WorldWideScience

Sample records for situ growth rates

  1. In situ growth rate measurements during plasma-enhanced chemical vapour deposition of vertically aligned multiwall carbon nanotube films

    International Nuclear Information System (INIS)

    Joensson, M; Nerushev, O A; Campbell, E E B

    2007-01-01

    In situ laser reflectivity measurements are used to monitor the growth of multiwalled carbon nanotube (MWCNT) films grown by DC plasma-enhanced chemical vapour deposition (PECVD) from an iron catalyst film deposited on a silicon wafer. In contrast to thermal CVD growth, there is no initial increase in the growth rate; instead, the initial growth rate is high (as much as 10 μm min -1 ) and then drops off rapidly to reach a steady level (2 μm min -1 ) for times beyond 1 min. We show that a limiting factor for growing thick films of multiwalled nanotubes (MWNTs) using PECVD can be the formation of an amorphous carbon layer at the top of the growing nanotubes. In situ reflectivity measurements provide a convenient technique for detecting the onset of the growth of this layer

  2. In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections

    DEFF Research Database (Denmark)

    Yang, L.; Haagensen, J.A.; Jelsbak, L.

    2008-01-01

    matrix, whereas nonmucoid variants were present mainly as dispersed cells. To obtain estimates of the growth rates of P. aeruginosa in CF lungs, we used quantitative FISH to indirectly measure growth rates of bacteria in sputum samples (reflecting the in vivo lung conditions). The concentration of r......The growth dynamics of bacterial pathogens within infected hosts are a fundamental but poorly understood feature of most infections. We have focused on the in situ distribution and growth characteristics of two prevailing and transmissible Pseudomonas aeruginosa clones that have caused chronic lung......RNA in bacteria isolated from sputa was measured and correlated with the rRNA contents of the same bacteria growing in vitro at defined rates. The results showed that most cells were actively growing with doubling times of between 100 and 200 min, with some growing even faster. Only a small stationary...

  3. Comparison of in Situ and in Vitro Regulation of Soybean Seed Growth and Development

    Science.gov (United States)

    Dyer, Daniel J.; Cotterman, C. Daniel; Cotterman, Josephine C.

    1987-01-01

    The growth characteristics of soybean (Glycine max [L.] Merr.) embryos in culture and seeds in situ were found to be similar, but developmental differences were observed. Embryos placed in culture when very small (grow indefinitely, reaching dry weights far in excess of seeds matured in situ. Apparently, maternal factors were important in early and late development during the determination of maximum growth rate and the cessation of growth. Embryo growth rate was not affected by substituting glucose plus fructose for sucrose in the medium, nor by hormone treatments, including abscisic acid. Glutamine was found to give substantially better growth than glutamate, however. Contrary to prior reports, the response of soybean embryo growth rate to irradiance was found to be primarily an artifact of the effect of irradiance on media temperature. Across seven genotypes the correlation coefficient between seed growth rate in situ and embryo growth rate in vitro was 0.94, indicating essentially all of the variability of in situ seed growth rate between cultivars could be attributed to inherent growth rate differences associated with the embryos. The response to temperature was very similar for both embryos in culture and seeds in situ at temperatures below 30°C. Beyond that temperature, embryo growth rate continued to increase, while seed growth rate did not. The implication is that in situ seed growth rate is determined by the inherent growth potential of the embryo at low to moderate temperatures; however, at higher temperatures, the maternal plant is unable to support the rapid growth rates that the embryo is capable of attaining under conditions of unlimited assimilate supply. PMID:16665434

  4. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth.

    Science.gov (United States)

    Sutter, Eli A; Sutter, Peter W

    2014-12-03

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important, as they provide direct insight into processes in liquids, such as solution growth of nanoparticles, among others. In liquid cell TEM/STEM redox reaction experiments, the hydrated electrons e(-)aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e(-)aq generated by the electron beam during in situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e(-)aq]. By comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e(-)aq] but also the rate of reduction of a metal-ion complex to zerovalent metal atoms in solution.

  5. GROWTH RATE DISTRIBUTION OF BORAX SINGLE CRYSTALS ON THE (001 FACE UNDER VARIOUS FLOW RATES

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The growth rates of borax single crystals from aqueous solutions at various flow rates in the (001 direction were measured using in situ cell method. From the growth rate data obtained, the growth rate distribution of borax crystals was investigated using Minitab Software and SPSS Software at relative supersaturation of 0807 and temperature of 25 °C. The result shows that normal, gamma, and log-normal distribution give a reasonably good fit to GRD. However, there is no correlation between growth rate distribution and flow rate of solution.   Keywords: growth rate dispersion (GRD, borax, flow rate

  6. Study on the PWSCC Crack Growth Rate for Steam Generator Tubing

    International Nuclear Information System (INIS)

    Kang, Shin Hoo; Hwang, Il Soon; Lim, Jun; Lee, Seung Gi; Ryu, Kyung Ha

    2008-03-01

    Using in-situ Raman spectroscopy and crack growth rate lest system in simulated PWR primary water environment, the relationship between the oxide film chemistry and the PWSCC growth rate has been studied. We used I/2T compact tension specimen and disk specimen made of Alloy 182 and Alloy 600 for crack growth rate test and in-situ Raman spectroscopy measurement. Test was made in a refreshed autoclave with 30 cc STP / kg of dissolved hydrogen concentration. Conductivity, pH, dissolved hydrogen and oxygen concentration were continuously monitored at the outlet. The crack growth rate was measured by using switching DCPD technique under cyclinc triangular loading and at the same time oxide phase was determined by using in-situ Raman spectra at the elevation of the temperature. Additionally Raman spectroscopy was achieved for oxide phase transition of Alloy 600 according to the temperature and dissolved hydrogen concentration, 2 and 30cc STP / kg

  7. In situ tagging technique for fishes provides insight into growth and movement of invasive lionfish.

    Science.gov (United States)

    Akins, John L; Morris, James A; Green, Stephanie J

    2014-10-01

    Information on fish movement and growth is primarily obtained through the marking and tracking of individuals with external tags, which are usually affixed to anesthetized individuals at the surface. However, the quantity and quality of data obtained by this method is often limited by small sample sizes owing to the time associated with the tagging process, high rates of tagging-related mortality, and displacement of tagged individuals from the initial capture location. To address these issues, we describe a technique for applying external streamer and dart tags in situ, which uses SCUBA divers to capture and tag individual fish on the sea floor without the use of anesthetic. We demonstrate this method for Indo-Pacific lionfish (Pterois volitans/P. miles), species which are particularly vulnerable to barotrauma when transported to and handled at the surface. To test our method, we tagged 161 individuals inhabiting 26 coral reef locations in the Bahamas over a period of 3 years. Our method resulted in no instances of barotrauma, reduced handling and recovery time, and minimal post-tagging release displacement compared with conventional ex situ tag application. Opportunistic resighting and recapture of tagged individuals reveals that lionfish exhibit highly variable site fidelity, movement patterns, and growth rates on invaded coral reef habitats. In total, 24% of lionfish were resighted between 29 and 188 days after tagging. Of these, 90% were located at the site of capture, while the remaining individuals were resighted between 200 m and 1.1 km from initial site of capture over 29 days later. In situ growth rates ranged between 0.1 and 0.6 mm/day. While individuals tagged with streamer tags posted slower growth rates with increasing size, as expected, there was no relationship between growth rate and fish size for individuals marked with dart tags, potentially because of large effects of tag presence on the activities of small bodied lionfish (i.e., lionfish

  8. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zweiacker, K., E-mail: Kai@zweiacker.org; Liu, C.; Wiezorek, J. M. K. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 648 Benedum Hall, 3700 OHara Street, Pittsburgh, Pennsylvania 15261 (United States); McKeown, J. T.; LaGrange, T.; Reed, B. W.; Campbell, G. H. [Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States)

    2016-08-07

    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of the metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ∼1.3 m s{sup −1} to ∼2.5 m s{sup −1} during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s{sup −1} have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. Using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.

  9. In Situ Observation of Antisite Defect Formation during Crystal Growth

    International Nuclear Information System (INIS)

    Kramer, M. J.; Napolitano, R. E.; Mendelev, M. I.

    2010-01-01

    In situ x-ray diffraction (XRD) coupled with molecular dynamics (MD) simulations have been used to quantify antisite defect trapping during crystallization. Rietveld refinement of the XRD data revealed a marked lattice distortion which involves an a axis expansion and a c axis contraction of the stable C11b phase. The observed lattice response is proportional in magnitude to the growth rate, suggesting that the behavior is associated with the kinetic trapping of lattice defects. MD simulations demonstrate that this lattice response is due to incorporation of 1% to 2% antisite defects during growth.

  10. Dynamics of barite growth in porous media quantified by in situ synchrotron X-ray tomography

    Science.gov (United States)

    Godinho, jose; Gerke, kirill

    2016-04-01

    Current models used to formulate mineral sequestration strategies of dissolved contaminants in the bedrock often neglect the effect of confinement and the variation of reactive surface area with time. In this work, in situ synchrotron X-ray micro-tomography is used to quantify barite growth rates in a micro-porous structure as a function of time during 13.5 hours with a resolution of 1 μm. Additionally, the 3D porous network at different time frames are used to simulate the flow velocities and calculate the permeability evolution during the experiment. The kinetics of barite growth under porous confinement is compared with the kinetics of barite growth on free surfaces in the same fluid composition. Results are discussed in terms of surface area normalization and the evolution of flow velocities as crystals fill the porous structure. During the initial hours the growth rate measured in porous media is similar to the growth rate on free surfaces. However, as the thinner flow paths clog the growth rate progressively decreases, which is correlated to a decrease of local flow velocity. The largest pores remain open, enabling growth to continue throughout the structure. Quantifying the dynamics of mineral precipitation kinetics in situ in 4D, has revealed the importance of using a time dependent reactive surface area and accounting for the local properties of the porous network, when formulating predictive models of mineral precipitation in porous media.

