing the PLGA concentration from 20% to 40% (w/w). Hydrogels with different agarose concentrations (1% and 10% (w/v)) were prepared for providing the nonsolvent, water, to the in situ forming PLGA implants simulating the injection site environment. The resulting implant morphology depended on the stiffness of hydrogel matrix, indicating that the matrix in which implants are formed is of importance. Overall, the work showed that the UV-vis imaging-based platform with an agarose hydrogel mimicking the subcutaneous tissue holds potential in providing bio-relevant and mechanistic information on the phase separation processes of in situ forming implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  3. Helium behaviour in nuclear glasses

    International Nuclear Information System (INIS)

    Fares, T.

    2011-01-01

    The present thesis focuses on the study of helium behavior in R7T7 nuclear waste glass. Helium is generated by the minor actinides alpha decays incorporated in the glass matrix. Therefore, four types of materials were used in this work. These are non radioactive R7T7 glasses saturated with helium under pressure, glasses implanted with 3 He + ions, glasses doped with curium and glasses irradiated in nuclear reactor. The study of helium solubility in saturated R7T7 glass has shown that helium atoms are inserted in the glass free volume. The results yielded a solubility of about 10 16 at. cm -3 atm. -1 . The incorporation limit of helium in this type of glass has been determined; its value amounted to about 2*10 21 at. cm -3 , corresponding to 2.5 at.%. Diffusion studies have shown that the helium migration is controlled by the single population dissolved in the glass free volume. An ideal diffusion model was used to simulate the helium release data which allowed to determine diffusion coefficients obeying to the following Arrhenius law: D = D 0 exp(-E a /kBT), where D 0 = 2.2*10 -2 and 5.4*10 -3 cm 2 s -1 and E a = 0.61 eV for the helium saturated and the curium doped glass respectively. These results reflect a thermally activated diffusion mechanism which seems to be not influenced by the glass radiation damage and helium concentrations studied in the present work (up to 8*10 19 at. g -1 , corresponding to 0.1 at.%). Characterizations of the macroscopic, structural and microstructural properties of glasses irradiated in nuclear reactor did not reveal any impact associated with the presence of helium at high concentrations. The observed modifications i.e. a swelling of 0.7 %, a decrease in hardness by 38 %, an increase between 8 and 34 % of the fracture toughness and a stabilization of the glass structure under irradiation, were attributed to the glass nuclear damage induced by the irradiation in reactor. Characterizations by SEM and TEM of R7T7 glasses implanted

  4. In situ epicatechin-loaded hydrogel implants for local drug delivery ...

    African Journals Online (AJOL)

    induce apoptosis and cell cycle arrest in a wide array of cell lines, and protect ... attenuated ischaemic brain injury and inhibition ..... biodegradable smart implants for tissue regeneration after spinal ... Synthetic hydrogels for controlled stem cell.

  5. Standard Guide for Simulation of Helium Effects in Irradiated Metals

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This guide provides advice for conducting experiments to investigate the effects of helium on the properties of metals where the technique for introducing the helium differs in some way from the actual mechanism of introduction of helium in service. Simulation techniques considered for introducing helium shall include charged particle implantation, exposure to α-emitting radioisotopes, and tritium decay techniques. Procedures for the analysis of helium content and helium distribution within the specimen are also recommended. 1.2 Two other methods for introducing helium into irradiated materials are not covered in this guide. They are the enhancement of helium production in nickel-bearing alloys by spectral tailoring in mixed-spectrum fission reactors, and isotopic tailoring in both fast and mixed-spectrum fission reactors. These techniques are described in Refs (1-5). Dual ion beam techniques (6) for simultaneously implanting helium and generating displacement damage are also not included here. This lat...

  6. In situ observation of transformation in alpha-Fe sub 2 O sub 3 under hydrogen implantation

    CERN Document Server

    Watanabe, Y; Ishikawa, N; Furuya, K; Kato, M

    2002-01-01

    An in situ observation of the alpha-Fe sub 2 O sub 3 -to-Fe sub 3 O sub 4 transformation has been performed using a dual-ion-beam accelerator interfaced with a transmission electron microscope (TEM). During the hydrogen-ion implantation of alpha-Fe sub 2 O sub 3 , transformation into the new phase (gamma-Fe sub 2 O sub 3 or Fe sub 3 O sub 4) was observed. It was also found that the orientation relationship between alpha-Fe sub 2 O sub 3 and the new phase (gamma-Fe sub 2 O sub 3 or Fe sub 3 O sub 4) satisfies the Shoji-Nishiyama relationship, in agreement with previous experiments. It was also found that the nearest interatomic distance does not vary by the implantation until the re-stacked phase appears, although when the re-stacked phase is formed, the lattice expansion is observed in the transformed (re-stacked) phase. Judging from these results, we have concluded that the alpha-Fe sub 2 O sub 3 to Fe sub 3 O sub 4 transformation is induced during the hydrogen ion implantation of alpha-Fe sub 2 O sub 3.

  7. In situ ion channeling study of gallium disorder and gold profiles in Au-implanted GaN

    International Nuclear Information System (INIS)

    Jiang, W.; Weber, W. J.; Thevuthasan, S.

    2000-01-01

    Disorder accumulation and annealing behavior on the Ga sublattice in gallium nitride (GaN) implanted with 1.0 MeV Au 2+ (60 degree sign off surface normal) at 180 or 300 K have been studied using in situ Rutherford backscattering spectrometry in a -channeling geometry. Complete amorphization in GaN is attained at 6.0 and 20 Au 2+ /nm 2 for irradiation at 180 and 300 K, respectively. A saturation in the Ga disorder at and behind the damage peak was observed at intermediate ion fluences at both 180 and 300 K. No measurable thermal recovery was found at 300 K for the full range of damage produced at 180 K. However, distinct epitaxial regrowth in the bulk and Ga reordering at surface occurred after annealing at 870 K. The implanted Au readily diffuses into the highly damaged regions at elevated temperatures, and the redistribution of the Au atoms in the implanted GaN varies with the damage profiles. A double-peak Au profile developed with the maxima located in the amorphous surface region and near the Au mean projected range. The result is interpreted as Au atom diffusion into the amorphous regime near the surface and Au trapping at irradiation-induced defects in the crystal structure. This trapping effect is also evidenced in this study by the suppressed recovery of the Au-decorated disorder in GaN. (c) 2000 American Institute of Physics

  8. Preparation and biocompatibility study of in situ forming polymer implants in rat brains.

    Science.gov (United States)

    Nasongkla, Norased; Boongird, Atthaporn; Hongeng, Suradej; Manaspon, Chawan; Larbcharoensub, Noppadol

    2012-02-01

    We describe the development of polymer implants that were designed to solidify once injected into rat brains. These implants comprised of glycofurol and copolymers of D: ,L: -lactide (LA), ε-caprolactone and poly(ethylene glycol) (PLECs). Scanning electron microscopy (SEM) and gel permeation chromatography (GPC) showed that the extent of implant degradation was increased with LA: content in copolymers. SEM analysis revealed the formation of porosity on implant surface as the degradation proceeds. PLEC with 19.3% mole of LA: was chosen to inject in rat brains at the volume of 10, 25 and 40 μl. Body weights, hematological and histopathological data of rats treated with implants were evaluated on day 3, 6, 14, 30 and 45 after the injection. Polymer solution at the injection volume of 10 μl were tolerated relatively well compared to those of 25 and 40 μl as confirmed by higher body weight and healing action (fibrosis tissue) 30 days after treatment. The results from this study suggest a possible application as drug delivery systems that can bypass the blood brain barrier.

  9. Helium in inert matrix dispersion fuels

    International Nuclear Information System (INIS)

    Veen, A. van; Konings, R.J.M.; Fedorov, A.V.

    2003-01-01

    The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO 2 , MgAl 2 O 4 , MgO and Al 2 O 3 ) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 deg. C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur

  10. Concomitant monitoring of implant formation and drug release of in situ forming poly (lactide-co-glycolide acid) implants in a hydrogel matrix mimicking the subcutis using UV-vis imaging.

    Science.gov (United States)

    Sun, Yu; Jensen, Henrik; Petersen, Nickolaj J; Larsen, Susan W; Østergaard, Jesper

    2018-02-20

    For poly (lactide-co-glycolide acid) (PLGA)-based in situ forming implants, the rate of implant formation plays an important role in determining the overall drug release kinetics. Currently, in vitro techniques capable of characterizing the processes of drug release and implant formation at the same time are not available. A hydrogel-based in vitro experimental setup was recently developed requiring only microliter of formulation and forming a closed system potentially suitable for interfacing with various spectroscopic techniques. The aim of the present proof-of-concept study was to investigate the feasibility of concomitant UV imaging, Vis imaging and light microscopy for detailed characterization of the behavior of in situ forming PLGA implants in the hydrogel matrix mimicking the subcutis. The model compounds, piroxicam and α-lactalbumin were added to PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin solutions. Upon bringing the PLGA-solvent-compound pre-formulation in contact with the hydrogel, Vis imaging and light microscopy were applied to visualize the depot formation and UV imaging was used to quantify drug transport in the hydrogel. As compared to piroxicam, the α-lactalbumin invoked an acceleration of phase separation and an increase of implant size. α-Lactalbumin was released faster from the PLGA-1-methyl-2-pyrrolidinone system than the PLGA-triacetin system opposite to the piroxicam release pattern. A linear relationship between the rate of implant formation and initial compound release within the first 4h was established for the PLGA-NMP systems. This implies that phase separation may be one of the controlling factors in drug release. The rate of implant formation may be an important parameter for predicting and tailoring drug release. The approach combining UV imaging, Vis imaging and light microscopy may facilitate understanding of release processes and holds potential for becoming a useful tool in formulation development of in situ forming

  11. Design of a long-term antipsychotic in situ forming implant and its release control method and mechanism.

    Science.gov (United States)

    Wang, Lexi; Wang, Aiping; Zhao, Xiaolei; Liu, Ximing; Wang, Dan; Sun, Fengying; Li, Youxin

    2012-05-10

    Two kinds of in situ forming implants (ISFIs) of atypical antipsychotics, risperidone and its 9-hydroxy active metabolite, paliperidone, using poly(lactide-co-glycolide)(PLGA) as carrier, were investigated. Significant difference was observed in the solution-gel transition mechanism of the two systems: homogeneous system of N-methyl-2-pyrrolidone (NMP) ISFI, in which drug was dissolved, and heterogeneous system of dimethyl sulfoxide (DMSO) ISFI, in which drug was dispersed. Fast solvent extractions were found in both systems, but in comparison with the high drug release rate from homogeneous system of drug/polymer/NMP, a fast solvent extraction from the heterogeneous system of drug/polymer/DMSO was not accompanied by a high drug release rate but a rapid solidification of the implant, which resulted in a high drug retention, well-controlled initial burst and slow release of the drug. In vivo study on beagle dogs showed a more than 3-week sustained release with limited initial burst. Pharmacologic evaluation on optimized paliperidone ISFIs presented a sustained-suppressing effect from 1 day to 38 day on the MK-801 induced schizophrenic behavior mice model. A long sustained-release antipsychotic ISFI of 50% drug loading and controlled burst release was achieved, which indicated a good potential in clinic application. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Pre-implantation genetic screening using fluorescence in situ hybridization in couples of Indian ethnicity: Is there a scope?

    Directory of Open Access Journals (Sweden)

    Shailaja Gada Saxena

    2014-01-01

    Full Text Available Context: There is a high incidence of numerical chromosomal aberration in couples with repeated in vitro fertilization (IVF failure, advanced maternal age, repeated unexplained abortions, severe male factor infertility and unexplained infertility. Pre-implantation genetic screening (PGS, a variant of pre-implantation genetic diagnosis, screens numerical chromosomal aberrations in couples with normal karyotype, experiencing poor reproductive outcome. The present study includes the results of the initial pilot study on 9 couples who underwent 10 PGS cycles. Aim: The aim of the present study was to evaluate the beneficial effects of PGS in couples with poor reproductive outcome. Settings and Design: Data of initial 9 couples who underwent 10 PGS for various indications was evaluated. Subjects and Methods: Blastomere biopsy was performed on cleavage stage embryos and subjected to two round fluorescence in situ hybridization (FISH testing for chromosomes 13, 18, 21, X and Y as a two-step procedure. Results: Six of the 9 couples (10 PGS cycles conceived, including a twin pregnancy in a couple with male factor infertility, singleton pregnancies in a couple with secondary infertility, in three couples with adverse obstetric outcome in earlier pregnancies and in one couple with repeated IVF failure. Conclusion: In the absence of availability of array-comparative genomic hybridization in diagnostic clinical scenario for PGS and promising results with FISH based PGS as evident from the current pilot study, it is imperative to offer the best available services in the present scenario for better pregnancy outcome for patients.

  13. Non-invasive in vivo evaluation of in situ forming PLGA implants by benchtop magnetic resonance imaging (BT-MRI) and EPR spectroscopy.

    Science.gov (United States)

    Kempe, Sabine; Metz, Hendrik; Pereira, Priscila G C; Mäder, Karsten

    2010-01-01

    In the present study, we used benchtop magnetic resonance imaging (BT-MRI) for non-invasive and continuous in vivo studies of in situ forming poly(lactide-co-glycolide) (PLGA) implants without the use of contrast agents. Polyethylene glycol (PEG) 400 was used as an alternative solvent to the clinically used NMP. In addition to BT-MRI, we applied electron paramagnetic resonance (EPR) spectroscopy to characterize implant formation and drug delivery processes in vitro and in vivo. We were able to follow key processes of implant formation by EPR and MRI. Because EPR spectra are sensitive to polarity and mobility, we were able to follow the kinetics of the solvent/non-solvent exchange and the PLGA precipitation. Due to the high water affinity of PEG 400, we observed a transient accumulation of water in the implant neighbourhood. Furthermore, we detected the encapsulation by BT-MRI of the implant as a response of the biological system to the polymer, followed by degradation over a period of two months. We could show that MRI in general has the potential to get new insights in the in vivo fate of in situ forming implants. The study also clearly shows that BT-MRI is a new viable and much less expensive alternative for superconducting MRI machines to monitor drug delivery processes in vivo in small mammals. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Helium release from metals with face-centered cubic structure

    International Nuclear Information System (INIS)

    Sciani, V.; Lucki, G.; Jung, P.

    1984-01-01

    The helium release from gold sheets of 5 and 54 μm of thickness and helium concentrations from 10 -9 to 10 -5 ap of He during the isothermal and linear annealing is studied. The helium was put in the sample through the implantation of alpha particles, with variable energy,in the cyclotron. The free diffusion of the atoms of the helium, where the diffusion coefficient follows an Arrhenius law is studied. (E.G.) [pt

  15. Investigation of helium-induced embrittlement

    International Nuclear Information System (INIS)

    Sabelova, V.; Slugen, V.; Krsjak, V.

    2014-01-01

    In this work, the hardness of Fe-9%(wt.) Cr binary alloy implanted by helium ions up to 1000 nm was investigated. The implantations were performed using linear accelerator at temperatures below 80 grad C. Isochronal annealing up to 700 grad C with the step of 100 grad C was applied on the helium implanted samples in order to investigate helium induced embrittlement of material. Obtained results were compared with theoretical calculations of dpa profiles. Due to the results, the nano-hardness technique results to be an appropriate approach to the hardness determination of thin layers of implanted alloys. Both, experimental and theoretical calculation techniques (SRIM) show significant correlation of measured results of induced defects. (authors)

  16. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  17. Irradiation hardening of Fe–9Cr-based alloys and ODS Eurofer: Effect of helium implantation and iron-ion irradiation at 300 °C including sequence effects

    Energy Technology Data Exchange (ETDEWEB)

    Heintze, C. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Bergner, F., E-mail: f.bergner@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Hernández-Mayoral, M. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Kögler, R.; Müller, G.; Ulbricht, A. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany)

    2016-03-15

    Single-beam, dual-beam and sequential iron- and/or helium-ion irradiations are widely accepted to emulate more application-relevant but hardly accessible irradiation conditions of generation-IV fission and fusion candidate materials for certain purposes such as material pre-selection, identification of basic mechanisms or model calibration. However, systematic investigations of sequence effects capable to critically question individual approaches are largely missing. In the present study, sequence effects of iron-ion irradiations at 300 °C up to 5 dpa and helium implantations up to 100 appm He are investigated by means of post-irradiation nanoindentation of an Fe9%Cr model alloy, ferritic/martensitic 9%Cr steels T91 and Eurofer97 and oxide dispersion strengthened (ODS) Eurofer. Different types of sequence effects, both synergistic and antagonistic, are identified and tentative interpretations are suggested. It is found that different accelerated irradiation approaches have a great impact on the mechanical hardening. This stresses the importance of experimental design in attempts to emulate in-reactor conditions. - Highlights: • The single-beam He-ion implantations do not give rise to significant hardening. • The single-beam Fe-ion irradiations give rise to significant hardening, ΔH{sub Fe}. • Hardening due to sequential He-/Fe-ion irradiation is smaller than ΔH{sub Fe}. • Hardening due to simultaneous He-/Fe-ion irradiation is larger than ΔH{sub Fe}. • The He–Fe synergism for ODS-Eurofer is less pronounced than for Eurofer97.

  18. Helium crystals

    International Nuclear Information System (INIS)

    Lipson, S.G.

    1987-01-01

    Hexagonal close-packed helium crystals in equilibrium with superfluid have been found to be one of the few systems in which an anisotropic solid comes into true thermodynamic equilibrium with its melt. The discovery of roughening transitions at the liquid-solid interface have shown this system to be ideal for the study of the statistical mechanics of interface structures. We describe the effect of roughening on the shape and growth of macroscopic crystals from both the theoretical and experimental points of view. (author)

  19. Helium mobility in advanced nuclear ceramics

    International Nuclear Information System (INIS)

    Agarwal, Shradha

    2014-01-01

    The main goal of this work is to improve our knowledge on the mechanisms able to drive the helium behaviour in transition metal carbides and nitrides submitted to thermal annealing or ion irradiation. TiC, TiN and ZrC polycrystals were implanted with 3 MeV 3 He ions at room temperature in the fluence range 2 * 10 15 et 6 * 10 16 cm -2 . Some of them have been pre-irradiated with self-ions (14 MeV Ti or Zr). Fully controlled thermal annealing tests were subsequently carried out in the temperature range 1000 - 1600 C for two hours. The evolution of the helium depth distribution in function of implantation dose, temperature and pre-irradiation dose was measured thanks to the deuteron-induced nuclear reaction 3 He(d, p 0 ) 4 He between 900 keV and 1.8 MeV. The microstructure of implanted and annealed samples was investigated by transmission electron microscopy on thin foils prepared using the FIB technique. Additional characterization tools, as X-ray diffraction and Raman microspectrometry, have been also applied in order to obtain complementary information. Among the most relevant results obtained, the following have to be outlined: - double-peak helium depth profile was measured on as implanted sample for the three compounds. The first peak is located near the end of range and includes the major part of helium, a second peak located close to the surface corresponds to the helium atoms trapped by the native vacancies; - the helium retention capacity in transition metal carbides and nitrides submitted to fully controlled thermal treatments varies according to ZrC 0.92 ≤ TiC 0.96 ≤ TiN 0.96 ; - whatever the investigated material, a self-ion-induced pre-damaging does not modify the initial helium profile extent. The influence of the post-implantation thermal treatment remains preponderant in any case; - the apparent diffusion coefficient of helium is in the range 4 * 10 -18 - 2 * 10 -17 m 2 s -1 in TiC0.96 and 3.5 * 10 -19 - 5.3 * 10 -18 m 2 s -1 in TiN 0.96 between

  20. TEM Characterization of Helium Bubbles in T91 and MNHS Steels Implanted with 200 keV He Ions at Different Temperatures

    International Nuclear Information System (INIS)

    Wang Ji; Gao Xing; Wang Zhi-Guang; Wei Kong-Fang; Yao Cun-Feng; Cui Ming-Huan; Sun Jian-Rong; Li Bing-Sheng; Pang Li-Long; Zhu Ya-Bin; Luo Peng; Chang Hai-Long; Zhang Hong-Peng; Zhu Hui-Ping; Wang Dong; Du Yang-Yang; Xie Er-Qing

    2015-01-01

    Modified novel high silicon steel (MNHS, a newly developed reduced-activation martensitic alloy) and commercial alloy T91 are implanted with 200 keV He"2"+ ions to a dose of 5 × 10"2"0 ions/m"2 at 300, 450 and 550°C. Transmission electron microscopy (TEM) is used to characterize the size and morphology of He bubbles. With the increase of the implantation temperature, TEM observations indicate that bubbles increase in size and the proportion of ‘brick shaped’ cuboid bubbles increases while the proportion of polyhedral bubbles decreases in both the steel samples. For the samples implanted at the same temperature, the average size of He bubbles in MNHS is smaller than that in T91. This might be due to the abundance of boundaries and precipitates in MNHS, which provide additional sites for the trapping of He atoms, thus reduce the susceptibility of MNHS to He embrittlement. (paper)

  1. Nucleation path of helium bubbles in metals during irradiation

    International Nuclear Information System (INIS)

    Morishita, Kazunori

    2008-01-01

    Thermodynamical formalization is made for description of the nucleation and growth of helium bubbles in metals during irradiation. The proposed formalization is available or evaluating both microstructural changes in fusion first wall materials where helium is produced by (n, α) nuclear transmutation reactions, and those in fusion divertor materials where helium particles with low energy are directly implanted. Calculated nucleation barrier is significantly reduced by the presence of helium, showing that a helium bubble with an appropriate number of helium atoms depending on bubble size can nucleate without any large nucleation barriers, even at a condition where an empty void has very large nucleation barrier without helium. With the proposed thermodynamical formalization, the nucleation and growth process of helium bubbles in iron during irradiation is simulated by the kinetic Monte-Carlo (KMC) technique. It shows the nucleation path of a helium bubble on the (N He , N V ) space as functions of temperatures and the concentration of helium in the matrix, where N He and N V are the number of helium atoms and vacancies in the helium bubble, respectively. Bubble growth rates depend on the nucleation path and suggest that two different mechanisms operate for bubble growth: one is controlled by vacancy diffusion and the other is controlled by interstitial helium diffusion. (author)

  2. Modeling Secondary Neutral Helium in the Heliosphere

    International Nuclear Information System (INIS)

    Müller, Hans-Reinhard; Möbius, Eberhard; Wood, Brian E.

    2016-01-01

    An accurate, analytic heliospheric neutral test-particle code for helium atoms from the interstellar medium (ISM) is coupled to global heliospheric models dominated by hydrogen and protons from the solar wind and the ISM. This coupling enables the forward-calculation of secondary helium neutrals from first principles. Secondaries are produced predominantly in the outer heliosheath, upwind of the heliopause, by charge exchange of helium ions with neutral atoms. The forward model integrates the secondary production terms along neutral trajectories and calculates the combined neutral helium phase space density in the innermost heliosphere where it can be related to in-situ observations. The phase space density of the secondary component is lower than that of primary neutral helium, but its presence can change the analysis of primaries and the ISM, and can yield valuable insight into the characteristics of the plasma in the outer heliosheath. (paper)

  3. Helium-induced hardening effect in polycrystalline tungsten

    Science.gov (United States)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  4. Effect of helium on void formation in nickel

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1977-01-01

    This study examines the influence of helium on void formation in self-ion irradiated nickel. Helium was injected either simultaneously with, or prior to, the self-ion bombardment. The void microstructure was characterized as a function of helium deposition rate and the total heavy-ion dose. In particular, at 575 0 C and 5 X 10 -3 displacements per atom per second the void density is found to be proportional to the helium deposition rate. The dose dependence of swelling is initially dominated by helium driven nucleation. The void density rapidly saturates after which swelling continues with increasing dose only from void growth. It is concluded that helium promotes void nucleation in nickel with either helium implantation technique, pre-injection or simultaneous injection. Qualitative differences, however, are recognized. (Auth.)

  5. Modeling Space-Time Dependent Helium Bubble Evolution in Tungsten Armor under IFE Conditions

    International Nuclear Information System (INIS)

    Qiyang Hu; Shahram Sharafat; Nasr Ghoniem

    2006-01-01

    The High Average Power Laser (HAPL) program is a coordinated effort to develop Laser Inertial Fusion Energy. The implosion of the D-T target produces a spectrum of neutrons, X-rays, and charged particles, which arrive at the first wall (FW) at different times within about 2.5 μs at a frequency of 5 to 10 Hz. Helium is one of several high-energy charged particle constituents impinging on the candidate tungsten armored low activation ferritic steel First Wall. The spread of the implanted debris and burn helium energies results in a unique space-time dependent implantation profile that spans about 10 μm in tungsten. Co-implantation of X-rays and other ions results in spatially dependent damage profiles and rapid space-time dependent temperature spikes and gradients. The rate of helium transport and helium bubble formation will vary significantly throughout the implanted region. Furthermore, helium will also be transported via the migration of helium bubbles and non-equilibrium helium-vacancy clusters. The HEROS code was developed at UCLA to model the spatial and time-dependent helium bubble nucleation, growth, coalescence, and migration under transient damage rates and transient temperature gradients. The HEROS code is based on kinetic rate theory, which includes clustering of helium and vacancies, helium mobility, helium-vacancy cluster stability, cavity nucleation and growth and other microstructural features such as interstitial loop evolution, grain boundaries, and precipitates. The HEROS code is based on space-time discretization of reaction-diffusion type equations to account for migration of mobile species between neighboring bins as single atoms, clusters, or bubbles. HAPL chamber FW implantation conditions are used to model helium bubble evolution in the implanted tungsten. Helium recycling rate predictions are compared with experimental results of helium ion implantation experiments. (author)

  6. Ultraviolet spectra of Mg in liquid helium

    International Nuclear Information System (INIS)

    Moriwaki, Y.; Morita, N.

    1999-01-01

    Emission and absorption spectra of Mg atoms implanted in liquid helium have been observed in the ultraviolet region. We have presented a model of exciplex formation of Mg-He 10 and found that this model is more suitable for understanding the dynamics in the 3s3p 1 P→3s 21 S transition than the bubble model. (orig.)

  7. High-temperature helium embrittlement (T>=0,45Tsub(M)) of metals

    International Nuclear Information System (INIS)

    Batfalsky, P.

    1984-06-01

    High temperature helium embrittlement, swelling and irradiation creep are the main technical problem of fusion reactor materials. The expected helium production will be very high. The helium produced by (n,α)-processes precipitates into helium bubbles because its solubility in solid metals is very low. Under continuous helium production at high temperature and stress the helium bubbles grow and lead to intergranular early failure. Solution annealed foil specimens of austenitic stainless steel AISI 316 were implanted with α-particles: 1. during creep tests at 1023 K (''in-beam'' test) 2. before the creep tests at high temperature (1023 K). The creep tests have been performed within large ranges of test parameter, e.g. applied stress, temperature, helium implantation rate and helium concentration. After the creep tests the microstructure was investigated using scanning (SEM) and transmission (TEM) electron microscopy. All the helium implanted specimens showed high temperature helium embrittlement, i.e. reduction of rupture time tsub(R) and ductility epsilonsub(R) and evidence of intergranular brittle fracture. The ''in-beam'' creep tests showed greater reduction of rupture time tsub(R) and ductility than the preimplanted creep tests. The comparison of this experimentally obtained data with various theoretical models of high temperature helium embrittlement showed that within the investigated parameter ranges the mechanism controlling the life time of the samples is probably the gas driven stable growth of the helium bubbles within the grain boundaries. (orig.)

  8. Liquid helium target

    International Nuclear Information System (INIS)

    Fujii, Y.; Kitami, T.; Torikoshi, M.

    1984-12-01

    A liquid helium target system has been built and used for the experiment on the reaction 4 He(γ, p). The target system has worked satisfactorily; the consumption rate of liquid helium is 360 ml/h and the cryogenic system retains liquid helium for about ten hours. The structure, operation and performance of the target system are reported. (author)

  9. Helium solubility and bubble growth in metals under high pressure

    International Nuclear Information System (INIS)

    Laakmann, J.

    1985-07-01

    Helium solubility and bubble growth in metals under high pressure polycrystals and single crystals of gold were heated in helium at temperatures between 475 K and 1250 K in a pressure regime of 200 to 2700 bar to measure the solubility of helium in gold. After quenching to room temperature the helium content, measured by mass spectrometry, showed the following properties: 1) A linear dependence of the He solubility on pressure. 2) Thinning of the specimen reduces the helium content by a factor 10 to 100 but does not change the linear pressure dependence. 3) The thermal release of He from thinned polycrystals and single crystals occurs mainly in a single peak at 500 K. 4) The He concentration of the thinned single crystals was lower by a factor of 10 to 50 than that of the thinned polycrystals. 5) The He solubility in single crystals can be described by an enthalpy of solution Hsub(s)sup(f) = 0.85 +- 0.7 eV and a non-configurational entropy of Ssub(s)sup(f) between 0 k and 1 k (k: Boltzmann-constant). In order to measure the pressure dependence of helium bubble growth in nickel polycrystal Ni-foils were α-implanted to a helium content of 130 appm. The evaluation of the size distribution of the helium bubbles after heat treatments shows 1) The helium content of the observable bubbles - assumed to be in equilibrium - equals the amount of helium implanted into the specimen. 2) The activation energy for the growth of helium bubbles is 1.25 +- 0.3 eV. The comparison of specimen which had been heated at low pressures up to 10 bar with others heated at 2500-2700 bar does not show an unequivocal pressure dependence for helium bubble growth. (orig./IHOE) [de

  10. Behavior of helium gas atoms and bubbles in low activation 9Cr martensitic steels

    Science.gov (United States)

    Hasegawa, Akira; Shiraishi, Haruki; Matsui, Hideki; Abe, Katsunori

    1994-09-01

    The behavior of helium-gas release from helium-implanted 9Cr martensitic steels (500 appm implanted at 873 K) during tensile testing at 873 K was studied. Modified 9Cr-1Mo, low-activation 9Cr-2W and 9Cr-0.5V were investigated. Cold-worked AISI 316 austenitic stainless steel was also investigated as a reference which was susceptible helium embrittlement at high temperature. A helium release peak was observed at the moment of rupture in all the specimens. The total quantity of helium released from these 9Cr steels was in the same range but smaller than that of 316CW steel. Helium gas in the 9Cr steels should be considered to remain in the matrix at their lath-packets even if deformed at 873 K. This is the reason why the martensitic steels have high resistance to helium embrittlement.

  11. Behavior of helium gas atoms and bubbles in low activation 9Cr martensitic steels

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Shiraishi, Haruki; Matsui, Hideki; Abe, Katsunori

    1994-01-01

    The behavior of helium-gas release from helium-implanted 9Cr martensitic steels (500 appm implanted at 873 K) during tensile testing at 873 K was studied. Modified 9Cr-1Mo, low-activation 9Cr-2W and 9Cr-0.5V were investigated. Cold-worked AISI 316 austenitic stainless steel was also investigated as a reference which was susceptible helium embrittlement at high temperature. A helium release peak was observed at the moment of rupture in all the specimens. The total quantity of helium released from these 9Cr steels was in the same range but smaller than that of 316CW steel. Helium gas in the 9Cr steels should be considered to remain in the matrix at their lath-packets even if deformed at 873 K. This is the reason why the martensitic steels have high resistance to helium embrittlement. ((orig.))

  12. Hydrogen and helium adsorption on potassium

    International Nuclear Information System (INIS)

    Garcia, R.; Mulders, N.; Hess, G.

    1995-01-01

    A previous quartz microbalance study of adsorption of helium on sodium indicates that the inert layer is surprisingly small. Similar experiments with hydrogen on sodium show layer by layer growth below a temperature of 7K. These results motivated the authors to extend the experiments to lower temperatures. A suitable apparatus, capable of reaching 0.45 K, while still enabling them to do in situ alkali evaporation, has been constructed. The authors will report on the results of microbalance adsorption experiments of helium and hydrogen on potassium

  13. Effect of helium irradiation on fracture modes

    International Nuclear Information System (INIS)

    Hanamura, T.; Jesser, W.A.

    1982-01-01

    The objective of this work is to determine the crack opening mode during in-situ HVEM tensile testing and how it is influenced by test temperature and helium irradiation. Most cracks were mixed mode I and II. However, between 250 0 C and room temperature the effect of helium irradiation is to increase the amount of mode I crack propagation. Mode II crack opening was observed as grain boundary sliding initiated by a predominantly mode I crack steeply intersecting the grain boundary. Mode II crack opening was absent in irradiated specimens tested between 250 0 C and room temperature, but could be restored by a post irradiation anneal

  14. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  15. Effect of helium ion bombardment on hydrogen behaviour in stainless steel

    International Nuclear Information System (INIS)

    Guseva, M.I.; Stolyarova, V.G.; Gorbatov, E.A.

    1987-01-01

    The effect of helium ion bombardment on hydrogen behaviour in 12Kh18N10T stainless steel is investigated. Helium and hydrogen ion bombardment was conducted in the ILU-3 ion accelerator; the fluence and energy made up 10 16 -5x10 17 cm -2 , 30 keV and 10 16 -5x10 18 cm -2 , 10 keV respectively. The method of recoil nuclei was used for determination of helium and hydrogen content. Successive implantation of helium and hydrogen ions into 12Kh18N10T stainless steel results in hydrogen capture by defects formed by helium ions

  16. Comment on theories for helium-assisted void nucleation

    International Nuclear Information System (INIS)

    Russell, K.C.

    1976-01-01

    Voids form by agglomeration of irradiation-induced vacancies which remain after preferential absorption of self interstitials at dislocation lines. Helium which is formed by (n,α) transmutations and, in simulation studies, may be ion-implanted, often plays an important, but puzzling role. In some materials, very few voids form in the absence of helium, even after intense irradiation. In many other materials , voids form readily under a variety of irradiation conditions, even in the absence of helium. Why some materials require helium - typically in the 10 -6 apa (atom per atom) range - and others do not, and the reason for that particular level are by no means clear. The physics of void nucleation, particularly the role of helium, have been the subject of several theoretical papers. This note presents a critique of these theories, and then briefly outlines a new analysis which is not subject to their limitations. (Auth.)

  17. Effects of displacement damage and helium production rates on the nucleation and growth of helium bubbles - Positron annihilation spectroscopy aspects

    Science.gov (United States)

    Krsjak, Vladimir; Degmova, Jarmila; Sojak, Stanislav; Slugen, Vladimir

    2018-02-01

    Fe-12 wt% Cr model alloy samples were implanted by 250 keV He2+ ions to three different fluencies (3 × 1017, 9 × 1017 and 1.5 × 1018 cm-2) at T steel samples [1] irradiated in the frame of a two-years irradiation program of the Swiss Spallation Neutron Source. Bi-modal defect distribution represented by two defect components in positron lifetime spectrum reveals two distinct helium bubbles growth mechanisms. While at the lower helium production rate of the spallation environment, the bubbles grow primarily by migration and coalescence, at the high production rates of helium in the implanted samples, the results indicate this growth is driven by Ostwald ripening mechanism. A competitive growth process via emission of interstitial atoms (clusters) is discussed in terms of low-temperature He implantations.

  18. Helium the disappearing element

    CERN Document Server

    Sears, Wheeler M

    2015-01-01

    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  19. Helium dilution refrigerator

    International Nuclear Information System (INIS)

    1973-01-01

    A new system of continuous heat exchange for a helium dilution refrigerator is proposed. The 3 He effluent tube is concurrent with the affluent mixed helium tube in a vertical downward direction. Heat exchange efficiency is enhanced by placing in series a number of elements with an enlarged surface area

  20. Helium localisation in tritides

    International Nuclear Information System (INIS)

    Flament, J.L.; Lozes, G.

    1982-06-01

    Study of titanium and LaNi 5 type alloys tritides lattice parameters evolution revealed that helium created by tritium decay remains in interstitial sites up to a limit material dependant concentration. Beyond this one exceeding helium precipites in voids [fr

  1. Optically active centers in Eu implanted, Eu in situ doped GaN, and Eu doped GaN quantum dots

    International Nuclear Information System (INIS)

    Bodiou, L.; Braud, A.; Doualan, J.-L.; Moncorge, R.; Park, J. H.; Munasinghe, C.; Steckl, A. J.; Lorenz, K.; Alves, E.; Daudin, B.

    2009-01-01

    A comparison is presented between Eu implanted and Eu in situ doped GaN thin films showing that two predominant Eu sites are optically active around 620 nm in both types of samples with below and above bandgap excitation. One of these sites, identified as a Ga substitutional site, is common to both types of Eu doped GaN samples despite the difference in the GaN film growth method and in the doping technique. High-resolution photoluminescence (PL) spectra under resonant excitation reveal that in all samples these two host-sensitized sites are in small amount compared to the majority of Eu ions which occupy isolated Ga substitutional sites and thus cannot be excited through the GaN host. The relative concentrations of the two predominant host-sensitized Eu sites are strongly affected by the annealing temperature for Eu implanted samples and by the group III element time opening in the molecular beam epitaxy growth. Red luminescence decay characteristics for the two Eu sites reveal different excitation paths. PL dynamics under above bandgap excitation indicate that Eu ions occupying a Ga substitutional site are either excited directly into the 5 D 0 level or into higher excited levels such as 5 D 1 , while Eu ions sitting in the other site are only directly excited into the 5 D 0 level. These differences are discussed in terms of the spectral overlap between the emission band of a nearby bound exciton and the absorption bands of Eu ions. The study of Eu doped GaN quantum dots reveals the existence of only one type of Eu site under above bandgap excitation, with Eu PL dynamics features similar to Eu ions in Ga substitutional sites

  2. Low temperature calorimetry and transmission electron microscopy of helium bubbles in Cu

    International Nuclear Information System (INIS)

    Syskakis, E.

    1985-08-01

    Helium has been introduced into 100 μm thick pure Cu specimens by implantation of α-particles at T = 300 K. Post-implantation annealing of the specimens at high temperatures caused helium to precipitate into bubbles. We have measured the low-temperature heat capacity of helium confined in bubbles of average radius of less than 100 A. The size of the bubbles was obtained by transmission electron microscope investigations. We have observed that helium liquifies at low temperatures and undergoes the transition to the superfluid state in bubbles of average radius larger than 35 A. The confining geometry of bubbles is new and possesses unique features for investigations of confined helium. It provides the possibility to study properties of extremely small, spherical, completely isolated Bose ''particles'' consisting of 10 4 helium atoms each. Furthermore, as we show, it can be known with better accuracy than formerly investigated confining geometries. (orig./BHO)

  3. A liquid helium saver

    International Nuclear Information System (INIS)

    Avenel, O.; Der Nigohossian, G.; Roubeau, P.

    1976-01-01

    A cryostat equipped with a 'liquid helium saver' is described. A mass flow rate M of helium gas at high pressure is injected in a counter-flow heat exchanger extending from room to liquid helium temperature. After isenthalpic expansion through a calibrated flow impedance this helium gas returns via the low pressure side of the heat exchanger. The helium boil-off of the cryostat represents a mass flow rate m, which provides additional precooling of the incoming helium gas. Two operating regimes appear possible giving nearly the same efficiency: (1) high pressure (20 to 25 atm) and minimum flow (M . L/W approximately = 1.5) which would be used in an open circuit with helium taken from a high pressure cylinder; and (2) low pressure (approximately = 3 atm), high flow (M . L/W > 10) which would be used in a closed circuit with a rubber diaphragm pumping-compressing unit; both provide a minimum theoretical boil-off factor of about 8%. Experimental results are reported. (U.K.)

  4. Helium ion damage in an amorphous Fe-Ni-Mo-B alloy

    International Nuclear Information System (INIS)

    Swijgenhoven, H. van; Stals, L.M.; Knuyt, G.

    1983-01-01

    Data are presented on helium gas bubble and helium blister formation for Metglas 2826MB during 5 keV He + -implantation in the temperature range 200K-600K and dose range 5.10 20 -10 22 He + /m 2 . It is concluded that amorphous alloys are less radiation resistant as has been thought earlier. (author)

  5. Helium-induced blistering and volume swelling in nickel

    International Nuclear Information System (INIS)

    Fenske, G.R.

    1980-01-01

    The results of an experimental investigation of helium-induced blistering are presented. The goal of the research was to examine the mechanisms involved in blistering by observing the microstructure of the implanted region using transmission electron microscopy (TEM). In particular, the volume swelling was measured as a function of the implant depth, and compared to experimental skin thicknesses in order to determine if the skin separated at the maximum volume swelling, or at the end of the swelling profile

  6. Abundance and Charge State of Implanted Solar Wind Transition Metals in Individual Apollo 16 and 17 Lunar Soil Plagioclase Grains Determined In Situ Using Synchrotron X-ray Fluorescence

    International Nuclear Information System (INIS)

    Kitts, K.; Sutton, S.; Newville, M.