  11. Investigation of growth rate dispersion in lactose crystallisation by AFM

    Science.gov (United States)

    Dincer, T. D.; Ogden, M. I.; Parkinson, G. M.

    2014-09-01

    α-Lactose monohydrate crystals have been reported to exhibit growth rate dispersion (GRD). Variation in surface dislocations has been suggested as the cause of GRD, but this has not been further investigated to date. In this study, growth rate dispersion and the change in morphology were investigated in situ and via bottle roller experiments. The surfaces of the (0 1 0) faces of crystals were examined with Atomic Force Microscopy. Smaller, slow growing crystals tend to have smaller (0 1 0) faces with narrow bases and displayed a single double spiral in the centre of the crystal with 2 nm high steps. Additional double spirals in other crystals resulted in faster growth rates. Large, fast growing crystals were observed to have larger (0 1 0) faces with fast growth in both the a and b directions (giving a broader crystal base) with macro steps parallel to the (c direction). The number and location of spirals or existence of macro steps appears to influence the crystal morphology, growth rates and growth rate dispersion in lactose crystals.

  12. A new system for sodium flux growth of bulk GaN. Part II: in situ investigation of growth processes

    KAUST Repository

    Von Dollen, Paul

    2016-09-09

    We report recent results of bulk GaN crystal growth using the sodium flux method in a new crucible-free growth system. We observed a (0001) Ga face (+c-plane) growth rate >50 µm/h for growth at a N2 overpressure of ~5 MPa and 860 °C, which is the highest crystal growth rate reported for this technique to date. Omega X-ray rocking curve (ω-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were <100 arcseconds. Oxygen impurity concentrations as measured by secondary ion mass spectroscopy (SIMS) were >1020 atoms/cm3. By monitoring the nitrogen pressure decay over the course of the crystal growth, we developed an in situ method that correlates gas phase changes with precipitation of GaN from the sodium-gallium melt. Based on this analysis, the growth rate may have actually been as high as 90 µm/h, as it would suggest GaN growth ceased prior to the end of the run. We also observed gas phase behavior identified as likely characteristic of GaN polynucleation.

  13. A new system for sodium flux growth of bulk GaN. Part II: in situ investigation of growth processes

    KAUST Repository

    Von Dollen, Paul; Pimputkar, Siddha; Alreesh, Mohammed Abo; Nakamura, Shuji; Speck, James S.

    2016-01-01

    We report recent results of bulk GaN crystal growth using the sodium flux method in a new crucible-free growth system. We observed a (0001) Ga face (+c-plane) growth rate >50 µm/h for growth at a N2 overpressure of ~5 MPa and 860 °C, which is the highest crystal growth rate reported for this technique to date. Omega X-ray rocking curve (ω-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were <100 arcseconds. Oxygen impurity concentrations as measured by secondary ion mass spectroscopy (SIMS) were >1020 atoms/cm3. By monitoring the nitrogen pressure decay over the course of the crystal growth, we developed an in situ method that correlates gas phase changes with precipitation of GaN from the sodium-gallium melt. Based on this analysis, the growth rate may have actually been as high as 90 µm/h, as it would suggest GaN growth ceased prior to the end of the run. We also observed gas phase behavior identified as likely characteristic of GaN polynucleation.

  14. EFFECT OF SODIUM DODECYLBENZENESULFONIC ACID (SDBS ON THE GROWTH RATE AND MORPHOLOGY OF BORAX CRYSTAL

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available An investigation of the effect of sodium dodecylbenzenesulfonic acid (SDBS on both growth rate and morphology of borax crystal has been carried out.  This experiment was carried out at temperature of 25 °C and relative supersaturation of 0.21 and 0.74 under in situ cell optical microscopy method.  The result shows that SDBS inhibits the growth rate and changes the morphology of borax crystal.   Keywords: Borax; growth rate; crystallization, SDBS

  15. In situ synchrotron X-ray diffraction study on epitaxial-growth dynamics of III–V semiconductors

    Science.gov (United States)

    Takahasi, Masamitu

    2018-05-01

    The application of in situ synchrotron X-ray diffraction (XRD) to the molecular-beam epitaxial (MBE) growth of III–V semiconductors is overviewed along with backgrounds of the diffraction theory and instrumentation. X-rays are sensitive not only to the surface of growing films but also to buried interfacial structures because of their large penetration depth. Moreover, a spatial coherence length up to µm order makes X-rays widely applicable to the characterization of low-dimensional structures, such as quantum dots and wires. In situ XRD studies during growth were performed using an X-ray diffractometer, which was combined with an MBE chamber. X-ray reciprocal space mapping at a speed matching a typical growth rate was achieved using intense X-rays available from a synchrotron light source and an area detector. The importance of measuring the three-dimensional distribution of XRD intensity in a reciprocal space map is demonstrated for the MBE growth of two-, one-, and zero-dimensional structures. A large amount of information about the growth process of two-dimensional InGaAs/GaAs(001) epitaxial films has been provided by three-dimensional X-ray reciprocal mappings, including the anisotropic strain relaxation, the compositional inhomogeneity, and the evolution of surface and interfacial roughness. For one-dimensional GaAs nanowires grown in a Au-catalyzed vapor-liquid–solid mode, the relationship between the diameter of the nanowires and the formation of polytypes has been suggested on the basis of in situ XRD measurements. In situ three-dimensional X-ray reciprocal space mapping is also shown to be useful for determining the lateral and vertical sizes of self-assembled InAs/GaAs(001) quantum dots as well as their internal strain distributions during growth.

  16. Tribology. Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts.

    Science.gov (United States)

    Gosvami, N N; Bares, J A; Mangolini, F; Konicek, A R; Yablon, D G; Carpick, R W

    2015-04-03

    Zinc dialkyldithiophosphates (ZDDPs) form antiwear tribofilms at sliding interfaces and are widely used as additives in automotive lubricants. The mechanisms governing the tribofilm growth are not well understood, which limits the development of replacements that offer better performance and are less likely to degrade automobile catalytic converters over time. Using atomic force microscopy in ZDDP-containing lubricant base stock at elevated temperatures, we monitored the growth and properties of the tribofilms in situ in well-defined single-asperity sliding nanocontacts. Surface-based nucleation, growth, and thickness saturation of patchy tribofilms were observed. The growth rate increased exponentially with either applied compressive stress or temperature, consistent with a thermally activated, stress-assisted reaction rate model. Although some models rely on the presence of iron to catalyze tribofilm growth, the films grew regardless of the presence of iron on either the tip or substrate, highlighting the critical role of stress and thermal activation. Copyright © 2015, American Association for the Advancement of Science.

  17. In Situ Study of Noncatalytic Metal Oxide Nanowire Growth

    DEFF Research Database (Denmark)

    Rackauskas, Simas; Jiang, Hua; Wagner, Jakob Birkedal

    2014-01-01

    a catalyst is still widely disputed and unclear. Here, we show that the nanowire growth during metal oxidation is limited by a nucleation of a new layer. On the basis of in situ transmission electron microscope investigations we found that the growth occurs layer by layer at the lowest specific surface...

  18. Effect of directional solidification rate on the microstructure and properties of deformation-processed Cu–7Cr–0.1Ag in situ composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Keming [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Jiang, Zhengyi; Zhao, Jingwei [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Zou, Jin; Chen, Zhibao [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); Lu, Deping, E-mail: llludp@163.com [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China)

    2014-11-05

    Highlights: • Effect of directional solidification (DS) rate on a Cu–Cr–Ag in situ composite. • The microstructure and properties of the DS in situ composite were investigated. • The second-phase Cr grains were parallel to drawing direction, and were finer. • The tensile strength was higher and the combination of properties was better. - Abstract: The influence of directional solidification rate on the microstructure, mechanical properties and conductivity of deformation-processed Cu–7Cr–0.1Ag in situ composites produced by thermo-mechanical processing was systematically investigated. The microstructure was analyzed by optical microscopy and scanning electronic microscopy. The mechanical properties and conductivity were evaluated by tensile-testing machine and micro-ohmmeter, respectively. The results indicate that the size, shape and distribution of second-phase Cr grains are significantly different in the Cu–7Cr–0.1Ag alloys with different growth rates. At a growth rate of 200 μm s{sup −1}, the Cr grains transform into fine Cr fiber-like grains parallel to the pulling direction from the Cr dendrites. The tensile strength of the Cu–7Cr–0.1Ag in situ composites from the directional solidification (DS) alloys is significantly higher than that from the as-cast alloy, while the conductivity of the in situ composites from the DS alloys is slightly lower than that from the as-cast alloy. The following combinations of tensile strength, elongation to fracture and conductivity of the Cu–7Cr–0.1Ag in situ composites from the DS alloy with a growth rate of 200 μm s{sup −1} and a cumulative cold deformation strain of 8 after isochronic aging treatment for 1 h can be obtained respectively as: (i) 1067 MPa, 2.9% and 74.9% IACS; or (ii) 1018 MPa, 3.0%, and 76.0% IACS or (iii) 906 MPa, 3.3% and 77.6% IACS.

  19. In situ spectroscopic ellipsometry as a surface sensitive tool to probe thin film growth

    International Nuclear Information System (INIS)

    Liu, C.