    2007-01-01

    We report (1) a new method for determining the relative abundances in situ of Cr, Mn, Fe and Ni in implanted solar wind in individual Apollo 16 and 17 lunar plagioclases via synchrotron X-ray fluorescence and (2) the charge states of these metals. By virture of its mass alone, the Sun provides a representative composition of the solar system and can be used as a background against which to gauge excesses or deficiencies of specific components. One way of sampling the Sun is by measuring solar wind implanted ions in lunar soil grains. Such measurements are valuable because of their long exposure ages which compliment shorter time scale collections, such as those obtained by the Genesis spacecraft. Kitts et al. sought to determine the isotopic composition of solar Cr by analyzing the solar wind implanted into plagioclase grains from Apollo 16 lunar soils. The isotopic composition of the solar wind bearing fraction was anomalous and did not match any other known Cr isotopic signature. This could only be explained by either (1) an enrichment in the solar wind of heavy Cr due to spallation in the solar atmosphere or (2) that the Earth and the various parent bodies of the meteorites are distinct from the Sun and must have formed from slightly different mixes of presolar materials. To help resolve this issue, we have developed a wholly independent method for determining the relative abundances of transition metals in the solar wind implanted in individual lunar soil grains. This method is based on in situ abundance measurements by microbeam x-ray fluorescence in both the implantation zone and bulk grains using the synchrotron x-ray microprobe at the Advanced Photon Source (GSECARS sector 13) at Argonne National Laboratory. Here, we report results for Apollo 16 and 17 plagioclase grains. Additionally, a micro-XANES technique was used to determine charge states of the implanted Cr, Mn, Fe and Ni.

  7. 'In-beam' simulation of high temperature helium embrittlement of DIN 1.4970 austenitic stainless steel

    International Nuclear Information System (INIS)

    Schroeder, H.; Batfalsky, P.

    1982-01-01

    This work describes a facility for high temperature creep rupture tests during homogeneous helium implantation. This 'in-beam' creep testing facility is used to simulate helium embrittlement effects which will be very important for first wall materials of future fusion reactors operated at high temperatures. First results for DIN 1.4970 austenitic stainless steel clearly demonstrate differences between samples 'in-beam' tested at 1073 K and those creep tested at the same temperature after room temperature helium implantation. The specimens ruptured 'in-beam' have much shorter lifetimes and lower ductility than the specimens tested after room temperature implantation. There are also differences in the microstructures, concerning helium bubble sizes and densities in matrix and grain boundaries. These microstructural differences may be a key for the understanding of the more severe helium embrittlement effects 'in-beam' as compared to creep tests performed after room temperature implantation. (orig.)

  8. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  9. Self-powered implantable electronic-skin for in situ analysis of urea/uric-acid in body fluids and the potential applications in real-time kidney-disease diagnosis.

    Science.gov (United States)

    Yang, Wenyan; Han, Wuxiao; Gao, Huiling; Zhang, Linlin; Wang, Shuai; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2018-01-25

    As the concentration of different biomarkers in human body fluids are an important parameter of chronic disease, wearable biosensors for in situ analysis of body fluids with high sensitivity, real-time detection, flexibility and biocompatibility have significant potential therapeutic applications. In this paper, a flexible self-powered implantable electronic-skin (e-skin) for in situ body fluids analysis (urea/uric-acid) as a real-time kidney-disease diagnoser has been proposed based on the piezo-enzymatic-reaction coupling process of ZnO nanowire arrays. It can convert the mechanical energy of body movements into a piezoelectric impulse, and the outputting piezoelectric signal contains the urea/uric-acid concentration information in body fluids. This piezoelectric-biosensing process does not need an external electricity supply or battery. The e-skin was implanted under the abdominal skin of a mouse and provided in situ analysis of the kidney-disease parameters. These results provide a new approach for developing a self-powered in situ body fluids-analysis technique for chronic-disease diagnosis.

  10. Lattice location of helium in uranium dioxide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, F.; Nowicki, L. E-mail: lech.nowicki@fuw.edu.pl; Sattonnay, G.; Sauvage, T.; Thome, L

    2004-06-01

    Lattice location of {sup 3}He atoms implanted into UO{sub 2} single crystals was performed by means of the channeling technique combined with nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). The {sup 3}He(d,p){sup 4}He reaction was used. The experimental angular scans show that helium atoms occupy octahedral interstitial positions.

  11. Creep behavior of 8Cr2WVTa martensitic steel designed for fusion DEMO reactor. An assessment on helium embrittlement resistance

    International Nuclear Information System (INIS)

    Yamamoto, Norikazu; Murase, Yoshiharu; Nagakawa, Johsei; Shiba, Kiyoyuki

    2001-01-01

    Mechanical response against transmutational helium production, alternatively susceptibility to helium embrittlement, in a nuclear fusion reactor was examined on 8Cr2WVTa martensitic steel, a prominent structural candidate for advanced fusion systems. In order to simulate DEMO (demonstrative) reactor environments, helium was implanted into the material at 823 K with concentrations up to 1000 appmHe utilizing an α-beam from a cyclotron. Creep rupture properties were subsequently determined at the same temperature and were compared with those of the material without helium. It has been proved that helium caused no meaningful deterioration in terms of both the creep lifetime and rupture elongation. Furthermore, failure occurred completely in a transgranular and ductile manner even after high concentration helium introduction and there was no symptom of grain boundary decohesion which very often arises in helium bearing materials. These facts would mirror preferable resistance of this steel toward helium embrittlement. (author)

  12. Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia

    International Nuclear Information System (INIS)

    Le Renard, Pol-Edern; Lortz, Rolf; Senatore, Carmine; Rapin, Jean-Philippe; Buchegger, Franz; Petri-Fink, Alke; Hofmann, Heinrich; Doelker, Eric; Jordan, Olivier

    2011-01-01

    The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 o C, as in vivo. Using two orthogonal methods, a common SLP (20 W g -1 ) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities. - Research highlights: → Magnetic formulations that form implants on injection into tissues are proposed for hyperthermia. → Superparamagnetic properties of the SPION-silica composite microparticles are preserved in the wet implants. → Heat-dissipating properties (SLP of 20 W/g of implant) support in vivo use.

  13. Effect of Fe and C doping on the thermal release of helium from aluminum

    International Nuclear Information System (INIS)

    Xiang, X.; Chen, C.A.; Liu, K.Z.; Peng, L.X.; Rao, Y.C.

    2010-01-01

    The effect of Fe and C doping on the thermal release of helium from Al implanted with 10 keV, 4.0 x 10 21 ion/m 2 He at room temperature (RT) has been investigated by thermal helium desorption spectrometry (THDS) and transmission electron microscope (TEM). The results show that Fe and C doping have significant impact on the release of helium from Al and the extent depends on the doping fluence. Proper fluence of Fe and C doping would lead to the retardation of the release of helium from Al, while excessive fluence of Fe and C doping would result in more desorption peaks and the release of helium in lower temperature ranges. Fe and C doping have different influence on the release of helium from Al, and the difference is related with the secondary phases forming in the samples.

  14. Helium refrigerator for 'SULTAN'

    International Nuclear Information System (INIS)

    Arpagaus, M.; Erlach, H.; Quack, H.

    1984-01-01

    The authors describe the helium refrigerator designed for the SULTAN test facility. SULTAN (Supraleiter-Testanlage) is intended to serve for the developments and testing of high field superconducting magnets. These magnets are needed mainly for future applications in nuclear fusion. (Auth.)

  15. Cosmological helium production simplified

    International Nuclear Information System (INIS)

    Bernstein, J.; Brown, L.S.; Feinberg, G.

    1988-01-01

    We present a simplified model of helium synthesis in the early universe. The purpose of the model is to explain clearly the physical ideas relevant to the cosmological helium synthesis, in a manner that does not overlay these ideas with complex computer calculations. The model closely follows the standard calculation, except that it neglects the small effect of Fermi-Dirac statistics for the leptons. We also neglect the temperature difference between photons and neutrinos during the period in which neutrons and protons interconvert. These approximations allow us to express the neutron-proton conversion rates in a closed form, which agrees to 10% accuracy or better with the exact rates. Using these analytic expressions for the rates, we reduce the calculation of the neutron-proton ratio as a function of temperature to a simple numerical integral. We also estimate the effect of neutron decay on the helium abundance. Our result for this quantity agrees well with precise computer calculations. We use our semi-analytic formulas to determine how the predicted helium abundance varies with such parameters as the neutron life-time, the baryon to photon ratio, the number of neutrino species, and a possible electron-neutrino chemical potential. 19 refs., 1 fig., 1 tab

  16. Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten

    International Nuclear Information System (INIS)

    Hino, T.; Koyama, K.; Yamauchi, Y.; Hirohata, Y.

    1998-01-01

    The hydrogen retention properties of a polycrystalline tungsten and tungsten irradiated by helium ions with an energy of 5 keV were examined by using an ECR ion irradiation apparatus and a technique of thermal desorption spectroscopy, TDS. The polycrystalline tungsten was irradiated at RT with energetic hydrogen ions, with a flux of 10 15 H cm -2 and an energy of 1.7 keV up to a fluence of 5 x 10 18 H cm -2 . Subsequently, the amount of retained hydrogen was measured by TDS. The heating temperature was increased from RT to 1000 C, and the heating rate was 50 C min -1 . Below 1000 C, two distinct hydrogen desorption peaks were observed at 200 C and 400 C. The retained amount of hydrogen was observed to be five times smaller than that of graphite, but the concentration in the implantation layer was comparable with that of graphite. Also, the polycrystalline tungsten was irradiated with 5 keV helium ions up to a fluence of 1.4 x 10 18 He cm -2 , and then re-irradiated with 1.7 keV hydrogen ions. The amount of retained hydrogen in this later experiment was close to the value in the case without prior helium ion irradiation. However, the amount of hydrogen which desorbed around the low temperature peak, 200 C, was largely enhanced. The desorption amount at 200 C saturated for the helium fluence of more than 5 x 10 17 He cm -2 . The present data shows that the trapping state of hydrogen is largely changed by the helium ion irradiation. Additionally, 5 keV helium ion irradiation was conducted on a sample pre-implanted with hydrogen ions to simulate a helium ion impact desorption of hydrogen retained in tungsten. The amount of the hydrogen was reduced as much as 50%. (orig.)

  17. High resistivity in InP by helium bombardment

    International Nuclear Information System (INIS)

    Focht, M.W.; Macrander, A.T.; Schwartz, B.; Feldman, L.C.

    1984-01-01

    Helium implants over a fluence range from 10 11 to 10 16 ions/cm 2 , reproducibly form high resistivity regions in both p- and n-type InP. Average resistivities of greater than 10 9 Ω cm for p-type InP and of 10 3 Ω cm for n-type InP are reported. Results are presented of a Monte Carlo simulation of helium bombardment into the compound target InP that yields the mean projected range and the range straggling

  18. High temperature embrittlement of metals by helium

    International Nuclear Information System (INIS)

    Schroeder, H.

    1983-01-01

    The present knowledge of the influence of helium on the high temperature mechanical properties of metals to be used as structural materials in fast fission and in future fusion reactors is reviewed. A wealth of experimental data has been obtained by many different experimental techniques, on many different alloys, and on different properties. This review is mostly concentrated on the behaviour of austenitic alloys -especially austenitic stainless steels, for which the data base is by far the largest - and gives only a few examples of special bcc alloys. The effect of the helium embrittlement on the different properties - tensile, fatigue and, with special emphasis, creep - is demonstrated by representative results. A comparison between data obtained from in-pile (-beam) experiments and from post-irradiation (-implantation) experiments, respectively, is presented. Theoretical models to describe the observed phenomena are briefly outlined and some suggestions are made for future work to resolve uncertainties and differences between our experimental knowledge and theoretical understanding of high temperature helium embrittlement. (author)

  19. Helium-Charged La-Ni-Al Thin Films Deposited by Magnetron Sputtering

    International Nuclear Information System (INIS)

    Shi Liqun; Chen Deming; Xu Shilin; Liu Chaozhu; Hao Wanli; Zhou Zhuyin

    2005-01-01

    An advanced implantation of low energy helium-4 atoms during the La-Ni-Al film growth by adopting magnetron sputtering with Ar/He mixture gases is discussed. Both proton backscattering spectroscopy (PBS) and elastic recoil detection (ERD) analyses were adopted to measure helium concentration of the films and distribution in the near-surface region. Helium atoms with a high concentration incorporate evenly in deposited film. The introduction of the helium with no extra irradiation damage is expected by choosing suitable deposition conditions. It was found that amorphous and crystalline LaNi 5 -type structures can be achieved when sputtered with pure Ar and Ar/He mixture gases at room temperature, respectively. Thermal desorption experiments proposes that a part of hydrogen atoms are bound to trapped helium at crystal and releases together with helium. Only a small fraction of helium is released from the helium-vacancy clusters in lower temperature range and most of helium is released from small size helium bubbles in the high temperature range

  20. Tritium decay helium-3 effects in tungsten

    Directory of Open Access Journals (Sweden)

    M. Shimada

    2017-08-01

    Full Text Available Tritium (T implanted by plasmas diffuses into bulk material, especially rapidly at elevated temperatures, and becomes trapped in neutron radiation-induced defects in materials that act as trapping sites for the tritium. The trapped tritium atoms will decay to produce helium-3 (3He atoms at a half-life of 12.3 years. 3He has a large cross section for absorbing thermal neutrons, which after absorbing a neutron produces hydrogen (H and tritium ions with a combined kinetic energy of 0.76 MeV through the 3He(n,HT nuclear reaction. The purpose of this paper is to quantify the 3He produced in tungsten by tritium decay compared to the neutron-induced helium-4 (4He produced in tungsten. This is important given the fact that helium in materials not only creates microstructural damage in the bulk of the material but alters surface morphology of the material effecting plasma-surface interaction process (e.g. material evolution, erosion and tritium behavior of plasma-facing component materials. Effects of tritium decay 3He in tungsten are investigated here with a simple model that predicts quantity of 3He produced in a fusion DEMO FW based on a neutron energy spectrum found in literature. This study reveals that: (1 helium-3 concentration was equilibrated to ∼6% of initial/trapped tritium concentration, (2 tritium concentration remained approximately constant (94% of initial tritium concentration, and (3 displacement damage from 3He(n,HT nuclear reaction became >1 dpa/year in DEMO FW.

  1. Neutral helium beam probe

    Science.gov (United States)

    Karim, Rezwanul

    1999-10-01

    This article discusses the development of a code where diagnostic neutral helium beam can be used as a probe. The code solves numerically the evolution of the population densities of helium atoms at their several different energy levels as the beam propagates through the plasma. The collisional radiative model has been utilized in this numerical calculation. The spatial dependence of the metastable states of neutral helium atom, as obtained in this numerical analysis, offers a possible diagnostic tool for tokamak plasma. The spatial evolution for several hypothetical plasma conditions was tested. Simulation routines were also run with the plasma parameters (density and temperature profiles) similar to a shot in the Princeton beta experiment modified (PBX-M) tokamak and a shot in Tokamak Fusion Test Reactor tokamak. A comparison between the simulation result and the experimentally obtained data (for each of these two shots) is presented. A good correlation in such comparisons for a number of such shots can establish the accurateness and usefulness of this probe. The result can possibly be extended for other plasma machines and for various plasma conditions in those machines.

  2. Antiprotonic helium atomcules

    Directory of Open Access Journals (Sweden)

    Sauge Sébastien

    2012-10-01

    Full Text Available About 3% of antiprotons ( stopped in helium are long-lived with microsecond lifetimes, against picoseconds in all other materials. This unusual longevity has been ascribed to the trapping of on metastable bound states in He+ helium atom-molecules thus named atomcules. Apart from their unique dual structure investigated by laser spectroscopy – a near-circular quasi-classical Rydberg atom with l ~ n – 1 ~ 37 or a special diatomic molecule with a negatively charged nucleus in high rotational state with J = l – the chemical physics aspects of their interaction with other atoms or molecules constitute an interesting topic for molecular physics. While atomcules may resist to million collisions in helium, molecular contaminants such as H2 are likely to destroy them in a single one, down to very low temperatures. In the Born-Oppenheimer framework, we interpret the molecular interaction obtained by ab initio quantum chemical calculations in terms of classical reactive channels, with activation barriers accounting for the experiments carried out in He and H2. From classical trajectory Monte Carlo simulations, we show that the thermalization stage strongly quenches initial populations, thus reduced to a recovered 3 % trapping fraction. This work illustrates the pertinence of chemical physics concepts to the study of exotic processes involving antimatter. New insights into the physico-chemistry of cold interstellar radicals are anticipated.

  3. Effect of helium on fatigue crack growth and life of reduced activation ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Takahashi, Manabu; Hasegawa, Akira; Yamazaki, Masanori

    2013-01-01

    The effects of helium on the fatigue life, micro-crack growth behavior up to final fatigue failure, and fracture mode under fatigue in the reduced activation ferritic/martensitic steel, F82H IEA-heat, were investigated by low cycle fatigue tests at room temperature in air at a total strain range of 0.6–1.5%. Significant reduction of the fatigue life due to helium implantation was observed for a total strain range of 1.0–1.5%, which might be attributable to an increase in the micro-crack propagation rate. However, the reduction of fatigue life due to helium implantation was not significant for a total strain range of 0.6–0.8%. A brittle fracture surface (an original point of micro-crack initiation) and a cleavage fracture surface were observed in the helium-implanted region of fracture surface. A striation pattern was observed in the non-implanted region. These fracture modes of the helium-implanted specimen were independent of the strain range

  4. Surface electrons of helium films

    International Nuclear Information System (INIS)

    Studart, N.; Hipolito, O.

    1986-01-01

    Theoretical calculations of some properties of two-dimensional electrons on a liquid helium film adsorbed on a solid substrate are reviewed. We describe the spectrum of electron bound states on bulk helium as well on helium films. The correlational properties, such as the structure factor and correlation energy, are determined as functions of the film thickness for different types of substrates in the framework of a Generalized Random-Phase Approximation. The collective excitations of this system are also described. The results for electrons on the surface of thin films and bulk helium are easily obtained. we examine the electron interaction with the excitations of the liquid helium surface resulting in a new polaron state, which was observed very recently. The ground state energy and the effective mass of this polaron are determined by using the path-integral formalism and unitary-transformation method. Recent speculations about the phase diagram of electrons on the helium film are also discussed. (Author) [pt

  5. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski

    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.

    Key words. Solar physics, astrophysics and astronomy

  6. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski

    2003-06-01

    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.Key words. Solar physics, astrophysics and astronomy

  7. IBA studies of helium mobility in nuclear materials revisited

    Energy Technology Data Exchange (ETDEWEB)

    Trocellier, P., E-mail: patrick.trocellier@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Agarwal, S.; Miro, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Vaubaillon, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); CEA, INSTN, UEPTN, F-91191 Gif-sur-Yvette (France); Leprêtre, F.; Serruys, Y. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2015-12-15

    The aim of this paper is to point out and to discuss some features extracted from the study of helium migration in nuclear materials performed during the last fifteen years using ion beam analysis (IBA) measurements. The first part of this paper is devoted to a brief description of the two main IBA methods used, i.e. deuteron induced nuclear reaction for {sup 3}He depth profiling and high-energy heavy-ion induced elastic recoil detection analysis for {sup 4}He measurement. In the second part, we provide an overview of the different studies carried out on model nuclear waste matrices and model nuclear reactor structure materials in order to illustrate and discuss specific results in terms of key influence parameters in relation with thermal or radiation activated migration of helium. Finally, we show that among the key parameters we have investigated as able to influence the height of the helium migration barrier, the following can be considered as pertinent: the experimental conditions used to introduce helium (implanted ion energy and implantation fluence), the grain size of the matrix, the lattice cell volume, the Young's modulus, the ionicity degree of the chemical bond between the transition metal atom M and the non-metal atom X, and the width of the band gap.

  8. Canada's helium output rising fast

    Energy Technology Data Exchange (ETDEWEB)

    1966-12-01

    About 12 months from now, International Helium Limited will be almost ready to start up Canada's second helium extraction plant at Mankota, in Saskatchewan's Wood Mountain area about 100 miles southwest of Moose Jaw. Another 80 miles north is Saskatchewan's (and Canada's) first helium plant, operated by Canadian Helium and sitting on a gas deposit at Wilhelm, 9 miles north of Swift Current. It contains almost 2% helium, some COD2U, and the rest nitrogen. One year in production was apparently enough to convince Canadian Helium that the export market (it sells most of its helium in W. Europe) can take a lot more than it's getting. Construction began this summer on an addition to the Swift Current plant that will raise its capacity from 12 to 36MMcf per yr when it goes on stream next spring. Six months later, International Helium's 40 MMcf per yr plant to be located about 4 miles from its 2 Wood Mountain wells will double Canada's helium output again.

  9. Whisker growth: a new mechanism for helium blistering of surfaces in complex radiation environments

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1978-01-01

    Implantation of helium concurrent with the generation of large numbers of displaced atoms in surface layers of materials exposed to 252 Cf α-particles and fission fragments produces a unique form of low temperature surface blistering. The purpose of this paper is to formulate a basis for the whisker-growth mechanism for helium blistering as an aid to the specification of conditions under which the mechanism might apply

  10. Orion A helium abundance

    International Nuclear Information System (INIS)

    Tsivilev, A.P.; Ershov, A.A.; Smirnov, G.T.; Sorochenko, R.L.

    1986-01-01

    The 22.4-GHz (H,He)66-alpha and 36.5-GHz (H,He)56-alpha radio recombination lines have been observed at several Jaffe-Pankonin positions in the central part of the Orion A source. The measured relative abundance of ionized helium increases with distance, averaging 11.6 percent at peripheral points. The observed behavior is interpreted by a blister-type model nebula, which implies that Orion A has a true He abundance of 12 percent, is moving with a radial velocity of 5 km/sec, and is expanding. 18 references

  11. Simulation of liquid helium

    International Nuclear Information System (INIS)

    Ceperley, D.M.

    1985-07-01

    The author discusses simulation methods for quantum mechanical systems at finite temperatures. Recently it has been shown that static properties of some quantum systems can be obtained by simulation in a straightforward manner using path integrals, albeit with an order of magnitude more computing effort needed than for the corresponding classical systems. Some dynamical information can be gleaned from these simulations as will be discussed below. But this is very limited - there is no quantum version of the molecular dynamics method. The path integral method is illustrated by discussing the application to liquid helium. 12 refs., 8 figs

  12. Helium-induced weld cracking in austenitic and martensitic steels

    International Nuclear Information System (INIS)

    Lin, H.T.; Chin, B.A.

    1991-01-01

    Helium was uniformly implanted into type 316 stainless steel and Sandvik HT-9 (12Cr-1MoVW) to levels of 0.18 to 256 and 0.3 to 1 a.p.p.m., respectively, using the ''tritium trick'' technique. Autogenous bead-on-plate, full penetration, welds were then produced under fully constrained conditions using the gas tungsten arc welding (GTAW) process. The control and hydrogen-charged plates of both alloys were sound and free of any weld defects. For the 316 stainless steel, catastrophic intergranular fracture occurred in the heat-affected zone (HAZ) of welds with helium levels ≥ 2.5 a.p.p.m. In addition to the HAZ cracking, brittle fracture along the centreline of the fusion zone was also observed for the welds containing greater than 100 a.p.p.m. He. For HT-9, intergranular cracking occurred in the HAZ along prior-austenite grain boundaries of welds containing 1 a.p.p.m. He. Electron microscopy observations showed that the cracking in the HAZ originated from the growth and coalescence of grain-boundary helium bubbles and that the fusion-zone cracking resulted from the growth of helium bubbles at dendrite boundaries. The bubble growth kinetics in the HAZ is dominated by stress-induced diffusion of vacancies into bubbles. Results of this study indicate that the use of conventional GTAW techniques to repair irradiation-degraded materials containing even small amounts of helium may be difficult. (author)

  13. Helium bubble formation and retention in Cu-Nb nanocomposites

    International Nuclear Information System (INIS)

    Dunn, A.Y.; McPhie, M.G.; Capolungo, L.; Martinez, E; Cherkaoui, M.

    2013-01-01

    A spatially dependent rate theory model for helium migration, clustering, and trapping on interfaces between Cu and Nb layers is introduced to predict the evolution of the concentrations of He clusters of various sizes during implantation and early annealing. Migration and binding energies of point defects and small clusters in bulk Cu and Nb are found using conjugate gradient minimization and the nudged elastic band method. The model is implemented in a three-dimensional framework and used to predict the relationship between helium bubble formation and the nano-composite microstructure, including interfacial free volume, grain size, and layer thickness. Interstitial and vacancy-like migration of helium is considered. The effects of changing layer thickness and interfacial misfit dislocation density on the threshold for helium bubble nucleation are found to match experiments. Accelerated helium release due to interfaces and grain boundaries is shown to occur only when diffusion rates on interfaces and grain boundaries are greatly increased relative to the bulk material.

  14. High Efficiency Regenerative Helium Compressor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  15. Helium sequestration at nanoparticle-matrix interfaces in helium + heavy ion irradiated nanostructured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Parish, C.M., E-mail: parishcm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Unocic, K.A.; Tan, L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zinkle, S.J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States); Kondo, S. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011 (Japan); Snead, L.L. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Hoelzer, D.T.; Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-01-15

    We irradiated four ferritic alloys with energetic Fe and He ions: one castable nanostructured alloy (CNA) containing Ti-W-Ta-carbides, and three nanostructured ferritic alloys (NFAs). The NFAs were: 9Cr containing Y-Ti-O nanoclusters, and two Fe-12Cr-5Al NFAs containing Y-Zr-O or Y-Hf-O clusters. All four were subjected to simultaneous dual-beam Fe + He ion implantation (650 °C, ∼50 dpa, ∼15 appm He/dpa), simulating fusion-reactor conditions. Examination using scanning/transmission electron microscopy (STEM) revealed high-number-density helium bubbles of ∼8 nm, ∼10{sup 21} m{sup −3} (CNA), and of ∼3 nm, 10{sup 23} m{sup −3} (NFAs). STEM combined with multivariate statistical analysis data mining suggests that the precipitate-matrix interfaces in all alloys survived ∼50 dpa at 650 °C and serve as effective helium trapping sites. All alloys appear viable structural material candidates for fusion or advanced fission energy systems. Among these developmental alloys the NFAs appear to sequester the helium into smaller bubbles and away from the grain boundaries more effectively than the early-generation CNA.

  16. Surface behaviour of first-wall materials due to the synergistic effect of helium and hydrogen isotopes

    International Nuclear Information System (INIS)

    Abramov, E.; Moreno, D.; Solovioff, G.; Eliezer, D.

    1994-01-01

    Scanning electron microscopy has been used to investigate changes in surface morphology due to helium implantation and hydrogen charging. Pure polycrystalline nickel, OFHC copper and Cu-1.8Be-0.2Co (CAD 172) alloy have been studied. The influence of helium implantation parameters on blister formation and growth was investigated. Hydrogen charging (cathodic or thermal-gas) was found to lower the helium content needed for blistering and surface exfoliation. The effect of heating, carried out after hydrogen charging, was also studied. For the copper samples, hydrogen damage was produced by oxide reduction at the oxide-metal interface. This damage was found to be lower when the sputtering due to helium implantation increased. The CuBe alloy showed a greater hydrogen resistance due to the stability of the surface BeO. ((orig.))

  17. A helium regenerative compressor

    International Nuclear Information System (INIS)

    Swift, W.L.; Nutt, W.E.; Sixsmith, H.

    1994-01-01

    This paper discusses the design and performance of a regenerative compressor that was developed primarily for use in cryogenic helium systems. The objectives for the development were to achieve acceptable efficiency in the machine using conventional motor and bearing technology while reducing the complexity of the system required to control contamination from the lubricants. A single stage compressor was built and tested. The compressor incorporates aerodynamically shaped blades on a 218 mm (8.6 inches) diameter impeller to achieve high efficiency. A gas-buffered non-contact shaft seal is used to oppose the diffusion of lubricant from the motor bearings into the cryogenic circuit. Since it is a rotating machine, the flow is continuous and steady, and the machine is very quiet. During performance testing with helium, the single stage machine has demonstrated a pressure ratio of 1.5 at a flow rate of 12 g/s with measured isothermal efficiencies in excess of 30%. This performance compares favorably with efficiencies generally achieved in oil flooded screw compressors

  18. Helium production in reactor materials

    International Nuclear Information System (INIS)

    Lippincott, E.P.; McElroy, W.N.; Farrar, H. IV.

    1975-02-01

    Comparisons of integral helium production measurements with predictions based on ENDF/B Version IV cross sections have been made. It is concluded that an ENDF/B helium production cross section file should be established in order to ensure a complete and consistent cross section evaluation to meet accuracies required for LMFBR, CTR, and LWR applications. (U.S.)

  19. Semiconductor analysis with a channeled helium microbeam

    International Nuclear Information System (INIS)

    Ingarfield, S.A.; McKenzie, C.D.; Short, K.T.; Williams, J.S.

    1981-01-01

    This paper describes the use of a channeled helium microbeam for analysis of damage and dopant distributions in semiconductors. Practical difficulties and potential problems associated with the channeling of microbeams in semiconductors have been examined. In particular, the following factors have been characterised: i) the effect of both convergence of focused beam and beam scanning on the quality of channeling; ii) damage produced by the probe ions; and iii) local beam heating effects arising from high current densities. Acceptable channeling has been obtained (minimum yield approaching 4%) under a variety of focusing and scanning conditions which are suitable for analysis of device structures. The capabilities of the technique are demonstrated by monitoring variations in local damage and impurity depth distributions across a narrow (<2mm) region of an ion implanted silicon wafer

  20. A preliminary investigation of the diffusion of helium in zirconium

    International Nuclear Information System (INIS)

    Reed, D.J.; Faulkner, D.

    1976-10-01

    The out-diffusion of helium, introduced into polycrystalline zirconium at room temperature by ion-implantation at 100 keV to a peak concentration of 1ppm, was found to occur in two principal regions. Two evolution rate maxima, obtained during post-implantation target annealing at 2.6 0 K s -1 , were observed in close proximity at 330 0 C (0.28 Tsub(m)) and 450 0 C (0.34 Tsub(m)) comprising the principal stage, with a subordinate stage occurring at 600 0 C (0.4 Tsub(m)). These data were compared with similar maxima observed in nickel at 600 0 C (0.5 Tsub(m)) and 850 0 C (0.65 Tsub(m)). The results imply a high helium diffusivity over the 0.5 mm experimental range in comparison with nickel, and an exceptionally high diffusivity taking into account the melting temperature of zirconium. On the basis of a diffusion model proposed earlier for nickel, activation energies of 1.37 and 1.66 eV have been assigned to the principal maxima at 330 0 C and 450 0 C, and a value of 2.41 eV to the maximum at 600 0 C. The long range diffusivity of helium manifested by its thermal evolution from uniformly filled 120 mm thick foils was found to be much lower than that measured for short range migration. An empirical activation energy of approximately 3 eV was estimated for this process, thought to be a result of bubble migration. The release of helium from zirconium has been explained by comparison with nickel data. The proposed substitutional de-trapping mechanism has been invoked to account for the principal evolution rate maxima at 330 0 C. Helium release observed at 600 0 C has been explained by the annealing of radiation damage, so allowing gas trapped therein to be evolved. (author)

  1. Photoionization of helium dimers

    International Nuclear Information System (INIS)

    Havermeier, Tilo

    2010-01-01

    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  2. Exotic helium molecules

    International Nuclear Information System (INIS)

    Portier, M.

    2007-12-01

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range 4 He 2 (2 3 S 1 -2 3 P 0 ) molecule, or a 4 He 2 (2 3 S 1 -2 3 S 1 ) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 ± 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range 4 He 2 (2 3 S 1 -2 3 S 1 ) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime τ = (1.4 ± 0.3) μs is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  3. Molecular dynamics study of the role of symmetric tilt grain boundaries on the helium distribution in nickel

    Science.gov (United States)

    Torres, E.; Pencer, J.

    2018-04-01

    Helium impurities, from either direct implantation or transmutation reactions, have been associated with embrittlement in nickel-based alloys. Helium has very low solubility in nickel, and has been found to aggregate at lattice defects such as vacancies, dislocations, and grain boundaries. The retention and precipitation of helium in nickel-based alloys have deleterious effects on the material mechanical properties. However, the underlying mechanisms that lead to helium effects in the host metal are not fully understood. In the present work, we investigate the role of symmetric tilt grain boundary (STGB) structures on the distribution of helium in nickel using molecular dynamics simulations. We investigate the family of STGBs specific to the 〈 110 〉 tilt axis. The present results indicate that accumulation of helium at the grain boundary may be modulated by details of grain boundary geometry. A plausible correlation between the grain boundary energy and misorientation with the accumulation and mobility of helium is proposed. Small clusters with up to 6 helium atoms show significant interstitial mobility in the nickel bulk, but also become sites for nucleation and grow of more stable helium clusters. High-energy GBs are found mainly populated with small helium clusters. The high mobility of small clusters along the GBs indicates the role of these GBs as fast two-dimensional channels for diffusion. In contrast, the accumulation of helium in large helium clusters at low-energy STGB creates a favorable environment for the formation of large helium bubbles, indicating a potential role for low-energy STGB in promoting helium-induced GB embrittlement.

  4. Design analysis of a Helium re-condenser

    Science.gov (United States)

    Muley, P. K.; Bapat, S. L.; Atrey, M. D.

    2017-02-01

    Modern helium cryostats deploy a cryocooler with a re-condenser at its II stage for in-situ re-condensation of boil-off vapor. The present work is a vital step in the ongoing research work of design of cryocooler based 100 litre helium cryostat with in-situ re-condensation. The cryostat incorporates a two stage Gifford McMahon cryocooler having specified refrigerating capacity of 40 W at 43 K for I stage and 1 W at 4.2 K for II stage. Although design of cryostat ensures thermal load for cryocooler below its specified refrigerating capacity at the second stage, successful in-situ re-condensation depends on proper design of re-condenser which forms the objective of this work. The present work proposes design of helium re-condenser with straight rectangular fins. Fins are analyzed for optimization of thermal performance parameters such as condensation heat transfer coefficient, surface area for heat transfer, re-condensing capacity, efficiency and effectiveness. The present work provides design of re-condenser with 19 integral fins each of 10 mm height and 1.5 mm thickness with a gap of 1.5 mm between two fins, keeping in mind the manufacturing feasibility, having efficiency of 80.96 % and effectiveness of 10.34.

  5. Electronic properties of physisorbed helium

    International Nuclear Information System (INIS)

    Kossler, Sarah

    2011-01-01

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  6. Electronic properties of physisorbed helium

    Energy Technology Data Exchange (ETDEWEB)

    Kossler, Sarah

    2011-09-22

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  7. Ion implantation

    International Nuclear Information System (INIS)

    Dearnaley, Geoffrey

    1975-01-01

    First, ion implantation in semiconductors is discussed: ion penetration, annealing of damage, gettering, ion implanted semiconductor devices, equipement requirements for ion implantation. The importance of channeling for ion implantation is studied. Then, some applications of ion implantation in metals are presented: study of the corrosion of metals and alloys; influence or ion implantation on the surface-friction and wear properties of metals; hyperfine interactions in implanted metals

  8. Operating Manual of Helium Refrigerator (Rev. 2)

    Energy Technology Data Exchange (ETDEWEB)

    Song, K.M.; Son, S.H.; Kim, K.S.; Lee, S.K.; Kim, M.S. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    A helium refrigerator was installed as a supplier of 20K cold helium to the cryogenic distillation system of WTRF pilot plant. The operating procedures of the helium refrigerator, helium compressor and auxiliary apparatus are described for the safety and efficient operation in this manual. The function of the helium refrigerator is to remove the impurities from the compressed helium of about 250psig, to cool down the helium from ambient temperature to 20K through the heat exchanger and expansion engine and to transfer the cold helium to the cryogenic distillation system. For the smoothly operation of helium refrigerator, the preparation, the start-up, the cool-down and the shut-down of the helium refrigerator are described in this operating manual. (author). 3 refs., 14 tabs.

  9. Helium cooling of fusion reactors

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Baxi, C.; Bourque, R.; Dahms, C.; Inamati, S.; Ryder, R.; Sager, G.; Schleicher, R.

    1994-01-01

    On the basis of worldwide design experience and in coordination with the evolution of the International Thermonuclear Experimental Reactor (ITER) program, the application of helium as a coolant for fusion appears to be at the verge of a transition from conceptual design to engineering development. This paper presents a review of the use of helium as the coolant for fusion reactor blanket and divertor designs. The concept of a high-pressure helium cooling radial plate design was studied for both ITER and PULSAR. These designs can resolve many engineering issues, and can help with reaching the goals of low activation and high performance designs. The combination of helium cooling, advanced low-activation materials, and gas turbine technology may permit high thermal efficiency and reduced costs, resulting in the environmental advantages and competitive economics required to make fusion a 21st century power source. ((orig.))

  10. Laser spectroscopy of antiprotonic helium

    CERN Document Server

    Hori, M

    2005-01-01

    When antiprotons (i.e. the antimatter counterpart of protons) are stopped in helium gas, 97% of them annihilate within picoseconds by reacting with the helium nuclei; a 3% fraction, however, survive with an anomalously long lifetime of several microseconds. This longevity is due to the formation of antiprotonic helium, which is a three-body Rydberg atom composed of an antiproton, electron, and helium nucleus. The ASACUSA experimental collaboration has recently synthesized large numbers of these atoms using CERN's Antiproton Decelerator facility, and measured the atom's transition frequencies to 60 parts per billion by laser spectroscopy. By comparing the experimental results with recent three-body QED calculations and the known antiproton cyclotron frequency, we were able to show that the antiproton mass and charge are the same as the corresponding proton values to a precision of 10 parts per billion. Ongoing and future series of experiments will further improve the experimental precision by using chirp-compe...

  11. High Accuracy Vector Helium Magnetometer

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed HAVHM instrument is a laser-pumped helium magnetometer with both triaxial vector and omnidirectional scalar measurement capabilities in a single...

  12. Impact of neutron irradiation on thermal helium desorption from iron

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xunxiang, E-mail: hux1@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Field, Kevin G. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Taller, Stephen [University of Michigan, Ann Arbor, MI 48109 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wirth, Brian D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States)

    2017-06-15

    The synergistic effect of neutron irradiation and transmutant helium production is an important concern for the application of iron-based alloys as structural materials in fission and fusion reactors. In this study, we investigated the impact of neutron irradiation on thermal helium desorption behavior in high purity iron. Single crystalline and polycrystalline iron samples were neutron irradiated in HFIR to 5 dpa at 300 °C and in BOR-60 to 16.6 dpa at 386 °C, respectively. Following neutron irradiation, 10 keV He ion implantation was performed at room temperature on both samples to a fluence of 7 × 10{sup 18} He/m{sup 2}. Thermal desorption spectrometry (TDS) was conducted to assess the helium diffusion and clustering kinetics by analyzing the desorption spectra. The comparison of He desorption spectra between unirradiated and neutron irradiated samples showed that the major He desorption peaks shift to higher temperatures for the neutron-irradiated iron samples, implying that strong trapping sites for He were produced during neutron irradiation, which appeared to be nm-sized cavities through TEM examination. The underlying mechanisms controlling the helium trapping and desorption behavior were deduced by assessing changes in the microstructure, as characterized by TEM, of the neutron irradiated samples before and after TDS measurements.

  13. Helium effects on irradiation dmage in V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Doraiswamy, N.; Alexander, D. [Argonne National Lab., IL (United States)

    1996-10-01

    Preliminary investigations were performed on V-4Cr-4Ti samples to observe the effects of He on the irradiation induced microstructural changes by subjecting 3 mm electropolished V-4Cr-4Ti TEM disks, with and without prior He implantation, to 200 keV He irradiation at room temperature and monitoring, in-situ, the microstructural evolution as a function of total dose with an intermediate voltage electron microscope directly connected to an ion implanter. A high density of black dot defects were formed at very low doses in both He pre-implanted and unimplanted samples.

  14. Cryogenic filter method produces super-pure helium and helium isotopes

    Science.gov (United States)

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  15. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  16. Effect of alpha self irradiation on helium migration in (U,Pu)O2 samples

    International Nuclear Information System (INIS)

    Pipon, Yves; Roudil, Daniele; Jegou, Christophe; Khodja, Hicham; Raepsaet, Caroline

    2008-01-01

    The helium behavior and its migration mechanisms in nuclear spent fuel (UOX and MOX) significantly impact the possible evolution of the spent fuel matrix in a closed system during interim storage or during a disposal repository. An experimental study has been conducted on (U,Pu)O 2 samples in order to investigate the impact of defects created by alpha decay on helium diffusion. One large part is devoted to thermal atomic diffusion and applied on 3 He implanted samples, annealed at 850 and 1000 deg. C. The He profiles, as implanted and after annealing, were investigated with the 3 He(d,p) 4 He nuclear reaction. Another part deals with the thermal release of 4 He amassed in the samples. The measured thermal diffusion coefficients are compared with previously published values, thereby highlighting the effect of the alpha self-irradiation on helium behavior. (authors)

  17. Helium induced degradation in the weldability of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Lin, H.T.; Goods, S.H.; Grossbeck, M.L.; Chinl, B.A.

    1988-01-01

    Autogenous gas tungsten arc welding was performed on He-doped type 316 stainless steel. Helium was uniformly implanted in the material using the ''tritium trick'' to levels of 27 and 105 appm. Severe intergranular cracking occurred in both fusion and heat-affected zones. Microstructural observations of fusion zone indicated that the pore size, degree of porosity, and tendency to form cracks increased with increasing helium concentration. Scanning electron microscopy showed that cracking in He-doped materials was due to the precipitation of helium bubbles on grain boundaries and dentrite interfaces. Results of the present study demonstrate that the use of conventional welding techniques to repair materials degraded by exposure to radiation may be difficult if the irradiation results in the generation of even rather small amounts of helium. 23 refs., 9 figs., 2 tabs

  18. He bubble sites in implanted copper alloy

    International Nuclear Information System (INIS)

    Moreno, D.; Eliezer, D.

    1996-01-01

    Structural materials in fusion reactors will be exposed to helium implantation over a broad range of energies. The deformation and partial exfoliation of surface layers due to hydrogen isotopes and helium contribute to the total erosion of the first wall. For this reason, one of the most important criteria in the choice of materials for the first wall of fusion reactors is the material's damage resistance. Recent advances in developing nuclear fusion reactors reveal that efficient heat removal from plasma-facing components is very important. Copper and copper alloys are considered an attractive choice for transporting such a high heat flux without thermal damage as they have high thermal conductivity. In the present study the authors report on the structural changes in a copper alloy, due to the helium implantation on the very near surface area, observed by transmission electron microscopy

  19. Study of damage and helium diffusion in fluoro-apatites

    International Nuclear Information System (INIS)

    Miro, S.

    2004-12-01

    This work lies within the scope of the study of the radionuclides containment matrices. The choice of the fluoro-apatites as potential matrices of containment was suggested by the notable properties of these latter (thermal and chemical stability even under radioactive radiation). By irradiations with heavy ions and a helium implantation we simulated the effects related to the alpha radioactivity and to the spontaneous nuclear fission of the radionuclides. Thanks to the study of Durango fluoro-apatite single crystals and fluoro-apatite sintered ceramics, we evidenced that the damage fraction as well as the unit cell deformations increase with the electronic energy loss and with the substitution. These effects are followed at high fluences by a phenomenon of re-crystallization. The study of the helium diffusion points out that the thermal diffusion process improves with the substitution and strongly increases with heavy ions irradiation. (author)

  20. Helium desorption in EFDA iron materials for use in nuclear fusion reactors

    International Nuclear Information System (INIS)

    Salazar R, A. R.; Pinedo V, J. L.; Sanchez, F. J.; Ibarra, A.; Vila, R.

    2015-09-01

    In this paper the implantation with monoenergetic ions (He + ) was realized with an energy of 5 KeV in iron samples (99.9999 %) EFDA (European Fusion Development Agreement) using a collimated beam, after this a Thermal Desorption Spectrometry of Helium (THeDS) was made using a leak meter that detects amounts of helium of up to 10 - - 12 mbar l/s. Doses with which the implantation was carried out were 2 x 10 15 He + /cm 2 , 1 x 10 16 He + /cm 2 , 2 x 10 16 He + /cm 2 , 1 x 10 17 He + /cm 2 during times of 90 s, 450 s, 900 s and 4500 s, respectively. Also, using the SRIM program was calculated the depth at which the helium ions penetrate the sample of pure ion, finding that the maximum distance is 0.025μm in the sample. For this study, 11 samples of Fe EFDA were prepared to find defects that are caused after implantation of helium in order to provide valuable information to the manufacture of materials for future fusion reactors. However understand the effects of helium in the micro structural evolution and mechanical properties of structural materials are some of the most difficult questions to answer in materials research for nuclear fusion. When analyzing the spectra of THeDS was found that five different groups of desorption peaks existed, which are attributed to defects of He caused in the material, these defects are He n V (2≤n≤6), He n V m , He V for the groups I, II and IV respectively. These results are due to the comparison of the peaks presented in the desorption spectrum of He, with those of other authors who have made theoretical calculations. Is important to note that the thermal desorption spectrum of helium was different depending on the dose with which the implantation of He + was performed. (Author)

  1. In situ transmission electron microscope observation of the formation of fuzzy structures on tungsten

    International Nuclear Information System (INIS)

    Miyamoto, M; Watanabe, T; Nagashima, H; Nishijima, D; Doerner, R P; Krasheninnikov, S I; Sagara, A; Yoshida, N

    2014-01-01

    To investigate the formation processes of tungsten nano-structures, so called fuzz, in situ transmission electron microscope observations during helium ion irradiation and high temperature annealing have been performed. The irradiation with 3 keV He + from room temperature to 1273 K is found to cause high-density helium bubbles in tungsten with no significant change in the surface structure. At higher temperatures, surface morphology changes were observed even without helium irradiation due probably to surface diffusion of tungsten atoms driven by surface tension. It is clearly shown that this morphology change is enhanced with helium irradiation, i.e. the formation of helium bubbles. (paper)

  2. Crystal orientation effects on helium ion depth distributions and adatom formation processes in plasma-facing tungsten

    International Nuclear Information System (INIS)

    Hammond, Karl D.; Wirth, Brian D.

    2014-01-01

    We present atomistic simulations that show the effect of surface orientation on helium depth distributions and surface feature formation as a result of low-energy helium plasma exposure. We find a pronounced effect of surface orientation on the initial depth of implanted helium ions, as well as a difference in reflection and helium retention across different surface orientations. Our results indicate that single helium interstitials are sufficient to induce the formation of adatom/substitutional helium pairs under certain highly corrugated tungsten surfaces, such as (1 1 1)-orientations, leading to the formation of a relatively concentrated layer of immobile helium immediately below the surface. The energies involved for helium-induced adatom formation on (1 1 1) and (2 1 1) surfaces are exoergic for even a single adatom very close to the surface, while (0 0 1) and (0 1 1) surfaces require two or even three helium atoms in a cluster before a substitutional helium cluster and adatom will form with reasonable probability. This phenomenon results in much higher initial helium retention during helium plasma exposure to (1 1 1) and (2 1 1) tungsten surfaces than is observed for (0 0 1) or (0 1 1) surfaces and is much higher than can be attributed to differences in the initial depth distributions alone. The layer thus formed may serve as nucleation sites for further bubble formation and growth or as a source of material embrittlement or fatigue, which may have implications for the formation of tungsten “fuzz” in plasma-facing divertors for magnetic-confinement nuclear fusion reactors and/or the lifetime of such divertors.

  3. Microstructure of HIPed and SPSed 9Cr-ODS steel and its effect on helium bubble formation

    International Nuclear Information System (INIS)

    Lu, Chenyang; Lu, Zheng; Xie, Rui; Liu, Chunming; Wang, Lumin

    2016-01-01

    Two 9Cr-ODS steels with the same nominal composition were consolidated by hot isostatic pressing (HIP, named COS-1) and spark plasma sintering (SPS, named COS-2). Helium ions were implanted into COS-1, COS-2 and non-ODS Eurofer 97 steels up at 673 K. Microstructures before and after helium ion implantations were carefully characterized. The results show a bimodal grain size distribution in COS-2 and a more uniform grain size distribution in COS-1. Nanoscale clusters of GP-zone type Y–Ti–O and Y_2Ti_2O_7 pyrochlore as well as large spinel Mn(Ti)Cr_2O_4 particles are all observed in the two ODS steels. The Y–Ti-enriched nano-oxides in COS-1 exhibit higher number density and smaller size than in COS-2. The Y–Ti-enriched nano-oxides in fine grains of COS-2 show higher number density and smaller size than that in coarse grains of COS-2. Nano-oxides effectively trap helium atoms and lead to the formation of high density and ultra-fine helium bubbles. - Highlights: • The microstructure changes of two ODS steels before and after helium ion implantation have been elucidated. • The mechanism of the microstructures of ODS steels under varied thermal mechanical processing paths have been explored. • The dependence of the size, density and distribution of helium bubbles on the specific microstructure features are explored.

  4. Bed system performance in helium circulation mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yean Jin; Jung, Kwang Jin; Ahn, Do Hee; Chung, Hong Suk [UST, Daejeon (Korea, Republic of); Kang, Hee Suk [KAERI, Daejeon (Korea, Republic of); Yun, Sei Hun [NFRI, Deajeon (Korea, Republic of)

    2016-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, We have conducted an experiment for storing hydrogen to depleted uranium and zirconium cobalt. The helium blanket effect has been observed in experiments using metal hydrides. The collapse of the hydrogen isotopes are accompanied by the decay heat and helium-3. Helium-3 dramatically reduces the hydrogen isotope storage capacity by surrounding the metal. This phenomenon is called a helium blanket effect. In addition the authors are working on the recovery and removal techniques of helium-3. In this paper, we discuss the equipment used to test the helium blanket effect and the results of a helium circulation experiment. The helium-3 produced surrounds the storage material surface and thus disturbs the reaction of the storage material and the hydrogen isotope. Even if the amount of helium-3 is small, the storage capacity of the SDS bed significantly drops. This phenomenon is the helium blanket effect. To resolve this phenomenon, a circulating loop was introduced. Using a circulating system, helium can be separated from the storage material. We made a helium loop that includes a ZrCo bed. Then using a metal bellows pump, we tested the helium circulation.

  5. Structural and chemical evolution in neutron irradiated and helium-injected ferritic ODS PM2000 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hee Joon [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Edwards, Dan J., E-mail: dan.edwards@pnnl.gov [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Kurtz, Richard J. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Yamamoto, Takuya; Wu, Yuan [Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106 (United States); Odette, G. Robert [Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106 (United States); Materials Department, University of California, Santa Barbara, CA 93106 (United States)

    2017-02-15

    An investigation of the influence of helium on damage evolution under neutron irradiation of an 11 at% Al, 19 at% Cr ODS ferritic PM2000 alloy was carried out in the High Flux Isotope Reactor (HFIR) using a novel in situ helium injection (ISHI) technique. Helium was injected into adjacent TEM discs from thermal neutron {sup 58}Ni(n{sub th},γ) {sup 59}Ni(n{sub th},α) reactions in a thin NiAl layer. The PM2000 undergoes concurrent displacement damage from the high-energy neutrons. The ISHI technique allows direct comparisons of regions with and without high concentrations of helium since only the side coated with the NiAl experiences helium injection. The corresponding microstructural and microchemical evolutions were characterized using both conventional and scanning transmission electron microscopy techniques. The evolutions observed include formation of dislocation loops and associated helium bubbles, precipitation of a variety of phases, amorphization of the Al{sub 2}YO{sub 3} oxides (which also variously contained internal voids), and several manifestations of solute segregation. Notably, high concentrations of helium had a significant effect on many of these diverse phenomena. These results on PM2000 are compared and contrasted to the evolution of so-called nanostructured ferritic alloys (NFA).

  6. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wenhui [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Jihong; Luo, Fengfeng; Li, Tiecheng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Ren, Yaoyao [Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China); Suo, Jinping; Yang, Feng [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-04-15

    Highlights: • Helium/hydrogen synergistic effect can increase irradiation swelling of RAFM steel. • Hydrogen can be trapped to the outer surface of helium bubbles. • Too large a helium bubble can become movable. • Point defects would become mobile and annihilate at dislocations at high temperature. • The peak swelling temperature for RAFM steel is 450 °C. - Abstract: In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He{sup +} beam and sequential He{sup +} and H{sup +} beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C.

  7. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures

    International Nuclear Information System (INIS)

    Hu, Wenhui; Guo, Liping; Chen, Jihong; Luo, Fengfeng; Li, Tiecheng; Ren, Yaoyao; Suo, Jinping; Yang, Feng

    2014-01-01

    Highlights: • Helium/hydrogen synergistic effect can increase irradiation swelling of RAFM steel. • Hydrogen can be trapped to the outer surface of helium bubbles. • Too large a helium bubble can become movable. • Point defects would become mobile and annihilate at dislocations at high temperature. • The peak swelling temperature for RAFM steel is 450 °C. - Abstract: In order to investigate the synergistic effect of helium and hydrogen on swelling in reduced-activation ferritic/martensitic (RAFM) steel, specimens were separately irradiated by single He + beam and sequential He + and H + beams at different temperatures from 250 to 650 °C. Transmission electron microscope observation showed that implantation of hydrogen into the specimens pre-irradiated by helium can result in obvious enhancement of bubble size and swelling rate which can be regarded as a consequence of hydrogen being trapped by helium bubbles. But when temperature increased, Ostwald ripening mechanism would become dominant, besides, too large a bubble could become mobile and swallow many tiny bubbles on their way moving, reducing bubble number density. And these effects were most remarkable at 450 °C which was the peak bubble swelling temperature for RAMF steel. When temperature was high enough, say above 450, point defects would become mobile and annihilate at dislocations or surface. As a consequence, helium could no longer effectively diffuse and clustering in materials and bubble formation was suppressed. When temperature was above 500, helium bubbles would become unstable and decompose or migrate out of surface. Finally no bubble was observed at 650 °C

  8. Effect of helium on creep and fatigue (MAT 11)

    International Nuclear Information System (INIS)

    Schroeder, H.

    1991-03-01

    This final report contains experimental results on mechanical properties (creep, fatigue, tensile) and microstructural investigations (SEM, TEM) of pre-implanted samples of steels or alloys. (AISI 316, AISI 316L, DIN 1.4970, JPCA 8206, DIN 1.4914; Incoloy 800H, Hastelloy X, DIN 1.4981, (Fe 0.49 Ni 0.51 ) 3 V, Fe17Ni17Cr, Fe15Ni15Cr, Nimonic PE 16, Ni8Si). Furthermore theoretical aspects and developed models and mechanisms for helium embrittlement are described. This report is presented in the form of an extended summary without figures. (MM)

  9. Pierre Gorce working on a helium pump.

    CERN Multimedia

    1975-01-01

    This type of pump was designed by Mario Morpurgo, to circulate liquid helium in superconducting magnets wound with hollow conductors. M. Morpurgo, Design and construction of a pump for liquid helium, CRYIOGENICS, February 1977, p. 91

  10. Convective mixing in helium white dwarfs

    International Nuclear Information System (INIS)

    Vauclair, G.; Fontaine, G.

    1979-01-01

    The conditions under which convective mixing episodes take place between the helium envelopes and the underlying carbon layers in helium-rich white dwarfs are investigated. It is found that, for essentially any value of the initial helium content less than the maximum mass a helium convection zone can have, mixing does occur, and leads, in the vast majority of cases, to an almost pure carbon superficial composition. Mixing products that show only traces of carbon while retaining helium-dominated envelopes are possible only if the initial helium content is quite close to the maximum possible mass of the helium convection zone. In the presence of turbulence, this restriction could be relaxed, however, and the helium-rich lambda4670 stars may possibly be explained in this fashion

  11. Helium localization around the microscopic impurities embedded to liquid helium

    International Nuclear Information System (INIS)

    Gordon, E.B.; Shestakov, A.F.

    2000-01-01

    The structure and properties of the environment round the impurity atoms (Im) embedded in liquid helium are considered. It is shown that there are two qualitatively different types of structure of the He atom layer next to Im - attraction and repulsion structures. For the center attraction structure (strong Im-He interaction) the Im-He separation is longer than the equilibrium one for the pair Im-He potential, and the density and localization of He atoms are higher than in the bulk. It this case the He atom content in the layer, n, is almost independent of applied pressure. In the repulsion structure realized for alkaline metal atoms the Im-He separation is shorter than the equilibrium one and the density is lower than in the helium bulk. At T approx 1 K occupied are several states with different n and their energies differ only by approx 0.1 K, an increase in pressure resulting in a considerable reduction of n. The optical and EPR spectra of the atoms embedded to liquid and solid helium are interpreted on the basis of the analysis carried out. A simple model is proposed to evaluate the helium surroundings characteristics from the experimental pressure dependences of atomic line shifts in the absorption and emission spectra. The attraction structures in 3 He - 4 He mixtures are suggested to be highly enriched by 4 He atoms which the repulsion structures - by 3 He atoms. a possibility for existence of phase transitions in helium shells surrounding impurity atoms is considered

  12. Helium behaviour in aluminium under hydrostatic pressure

    International Nuclear Information System (INIS)

    Sokurskij, Yu.N.; Tebus, V.N.; Zudilin, V.A.; Tumanova, G.M.

    1989-01-01

    Effect of hydrostatic compression on equilibrium helium bubbles in low aluminium-lithium alloy irradiated in reactor at 570 K is investigated. Measurements of hydrostatic density and electron-microscopic investigations have shown, that application of up to 2 GPa pressure reduces equilibrium size of helium bubbles and reduces helium swelling. Kinetics and thermodynamics of the process are considered with application of 'rigid sphere' equation which describes helium state in bubbles

  13. Thermal desorption of deuterium from Be, and Be with helium bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, A.V.; Van Veen, A.; Busker, G.J. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.

    1998-01-01

    Deuterium desorption measurements carried out on a single-crystalline beryllium sample are presented. Deuterium ions were implanted at room temperature at the energy of 0.7 and 1.2 keV up to doses ranging from 10{sup 19} to 3.6 x 10{sup 21} m{sup -2}. In order to eliminate the influence of the beryllium-oxide surface layer, before the implantation the surface of the sample was cleaned by argon sputtering. After the implantation the sample was annealed up to 1200 K at a constant rate of 10 K/s. Deuterium released from the sample was monitored by a calibrated quadrupole mass-spectrometer. The desorption spectra revealed two different contributions. One is a well defined and very narrow peak centered around 450 K. This peak is observed only at high implantation doses > 7.8 x 10{sup 20} m{sup -2}, which is close to the deuterium saturation limit of 0.3 D/Be and is related to deuterium release from blisters or interconnected bubbles. The activation energy of 1.1 eV and the threshold implantation dose are consistent with the values reported in literature. The second contribution in the release spectra is found in the temperature range from 600 to 900 K and is present throughout the whole range of the implantation doses. The activation energies corresponding to this release lie in the range between 1.8 and 2.5 eV and are ascribed to the release from deuterium-vacancy type of defects. In a number of experiments the deuterium implantation was preceded by helium implantation followed by partial annealing to create helium bubbles. The resulting deuterium desorption spectra indicate that deuterium detrapping from helium bubbles is characterized by an activation energy of 2.7 eV. (author)

  14. Novel nuclear laser spectroscopy method using superfluid helium for measurement of spins and moments of exotic nuclei

    International Nuclear Information System (INIS)

    Furukawa, Takeshi; Wakui, Takashi; Yang, Xiaofei; Fujita, Tomomi; Imamura, Kei; Yamaguchi, Yasuhiro; Tetsuka, Hiroki; Tsutsui, Yoshiki; Mitsuya, Yosuke; Ichikawa, Yuichi; Ishibashi, Yoko; Yoshida, Naoki; Shirai, Hazuki; Ebara, Yuta; Hayasaka, Miki; Arai, Shino; Muramoto, Sosuke

    2013-01-01

    Highlights: • Development of a novel nuclear laser spectroscopy method using superfluid helium. • Observation of the Zeeman resonance with the 85 Rb beam introduced into helium. • Demonstration of deducing the nuclear spins from the observed resonance spectrum. -- Abstract: We have been developing a novel nuclear laser spectroscopy method “OROCHI” for determining spins and moments of exotic radioisotopes. In this method, we use superfluid helium as a stopping material of energetic radioisotope beams and then stopped radioisotope atoms are subjected to in situ laser spectroscopy in superfluid helium. To confirm the feasibility of this method for rare radioisotopes, we carried out a test experiment using a 85 Rb beam. In this experiment, we have successfully measured the Zeeman resonance signals from the 85 Rb atoms stopped in superfluid helium by laser-RF double resonance spectroscopy. This method is efficient for the measurement of spins and moments of more exotic nuclei

  15. Explosive helium burning in white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Khokhlov, A.M. (AN SSSR, Moscow. Astronomicheskij Sovet)

    1984-04-01

    Helium burning kinetics in white dwarfs has been considered at constant temperatures T >= 10/sup 9/ K and densities rho >10/sup 5/ g/cm/sup 3/. It is found, that helium detonation in white dwarfs does not lead to formation of light (A < 56) elements. Thus, helium white dwarf model for supernova 1 is inconsistent with observations.

  16. Clustering of Helium Atoms at a ½

    NARCIS (Netherlands)

    Berg, F. v.d.; Heugten, W. v.; Caspers, L.M.; Veen, A. v.; Hosson, J.Th.M. de

    1977-01-01

    Atomistic calculations on a ½<111>{110} edge dislocation show a restricted tendency of clustering of helium atom along this dislocation. Clusters with up to 4 helium atoms have been studied. A cluster with 3 helium proved to be most stable.

  17. The role of implanted gas and lateral stress in blister formation mechanisms

    International Nuclear Information System (INIS)

    Evans, J.H.

    1978-01-01

    In this paper the parts played by gas and lateral stress in blister formation on metal surfaces after helium implantation are critically reviewed. Although measurements show the existence of lateral stresses in implanted surfaces, an analysis indicates that these stresses can play little part in blister formation. Conversely, there is a strong case for a gas driven model. One possible mechanism, that involving the interbubble fracture of overpressurised helium bubbles, is outlined and revised to take recent measurements into account. (Auth.)

  18. Study and simulation of the behaviour under irradiation of helium in uranium dioxide; Etude et modelisation du comportement sous irradiation de l'helium dans le dioxyde d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Martin, G

    2007-06-15

    Large quantities of helium are produced from {alpha}-decay of actinides in nuclear fuels during its in-pile operating and its storage. It is important to understand the behaviour of helium in these matrix in order to well simulate the evolution and the resistance of the fuel element. During this thesis, we have used nuclear reaction analyses (NRA) to follow the evolution of the helium implanted in polycrystalline and monocrystalline uranium dioxide (UO{sub 2}). An experimental rig was developed to follow the on-line helium release in UO{sub 2} and the evolution of {sup 3}He profiles as a function of annealing temperature. An automated procedure taking into account the evolution of the depth resolution was developed. Analyses performed with a nuclear microprobe allowed to characterise the spatial distribution of helium at the grain scale and to study the influence of the sample microstructure on the helium migration. This work put into evidence the particular role of grain boundaries and irradiation defects in the helium release process. The analyse of experimental results with a diffusion model corroborates these interpretations. It allowed to determine quantitatively physical properties that characterise the helium behaviour in uranium dioxide (diffusion coefficient, activation energy..). (author)

  19. Muonium and neutral muonic helium

    International Nuclear Information System (INIS)

    Orth, H.

    1981-01-01

    In this brief article the current status on muonium spectroscopy with emphasis on recent developments will be summarized. The experimental and theoretical progress of the muonic helium atom will be reviewed. Future directions in this field of research will be discussed. (orig./HSI)

  20. Electric response in superfluid helium

    Czech Academy of Sciences Publication Activity Database

    Chagovets, Tymofiy

    2016-01-01

    Roč. 488, May (2016), s. 62-66 ISSN 0921-4526 R&D Projects: GA ČR GP13-03806P Institutional support: RVO:68378271 Keywords : superfluid helium * electric response * second sound * ions in He II Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2016

  1. Production of negative helium ions

    International Nuclear Information System (INIS)

    Toledo, A.S. de; Sala, O.

    1977-01-01

    A negative helium ion source using potassium charge exchange vapor has been developed to be used as an injector for the Pelletron accelerator. 3 He and α beam currents of up to 2μA have been extracted with 75% particle transmission through the machine [pt

  2. Simplicity works for superfluid helium

    International Nuclear Information System (INIS)

    Bowley, Roger

    2000-01-01

    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  3. Simplicity works for superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bowley, Roger [University of Nottingham, Nottingham (United Kingdom)

    2000-02-01

    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  4. Diffusion and agglomeration of helium in stainless steel in the temperature range from RT to 600 deg. C

    International Nuclear Information System (INIS)

    Zhang, C.H.; Chen, K.Q.; Zhu, Z.Y.

    2000-01-01

    Diffusion of helium and formation of helium bubbles in stainless steel in conditions of atomic displacement in the temperature range from RT to 600 deg. C are studied theoretically using standard rate equations. The dissociative mechanism via self-interstitial/He replacement is assumed to control helium diffusion and bubble formation. The numerical analysis shows that the temperature dependence of the effective diffusion coefficient of helium, the number density and the mean radius of bubbles has two distinctly different regimes with the transition occurring around 300 deg. C. The effective diffusion coefficient of helium, the number density and the mean radius of bubbles show weak temperature dependence in the low temperature regime, while they change abruptly with temperature in the high temperature regime. The results are qualitatively in agreement with the results of our experimental study on helium diffusion and bubble formation in helium-implanted 316L stainless steel. However, the discrepancy in the absolute values of number density and mean radius of bubbles between theoretical and experimental studies indicates that helium diffusion and bubble formation may be controlled by some athermal mechanisms in the low temperature regime

  5. Gas bubble and damage microstructure in helium implanted nickel

    International Nuclear Information System (INIS)

    Kaminsky, M.; Das, S.K.; Fenske, G.

    1978-01-01

    Transmission electron microscopy has been used to study the depth distribution of bubbles (or voids) and dislocation damage in nickel irradiated at 500 0 C with 20- and 500-keV 4 He + ions to total doses ranging from 2.9 x 10 15 to 5 x 10 17 ions/cm 2 . The size, number density, and volume fraction of bubbles (or voids) were measured from micrographs taken from samples sectioned parallel to the surface normal. The results for 500-keV irradiation show that the peaks in the depth distribution of number density and of volume fraction (i.e., swelling) of bubbles (or voids) are approx. 20% deeper than the calculated projected range distribution. However, for 20-keV irradiation the peak in the swellig occurs at a depth which is about a factor of two larger than the peak in the distributions of projected range and the energy deposited into damage as calculated according to Brice. The peak positions are nearly independent of the total doses used in these studies. The implications of these results for the blistering mechanisms are discussed

  6. HeREF-2003: Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 Cost per participant: 500.- CHF Language: Bilingual English...

  7. HeREF-2003 : Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. • Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 • Cost per participant: 500.- CHF ...

  8. Cochlear Implants

    Science.gov (United States)

    ... implant, including: • How long a person has been deaf, •The number of surviving auditory nerve fibers, and • ... Implant, Severe Sensoryneurial Hearing Loss Get Involved Professional Development Practice Management ENT Careers Marketplace Privacy Policy Terms ...

  9. Study of helium behaviour in body-centered cubic structures for new nuclear reactor generations: experimental approach in well characterized materials

    International Nuclear Information System (INIS)

    Gorondy-Novak, Sofia Maria

    2017-01-01

    The presence of helium produced during the operation of future fast reactors and fusion reactors in core structural materials induces a deterioration of their mechanical properties (hardening, swelling, embrittlement). In order to pursue the development of the metallic structural alloys, it is necessary to comprehend the He interaction with the metal lattice thus the point in common is the study of the metallic components with body-centered cubic structure (bcc) of future alloys, such as iron and/or vanadium. Ion implantation of ions "4He was employed with the aim of simulating the damaging effects associated with the helium accumulation, the point defects' creation (vacancies, self-interstitials) and the He cluster formation in future reactors. Helium evolution in pure iron and pure vanadium has been revealed from the point of view of the trapping sites' nature and well as the helium migration mechanisms and the nucleation/growth of bubbles. These phenomena were studied by coupling different complementary techniques. Despite of the fact that some mechanisms involved seem to be similar for both bcc metals, the comparison between the helium behavior in iron and vanadium shows certain differences. Microstructural defects, including grain boundaries and implanted helium concentration (dose) in both bcc metals will play significant roles on the helium behavior at high temperature. The acquired experimental data coupled with simulation methods contribute to the future development in terms of kinetic and thermodynamic data management of helium behavior in the metal components of the alloys of nuclear interest. (author) [fr

  10. Investigation of hydrogen micro-kinetics in metals with ion beam implantation and analysis

    International Nuclear Information System (INIS)

    Wang, T.S.; Peng, H.B.; Lv, H.Y.; Han, Y.C.; Grambole, D.; Herrmann, F.

    2007-01-01

    One of the most important subjects in the fusion material research is to study the hydrogen and helium concentration, diffusion and evolution in the structure material of fusion reactor, since the hydrogen and helium can be continuously produced by the large dose fast neutron irradiation on material. Various analysis Methods can be used, but the ion beam analysis method has some advantages for studying the hydrogen behaviors in nano- or micrometer resolution. In this work, the hydrogen motion and three-dimensional distribution after implantation into metal has been studied by resonance NRA, micro-ERDA and XRD etc Methods. The resolution of the H-depth-profile is in nanometer level and the lateral resolution can be reached to 2 micrometers. The evolution of hydrogen depth-profile in a titanium sample has been studied versus the change of normal stress in samples. Evident hydrogen diffusion has been observed, while a normal stress is changed in the range of 107-963 MPa. A new phase transformation during the hydrogenation is observed by the in-situ XRD analysis. The further study on the hydrogen behaviors in the structure materials of fusion reactor is in plan. (authors)

  11. High density nitrogen-vacancy sensing surface created via He{sup +} ion implantation of {sup 12}C diamond

    Energy Technology Data Exchange (ETDEWEB)

    Kleinsasser, Ed E., E-mail: edklein@uw.edu [Department of Electrical Engineering, University of Washington, Seattle, Washington 98195-2500 (United States); Stanfield, Matthew M.; Banks, Jannel K. Q. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States); Zhu, Zhouyang; Li, Wen-Di [HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518000 (China); Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong (China); Acosta, Victor M. [Department of Physics and Astronomy, Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Watanabe, Hideyuki [Correlated Electronics Group, Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Itoh, Kohei M. [School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Fu, Kai-Mei C., E-mail: kaimeifu@uw.edu [Department of Electrical Engineering, University of Washington, Seattle, Washington 98195-2500 (United States); Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)

    2016-05-16

    We present a promising method for creating high-density ensembles of nitrogen-vacancy centers with narrow spin-resonances for high-sensitivity magnetic imaging. Practically, narrow spin-resonance linewidths substantially reduce the optical and RF power requirements for ensemble-based sensing. The method combines isotope purified diamond growth, in situ nitrogen doping, and helium ion implantation to realize a 100 nm-thick sensing surface. The obtained 10{sup 17 }cm{sup −3} nitrogen-vacancy density is only a factor of 10 less than the highest densities reported to date, with an observed 200 kHz spin resonance linewidth over 10 times narrower.

  12. Ageing of palladium tritide: mechanical characterization, helium state and modelling

    International Nuclear Information System (INIS)

    Segard, M.

    2010-01-01

    Palladium is commonly used for the storage of tritium (the hydrogen radioactive isotope), since it forms a low-equilibrium-pressure and reversible tritide. Tritium decay into helium-3 is responsible for the ageing of the tritide, leading to the apparition of helium-3 bubbles for instance. Both experimental and theoretical aspects of this phenomenon are studied here.Previous works on ageing modelling led to two main models, dealing with:- Helium-3 bubbles nucleation (using a cellular automaton), - Bubbles growth (using continuum mechanics).These models were quite efficient, but their use was limited by the lack of input data and fitting experimental parameters.To get through these limitations, this work has consisted in studying the most relevant experimental data to improve the modelling of the palladium tritide ageing.The first part of this work was focused on the assessment of the mechanical properties of the palladium tritide (yield strength, ultimate strength, mechanical behaviour). They were deduced from the in situ tensile tests performed on palladium hydride and deuteride. In the second part, ageing characterization was undertaken, mainly focusing on: - Bubbles observations in palladium tritide using transmission electron microscopy, - Internal bubble pressure measurements using nuclear magnetic resonance, - Macroscopic swelling measurements using pycno-metry.The present work has led to significant progress in ageing understanding and has brought very valuable improvements to the modelling of such a phenomenon. (author) [fr

  13. The role of plumes in mantle helium fluxes

    International Nuclear Information System (INIS)

    Kellogg, L.H.; Wasserburg, G.J.

    1990-01-01

    We present a simple model of 3 He and 4 He transport in the mantle using the appropriate rates of mass and species transfer and 4 He production. Previous workers have shown the presence of excess 3 He in hotspots such as Hawaii and Iceland and inferred that these hotspots tap a source with a higher 3 He/ 4 He ratio than the source region of mid-ocean ridge basalts (MORB). Hotspot ocean islands probably originate over upwelling plumes which carry material from the lower mantle to the upper mantle. Melting at hotspots and at mid-ocean ridges degasses the mantle of volatiles such as helium. The upper mantle is outgassed largely of helium due to melting at mid-ocean ridges and hotspots. We postulate that the excess 3 He seen in MORB originates in material that was carried from the lower mantle in plumes but not completely outgassed at hotspots. This helium is incoporated into the depleted upper mantle. Assuming that the upper mantle is in a quasi-steady-state with respect to helium, a simple model balancing 3 He and 4 He fluxes in the upper mantle indicates that the hotspots significantly outgas the lower mantle of 3 He. The concentration of 4 He in the plume source reservoir is 2-3 orders of magnitude lower than the concentration in carbonaceous chondrites. The residence time of helium in the upper mantle depends on the outgassing efficiency at hotspots, since the hotspots may outgas some upper mantle material which has been entrained in the plumes. The residence time of He in the upper mantle is about 1.4x10 9 yr. We conclude that the efficiency of outgassing of He from plumes is high and that the plumes dominate the present 3 He loss to the atmosphere. The 4 He in the less depleted layer of the mantle is not trapped ''primordial'' but is predominantly from in situ decay of U and Th in the depleted layer over ≅ 1.4x10 9 yr. The 4 He in the lower mantle is dominantly from in situ decay of U and Th over 4.4x10 9 yr. (orig./WL)

  14. Impulse approximation in solid helium

    International Nuclear Information System (INIS)

    Glyde, H.R.

    1985-01-01

    The incoherent dynamic form factor S/sub i/(Q, ω) is evaluated in solid helium for comparison with the impulse approximation (IA). The purpose is to determine the Q values for which the IA is valid for systems such a helium where the atoms interact via a potential having a steeply repulsive but not infinite hard core. For 3 He, S/sub i/(Q, ω) is evaluated from first principles, beginning with the pair potential. The density of states g(ω) is evaluated using the self-consistent phonon theory and S/sub i/(Q,ω) is expressed in terms of g(ω). For solid 4 He resonable models of g(ω) using observed input parameters are used to evaluate S/sub i/(Q,ω). In both cases S/sub i/(Q, ω) is found to approach the impulse approximation S/sub IA/(Q, ω) closely for wave vector transfers Q> or approx. =20 A -1 . The difference between S/sub i/ and S/sub IA/, which is due to final state interactions of the scattering atom with the remainder of the atoms in the solid, is also predominantly antisymmetric in (ω-ω/sub R/), where ω/sub R/ is the recoil frequency. This suggests that the symmetrization procedure proposed by Sears to eliminate final state contributions should work well in solid helium

  15. Liquid helium plant in Dubna

    International Nuclear Information System (INIS)

    Agapov, N.N.; Baldin, A.M.; Kovalenko, A.D.

    1995-01-01

    The liquid-helium cooling capacity installed at the Laboratory of High Energies is about 5 kw at a 4.5 K temperature level. It is provided with four industrial helium liquefiers of 1.6 kw/4.5 K each. They have been made by the Russian enterprise NPO GELYMASH and upgraded by the specialists of the Laboratory. The first one was put into operation in 1980, the two others in 1991, and the last one is under commissioning. The development of the LHE cryoplant was concerned with the construction of the new superconducting accelerator Nuclotron aimed to accelerate nuclei and heavy ions up to energies of 6 GeV/u. The first test run at the Nuclotron was carried out in March 1993, and the total running time has been about 2000 hours up to now. Since 1992 the cryoplant has been intensively used by the users outside the Laboratory. More than a million liters of liquid helium was provided in 1993 for such users. The reliability of the cryoplant system was as high as 98 percent for 4500 hours of operation in 1993-1994. 7 refs., 4 figs., 1 tab

  16. Self-trapping of helium in metals

    International Nuclear Information System (INIS)

    Wilson, W.D.; Bisson, C.L.; Baskes, M.I.

    1981-01-01

    Atomistic calculations are presented which demonstrate that helium atoms in a metal lattice are able to cluster with each other, producing vacancies and nearby self-interstitial defects. Even a small number of helium atoms is found to be sufficient to create these large distortions. As few as five interstitial helium can spontaneously produce a lattice vacancy and nearby self-interstitial. An eight-helium-atom cluster gives rise to two such defects, and 16 helium atoms to more than five self-interstitial vacancy pairs. It was noted that the self-interstitials prefer to agglomerate on the same ''side'' of the helium cluster rather than to spread themselves out uniformly. The binding energy of each additional helium atom to these clusters increases with helium concentration and the trap is apparently unsaturable. A rate theory using these atomistic binding energies has been used to calculate the kinetics of helium-bubble nucleation and growth. The results are consistent with measurements of the properties of helium resulting from tritium decay

  17. TEM study of the nucleation of bubbles induced by He implantation in 316L industrial austenitic stainless steel

    International Nuclear Information System (INIS)

    Jublot-Leclerc, S.; Lescoat, M.-L.; Fortuna, F.; Legras, L.; Li, X.; Gentils, A.

    2015-01-01

    10 keV He ions were implanted in-situ in a TEM into thin foils of 316L industrial austenitic stainless steel at temperatures ranging from 200 to 550 °C. As a result, overpressurized nanometric bubbles are created with density and size depending strongly on both the temperature and fluence of implantation. An investigation on their nucleation and growth is reported through a rigorous statistical analysis whose procedure, including the consideration of free surface effects, is detailed. In the parameter range considered, the results show that an increase of fluence promotes both the nucleation and growth of the bubbles whilst an increase of temperature enhances the growth of the bubbles at the expense of their nucleation. The confrontation of resulting activation energies with existing models for bubble nucleation enables the identification of the underlying mechanisms. In spite of slight differences resulting from different conditions of implantation among which the He concentration, He production rate and He/dpa ratio, it appears that the dominating mechanisms are the same as those obtained in metals in previous studies, which, in addition to corroborating literature results, shows the suitability of in-situ TEM experiments to simulate the production of helium in nuclear materials. - Highlights: • A rigorous TEM statistical analysis, including free surface effects, is reported. • Increasing He fluence promotes both the nucleation and growth of bubbles. • Increasing implantation temperature enhances the growth of bubbles. • Activation energies describing the evolution of the bubble population are obtained. • A He diffusion controlled nucleation through a replacement mechanism is suggested.

  18. Early implant-associated osteomyelitis results in a peri-implanted bacterial reservoir

    DEFF Research Database (Denmark)

    Jensen, Louise Kruse; Koch, Janne; Aalbæk, Bent

    2017-01-01

    weight of Staphylococcus aureus or saline was inserted into the right tibial bone of 12 pigs. The animals were consecutively killed on day 2, 4 and 6 following implantation. Bone tissue around the implant was histologically evaluated. Identification of S. aureus was performed immunohistochemically...... on tissue section and with scanning electron microscopy and peptide nucleic acid in situ hybridization on implants. The distance of the peri-implanted pathological bone area (PIBA), measured perpendicular to the implant, was significantly larger in infected animals compared to controls (p = 0...

  19. Test of a cryogenic helium pump

    International Nuclear Information System (INIS)

    Lue, J.W.; Miller, J.R.; Walstrom, P.L.; Herz, W.

    1981-01-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through Internally Cooled Superconductor (ICS) magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds

  20. Backscattered Helium Spectroscopy in the Helium Ion Microscope: Principles, Resolution and Applications

    NARCIS (Netherlands)

    van Gastel, Raoul; Hlawacek, G.; Dutta, S.; Poelsema, Bene

    2015-01-01

    We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of

  1. Helium leak testing methods in nuclear applications

    International Nuclear Information System (INIS)

    Ahmad, Anis

    2004-01-01

    Helium mass-spectrometer leak test is the most sensitive leak test method. It gives very reliable and sensitive test results. In last few years application of helium leak testing has gained more importance due to increased public awareness of safety and environment pollution caused by number of growing chemical and other such industries. Helium leak testing is carried out and specified in most of the critical area applications like nuclear, space, chemical and petrochemical industries

  2. Trapping and re-emission of energetic hydrogen and helium ions in materials

    International Nuclear Information System (INIS)

    Yamaguchi, Sadae

    1981-01-01

    The experimental results on the trapping and re-emission of energetic hydrogen and helium ions in materials are explained. The trapping of deuterium and helium in graphite saturates at the concentration of 10 18 ions/cm 2 . The trapping rate of hydrogen depends on the kinds of target materials. In the case of the implantation in Mo over 3 x 10 16 H/cm 2 , hydrogen is hardly trapped. On the other hand, the trapping of hydrogen in Ti, Zr and Ta which form solid solution is easily made. The hydrogen in these metals can diffuse toward the inside of metals. The deuterium retained in 316 SS decreased with time. The trapping rate reached saturation more rapidly at higher implantation temperature. The effective diffusion constant for the explanation of the re-emission process is 1/100 as small as the ordinary value. The radiation damage due to helium irradiation affects on the trapping of deuterium in Mo. The temperature dependence of the trapping rate can be explained by the diffusion model based on the Sievert's law. The re-emission of helium was measured at various temperature. At low temperature, the re-emission was low at first, then the rate increased. At high temperature, the re-emission rate was high from the beginning. (Kato, T.)