    1999-01-01

    Sputtered thin film and multilayer x-ray mirrors are made routinely at the Advanced Photon Source (APS) for the APS users. Precise film growth control and characterization are very critical in fabricating high-quality x-ray mirrors. Film thickness calibrations are carried out using in situ and ex situ spectroscopic ellipsometry, interferometry, and x-ray scattering. To better understand the growth and optical properties of different thin film systems, we have carried out a systematic study of sputtered thin films of Au, Rh, Pg Pd, Cu, and Cr, using in situ ellipsometry. Multiple data sets were obtained in situ for each film material with incremental thicknesses and were analyzed with their correlation in mind. We found that in situ spectroscopic ellipsometry as a surface-sensitive tool can also be used to probe the growth and morphology of the thin film system. This application of in situ spectroscopic ellipsometry for metal thin film systems will be discussed

  20. In-situ detection of convection and rotation striations by growth interface electromotive force spectrum

    Science.gov (United States)

    Zhu, Yunzhong; Tang, Feng; Yang, Xin; Yang, Mingming; Ma, Decai; Zhang, Xiaoyue; Liu, Yang; Lin, Shaopeng; Wang, Biao

    2018-04-01

    Nanoscale growth striations, induced by the crystal rotation and melt convection, are in-situ detected by the growth interface electromotive force (GEMF) spectrum during Czochralski (CZ) crystal growth. Specifically, the intensity and period of rotation and convection striations could be precisely revealed under different rotation rates. This is because the GEMF spectrum is affected by the combination effort of temperature difference in crystal rotation path and the melt flow in growth interface. Furthermore, the spectrum analysis (Fourier transform) reveals remarkable characteristics of periodic flow oscillation. More interestingly, in different rotation rates, the corresponding convection period and intensity show particular regularity that could barely be observed in semitransparent and high-temperature melt. Therefore, the GEMF spectrum reflects the subtle changes of a growing crystal that is far beyond the detecting precision of sensors in current CZ equipment. On the basis of this paper and our previous work, the real-time feedback of multiscale striations is established. GEMF spectrum could be a promising approach to reveal striation formation mechanism and optimize crystal quality.

  1. Radiocarbon Based Ages and Growth Rates: Hawaiian Deep Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Ingram, B L

    2006-01-13

    The radial growth rates and ages of three different groups of Hawaiian deep-sea 'corals' were determined using radiocarbon measurements. Specimens of Corallium secundum, Gerardia sp., and Leiopathes glaberrima, were collected from 450 {+-} 40 m at the Makapuu deep-sea coral bed using a submersible (PISCES V). Specimens of Antipathes dichotoma were collected at 50 m off Lahaina, Maui. The primary source of carbon to the calcitic C. secundum skeleton is in situ dissolved inorganic carbon (DIC). Using bomb {sup 14}C time markers we calculate radial growth rates of {approx} 170 {micro}m y{sup -1} and ages of 68-75 years on specimens as tall as 28 cm of C. secundum. Gerardia sp., A. dichotoma, and L. glaberrima have proteinaceous skeletons and labile particulate organic carbon (POC) is their primary source of architectural carbon. Using {sup 14}C we calculate a radial growth rate of 15 {micro}m y{sup -1} and an age of 807 {+-} 30 years for a live collected Gerardia sp., showing that these organisms are extremely long lived. Inner and outer {sup 14}C measurements on four sub-fossil Gerardia spp. samples produce similar growth rate estimates (range 14-45 {micro}m y{sup -1}) and ages (range 450-2742 years) as observed for the live collected sample. Similarly, with a growth rate of < 10 {micro}m y{sup -1} and an age of {approx}2377 years, L. glaberrima at the Makapuu coral bed, is also extremely long lived. In contrast, the shallow-collected A. dichotoma samples yield growth rates ranging from 130 to 1,140 {micro}m y{sup -1}. These results show that Hawaiian deep-sea corals grow more slowly and are older than previously thought.

  2. Growth studies of CVD-MBE by in-situ diagnostics

    Science.gov (United States)

    Maracas, George N.; Steimle, Timothy C.

    1992-10-01

    This is the final technical report for the three year DARPA-URI program 'Growth Studies of CVD-MBE by in-situ Diagnostics'. The goals of the program were to develop non-invasive, real time epitaxial growth monitoring techniques and combine them to gain an understanding of processes that occur during MBE growth from gas sources. We have adapted these techniques to a commercially designed gas source MBE system (Vacuum Generators Inc.) to facilitate technology transfer out of the laboratory into industrial environments. The in-situ measurement techniques of spectroscopic ellipsometry (SE) and laser induced fluorescence (LIF) have been successfully implemented to monitor the optical and chemical properties of the growing epitaxial film and the gas phase reactants. The ellipsometer was jointly developed with the J. Woolam Co. and has become a commercial product. The temperature dependence of group 3 and 5 desorption from GaAs and InP has been measured as well as the incident effusion cell fluxes. The temporal evolution of the growth has also been measured both by SE and LIF to show the smoothing of heterojunction surfaces during growth interruption. Complicated microcavity optical device structures have been monitored by ellipsometry in real time to improve device quality. This data has been coupled with the structural information obtained from reflection high energy electron diffraction (RHEED) to understand the growth processes in binary and ternary bulk 3-5 semiconductors and heterojunctions.

  3. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB

    1999-01-01

    and T(opt). For strains LSv21 and LSv514, however, growth yields were highest at the lowest temperatures, around 0 degrees C. The results indicate that psychrophilic sulphate-reducing bacteria are specially adapted to permanently low temperatures by high relative growth rates and high growth yields......Five psychrophilic sulphate-reducing bacteria (strains ASv26, LSv21, PSv29, LSv54 and LSv514) isolated from Arctic sediments were examined for their adaptation to permanently low temperatures, All strains grew at -1.8 degrees C, the freezing point of sea water, but their optimum temperature...... for growth (T(opt)) were 7 degrees C (PSv29), 10 degrees C (ASv26, LSv54) and 18 degrees C (LSv21, LSv514), Although T(opt) was considerably above the in situ temperatures of their habitats (-1.7 degrees C and 2.6 degrees C), relative growth rates were still high at 0 degrees C, accounting for 25...

  4. In-situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts

    Science.gov (United States)

    Masotta, M.; Ni, H.; Keppler, H.

    2013-12-01

    Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in-situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1100 to 1240 °C and 1 bar, obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate (GR) ranges from 3.4*10-6 to 5.2*10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density (NB) at nucleation ranges from 1.8*108 to 7.9*107 cm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble-size distribution (BSD) through time, the BSD's of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSD's may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and

  5. In situ TEM observation of the growth and decomposition of monoclinic W18O49 nanowires

    International Nuclear Information System (INIS)

    Chen, C L; Mori, H

    2009-01-01

    The growth of monoclinic W 18 O 49 nanowires by heat treatment of a tungsten filament at ∼873 K and the decomposition of these nanowires under 200 keV electron irradiation at ∼1023 K have been investigated using in situ transmission electron microscopy (TEM). In situ TEM observation of the growth confirmed the vapor-solid growth mechanism of the monoclinic W 18 O 49 nanowires. In situ irradiation experiments revealed the formation of metallic bcc tungsten from monoclinic W 18 O 49 nanowires under 200 keV electron irradiation.

  6. Long-term growth rates and effects of bleaching in Acropora hyacinthus

    Science.gov (United States)

    Gold, Zachary; Palumbi, Stephen R.

    2018-03-01

    Understanding the response of coral growth to natural variation in the environment, as well as to acute temperature stress under current and future climate change conditions, is critical to predicting the future health of coral reef ecosystems. As such, ecological surveys are beginning to focus on corals that live in high thermal stress environments to understand how future coral populations may adapt to climate change. We investigated the relationship between coral growth, thermal microhabitat, symbionts type, and thermal acclimatization of four species of the Acropora hyacinthus complex in back-reef lagoons in American Samoa. Coral growth was measured from August 2010 to April 2016 using horizontal planar area of coral colonies derived from photographs and in situ maximum width measurements. Despite marked intraspecific variation, we found that planar colony growth rates were significantly different among cryptic species. The highly heat tolerant A. hyacinthus variant "HE" increased in area an average of 2.9% month-1 (0.03 cm average mean radial extension month-1). By contrast, the three less tolerant species averaged 6.1% (0.07 cm average mean radial extension month-1). Planar growth rates were 40% higher on average in corals harboring Clade C versus Clade D symbiont types, although marked inter-colony variation in growth rendered this difference nonsignificant. Planar growth rates for all four species dropped to near zero following a 2015 bleaching event, independent of the visually estimated percent area of bleaching. Within 1 yr, growth rates recovered to previous levels, confirming previous studies that found sublethal effects of thermal stress on coral growth. Long-term studies of individual coral colonies provide an important tool to measure impacts of environmental change and allow integration of coral physiology, genetics, symbionts, and microclimate on reef growth patterns.

  7. In situ feeding rates of plantonic copepods: A comparison of four methods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Møhlenberg, Flemming; Riisgård, Hans Ulrik

    1985-01-01

    into estimates of in situ algal grazing rates by means of independently estimated gut turnover times, and were compared with chlorophyll and particle-volume grazing rates of animals sampled simultaneously and incubated in water from the collection depth. In addition, egg-production rates of adult females were...... problems of the different methods are discussed, and it is concluded that they all approach representative (although minimum) estimates of in situ feeding rates....

  8. Why in situ, real-time characterization of thin film growth processes?

    International Nuclear Information System (INIS)

    Auciello, O.; Krauss, A.R.

    1995-01-01

    Since thin-film growth occurs at the surface, the analytical methods should be highly surface-specific. although subsurface diffusion and chemical processes also affect film properties. Sampling depth and ambient-gas is compatibility are key factors which must be considered when choosing in situ probes of thin-film growth phenomena. In most cases, the sampling depth depends on the mean range of the exit species (ion, photon, or electron) in the sample. The techniques that are discussed in this issue of the MRS Bulletin (1) have been chosen because they may be used for in situ, real-time analysis of film-growth phenomena in vacuum and in the presence of ambient gases resulting either from the deposition process or as a requirement for the production of the desired chemical phase. A second criterion for inclusion is that the instrumentation be sufficiently compact and inexpensive to permit use as a dedicated tool in a thin-film deposition system

  9. Diffusion-controlled growth of hydrogen pores in aluminum-silicon castings: In situ observation and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, R.C.; Sridhar, S.; Zhang, W.; Lee, P.D.