  3. Helium turbo-expander with an alternator

    International Nuclear Information System (INIS)

    Akiyama, Yoshitane

    1980-01-01

    Study was made on a helium turbo-expander, the heart of helium refrigerator systems, in order to develop a system which satisfies the required conditions. A helium turbo-expander with externally pressurized helium gas bearings at the temperature of liquid nitrogen and an alternator as a brake have been employed. The essential difference between a helium turbo-expander and a nitrogen turbo-expander was clarified. The gas bearing lubricated with nitrogen at room temperature and the gas bearing lubricated with helium at low temperature were tested. The flow rate of helium in a helium refrigerator for a large superconducting magnet is comparatively small, therefore a helium turbine must be small, but the standard for large turbine design can be applied to such small turbine. Using the alternator as a brake, the turbo-expander was easily controllable electrically. The prototype turbo-expander was made, and the liquefaction test with it and MHD power generation test were carried out. (Kako, I.)

  4. Helium Extraction from LNG End Flash

    OpenAIRE

    Kim, Donghoi

    2014-01-01

    Helium is an invaluable element as it is widely used in industry such as cryo-genics and welding due to its unique properties. However, helium shortage is expected in near future because of increasing demand and the anxiety of sup-ply. Consequently, helium production has attracted the attention of industry. The main source of He is natural gas and extracting it from LNG end-flash is considered as the most promising way of producing crude helium. Thus, many process suppliers have proposed proc...

  5. Helium supply demand in future years

    International Nuclear Information System (INIS)

    Laverick, C.

    1975-01-01

    Adequate helium will be available to the year 2000 AD to meet anticipated helium demands for present day applications and the development of new superconducting technologies of potential importance to the nation. It is almost certain that there will not be enough helium at acceptable financial and energy cost after the turn of the century to meet the needs of the many promising helium based technologies now under development. Serious consideration should be given to establishing priorities in development and application based upon their relative value to the country. In the first half of the next century, three ways of estimating helium demand lead to cumulative ranges of from 75 to 125 Gcf (economic study), 89 to 470 Gcf (projected national energy growth rates) and 154 to 328 Gcf (needs for new technologies). These needs contrast with estimated helium resources in natural gas after 2000 AD which may be as low as 10 or 126 Gcf depending upon how the federal helium program is managed and the nation's natural gas resources are utilized. The technological and financial return on a modest national investment in further helium storage and a rational long term helium program promises to be considerable

  6. Nanostructural evolution and behavior of H and Li in ion-implanted γ-LiAlO 2

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Zhang, Jiandong; Edwards, Danny J.; Overman, Nicole R.; Zhu, Zihua; Price, Lloyd; Gigax, Jonathan; Castanon, Elizabeth; Shao, Lin; Senor, David J.

    2017-10-01

    In-situ He+ ion irradiation is performed under a helium ion microscope to study nanostructural evolution in polycrystalline gamma-LiAlO2 pellets. Various locations within a grain, across grain boundaries and at a cavity are selected. The results exhibit He bubble formation, grain-boundary cracking, nanoparticle agglomeration, increasing surface brightness with dose, and material loss from the surface. Similar brightening effects at grain boundaries are also observed under a scanning electron microscope. Li diffusion and loss from polycrystalline gamma-LiAlO2 is faster than its monocrystalline counterpart during H2+ ion implantation at elevated temperatures. There is also more significant H diffusion and release from polycrystalline pellets during thermal annealing of 300 K implanted samples. Grain boundaries and cavities could provide a faster pathway for H and Li diffusion. H release is slightly faster from the 573 K implanted monocrystalline gamma-LiAlO2 during annealing at 773 K. Metal hydrides could be formed preferentially along the grain boundaries to immobilize hydrogen.

  7. New helium spectrum variable and a new helium-rich star

    International Nuclear Information System (INIS)

    Walborn, N.R.

    1974-01-01

    HD 184927, known previously as a helium-rich star, has been found to have a variable helium spectrum; the equivalent widths of five He I lines are larger by an average of 46 percent on a 1974 spectrogram than on one obtained with the same equipment in 1970. HD 186205 has been found to be a new, pronounced helium-rich star. (auth)

  8. Tensile properties of candidate structural materials for high power spallation sources at high helium contents

    Science.gov (United States)

    Jung, P.; Henry, J.; Chen, J.

    2005-08-01

    Low activation 9%Cr martensitic steels EUROFER97, pure tantalum, and low carbon austenitic stainless steel 316L were homogeneously implanted with helium to concentrations up to 5000 appm at temperatures from 70 °C to 400 °C. The specimens were tensile tested at room temperature and at the respective implantation temperatures. In all materials the helium caused an increased in strength and reduction in ductility, with both changes being generally larger at lower implantation and testing temperatures. After implantation some work hardening was retained in 316L and in tantalum, while it almost completely disappeared in EUROFER97. After tensile testing, fracture surfaces were analysed by scanning electron microscopy (SEM). Implantation caused reduction of necking, but up to concentrations of 2500 appm He fracture surface still showed transgranular ductile appearance. Completely brittle intergranular fracture was observed in tantalum at 9000 appm He and is also expected for EUROFER97 at this concentration, according to previous results on similar 9%Cr steels.

  9. Amorphization of tantalum by boron and phosphorus ion implantation

    International Nuclear Information System (INIS)

    Thome, L.; Benyagoub, A.; Bernas, H.; Pivin, J.C.; Cahn, R.W.

    1984-01-01

    The nature and depth dependence of the disorder produced by B and P implantation in Ta single crystals were studied in situ via channeling experiments and after implantation via grazing incidence electron diffraction experiments. The correlation of experimental results with implanted impurity profiles determined by SIMS shows that amorphous Ta-B and Ta-P alloys are produced for, respectively, 19% and 8% B and P concentrations in the implanted layer [fr

  10. Influence of bacterial colonization of the healing screws on peri-implant tissue

    Directory of Open Access Journals (Sweden)

    Simonetta D'Ercole

    2013-06-01

    Conclusion: The healing screws left in situ for a period of 90 days caused a peri-implant inflammation and the presence of periodontal pathogenic bacteria in the peri-implant sulcus, due to the plaque accumulation on screw surfaces.

  11. Helium transfer line installation details.

    CERN Multimedia

    G. Perinic

    2007-01-01

    A particularity of the 32 m long four in one helium transfer line in between the cold box in USC55 and the cavern UX5 is the fact that the transfer line passes through a hole in the crane rail support beam. In order to ensure the alignment of the suspension rail in the interconnecting tunnel with the hole in the rail support as well as the connection points at both ends required precise measurements of the given geometries as well as the installation of a temporary target for the verification of the theoretical predictions.

  12. Helium bubble bursting in tungsten

    International Nuclear Information System (INIS)

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-01-01

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz

  13. Spectroscopy of antiproton helium atoms

    International Nuclear Information System (INIS)

    Hayano, Ryugo

    2005-01-01

    Antiproton helium atom is three-body system consisting of an antiproton, electrons and a helium nucleus (denoted by the chemical symbol, p-bar H + ). The authors produced abundant atoms of p-bar 4 He + , and p-bar 3 He + in a cooled He gas target chamber stopping the p-bar beam decelerated to approximately 100 keV in the Antiproton Decelerator at CERN. A precision laser spectroscopy on the atomic transitions in the p-bar 4 He + , and in p-bar 3 He + was performed. Principle of laser spectroscopy and various modifications of the system to eliminate factors affecting the accuracy of the experiment were described. Deduced mass ratio of antiproton and proton, (|m p -bar - m p |)/m p reached to the accuracy of 10 ppb (10 -8 ) as of 2002, as adopted in the recent article of the Particle Data Group by P.J. Mohr and B.N. Taylor. This value is the highest precise data for the CPT invariance in baryon. In future, antihydrogen atoms will be produced in the same facility, and will provide far accurate value of antiproton mass thus enabling a better confirmation of CPT theorem in baryon. (T. Tamura)

  14. Compressive flow behavior of Cu thin films and Cu/Nb multilayers containing nanometer-scale helium bubbles

    International Nuclear Information System (INIS)

    Li, N.; Mara, N.A.; Wang, Y.Q.; Nastasi, M.; Misra, A.

    2011-01-01

    Research highlights: → Firstly micro-pillar compression technique has been used to measure the implanted metal films. → The magnitude of radiation hardening decreased with decreasing layer thickness. → When thickness decreases to 2.5 nm, no hardening and no loss in deformability after implantation. -- Focused-ion-beam machined compression specimens were used to investigate the effect of nanometer-scale helium bubbles on the strength and deformability of sputter-deposited Cu and Cu/Nb multilayers with different layer thickness. The flow strength of Cu films increased by more than a factor of 2 due to helium bubbles but in multilayers, the magnitude of radiation hardening decreased with decreasing layer thickness. When the layer thickness decreases to 2.5 nm, insignificant hardening and no measurable loss in deformability is observed after implantation.

  15. Strange matter and Big Bang helium synthesis

    International Nuclear Information System (INIS)

    Madsen, J.; Riisager, K.

    1985-01-01

    Stable strange quark matter produced in the QCD phase transition in the early universe will trap neutrons and repel protons, thus reducing primordial helium production, Ysub(p). For reasonable values of Ysub(p), the radius of strange droplets must exceed 10 -6 cm if strange matter shall solve the dark-matter problem without spoiling Big Bang helium synthesis. (orig.)

  16. Post-giant evolution of helium stars

    International Nuclear Information System (INIS)

    Schoenberner, D.

    1977-01-01

    Extremely hydrogen deficient stars (helium stars and R Coronae Borealis variables) are considered to be remnants of double shell source stars (of the asymptotic giant branch). The evolution of stars with a condensed C/O-core and a helium envelope is followed numerically from the red giant stage to the white dwarf domain, crossing the regions of R CrB- and helium stars (so far analyzed). They have typically masses M/M(sun) = 0.7 and luminosities log L/L(sun) = 4.1. The time for crossing the helium star domain is some 10 3 years. The corresponding times in the R CrB-region amounts up to several 10 4 years. The lower limit of the death rate of helium stars is estimated to be 4 x 10 -14 pc -3 yr -1 . This value is only a factor of ten lower than the birth rate of all non-DA white dwarfs. It is therefore possible that the helium stars are the precursors of helium rich white dwarfs. As a consequence, a significant fraction of all stars which end their lives as white dwarfs should pass through the helium star phase. (orig.) [de

  17. Organ protection by the noble gas helium

    NARCIS (Netherlands)

    Smit, K.F.

    2017-01-01

    The aims of this thesis were to investigate whether helium induces preconditioning in humans, and to elucidate the mechanisms behind this possible protection. First, we collected data regarding organ protective effects of noble gases in general, and of helium in particular (chapters 1-3). In chapter

  18. Radioactive ions and atoms in superfluid helium

    NARCIS (Netherlands)

    Dendooven, P.G.; Purushothaman, S.; Gloos, K.; Aysto, J.; Takahashi, N.; Huang, W.; Harissopulos, S; Demetriou, P; Julin, R

    2006-01-01

    We are investigating the use of superfluid helium as a medium to handle and manipulate radioactive ions and atoms. Preliminary results on the extraction of positive ions from superfluid helium at temperatures close to 1 K are described. Increasing the electric field up to 1.2 kV/cm did not improve

  19. Ion implantation

    International Nuclear Information System (INIS)

    Johnson, E.

    1986-01-01

    It is the purpose of the present paper to give a review of surface alloy processing by ion implantation. However, rather than covering this vast subject as a whole, the survey is confined to a presentation of the microstructures that can be found in metal surfaces after ion implantation. The presentation is limited to alloys processed by ion implantation proper, that is to processes in which the alloy compositions are altered significantly by direct injection of the implanted ions. The review is introduced by a presentation of the processes taking place during development of the fundamental event in ion implantation - the collision cascade, followed by a summary of the various microstructures which can be formed after ion implantation into metals. This is compared with the variability of microstructures that can be achieved by rapid solidification processing. The microstructures are subsequently discussed in the light of the processes which, as the implantations proceed, take place during and immediately after formation of the individual collision cascades. These collision cascades define the volumes inside which individual ions are slowed down in the implanted targets. They are not only centres for vigorous agitation but also the sources for formation of excess concentrations of point defects, which will influence development of particular microstructures. A final section presents a selection of specific structures which have been observed in different alloy systems. (orig./GSCH)

  20. In-situ real time measurements of net erosion rates of copper during hydrogen plasma exposure

    Science.gov (United States)

    Kesler, Leigh; Wright, Graham; Peterson, Ethan; Whyte, Dennis

    2013-10-01

    In order to properly understand the dynamics of net erosion/deposition in fusion reactors, such as tokamaks, a diagnostic measuring the real time rates of net erosion/deposition during plasma exposure is necessary. The DIONISOS experiment produces real time measurements of net erosion/deposition by using Rutherford backscattering spectroscopy (RBS) ion beam analysis simultaneously with plasma exposure from a helicon plasma source. This in-situ method improves on ex-situ weight loss measurements by allowing measurement of possible synergistic effects of high ion implantation rates and net erosion rate and by giving a real time response to changes in plasma parameters. Previous work has validated this new technique for measuring copper (Cu) erosion from helium (He) plasma ion bombardment. This technique is now extended to measure copper erosion due to deuterium and hydrogen plasma ion exposure. Targets used were a 1.5 μm Cu layer on an aluminum substrate. Cu layer thickness is tracked in real time using 1.2 MeV proton RBS. Measured erosion rates will be compared to results from literature and He erosion rates. Supported by US DoE award DE-SC00-02060.

  1. Infrared nanoscopy down to liquid helium temperatures

    Science.gov (United States)

    Lang, Denny; Döring, Jonathan; Nörenberg, Tobias; Butykai, Ádám; Kézsmárki, István; Schneider, Harald; Winnerl, Stephan; Helm, Manfred; Kehr, Susanne C.; Eng, Lukas M.

    2018-03-01

    We introduce a scattering-type scanning near-field infrared microscope (s-SNIM) for the local scale near-field sample analysis and spectroscopy from room temperature down to liquid helium (LHe) temperature. The extension of s-SNIM down to T = 5 K is in particular crucial for low-temperature phase transitions, e.g., for the examination of superconductors, as well as low energy excitations. The low temperature (LT) s-SNIM performance is tested with CO2-IR excitation at T = 7 K using a bare Au reference and a structured Si/SiO2-sample. Furthermore, we quantify the impact of local laser heating under the s-SNIM tip apex by monitoring the light-induced ferroelectric-to-paraelectric phase transition of the skyrmion-hosting multiferroic material GaV4S8 at Tc = 42 K. We apply LT s-SNIM to study the spectral response of GaV4S8 and its lateral domain structure in the ferroelectric phase by the mid-IR to THz free-electron laser-light source FELBE at the Helmholtz-Zentrum Dresden-Rossendorf, Germany. Notably, our s-SNIM is based on a non-contact atomic force microscope (AFM) and thus can be complemented in situ by various other AFM techniques, such as topography profiling, piezo-response force microscopy (PFM), and/or Kelvin-probe force microscopy (KPFM). The combination of these methods supports the comprehensive study of the mutual interplay in the topographic, electronic, and optical properties of surfaces from room temperature down to 5 K.

  2. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  3. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  4. Determination of helium in beryl minerals

    International Nuclear Information System (INIS)

    Souza Barcellos, E. de.

    1985-08-01

    In order to obtain the diffusion coefficients of helium in beryl and phenacite samples at various temperatures, helium leak rates were measured in these minerals at these temperatures. Mass spectrometry (MS) was used to obtain helium leak rates and the gas flow was plotted against time. The gas quantity determined by MS was first obtained at various temperatures until no helium leak rate was detected. After that, these samples were irradiated with fast neutrons to produce helium which was measured again. This procedure was used to estimate the experimental error. The quantity of helium produced by interaction of gamma radiation with beryl minerals was theoretically calculated from the amount of thorium-232 at the neighbourhood of the samples. The quantity of helium produced in the minerals due to uranium and thorium decay was calculated using the amount of these heavy elements, and the results were compared with the amounts determined by MS. The amount of potassium-40 was determined in order to derive the quantity of argonium-40, since some workers found argonium in excess in these minerals. The quantity of helium in the beryl samples (s) was determined in the center and in the surface of the samples in order to obtain informations about the effectiveness of the Be(α, η) He reaction. Beryl and phenacite minerals were choosen in this research since they are opposite each other with respect to the helium contents. Both have beryllium in their compositon but beryl hold a large amount of helium while phenacite, in spite of having about three times more beryllium than beryl, do not hold the gas. (author) [pt

  5. Influence of displacement damage on deuterium and helium retention in austenitic and ferritic-martensitic alloys considered for ADS service

    Energy Technology Data Exchange (ETDEWEB)

    Voyevodin, V.N.; Karpov, S.A.; Kopanets, I.E.; Ruzhytskyi, V.V. [National Science Center “Kharkov Institute of Physics and Technology” Kharkov, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Tolstolutskaya, G.D., E-mail: g.d.t@kipt.kharkov.ua [National Science Center “Kharkov Institute of Physics and Technology” Kharkov, 1, Akademicheskaya St., Kharkov, 61108 (Ukraine); Garner, F.A. [Radiation Effects Consulting, Richland, WA (United States)

    2016-01-15

    The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D({sup 3}He,p){sup 4}He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ∼1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.

  6. Microstructure of HIPed and SPSed 9Cr-ODS steel and its effect on helium bubble formation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chenyang [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, Liaoning (China); Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI, 48109 (United States); Lu, Zheng, E-mail: luz@atm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, Liaoning (China); Xie, Rui; Liu, Chunming [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, Liaoning (China); Wang, Lumin, E-mail: lmwang@umich.edu [Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI, 48109 (United States)

    2016-06-15

    Two 9Cr-ODS steels with the same nominal composition were consolidated by hot isostatic pressing (HIP, named COS-1) and spark plasma sintering (SPS, named COS-2). Helium ions were implanted into COS-1, COS-2 and non-ODS Eurofer 97 steels up at 673 K. Microstructures before and after helium ion implantations were carefully characterized. The results show a bimodal grain size distribution in COS-2 and a more uniform grain size distribution in COS-1. Nanoscale clusters of GP-zone type Y–Ti–O and Y{sub 2}Ti{sub 2}O{sub 7} pyrochlore as well as large spinel Mn(Ti)Cr{sub 2}O{sub 4} particles are all observed in the two ODS steels. The Y–Ti-enriched nano-oxides in COS-1 exhibit higher number density and smaller size than in COS-2. The Y–Ti-enriched nano-oxides in fine grains of COS-2 show higher number density and smaller size than that in coarse grains of COS-2. Nano-oxides effectively trap helium atoms and lead to the formation of high density and ultra-fine helium bubbles. - Highlights: • The microstructure changes of two ODS steels before and after helium ion implantation have been elucidated. • The mechanism of the microstructures of ODS steels under varied thermal mechanical processing paths have been explored. • The dependence of the size, density and distribution of helium bubbles on the specific microstructure features are explored.

  7. Failure analysis of fractured dental zirconia implants.

    Science.gov (United States)

    Gahlert, M; Burtscher, D; Grunert, I; Kniha, H; Steinhauser, E

    2012-03-01

    The purpose of the present study was the macroscopic and microscopic failure analysis of fractured zirconia dental implants. Thirteen fractured one-piece zirconia implants (Z-Look3) out of 170 inserted implants with an average in situ period of 36.75±5.34 months (range from 20 to 56 months, median 38 months) were prepared for macroscopic and microscopic (scanning electron microscopy [SEM]) failure analysis. These 170 implants were inserted in 79 patients. The patient histories were compared with fracture incidences to identify the reasons for the failure of the implants. Twelve of these fractured implants had a diameter of 3.25 mm and one implant had a diameter of 4 mm. All fractured implants were located in the anterior side of the maxilla and mandibula. The patient with the fracture of the 4 mm diameter implant was adversely affected by strong bruxism. By failure analysis (SEM), it could be demonstrated that in all cases, mechanical overloading caused the fracture of the implants. Inhomogeneities and internal defects of the ceramic material could be excluded, but notches and scratches due to sandblasting of the surface led to local stress concentrations that led to the mentioned mechanical overloading by bending loads. The present study identified a fracture rate of nearly 10% within a follow-up period of 36.75 months after prosthetic loading. Ninety-two per cent of the fractured implants were so-called diameter reduced implants (diameter 3.25 mm). These diameter reduced implants cannot be recommended for further clinical use. Improvement of the ceramic material and modification of the implant geometry has to be carried out to reduce the failure rate of small-sized ceramic implants. Nevertheless, due to the lack of appropriate laboratory testing, only clinical studies will demonstrate clearly whether and how far the failure rate can be reduced. © 2011 John Wiley & Sons A/S.

  8. Commercial helium reserves, continental rifting and volcanism

    Science.gov (United States)

    Ballentine, C. J.; Barry, P. H.; Hillegonds, D.; Fontijn, K.; Bluett, J.; Abraham-James, T.; Danabalan, D.; Gluyas, J.; Brennwald, M. S.; Pluess, B.; Seneshens, D.; Sherwood Lollar, B.

    2017-12-01

    Helium has many industrial applications, but notably provides the unique cooling medium for superconducting magnets in medical MRI scanners and high energy beam lines. In 2013 the global supply chainfailed to meet demand causing significant concern - the `Liquid Helium Crisis' [1]. The 2017 closure of Quatar borders, a major helium supplier, is likely to further disrupt helium supply, and accentuates the urgent need to diversify supply. Helium is found in very few natural gas reservoirs that have focused 4He produced by the dispersed decay (a-particle) of U and Th in the crust. We show here, using the example of the Rukwa section of the Tanzanian East African Rift, how continental rifting and local volcanism provides the combination of processes required to generate helium reserves. The ancient continental crust provides the source of 4He. Rifting and associated magmatism provides the tectonic and thermal mechanism to mobilise deep fluid circulation, focusing flow to the near surface along major basement faults. Helium-rich springs in the Tanzanian Great Rift Valley were first identified in the 1950's[2]. The isotopic compositions and major element chemistry of the gases from springs and seeps are consistent with their release from the crystalline basement during rifting [3]. Within the Rukwa Rift Valley, helium seeps occur in the vicinity of trapping structures that have the potential to store significant reserves of helium [3]. Soil gas surveys over 6 prospective trapping structures (1m depth, n=1486) show helium anomalies in 5 out of the 6 at levels similar to those observed over a known helium-rich gas reservoir at 1200m depth (7% He - Harley Dome, Utah). Detailed macroseep gas compositions collected over two days (n=17) at one site allows us to distinguish shallow gas contributions and shows the deep gas to contain between 8-10% helium, significantly increasing resource estimates based on uncorrected values (1.8-4.2%)[2,3]. The remainder of the deep gas is

  9. Helium hammer in superfluid transfer

    Science.gov (United States)

    Tward, E.; Mason, P. V.

    1984-01-01

    Large transient pressure pulses, referred to as a helium hammer, which occurred in the transfer line of the main cryogenic tank during the development tests of the Infrared Astronomical Satellite, launched on January 25, 1983, are analyzed, and the measures taken to prevent a failure described. The modifications include an installation of a 2.3-liter surge tank upstream, and a back-up relief valve downstream, of a burst disk. The surge tank is designed to attenuate a 0.33-MPa pressure pulse at the inlet down to 0.092 MPa at the outlet. A mechanism of the pulse generation is suggested, which involves flashing and rapid recondensation of the small amount of liquid entering the warm section of a transition to room temperature.

  10. Study of damage and helium diffusion in fluoro-apatites; Etude de l'endommagement et de la diffusion de l'helium dans des fluoroapatites

    Energy Technology Data Exchange (ETDEWEB)

    Miro, S

    2004-12-15

    This work lies within the scope of the study of the radionuclides containment matrices. The choice of the fluoro-apatites as potential matrices of containment was suggested by the notable properties of these latter (thermal and chemical stability even under radioactive radiation). By irradiations with heavy ions and a helium implantation we simulated the effects related to the alpha radioactivity and to the spontaneous nuclear fission of the radionuclides. Thanks to the study of Durango fluoro-apatite single crystals and fluoro-apatite sintered ceramics, we evidenced that the damage fraction as well as the unit cell deformations increase with the electronic energy loss and with the substitution. These effects are followed at high fluences by a phenomenon of re-crystallization. The study of the helium diffusion points out that the thermal diffusion process improves with the substitution and strongly increases with heavy ions irradiation. (author)

  11. Effective implantation of light emitting centers by plasma immersion ion implantation and focused ion beam methods into nanosized diamond

    International Nuclear Information System (INIS)

    Himics, L.; Tóth, S.; Veres, M.; Tóth, A.; Koós, M.

    2015-01-01

    Highlights: • Characteristics of nitrogen implantation of nanodiamond using two low ion energy ion implantation methods were compared. • Formation of complex nitrogen-related defect centers was promoted by subsequent helium implantation and heat treatments. • Depth profiles of the implanted ions and the generated vacancies were determined using SRIM calculations. • The presence of nitrogen impurity was demonstrated by Fourier-transform infrared spectroscopic measurements. • A new nitrogen related band was detected in the photoluminescence spectrum of the implanted samples that was attributed to the N3 color center in nanodiamond. - Abstract: Two different implantation techniques, plasma immersion ion implantation and focused ion beam, were used to introduce nitrogen ions into detonation nanodiamond crystals with the aim to create nitrogen-vacancy related optically active centers of light emission in near UV region. Previously samples were subjected to a defect creation process by helium irradiation in both cases. Heat treatments at different temperatures (750 °C, 450 °C) were applied in order to initiate the formation of nitrogen-vacancy related complex centers and to decrease the sp 2 carbon content formed under different treatments. As a result, a relatively narrow and intensive emission band with fine structure at 2.98, 2.83 and 2.71 eV photon energies was observed in the light emission spectrum. It was assigned to the N3 complex defect center. The formation of this defect center can be expected by taking into account the relatively high dose of implanted nitrogen ions and the overlapped depth distribution of vacancies and nitrogen. The calculated depth profiles distribution for both implanted nitrogen and helium by SRIM simulation support this expectation

  12. Friendly fermions of helium-three

    International Nuclear Information System (INIS)

    Leggatt, T.

    1976-01-01

    The importance of helium in showing up the effects of atomic indistinguishability and as a material by which to test some of the most fundamental principles of quantum mechanics is discussed. Helium not only remains liquid down to zero temperature but of the two isotopes helium-three has intrinsic spin 1/2 and should therefore obey the Pauli principle, while helium-four has spin zero and is expected to undergo Bose condensation. Helium-three becomes superfluid at temperatures of a few thousandths of a degree above absolute zero by the bulk liquid collecting its atoms into spinning pairs. There are three different superfluid phases, now conveniently called A, B and A 1 and each is characterised by a different behaviour of the spin and/or relative angular motion of the atoms composing the Cooper pairs. Problems surrounding the complicated physical system of helium-three are discussed. It is suggested that the combined coherence and directionality of superfluid helium-three should create some fascinating physics. (U.K.)

  13. Seismological measurement of solar helium abundance

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Pamyatnykh, A.A.

    1991-01-01

    The internal structure and evolution of the Sun depends on its chemical composition, particularly the helium abundance. In addition, the helium abundance in the solar envelope is thought to represent the protosolar value, making it a datum of cosmological significance. Spectroscopic measurements of the helium abundance are uncertain, and the most reliable estimates until now have come from the calibration of solar evolutionary models. The frequencies of solar acoustic oscillations are sensitive, however, to the behaviour of the speed of sound in the Sun's helium ionization zone, which allows a helioseismological determination of the helium abundance. Sound-speed inversion of helioseismological data can be used for this purpose, but precise frequency measurements of high-degree oscillation modes are needed. Here we describe a new approach based on an analysis of the phase shift of acoustic waves of intermediate-degree modes. From the accurate intermediate-mode data now available, we obtain a helium mass fraction Y=0.25±0.01 in the solar convection zone, significantly smaller than the value Y=0.27-0.29 predicted by recent solar evolutionary models. The discrepancy indicates either that initial helium abundance was reduced in the envelope by downward diffusion or that the protosolar value was lower than currently accepted. (author)

  14. Superfluid helium-4: An introductory review

    International Nuclear Information System (INIS)

    Vinen, W.F.

    1983-01-01

    Helium was first liquefied by Kamerlingh Onnes in Leiden in July 1908, an achievement that followed much careful and painstaking work. On the same day Onnes reduced the temperature of his helium to a value approaching lK, and he must therefore have produced and observed the superfluid phase. These experimental discoveries led very quickly to a series of remarkable theoretical contributions that laid the foundations for all subsequent work. The period since the second world war has of course seen an enormous amount of work on superfluid helium-4. In reviewing it the author tries to see it in terms of two threads: one originating from Landau; the other from London

  15. Superfluid helium at subcritical active core

    International Nuclear Information System (INIS)

    Vasil'ev, V.V.; Lopatkin, A.V.; Muratov, V.G.; Rakhno, I.L.

    2002-01-01

    Power range and neutron flux wherein super thermal source was realized at high volume of superfluid helium were investigated. MCU, BRAND, MCNP codes were used for the calculation of reactors. It is shown that the availability of full-size diameter for cryogenic source of ultracold neutrons, as the source with superfluid helium is considered, is possible in the reflector of subcritical assembly. Results obtained from the MCNP-4B code application demonstrated that the density of thermal neutron flux in helium must be not higher than 2.3 x 10 11 s -1 cm -2 [ru

  16. Low-temperature centrifugal helium compressor

    International Nuclear Information System (INIS)

    Kawada, M.; Togo, S.; Akiyama, Y.; Wada, R.

    1974-01-01

    A centrifugal helium compressor with gas bearings, which can be operated at the temperature of liquid nitrogen, has been investigated. This compressor has the advantages that the compression ratio should be higher than the room temperature operation and that the contamination of helium could be eliminated. The outer diameter of the rotor is 112 mm. The experimental result for helium gas at low temperature shows a flow rate of 47 g/s and a compression ratio of 1.2 when the inlet pressure was 1 ata and the rotational speed 550 rev/s. The investigation is now focused on obtaining a compression ratio of 1.5. (author)

  17. Carmustine Implant

    Science.gov (United States)

    ... works by slowing or stopping the growth of cancer cells in your body. ... are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while receiving carmustine implant, call your doctor. Carmustine may harm the fetus.

  18. Cochlear Implants

    Science.gov (United States)

    ... NIDCD A cochlear implant is a small, complex electronic device that can help to provide a sense ... Hearing Aids Retinitis Pigmentosa - National Eye Institute Telecommunications Relay Services Usher Syndrome Your Baby's Hearing Screening News ...

  19. Krypton and helium irradiation damage in neodymium-zirconolite

    International Nuclear Information System (INIS)

    Gilbert, M.; Davoisne, C.; Stennett, M.; Hyatt, N.; Peng, N.; Jeynes, C.; Lee, W.E.

    2011-01-01

    A leading candidate for the immobilisation of actinides, zirconolite's suitability as a potential ceramic host for plutonium disposition, both in storage and geological disposal, has been the subject of much research. One key aim of this study is to understand the effects of radiation damage and noble gas accommodation within the zirconolite material. To this end, a series of ex situ irradiations have been performed on polycrystalline (Ca 0.8 Nd 0.2 )Zr(Ti 1.8 Al 0.2 )O 7 zirconolite samples. Zirconolite samples, doped with Nd 3+ (as a Pu surrogate) on the Ca-site and charge-balanced by substituting Al 3+ onto the Ti-site, were irradiated with 36 Kr + (2 MeV) ions at fluences of 1 x 10 14 and 5 x 10 15 cm -2 and 4 He + (200 keV) ions at fluences of 1 x 10 14 , 5 x 10 15 and 1 x 10 17 cm -2 to simulate the impact of alpha decay on the microstructure. Microstructural analysis revealed no damage present at the lower Kr + fluence, but that the higher 36 Kr + fluence rendered the zirconolite completely amorphous. Similarly, evidence of helium accumulation was only seen at the highest 4 He + fluence (1 x 10 17 cm -2 ). Monte Carlo simulations using the TRIM code predict the highest concentration of helium accumulating at a depth of 720 nm, in good agreement with the experimental observations.

  20. Hydrogen and helium in metals: positron lifetime experiments. Quarterly report 3. quarter 1987

    International Nuclear Information System (INIS)

    Rajainmaeki, Hannu.

    1987-09-01

    This thesis reviews a new approach to studying the role of hydrogen and helium in defect recovery of metals by the positron lifetime technique. A cryostat has been built at the University of Jyvaeskylae for irradiating and/or implaning solids by high-energy proton or helium beams from the MC-20 cyclotron. The samples can be kept continuously below 20 K and the isochronal annealings and the subsequent positron lifetime measurements are carried ou in the same cryostat after the irradiations. During the implantations below 20 K both impuities (H or He) and Frenkel pairs are produced simultaneously. By measuring positron lifetimes during the annealing detailed information is obtained about radiation damage, impurity-defect interactions, lattice defect annealing, void nucleation and formation of helium bubbles. In this work positron lifetime spectroscopy has been utilized for the first time to study defect recovery below the liquid nitrogen temperature (77 K). The annealing stages are investigated in aluminium, nickel and molybdenum in the temperature range 20-700 K. Hydrogen is found to get trapped at vacancies in all the studied metals with binding energies 0.53+-0.04 and 1.6+-0.1 eV, respectively. Trapped hydrogen retards the vacancy migration in Al and Mo, while H-vancancy pairs dissociate in Ni below the free vacancy migration stage. helium gets deeply trapped at vacancies in Al and migrates substitutionally with the activation energy of 1.3+-0.1 eV. Helium-vacancy pairs are observed to nucleate into clusters and form helium bubbles which are stable up to the Al melting temperature. The growth mechanisms for the bubbles are established as thermal vacancy absorption and bubble migration/coalescence

  1. Dynamics of vortex assisted metal condensation in superfluid helium.

    Science.gov (United States)

    Popov, Evgeny; Mammetkuliyev, Muhammet; Eloranta, Jussi

    2013-05-28

    both superfluid bulk liquid helium and helium droplets, both of which share the common element of a rapid passage through the lambda point. The origin of vorticity is tentatively assigned to the Zurek-Kibble mechanism. Implications of the large gas bubble formation by laser ablation to previous experiments aimed at implanting atomic and dimeric species in bulk superfluid helium are also discussed, and it is proposed that the developed visualization method should be used as a diagnostic tool in such experiments to avoid measurements in dense gaseous environments.

  2. Use of separating nozzles or ultra-centrifuges for obtaining helium from gas mixtures containing helium

    International Nuclear Information System (INIS)

    Reimann, T.

    1987-01-01

    To obtain helium from gas mixtures containing helium, particularly from natural gas, it is proposed to match the dimensions of the separation devices for a ratio of the molecular weights to be separated of 4:1 of more, which ensures a higher separation factor and therefore a smaller number of separation stages to be connected in series. The process should make reasonably priced separation of helium possible. (orig./HP) [de

  3. Perspectives on Lunar Helium-3

    Science.gov (United States)

    Schmitt, Harrison H.

    1999-01-01

    Global demand for energy will likely increase by a factor of six or eight by the mid-point of the 21st Century due to a combination of population increase, new energy intensive technologies, and aspirations for improved standards of living in the less-developed world (1). Lunar helium-3 (3He), with a resource base in the Tranquillitatis titanium-rich lunar maria (2,3) of at least 10,000 tonnes (4), represents one potential energy source to meet this rapidly escalating demand. The energy equivalent value of 3He delivered to operating fusion power plants on Earth would be about 3 billion per tonne relative to today's coal which supplies most of the approximately 90 billion domestic electrical power market (5). These numbers illustrate the magnitude of the business opportunity. The results from the Lunar Prospector neutron spectrometer (6) suggests that 3He also may be concentrated at the lunar poles along with solar wind hydrogen (7). Mining, extraction, processing, and transportation of helium to Earth requires new innovations in engineering but no known new engineering concepts (1). By-products of lunar 3He extraction, largely hydrogen, oxygen, and water, have large potential markets in space and ultimately will add to the economic attractiveness of this business opportunity (5). Inertial electrostatic confinement (IEC) fusion technology appears to be the most attractive and least capital intensive approach to terrestrial fusion power plants (8). Heavy lift launch costs comprise the largest cost uncertainty facing initial business planning, however, many factors, particularly long term production contracts, promise to lower these costs into the range of 1-2000 per kilogram versus about 70,000 per kilogram fully burdened for the Apollo Saturn V rocket (1). A private enterprise approach to developing lunar 3He and terrestrial IEC fusion power would be the most expeditious means of realizing this unique opportunity (9). In spite of the large, long-term potential

  4. Structural and electronic properties of ion-implanted superconductors

    International Nuclear Information System (INIS)

    Bernas, H.; Nedellec, P.

    1980-01-01

    Recent work on ion implanted superconductors is reviewed. In situ x-ray, channeling, resistivity, and electron tunneling experiments now approach the relation between lattice order (or disorder) and superconductivity

  5. CALCULATED REGENERATOR PERFORMANCE AT 4 K WITH HELIUM-4 AND HELIUM-3

    International Nuclear Information System (INIS)

    Radebaugh, Ray; Huang Yonghua; O'Gallagher, Agnes; Gary, John

    2008-01-01

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transport properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies

  6. Diffusion of helium and nucleation-growth of helium-bubbles in metallic materials

    International Nuclear Information System (INIS)

    Zhang Chonghong; Chen Keqin; Wang Yinshu

    2001-01-01

    Studies of diffusion and aggregation behaviour of helium in metallic materials are very important to solve the problem of helium embrittlement in structural materials used in the environment of nuclear power. Experimental studies on helium diffusion and aggregation in austenitic stainless steels in a wide temperature range have been performed in authors' research group and the main results obtained are briefly summarized. The mechanism of nucleation-growth of helium-bubbles has been discussed and some problems to be solved are also given

  7. Charged condensate and helium dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Gabadadze, Gregory; Rosen, Rachel A, E-mail: gg32@nyu.edu, E-mail: rar339@nyu.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

    2008-10-15

    White dwarf stars composed of carbon, oxygen and heavier elements are expected to crystallize as they cool down below certain temperatures. Yet, simple arguments suggest that the helium white dwarf cores may not solidify, mostly because of zero-point oscillations of the helium ions that would dissolve the crystalline structure. We argue that the interior of the helium dwarfs may instead form a macroscopic quantum state in which the charged helium-4 nuclei are in a Bose-Einstein condensate, while the relativistic electrons form a neutralizing degenerate Fermi liquid. We discuss the electric charge screening, and the spectrum of this substance, showing that the bosonic long-wavelength fluctuations exhibit a mass gap. Hence, there is a suppression at low temperatures of the boson contribution to the specific heat-the latter being dominated by the specific heat of the electrons near the Fermi surface. This state of matter may have observational signatures.

  8. On the helium gas leak test

    International Nuclear Information System (INIS)

    Nishikawa, Akira; Ozaki, Susumu

    1975-01-01

    The helium gas leak test (Helium mass spectrometer testing) has a leak detection capacity of the highest level in practical leak tests and is going to be widely applied to high pressure vessels, atomic and vacuum equipments that require high tightness. To establish a standard test procedure several series of experiments were conducted and the results were investigated. The conclusions are summarized as follows: (1) The hood method is quantitatively the most reliable method. The leak rate obtained by tests using 100% helium concentration should be the basis of the other method of test. (2) The integrating method, bell jar method, and vacuum spray method can be considered quantitative when particular conditions are satisfied. (3) The sniffer method is not to be considered quantitive. (4) The leak rate of the hood, integrating, and bell jar methods is approximately proportional to the square of the helium partial pressure. (auth.)

  9. Helium-Hydrogen Recovery System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Immense quantities of expensive liquefied helium are required at Stennis and Kennedy Space Centers for pre-cooling rocket engine propellant systems prior to filling...

  10. KSTAR Helium Refrigeration System Design and Manufacturing

    International Nuclear Information System (INIS)

    Dauguet, P.; Briend, P.; Abe, I.; Fauve, E.; Bernhardt, J.-M.; Andrieu, F.; Beauvisage, J.

    2006-01-01

    The tokamak developed in the KSTAR (Korean Superconducting Tokamak Advanced Research) project makes intensive use of superconducting magnets operated at 4.5 K. The cold components of the KSTAR tokamak require forced flow of supercritical helium for magnets/structure, boiling liquid helium for current leads, and gaseous helium for thermal shields. The cryogenic system will provide stable operation and full automatic control. A three-pressure helium cycle composed of six turbines has been customised design for this project. The '' design '' operating mode results with a system composed of a 9 kW refrigerator (including safety margin) and using gas and liquid storages for mass balancing. During Shot/Standby mode, the heat loads are highly time-dependent. A thermal damper is used to smooth these variations and will allow stable operation. (author)

  11. Realization of mechanical rotation in superfluid helium

    Science.gov (United States)

    Gordon, E. B.; Kulish, M. I.; Karabulin, A. V.; Matyushenko, V. I.; Dyatlova, E. V.; Gordienko, A. S.; Stepanov, M. E.

    2017-09-01

    The possibility of using miniaturized low-power electric motors submerged in superfluid helium for organization of rotation inside a cryostat has been investigated. It has been revealed that many of commercial micromotors can operate in liquid helium consuming low power. Turret with 5 sample holders, assembled on the base of stepper motor, has been successfully tested in experiments on the nanowire production in quantized vortices of superfluid helium. Application of the stepper motor made it possible in a single experiment to study the effect of various experimental parameters on the yield and quality of the nanowires. The promises for continuous fast rotation of the bath filled by superfluid helium by using high-speed brushless micromotor were outlined and tested. Being realized, this approach will open new possibility to study the guest particles interaction with the array of parallel linear vortices in He II.

  12. Helium leak testing the Westinghouse LCP coil

    International Nuclear Information System (INIS)

    Merritt, P.A.; Attaar, M.H.; Hordubay, T.D.

    1983-01-01

    The tests, equipment, and techniques used to check the Westinghouse LCP coil for coolant flow path integrity and helium leakage are unique in terms of test sensitivity and application. This paper will discuss the various types of helium leak testing done on the LCP coil as it enters different stages of manufacture. The emphasis will be on the degree of test sensitivity achieved under shop conditions, and what equipment, techniques and tooling are required to achieve this sensitivity (5.9 x 10 -8 scc/sec). Other topics that will be discussed are helium flow and pressure drop testing which is used to detect any restrictions in the flow paths, and the LCP final acceptance test which is the final leak test performed on the coil prior to its being sent for testing. The overall allowable leak rate for this coil is 5 x 10 -6 scc/sec. A general evaluation of helium leak testing experience are included

  13. Near field characteristics of buoyant helium plumes

    Indian Academy of Sciences (India)

    pressure tubing. Helium gas enters the bottom of the settling chamber, passing through two ... A 40 mesh, flat stainless steel screen is placed across the orifice exit. ... PIV and PLIF measurements are carried out in phase resolved manner.

  14. Hybrid Circuit QED with Electrons on Helium

    Science.gov (United States)

    Yang, Ge

    Electrons on helium (eHe) is a 2-dimensional system that forms naturally at the interface between superfluid helium and vacuum. It has the highest measured electron mobility, and long predicted spin coherence time. In this talk, we will first review various quantum computer architecture proposals that take advantage of these exceptional properties. In particular, we describe how electrons on helium can be combined with superconducting microwave circuits to take advantage of the recent progress in the field of circuit quantum electrodynamics (cQED). We will then demonstrate how to reliably trap electrons on these devices hours at a time, at millikelvin temperatures inside a dilution refrigerator. The coupling between the electrons and the microwave resonator exceeds 1 MHz, and can be reproduced from the design geometry using our numerical simulation. Finally, we will present our progress on isolating individual electrons in such circuits, to build single-electron quantum dots with electrons on helium.

  15. Helium cosmic ray flux measurements at Mars

    International Nuclear Information System (INIS)

    Lee, Kerry; Pinsky, Lawrence; Andersen, Vic; Zeitlin, Cary; Cleghorn, Tim; Cucinotta, Frank; Saganti, Premkumar; Atwell, William; Turner, Ron

    2006-01-01

    The helium energy spectrum in Martian orbit has been observed by the MARIE charged particle spectrometer aboard the 2001 Mars Odyssey spacecraft. The orbital data were taken from March 13, 2002 to October 28, 2003, at which time a very intense Solar Particle Event caused a loss of communication between the instrument and the spacecraft. The silicon detector stack in MARIE is optimized for the detection of protons and helium in the energy range below 100MeV/n, which typically includes almost all of the flux during SPEs. This also makes MARIE an efficient detector for GCR helium in the energy range of 50-150MeV/n. We will present the first fully normalized flux results from MARIE, using helium ions in this energy range

  16. Helium cosmic ray flux measurements at Mars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kerry [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States)]. E-mail: ktlee@ems.jsc.nasa.gov; Pinsky, Lawrence [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States); Andersen, Vic [University of Houston, 4800 Calhoun Rd. Houston, TX 77204 (United States); Zeitlin, Cary [National Space Biomedical Research Institute, Baylor College of Medicine, Houston, TX (United States); Cleghorn, Tim [NASA Johnson Space Center, 2101 NASA Road 1, Houston, TX 77058 (United States); Cucinotta, Frank [NASA Johnson Space Center, 2101 NASA Road 1, Houston, TX 77058 (United States); Saganti, Premkumar [Prairie View A and M University, P.O. Box 519, Prairie View, TX 77446-0519 (United States); Atwell, William [The Boeing Company, Houston, TX (United States); Turner, Ron [Advancing National Strategies and Enabling Results (ANSER), Arlington, Virginia (United States)

    2006-10-15

    The helium energy spectrum in Martian orbit has been observed by the MARIE charged particle spectrometer aboard the 2001 Mars Odyssey spacecraft. The orbital data were taken from March 13, 2002 to October 28, 2003, at which time a very intense Solar Particle Event caused a loss of communication between the instrument and the spacecraft. The silicon detector stack in MARIE is optimized for the detection of protons and helium in the energy range below 100MeV/n, which typically includes almost all of the flux during SPEs. This also makes MARIE an efficient detector for GCR helium in the energy range of 50-150MeV/n. We will present the first fully normalized flux results from MARIE, using helium ions in this energy range.

  17. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.

    1984-01-01

    The implantation and sputtering mechanisms which are relevant to ion bombardment of surfaces are described. These are: collision, thermal, electronic and photon-induced sputtering. 135 refs.; 36 figs.; 9 tabs

  18. Effects of helium impurities on superalloys

    International Nuclear Information System (INIS)

    Selle, J.E.

    1977-07-01

    A review of the literature on the effects of helium impurities on superalloys at elevated temperatures was undertaken. The actual effects of these impurities vary depending on the alloy, composition of the gas atmosphere, and temperature. In general, exposure in helium produces significant but not catastrophic changes in the structure and properties of the alloys. The effects of these treatments on the structure, creep, fatigue, and mechanical properties of the various alloys are reviewed and discussed. Suggestions for future work are presented

  19. Electrons on the surface of liquid helium

    International Nuclear Information System (INIS)

    Lambert, D.K.

    1979-05-01

    Spectroscopic techniques were used to study transitions of electrons between bound states in the potential well near a helium surface. The charge density distribution of electrons on the surface was independently obtained from electrical measurements. From the measurements, information was obtained both about the interaction of the bound state electrons with the surface of liquid helium and about local disorder in the positions of electrons on the surface

  20. Modeling of helium effects in metals: High temperature embrittlement

    International Nuclear Information System (INIS)

    Trinkaus, H.

    1985-01-01

    The effects of helium on swelling, creep rupture and fatigue properties of fusion reactor materials subjected to (n,α)-reactions and/or direct α-injection, are controlled by bubble formation. The understanding of such effects requires therefore the modeling of (1) diffusional reactions of He atoms with other defects; (2) nucleation and growth of He bubbles; (3) transformation of such bubbles into cavities under continuous He generation and irradiation or creep stress. The present paper is focussed on the modeling of the (coupled) high temperature bubble nucleation and growth processes within and on grain boundaries. Two limiting cases are considered: di-atomic nucleation described by the simplest possible sets of rate equations, and multi-atomic nucleation described by classical nucleation theory. Scaling laws are derived which characterize the dependence of the bubble densities upon time (He-dose), He generation rate and temperature. Comparison with experimental data of AISI 316 SS α-implanted at temperatures around 1000 K indicates bubble nucleation of the multi-atomic type. The nucleation and growth models are applied to creep tests performed during α-implantation suggesting that in these cases gas driven bubble growth is the life time controlling mechanism. The narrow (creep stress/He generation rate) range of this mechanism in a mechanism map constructed from these tests indicates that in many reactor situations the time to rupture is probably controlled by stress driven cavity growth rather than by gas driven bubble growth. (orig.)

  1. Effect of helium on void swelling in vanadium

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1975-01-01

    Little difference in void microstructural swelling of vanadium is observed when helium is injected simultaneously with a 46- or 5-MeV nickel beam as compared to no helium injection, at least at high dose rates. At lower dose rates, a strong helium effect is seen when the helium is injected prior to heavy ion bombardment. The effect of the helium is shown to be a strong function of the overall displacement damage rate

  2. Theoretical study of helium insertion and diffusion in 3C-SiC

    International Nuclear Information System (INIS)

    Van Ginhoven, Renee M.; Chartier, Alain; Meis, Constantin; Weber, William J.; Rene Corrales, L.

    2006-01-01

    Insertion and diffusion of helium in cubic silicon carbide have been investigated by means of density functional theory. The method was assessed by calculating relevant properties for the perfect crystal along with point defect formation energies. Results are consistent with available theoretical and experimental data. Helium insertion energies were calculated to be lower for divacancy and silicon vacancy defects compared to the other mono-vacancies and interstitial sites considered. Migration barriers for helium were determined by using the nudged elastic band method. Calculated activation energies for migration in and around vacancies (silicon vacancy, carbon vacancy or divacancy) range from 0.6 to 1.0 eV. Activation energy for interstitial migration is calculated to be 2.5 eV. Those values are discussed and related to recent experimental activation energies for migration that range from 1.1 [P. Jung, J. Nucl. Mater. 191-194 (1992) 377] to 3.2 eV [E. Oliviero, A. van Veen, A.V. Fedorov, M.F. Beaufort, J.F. Bardot, Nucl. Instrum. Methods Phys. Res. B 186 (2002) 223; E. Oliviero, M.F. Beaufort, J.F. Bardot, A. van Veen, A.V. Fedorov, J. Appl. Phys. 93 (2003) 231], depending on the SiC samples used and on helium implantation conditions

  3. Radiation blistering of niobium in sequence irradiated by helium ions with different energy

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminskij, M.S.; Guseva, M.I.; Gusev, V.M.; Krasulin, Yu.L.; Martynenko, Yu.V.; Rozina, I.A.

    1977-01-01

    The results of the investigation of the blistering of the surface of polycrystalline niobium foils subjected to successive irradiation by helium ions of energies of 3 to 50 keV are reported. The critical doses of irradiation, the types of blisters and the rate of erosion were determined. A comparative analysis of the formation of blisters on cold-rolled and annealed niobium has been made. On cold-rolled niobium the blistering is mainly due to ions with energies of 3 to 80 keV, on annealed niobium of 100 to 500 keV. The erosion of cold-rolled niobium takes place through blisters formed by the action of helium ions with energies of the order of 45 keV, and that of annealed niobium, through helium ions with energies of 100 to 500 keV. The observed differences in the formation of blisters on niobium irradiated with helium ions of a wide range of energies are explained by the change in the diffusion kinetics of implanted ions having a uniform distribution across the thickness of the target

  4. Effects of hydrogen mixture into helium gas on deuterium removal from lithium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Akihito, E-mail: tsuchiya@frontier.hokudai.ac.jp [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Hino, Tomoaki; Yamauchi, Yuji; Nobuta, Yuji [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Akiba, Masato; Enoeda, Mikio [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan)

    2013-10-15

    Lithium titanate (Li{sub 2}TiO{sub 3}) pebbles were irradiated with deuterium ions with energy of 1.7 keV and then exposed to helium or helium–hydrogen mixed gas at various temperatures, in order to evaluate the effects of gas exposure on deuterium removal from the pebbles. The amounts of residual deuterium in the pebbles were measured by thermal desorption spectroscopy. The mixing of hydrogen gas into helium gas enhanced the removal amount of deuterium. In other words, the amount of residual deuterium after the helium–hydrogen mixed gas exposure at lower temperature was lower than that after the helium gas exposure. In addition, we also evaluated the pebbles exposed to the helium gas with different hydrogen mixture ratio from 0% to 1%, at 573 K. Although the amount of residual deuterium in the pebbles after the exposure decreased with increasing the hydrogen mixture ratio, the implanted deuterium partly remained after the exposure. These results suggest that the tritium inventory may occur at low temperature region in the blanket during the operation.

  5. Sonic Helium Detectors in the Fermilab Tevatron

    Science.gov (United States)

    Bossert, R. J.

    2006-04-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  6. Sonic helium detectors in the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Bossert, R.J.; Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years

  7. Separation of compressor oil from helium

    International Nuclear Information System (INIS)

    Strauss, R.; Perrotta, K.A.

    1982-01-01

    Compression of helium by an oil-sealed rorary screw compressor entrains as much as 4000 parts per million by weight of liquid and vapor oil impurities in the gas. The reduction below about 0.1 ppm for cryogenic applications is discussed. Oil seperation equipment designed for compressed air must be modified significantly to produce the desired results with helium. The main differences between air and helium filtration are described. A description of the coalescers is given with the continuous coalescing of liquid mist from air or other gas illustrated. Oil vapor in helium is discussed in terms of typical compressor oils, experimental procedure for measuring oil vapor concentration, measured volatile hydrocarbons in the lubricants, and calculated concentration of oil vapor in Helium. Liquid oil contamination in helium gas can be reduced well below 0.1 ppm by a properly designed multiple state coalescing filter system containing graded efficiency filter elements. The oil vapor problem is best attached by efficiently treating the oil to remove most of the colatiles before charging the compressor

  8. Helium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Longton, P.B.; Cowen, H.C.

    1975-01-01

    In helium cooled HTR's there is a by-pass circuit for cleaning purposes in addition to the main cooling circuit. This is to remove such impurities as hydrogen, methane, carbon monoxide and water from the coolant. In this system, part of the coolant successively flows first through an oxidation bed of copper oxide and an absorption bed of silica gel, then through activated charcoal or a molecular sieve. The hydrogen and carbon monoxide impurities are absorbed and the dry gas is returned to the main cooling circuit. To lower the hydrogen/water ratio without increasing the hydrogen fraction in the main cooling circuit, some of the hydrogen fraction converted into water is added to the cooling circuit. This is done, inter alia, by bypassing the water produced in the oxidation bed before it enters the absorption bed. The rest of the by-pass circuit, however, also includes an absorption bed with a molecular sieve. This absorbs the oxidized carbon monoxide fraction. In this way, such side effects as the formation of additional methane, carburization of the materials of the by-pass circuit or loss of graphite are avoided. (DG/RF) [de

  9. He reemission implanted in metals

    International Nuclear Information System (INIS)

    Tanabe, T.

    2014-01-01

    Highlights: • Observation of He reemission of various metals under He + implantation at wide temperature range. • Materials examined are aluminum (Al), Nickel (Ni) and molybdenum (Mo). • He reemission is quite temperature dependent and different with materials. • Three metals show similar dependence on temperature normalized with respective melting point. • He reemission is successfully correlated with He behavior in metals. - Abstract: Helium (He) reemission of Al, Ni and Mo under energetic He implantation (10–30 keV) in wide temperature range is studied to understand behavior of implanted He in correlation with structure changes. The reemission behavior is categorized into 4 different temperature ranges with the normalized temperature (T m ) to the melting point of each metal. At elevated temperatures (well above ∼0.6 T m ), interstitial He atoms and/or He-vacancy (ies) clusters can migrate remaining no structure change and showing smooth reemission without any burst. Between ∼0.25 and 0.6 T m , He reemission always accompanies significant structure modification. For ∼04–0.6 T m , implanted He coalesce to make bubbles and the bubbles can move to the surface. Bubble migration accompanies materials flow to the surface resulting in fuzz surface or columnar structure, depending on implantation flux. Slower bubble motion at ∼0.25–0.4 prohibits the material migration. Instead the bubbles coalesce to grow large and multi-layered blistering appears as periodic reemission behavior. Below ∼0.25 T m , He migration is too slow for bubbles to grow large, but bubble density increases up to a certain fluence, where neighboring bubbles start to coalesce. Accordingly, He release is mostly caused by mechanical failure or blister rapture. With increasing fluence, all defects (bubbles and dislocation loops) tangle or inter connected with neighboring defects and accordingly He migration to the surface along the tangled or connected defects is enhanced

  10. Recombination of positive helium ions in gaseous helium

    International Nuclear Information System (INIS)

    Shyu, J.S.

    1988-01-01

    The Wigner-Keck Monte Carlo trajectory method and the resonance complex theory are employed to calculate the rate coefficient k for H e + ions recombining in gaseous helium in the temperature range 80 2 + is obtained from a Morse potential and a long range ion-induced dipole interaction term. The three body He 3 + interaction is represented by an approximate expression which, for practical purpose, depends on the same parameters that determine the two body interaction. Russell had employed the Wigner-Keck Monte Carlo trajectory method to the same reaction. Unlike his calculation, in which the final quasibound states are treated as continuous, we apply the JWKB approximation to quantize those quasibound states. Both the values of k, calculated from two different quasibound state treatments, are found to be very close and give good agreement with experimental results obtained by Biondi, although they are still 10% to 20% lower than the experimental results. The resonance complex theory, developed by Roberts et al, is then employed to investigated de-excitation from the highest quasibound state, which can be populated by inward tunneling through the rotational (centrifugal) barrier. It is found that this strongly supports a suggestion proposed by Russell. He had suggested that the remaining difference between the Wigner-Keck method and experiment might be largely due to the formation of highly excited quasibound states. The statistical errors of the rate constants, which is the sun of results obtained from both methods, are kept less then 5% by running 2500 trajectories in the first method and 500 in the second

  11. Implantation rate effects on microstructure

    International Nuclear Information System (INIS)

    Choyke, W.J.; Spitznagel, J.A.; Wood, S.; Doyle, N.J.

    1981-01-01

    We report a detailed TEM study of rate effects in a metal (304 SS) where we dope with an insoluble atom (He) and create the displacement damage with high energy Si. The rates of doping and the rates of producing lattice damage are independently varied during dual implantation. In addition to varying the doping rates of the He the magnitude of the displacement damage prior to He implantation is also varied (beam history). We find that the beam history has virtually no effect on maximum bubble size but it has a major effect on the average cavity diameter. A weak dependence of cavity number density on helium implantation rate is found. The total dislocation density is relatively independent of the doping rate and beam history at 550 and 700 0 C, whereas the loop fraction is sensitive to beam history at these temperatures. Acicular precipitate formation is weakly dependent on doping, doping rate and more strongly dependent on doping concentration and temperature. This form of solute segregation is very sensitive to beam history. (orig.)

  12. Hip Implant Systems

    Science.gov (United States)

    ... Implants and Prosthetics Metal-on-Metal Hip Implants Hip Implants Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hip implants are medical devices intended to restore mobility ...

  13. Breast reconstruction - implants

    Science.gov (United States)

    Breast implants surgery; Mastectomy - breast reconstruction with implants; Breast cancer - breast reconstruction with implants ... harder to find a tumor if your breast cancer comes back. Getting breast implants does not take as long as breast reconstruction ...

  14. Hydrogen and helium recycling from stirred liquid lithium under steady state plasma bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Yoshi, E-mail: hirooka.yoshihiko@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); The Graduate School for Advanced Studies, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Zhou, Haishan [The Graduate School for Advanced Studies, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Ono, Masa [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2014-12-15

    For improved core performance via edge plasma-wall boundary control, solid and liquid lithium has been used as a plasma-facing material in a number of confinement experiments over the past several decades. Unfortunately, it is unavoidable that lithium is saturated in the surface region with implanted hydrogenic species as well as oxygen-containing impurities. For steady state operation, a flowing liquid lithium divertor with forced convection would probably be required. In the present work, the effects of liquid stirring to simulate forced convection have been investigated on the behavior of hydrogen and helium recycling from molten lithium at temperatures up to ∼350 °C. Data indicate that liquid stirring reactivates hydrogen pumping via surface de-saturation and/or uncovering impurity films, but can also induce helium release via surface temperature change.

  15. Towards helium-3 neutron polarizers

    International Nuclear Information System (INIS)

    Tasset, F.

    1995-01-01

    With a large absorption cross-section entirely due to antiparallel spin capture, polarized helium-3 is presently the most promising broad-band polarizer for thermal and epithermal neutrons. Immediate interest was raised amongst the neutron community when a dense gaseous 3 He polarizer was used for the first time in 1988, on a pulsed neutron beam at Los Alamos. With 20 W of laser power on a 30 cm long, 8.6 atm target, 40% 3 He polarization was achieved in a recent polarized electron scattering experiment at SLAC. In this technique the 3 He nuclei are polarized directly at an appropriate high pressure through spin-exchange collisions with a thick, optically pumped rubidium vapor. A different and competitive approach is being presently developed at Mainz University in collaboration with ENS Paris and now the ILL. A discharge is established in pure 3 He at low pressure producing excited metastable atoms which can be optically pumped with infra-red light. Highly effective exchange collision with the atoms remaining in the ground state quickly produces 75% polarization at 1.5 mbar. A truly non-magnetic system then compresses the polarized gas up to several bars as required. The most recent machine comprises a two-stage glass-titanium compressor. In less than 1 h it can inflate a 100 cm 3 target cell with three bars of polarized gas. The very long relaxation times (several days) now being obtained at high pressure with a special metallic coating on the glass walls, the polarized cell can be detached and inserted in the neutron beam as polarizer. We expect 50% 3 He-polarization to be reached soon, allowing such filters to compete favorably with existing Heusler-crystal polarizers at thermal and short neutron wavelengths. It must be stressed that such a system based on a 3 He polarization factory able to feed several passive, transportable, polarizers is well matched to neutron scattering needs. (orig.)

  16. Rotons, Superfluidity, and Helium Crystals

    Science.gov (United States)

    Balibar, Sébastien

    2006-09-01

    Fritz London understood that quantum mechanics could show up at the macroscopic level, and, in 1938, he proposed that superfluidity was a consequence of Bose-Einstein condensation. However, Lev Landau never believed in London's ideas; instead, he introduced quasiparticles to explain the thermodynamics of superfluid 4He and a possible mechanism for its critical velocity. One of these quasiparticles, a crucial one, was his famous "roton" which he considered as an elementary vortex. At the LT0 conference (Cambridge, 1946), London criticized Landau and his "theory based on the shaky grounds of imaginary rotons". Despite their rather strong disagreement, Landau was awarded the London prize in 1960, six years after London's death. Today, we know that London and Landau had both found part of the truth: BEC takes place in 4He, and rotons exist. In my early experiments on quantum evaporation, I found direct evidence for the existence of rotons and for evaporation processes in which they play the role of photons in the photoelectric effect. But rotons are now considered as particular phonons which are nearly soft, due to some local order in superfluid 4He. Later we studied helium crystals which are model systems for the general study of crystal surfaces, but also exceptional systems with unique quantum properties. In our recent studies of nucleation, rotons show their importance again: by using acoustic techniques, we have extended the study of liquid 4He up to very high pressures where the liquid state is metastable, and we wish to demonstrate that the vanishing of the roton gap may destroy superfluidity and trigger an instability towards the crystalline state.

  17. Evaluation of defect formation in helium irradiated Y2O3 doped W-Ti alloys by positron annihilation and nanoindentation

    Science.gov (United States)

    Richter, Asta; Anwand, Wolfgang; Chen, Chun-Liang; Böttger, Roman

    2017-10-01

    Helium implanted tungsten-titanium ODS alloys are investigated using positron annihilation spectroscopy and nanoindentation. Titanium reduces the brittleness of the tungsten alloy, which is manufactured by mechanical alloying. The addition of Y2O3 nanoparticles increases the mechanical properties at elevated temperature and enhances irradiation resistance. Helium ion implantation was applied to simulate irradiation effects on these materials. The irradiation was performed using a 500 kV He ion implanter at fluences around 5 × 1015 cm-2 for a series of samples both at room temperature and at 600 °C. The microstructure and mechanical properties of the pristine and irradiated W-Ti-ODS alloy are compared with respect to the titanium and Y2O3 content. Radiation damage is studied by positron annihilation spectroscopy analyzing the lifetime and the Doppler broadening. Three types of helium-vacancy defects were detected after helium irradiation in the W-Ti-ODS alloy: small defects with high helium-to-vacancy ratio (low S parameter) for room temperature irradiation, larger open volume defects with low helium-to-vacancy ratio (high S parameter) at the surface and He-vacancy complexes pinned at nanoparticles deeper in the material for implantation at 600 °C. Defect induced hardness was studied by nanoindentation. A drastic hardness increase is observed after He ion irradiation both for room temperature and elevated irradiation temperature of 600 °C. The Ti alloyed tungsten-ODS is more affected by the hardness increase after irradiation compared to the pure W-ODS alloy.

  18. High-temperature helium-loop facility

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100 0 F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system. The experimental capabilities and test conand presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  19. The GOES-16 Energetic Heavy Ion Instrument Proton and Helium Fluxes for Space Weather Applications

    Science.gov (United States)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite, in geostationary Earth orbit. The EHIS measures energetic ions in space over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range. Though an operational satellite instrument, EHIS will supply high quality data for scientific studies. For the GOES Level 1-B and Level 2 data products, protons and helium are distinguished in the EHIS using discriminator trigger logic. Measurements are provided in five energy bands. The instrumental cadence of these rates is 3 seconds. However, the primary Level 1-B proton and helium data products are 1-minute and 5-minute averages. The data latency is 1 minute, so data products can be used for real-time predictions as well as general science studies. Protons and helium, comprising approximately 99% of all energetic ions in space are of great importance for Space Weather predictions. We discuss the preliminary EHIS proton and helium data results and their application to Space Weather. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  20. Microstructural observation on helium injected and creep ruptured JPCA

    International Nuclear Information System (INIS)

    Yamamoto, N.; Shiraishi, H.; Hishinuma, A.

    1986-01-01

    Detailed and quantitative TEM observation was performed on high temperature helium injected and creep ruptured JPCA to seek the prominent TiC distribution developed for suppression of helium embrittlement. Three different preinjection treatments were adopted for changing the TiC distribution. Considerable degradation in creep rupture strength by helium occurred in solution-annealed specimens, although there was much less effect of other treatments which included aging prior to injection. The concentration of helium at grain boundaries and the promotion of precipitation by helium during injection were responsible for the degradation. Therefore, the presence of TiC precipitates before helium introduction will help prevent degradation. On the other hand, the rupture elongation was reduced by helium after all treatments, although helium trapping by TiC precipitates in the matrix was successfully achieved. Consequently, the combined use of several methods may be necessary for further suppression of helium embrittlement. (orig.)

  1. Resistivity studies of interstitial helium mobility in niobium

    International Nuclear Information System (INIS)

    Chen, C.G.; Birnbaum, H.K.; Johnson, A.B. Jr.

    1979-01-01

    The mobility of interstitial helium in Nb and Nb-O alloys was studied in the temperature range of 10-383 K using resistivity measurements. The helium was introduced by radioactive decay of solute tritium (approximately 1 at%). At T < 100 K the resistivity increased due to conversion of tritium trapped at oxygen interstititals to helium. The formation of helium caused a very significant resistance increase at room temperature and above. The results suggest that helium is mobile at temperatures above 295 K and that the precipitation of large helium bubbles occurs along grain boundaries. The mobile helium species may either be single interstitials or small helium clusters. The activation enthalpy for the diffusion of the mobile helium species was estimated to be about 55 kJ/mol (0.66 eV). (Auth.)

  2. Direct-write three-dimensional nanofabrication of nanopyramids and nanocones on Si by nanotumefaction using a helium ion microscope

    Science.gov (United States)

    Zhang, L.; Heinig, N. F.; Bazargan, S.; Abd-Ellah, M.; Moghimi, N.; Leung, K. T.

    2015-06-01

    The recently commercialized helium ion microscope (HIM) has already demonstrated its outstanding imaging capabilities in terms of resolution, surface sensitivity, depth of field and ease of charge compensation. Here, we show its exceptional patterning capabilities by fabricating dense lines and three-dimensional (3D) nanostructures on a Si substrate. Small focusing spot size and confined ion-Si interaction volume of a high-energy helium ion beam account for the high resolution in HIM patterning. We demonstrate that a set of resolvable parallel lines with a half pitch as small as 3.5 nm can be achieved. During helium ion bombardment of the Si surface, implantation outperforms milling due to the small mass of the helium ions, which produces tumefaction instead of depression in the Si surface. The Si surface tumefaction is the result of different kinetic processes including diffusion, coalescence and nanobubble formation of the implanted ions, and is found to be very stable structurally at room temperature. Under appropriate conditions, a linear dependence of the surface swollen height on the ion doses can be observed. This relation has enabled us to fabricate nanopyramids and nanocones, thus demonstrating that HIM patterning provides a new ‘bottom-up’ approach to fabricate 3D nanostructures. This surface tumefaction method is direct, both positioning and height accurate, and free of resist, etch, mode and precursor, and it promises new applications in nanoimprint mold fabrication and photomask clear defect reparation.

  3. Direct-write three-dimensional nanofabrication of nanopyramids and nanocones on Si by nanotumefaction using a helium ion microscope

    International Nuclear Information System (INIS)

    Zhang, L; Heinig, N F; Bazargan, S; Abd-Ellah, M; Moghimi, N; Leung, K T

    2015-01-01

    The recently commercialized helium ion microscope (HIM) has already demonstrated its outstanding imaging capabilities in terms of resolution, surface sensitivity, depth of field and ease of charge compensation. Here, we show its exceptional patterning capabilities by fabricating dense lines and three-dimensional (3D) nanostructures on a Si substrate. Small focusing spot size and confined ion–Si interaction volume of a high-energy helium ion beam account for the high resolution in HIM patterning. We demonstrate that a set of resolvable parallel lines with a half pitch as small as 3.5 nm can be achieved. During helium ion bombardment of the Si surface, implantation outperforms milling due to the small mass of the helium ions, which produces tumefaction instead of depression in the Si surface. The Si surface tumefaction is the result of different kinetic processes including diffusion, coalescence and nanobubble formation of the implanted ions, and is found to be very stable structurally at room temperature. Under appropriate conditions, a linear dependence of the surface swollen height on the ion doses can be observed. This relation has enabled us to fabricate nanopyramids and nanocones, thus demonstrating that HIM patterning provides a new ‘bottom-up’ approach to fabricate 3D nanostructures. This surface tumefaction method is direct, both positioning and height accurate, and free of resist, etch, mode and precursor, and it promises new applications in nanoimprint mold fabrication and photomask clear defect reparation. (paper)

  4. Annealing of hydrogen-induced defects in RF-plasma-treated Si wafers: ex situ and in situ transmission electron microscopy studies

    International Nuclear Information System (INIS)

    Ghica, C; Nistor, L C; Vizireanu, S; Dinescu, G

    2011-01-01

    The smart-cut(TM) process is based on inducing and processing structural defects below the free surface of semiconductor wafers. The necessary defects are currently induced by implantation of light elements such as hydrogen or helium. An alternative softer way to induce shallow subsurface defects is by RF-plasma hydrogenation. To facilitate the smart-cut process, the wafers containing the induced defects need to be subjected to an appropriate thermal treatment. In our experiments, (0 0 1) Si wafers are submitted to 200 and 50 W hydrogen RF-plasma and are subsequently annealed. The samples are studied by transmission electron microscopy (TEM), before and after annealing. The plasma-introduced defects are {1 1 1} and {1 0 0} planar-like defects and nanocavities, all of them involving hydrogen. Many nanocavities are aligned into strings almost parallel to the wafer surface. The annealing is performed either by furnace thermal treatment at 550 deg. C, or by in situ heating in the electron microscope at 450, 650 and 800 deg. C during the TEM observations. The TEM microstructural studies indicate a partial healing of the planar defects and a size increase of the nanometric cavities by a coalescence process of the small neighbouring nanocavities. By annealing, the lined up nanometric voids forming chains in the as-hydrogenated sample coalesced into well-defined cracks, mostly parallel to the wafer surface.

  5. Quantum statistics and liquid helium 3 - helum 4 mixtures

    International Nuclear Information System (INIS)

    Cohen, E.G.D.

    1979-01-01

    The behaviour of liquid helium 3-helium 4 mixtures is considered from the point of view of manifestation of quantum statistics effects in macrophysics. The Boze=Einstein statistics is shown to be of great importance for understanding superfluid helium-4 properties whereas the Fermi-Dirac statistics is of importance for understanding helium-3 properties. Without taking into consideration the interaction between the helium atoms it is impossible to understand the basic properties of liquid helium 33 - helium 4 mixtures at constant pressure. Proposed is a simple model of the liquid helium 3-helium 4 mixture, namely the binary mixture consisting of solid spheres of two types subjecting to the Fermi-Dirac and Bose-Einstein statistics relatively. This model predicts correctly the most surprising peculiarities of phase diagrams of concentration dependence on temperature for helium solutions. In particular, the helium 4 Bose-Einstein statistics is responsible for the phase lamination of helium solutions at low temperatures. It starts in the peculiar critical point. The helium 4 Fermi-Dirac statistics results in incomplete phase lamination close to the absolute zero temperatures, that permits operation of a powerful cooling facility, namely refrigerating machine on helium solution

  6. Helium and its effects on the creep-fatigue behaviour of electron beam welds in the steel AISI-316-L

    International Nuclear Information System (INIS)

    Paulus, M.

    1992-12-01

    Within the scope of R and D work for materials development for the NET fusion experiment (Next European Torus) and the International Thermonuclear Experimental Reactor (ITER), the task reported was to examine electron beam welds in the austenitic stainless steel AISI 316 L (NET reference material) for their fatigue behaviour under creep load, and the effects of helium implantation on there mechanical properties. (orig.) [de

  7. Helium release from radioisotope heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

    1984-05-01

    Diffusion of helium in /sup 238/PuO/sub 2/ fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel.

  8. Recent developments in liquid helium 3

    International Nuclear Information System (INIS)

    Ramarao, I.

    1977-01-01

    The current status of the theories for the ground state of liquid helium 3, are reviewed. To begin with, a brief summary of the experimental results on the thermodynamic properties of liquid helium 3 including its recently discovered superfulid phases is given. The basic ideas of the Landau theory of a normal Fermi liquid are then introduced. A qualitative discussion of the current understanding of the anisotropic phases of superfluid helium 3 is given, the microscopic calculaations for the binding energy of liquid helium 3 are reviewed and the results obtained for the two-body contributions to the binding energy using the Brueckner-Goldstone formulation and that of Mohling and his collaborators are summarized and discussed. The importance of a proper estimate of the three-body contributions to the binding energy is stressed. The results obtained in the literature using variational methods and constrained variational methods are discussed. A critical analysis of the results by various methods is given. Despite much effort the basic problem of the ground state of liquid helium 3, remains unresolved. (author)

  9. Film boiling heat transfer in liquid helium

    International Nuclear Information System (INIS)

    Inai, Nobuhiko

    1979-01-01

    The experimental data on the film boiling heat transfer in liquid helium are required for investigating the stability of superconducting wires. On the other hand, liquid helium has the extremely different physical properties as compared with the liquids at normal temperature such as water. In this study, the experiments on pool boiling were carried out, using the horizontal top surface of a 20 mm diameter copper cylinder in liquid helium. For observing individual bubbles, the experiments on film boiling from a horizontal platinum wire were performed separately in liquid nitrogen and liquid helium, and photographs of floating-away bubbles were taken. The author pointed out the considerable upward shift of the boiling curve near the least heat flux point in film boiling from the one given by the Berenson's equation which has been said to agree comparatively well with the data on the film boiling of the liquids at normal temperature, and the reason was investigated. Consequently, a model for film boiling heat transfer was presented. Also one equation expressing the film boiling at low heat flux for low temperature liquids was proposed. It represents well the tendency to shift from Berenson's equation of the experimental data on film boiling at the least heat flux point for liquid helium, liquid nitrogen and water having extremely different physical properties. Some discussions are added at the end of the paper. (Wakatsuki, Y.)

  10. Helium release from radioisotope heat sources

    International Nuclear Information System (INIS)

    Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

    1984-05-01

    Diffusion of helium in 238 PuO 2 fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel

  11. A hot implantation study on the evolution of defects in He ion implanted MgO(1 0 0)

    International Nuclear Information System (INIS)

    Fedorov, A.V.; Huis, M.A. van; Veen, A. van

    2002-01-01

    Ion implantation at elevated temperature, so-called hot implantation, was used to study nucleation and thermal stability of the defects. In this work, MgO(1 0 0) single crystal samples were implanted with 30 keV He ions at various implantation temperatures. The implantation doses ranged from 10 14 to 10 16 cm -2 . The implantation introduced defects were subsequently studied by thermal helium desorption spectroscopy (THDS) and Doppler broadening positron beam analysis (PBA). The THDS study provides vital information on the kinetics of He release from the sample. PBA technique, being sensitive to the open volume defects, provides complementary information on cavity evolution. The THD study has shown that in most cases helium release is characterised by the activation energy of Q=4.7±0.5 eV with the maximum release temperature of T max =1830 K. By applying first order desorption model the pre-exponent factor is estimated as ν=4.3x10 11 s -1

  12. Feasibility of lunar Helium-3 mining

    Science.gov (United States)

    Kleinschneider, Andreas; Van Overstraeten, Dmitry; Van der Reijnst, Roy; Van Hoorn, Niels; Lamers, Marvin; Hubert, Laurent; Dijk, Bert; Blangé, Joey; Hogeveen, Joel; De Boer, Lennaert; Noomen, Ron

    With fossil fuels running out and global energy demand increasing, the need for alternative energy sources is apparent. Nuclear fusion using Helium-3 may be a solution. Helium-3 is a rare isotope on Earth, but it is abundant on the Moon. Throughout the space community lunar Helium-3 is often cited as a major reason to return to the Moon. Despite the potential of lunar Helium-3 mining, little research has been conducted on a full end-to-end mission. This abstract presents the results of a feasibility study conducted by students from Delft University of Technology. The goal of the study was to assess whether a continuous end-to-end mission to mine Helium-3 on the Moon and return it to Earth is a viable option for the future energy market. The set requirements for the representative end-to-end mission were to provide 10% of the global energy demand in the year 2040. The mission elements have been selected with multiple trade-offs among both conservative and novel concepts. A mission architecture with multiple decoupled elements for each transportation segment (LEO, transfer, lunar surface) was found to be the best option. It was found that the most critical element is the lunar mining operation itself. To supply 10% of the global energy demand in 2040, 200 tons of Helium-3 would be required per year. The resulting regolith mining rate would be 630 tons per second, based on an optimistic concentration of 20 ppb Helium-3 in lunar regolith. Between 1,700 to 2,000 Helium-3 mining vehicles would be required, if using University of Wisconsin’s Mark III miner. The required heating power, if mining both day and night, would add up to 39 GW. The resulting power system mass for the lunar operations would be in the order of 60,000 to 200,000 tons. A fleet of three lunar ascent/descent vehicles and 22 continuous-thrust vehicles for orbit transfer would be required. The costs of the mission elements have been spread out over expected lifetimes. The resulting profits from Helium

  13. Defects and morphological changes in nanothin Cu films on polycrystalline Mo analyzed by thermal helium desorption spectrometry

    International Nuclear Information System (INIS)

    Venugopal, V.; Seijbel, L.J.; Thijsse, B.J.

    2005-01-01

    Thermal helium desorption spectrometry (THDS) has been used for the investigation of defects and thermal stability of thin Cu films (5-200 A ) deposited on a polycrystalline Mo substrate in ultrahigh vacuum. These films are metastable at room temperature. On heating, the films transform into islands, giving rise to a relatively broad peak in the helium desorption spectra. The temperature of this island formation is dependent on film thickness, being 417 K for 10 A and 1100 K for a 200 A film. The activation energy for island formation was found to be 0.3±0.1 eV for 75 A film. Grain boundaries have a strong effect on island formation. The defect concentration in the as-deposited films is ∼5x10 -4 , for films thicker than 50 A and more for thinner films. Helium release from monovacancies was identified in the case of a 200 A film. Helium release was also seen during sublimation of the Cu film (∼1350 K). Overlayer experiments were used to identify helium trapped close to the film surface. An increase of the substrate temperature during deposition resulted in a film that had already formed islands. Argon-ion assistance (250 eV) during film deposition with an ion/atom ratio of ∼0.1 resulted in a significant enhancement of helium trapping in the films. The argon concentration in the films was found to be 10 -3 . The temperature of island formation was increased due to argon-ion assistance. The helium and argon desorption spectra are found to be similar, which is due to most of the helium becoming trapped in the defects created by the argon beam. The role of the Mo surface in affecting the defects at the film-substrate interface is investigated. The effect of variation of helium fluence and helium implantation energy is also considered. The present THDS results of Cu/poly-Mo are compared to those of Cu/Mo(100) and Cu/Mo(100) reported earlier

  14. Adsorption pump for helium pumping out

    International Nuclear Information System (INIS)

    Donde, A.L.; Semenenko, Yu.E.