    2000-01-24

    In situ observations were made of the nucleation and growth kinetics of hydrogen porosity during the directional solidification of aluminium-7 wt% silicon (Al7Si) with TiB{sub 2} grain refiner added, using an X-ray temperature gradient stage (XTGS). The effect of altering the solidification velocity on the growth rate and morphology of the porosity formed was characterized by tracking individual pores with digital analysis of the micro-focal video images. It was found that increasing the solidification velocity caused the pore radius to decrease and pore density to increase. Insight gained from the experimental results was used to develop a computational model of the evolution of hydrogen pores during solidification of aluminum-silicon cast alloys. The model solves for the diffusion-limited growth of the pores in spherical coordinates, using a deterministic solution of the grain nucleation and growth as a sub-model to calculate the parameters that depend upon the fraction solid. Sensitivity analysis was carried out to assess the effects of equiaxed grain density, pore density, initial hydrogen content and cooling rate. The model agrees with the experimental results within the resolution limits of the XTGS experiments performed.

  10. ECOHAB: Van Dolah_F- Karenia brevis Cell Cycle Analysis for Determination of In Situ Growth Rates (NODC Accession 0000538)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The reported growth rates of Karenia brevis vary from 0.2 to 0.5 divisions per day, both in laboratory and field populations observed. This growth rate alone is not...

  11. In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts

    Science.gov (United States)

    Masotta, M.; Ni, H.; Keppler, H.

    2014-02-01

    Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1,100 to 1,240 °C and 0.1 MPa (1 bar), obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate ( G R) ranges from 3.4 × 10-6 to 5.2 × 10-7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density ( N B) at nucleation ranges from 7.9 × 104 mm-3 to 1.8 × 105 mm-3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble size distribution (BSD) through time, the BSDs of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSDs may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important

  12. Setup for in situ X-ray diffraction studies of thin film growth by magnetron sputtering

    CERN Document Server

    Ellmer, K; Weiss, V; Rossner, H

    2001-01-01

    A novel method is described for the in situ-investigation of nucleation and growth of thin films during magnetron sputtering. Energy dispersive X-ray diffraction with synchrotron light is used for the structural analysis during film growth. An in situ-magnetron sputtering chamber was constructed and installed at a synchrotron radiation beam line with a bending magnet. The white synchrotron light (1-70 keV) passes the sputtering chamber through Kapton windows and hits one of the substrates on a four-fold sample holder. The diffracted beam, observed under a fixed diffraction angle between 3 deg. and 10 deg., is energy analyzed by a high purity Ge-detector. The in situ-EDXRD setup is demonstrated for the growth of tin-doped indium oxide (ITO) films prepared by reactive magnetron sputtering from a metallic target.

  13. Low-temperature growth of polycrystalline Ge thin film on glass by in situ deposition and ex situ solid-phase crystallization for photovoltaic applications

    International Nuclear Information System (INIS)

    Tsao, Chao-Yang; Weber, Juergen W.; Campbell, Patrick; Widenborg, Per I.; Song, Dengyuan; Green, Martin A.

    2009-01-01

    Poly-crystalline germanium (poly-Ge) thin films have potential for lowering the manufacturing cost of photovoltaic devices especially in tandem solar cells, but high crystalline quality would be required. This work investigates the crystallinity of sputtered Ge thin films on glass prepared by in situ growth and ex situ solid-phase crystallization (SPC). Structural properties of the films were characterized by Raman, X-ray diffraction and ultraviolet-visible reflectance measurements. The results show the transition temperature from amorphous to polycrystalline is between 255 deg. C and 280 deg. C for in situ grown poly-Ge films, whereas the transition temperature is between 400 deg. C and 500 deg. C for films produced by SPC for a 20 h annealing time. The in situ growth in situ crystallized poly-Ge films at 450 deg. C exhibit significantly better crystalline quality than those formed by solid-phase crystallization at 600 deg. C. High crystalline quality at low substrate temperature obtained in this work suggests the poly-Ge films could be promising for use in thin film solar cells on glass.

  14. In-situ study of the dendritic growth in lithium/polymer electrolyte-salt/lithium cells; Etude in-situ de la croissance dendritique dans des cellules lithium/POE-sel/lithium

    Energy Technology Data Exchange (ETDEWEB)

    Brissot, C.; Rosso, M.; Chazalviel, J.N. [Ecole Polytechnique, 91 - Palaiseau (France); Baudry, P.; Lascaud, S. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    1996-12-31

    The in-situ observation of dendritic growth in lithium/polymer electrolyte-LiTFSI/lithium battery cells shows that dendrites grow up with about the same rate as anion migration. Memory effects have been evidenced in cycling experiments and limit the dendrites length. An overall movement of the electrolyte due to variations of electrolyte concentration in the vicinity of the electrodes has been observed too. (J.S.) 13 refs.

  15. In-situ study of the dendritic growth in lithium/polymer electrolyte-salt/lithium cells; Etude in-situ de la croissance dendritique dans des cellules lithium/POE-sel/lithium

    Energy Technology Data Exchange (ETDEWEB)

    Brissot, C; Rosso, M; Chazalviel, J N [Ecole Polytechnique, 91 - Palaiseau (France); Baudry, P; Lascaud, S [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    1997-12-31

    The in-situ observation of dendritic growth in lithium/polymer electrolyte-LiTFSI/lithium battery cells shows that dendrites grow up with about the same rate as anion migration. Memory effects have been evidenced in cycling experiments and limit the dendrites length. An overall movement of the electrolyte due to variations of electrolyte concentration in the vicinity of the electrodes has been observed too. (J.S.) 13 refs.

  16. In situ Raman spectroscopy for growth monitoring of vertically aligned multiwall carbon nanotubes in plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Labbaye, T.; Gaillard, M.; Lecas, T.; Kovacevic, E.; Boulmer-Leborgne, Ch.; Guimbretière, G. [GREMI, Université-CNRS, BP6744, 45067 Orléans Cedex 2 (France); Canizarès, A.; Raimboux, N.; Simon, P.; Ammar, M. R., E-mail: mohamed-ramzi.ammar@cnrs-orleans.fr [CNRS, CEMHTI UPR3079, Univ. Orléans, F-45071 Orléans Cedex 2 (France); Strunskus, T. [Institute of Material Science, Chritian-Albrechts-University of Kiel, D-24143 Kiel (Germany)

    2014-11-24

    Portable and highly sensitive Raman setup was associated with a plasma-enhanced chemical vapor deposition reactor enabling in situ growth monitoring of multi-wall carbon nanotubes despite the combination of huge working distance, high growth speed and process temperature and reactive plasma condition. Near Edge X-ray absorption fine structure spectroscopy was used for ex situ sample analysis as a complementary method to in situ Raman spectroscopy. The results confirmed the fact that the “alternating” method developed here can accurately be used for in situ Raman monitoring under reactive plasma condition. The original analytic tool can be of great importance to monitor the characteristics of these nanostructured materials and readily define the ultimate conditions for targeted results.

  17. In-situ ellipsometric characterization of the growth of porous anisotropic nanocrystalline ZnO layers

    Energy Technology Data Exchange (ETDEWEB)

    Laha, P., E-mail: plaha@vub.ac.be; Terryn, H.; Ustarroz, J., E-mail: justarro@vub.ac.be [Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Brussels (Belgium); Nazarkin, M. Y., E-mail: mikleo@mail.ru; Gavrilov, S. A. [Department of Materials of Functional Electronics (MFE), National Research University of Electronic Technology, Bld. 5, Pas. 4806, Zelenograd, Moscow 124498 (Russian Federation); Volkova, A. V.; Simunin, M. M. [Department of Quantum Physics and Nanoelectronics (QPN), National Research University of Electronic Technology, Bld. 5, Pas. 4806, Zelenograd, Moscow 124498 (Russian Federation)

    2015-03-09

    ZnO films have increasingly been in the spotlight due to their largely varied electro-physical and optical properties. For several applications, porous anisotropic nanocrystalline layers are especially interesting. To study the growth kinetics of such films during different fabrication processes, a powerful non-destructive in-situ technique is required. In this work, both ex-situ and in-situ spectroscopic ellipsometry are used along with advanced modelling techniques that are able to take both the anisotropy and the porosity of the films into account. Scanning electron microscopy, along with nitrogen absorption methods for measuring porosity, validated the ellipsometric data and proposed model. The film, grown by chemical bath deposition, was monitored from around 700 to 1800 nm in thickness. This same principle can now be used to monitor any other porous and/or anisotropic structure in an effective in-situ manner, e.g., growth of porous anodic aluminium oxides, nano-porous silica films, etc.

  18. Growth and decay of a two-dimensional oxide quasicrystal: High-temperature in situ microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Stefan [Physik-Institut, Universitaet Zuerich (Switzerland); Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Flege, Jan Ingo; Falta, Jens [Institute of Solid State Physics, University of Bremen (Germany); MAPEX Center for Materials and Processes, University of Bremen (Germany); Zollner, Eva Maria; Schumann, Florian Otto; Hammer, Rene; Bayat, Alireza; Schindler, Karl-Michael [Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Widdra, Wolf [Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Germany)

    2017-01-15

    The recently discovered two-dimensional oxide quasicrystal (OQC) derived from BaTiO{sub 3} on Pt(111) is the first material in which a spontaneous formation of an aperiodic structure at the interface to a periodic support has been observed. Herein, we report in situ low-energy electron microscopy (LEEM) studies on the fundamental processes involved in the OQC growth. The OQC formation proceeds in two steps via of an amorphous two-dimensional wetting layer. At 1170 K the long-range aperiodic order of the OQC develops. Annealing in O{sub 2} induces the reverse process, the conversion of the OQC into BaTiO{sub 3} islands and bare Pt(111), which has been monitored by in situ LEEM. A quantitative analysis of the temporal decay of the OQC shows that oxygen adsorption on bare Pt patches is the rate limiting step of this dewetting process. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Rapid and Controlled In Situ Growth of Noble Metal Nanostructures within Halloysite Clay Nanotubes.