    1981-01-01

    Adsorption pump with adsorbent cooling by liquid helium is described. Shuttered shield protecting adsorbent against radiation is cooled with evaporating helium passing along the coil positioned on the shield. The pump is also equipped with primed cylindrical shield, cooled with liquid nitrogen. The nitrogen shield has in the lower part the shuttered shield, on the pump casing there is a valve used for pump pre-burning, and valves for connection to recipient as well. Pumping- out rates are presented at different pressures and temperatures of adsorbent. The pumping-out rate according to air at absorbent cooling with liquid nitrogen constituted 5x10 -4 Pa-3000 l/s, at 2x10 -2 Pa-630 l/s. During the absorbent cooling with liquid hydrogen the pumping-out rate according to air was at 4x10 -4 Pa-580 l/s, at 2x10 -3 Pa-680 l/s, according to hydrogen - at 8x10 -5 Pa-2500 l/s, at 5x10 -3 Pa-4200 l/s. During adsorbent cooling with liquid helium the rate of pumping-out according to hydrogen at 3x10 5 Pa-2400% l/s, at 6x10 3 Pa-1200 l/s, and according to helium at 3.5x10 -5 Pa-2800 l/s, at 4x10 -3 Pa-1150 l/s. The limit vacuum is equal to 1x10 -7 Pa. The volume of the vessel with liquid helium is equal to 3.5 l. Helium consumption is 80 cm 3 /h. Consumption of liquid nitrogen from the shield is 400 cm 3 /h. The limit pressure in the pump is obtained after forevacuum pumping-out (adsorbent regeneration) at 300 K temperature. The pump is made of copper. The pump height together with primed tubes is 800 mm diameter-380 mm [ru

  15. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    Science.gov (United States)

    Musket, R. G.

    1989-04-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation, and hydrogen embrittlement. In particular, the results of the reviewed studies are (a) uranium hydriding suppressed by implantation of oxygen and carbon, (b) hydrogen gettered in iron and nickel using implantation of titanium, (c) hydriding of titanium catalyzed by implanted palladium, (d) tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and (e) hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals.

  16. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    International Nuclear Information System (INIS)

    Musket, R.G.

    1989-01-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation and hydrogen embrittlement. In particular, the results of the reviewed studies are 1. uranium hydriding suppressed by implantation of oxygen and carbon, 2. hydrogen gettered in iron and nickel using implantation of titanium, 3. hydriding of titanium catalyzed by implanted palladium, 4. tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and 5. hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals. (orig.)

  17. Electron-helium scattering in Debye plasmas

    International Nuclear Information System (INIS)

    Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor; Janev, R. K.

    2011-01-01

    Electron-helium scattering in weakly coupled hot-dense (Debye) plasma has been investigated using the convergent close-coupling method. The Yukawa-type Debye-Hueckel potential has been used to describe plasma Coulomb screening effects. Benchmark results are presented for momentum transfer cross sections, excitation, ionization, and total cross sections for scattering from the ground and metastable states of helium. Calculations cover the entire energy range up to 1000 eV for the no screening case and various Debye lengths (5-100 a 0 ). We find that as the screening interaction increases, the excitation and total cross sections decrease, while the total ionization cross sections increase.

  18. Rotary magnetic refrigerator for superfluid helium production

    International Nuclear Information System (INIS)

    Hakuraku, Y.; Ogata, H.

    1986-01-01

    A new rotary-magnetic refrigerator designed to obtain superfluid helium temperatures by executing a magnetic Carnot cycle is developed. A rotor containing 12 magnetic refrigerants (gadolinium-gallium-garnet) is immersed in liquid helium at 4.2 K and rotated at constant speed in a steady magnetic field distribution. Performance tests demonstrate that the new rotary refrigerator is capable of obtaining a temperature of 1.48 K. The maximum useful cooling power obtained at 1.8 K is 1.81 W which corresponds to a refrigeration efficiency of 34%

  19. Calculation of electron-helium scattering

    International Nuclear Information System (INIS)

    Fursa, D.V.; Bray, I.

    1994-11-01

    We present the Convergent Close-Coupling (CCC) theory for the calculation of electron-helium scattering. We demonstrate its applicability at a range of projectile energies of 1.5 to 500 eV to scattering from the ground state to n ≤3 states. Excellent agreement with experiment is obtained with the available differential, integrated, ionization, and total cross sections, as well as with the electron-impact coherence parameters up to and including the 3 3 D state excitation. Comparison with other theories demonstrates that the CCC theory is the only general reliable method for the calculation of electron helium scattering. (authors). 66 refs., 2 tabs., 24 figs

  20. Dissolved helium and TDS in groundwater from Bhavnagar in Gujarat

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2003-01-02

    Jan 2, 2003 ... by enhanced pumping of old groundwater with relatively higher concentration of dissolved helium and salt .... solubility changes due to these (Weiss 1971) can- ... aquifers and relatively low helium concentra- .... permeability.

  1. Short Implants: New Horizon in Implant Dentistry.

    Science.gov (United States)

    Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-09-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.

  2. A new helium gas recovery and purification system

    International Nuclear Information System (INIS)

    Yamamotot, T.; Suzuki, H.; Ishii, J.; Hamana, I.; Hayashi, S.; Mizutani, S.; Sanjo, S.

    1974-01-01

    A helium gas recovery and purification system, based on the principle of gas permeation through a membrane, is described. The system can be used for the purification of helium gas containing air as a contaminant. The apparatus, operating at ambient temperature does not need constant attention, the recovery ratio of helium gas is satisfactory and running costs are low. Gases other than helium can be processed with the apparatus. (U.K.)

  3. In-situ observation system for dual ion irradiation damage

    International Nuclear Information System (INIS)

    Furuno, Shigemi; Hojou, Kiichi; Otsu, Hitoshi; Sasaki, T.A.; Izui, Kazuhiko; Tukamoto, Tetsuo; Hata, Takao.

    1992-01-01

    We have developed an in-situ observation and analysis system during dual ion beam irradiation in an electron microscope. This system consists of an analytical electron microscope of JEM-4000FX type equipped with a parallel EELS and an EDS attachments and linked with two sets of ion accelerators of 40 kV. Hydrogen and helium dual-ion beam irradiation experiments were performed for SiC crystals. The result of dual-ion beam irradiation was compared with those of helium and hydrogen single ion irradiations. It is clearly seen that the dual-ion irradiation has the effect of suppressing bubble formation and growth in comparison with the case of single helium ion irradiation. (author)

  4. Nuclear fuel rod helium leak inspection apparatus and method

    International Nuclear Information System (INIS)

    Ahmed, H.J.

    1991-01-01

    This patent describes an inspection apparatus for testing nuclear fuel rods for helium leaks. It comprises a test chamber being openable and closable for receiving at least one nuclear fuel rod; means separate from the fuel rod for supplying helium and constantly leaking helium at a predetermined known positive value into the test chamber to constantly provide an atmosphere of helium at the predetermined known positive value in the test chamber; and means for sampling the atmosphere within the chamber and measuring the helium in the atmosphere such that a measured helium value below a preset minimum helium value substantially equal to the predetermined known positive value of the atmosphere of helium being constantly provided in the test chamber indicates a malfunction in the inspection apparatus, above a preset maximum helium value greater than the predetermined known positive in the test chamber indicates the existence of a helium leak from the fuel rod, or between the preset minimum and maximum helium values indicates the absence of a helium leak from the fuel rod

  5. Observation of visible emission from the molecular helium ion in the afterglow of a dense helium Z-pinch plasma

    International Nuclear Information System (INIS)

    Tucker, J.E.; Brake, M.L.; Gilgenbach, R.M.

    1986-01-01

    The authors present the results of axial and radial time resolved visible emission spectroscopy from the afterglow of a dense helium Z-pinch. These results show that the visible emissions in the pinch afterglow are dominated by line emissions from molecular helium and He II. Axial spectroscopy measurements show the occurrence of several absorption bands which cannot be identified as molecular or atomic helium nor impurities from the discharge chamber materials. The authors believe that these absorption bands are attributable to the molecular helium ion which is present in the discharge. The molecular ion has been observed by others in low pressure and temperature helium discharges directly by means of mass spectrometry and indirectly by the presence of helium atoms in the 2/sup 3/S state, (the He 2/sup 3/S state is believed to result from molecular helium ion recombination). However, the molecular helium ion has not previously been observed spectroscopically

  6. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.

    1984-01-01

    Underlying ion-beam modification of surfaces is the more basic subject of particle-surface interaction. The ideas can be grouped into forward and backward features, i.e. those affecting the interior of the target and those leading to particle expulsion. Forward effects include the stopping of the incident particles and the deposition of energy, both governed by integral equations which are easily set up but difficult to solve. Closely related is recoil implantation where emphasis is placed not on the stopping of the incident particles but on their interaction with target atoms with resulting implantation of these atoms. Backward effects, all of which are denoted as sputtering, are in general either of collisional, thermal, electronic, or exfoliational origin. (Auth.)

  7. Cooling by mixing of helium isotopes

    International Nuclear Information System (INIS)

    Hansen, O.P.; Olsen, M.; Rasmussen, F.B.

    1975-01-01

    The principles of the helium dilution refrigerator are outlined. The lowest temperature attained with a continuously operated dilution refrigerator was about 10 mK, and 5 mK for a limited period when the supply of concentrated 3 He to the mixing chamber was interrupted. (R.S.)

  8. Diffusion of helium in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Noerdlinger, P D [Michigan State Univ., East Lansing (USA). Dept. of Astronomy and Astrophysics; Amsterdam Univ. (Netherlands). Sterrenkundig Instituut)

    1977-05-01

    I have reduced the set of diffusion and flow equations developed by Burgers for a multi-component gas to a workable scheme for the actual evaluation of the relative diffusion of hydrogen and helium in stars. Previous analyses have used the Aller and Chapman equations, which apply only to trace constitutents and whose coefficients are not believed to be as accurate as Burgers'. Furthermore, the resulting equations have been combined consistently with Paczynski's stellar evolution code to demonstrate small but significant effects in the Sun, from the thermal and gravitational settling of Helium. The core helium content of a 1 M star goes up about 0.04 and the surface helium content down by about -0.03 in 4.5 10/sup 9/ years. The results are still somewhat uncertain because of uncertainties in the underlying plasma physics, and further research is suggested. In any case, the diffusion process speeds up with time, due to increased temperature gradient, and it will be of interest to follow the process in older stars and in later stellar evolution.

  9. Conceptual design of helium experimental loop

    International Nuclear Information System (INIS)

    Yu Xingfu; Feng Kaiming

    2007-01-01

    In a future demonstration fusion power station (DEMO), helium is envisaged as coolant for plasma facing components, such as blanket and dive,or. All these components have a very complex geometry, with many parallel cooling channels, involving a complex helium flow distribution. Test blanket modules (TBM) of this concept will under go various tests in the experimental reactor ITER. For the qualification of TBM, it is indispensable to test mock-ups in a helium loop under realistic pressure and temperature profiles, in order to validate design codes, especially regarding mass flow and heat transition processes in narrow cooling channels. Similar testing must be performed for DEMO blanket, currently under development. A Helium Experimental Loop (HELOOP) is planed to be built for TBM tests. The design parameter of temperature, pressure, flow rate is 550 degree C, 10 MPa, l kg/s respectively. In particular, HELOOP is able to: perform full-scale tests of TBM under realistic conditions; test other components of the He-cooling system in ITER; qualify the purification circuit; obtain information for the design of the ITER cooling system. The main requirements and characteristics of the HELOOP facility and a preliminary conceptual design are described in the paper. (authors)

  10. Fuel and helium confinement in fusion reactors

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Attenberger, S.E.

    1993-01-01

    An expanded macroscopic model for particle confinement is used to investigate both fuel and helium confinement in reactor plasmas. The authors illustrate the relative effects of external sources of fuel, divertor pumping, and wall and divertory recycle on core, edge and scrape-off layer densities by using separate particle confinement times for open-quote core close-quote fueling (deep pellet or beam penetration, τ c ), open-quote shallow close-quote fueling (shallow pellet penetration or neutral atoms that penetrate the scrape-off layer, τ s ) and fueling in the scrape-off layer (τ sol ). Because τ s is determined by the parallel flow velocity and characteristic distance to the divertor plate, it can be orders of magnitude lower than either τ c or τ sol . A dense scrape-off region, desirable for reduced divertor erosion, leads to a high fraction of the recycled neutrals being ionized in the scrape-off region and poor core fueling efficiency. The overall fueling efficiency can then be dramatically improved with either shallow or deep auxillary fueling. Helium recycle is nearly always coupled to the scrape-off region and does not lead to strong core accumulation unless the helium pumping efficiency is much less than the fuel pumping efficiency, or the plasma preferentially retains helium over hydrogenic ions. Differences between the results of this model, single-τ p macroscopic models, and 1-D and 2-D models are discussed in terms of assumptions and boundary conditions

  11. Sounds in one-dimensional superfluid helium

    International Nuclear Information System (INIS)

    Um, C.I.; Kahng, W.H.; Whang, E.H.; Hong, S.K.; Oh, H.G.; George, T.F.

    1989-01-01

    The temperature variations of first-, second-, and third-sound velocity and attenuation coefficients in one-dimensional superfluid helium are evaluated explicitly for very low temperatures and frequencies (ω/sub s/tau 2 , and the ratio of second sound to first sound becomes unity as the temperature decreases to absolute zero

  12. Tritium and helium-3 in metals

    International Nuclear Information System (INIS)

    Lasser, R.

    1989-01-01

    The book surveys recent results on the behaviour of tritium and its decay product helium-3 metals. In contrast to many earlier books which discuss the properties of the stable hydrogen isotopes without mentioning tritium, this book reviews mainly the results on tritium in metals. Due to the difficulties in preparing metal tritide samples, very important quantities such as diffusivity, superconductivity, solubility, etc. have only been determined very recently. The book not only presents the measured tritium data, but also the isotopic dependency of the different physical properties by comparing H, D and T results. A chapter is devoted to helium-3 in metals. Aspects such as helium release, generation of helium bubbles, swelling, and change of the lattice parameter upon aging are discussed. The book provides the reader with up-to-date information and deep insight into the behaviour of H, D, T and He-3 in metals. Further important topics such a tritium production, its risks, handling and discharge to the environment are also addressed

  13. Atmospheric helium and geomagnetic field reversals.

    Science.gov (United States)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  14. NUCLEAR CONDENSATE AND HELIUM WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Bedaque, Paulo F.; Berkowitz, Evan [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD (United States); Cherman, Aleksey, E-mail: bedaque@umd.edu, E-mail: evanb@umd.edu, E-mail: a.cherman@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA (United Kingdom)

    2012-04-10

    We consider a high-density region of the helium phase diagram, where the nuclei form a Bose-Einstein condensate rather than a classical plasma or a crystal. Helium in this phase may be present in helium-core white dwarfs. We show that in this regime there is a new gapless quasiparticle not previously noticed, arising when the constraints imposed by gauge symmetry are taken into account. The contribution of this quasiparticle to the specific heat of a white dwarf core turns out to be comparable in a range of temperatures to the contribution from the particle-hole excitations of the degenerate electrons. The specific heat in the condensed phase is two orders of magnitude smaller than in the uncondensed plasma phase, which is the ground state at higher temperatures, and four orders of magnitude smaller than the specific heat that an ion lattice would provide, if formed. Since the specific heat of the core is an important input for setting the rate of cooling of a white dwarf star, it may turn out that such a change in the thermal properties of the cores of helium white dwarfs has observable implications.

  15. Helium ion lithography principles and performance

    NARCIS (Netherlands)

    Drift, E. van der; Maas, D.J.

    2012-01-01

    Recent developments show that Scanning Helium Ion Beam Lithography (SHIBL) with a sub-nanometer beam diameter is a promising alternative fabrication technique for high-resolution nanostructures at high pattern densities. Key principles and critical conditions of the technique are explained. From

  16. Resource letter SH-1: superfluid helium

    International Nuclear Information System (INIS)

    Hallock, R.B.

    1982-01-01

    The resource letter covers the general subject of superfluid helium and treats 3 He and 3 He-- 4 He mixtures as well as 4 He. No effort has been made to include the fascinating experiments on either solid helium or the equally fascinating work on adsorbed helium where the helium coverage is below that necessary for superfluidity. An earlier resource letter by C. T. Lane [Am. J. Phys. 35, 367 (1967)] may be consulted for additional comments on some of the cited earlier manuscripts, but the present work is self-contained and may be used independently. Many high-quality research reports have not been cited here. Rather, the author has tried in most cases to include works particularly readable or relevant. There is a relatively heavy emphasis on experimental references. The primary reason is that these works tend to be more generally readable. No doubt some works that might have been included, have not, and for this the author takes responsibility with apology. Articles selected for incorporation in a reprint volume (to be published separately by the American Association of Physics Teachers) are marked with an asterisk(*). Following each referenced work the general level of difficulty is indicated by E, I, or A for elementary, intermediate, or advanced

  17. Photoassociation of cold metastable helium atoms

    NARCIS (Netherlands)

    Woestenenk, G.R.

    2001-01-01

    During the last decades the study of cold atoms has grown in a great measure. Research in this field has been made possible due to the development of laser cooling and trapping techniques. We use laser cooling to cool helium atoms down to a temperature of 1 mK and we are able to

  18. NUCLEAR CONDENSATE AND HELIUM WHITE DWARFS

    International Nuclear Information System (INIS)

    Bedaque, Paulo F.; Berkowitz, Evan; Cherman, Aleksey

    2012-01-01

    We consider a high-density region of the helium phase diagram, where the nuclei form a Bose-Einstein condensate rather than a classical plasma or a crystal. Helium in this phase may be present in helium-core white dwarfs. We show that in this regime there is a new gapless quasiparticle not previously noticed, arising when the constraints imposed by gauge symmetry are taken into account. The contribution of this quasiparticle to the specific heat of a white dwarf core turns out to be comparable in a range of temperatures to the contribution from the particle-hole excitations of the degenerate electrons. The specific heat in the condensed phase is two orders of magnitude smaller than in the uncondensed plasma phase, which is the ground state at higher temperatures, and four orders of magnitude smaller than the specific heat that an ion lattice would provide, if formed. Since the specific heat of the core is an important input for setting the rate of cooling of a white dwarf star, it may turn out that such a change in the thermal properties of the cores of helium white dwarfs has observable implications.

  19. Mixed helium-3 - helium-4 calorimeter. Very low temperature calorimetry; Calorimetre mixte a helium-3 et helium-4. Calorimetrie a tres basse temperature

    Energy Technology Data Exchange (ETDEWEB)

    Testard, O [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    A description is given of a double-racket calorimeter using helium-4 and helium-3 as the cryogenic fluids and making it possible to vary the temperature continuously from 0.35 K to 4.2 K. By using an electric thermal regulator together with liquid hydrogen it is possible to extend this range up to about 30 K. In the second part, a review is made of the various, methods available for measuring specific heats. The method actually used in the apparatus previously described is described in detail. The difficulties arising from the use of an exchange gas for the thermal contact have been solved by the use of adsorption pumps. (author) [French] On decrit un calorimetre a double enceinte utilisant comme fluide cryogenique l'helium-4 et l'helium-3 et permettant de varier continuement la temperature de 0,35 K a 4,2 K. L'utilisation d'un regulateur thermique electrique ainsi que celle d'hydrogene, liquide permettent d'etendre cette gamme jusqu'a 30 K environ. Dans une deuxieme partie, on passe en revue les diverses methodes de mesure des chaleurs specifiques. La methode concrete utilisee dans l'appareil precedemment decrit est exposee en detail. Les difficultes inherentes a l'utilisation de gaz d'echange comme agent de contact thermique ont ete levees par la mise en oeuvre de pompes a adsorbant. (auteur)

  20. Potential applications of high temperature helium

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Kennedy, A.J.

    1992-09-01

    This paper discusses the DOE MHTGR-SC program's recent activity to improve the economics of the MHTGR without sacrificing safety performance and two potential applications of high temperature helium, the MHTGR gas turbine plant and a process heat application for methanol production from coal

  1. Development of helium isotopic database in Japan

    International Nuclear Information System (INIS)

    Kusano, Tomohiro; Asamori, Koichi; Umeda, Koji

    2012-09-01

    We constructed “Helium Isotopic Database in Japan”, which includes isotope ratios of noble gases and chemical compositions of gas samples collected from hot springs and drinking water wells. The helium isotopes are excellent natural tracers for indicating the presence of mantle derived volatiles, because they are chemically inert and thus conserved in crustal rock-water systems. It is common knowledge that mantle degassing does not occur homogeneously over the Earth's surface. The 3 He/ 4 He ratios higher than the typical crustal values are interpreted to indicate that transfer of mantle volatiles into the crust by processes or mechanisms such as magmatic intrusion, faulting. In particular the spatial variation of helium isotope ratios could provide a valuable information to identify volcanic regions and tectonically active areas. The database was compiled geochemical data of hot spring gas etc. from 108 published papers. As a result of the data compiling, the database has 1728 helium isotopic data. A CD-ROM is attached as an appendix. (author)

  2. Helium and Sulfur Hexafluoride in Musical Instruments

    Science.gov (United States)

    Forinash, Kyle; Dixon, Cory L.

    2014-01-01

    The effects of inhaled helium on the human voice were investigated in a recent article in "The Physics Teacher." As mentioned in that article, demonstrations of the effect are a popular classroom activity. If the number of YouTube videos is any indication, the effects of sulfur hexafluoride on the human voice are equally popular.…

  3. Parametric study of radiofrequency helium discharge under ...

    Indian Academy of Sciences (India)

    The excitation temperatures in the α and γ modes were 3266 and 4500 K respectively, evaluated by Boltzmann's plot method. The estimated gas temperature increased from 335 K in the α mode to 485 K in the γ mode, suggesting that the radio frequency atmospheric pressure helium discharge can be used for surface ...

  4. Critical Landau Velocity in Helium Nanodroplets

    NARCIS (Netherlands)

    Brauer, N.B.; Smolarek, S.; Loginov, E.; Mateo, D.; Hernando, A.; Pi, M.; Barranco, M.; Buma, W.J.; Drabbels, M.

    2013-01-01

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective

  5. Chemical effects induced by ion implantation in molecular solids

    International Nuclear Information System (INIS)

    Foti, G.; Calcagno, L.; Puglisi, O.

    1983-01-01

    Ion implantation in molecular solids as ice, frozen noble gases, benzene and polymers produces a large amount of new molecules compared to the starting materials. Mass and energy analysis of ejected molecules together with the erosion yield, are discussed for several ion-target combinations at low temperature. The observed phenomena are analyzed in terms of deposited ennergy in electronic and nuclear collisions, for incoming beams, as helium or argon, in the range 10-2000 keV. (orig.)

  6. Femtosecond spectroscopy on alkali-doped helium nanodroplets; Femtosekundenspektroskopie an alkalidotierten Helium-Nanotroepfchen

    Energy Technology Data Exchange (ETDEWEB)

    Claas, P.

    2006-01-15

    In the present thesis first studies on the short-time dynamics in alkali dimers and microclusters, which were bound on the surface of superfluid helium droplets, were presented. The experiments comprehended pump-probe measurements on the fs scale on the vibration dynamics on the dimers and on the fragmentation dynamics on the clusters. Generally by the studies it was shown that such extremely short slopes can also be observed on helium droplets by means of the femtosecond spectroscopy.

  7. Thirty years of screw compressors for helium; Dreissig Jahre Schraubenkompressoren fuer Helium

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, H. [Kaeser Kompressoren GmbH, Coburg (Germany). Technisches Buero/Auftragskonstruktion

    2007-07-01

    KAESER helium compressors, as well as their other industrial compressors, will be further developed with the intention to improve the availability and reliability of helium liquefaction systems. Further improvement of compressor and control system efficiency will ensure a low and sustainable operating cost. Fast supply of replacement parts with several years of warranty is ensured by a world-wide distribution system and is also worked on continuously. (orig.)

  8. Development of a high current ion implanter

    International Nuclear Information System (INIS)

    Choi, Byung Ho; Kim, Wan; Jin, Jeong Tae

    1990-01-01

    A high current ion implanter of the energy of 100 Kev and the current of about 100 mA has been developed for using the high dose ion implantation, surface modification of steels and ceramics, and ion beam milling. The characteristics of the beam extraction and transportation are investigated. A duoPIGatron ion source compatible with gas ion extraction of about 100 mA, a single gap acceleration tube which is able to compensate the divergence due to the space charge effect, and a beam transport system with the concept of the space charge neutralization are developed for the high current machine. The performance of the constructed machine shows that nitrogen, argon, helium, hydrogen and oxygen ion beams are successfully extracted and transported at a beam divergence due to space charge effect is negligible in the operation pressure of 2 x 10 -5 torr. (author)

  9. Evaluation of helium cooling for fusion divertors

    International Nuclear Information System (INIS)

    Baxi, C.B.

    1993-09-01

    The divertors of future fusion reactors will have a power throughput of several hundred MW. The peak heat flux on the diverter surface is estimated to be 5 to 15 MW/m 2 at an average heat flux of 2 MW/m 2 . The divertors have a requirement of both minimum temperature (100 degrees C) and maximum temperature. The minimum temperature is dictated by the requirement to reduce the absorption of plasma, and the maximum temperature is determined by the thermo-mechanical properties of the plasma facing materials. Coolants that have been considered for fusion reactors are water, liquid metals and helium. Helium cooling has been shown to be very attractive from safety and other considerations. Helium is chemically and neutronically inert and is suitable for power conversion. The challenges associated with helium cooling are: (1) Manifold sizes; (2) Pumping power; and (3) Leak prevention. In this paper the first two of the above design issues are addressed. A variety of heat transfer enhancement techniques are considered to demonstrate that the manifold sizes and the pumping power can be reduced to acceptable levels. A helium-cooled diverter module was designed and fabricated by GA for steady-state heat flux of 10 MW/m 2 . This module was recently tested at Sandia National Laboratories. At an inlet pressure of 4 MPa, the module was tested at a steady-state heat flux of 10 MW/m 2 . The pumping power required was less than 1% of the power removed. These results verified the design prediction

  10. Neutral transport and helium pumping of ITER

    International Nuclear Information System (INIS)

    Ruzic, D.N.

    1990-08-01

    A 2-D Monte-Carlo simulation of the neutral atom densities in the divertor, divertor throat and pump duct of ITER was made using the DEGAS code. Plasma conditions in the scrape-off layer and region near the separatrix were modeled using the B2 plasma transport code. Wall reflection coefficients including the effect of realistic surface roughness were determined by using the fractal TRIM code. The DEGAS and B2 coupling was iterated until a consistent recycling was predicted. Results were obtained for a helium and a deuterium/tritium mixture on 7 different ITER divertor throat geometries for both the physics phase reference base case and a technology phase case. The geometry with a larger structure on the midplane-side of the throat opening closing the divertor throat and a divertor plate which maintains a steep slope well into the throat removed helium 1.5 times better than the reference geometry for the physics phase case and 2.2 times better for the technology phase case. At the same time the helium to hydrogen pumping ratio shows a factor of 2.34 ± .41 enhancement over the ratio of helium to hydrogen incident on the divertor plate in the physics phase and an improvement of 1.61 ± .31 in the technology phase. If the helium flux profile on the divertor plate is moved outward by 20 cm with respect to the D/T flux profile for this particular geometry, the enhancement increases to 4.36 ± .90 in the physics phase and 5.10 ± .92 in the technology phase

  11. Growth process of helium bubbles in aluminium

    International Nuclear Information System (INIS)

    Shiraishi, Haruki; Sakairi, Hideo; Yagi, Eiichi; Karasawa, Takashi; Hashiguti, R.R.

    1975-01-01

    The growth process of helium bubbles in α-particle bombarded pure aluminum during isothermal anneal ranging 200 to 645 0 C and 1 to 100 hr was observed by a transmission electron microscope and the possible growth mechanisms are discussed. The effects of helium concentration and cold work were investigated. The helium bubbles are detectable only at the anneal above 550 0 C in both annealed and cold worked samples. The cold work does not cause any extra coarsening trend of bubbles. The observed types of bubble distribution in the grain interior are divided into two categories, irrespective of helium concentration and cold work; (1) the fine and uniform bubble distribution, in which case the average size is limited to about 200 A or less in diameter even at the anneal just below the melting point, and (2) the coarsened and non-uniform bubble distribution ranging 500 to 4000 A in diameter. The intermediate size bubbles are scarcely found in any cases. In the above fine bubble distribution, the increase of helium concentration by a factor of two increases the density by the same factor of two, but does not change the mean size of bubbles. Corresponding to the above two characteristic bubble distributions, it is concluded that two different mechanisms are operative in this experiment; (1) the growth of bubbles by the Brownian motion, in which the growth rate of bubbles is decreased to almost zero by bubble faceting and this results in the bubble size constancy during the prolonged annealing, and (2) the growth of bubbles by the grain boundary sweep-out mechanism, by which the abrupt coarsening of bubbles is caused. The lack of existence of the intermediate size bubbles is explained in this way. (auth.)

  12. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Pentlehner, D.; Slenczka, A.

    2015-01-01

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broad (Δν > 100 cm −1 ) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time

  13. Trapping of deuterium in krypton-implanted nickel

    International Nuclear Information System (INIS)

    Frank, R.C.; McManus, S.P.; Rehn, L.E.; Baldo, P.

    1986-01-01

    Krypton ions with energy 600 keV were implanted in nickel to fluences of 2 x 10 16 cm -2 under three different conditions. Deuterium was subsequently introduced into the implanted regions by electrolysis at room temperature. After the diffusible deuterium was permitted to escape, the 2 H( 3 He, 1 H) 4 He nuclear reaction was used to analyze for the trapped deuterium during an isochronal annealing program. The region implanted at 100 0 C with no higher temperature anneal had the largest number of traps; the region implanted at 100 0 C and annealed for 100 min at 500 0 C had considerably less; the region implanted at 500 0 C had the least. Electron diffraction patterns confirmed the existence of solid crystalline krypton in all three regions. Transmission electron microscope studies revealed precipitates with an average diameter of 8 nm in the region implanted at 500 0 C. The two regions implanted at 100 0 C contained smaller precipitates. Trap binding enthalpies were obtained by math modeling. In addition to the traps with binding enthalpy of 0.55 eV reported earlier by other investigators for helium implanted in nickel, a smaller number of traps with binding enthalpies up to 0.83 eV were also found. The trapping of deuterium by various types of imperfections, including the solid krypton precipitates, is discussed

  14. Observations of a fcc helium gas-bubble superlattice in copper, nickel, and stainless steel

    International Nuclear Information System (INIS)

    Johnson, P.B.; Mazey, D.J.

    1980-01-01

    Transmission electron microscopy is used to investigate the spatial arrangement of the small gas bubbles produced in several fcc metals by 30 keV helium ion irradiation to high dose at 300 K. In what is a new result for this important class of metals it is found that the helium gas bubbles lie on a superlattice having an fcc structure with principal axes aligned with those of the metal matrix. The bubble lattice constant asub(i), is measured for a helium fluence just below the critical dose for radiation blistering of the metal surface (approximately 4 x 10 17 He/cm 2 ). Implantation rates are typically approximately 10 14 He ions cm -2 sec -1 . The values of asub(i) obtained for copper, nickel and stainless steel are (7.6 +- 0.3)nm, (6.6 +- 0.5)nm and (6.4 +- 0.5)nm respectively. Above the critical dose the bubble lattice is seen to survive in some blister caps as well as in the region between blisters. Bubble alignment is also observed in the case of hydrogen bubbles produced in copper by low energy proton irradiation to high fluence at 300 K. The presentation of this data was accompanied by a cine film illustrating the behaviour of the gas bubble lattice in copper during post-irradiation annealing in the electron microscope. A summary of the film is given in the appendix. (author)

  15. The observation of helium gas bubble lattices in copper, nickel and stainless steel

    International Nuclear Information System (INIS)

    Johnson, P.B.; Mazey, D.J.

    1978-10-01

    Transmission electron microscopy is used to investigate the spatial arrangement of the small gas bubbles produced in several fcc metals by 30 keV helium ion irradiation to high dose at 300K. In what is a new result for this important class of metals it is found that the helium gas bubbles lie on a superlattice having an fcc structure with principal axes aligned with those of the metal matrix. The bubble lattice constant, asub(l), is measured for a helium fluence just below the critical dose for radiation blistering of the metal surface. Implantation rates are typically approximately 10 14 He ions cm -2 sec -1 . The values of asub(l) obtained for copper, nickel and stainless steel are given. Above the critical dose the bubble lattice is seen to survive in some blister caps as well as in the region between blisters. Bubble alignment is also observed in the case of hydrogen bubbles produced in copper by low energy proton irradiation to high fluence at 300K. (author)

  16. Defects in TiN and HfN studied by helium thermal desorption spectrometry

    International Nuclear Information System (INIS)

    Hoondert, W.H.B.; Thijsse, B.J.; Beuckel, A. van den

    1994-01-01

    Point defects in sub-stoichiometric TiN 1-x and HfN 1-x were investigated by helium thermal desorption spectrometry (300-1800K) following He + ion implantation at energies up to 3000eV. It was found that the low energy spectra are dominated by helium dissociating from the structural vacancies on the nitrogen sublattice; the activation energy for dissociation is 2.2eV for TiN. Above a few hundred electron volts the ions begin to produce several other types of defects, from which helium dissociates with activation energies in the range 2.6-4.0eV. The identity of these defects is discussed. The results for the two nitrides were similar in many respects. The most significant difference observed is that in TiN low energy He + ions generate damage on the N sublattice of a type that is not observed for HfN. Activation energies for HfN are found to be consistently 0.7eV lower than for TiN. ((orig.))

  17. Dental Implant Surgery

    Science.gov (United States)

    ... here to find out more. Dental Implant Surgery Dental Implant Surgery Dental implant surgery is, of course, ... to find out more. Wisdom Teeth Management Wisdom Teeth Management An impacted wisdom tooth can damage neighboring ...

  18. Cochlear Implant

    Directory of Open Access Journals (Sweden)

    Mehrnaz Karimi

    1992-04-01

    Full Text Available People with profound hearing loss are not able to use some kinds of conventional amplifiers due to the nature of their loss . In these people, hearing sense is stimulated only when the auditory nerve is activated via electrical stimulation. This stimulation is possible through cochlear implant. In fact, for the deaf people who have good mental health and can not use surgical and medical treatment and also can not benefit from air and bone conduction hearing aids, this device is used if they have normal central auditory system. The basic parts of the device included: Microphone, speech processor, transmitter, stimulator and receiver, and electrode array.

  19. Laser spectroscopy of exotic RI atoms in superfluid helium-OROCHI experiment

    International Nuclear Information System (INIS)

    Furukawa, T.; Matsuo, Y.; Hatakeyama, A.; Fujikake, K.; Matsuura, Y.; Kobayashi, T.; Shimoda, T.

    2010-01-01

    We have been developing a new laser spectroscopic technique 'OROCHI,' which is based on the combination of superfluid helium as a stopper of radioactive isotope (RI) beam and in-situ laser spectroscopy of RI atoms, for determining spins and moments of exotic RIs. By using this unique technique, it is feasible to measure nuclear spins and electromagnetic moments of extremely low yield RI (estimated as less than 1 pps). Recently, we have demonstrated that nuclear spins and moments are obtained from Zeeman and hyperfine splittings of stable Rb isotopes measured using this OROCHI technique. Details of this laser spectroscopy method in He II 'OROCHI' and the summary of our development are presented.

  20. Effect of titanium impurities on helium bubble growth in nickel

    International Nuclear Information System (INIS)

    Amarendra, G.; Viswanathan, B.; Rajaraman, R.; Srinivasan, S.; Gopinathan, K.P.

    1992-01-01

    Positron lifetime measurements in He-implanted Ni and Ni-Ti alloys containing dilute concentrations of Ti, during isochronal annealing, are reported. In the initial annealing stage of Ni-Ti alloys, only a single lifetime ranging from 160 to 180 ps is observed, in contrast with the two lifetimes seen in pure Ni. This indicates saturation positron trapping at helium-bound Ti-vacancy complexes, formed in high concentrations. Lattice statics calculations of the He binding energy at various defect complexes in Ni-containing Ti give credence to the above interpretation. Above 800K, two lifetimes are resolved in Ni-Ti alloys, where the longer lifetime τ 2 increases with a sharp reduction in its intensity. This is indicative of He bubble growth. The bubble radius r B and bubble concentration C B are obtained from an analysis of positron lifetime parameters. These results indicate that, for a given annealing temperature, r B is smaller by a factor of two and C B higher by nearly an order of magnitude in Ni-Ti than the corresponding values in pure Ni. This is explained as due to significant retardation of bubble growth on the addition of Ti to Ni, where the Ti impurities cause an impediment to bubble migration and coalescence. (author)

  1. The future of helium as a natural resource

    CERN Document Server

    Glowacki, Bartek A; Nuttall, William J

    2012-01-01

    The book reveals the changing dynamics of the helium industry on both the supply-side and the demand-side. The helium industry has a long-term future and this important gas will have a role to play for many decades to come. Major new users of helium are expected to enter the market, especially in nuclear energy (both fission and fusion). Prices and volumes supplied and expected to rise and this will prompt greater efforts towards the development of new helium sources and helium conservation and recycling.

  2. Biomolecular ions in superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Gonzalez Florez, Ana Isabel

    2016-01-01

    The function of a biological molecule is closely related to its structure. As a result, understanding and predicting biomolecular structure has become the focus of an extensive field of research. However, the investigation of molecular structure can be hampered by two main difficulties: the inherent complications that may arise from studying biological molecules in their native environment, and the potential congestion of the experimental results as a consequence of the large number of degrees of freedom present in these molecules. In this work, a new experimental setup has been developed and established in order to overcome the afore mentioned limitations combining structure-sensitive gas-phase methods with superfluid helium droplets. First, biological molecules are ionised and brought into the gas phase, often referred to as a clean-room environment, where the species of interest are isolated from their surroundings and, thus, intermolecular interactions are absent. The mass-to-charge selected biomolecules are then embedded inside clusters of superfluid helium with an equilibrium temperature of ∝0.37 K. As a result, the internal energy of the molecules is lowered, thereby reducing the number of populated quantum states. Finally, the local hydrogen bonding patterns of the molecules are investigated by probing specific vibrational modes using the Fritz Haber Institute's free electron laser as a source of infrared radiation. Although the structure of a wide variety of molecules has been studied making use of the sub-Kelvin environment provided by superfluid helium droplets, the suitability of this method for the investigation of biological molecular ions was still unclear. However, the experimental results presented in this thesis demonstrate the applicability of this experimental approach in order to study the structure of intact, large biomolecular ions and the first vibrational spectrum of the protonated pentapeptide leu-enkephalin embedded in helium

  3. Biomolecular ions in superfluid helium nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Florez, Ana Isabel

    2016-07-01

    The function of a biological molecule is closely related to its structure. As a result, understanding and predicting biomolecular structure has become the focus of an extensive field of research. However, the investigation of molecular structure can be hampered by two main difficulties: the inherent complications that may arise from studying biological molecules in their native environment, and the potential congestion of the experimental results as a consequence of the large number of degrees of freedom present in these molecules. In this work, a new experimental setup has been developed and established in order to overcome the afore mentioned limitations combining structure-sensitive gas-phase methods with superfluid helium droplets. First, biological molecules are ionised and brought into the gas phase, often referred to as a clean-room environment, where the species of interest are isolated from their surroundings and, thus, intermolecular interactions are absent. The mass-to-charge selected biomolecules are then embedded inside clusters of superfluid helium with an equilibrium temperature of ∝0.37 K. As a result, the internal energy of the molecules is lowered, thereby reducing the number of populated quantum states. Finally, the local hydrogen bonding patterns of the molecules are investigated by probing specific vibrational modes using the Fritz Haber Institute's free electron laser as a source of infrared radiation. Although the structure of a wide variety of molecules has been studied making use of the sub-Kelvin environment provided by superfluid helium droplets, the suitability of this method for the investigation of biological molecular ions was still unclear. However, the experimental results presented in this thesis demonstrate the applicability of this experimental approach in order to study the structure of intact, large biomolecular ions and the first vibrational spectrum of the protonated pentapeptide leu-enkephalin embedded in helium

  4. Review of Membranes for Helium Separation and Purification

    Directory of Open Access Journals (Sweden)

    Colin A. Scholes

    2017-02-01

    Full Text Available Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources.