    Science.gov (United States)

    Rostamzadeh, Taha; Islam Khan, Md Shahidul; Riche', Kyle; Lvov, Yuri M; Stavitskaya, Anna V; Wiley, John B

    2017-11-14

    A rapid (≤2 min) and high-yield low-temperature synthesis has been developed for the in situ growth of gold nanoparticles (NPs) with controlled sizes in the interior of halloysite nanotubes (HNTs). A combination of HAuCl 4 in ethanol/toluene, oleic acid, and oleylamine surfactants and ascorbic acid reducing agent with mild heating (55 °C) readily lead to the growth of targeted nanostructures. The sizes of Au NPs are tuned mainly by adjusting nucleation and growth rates. Further modification of the process, through an increase in ascorbic acid, allows for the formation of nanorods (NRs)/nanowires within the HNTs. This approach is not limited to gold-a modified version of this synthetic strategy can also be applied to the formation of Ag NPs and NRs within the clay nanotubes. The ability to readily grow such core-shell nanosystems is important to their further development as nanoreactors and active catalysts. NPs within the tube interior can further be manipulated by the electron beam. Growth of Au and Ag could be achieved under a converged electron beam suggesting that both Au@HNT and Ag@HNT systems can be used for the fundamental studies of NP growth/attachment.

  20. Growth of potassium sulfate crystals in the presence of organic dyes: in situ characterization by atomic force microscopy

    Science.gov (United States)

    Mauri, Andrea; Moret, Massimo

    2000-01-01

    In situ atomic force microscopy (AFM) has been used to observe potassium sulfate crystals growing in the presence of acid fuchsin and pyranine. These polysulfonated dyes are well known for their ability to adsorb onto the {1 1 0} and {0 1 0} (pyranine only) crystal faces. Using AFM, we analyzed the changes in surface micromorphology induced by the additives on advancing steps for the {1 1 0} and {0 1 0} surfaces. In situ AFM showed that layers grow by step flow at pre-existing steps by the addition of growth units at the step edges. It has been found that dye concentrations as low as ˜2×10 -6 M for pyranine and ˜4×10 -4 M for acid fuchsin produce significant changes in the step morphology and growth rates. The additive molecules attach to the terraces and pin the growing front. As a consequence, the edges of the growing steps become jagged as the dye molecules are adsorbed onto the crystal surface. At critical dye concentrations crystal growth is heavily hampered or even stopped along certain crystallographic directions producing, on a macroscopic scale, strong habit modifications. The formation of dye inclusions by means of macrosteps overgrowing the poisoned surface was also imaged. Interestingly, comparison of the in situ AFM experiments with previous habit modification studies showed acid fuchsin is also able to enter the {0 1 0} surfaces, a previously unnoticed phenomenon.

  1. Atmosphere influence on in situ ion beam analysis of thin film growth

    International Nuclear Information System (INIS)

    Lin, Yuping; Krauss, A.R.; Gruen, D.M.; Chang, R.P.H.; Auciello, O.H.; Schultz, J.A.

    1994-01-01

    In situ, nondestructive surface characterization of thin-film growth processes in an environment of chemically active gas at pressures of several mTorr is required both for the understanding of growth processes in multicomponent films and layered heterostructures and for the improvement of process reproducibility and device reliability. The authors have developed a differentially pumped pulsed ion beam surface analysis system that includes ion scattering spectroscopy (ISS) and direct recoil spectroscopy (DRS), coupled to an automated ion beam sputter-deposition system (IBSD), to study film growth processes in an environment of chemically active gas, such as required for the growth of oxide, nitride, or diamond thin films. The influence of gas-phase scattering and gas-surface interactions on the ISS and DRS signal intensity and peak shape have been studied. From the intensity variation as a function of ambient gas pressure, the authors have calculated the mean free path and the scattering cross-section for a given combination of primary ion species and ambient gas. Depending on the system geometry and the combination of primary beam and background, it is shown that surface-specific data can be obtained during thin-film growth at pressures ranging from a few mtorr to approximately 1 Torr. Detailed information such as surface composition, structure, and film growth mechanism may be obtained in real-time, making ion beam analysis an ideal nondestructive, in situ probe of thin-film growth processes

  2. In Situ AFM Study of Crystal Growth on a Barite (001 Surface in BaSO4 Solutions at 30 °C

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kuwahara

    2016-11-01

    Full Text Available The growth behavior and kinetics of the barite (001 surface in supersaturated BaSO4 solutions (supersaturation index (SI = 1.1–4.1 at 30 °C were investigated using in situ atomic force microscopy (AFM. At the lowest supersaturation, the growth behavior was mainly the advancement of the initial step edges and filling in of the etch pits formed in the water before the BaSO4 solution was injected. For solutions with higher supersaturation, the growth behavior was characterized by the advance of the and [010] half-layer steps with two different advance rates and the formation of growth spirals with a rhombic to bow-shaped form and sector-shaped two-dimensional (2D nuclei. The advance rates of the initial steps and the two steps of 2D nuclei were proportional to the SI. In contrast, the advance rates of the parallel steps with extremely short step spacing on growth spirals were proportional to SI2, indicating that the lateral growth rates of growth spirals were directly proportional to the step separations. This dependence of the advance rate of every step on the growth spirals on the step separations predicts that the growth rates along the [001] direction of the growth spirals were proportional to SI2 for lower supersaturations and to SI for higher supersaturations. The nucleation and growth rates of the 2D nuclei increased sharply for higher supersaturations using exponential functions. Using these kinetic equations, we predicted a critical supersaturation (SI ≈ 4.3 at which the main growth mechanism of the (001 face would change from a spiral growth to a 2D nucleation growth mechanism: therefore, the morphology of bulk crystals would change.

  3. Nitroxide radicals formed in situ as polymer chain growth regulators

    International Nuclear Information System (INIS)

    Kolyakina, Elena V; Grishin, Dmitry F

    2009-01-01

    Published data on controlled synthesis of macromolecules using nitroxide radicals, formed in situ during polymerization, as polymer chain growth regulators are systematized and generalized. The attention is focused on the mechanism of polymer chain growth control during reversibly inhibited radical homopolymerization and the effect of structure of precursors and regulating additives on the polymerization kinetics of monomers of different nature and the molecular-mass characteristics of the polymers thus formed. The key methods for generation of nitroxide radicals directly during polymerization are considered. The prospects for development and practical use of these approaches for the synthesis of new polymeric materials are evaluated.

  4. Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had Growth Rates Typical of Fast Growing Ectothermic Sauropsids

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case’s study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either

  5. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of

  6. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Directory of Open Access Journals (Sweden)

    Jan Werner

    Full Text Available We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes strongly differed from Case's study (1978, which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles to 20 (fishes times (in comparison to mammals or even 45 (reptiles to 100 (fishes times (in comparison to birds lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule

  7. Growth of block copolymer stabilized metal nanoparticles probed simultaneously by in situ XAS and UV-Vis spectroscopy.

    Science.gov (United States)

    Nayak, C; Bhattacharyya, D; Jha, S N; Sahoo, N K

    2016-01-01

    The growth of Au and Pt nanoparticles from their respective chloride precursors using block copolymer-based reducers has been studied by simultaneous in situ measurement of XAS and UV-Vis spectroscopy at the energy-dispersive EXAFS beamline (BL-08) at INDUS-2 SRS at RRCAT, Indore, India. While the XANES spectra of the precursor give real-time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed at the intermediate stages of growth. The growth kinetics of both types of nanoparticles are found to be almost similar and are found to follow three stages, though the first stage of nucleation takes place earlier in the case of Au than in the case of Pt nanoparticles due to the difference in the reduction potential of the respective precursors. The first two stages of the growth of Au and Pt nanoparticles as obtained by in situ XAS measurements could be corroborated by simultaneous in situ measurement of UV-Vis spectroscopy also.

  8. Applications of synchrotron microradiography in materials science-in situ visualization of the growth of metallic alloy crystals

    International Nuclear Information System (INIS)

    Wang Tongmin; Zhu Jing; Cao Fei; Wang Kun; Bao Yongming; Xie Honglan; Huang Wanxia

    2012-01-01

    Metals and their alloys are an important type of structural and functional material and have been widely used in the aerospace, automobile, shipbuilding and other industries. The macro-properties of metallic alloys actually depend on their microstructures. The evolution of their microstructures generally involves a dynamic process of crystal growth on the scale of micrometers. The crystal growth of these alloys is still a puzzle to us due to their opacity. Conventional metallography techniques are limited by the high temperature of the phase changes so it is not possible to perform in situ observation of the evolving crystal morphology. The in situ visualization of the crystal growth has now become possible with the application of synchrotron radiation imaging techniques, which are just the right key to unravel the mystery mentioned above. In this paper, the development and current state-of-the-art of in situ crystal growth visualization are reviewed. Some typical application examples are presented, and promising applications in materials science are further expected. (authors)

  9. Crystallite growth in nanocrystalline tungsten; rate determining mechanism and the role of contaminations

    International Nuclear Information System (INIS)

    Hegedűs, Zoltán; Meka, Sai Ramudu; Mittemeijer, Eric J.

    2016-01-01

    The thermal stability of nanocrystalline tungsten was investigated by tracing the evolution of the microstructure as a function of (isothermal) annealing time at different temperatures (800−875 °C). To this end especially in situ X-ray diffraction and transmission electron microscopy methods were applied to ball milled tungsten powder. Initially the dislocation density and the crystallite/domain size decreased and increased rapidly, respectively. Upon prolonged annealing the crystallite growth rate decelerated and even became nil: a saturation crystallite size, increasing with increasing annealing temperature, was attained. Application of all available isothermal growth models to the experimental data resulted in very low values for the activation energy (60−120 kJ/mol) indicating that recovery of the deformed microstructure is the dominantly occurring process, leading to pronounced crystallite/domain growth. The effect on the growth kinetics of different levels of contaminations, which exert a drag force on the moving boundaries, was also investigated.

  10. In-situ transmission electron microscopy of the solid-phase epitaxial growth of GaAs: sample preparation and artifact characterization

    International Nuclear Information System (INIS)

    Llewellyn, D.J.; Llewellyn, D.J.; Belay, K.B.; Ridgway, M.C.

    1998-01-01

    In-situ transmission electron microscopy (TEM) has been used to characterize the solid phase epitaxial growth of amorphized GaAs at a temperature of 260 deg C. To maximize heat transfer from the heated holder to the sample and minimize electron-irradiation induced artifacts, non-conventional methodologies were utilized for the preparation of cross-sectional samples. GaAs 3x1 mm rectangular wafers were cleaved then glued face-to-face to form a wafer stack size of 3x3 mm while maintaining the TEM region at the center. This stack was subsequently polished on the cross-section to a thickness of ∼ 200 μm. A 3 mm disc was then cut perpendicular to the cross-section using a Gatan ultrasonic cutter. The disc was polished then dimpled on both sides to a thickness of ∼ 15 μm. This was ion-beam milled at liquid nitrogen temperature to an electron-transparent layer. From a comparison of in-situ and ex-situ measurements of the recrystallization rate, the actual sample temperature during in-situ characterization was estimated to deviate by ≤ 20 deg C from that of the heated holder. The influence of electron-irradiation was found to be negligible by comparing the recrystallization rate and microstructure of irradiated and unirradiated regions of comparable thickness. Similarly, the influence of the 'thin-foil effect' was found to be negligible by comparing the recrystallization rate and microstructure of thick and thin regions, the former determined after the removal of the sample from the microscope and further ion-beam milling of tens of microns of material. In conclusion, the potential influence of artifacts during in-situ TEM can be minimized by the appropriate choice of sample preparation procedures. (authors)

  11. In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications.

    Science.gov (United States)

    Wan, Mimi; Zhang, Jin; Wang, Qi; Zhan, Shuyue; Chen, Xudong; Mao, Chun; Liu, Yuhong; Shen, Jian

    2017-06-07

    Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N 2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.

  12. Advanced In Situ I-V Measurements Used in the Study of Porous Structures Growth on Silicon

    Directory of Open Access Journals (Sweden)

    Amare Benor

    2017-01-01

    Full Text Available The rate of oxide formation during growth of pores structures on silicon was investigated by in situ I-V measurements. The measurements were designed to get two I-V curves in a short time (total time for the two measurements was 300 seconds taking into account the gap (in mA/cm2 for each corresponding voltage. The in situ I-V measurements were made at different pore depth/time, at the electrolyte-pore tip interface, while etching takes place based on p-type Si. The results showed increasing, decreasing, and constant I-V gap in time, for macropores, nanopores, and electropolishing regimes, respectively. This was related to the expected diffusion limitation of oxide forming (H2O molecules reaching the electrolyte-pore tip and the anodizing current, while etching takes place. The method can be developed further and has the potential to be applied in other electrochemically etched porous semiconductor materials.

  13. In-situ Raman spectroscopy. A method to study and control the growth of microcrystalline silicon for thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Muthmann, Stefan

    2012-08-22

    This work deals with the design and application of a novel experiment, which enables in-situ Raman measurements during the parallel plate plasma enhanced chemical vapor deposition (PECVD) of {mu}cSi:H. Measurements of the crystalline volume fraction (I{sub C}{sup RS}) and the temperature of a growing film are carried out using the novel setup. To enable in-situ Raman measurement of central regions of the coated substrate in a PECVD system, optical access under normal incidence is necessary. An experimental setup in which an optical feed-through was integrated into a PECVD electrode was developed. This setup introduces a disturbance to the electrical field which sustains the plasma. By designing metallic shields the impact of the feed through was reduced considerably at low optical losses. The homogeneity of films deposited with the novel setup in different growth regimes was studied. A correlation between the magnitude of the inhomogeneity caused by the feed-through and the characteristics of the deposition regimes is found. Raman spectroscopy demands the illumination of a sample with a laser and the collection of the scattered radiation. Due to absorption of the laser light the temperature of the illuminated film is increased. Since the temperature determines the properties of a growing film the laser-induced temperature increase was studied. By pulsing the laser radiation of minimal temperature increase at maximal signal intensity was obtained. The crystalline volume fraction of a growing {mu}cSi:H layer was determined in-situ with the novel setup. A minimal temporal resolution of less than 17.5 s at sufficient signal-to-noise-ratio was achieved, which corresponds to less than 9 nm of deposited material during one measurement interval at the industrial standard growth rate of 0.5 nm/s. The obtained results were compared to depth resolved measurements which were carried out after the deposition. An excellent agreement between both methods validates the reliability

  14. Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum

    Science.gov (United States)

    Kopf, Sebastian H.; Sessions, Alex L.; Cowley, Elise S.; Reyes, Carmen; Van Sambeek, Lindsey; Hu, Yang; Orphan, Victoria J.; Kato, Roberta; Newman, Dianne K.

    2016-01-01

    Effective treatment for chronic infections is undermined by a significant gap in understanding of the physiological state of pathogens at the site of infection. Chronic pulmonary infections are responsible for the morbidity and mortality of millions of immunocompromised individuals worldwide, yet drugs that are successful in laboratory culture are far less effective against pathogen populations persisting in vivo. Laboratory models, upon which preclinical development of new drugs is based, can only replicate host conditions when we understand the metabolic state of the pathogens and the degree of heterogeneity within the population. In this study, we measured the anabolic activity of the pathogen Staphylococcus aureus directly in the sputum of pediatric patients with cystic fibrosis (CF), by combining the high sensitivity of isotope ratio mass spectrometry with a heavy water labeling approach to capture the full range of in situ growth rates. Our results reveal S. aureus generation times with a median of 2.1 d, with extensive growth rate heterogeneity at the single-cell level. These growth rates are far below the detection limit of previous estimates of CF pathogen growth rates, and the rates are slowest in acutely sick patients undergoing pulmonary exacerbations; nevertheless, they are accessible to experimental replication within laboratory models. Treatment regimens that include specific antibiotics (vancomycin, piperacillin/tazobactam, tobramycin) further appear to correlate with slow growth of S. aureus on average, but follow-up longitudinal studies must be performed to determine whether this effect holds for individual patients.

  15. Nerve growth factor mRNA in brain: localization by in situ hybridization

    International Nuclear Information System (INIS)

    Rennert, P.D.; Heinrich, G.

    1986-01-01

    Nerve Growth Factor is a 118 amino acid polypeptide that plays an important role in the differentiation and survival of neurons. The recent discovery that a mRNA that encodes beta Nerve Growth Factor is present in brain suggests that the Nerve Growth Factor gene may not only regulate gene expression of peripheral but also of central neurons. To identify the site(s) of Nerve Growth Factor mRNA production in the brain and to determine which cells express the Nerve Growth Factor gene, the technique of in situ hybridization was employed. A 32P-labeled RNA probe complementary to Nerve Growth Factor mRNA hybridized to cells in the stratum granulosum of the dentate gyrus and the stratum pyramidale of the hippocampus. These observations identify for the first time cellular sites of Nerve Growth Factor gene expression in the central nervous system, and suggest that Nerve Growth Factor mRNA is produced by neurons

  16. In Situ Determination of Thermal Profiles during Czochralski Silicon Crystal Growth by an Eddy Current Technique.

    Science.gov (United States)

    Choe, Kwang Su.

    An eddy current testing method was developed to continuously monitor crystal growth process and determine thermal profiles in situ during Czochralski silicon crystal growth. The work was motivated by the need to improve the quality of the crystal by controlling thermal gradients and annealing history over the growth cycle. The experimental concept is to monitor intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. The experiments were performed in a resistance-heated Czochralski puller with a 203 mm (8 inch) diameter crucible containing 6.5 kg melt. The silicon crystals being grown were about 80 mm in diameter and monitored by an encircling sensor operating at three different test frequencies (86, 53 and 19 kHz). A one-dimensional analytical solution was employed to translate the detected signals into electrical conductivities. In terms of experiments, the effects of changes in growth condition, which is defined by crystal and crucible rotation rates, crucible position, pull rate, and hot-zone configuration, were investigated. Under a given steady-state condition, the thermal profile was usually stable over the entire length of crystal growth. The profile shifted significantly, however, when the crucible rotation rate was kept too high. As a direct evidence to the effects of melt flow on heat transfer process, a thermal gradient minimum was observed about the crystal/crucible rotation combination of 20/-10 rpm cw. The thermal gradient reduction was still most pronounced when the pull rate or the radiant heat loss to the environment was decreased: a nearly flat axial thermal gradient was achieved when either the pull rate was halved or the height of the exposed crucible wall was effectively doubled. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5 ^{rm o}C/mm. Regardless of growth condition, the three-frequency data revealed radial thermal gradients much larger

  17. Taoshan uranium ore fields in situ blasting heap leaching rate influence factors to investigate

    International Nuclear Information System (INIS)

    Xie Wangnan; Dong Chunming

    2014-01-01

    Taoshan ore field ore in situ blasting heap leaching out build industrial test and production process, stope leaching rate and leaching cycle is large than that, after analysis, blasting method and cloth liquid way is to affect leaching rate and leaching cycle of the main factors. This paper holds that as far as possible using stratified deep hole blasting of squeezing up ways to reduce the building pile of in-situ leaching ore block rate; Adopting effective cloth tube way, increase the leaching agent and ore contact comprehensive; Introduction of bacterial leaching, and other means to improve leaching rate, shorten production cycle, etc to solve it. (authors)

  18. Testing linear growth rate formulas of non-scale endogenous growth models

    NARCIS (Netherlands)

    Ziesemer, Thomas

    2017-01-01

    Endogenous growth theory has produced formulas for steady-state growth rates of income per capita which are linear in the growth rate of the population. Depending on the details of the models, slopes and intercepts are positive, zero or negative. Empirical tests have taken over the assumption of

  19. Larval developmental rate, metabolic rate and future growth performance in Atlantic salmon

    DEFF Research Database (Denmark)

    Serrano, Jonathan Vaz; Åberg, Madelene; Gjoen, Hans Magnus

    2009-01-01

    , quantified as time to first feeding, and growth in later stages was demonstrated in Atlantic salmon (Salmo salar L.). The observed relationship between future growth and larval developmental rate suggests that sorting larvae by time to first feeding can be a potential tool to optimize feeding strategies...... and growth in commercial rearing of Atlantic salmon. Furthermore, the link between larval standard metabolic rate and developmental rate and future growth is discussed in the present study....