  5. The installation of helium auxiliary systems in HTGR

    International Nuclear Information System (INIS)

    Qin Zhenya; Fu Xiaodong

    1993-01-01

    The inert gas Helium was chosen as reactor coolant in high temperature gas coolant reactor, therefore a set of Special and uncomplex helium auxiliary systems will be installed, the safe operation of HTR-10 can be safeguarded. It does not effect the inherent safety of HTR-10 MW if any one of all those systems were damaged during operation condition. This article introduces the design function and the system principle of all helium auxiliary systems to be installed in HTR-10. Those systems include: helium purification and its regeneration system, helium supply and storage system, pressure control and release system of primary system, dump system for helium auxiliary system and fuel handling, gaseous waste storage system, water extraction system for helium auxiliary systems and evacuation system for primary system

  6. Complications after cardiac implantable electronic device implantations

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard

    2013-01-01

    Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient...

  7. H and D implantation transforms Ti, Zr and Hf into good superconductors

    International Nuclear Information System (INIS)

    Meyer, J.D.; Stritzker, B.

    1981-01-01

    The elements Ti, Zr, and Hf from group IVB with superconducting transition temperatures of Tsub(c) = 0.4, 0.6 and 0.13 K, respectively, were implanted at liquid helium temperature with hydrogen, deuterium and helium. The He implantations were performed to simulate the Tsub(c) enhancement due to lattice disorder introduced during the implantation. In this case, only Zr showed a Tsub(c) increase above the measuring limit of 1 K. On the other hand, the implantation of H and D will change the electronic properties of the materials in addition to lattice damage. Indeed all H and D implantations lead to a substantial increase of Tsub(c). For example, a transition temperature of 4.65 K was achieved in D implanted Zr at a concentration of D/Zr = 0.13. Whereas a pronounced inverse isotope effects was observed for H(D) implanted Zr and Hf, H and D implanted Ti had essentially the same Tsub(c) of 4.9 K. Based on the similarity of most of these results to the Pd-H(D) system [1], similar mechanisms are proposed to explain the experimental observation, i.e: (1) the electron-phonon coupling is enhanced due to coupling to the protons (deuterons) and/or to the optic phonon modes; (2) anharmonic effects are responsible for the inverse isotope effect. (orig.)

  8. TRIO-01 experiment: in-situ tritium-recovery results

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Finn, P.A.; Billone, M.C.

    1983-08-01

    The TRIO-01 experiment is a test of in-situ tritium recovery from γ-LiAlO 2 with test conditions chosen to simulate those anticipated in fusion power reactors. A status report is presented which describes qualitatively the results observed during the irradiation phase of the experiment. Both the rate of tritium release and the chemical forms of tritium were measured using a helium sweep gas which flowed past the breeder material to a gas analysis system

  9. TRIO-01 experiment: in-situ tritium recovery results

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Finn, P.A.; Billone, M.C.

    1983-10-01

    The TRIO-01 experiment is a test of in-situ tritium recovery from γ-LiAlO 2 with test conditions chosen to simulate those anticipated in fusion power reactors. A status report is presented which describes qualitatively the results observed during the irradiation phase of the experiment. Both the rate of tritium release and the chemical forms of tritium were measured using a helium sweep gas which flowed past the breeder material to a gas analysis system

  10. Electron cyclotron resonance hydrogen/helium plasma characterization and simulation of pumping in tokamaks

    International Nuclear Information System (INIS)

    Outten, C.A.

    1992-01-01

    Electron Cyclotron Resonance (ECR) plasmas have been employed to simulate the plasma conditions at the edge of a tokamak in order to investigate hydrogen/helium uptake in thin metal films. The process of microwave power absorption, important to characterizing the ECR plasma source, was investigated by measuring the electron density and temperature with a Langmuir probe and optical spectroscopy as a function of the magnetic field gradient and incident microwave power. A novel diagnostic, carbon resistance probe, provided a direct measure of the ion energy and fluence while measurements from a Langmuir probe were used for comparison. The Langmuir probe gave a plasma potential minus floating potential of 30 ± 5 eV, in good agreement with the carbon resistance probe result of ion energy ≤ 40 eV. The measured ion energy was consistent with the ion energy predicted from a model based upon divergent magnetic field extraction. Also, based upon physical sputtering of the carbon, the hydrogen fluence rate was determined to be 1 x 10 16 /cm 2 -sec for 50 Watts of incident microwave power. ECR hydrogen/helium plasmas were used to study preferential pumping of helium in candidate materials for tokamak pump-limiters: nickel, vanadium, aluminum, and nickel/aluminum multi-layers. Nickel and vanadium exhibited similar pumping capacities whereas aluminum showed a reduced capacity due to increased sputtering. A helium retention model based upon ion implantation ranges and sputtering rates agreed with the experimental data. A new multilayer/bilayer pumping concept showed improved pumping above that for single element films

  11. Description and Operational Experiences of the Engineering Test Facility - Helium Technology (ETF-HT)

    International Nuclear Information System (INIS)

    Zhang Zuoyi; Yang Mingde; Bo Hanliang; Duan Riqqiang; Zhu Hongye

    2014-01-01

    This paper presents the configuration of the Engineering Test Facility - Helium Technology (ETF-HT) and the information of its key components and subsystems, which is located in the Changping campus of Tsinghua University. The ETF-HT facility began to be constructed in Jan. 2009. The main objective of the facility is to test and verify the thermo-hydraulic performance of one full-sized modular unit of HTR-PM helically coiled SG assembly. In the ETF-HT facility, electricity energy is used to heat the loop helium, centrifugal blower is used to circulate the helium medium, and the heat sink is one would-tested SG module. Up to now, except for the tested SG module, preheater and hot gas duct under way of construction, the other components has been installed in situ. Via the temporary connection of the installed components, the preliminary operation of the loop has been carried out to test its performances as can be done, which include the loop leak tightness, blower pneumatic performance and electrical heater at partial thermal load. (author)

  12. Acquisition system testing with superfluid helium

    International Nuclear Information System (INIS)

    Anderson, J.E.; Fester, D.A.; DiPirro, M.J.

    1988-01-01

    NASA is evaluating both a thermomechanical pump and centrifugal pump for the SHOOT experiment using capillary fluid acquisition systems. Tests were conducted for these systems with superfluid helium under adverse operating conditions. Minus one-g outflow tests were run in conjunction with the thermomechanical pump. Both fine mesh screen and porous sponges were tested. A screen acquisition device was also tested with the low-NPSH centrifugal pump. Results to date show that the screen and sponge are capable of supplying superfluid helium to the thermomechanical pump inlet against a one-g head up to four cm. This is more than sufficient for the SHOOT application. Results with the sponge were reproducible while those with the screen could not always be repeated

  13. Helium emission in the middle chromosphere

    International Nuclear Information System (INIS)

    Livshits, M.A.

    1976-01-01

    Slitless spectrograms obtained during the eclipse of 10 June 1972 have been analyzed to determine the height distribution of the D 3 He line intensity. For undisturbed regions the maximum of D 3 line intensity is confirmed to exist at about 1700 km above the limb. Besides the above mentioned maximum, in plages a considerable intensity may be observed at low heights (h 1000 km has been carried out within the low temperature mechanism of triplet helium emission taking into account the helium ionization by XUV radiation. The density dependence of the 2 3 S level population at different XUV flux values has been calculated. The observations give Nsub(e) approximately 2x10 10 cm -3 in the chromosphere at h = 2000 km. The probable coincidence of the H and He emission small filaments in the middle chromosphere is discussed. (Auth.)

  14. Safety in handling helium and nitrogen

    International Nuclear Information System (INIS)

    Schmauch, G.; Lansing, L.; Santay, T.; Nahmias, D.

    1991-01-01

    Based upon the authors' industrial experience and practices, they have provided an overview of safety in storage, handling, and transfer of both laboratory and bulk quantities of gaseous and liquid forms of nitrogen and helium. They have addressed the properties and characteristics of both the gaseous and liquid fluids, typical storage and transport containers, transfer techniques, and the associated hazards which include low temperatures, high pressures, and asphyxiation. Methods and procedures to control and eliminate these hazards are described, as well as risk remediation through safety awareness training, personal protective equipment, area ventilation, and atmosphere monitoring. They have included as an example a recent process hazards analysis performed by Air Products on the asphyxiation hazard associated with the use of liquid helium in MRI magnet systems

  15. Stellar pulsation and the abundance of helium

    International Nuclear Information System (INIS)

    Schmidt, E.G.

    1978-01-01

    It has been suggested that the appearance of nonvariable stars within the Cepheid strip could be explained by a range in the helium abundance of Population I stars. In order to study this possibility, spectra were obtained of the main-sequence B stars in the galactic cluster NGC 129, which contains a nonvariable Cepheid-strip star, and M25, which contains a relatively hot Cepheid. Unfortunately, several of the stars in these clusters turn out to be helium-weak stars. In NGC 129 two stars which appear normal give a normal abundance, while in M25 all of the observed stars have abnormally low abundances. The significance of the low abundance in M25 is not clear. The abundance in NGC 129 is not low enough to support the above suggestion. 4 figures, 2 tables

  16. Effect of microstructure on helium bubble growth in irradiated nickel

    International Nuclear Information System (INIS)

    Sattler, M.L.

    1986-01-01

    Thin nickel films were irradiated with 80 keV helium ions at varying doses and varying temperatures in order to obtain a variety of final microstructures. The growth of bubbles was examined during in-situ irradiations at 950 0 C where migration and coalescence events were observed for bubbles as large as 60 nm. Further direct observations of bubble growth were made during annealing of the irradiated specimens. For sample with no visible bubbles before annealing, the heating to 0.51 T/sub M/ produced bubbles that increased in diameter with annealing time to the power n. For bubbles in the grain interior, n ∼ 1, and on the grain boundaries, n ∼ 0.6. Since no migration and coalescence or ripening theories predict this behavior, a theory described by transient diffusion to spherical sinks was developed to discuss the behavior. This theory predicts that n = 1 for bubbles growing in the grain interior and n = 0.5 for bubbles on the grain boundary. In other annealing of irradiated samples containing large bubble populations, the growth of large bubbles and shrinking of small bubbles was observed at a temperature equal to 0.54 T/sub M/. The theory of Ostwald ripening properly described this type of bubble growth. Mass spectrometer measurements of He content in the irradiated specimens showed a greater He retention in the Ni films that contained a significant bubble population than those with no visible bubbles

  17. Studies of helium distribution in metal tritides

    International Nuclear Information System (INIS)

    Bowman, R.C. Jr.; Attalla, A.

    1976-01-01

    The distribution of helium ( 3 He) in LiT, TiT 2 , and UT 3 , which are regarded as representative metal tritides, was investigated using pulse nuclear magnetic resonance (NMR) techniques. Analyses of the NMR lineshapes and nuclear relaxation times indicate the 3 He atoms are trapped in microscopic gas bubbles for each tritide. The effects of concentration and temperature on the 3 He distributions were investigated as well

  18. Born-Mayer type molybdenum-helium and helium-helium interaction potentials, fitted to the results of the helium desorption experiments

    International Nuclear Information System (INIS)

    Heugten, W.F.W.M. van; Veen, A. van; Caspers, L.M.

    1979-01-01

    Classes of Born-Mayer type Mo-He and He-He potentials have been derived from helium desorption experiments. The classes are described by linear relations between the Born-Mayer parameters A and b. For computer simulations the Mo-He potential phisub(MoHe)(r)=exp (6.5-3.63 r) and the He-He potential phisub(HeHe)(r)=exp(5.3-5.51 r) are proposed. (Auth.)

  19. Correlation of Helium Solubility in Liquid Nitrogen

    Science.gov (United States)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2012-01-01

    A correlation has been developed for the equilibrium mole fraction of soluble gaseous helium in liquid nitrogen as a function of temperature and pressure. Experimental solubility data was compiled and provided by National Institute of Standards and Technology (NIST). Data from six sources was used to develop a correlation within the range of 0.5 to 9.9 MPa and 72.0 to 119.6 K. The relative standard deviation of the correlation is 6.9 percent.

  20. Helium synthesis, neutrino flavors, and cosmological implications

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1980-01-01

    The problem of the production of helium in the big bang is reexamined in the light of several recent astrophysical observations. These data, and theoretical particle-physics considerations, lead to some important inconsistencies in the standard big-bang model and suggest that a more complicated picture is needed. Thus, recent constraints on the number of neutrino flavors, as well as constraints on the mean density (openness) of the universe, need not be valid

  1. Low helium flux from the mantle inferred from simulations of oceanic helium isotope data

    Science.gov (United States)

    Bianchi, Daniele; Sarmiento, Jorge L.; Gnanadesikan, Anand; Key, Robert M.; Schlosser, Peter; Newton, Robert

    2010-09-01

    The high 3He/ 4He isotopic ratio of oceanic helium relative to the atmosphere has long been recognized as the signature of mantle 3He outgassing from the Earth's interior. The outgassing flux of helium is frequently used to normalize estimates of chemical fluxes of elements from the solid Earth, and provides a strong constraint to models of mantle degassing. Here we use a suite of ocean general circulation models and helium isotope data obtained by the World Ocean Circulation Experiment to constrain the flux of helium from the mantle to the oceans. Our results suggest that the currently accepted flux is overestimated by a factor of 2. We show that a flux of 527 ± 102 mol year - 1 is required for ocean general circulation models that produce distributions of ocean ventilation tracers such as radiocarbon and chlorofluorocarbons that match observations. This new estimate calls for a reevaluation of the degassing fluxes of elements that are currently tied to the helium fluxes, including noble gases and carbon dioxide.

  2. A new approach to constrain basal helium flux into aquifers for better estimation of groundwater ages by Helium 4

    Science.gov (United States)

    Matsumoto, Takuya; Sturchio, Neil C.; Chang, Hung K.; Gastmans, Didier; Araguas-Araguas, Luis J.; Jiang, Wei; Lu, Zheng-Tian; Mueller, Peter; Yokochi, Reika; Purtschert, Roland; Zongyu, Chen; Shuiming, Hu; Aggarwal, Pradeep K.

    2016-04-01

    Estimation of groundwater age through the combined use of isotope methods and groundwater flow modelling is the common approach used for developing the required level of knowledge in the case of groundwater pumped from deep aquifers. For more than 50 years radiocarbon and tritium have been the common tools used in isotope hydrology studies to provide first estimates of groundwater age and dynamics. The half-life of carbon-14 (5730 years) and the complex geochemistry of carbon species in most environments have limited the proper characterization of groundwater flow patterns in large sedimentary basins and deep aquifers to ages more recent than about 40 000 years. Over the last years, a number of long-live radionuclides and other isotopes have been tested as more reliable age indicators by specialised laboratories. Among these methods, chlorine-36 (half-life of 300 000 yr) has been used with mixed results, mainly due to problems derived from in-situ production of this radionuclide. Uranium isotopes have also been used in a few instances, but never became a routine tool. Accumulation of helium-4 in deep groundwaters has also been proposed and used in a few instance, but one major obstacle in the 4He dating method is a difficulty in assessing a rate constant of 4He input into aquifers (namely, the entering basal 4He flux). In this context, recent breakthrough developments in analytical methods allow the precise determination of dissolved noble gases in groundwater as well as trace-level noble gas radionuclides present in very old groundwaters. Atom trap trace analysis, or ATTA, has dramatically improved over the last years the processing of very small amount of noble gases, providing now real possibilities for routine measurements of extremely low concentration of exotic radionuclides dissolved in groundwater, such as krypton-81 (half-life 229 000 years). Atom trap trace analysis involves the selective capture of individual atoms of a given isotope using six laser

  3. Gas turbine modular helium reactor in cogeneration

    International Nuclear Information System (INIS)

    Leon de los Santos, G.

    2009-10-01

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  4. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  5. Helium-flow measurement using ultrasonic technique

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1983-01-01

    While designing cryogenic instrumentation for the Colliding Beam Accelerator (CBA) helium-distribution system it became clear that accurate measurement of mass flow of helium which varied in temperature from room to sub-cooled conditions would be difficult. Conventional venturi flow meters full scale differential pressure signal would decrease by more than an order of magnitude during cooldown causing unacceptable error at operating temperature. At sub-cooled temperatures, helium would be pumped around cooling loops by an efficient, low head pressure circulating compressor. Additional pressure drop meant more pump work was necessary to compress the fluid resulting in a higher outlet temperature. The ideal mass flowmeter for this application was one which did not add pressure drop to the system, functioned over the entire temperature range, has high resolution and delivers accurate mass flow measurement data. Ultrasonic flow measurement techniques used successfully by the process industry, seemed to meet all the necessary requirements. An extensive search for a supplier of such a device found that none of the commercial stock flowmeters were adaptable to cryogenic service so the development of the instrument was undertaken by the CBA Cryogenic Control and Instrumentation Engineering Group at BNL

  6. Helium refrigeration system for hydrogen liquefaction applications

    Science.gov (United States)

    Nair, J. Kumar, Sr.; Menon, RS; Goyal, M.; Ansari, NA; Chakravarty, A.; Joemon, V.

    2017-02-01

    Liquid hydrogen around 20 K is used as cold moderator for generating “cold neutron beam” in nuclear research reactors. A cryogenic helium refrigeration system is the core upon which such hydrogen liquefaction applications are built. A thermodynamic process based on reversed Brayton cycle with two stage expansion using high speed cryogenic turboexpanders (TEX) along with a pair of compact high effectiveness process heat exchangers (HX), is well suited for such applications. An existing helium refrigeration system, which had earlier demonstrated a refrigeration capacity of 470 W at around 20 K, is modified based on past operational experiences and newer application requirements. Modifications include addition of a new heat exchanger to simulate cryogenic process load and two other heat exchangers for controlling the temperatures of helium streams leading out to the application system. To incorporate these changes, cryogenic piping inside the cold box is suitably modified. This paper presents process simulation, sizing of new heat exchangers as well as fabrication aspects of the modified cryogenic process piping.

  7. Dispersion of breakdown voltage of liquid helium

    International Nuclear Information System (INIS)

    Ishii, Itaru; Noguchi, Takuya

    1978-01-01

    As for the electrical insulation characteristics of liquid helium, the discrepancy among the measured values by each person is very large even in the fundamental DC breakdown voltage in uniform electric field. The dispersion of experimental values obtained in the experiments by the same person is also large. Hereafter, the difference among the mean values obtained by each experimenter will be referred to as ''deviation of mean values'', and the dispersion of measured values around the mean value obtained by the same person as ''deviation around the man value''. The authors have mainly investigated on the latter experimentally. The cryostat was made of stainless steel, and the innermost helium chamber was of 500 mm I.D. and approximately 1200 mm deep. The high voltage electrode was of brass sphere of 25 mm diameter, and the low voltage electrode was of brass plate. The experiment was conducted for liquid helium boiling at 4.2 K and 1 atm, and the breakdown voltage and time lag were measured by applying the approximately square wave impulses of fast rise and long tail, ramp and DC voltages. The cause of the deviation of mean values may be the presence of impurity particles or the effect of electrode shape. As for the deviation around the mean value, the dispersion is large, and its standard deviation may amount to 10 to 20% of the man value. The dispersion is not due to the statistical time lag, but is due to parameters that vary with breakdown. (Wakatsuki, Y.)

  8. Mass spectrometric analysis of helium in stainless steel

    International Nuclear Information System (INIS)

    Isagawa, Hiroto; Wada, Yukio; Asakura, Yoshiro; Tsuji, Nobuo; Sato, Hitoshi; Tsutsumi, Kenichi

    1974-01-01

    Vacuum fusion mass-spectrometry was adopted for the analysis of helium in stainless steel. Samples were heated in a vacuum crucible, and helium in the samples was extracted and collected into a reservoir tank. The gas was then introduced through an orifice into a mass spectrometer, where the amount of helium was determined. The maspeq 070 quadrupole type mass spectrometer made by Shimazu Seisakusho, Ltd. was used. The resolving power was 150, and the mass range of the apparatus was 0-150. The determination limit of helium was about 2 x 10 -3 μg when standard helium gas was analyzed, and was about 10 -2 μg when the helium in stainless steel was analyzed. The relative standard deviation of helium intensity in repetitive measurement was about 2% in the amount of helium of 0.05 μg. Helium was injected into stainless steel by means of alpha particle irradiation with a cyclotron. The amount of helium in stainless steel was then determined. The energy of alpha particles was 34 MeV, and the beam area was 10 mm x 10 mm. The experimental data were higher than the expected value in one case, and were lower in the other case. This difference was attributable to the fluctuation of alpha particle beam, misplacement of sample plates, and unevenness of the alpha beam. (Fukutomi, T.)

  9. Helium storage and control system for the PBMR

    International Nuclear Information System (INIS)

    Verkerk, E.C.

    1997-01-01

    The power conversion unit will convert the heat energy in the reactor core to electrical power. The direct-closed cycle recuperated Brayton Cycle employed for this concept consists of a primary helium cycle with helium powered turbo compressors and a power turbine. The helium is actively cooled with water before the compression stages. A recuperator is used to preheat the helium before entering the core. The start of the direct cycle is initiated by a mass flow from the helium inventory and control system via a jet pump. When the PBMR is connected to the grid, changes in power demand can be followed by changing the helium flow and pressure inside the primary loop. Small rapid adjustments can be performed without changing the helium inventory of the primary loop. The stator blade settings on the turbines and compressors are adjustable and it is possible to bypass reactor and turbine. This temporarily reduces the efficiency at which the power conversion unit is operating. Larger or long term adjustments require storage or addition of helium in order to maintain a sufficient level of efficiency in the power conversion unit. The helium will be temporarily stored in high pressure tanks. After a rise in power demand it will be injected back into the system. Some possibilities how to store the helium are presented in this paper. The change of helium inventory will cause transients in the primary helium loop in order to acquire the desired power level. At this stage, it seems that the change of helium inventory does not strongly effect the stability of the power conversion unit. (author)

  10. Investigation of impurity-helium solid phase decomposition

    International Nuclear Information System (INIS)

    Boltnev, R.E.; Gordon, E.B.; Krushinskaya, I.N.; Martynenko, M.V.; Pel'menev, A.A.; Popov, E.A.; Khmelenko, V.V.; Shestakov, A.F.

    1997-01-01

    The element composition of the impurity-helium solid phase (IHSP), grown by injecting helium gas jet, involving Ne, Ar, Kr, and Xe atoms and N 2 molecules, into superfluid helium, has been studied. The measured stoichiometric ratios, S = N H e / N I m, are well over the values expected from the model of frozen together monolayer helium clusters. The theoretical possibility for the freezing of two layers helium clusters is justified in the context of the model of IHSP helium subsystem, filled the space between rigid impurity centers. The process of decomposition of impurity-helium (IH)-samples taken out of liquid helium in the temperature range 1,5 - 12 K and the pressure range 10-500 Torr has been studied. It is found that there are two stages of samples decomposition: a slow stage characterized by sample self cooling and a fast one accompanied by heat release. These results suggest, that the IHSP consists of two types of helium - weakly bound and strongly bound helium - that can be assigned to the second and the first coordination helium spheres, respectively, formed around heavy impurity particles. A tendency for enhancement of IHSP thermo stability with increasing the impurity mass is observed. Increase of helium vapor pressure above the sample causes the improvement of IH sample stability. Upon destruction of IH samples, containing nitrogen atoms, a thermoluminescence induced by atom recombination has been detected in the temperature region 3-4,5 K. This suggests that numerous chemical reactions may be realized in solidified helium

  11. WARM BREEZE FROM THE STARBOARD BOW: A NEW POPULATION OF NEUTRAL HELIUM IN THE HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, M. A.; Bzowski, M.; Sokół, J. M.; Swaczyna, P.; Grzedzielski, S. [Space Research Centre of the Polish Academy of Sciences, Warsaw (Poland); Alexashov, D. B.; Izmodenov, V. V. [Space Research Institute (IKI) of the Russian Academy of Sciences, Moscow (Russian Federation); Möbius, E.; Leonard, T. [Space Research Center and Department of Physics, University of New Hampshire, Durham, NH (United States); Fuselier, S. A.; McComas, D. J. [Southwest Research Institute, San Antonio, TX (United States); Wurz, P. [Physics Institute, University of Bern, Bern (Switzerland)

    2014-08-01

    We investigate the signals from neutral helium atoms observed in situ from Earth orbit in 2010 by the Interstellar Boundary Explorer (IBEX). The full helium signal observed during the 2010 observation season can be explained as a superposition of pristine neutral interstellar He gas and an additional population of neutral helium that we call the Warm Breeze. The Warm Breeze is approximately 2 times slower and 2.5 times warmer than the primary interstellar He population, and its density in front of the heliosphere is ∼7% that of the neutral interstellar helium. The inflow direction of the Warm Breeze differs by ∼19° from the inflow direction of interstellar gas. The Warm Breeze seems to be a long-term, perhaps permanent feature of the heliospheric environment. It has not been detected earlier because it is strongly ionized inside the heliosphere. This effect brings it below the threshold of detection via pickup ion and heliospheric backscatter glow observations, as well as by the direct sampling of GAS/Ulysses. We discuss possible sources for the Warm Breeze, including (1) the secondary population of interstellar helium, created via charge exchange and perhaps elastic scattering of neutral interstellar He atoms on interstellar He{sup +} ions in the outer heliosheath, or (2) a gust of interstellar He originating from a hypothetic wave train in the Local Interstellar Cloud. A secondary population is expected from models, but the characteristics of the Warm Breeze do not fully conform to modeling results. If, nevertheless, this is the explanation, IBEX-Lo observations of the Warm Breeze provide key insights into the physical state of plasma in the outer heliosheath. If the second hypothesis is true, the source is likely to be located within a few thousand AU from the Sun, which is the propagation range of possible gusts of interstellar neutral helium with the Warm Breeze characteristics against dissipation via elastic scattering in the Local Cloud. Whatever the

  12. A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten

    Science.gov (United States)

    Harrison, R. W.; Greaves, G.; Hinks, J. A.; Donnelly, S. E.

    2017-11-01

    Transmission electron microscopy (TEM) with in-situ He ion irradiation has been used to examine the damage microstructure of W when varying the helium concentration to displacement damage ratio, irradiation temperature and total dose. Irradiations employed 15, 60 or 85 keV He ions, at temperatures between 500 and 1000 °C up to doses of ∼3.0 DPA. Once nucleated and grown to an observable size in the TEM, bubble diameter as a function of irradiation dose did not measurably increase at irradiation temperatures of 500 °C between 1.0 and 3.0 DPA; this is attributed to the low mobility of vacancies and He/vacancy complexes at these temperatures. Bubble diameter increased slightly for irradiation temperatures of 750 °C and rapidly increased when irradiated at 1000 °C. Dislocation loops were observed at irradiation temperatures of 500 and 750 °C and no loops were observed at 1000 °C. Burgers vectors of the dislocations were determined to be b = ±½ type only and both vacancy and interstitial loops were observed. The proportion of interstitial loops increased with He-appm/DPA ratio and this is attributed to the concomitant increase in bubble areal density, which reduces the vacancy flux for both the growth of vacancy-type loops and the annihilation of interstitial clusters.

  13. Retrograde peri-implantitis

    Directory of Open Access Journals (Sweden)

    Mohamed Jumshad

    2010-01-01

    Full Text Available Retrograde peri-implantitis constitutes an important cause for implant failure. Retrograde peri-implantitis may sometimes prove difficult to identify and hence institution of early treatment may not be possible. This paper presents a report of four cases of (the implant placed developing to retrograde peri-implantitis. Three of these implants were successfully restored to their fully functional state while one was lost due to extensive damage. The paper highlights the importance of recognizing the etiopathogenic mechanisms, preoperative assessment, and a strong postoperative maintenance protocol to avoid retrograde peri-implant inflammation.

  14. Influence of tensile stress on cavity growth in nickel under helium irradiation

    International Nuclear Information System (INIS)

    Kusanagi, Hideo; Hide, Koichiro; Takaku, Hiroshi

    1989-01-01

    The influence of tensile stress on cavity behavior in pure nickel under helium irradiation was investigated by in-situ observation using the transmission electron microscope (TEM) in which an ion gun is installed. Specimens were irradiated at 500 0 C with 20 keV helium in the TEM. The dose rate was about 10 14 He/cm 2 s, and the angle between the helium beam and the normal direction of the specimens was about 60 0 . The damage rate estimated by the E-DEP-1 code was about 0.6x10 -3 dpa/s at its peak position. The main results are as follows: (1) cavity nucleation was accelerated by applying tensile stress, and cavity size in stressed specimens was several times larger than that in stress-free specimens; (2) cavity density in the stressed specimen increased more rapidly than in the stress-free specimen, and then decreased by cavity coalescences; (3) depth of cavity nucleation in the stress-free specimen was about 160 nm, while that in the stressed specimen was about 320 nm; that is, cavities nucleated in deeper regions in the stressed specimen than in the stress-free specimen. This result indicates that helium atoms and vacancies can migrate into the deeper region by applying tensile stress. (4) The experimental results obtained in this study can be explained qualitatively by the mechanism that mobile dislocations drag He-V complexes to the deeper region. This implies that there are similar phenomena in the case of compressive stress. (orig.)

  15. Individual titanium zygomatic implant

    Science.gov (United States)

    Nekhoroshev, M. V.; Ryabov, K. N.; Avdeev, E. V.

    2018-03-01

    Custom individual implants for the reconstruction of craniofacial defects have gained importance due to better qualitative characteristics over their generic counterparts – plates, which should be bent according to patient needs. The Additive Manufacturing of individual implants allows reducing cost and improving quality of implants. In this paper, the authors describe design of zygomatic implant models based on computed tomography (CT) data. The fabrication of the implants will be carried out with 3D printing by selective laser melting machine SLM 280HL.

  16. A reciprocating liquid helium pump used for forced flow of supercritical helium

    International Nuclear Information System (INIS)

    Krafft, G.; Zahn, G.

    1978-01-01

    The performance of a small double acting piston pump for circulating helium in a closed heat transfer loop is described. The pump was manufactured by LINDE AG, Munich, West Germany. The measured flow rate of supercritical helium was about 17 gs -1 (500 lhr -1 ) with a differential pressure of Δp = 0.5 x 10 5 Nm -2 at a working pressure of p = 6 x 10 5 Nm -2 . At differential pressures beyond 0.5 x 10 5 Nm -2 the volumetric efficiency decreases. (author)

  17. Retention of hydrogen isotopes and helium in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Mitsumasa; Sato, Rikiya; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    In the present study, a thin foil of nickel was irradiated by H{sub 2}{sup +}, D{sub 2}{sup +} and He{sup +} to a fluence of 1.2-6.0x10{sup 20}/m{sup 2} using the TBTS (Tritium Beam Test System) apparatus. The thermal desorption spectroscopy (TDS) technique was employed to evaluate the total amount of retained hydrogen isotope and helium atoms in nickel. In the spectra, two peaks appeared at 440-585K and 720-735K for helium. Hydrogen isotopes irradiation after helium preirradiation were found to enhance the helium release and to decrease the peak temperatures. Helium irradiation after hydrogen isotopes preirradiation were found to enhance the helium release, but the peak temperature showed little difference from that without preirradiation. (author)

  18. Capacity enhancement of indigenous expansion engine based helium liquefier

    Science.gov (United States)

    Doohan, R. S.; Kush, P. K.; Maheshwari, G.

    2017-02-01

    Development of technology and understanding for large capacity helium refrigeration and liquefaction at helium temperature is indispensable for coming-up projects. A new version of helium liquefier designed and built to provide approximately 35 liters of liquid helium per hour. The refrigeration capacity of this reciprocating type expansion engine machine has been increased from its predecessor version with continuous improvement and deficiency debugging. The helium liquefier has been built using components by local industries including cryogenic Aluminum plate fin heat exchangers. Two compressors with nearly identical capacity have been deployed for the operation of system. Together they consume about 110 kW of electric power. The system employs liquid Nitrogen precooling to enhance liquid Helium yield. This paper describes details of the cryogenic expander design improvements, reconfiguration of heat exchangers, performance simulation and their experimental validation.

  19. Experimental Validation of the LHC Helium Relief System Flow Modeling

    CERN Document Server

    Fydrych, J; Riddone, G

    2006-01-01

    In case of simultaneous resistive transitions in a whole sector of magnets in the Large Hadron Collider, the helium would be vented from the cold masses to a dedicated recovery system. During the discharge the cold helium will eventually enter a pipe at room temperature. During the first period of the flow the helium will be heated intensely due to the pipe heat capacity. To study the changes of the helium thermodynamic and flow parameters we have simulated numerically the most critical flow cases. To verify and validate numerical results, a dedicated laboratory test rig representing the helium relief system has been designed and commissioned. Both numerical and experimental results allow us to determine the distributions of the helium parameters along the pipes as well as mechanical strains and stresses.

  20. Flaking and wave-like structure on metallic glasses induced by MeV-energy helium ions

    International Nuclear Information System (INIS)

    Paszti, F.; Fried, M.; Pogany, L.; Manuaba, A.; Mezey, G.; Kotai, E.; Lovas, I.; Lohner, T.; Pocs, L.

    1982-11-01

    Ten samples prepared from different kinds of metallic glasses (different in composition and manufacturing technology) were bombarded by 2 or 1 MeV helium ions with high fluence under different experimental circumstances. During bombardment the temperature increase of the samples caused by irradiation heating was estimated and kept below the temperature needed for the investigated metallic glass to be crystallized. In all cases the surface deformation processes were dominated by flaking i.e. nearly from the whole implanted area a layer suddenly flaked off with a uniform thickness of the applied ion projected range. The surface left behind the flaked layer can be characterized by a wave-like structure i.e. by a regular series of asymmetrical elevations. These elevations, which did not appear on the annealed samples, are caused by a mechanism developed during the bombardment of the amorphous structure (of metallic glasses) by high energy helium ions. Details of this unusual phenomenon are discussed. (author)

  1. Effect of helium on swelling and microstructural evolution in ion-irradiated V-15Cr-5Ti alloy

    International Nuclear Information System (INIS)

    Loomis, B.A.; Kestel, B.J.; Gerber, S.B.; Ayrault, G.

    1986-03-01

    An investigation was made on the effects of implanted helium on the swelling and microstructural evolution that results from energetic single- and dual-ion irradiation of the V-15Cr-5Ti alloy. Single-ion irradiations were utilized for a simulated production of the irradiation damage that might be expected from neutron irradiation of the alloy in a reactor with a fast neutron energy spectrum (E > 0.1 MeV). Dual-ion irradiations were utilized for a simulated production of the simultaneous creation of helium atoms and irradiation damage in the alloy in the MFR environment. Experimental results are also presented on the radiation-induced segregation of the constituent atoms in the single- and dual-ion irradiated alloy

  2. Pressurized-helium breakdown at very low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Metas, R J

    1972-06-01

    An investigation of the electrical-breakdown behavior of helium at very low temperatures has been carried out to assist the design and development of superconducting power cables. At very high densities, both liquid and gaseous helium showed an enhancement in electric strength when pressurized to a few atmospheres; conditioned values of breakdown fields then varied between 30 and 45 MV/m. Breakdown processes occurring over a wide range of helium densities are discussed. 24 references.

  3. Correlation for boron carbide helium release in fast reactors

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Pitner, A.L.

    1977-04-01

    An empirical helium correlation for the helium release from boron carbide has been developed. The correlation provides a good fit to the experimental data in the temperature range from 800 to 1350 0 K, and burnup levels up to 80 x 10 20 captures/cm 3 . The correlation has the capability of extrapolation to 2200 0 K (3500 0 F) and 200 x 10 20 captures/cm 3 . In this range the helium release rate will not exceed the generation rate

  4. Blackbody-radiation correction to the polarizability of helium

    International Nuclear Information System (INIS)

    Puchalski, M.; Jentschura, U. D.; Mohr, P. J.

    2011-01-01

    The correction to the polarizability of helium due to blackbody radiation is calculated near room temperature. A precise theoretical determination of the blackbody radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ordinary hyperpolarizability of helium. Our explicit calculations provide a definite numerical result for the effect and indicate that the effect of blackbody radiation can be excluded as a limiting factor for dielectric gas thermometry using helium or argon.

  5. Dipole moments of molecules solvated in helium nanodroplets

    International Nuclear Information System (INIS)

    Stiles, Paul L.; Nauta, Klaas; Miller, Roger E.

    2003-01-01

    Stark spectra are reported for hydrogen cyanide and cyanoacetylene solvated in helium nanodroplets. The goal of this study is to understand the influence of the helium solvent on measurements of the permanent electric dipole moment of a molecule. We find that the dipole moments of the helium solvated molecules, calculated assuming the electric field is the same as in vacuum, are slightly smaller than the well-known gas-phase dipole moments of HCN and HCCCN. A simple elliptical cavity model quantitatively accounts for this difference, which arises from the dipole-induced polarization of the helium

  6. Cooling performance of helium-gas/water coolers in HENDEL

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Takada, Shoji; Hayashi, Haruyoshi; Kobayashi, Toshiaki; Ohta, Yukimaru; Shimomura, Hiroaki; Miyamoto, Yoshiaki

    1994-01-01

    The helium engineering demonstration loop (HENDEL) has four helium-gas/water coolers where the cooling water flows in the tubes and helium gas on the shell side. Their cooling performance was studied using the operational data from 1982 to 1991. The heat transfer of helium gas on the shell was obtained for segmental and step-up baffle type coolers. Also, the change with operation time was investigated. The cooling performance was lowered by the graphite powder released from the graphite components for several thousand hours and thereafter recovered because the graphite powder from the components was reduced and the powder in the cooler shell was blown off during the operation. (orig.)

  7. Electron temperature measurements in lowdensity plasmas by helium spectroscopy

    International Nuclear Information System (INIS)

    Brenning, N.

    1977-09-01

    This method to use relative intensities of singlet and triplet lines of neutral helium to measure electron temperature in low-density plasmas is examined. Calculations from measured and theoretical data about transitions in neutral helium are carried out and compared to experimental results. It is found that relative intensities of singlet and triplet lines from neutral helium only can be used for TE determination in low-density, short-duration plasmas. The most important limiting processes are excitation from the metastable 2 3 S level and excitation transfer in collisions between electrons and excited helium atoms. An evaluation method is suggested, which minimizes the effect of these processes. (author)

  8. Asteroseismic estimate of helium abundance of 16 Cyg A, B

    Directory of Open Access Journals (Sweden)

    Verma Kuldeep

    2015-01-01

    Full Text Available The helium ionization zone in a star leaves a characteristic signature on its oscillation frequencies, which can be used to estimate the helium content in the envelope of the star. We use the oscillation frequencies of 16 Cyg A and B, obtained using 2.5 years of Kepler data, to estimate the envelope helium abundance of these stars. We find the envelope helium abundance to lie in the range 0.231–0.251 for 16 Cyg A and 0.218–0.266 for 16 Cyg B.

  9. Measurement of OH density and air-helium mixture ratio in an atmospheric-pressure helium plasma jet

    International Nuclear Information System (INIS)

    Yonemori, Seiya; Ono, Ryo; Nakagawa, Yusuke; Oda, Tetsuji

    2012-01-01

    The absolute density of OH radicals in an atmospheric-pressure helium plasma jet is measured using laser-induced fluorescence (LIF). The plasma jet is generated in room air by applying a pulsed high voltage onto a quartz tube with helium gas flow. The time-averaged OH density is 0.10 ppm near the quartz tube nozzle, decreasing away from the nozzle. OH radicals are produced from water vapour in the helium flow, which is humidified by water adsorbed on the inner surface of the helium line and the quartz tube. When helium is artificially humidified using a water bubbler, the OH density increases with humidity and reaches 2.5 ppm when the water vapour content is 200 ppm. Two-dimensional distribution of air-helium mixture ratio in the plasma jet is also measured using the decay rate of the LIF signal waveform which is determined by the quenching rate of laser-excited OH radicals. (paper)

  10. Helium sources to groundwater in active volcanic terrain, and implications for tritium-helium dating at Mount St. Helens

    Energy Technology Data Exchange (ETDEWEB)

    Gates, John B. [Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, 217 Bessey Hall, Lincoln NE 68588 (United States)

    2013-07-01

    Groundwater helium sources and residence times were investigated using groundwater discharging from springs surrounding Mount St. Helens in the Cascades region of the United States. Significant contributions of mantle helium were found in all samples and are attributable to interaction between groundwater and magmatic gases. Bounding calculations for residence times were made on the basis of helium isotope mixing plots and historical tritium data. (authors)

  11. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    Directory of Open Access Journals (Sweden)

    S. S. Bulanov

    2015-06-01

    Full Text Available The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He^{3} ions, having almost the same penetration depth as He^{4} with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  12. Leak testing using helium leak detector

    International Nuclear Information System (INIS)

    Aparicio, G.; Mathot, S.; Munoz, C.; Orlando, O.

    1997-01-01

    Most of the equipment used in the industry and particularly in the nuclear activity need to be, vacuum or pressure tight, for operative and safety requirements. These devices have to satisfy particular regulations in order to be qualified by means of operating licences. One of the most efficient system to ensure leaktightnes is using a helium leak detector with a mass spectrometer. In this paper we show the equipment and the devices employed in fuel rods fabrication for CAREM project, and some typical material defects. Operating system and the sensitivity of this method is also described. (author) [es

  13. The recombination of a helium plasma

    International Nuclear Information System (INIS)

    Hollenstein, C.; Sayasov, Y.; Schneider, H.