  20. Connection between the growth rate distribution and the size dependent crystal growth

    Science.gov (United States)

    Mitrović, M. M.; Žekić, A. A.; IIić, Z. Z.

    2002-07-01

    The results of investigations of the connection between the growth rate dispersions and the size dependent crystal growth of potassium dihydrogen phosphate (KDP), Rochelle salt (RS) and sodium chlorate (SC) are presented. A possible way out of the existing confusion in the size dependent crystal growth investigations is suggested. It is shown that the size independent growth exists if the crystals belonging to one growth rate distribution maximum are considered separately. The investigations suggest possible reason for the observed distribution maxima widths, and the high data scattering on the growth rate versus the crystal size dependence.

  1. In situ growth of p and n-type graphene thin films and diodes by pulsed laser deposition

    KAUST Repository

    Sarath Kumar, S. R.; Nayak, Pradipta K.; Hedhili, Mohamed N.; Khan, M. A.; Alshareef, Husam N.

    2013-01-01

    We report the in situ growth of p and n-type graphene thin films by ultraviolet pulsed laser deposition in the presence of argon and nitrogen, respectively. Electron microscopy and Raman studies confirmed the growth, while temperature dependent

  2. Rate Constants of PSII Photoinhibition and its Repair, and PSII Fluorescence Parameters in Field Plants in Relation to their Growth Light Environments.

    Science.gov (United States)

    Miyata, Kazunori; Ikeda, Hiroshi; Nakaji, Masayoshi; Kanel, Dhana Raj; Terashima, Ichiro

    2015-09-01

    The extent of photoinhibition of PSII is determined by a balance between the rate of photodamage to PSII and that of repair of the damaged PSII. It has already been indicated that the rate constants of photodamage (kpi) and repair (krec) of the leaves differ depending on their growth light environment. However, there are no studies using plants in the field. We examined these rate constants and fluorescence parameters of several field-grown plants to determine inter-relationships between these values and the growth environment. The kpi values were strongly related to the excess energy, EY, of the puddle model and non-regulated energy dissipation, Y(NO), of the lake model, both multiplied by the photosynthetically active photon flux density (PPFD) level during the photoinhibitory treatment. In contrast, the krec values corrected against in situ air temperature were very strongly related to the daily PPFD level. The plants from the fields showed higher NPQ than the chamber-grown plants, probably because these field plants acclimated to stronger lightflecks than the averaged growth PPFD. Comparing chamber-grown plants and the field plants, we showed that kpi is determined by the incident light level and the photosynthetic capacities such as in situ rate of PSII electron transport and non-photochemical quenching (NPQ) [e.g. Y(NO)×PPFD] and that krec is mostly determined by the growth light and temperature levels. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Growth Rates of Microbes in the Oceans.

    Science.gov (United States)

    Kirchman, David L

    2016-01-01

    A microbe's growth rate helps to set its ecological success and its contribution to food web dynamics and biogeochemical processes. Growth rates at the community level are constrained by biomass and trophic interactions among bacteria, phytoplankton, and their grazers. Phytoplankton growth rates are approximately 1 d(-1), whereas most heterotrophic bacteria grow slowly, close to 0.1 d(-1); only a few taxa can grow ten times as fast. Data from 16S rRNA and other approaches are used to speculate about the growth rate and the life history strategy of SAR11, the most abundant clade of heterotrophic bacteria in the oceans. These strategies are also explored using genomic data. Although the methods and data are imperfect, the available data can be used to set limits on growth rates and thus on the timescale for changes in the composition and structure of microbial communities.

  4. Nucleation and growth of elastin-like peptide fibril multilayers: an in situ atomic force microscopy study

    International Nuclear Information System (INIS)

    Yang Guocheng; Yip, Christopher M; Wong, Michael K; Lin, Lauren E

    2011-01-01

    Controlling how molecules assemble into complex supramolecular architectures requires careful consideration of the subtle inter- and intra-molecular interactions that control their association. This is particularly crucial in the context of assembly at interfaces, where both surface chemistry and structure can play a role in directing structure formation. We report here the results of a study into the self-assembly of the elastin-like peptide EP I on structurally modified highly ordered pyrolytic graphite, including the role of spatial confinement on fibril nucleation and the growth of oriented fibril multilayers. In situ atomic force microscopy performed in fluid and at elevated temperature provided direct evidence of frustrated fibril nuclei and oriented growth of independent fibril domains. These results portend the application of this in situ strategy for studies of the nucleation and growth mechanisms of other fibril- and amyloid-forming proteins.

  5. In situ observation of self-assembled Fe{sub 13}Ge{sub 8} nanowires growth on anisotropic Ge (1 1 0) surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi-Peng, E-mail: LI.Zhipeng@nims.go.jp [Department of Physics, National University of Singapore, 2 Science Drive 3, S117542 (Singapore); Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Tok, Engsoon [Department of Physics, National University of Singapore, 2 Science Drive 3, S117542 (Singapore); Foo, Yonglim [Institute of Materials Research and Engineering, 3 Research Link, S117602 (Singapore)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Epitaxial Fe{sub 13}Ge{sub 8} nanowries growth and shape evolution on Ge (1 1 0) studied by in situ UHV-TEM. Black-Right-Pointing-Pointer Single type of morphology and unique orientation of nanowires formed at elevated temperatures. Black-Right-Pointing-Pointer Uniform control of the nanowires morphology at different temperatures can be succeeded. -- Abstract: Self-assembled iron germanide nanowires (NWs) were grown by directly depositing Fe onto a Ge (1 1 0) substrate, in an in situ ultra-high vacuum transmission electron microscope from 430 to 500 Degree-Sign C. All observed NWs had a similar length/width aspect ratio ({approx}8:1) at all deposition temperatures, as well as the same elongation orientation with respect to the underlying Ge (1 1 0) substrate. The growth dynamics was investigated by real time observations of NWs growth at elevated temperatures. It is elucidated that the formation of NWs in similar shape at all deposited temperatures is attributed to the similar activation energy barriers in length and width of NWs, which can result in the constant growth rate independent of growth temperatures. Furthermore, the difference in pre-exponential factor along the length and width of growing islands arose due to the anisotropic constraint of the Ge (1 1 0) substrate, leading to the unique elongation of NWs. This growth dynamics suggests the possibility of uniform control of the morphology of self-assembled NWs, as well as other morphologies of bottom-up fabricated devices, at different deposition temperatures.

  6. Novel in situ resistance measurement for the investigation of CIGS growth in a selenization process

    International Nuclear Information System (INIS)

    Liu Wei; He Qing; Li Fengyan; Li Changjian; Sun Yun; Tian Jianguo; Li Zubin

    2009-01-01

    During the selenization process of CIGS thin films, the relation between the element loss rate and the precursor depositions are analyzed. The growth of the CIGS thin films during the selenization process is investigated by the novel in situ resistance measurement, by which the formation of compound semiconductors can be observed directly and simultaneously. Their structures, phase evolutions and element losses are analyzed by XRD and XRF. Based on the experimental results, it can be concluded that the phase transforms have nothing to do with the deposition sequences of precursors, while the element loss rates are related to the deposition sequences in this process. In addition, element loss mechanisms of CIGS thin films prepared by the selenization process are analyzed by the phase evolutions and chemical combined path in the In, Ga–Se reaction processes. Moreover it is verified that the element losses are depressed by increasing the ramping-up rate finally. The results provide effective methods to fabricate high-quality CIGS thin films with low element losses

  7. Novel in situ resistance measurement for the investigation of CIGS growth in a selenization process

    Science.gov (United States)

    Liu, Wei; Tian, Jian-Guo; Li, Zu-Bin; He, Qing; Li, Feng-Yan; Li, Chang-Jian; Sun, Yun

    2009-03-01

    During the selenization process of CIGS thin films, the relation between the element loss rate and the precursor depositions are analyzed. The growth of the CIGS thin films during the selenization process is investigated by the novel in situ resistance measurement, by which the formation of compound semiconductors can be observed directly and simultaneously. Their structures, phase evolutions and element losses are analyzed by XRD and XRF. Based on the experimental results, it can be concluded that the phase transforms have nothing to do with the deposition sequences of precursors, while the element loss rates are related to the deposition sequences in this process. In addition, element loss mechanisms of CIGS thin films prepared by the selenization process are analyzed by the phase evolutions and chemical combined path in the In, Ga-Se reaction processes. Moreover it is verified that the element losses are depressed by increasing the ramping-up rate finally. The results provide effective methods to fabricate high-quality CIGS thin films with low element losses.

  8. Fabrication and in-situ STM investigation of growth dynamics of semiconductor nanostructures grown by MBE

    International Nuclear Information System (INIS)

    Borisova, Svetlana

    2012-01-01

    Modern development of information technologies requires an introduction of new fundamental concepts, in order to create more efficient devices and to decrease their size. One of the most promising ways is to increase the functionality of silicon by integrating novel materials into Si-based production. This PhD thesis reports on the fabrication and investigation of the growth of semiconductor nanostructures on Si substrates by molecular beam epitaxy (MBE). In-situ scanning tunneling microscopy (STM) is a powerful technique in order to study morphological and electronic properties of the grown structures directly under ultra high vacuum (UHV) conditions. It is shown that the combination of MBE and in-situ STM enables the study of nucleation and growth dynamics at the atomic scale. It provides us with numerous information concerning the nucleation mechanism, the growth mode of the structures, adatom kinetics, influence of the lattice mismatch between the substrate and the grown structure as well as formation and morphology of crystal defects. The first part of the thesis focuses on the experimental realization based upon an existing setup. The construction of an in-situ UHV STM compatible with the MBE cluster and the technical improvement of the STM setup are described. Subsequently, test measurements are performed on the technologically most important surfaces, Ge (100) and Si (111). The second part of the thesis is dedicated to ordered small-period arrays of self-assembled Ge quantum dots (QDs) grown on pre-patterned Si (100) substrates. Small-period Ge QD crystals are highly interesting since band structure calculations indicate coupled electronic states of the QDs in the case of the small lateral period of approximately 30 nm. Small-period hole patterns with a period of 56 nm are fabricated by e-beam lithography on Si substrates. The evolution of the hole morphology during the in-situ pre-growth annealing and the Si buffer layer growth are studied. Deposition of 5

  9. Fabrication and in-situ STM investigation of growth dynamics of semiconductor nanostructures grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Borisova, Svetlana

    2012-05-23

    Modern development of information technologies requires an introduction of new fundamental concepts, in order to create more efficient devices and to decrease their size. One of the most promising ways is to increase the functionality of silicon by integrating novel materials into Si-based production. This PhD thesis reports on the fabrication and investigation of the growth of semiconductor nanostructures on Si substrates by molecular beam epitaxy (MBE). In-situ scanning tunneling microscopy (STM) is a powerful technique in order to study morphological and electronic properties of the grown structures directly under ultra high vacuum (UHV) conditions. It is shown that the combination of MBE and in-situ STM enables the study of nucleation and growth dynamics at the atomic scale. It provides us with numerous information concerning the nucleation mechanism, the growth mode of the structures, adatom kinetics, influence of the lattice mismatch between the substrate and the grown structure as well as formation and morphology of crystal defects. The first part of the thesis focuses on the experimental realization based upon an existing setup. The construction of an in-situ UHV STM compatible with the MBE cluster and the technical improvement of the STM setup are described. Subsequently, test measurements are performed on the technologically most important surfaces, Ge (100) and Si (111). The second part of the thesis is dedicated to ordered small-period arrays of self-assembled Ge quantum dots (QDs) grown on pre-patterned Si (100) substrates. Small-period Ge QD crystals are highly interesting since band structure calculations indicate coupled electronic states of the QDs in the case of the small lateral period of approximately 30 nm. Small-period hole patterns with a period of 56 nm are fabricated by e-beam lithography on Si substrates. The evolution of the hole morphology during the in-situ pre-growth annealing and the Si buffer layer growth are studied. Deposition of 5

  10. Effect of massing on larval growth rate.

    Science.gov (United States)

    Johnson, Aidan P; Wallman, James F

    2014-08-01

    Estimation of minimum postmortem interval commonly relies on predicting the age of blowfly larvae based on their size and an estimate of the temperatures to which they have been exposed throughout their development. The majority of larval growth rate data have been developed using small larval masses in order to avoid excess heat generation. The current study collected growth rate data for larvae at different mass volumes, and assessed the temperature production of these masses, for two forensically important blow fly species, Chrysomya rufifacies and Calliphora vicina. The growth rate of larvae in a small mass, exposed to the higher temperatures equivalent to those experienced by large masses, was also assessed to determine if observed differences were due to the known temperature effects of maggot masses. The results showed that temperature production increased with increasing mass volume, with temperature increases of 11 °C observed in the large Ch. rufifacies masses and increases of 5 °C in the large C. vicina masses. Similarly, the growth rate of the larvae was affected by mass size. The larvae from small masses grown at the higher temperatures experienced by large masses displayed an initial delay in growth, but then grew at a similar rate to those larvae at a constant 23 °C. Since these larvae from masses of equivalent sizes displayed similar patterns of growth rate, despite differing temperatures, and these growth rates differed from larger masses exposed to the same temperatures, it can be concluded that larval growth rate within a mass may be affected by additional factors other than temperature. Overall, this study highlights the importance of understanding the role of massing in larval development and provides initial developmental data for mass sizes of two forensically important blowfly species commonly encountered in Australian forensic casework. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. [Growth and deformity after in situ fixation of slipped capital femoral epiphysis].

    Science.gov (United States)

    Druschel, C; Placzek, R; Funk, J F

    2013-08-01

    For mild to moderate slipped capital femoral epiphysis (SCFE) in situ fixation is the current treatment standard. However, concerning the implant selection (screw versus k-wires) as well as the prophylactic stabilisation of the non-affected hip, controversies still exist. The aim of this study was to analyse femoral residual growth and femoral deformities after in situ fixation of SCFE either with k-wires or screws. We conducted a retrospective analysis of the radiographs of adolescents treated for SCFE in our department between 01/2003 and 02/2011. To evaluate femoral growth the articulo-trochanteric distance, centro-trochanteric distance, caput-collum-diaphyseal angle, pin-joint ratio and pin-physis ratio were determined. The femoral deformity was assessed by measuring the sphericity of the femoral head. Degenerative changes were evaluated in the final radiographs. Statistical analysis was performed concerning differences between therapeutically and prophylactically treated hips as well as stabilisations with k-wires and screws. A total of 22 patients (female : male = 14 : 8, mean age girls: 11 ± 1 years, boys: 13 ± 2 years) with 26 slipped capital femoral epiphyses was analysed. K-wires were used for fixation in 4 hips each therapeutically and prophylactically, 22 hips with SCFE and 14 non-affected hips were stabilised with screws. Treatment with screws did not lead to significantly earlier physeal closure than k-wire pinning. Regarding the femoral growth parameters a significant decrease in the articulo-trochanteric distance and CCD angle was detectable in all groups. The pin-joint ratio revealed an adequate residual growth in 58 % of the therapeutically and in 72 % of the prophylactically treated hips without significant difference between k-wires and screws. The pin-physis ratio demonstrated similar values. Regarding the femoral deformity the SCFE hips resulted in a significantly reduced sphericity, which remained unchanged during follow-up. The

  12. The mechanism of borax crystallization using in situ optical microscopy and AFM

    International Nuclear Information System (INIS)

    Suharso, G.; Parkinson, M.; Ogden, M.

    2002-01-01

    Full text: The quality of high-purity borax depends both on the concentrations of the impurities and the product appearance, which are mainly determined by the size and morphology of the crystals. Thus, knowledge about crystallization of borax is of direct relevance to the industrial production of borax. In addition, fundamental studies of borax crystallization will provide results of relevance to the crystallization of other economically important materials. An investigation into the fundamental mechanism of crystal growth of borax from aqueous solution was carried out, as a model system. The investigation focussed on the growth mechanism, and the influence of factors such as solution supersaturation, temperature, crystal size and solution flow on the rate of crystal growth. In situ optical microscopy was used to determine growth rates of three different faces of borax crystals at 20, 25, 30, and 35 deg C, at various concentrations. It was found that the growth rate increases with increasing temperature and supersaturation. At low concentration , growth on the (010), (001), and (111) faces occurs via a spiral growth mechanism and at high concentration birth and spread is the principal mechanism operating. The activation energy for the different mechanisms was determined. Examination by ex situ Atomic Force Microscopy (AFM) showed features suggesting that the (100), (010), (001) faces of borax crystals grow by spiral mechanism at low concentration and two dimensional nucleation at high concentration. These experiments support the data obtained from in situ optical microscopy. Copyright (2002) Australian Society for Electron Microscopy Inc

  13. Dinosaur Metabolism and the Allometry of Maximum Growth Rate.

    Science.gov (United States)

    Myhrvold, Nathan P

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued.

  14. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    Science.gov (United States)

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued. PMID:27828977

  15. In situ measurements of dose rates from terrestrial gamma rays

    International Nuclear Information System (INIS)

    Horng, M.C.; Jiang, S.H.

    2002-01-01

    A portable, high purity germanium (HPGe) detector was employed for the performance of in situ measurements of radionuclide activity concentrations in the ground in Taiwan, at altitudes ranging from sea level to 3900 m. The absolute peak efficiency of the HPGe detector for a gamma-ray source uniformly distributed in the semi-infinite ground was determined using a semi-empirical method. The gamma-ray dose rates from terrestrial radionuclides were calculated from the measured activity levels using recently published dose rate conversion factors. The absorbed dose rate in air due to cosmic rays was derived by subtracting the terrestrial gamma-ray dose rate from the overall absorbed dose rate in air measured using a high-pressure ionization chamber. The cosmic-ray dose rate calculated as a function of altitude, was found to be in good agreement with the data reported by UNSCEAR. (orig.)

  16. Microtubules Growth Rate Alteration in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Irina B. Alieva

    2010-01-01

    Full Text Available To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC and “fast” (three times as much growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.

  17. Impact of Membrane-Induced Particle Immobilization on Seeded Growth Monitored by In Situ Liquid Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Weiner, Rebecca G; Chen, Dennis P; Unocic, Raymond R; Skrabalak, Sara E

    2016-05-01

    In situ liquid cell scanning transmission electron microscopy probes seeded growth in real time. The growth of Pd on Au nanocubes is monitored as a model system to compare growth within a liquid cell and traditional colloidal synthesis. Different growth patterns are observed due to seed immobilization and the highly reducing environment within the liquid cell. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Exchange-rate regimes and economic growth: An empirical evaluation

    OpenAIRE

    Simón Sosvilla-Rivero; María del Carmen Ramos-Herrera

    2014-01-01

    Based on a dataset of 123 economies, this paper empirically investigates the relation between exchange-rate regimes and economic growth. We find that growth performance is best under intermediate exchange rate regimes, while the smallest growth rates are associated with flexible exchange rates. Nevertheless, this conclusion is tempered when we analyze the countries by income level: even though countries that adopt intermediate exchange-rate regimes are characterized by higher economic growth,...

  19. Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy.

    Science.gov (United States)

    Marcellini, Moreno; Noirjean, Cecile; Dedovets, Dmytro; Maria, Juliette; Deville, Sylvain

    2016-11-30

    Ice crystals nucleate and grow when a water solution is cooled below its freezing point. The growth velocities and morphologies of the ice crystals depend on many parameters, such as the temperature of ice growth, the melting temperature, and the interactions of solutes with the growing crystals. Three types of morphologies may appear: dendritic, cellular (or fingerlike), or the faceted equilibrium form. Understanding