    1975-01-01

    A helium plasma (Tsub(e) 15 cm -3 ) in the afterglow without magnetic field was investigated. The measurements of the electron density and temperature are presented. Laser interferometry and radiowave diagnostics were used. The measured exponential decay of the electron density and temperature was explained with the collisional-radiative recombination and the thermal conduction of the electrons towards the wall of the discharge vessel. The measured recombination coefficients were compared with measurements and calculations of other authors. The best agreement was found with the calculations by Drawin. (Auth.)

  14. Dynamic Simulation of AN Helium Refrigerator

    Science.gov (United States)

    Deschildre, C.; Barraud, A.; Bonnay, P.; Briend, P.; Girard, A.; Poncet, J. M.; Roussel, P.; Sequeira, S. E.

    2008-03-01

    A dynamic simulation of a large scale existing refrigerator has been performed using the software Aspen Hysys®. The model comprises the typical equipments of a cryogenic system: heat exchangers, expanders, helium phase separators and cold compressors. It represents the 400 W @ 1.8 K Test Facility located at CEA—Grenoble. This paper describes the model development and shows the possibilities and limitations of the dynamic module of Aspen Hysys®. Then, comparison between simulation results and experimental data are presented; the simulation of cooldown process was also performed.

  15. Hot helium flow test facility summary report

    International Nuclear Information System (INIS)

    1980-06-01

    This report summarizes the results of a study conducted to assess the feasibility and cost of modifying an existing circulator test facility (CTF) at General Atomic Company (GA). The CTF originally was built to test the Delmarva Power and Light Co. steam-driven circulator. This circulator, as modified, could provide a source of hot, pressurized helium for high-temperature gas-cooled reactor (HTGR) and gas-cooled fast breeder reactor (GCFR) component testing. To achieve this purpose, a high-temperature impeller would be installed on the existing machine. The projected range of tests which could be conducted for the project is also presented, along with corresponding cost considerations

  16. Lamb shift in helium-like uranium

    International Nuclear Information System (INIS)

    Munger, C.T. Jr.

    1987-01-01

    The author reports an experimental value of 70.4 (8.3) ev for the one-electron Lamb shift in uranium, in agreement with the theoretical value of 75.3 (0.4) ev. He extracts the Lamb shift from a beam-foil time-of-flight measurement of the 54.4 (3.4) ps lifetime of the 1s2p/sub 1/2/ 3 P 0 state of helium-like (two electron) uranium

  17. Dissipation in the superfluid helium film

    International Nuclear Information System (INIS)

    Turkington, R.R.; Harris-Lowe, R.F.

    1977-01-01

    We have measured the rate of energy dissipation in superfluid helium film flow in an attempt to test a recent theory due to Harris-Lowe, which predicts that for superfluid stream velocities v/sub s/ that just exceed the critical velocity v/sub c0/, the rate of dissipation is given by an equation of the form Q=C(v/sub s/-v/sub c0/)/sup 3/2/. Our experiments at 1.33 K show that the exponent, predicted to be 3/2, is 1.491 +- 0.021

  18. Transient heat transfer characteristics of liquid helium

    International Nuclear Information System (INIS)

    Tsukamoto, Osami

    1976-01-01

    The transient heat transfer characteristics of liquid helium are investigated. The critical burnout heat fluxes for pulsive heating are measured, and empirical relations between the critical burnout heat flux and the length of the heat pulse are given. The burnout is detected by observing the super-to-normal transition of the temperature sensor which is a thin lead film prepared on the heated surface by vacuum evaporation. The mechanism of boiling heat transfer for pulsive heating is discussed, and theoretical relations between the critical burnout heat flux and the length of the heat pulse are derived. The empirical data satisfy the theoretical relations fairly well. (auth.)

  19. Exfoliation on stainless steel and inconel produced by 0.8-4 MeV helium ion bombardment

    International Nuclear Information System (INIS)

    Paszti, F.; Mezey, G.; Pogany, L.; Fried, M.; Manuaba, A.; Kotai, E.; Lohner, T.; Pocs, L.

    1982-11-01

    Trying to outline the energy dependence of surface deformations such as exfoliation and flaking on candidate CTR first-wall materials, stainless steel and two types of inconels were bombarded by 0.8, 1 and 4 MeV helium ions. All the bombarded spots could be characterized by by large exfoliations covering almost the total implanted area. No spontaneous rupture was observed except on one type of inconel where flaking took place right after reaching the critical dose. After mechanical opening of the formations, similar inner morphology was found as in our previous studies on gold. (author)

  20. The role of radiation damage on retention and temperature intervals of helium and hydrogen detrapping in structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Tolstolutskaya, G.D., E-mail: g.d.t@kipt.kharkov.ua [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademicheskaya St., 61108 Kharkov (Ukraine); Ruzhytskyi, V.V.; Voyevodin, V.N.; Kopanets, I.E.; Karpov, S.A.; Nikitin, A.V. [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademicheskaya St., 61108 Kharkov (Ukraine)

    2013-11-15

    An experimental study of hydrogen/deuterium behavior in ferritic–martensitic stainless steels EP-450 (Cr13Mo2NbVB), EP-852 (Cr13Mo2VS), and RUSFER-EK-181 (Fe12Cr2WVTaB) is presented. The effect of displacement damage (dpa) resulting from irradiation with helium, hydrogen, and argon ions on features of deuterium detrapping and retention in steels was studied using ion implantation, nuclear reaction depth profiling, and thermal desorption spectrometry techniques. Numerical simulation on the basis of the continuum rate theory was applied for obtaining thermodynamic parameters of deuterium trapping and desorption in steels.

  1. Neutrons on a surface of liquid helium

    Science.gov (United States)

    Grigoriev, P. D.; Zimmer, O.; Grigoriev, A. D.; Ziman, T.

    2016-08-01

    We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined potentials of the Earth's gravity and the neutron optical repulsion by a horizontal surface of liquid helium. We analyze the stability of the lowest quantum state, which is most susceptible to perturbations due to surface excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons, phonons, and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the surface may be much greater than the binding energies perpendicular. The total scattering time of these UCNs at 0.7 K is found to exceed 1 h, and rapidly increases with decreasing temperature. Such low scattering rates should enable high-precision measurements of the sequence of discrete energy levels, thus providing improved tests of short-range gravity. The system might also be useful for neutron β -decay experiments. We also sketch new experimental propositions for level population and trapping of ultracold neutrons above a flat horizontal mirror.

  2. Are sdAs helium core stars?

    Directory of Open Access Journals (Sweden)

    Pelisoli Ingrid

    2017-12-01

    Full Text Available Evolved stars with a helium core can be formed by non-conservative mass exchange interaction with a companion or by strong mass loss. Their masses are smaller than 0.5 M⊙. In the database of the Sloan Digital Sky Survey (SDSS, there are several thousand stars which were classified by the pipeline as dwarf O, B and A stars. Considering the lifetimes of these classes on the main sequence, and their distance modulus at the SDSS bright saturation, if these were common main sequence stars, there would be a considerable population of young stars very far from the galactic disk. Their spectra are dominated by Balmer lines which suggest effective temperatures around 8 000-10 000 K. Several thousand have significant proper motions, indicative of distances smaller than 1 kpc. Many show surface gravity in intermediate values between main sequence and white dwarf, 4.75 < log g < 6.5, hence they have been called sdA stars. Their physical nature and evolutionary history remains a puzzle. We propose they are not H-core main sequence stars, but helium core stars and the outcomes of binary evolution. We report the discovery of two new extremely-low mass white dwarfs among the sdAs to support this statement.

  3. Helium effects on tritium storage materials

    International Nuclear Information System (INIS)

    Moysan, I.; Contreras, S.; Demoment, J.

    2008-01-01

    For ten years French Tritium laboratories have been using metal hydride storage beds with LaNi 4 Mn for process gas (HDT mixture) absorption, desorption and for both short and long term storage. This material has been chosen because of its low equilibrium pressure and of its ability to retain decay helium 3 in its lattice. Aging effects on the thermodynamic behavior of LaNi 4 Mn have been investigated. Aging, due to formation of helium 3 in the lattice, decreases the desorption isotherm plateau pressure and shifts the α phase to the higher stoichiometries. Life time of the two kinds of tritium (and isotopes) storage vessels managed in the laboratory depends on these aging changes. The Tritium Long Term Storage (namely STLT) and the hydride storage vessel (namely FSH 400) are based on LaNi 4 Mn even though they are not used for the same applications. STLT contains LaNi 4 Mn in an aluminum vessel and is designed for long term pure tritium storage. The FSH 400 is composed of LaNi 4 Mn included within a stainless steel container. This design is aimed at storing low tritium content mixtures (less than 3% of tritium) and for supplying processes with HDT gas. Life time of the STLT can reach 12 years. Life time of the FSH 400 varies from 1.2 years to more than 25 years depending on the application. (authors)

  4. Helium leak testing of scanning electron microscope

    International Nuclear Information System (INIS)

    Ahmad, Anis; Tripathi, S.K.; Mukherjee, D.

    2015-01-01

    Scanning Electron Microscope (SEM) is a specialized electron-optical device which is used for imaging of miniscule features on topography of material specimens. Conventional SEMs used finely focused high energy (about 30 KeV) electron beam probes of diameter of about 10nm for imaging of solid conducting specimens. Vacuum of the order of 10"-"5 Torr is prerequisite for conventional Tungsten filament type SEMs. One such SEM was received from one of our laboratory in BARC with a major leak owing to persisting poor vacuum condition despite continuous pumping for several hours. He-Leak Detection of the SEM was carried out at AFD using vacuum spray Technique and various potential leak joints numbering more than fifty were helium leak tested. The major leak was detected in the TMP damper bellow. The part was later replaced and the repeat helium leak testing of the system was carried out using vacuum spray technique. The vacuum in SEM is achieved is better than 10"-"5 torr and system is now working satisfactorily. (author)

  5. Electron impact ionization-excitation of Helium

    Science.gov (United States)

    Ancarani, Lorenzo Ugo; Gomez, A. I.; Gasaneo, G.; Mitnik, D. M.; Ambrosio, M. J.

    2016-09-01

    We calculate triple differential cross sections (TDCS) for the process of ionization-excitation of Helium by fast electron impact in which the residual ion is left in the n =2 excited state. We chose the strongly asymmetric kinematics used in the experiment performed by Dupré et al.. In a perturbative scheme, for high projectile energies the four-body problem reduces to a three-body one and, within that framework, we solve the time- independent Schrödinger equation with a Sturmian approach. The method, based on Generalized Sturmian Functions (GSF), is employed to obtain the initial ground state of Helium, the single-continuum state and the scattering wave function; for each of them, the GSF basis is constructed with the corresponding adequate asymptotic conditions. Besides, the method presents the following advantage: the scattering amplitudes can be extracted directly in the asymptotic region of the scattering solution, and thus the TDCS can be obtained without requiring a matrix element evaluation.

  6. Helium effects on tritium storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Moysan, I.; Contreras, S.; Demoment, J. [CEA Valduc, Service HDT, 21 - Is-sur-Tille (France)

    2008-07-15

    For ten years French Tritium laboratories have been using metal hydride storage beds with LaNi{sub 4}Mn for process gas (HDT mixture) absorption, desorption and for both short and long term storage. This material has been chosen because of its low equilibrium pressure and of its ability to retain decay helium 3 in its lattice. Aging effects on the thermodynamic behavior of LaNi{sub 4}Mn have been investigated. Aging, due to formation of helium 3 in the lattice, decreases the desorption isotherm plateau pressure and shifts the {alpha} phase to the higher stoichiometries. Life time of the two kinds of tritium (and isotopes) storage vessels managed in the laboratory depends on these aging changes. The Tritium Long Term Storage (namely STLT) and the hydride storage vessel (namely FSH 400) are based on LaNi{sub 4}Mn even though they are not used for the same applications. STLT contains LaNi{sub 4}Mn in an aluminum vessel and is designed for long term pure tritium storage. The FSH 400 is composed of LaNi{sub 4}Mn included within a stainless steel container. This design is aimed at storing low tritium content mixtures (less than 3% of tritium) and for supplying processes with HDT gas. Life time of the STLT can reach 12 years. Life time of the FSH 400 varies from 1.2 years to more than 25 years depending on the application. (authors)

  7. The primordial helium abundance from updated emissivities

    International Nuclear Information System (INIS)

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.; Porter, R.L.

    2013-01-01

    Observations of metal-poor extragalactic H II regions allow the determination of the primordial helium abundance, Y p . The He I emissivities are the foundation of the model of the H II region's emission. Porter, Ferland, Storey, and Detisch (2012) have recently published updated He I emissivities based on improved photoionization cross-sections. We incorporate these new atomic data and update our recent Markov Chain Monte Carlo analysis of the dataset published by Izotov, Thuan, and Stasi'nska (2007). As before, cuts are made to promote quality and reliability, and only solutions which fit the data within 95% confidence level are used to determine the primordial He abundance. The previously qualifying dataset is almost entirely retained and with strong concordance between the physical parameters. Overall, an upward bias from the new emissivities leads to a decrease in Y p . In addition, we find a general trend to larger uncertainties in individual objects (due to changes in the emissivities) and an increased variance (due to additional objects included). From a regression to zero metallicity, we determine Y p = 0.2465 ± 0.0097, in good agreement with the BBN result, Y p = 0.2485 ± 0.0002, based on the Planck determination of the baryon density. In the future, a better understanding of why a large fraction of spectra are not well fit by the model will be crucial to achieving an increase in the precision of the primordial helium abundance determination

  8. Sistema de fabrico rápido de implantes ortopédicos Rapid manufacturing system of orthopedics implants

    Directory of Open Access Journals (Sweden)

    Carlos Relvas

    2009-06-01

    Full Text Available Este estudo teve como objectivo o desenvolvimento uma metodologia de fabrico rápido de implantes ortopédicos, em simultaneidade com a intervenção cirúrgica, considerando duas potenciais aplicações na área ortopédica: o fabrico de implantes anatomicamente adaptados e o fabrico de implantes para substituição de perdas ósseas. A inovação do trabalho desenvolvido consiste na obtenção in situ da geometria do implante, através da impressão directa de um material elastomérico (polivinilsiloxano que permite obter com grande exactidão a geometria pretendida. Após digitalização do modelo obtido em material elastomérico, o implante final é fabricado por maquinagem recorrendo a um sistema de CAD/CAM dedicado. O implante após esterilização, pode ser colocado no paciente. O conceito foi desenvolvido com recurso a tecnologias disponíveis comercialmente e de baixo custo. O mesmo foi testado sob a forma de uma artroplastia da anca realizada in vivo numa ovelha. O acréscimo de tempo de cirurgia foi de 80 minutos sendo 40 directamente resultantes do processo de fabrico do implante. O sistema desenvolvido revelou-se eficiente no alcance dos objectivos propostos, possibilitando o fabrico de um implante durante um período de tempo perfeitamente compatível com o tempo de cirurgia.This study, aimed the development of a methodology for rapid manufacture of orthopedic implants simultaneously with the surgical intervention, considering two potential applications in the fields of orthopedics: the manufacture of anatomically adapted implants and implants for bone loss replacement. This work innovation consists on the capitation of the in situ geometry of the implant by direct capture of the shape using an elastomeric material (polyvinylsiloxane which allows fine detail and great accuracy of the geometry. After scanning the elastomeric specimen, the implant is obtained by machining using a CNC milling machine programmed with a dedicated CAD

  9. Study of a microwave discharge in argon/helium mixtures

    International Nuclear Information System (INIS)

    Saada, Serge

    1983-01-01

    A discharge created by a surface wave in Argon-Helium mixture is studied. First, the helium influence on plasma parameters has been studied (electron density, electric field, effective collision frequency, etc...), then, on excitation processes in the discharge. Relations between plasma lines, electron density and electric field have been established. [fr

  10. High temperature helium test rig with prestressed concrete pressure vessel

    International Nuclear Information System (INIS)

    Schmidl, H.

    1975-10-01

    The report gives a short description of the joint project prestressed concrete vessel-helium test station as there is the building up of the concrete structure, the system of instrumentation, the data processing, the development of the helium components as well as the testing programs. (author)

  11. Continuous magnetic refrigeration in the superfluid helium range

    International Nuclear Information System (INIS)

    Lacaze, Alain.

    1982-10-01

    An experimental prototype magnetic refrigerator based on the well known adiabatic demagnetization principle is described. A continuous process is employed in which gadolinium garnet follows successive magnetization-demagnetization cycles between a hot liquid helium source at 4.2K and a cold superfluid helium source at T [fr

  12. Helium effect on mechanical property of fusion reactor structural materials

    International Nuclear Information System (INIS)

    Yamamoto, Norikazu; Chuto, Toshinori; Murase, Yoshiharu; Nakagawa, Johsei

    2004-01-01

    High-energy neutrons produced in fusion reactor core caused helium in the structural materials of fusion reactors, such as blankets. We injected alpha particles accelerated by the cyclotron to the samples of martensite steel (9Cr3WVTaB). Equivalent helium doses injected to the sample is estimated to be up to 300 ppm, which were estimated to be equivalent to helium accumulation after the 1-year reactor operation. Creep tests of the samples were made to investigate helium embrittlement. There were no appreciable changes in the relation between the stresses and the rupture time, the minimum creep rate and the applied stress. Grain boundary effect by helium was not observed in ruptured surfaces. Fatigue tests were made for SUS304 samples, which contain helium up to 150 ppm. After 0.05 Hz cyclic stress tests, it was shown that the fatigue lifetime (cycles to rupture and extension to failure) are 1/5 in 150 ppm helium samples compared with no helium samples. The experimental results suggest martensite steel is promising for structural materials of fusion reactors. (Y. Tanaka)

  13. Positron collisions with helium and alkaline earth-like atoms

    International Nuclear Information System (INIS)

    Campbell, C.P.

    1998-09-01

    This doctoral thesis is subdivided into: 1. Theory of positron collisions with helium and alkaline earth-like atoms, 2. Positron collisions with helium, magnesium, calcium, zinc, 3. Intercomparison of positron scattering by all those elements. The appendix of this work gives details of the numerical calculations and expands on the wavefunctions used

  14. The adsorption of helium atoms on coronene cations

    Energy Technology Data Exchange (ETDEWEB)

    Kurzthaler, Thomas; Rasul, Bilal; Kuhn, Martin; Scheier, Paul, E-mail: Paul.Scheier@uibk.ac.at, E-mail: andrew.ellis@le.ac.uk [Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck (Austria); Lindinger, Albrecht [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Ellis, Andrew M., E-mail: Paul.Scheier@uibk.ac.at, E-mail: andrew.ellis@le.ac.uk [Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2016-08-14

    We report the first experimental study of the attachment of multiple foreign atoms to a cationic polycyclic aromatic hydrocarbon (PAH). The chosen PAH was coronene, C{sub 24}H{sub 12}, which was added to liquid helium nanodroplets and then subjected to electron bombardment. Using mass spectrometry, coronene cations decorated with helium atoms were clearly seen and the spectrum shows peaks with anomalously high intensities (“magic number” peaks), which represent ion-helium complexes with added stability. The data suggest the formation of a rigid helium layer consisting of 38 helium atoms that completely cover both faces of the coronene ion. Additional magic numbers can be seen for the further addition of 3 and 6 helium atoms, which are thought to attach to the edge of the coronene. The observation of magic numbers for the addition of 38 and 44 helium atoms is in good agreement with a recent path integral Monte Carlo prediction for helium atoms on neutral coronene. An understanding of how atoms and molecules attach to PAH ions is important for a number of reasons including the potential role such complexes might play in the chemistry of the interstellar medium.

  15. Manufacturing cycle for pure neon-helium mixture production

    International Nuclear Information System (INIS)

    Batrakov, B.P.; Kravchenko, V.A.

    1980-01-01

    The manufacturing cycle for pure neon-helium mixture production with JA-300 nitrogen air distributing device has been developed. Gas mixture containing 2-3% of neon-helium mixture (the rest is mainly nitrogen 96-97%) is selected out of the cover of the JA-300 column condensator and enters the deflegmator under the 2.3-2.5 atm. pressure. The diflegmator presents a heat exchange apparatus in which at 78 K liquid nitrogen the condensation of nitrogen from the mixture of gases entering from the JA-300 column takes place. The enriched gas mixture containing 65-70% of neon-helium mixture and 30-35% of nitrogen goes out from the deflegmator. This enriched neon-helium mixture enters the gasgoeder for impure (65-70%) neon-helium mixture. Full cleaning of-neon helium mixture of nitrogen is performed by means of an adsorber. As adsorbent an activated coal has been used. Adsorption occurs at the 78 K temperature of liquid nitrogen and pressure P=0.1 atm. As activated coal cooled down to nitrogen temperature adsorbs nitrogen better than neon and helium, the nitrogen from the mixture is completely adsorbed. Pure neon-helium mixture from the adsorber comes into a separate gasgolder. In one campaign the cycle allows obtaining 2 m 3 of the mixture. The mixture contains 0.14% of nitrogen, 0.01% of oxygen and 0.06% of hydrogen

  16. DIRECT EVALUATION OF THE HELIUM ABUNDANCES IN OMEGA CENTAURI

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Avrett, E. H., E-mail: dupree@cfa.harvard.edu, E-mail: eavrett@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-08-20

    A direct measure of the helium abundances from the near-infrared transition of He I at 1.08 {mu}m is obtained for two nearly identical red giant stars in the globular cluster Omega Centauri. One star exhibits the He I line; the line is weak or absent in the other star. Detailed non-local thermal equilibrium semi-empirical models including expansion in spherical geometry are developed to match the chromospheric H{alpha}, H{beta}, and Ca II K lines, in order to predict the helium profile and derive a helium abundance. The red giant spectra suggest a helium abundance of Y {<=} 0.22 (LEID 54064) and Y = 0.39-0.44 (LEID 54084) corresponding to a difference in the abundance {Delta}Y {>=} 0.17. Helium is enhanced in the giant star (LEID 54084) that also contains enhanced aluminum and magnesium. This direct evaluation of the helium abundances gives observational support to the theoretical conjecture that multiple populations harbor enhanced helium in addition to light elements that are products of high-temperature hydrogen burning. We demonstrate that the 1.08 {mu}m He I line can yield a helium abundance in cool stars when constraints on the semi-empirical chromospheric model are provided by other spectroscopic features.

  17. Helium leak and chemical impurities control technology in HTTR

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Shimizu, Atsushi; Hamamoto, Shimpei; Sakaba, Nariaki

    2014-01-01

    Japan Atomic Energy Agency (JAEA) has designed and developed high-temperature gas-cooled reactor (HTGR) hydrogen cogeneration system named gas turbine high-temperature reactor (GTHTR300C) as a commercial HTGR. Helium gas is used as the primary coolant in HTGR. Helium gas is easy to leak, and the primary helium leakage should be controlled tightly from the viewpoint of preventing the release of radioactive materials to the environment. Moreover from the viewpoint of preventing the oxidization of graphite and metallic material, the helium coolant chemistry should be controlled tightly. The primary helium leakage and the helium coolant chemistry during the operation is the major factor in the HTGR for commercialization of HTGR system. This paper shows the design concept and the obtained operational experience on the primary helium leakage control and primary helium impurity control in the high-temperature engineering test reactor (HTTR) of JAEA. Moreover, the future plan to obtain operational experience of these controls for commercialization of HTGR system is shown. (author)

  18. Analysis of visible spectral lines in LHD helium discharge

    International Nuclear Information System (INIS)

    Wan, B.N.; Goto, M.; Morita, S.

    1999-06-01

    In this study, visible spectral lines in LHD helium discharges are analyzed and it was found that they could be well fitted with gaussian profile. The results reveal a simple mechanism of helium atom recycling. Ion temperatures were also derived from the fitting. A typical value of the ion temperature obtained was about 6 eV. (author)

  19. The cryogenic helium cooling system for the Tokamak physics experiment

    International Nuclear Information System (INIS)

    Felker, B.; Slack, D.S.; Wendland, C.R.

    1995-01-01

    The Tokamak Physics Experiment (TPX) will use supercritical helium to cool all the magnets and supply helium to the Vacuum cryopumping subsystem. The heat loads will come from the standard steady state conduction and thermal radiation sources and from the pulsed loads of the nuclear and eddy currents caused by the Central Solenoid Coils and the plasma positioning coils. The operations of the TPX will begin with pulses of up to 1000 seconds in duration every 75 minutes. The helium system utilizes a pulse load leveling scheme to buffer out the effects of the pulse load and maintain a constant cryogenic plant operation. The pulse load leveling scheme utilizes the thermal mass of liquid and gaseous helium stored in a remote dewar to absorb the pulses of the tokamak loads. The mass of the stored helium will buffer out the temperature pulses allowing 5 K helium to be delivered to the magnets throughout the length of the pulse. The temperature of the dewar will remain below 5 K with all the energy of the pulse absorbed. This paper will present the details of the heat load sources, of the pulse load leveling scheme operations, a partial helium schematic, dewar temperature as a function of time, the heat load sources as a function of time and the helium temperature as a function of length along the various components that will be cooled

  20. Helium induces preconditioning in human endothelium in vivo

    NARCIS (Netherlands)

    Smit, Kirsten F.; Oei, Gezina T. M. L.; Brevoord, Daniel; Stroes, Erik S.; Nieuwland, Rienk; Schlack, Wolfgang S.; Hollmann, Markus W.; Weber, Nina C.; Preckel, Benedikt

    2013-01-01

    Helium protects myocardium by inducing preconditioning in animals. We investigated whether human endothelium is preconditioned by helium inhalation in vivo. Forearm ischemia-reperfusion (I/R) in healthy volunteers (each group n = 10) was performed by inflating a blood pressure cuff for 20 min.

  1. Deposition, milling, and etching with a focused helium ion beam

    NARCIS (Netherlands)

    Alkemade, P.F.A.; Veldhoven, E. van

    2012-01-01

    The recent successful development of the helium ion microscope has produced both a new type of microscopy and a new tool for nanoscale manufacturing. This chapter reviews the first explorations in this new field in nanofabrication. The studies that utilize the Orion helium ion microscope to grow or

  2. Implantable Medical Devices

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Implantable Medical Devices Updated:Sep 16,2016 For Rhythm Control ... a Heart Attack Introduction Medications Surgical Procedures Implantable Medical Devices • Life After a Heart Attack • Heart Attack ...

  3. Intercavitary implants dosage calculation

    International Nuclear Information System (INIS)

    Rehder, B.P.

    The use of spacial geometry peculiar to each treatment for the attainment of intercavitary and intersticial implants dosage calculation is presented. The study is made in patients with intercavitary implants by applying a modified Manchester technique [pt

  4. Implantable electronic medical devices

    CERN Document Server

    Fitzpatrick, Dennis

    2014-01-01

    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  5. Room temperature desorption of helium-3 from metal tritides

    International Nuclear Information System (INIS)

    Beavis, L.C.; Kass, W.J.

    1976-10-01

    It has long been known that helium-3 accumulates in metal tritides as tritium decays. Early in life nearly 100% of the helium-3 is retained in the lattice, but when a critical concentration is reached (material dependent), the lattice will no longer retain the helium-3 and it is emitted at about the generation rate. Measurements were recently made on a number of erbium tritides with varying concentrations in the ditritide phase. The expected early release characteristics are observed for all of the samples. However, ditritides with higher tritium concentrations reach the rapid release state at much lower helium-3 concentrations. For instance, the helium to metal concentration for rapid release in the unsaturated ditritide is about 0.22, whereas it is only one-tenth this value in the saturated ditritide. The additional tritium in the tritide appears to be the cause of this effect

  6. An efficient continuous flow helium cooling unit for Moessbauer experiments

    International Nuclear Information System (INIS)

    Herbert, I.R.; Campbell, S.J.

    1976-01-01

    A Moessbauer continuous flow cooling unit for use with liquid helium over the temperature range 4.2 to 300K is described. The cooling unit can be used for either absorber or source studies in the horizontal plane and it is positioned directly on top of a helium storage vessel. The helium transfer line forms an integral part of the cooling unit and feeds directly into the storage vessel so that helium losses are kept to the minimum. The helium consumption is 0.12 l h -1 at 4.2 K decreasing to 0.055 l h -1 at 40 K. The unit is top loading and the exchange gas cooled samples can be changed easily and quickly. (author)

  7. Pressurized helium II-cooled magnet test facility

    International Nuclear Information System (INIS)

    Warren, R.P.; Lambertson, G.R.; Gilbert, W.S.; Meuser, R.B.; Caspi, S.; Schafer, R.V.

    1980-06-01

    A facility for testing superconducting magnets in a pressurized bath of helium II has been constructed and operated. The cryostat accepts magnets up to 0.32 m diameter and 1.32 m length with current to 3000 A. In initial tests, the volume of helium II surrounding the superconducting magnet was 90 liters. Minimum temperature reached was 1.7 K at which point the pumping system was throttled to maintain steady temperature. Helium II reservoir temperatures were easily controlled as long as the temperature upstream of the JT valve remained above T lambda; at lower temperatures control became difficult. Positive control of the temperature difference between the liquid and cold sink by means of an internal heat source appears necessary to avoid this problem. The epoxy-sealed vessel closures, with which we have had considerable experience with normal helium vacuum, also worked well in the helium II/vacuum environment

  8. Helium atoms and molecules in strong magnetic fields

    Science.gov (United States)

    Mori, K.

    Recent theoretical studies have shown that the neutron star surface may be composed of helium or heavier elements as hydrogen may be quickly depleted by diffuse nuclear burning Chang Bildsten However while Hydrogen atmospheres have been studied in great details atomic data for helium is available only for He ion Pavlov Bezchastnov 2005 We performed Hartree-Fock type calculation for Helium atom and molecules and computed their binding ionization and dissociation energies in strong magnetic fields B sim10 12 -- 10 15 G We will present ionization balance of Helium atmospheres at typical magnetic field strengths and temperatures to radio-quiet neutron stars and AXPs We will also discuss several implications of helium atmosphere to X-ray data of isolated neutron stars focusing on the detected spectral features

  9. Screw compressor system for industrial-scale helium refrigerators or industrial ammonia screw compressors for helium refrigeration systems; Schraubenkompressor-System fuer Helium-Grosskaelteanlage oder Ammoniak-Schraubenverdichter aus Industrieanwendungen fuer Helium-Kaelteanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Fredrich, O.; Mosemann, D.; Zaytsev, D. [GEA Grasso GmbH Refrigeration Technology, Berlin (Germany)

    2007-07-01

    Material characteristics, requirements and measured data of ammonia and helium compression are compared. The compressor lines for industrial ammonia and helium refrigerators are presented, and important characteristics of the compressors are explained. The test stand for performance measurements with helium and ammonia is described, and results are presented. In spite of the different characteristics of the fluids, the compressor-specific efficiencies (supply characteristic, quality characteristic) were found to be largely identical. The values calculated for helium on the basis of NH3 test runs were found to be realistic, which means that the decades of experience with ammonia in industrial applications can be applied to helium compression as well. The design of screw compressor aggregates (skids) in industrial refrigeration is discussed and illustrated by examples. (orig.)

  10. Creep properties of Hastelloy X in a carburizing helium environment

    International Nuclear Information System (INIS)

    Nakanishi, T.; Kawakami, H.

    1982-01-01

    In this work, we investigate the environmental effect on the creep behavior of Hastelloy X at 900 0 C in helium and air. Since helium coolant in HTGR is expected to be carburizing and very weakly oxidizing for most metals, testings were focused on the effect of carburizing and slight oxidation. Carburization decreases secondary creep strain rate and delays tertiary creep initiation. On the other hand, the crack growth rate on the specimen surface is enhanced due to very weak oxidation in helium, therefore the tertiary creep strain rate becomes larger than that in air. The rupture time of Hastelloy X was shorter in helium when compared with in air. Stress versus rupture time curves for both environments do not deviate with each other during up to 5000 hours test, and a ratio of rupture stress in helium to that in air was about 0.9

  11. Use of helium in uranium exploration, Grants district

    International Nuclear Information System (INIS)

    DeVoto, R.H.; Mead, R.H.; Martin, J.P.; Bergquist, L.E.

    1980-01-01

    The continuous generation of inert helium gas from uranium and its daughter products provides a potentially useful means for remote detection of uranium deposits. The practicality of conducting helium surveys in the atmosphere, soil gas, and ground water to explore for buried uranium deposits has been tested in the Grants district and in the Powder River Basin of Wyoming. No detectable helium anomalies related to buried or surface uranium deposits were found in the atmosphere. However, reproducible helium-in-soil-gas anomalies were detected spatially related to uranium deposits buried from 50 to 800 ft deep. Diurnal and atmospheric effects can cause helium content variations (noise) in soil gas that are as great as the anomalies observed from instantaneous soil-gas samples. Cumulative soil-gas helium analyses, such as those obtained from collecting undisturbed soil samples and degassing them in the laboratory, may reveal anomalies from 5 to 100 percent above background. Ground water samples from the Grants district, New Mexico, and the Powder River Basin, Wyoming, have distinctly anomalous helium values spatially related to buried uranium deposits. In the southern Powder River Basin, helium values 20 to 200 percent above background occur 2 to 18 mile down the ground-water flow path from known uranium roll-front deposits. In the Grants district, helium contents 40 to 700 percent above background levels are present in ground waters from the host sandstone in the vicinity of uranium deposits and from aquifers up to 3,000 ft stratigraphically above the deep uranium deposits. The use of helium in soil and ground-water surveys, along with uranium and radon analyses of the same materials, is strongly recommended is expensive, deep, uranium-exploration programs such as those being conducted in the Grants district

  12. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    Science.gov (United States)

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  13. Tensile and fracture properties of EBR-II-irradiated V-15Cr-5Ti containing helium

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; Horak, J.A.

    1986-01-01

    The alloy V-15Cr-5Ti was cyclotron-implanted with 80 appM He and subsequently irradiated in the Experimental Breeder Reactor (EBR-II) to 30 dpa. The same alloy was also irradiated in the 10, 20, and 30% cold-worked conditions. Irradiation temperatures ranged from 400 to 700/sup 0/C. No significant effects of helium on mechanical properties were found in this temperature range although the neutron irradiation shifted the temperature of transition from cleavage to ductile fracture to about 625/sup 0/C. Ten percent cold work was found to have a beneficial effect in reducing the tendency for cleavage fracture following irradiation, but high levels (20%) were observed to reduce ductility. Still higher levels (30%) improved ductility by inducing recovery during the elevated-temperature irradiation. Swelling was found to be negligible, but precipitates - titanium oxides or carbonitrides - contained substantial cavities.

  14. Tensile and fracture properties of EBR-II-irradiated V-15Cr-5Ti containing helium

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Horak, J.A.

    1986-01-01

    The alloy V-15Cr-5Ti was cyclotron-implanted with 80 appM He and subsequently irradiated in the Experimental Breeder Reactor (EBR-II) to 30 dpa. The same alloy was also irradiated in the 10, 20, and 30% cold-worked conditions. Irradiation temperatures ranged from 400 to 700 0 C. No significant effects of helium on mechanical properties were found in this temperature range although the neutron irradiation shifted the temperature of transition from cleavage to ductile fracture to about 625 0 C. Ten percent cold work was found to have a beneficial effect in reducing the tendency for cleavage fracture following irradiation, but high levels (20%) were observed to reduce ductility. Still higher levels (30%) improved ductility by inducing recovery during the elevated-temperature irradiation. Swelling was found to be negligible, but precipitates - titanium oxides or carbonitrides - contained substantial cavities

  15. Percutaneous targeted argon-helium cryoablation for renal carcinoma under CT guidance

    International Nuclear Information System (INIS)

    Xu Jian; Cao Jianmin; Lu Guangming; Shi Donghong; Kong Weidong; Gao Dazhi

    2008-01-01

    Objective: To establish initially the technique and evaluate the principle, safety and short term efficacy of argon-helium superconductor operation system (or Ar-He knife) targeted cryotherapy for renal carcinoma. Methods: Seven patients with renal carcinoma were treated with CT-guided percutaneous Ar-He knife targeted cryotherapy. Results: After cryotherapy, no serious complications, such as bleeding, skin cold injury, infection, implantation metastasis inside the puncture path occurred, and one month later, CT scans showed low-density local necrosis in all tumors of the 7 cases, but the tumor reduction in size was found only in 2 cases. Conclusion: CT guiding percutaneous Ar-He knife targeted cryoablation for renal carcinoma is a safe, effective and minimally invasive therapeutic method, particularly for inoperable cases. (authors)

  16. Microbeam line of MeV heavy ions for materials modification and in-situ analysis

    International Nuclear Information System (INIS)

    Horino, Yuji; Chayahara, Akiyoshi; Kiuchi, Masato; Fujii, Kanenaga; Satoh, Mamoru; Takai, Mikio.

    1990-01-01

    A microbeam line for MeV heavy ions of almost any element has been developed for microion-beam processing such as maskless MeV ion implantation and its in-situ analysis. Beam spot sizes of 4.0 μm x 4.0 μm for 3 MeV C 2+ and 9.6 μm x 4.8 μm for 1.8 MeV Au 2+ beams were obtained. Maskless MeV gold ion implantation to a silicon substrate and in-situ microanalysis before and after ion implantation were demonstrated. (author)

  17. ERDA with an external helium ion micro-beam: Advantages and potential applications

    International Nuclear Information System (INIS)

    Calligaro, T.; Castaing, J.; Dran, J.-C.; Moignard, B.; Pivin, J.-C.; Prasad, G.V.R.; Salomon, J.; Walter, P.

    2001-01-01

    Preliminary ERDA experiments at atmospheric pressure have been performed with our external microprobe set-up currently used for the analysis of museum objects by PIXE, RBS and NRA. The objective was to check the feasibility of hydrogen (and deuterium) profiling with an external beam of 3-MeV helium ions. The standard scattering geometry (incident beam at 15 deg. with respect to sample surface and emerging protons or deuterons at 15 deg. in the forward direction) was kept, but the thin foil absorber was replaced by helium gas filling the space between the beam spot and the detector over a distance of about 84 mm. Several standards prepared by ion implantation, with well known H or D depth profiles, were first analysed, which indicated that the analytical capability was as good as under vacuum. A striking feature is the much lower surface peak than under vacuum, a fact that enhances the sensitivity for H analysis near the surface. The same type of measurement was then performed on different materials to show the usefulness of the technique. As a first example, we have checked that the incorporation of H or D into sapphire crystals during mechanical polishing is below the detection limit. Another example is the measurement of the H content in emeralds which can be used as an additional compositional criterion for determining the provenance of emeralds set in museum jewels. The advantages and limitations of our set-up are discussed and several possible applications in the field of cultural heritage are described

  18. A first-principles and experimental study of helium diffusion in periclase MgO

    Science.gov (United States)

    Song, Zhewen; Wu, Henry; Shu, Shipeng; Krawczynski, Mike; Van Orman, James; Cherniak, Daniele J.; Bruce Watson, E.; Mukhopadhyay, Sujoy; Morgan, Dane

    2018-02-01

    The distribution of He isotopes is used to trace heterogeneities in the Earth's mantle, and is particularly useful for constraining the length scale of heterogeneity due to the generally rapid diffusivity of helium. However, such an analysis is challenging because He diffusivities are largely unknown in lower mantle phases, which can influence the He profiles in regions that cycle through the lower mantle. With this motivation, we have used first-principles simulations based on density functional theory to study He diffusion in MgO, an important lower mantle phase. We first studied the case of interstitial helium diffusion in perfect MgO and found a migration barrier of 0.73 eV at zero pressure. Then we used the kinetic Monte Carlo method to study the case of substitutional He diffusion in MgO, where we assumed that He diffuses on the cation sublattice through cation vacancies. We also performed experiments on He diffusion at atmospheric pressure using ion implantation and nuclear reaction analysis in both as-received and Ga-doped samples. A comparison between the experimental and simulation results are shown. This work provides a foundation for further studies at high-pressure.

  19. Analysis of in-situ tritium recovery from solid fusion-reactor blankets

    International Nuclear Information System (INIS)

    Smith, D.L.; Clemmer, R.G.; Jankus, V.Z.; Rest, J.

    1980-01-01

    The proposed concept for in-situ tritium recovery from the STARFIRE blanket involves circulation of a low pressure (approx. 0.05 MPa) helium through formed channels in the highly porous solid breeding material. Tritium generated within the grains must diffuse to the grain boundaries, migrate through the grain boundaries to the particle surface and then percolate through the packed bed to the helium purge channel. Highly porous α-LiAlO 2 with a bimodal pore distribution is proposed for the breeding material to facilitate the tritium release

  20. Absolute calibration of TFTR helium proportional counters

    International Nuclear Information System (INIS)

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Loughlin, M.

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments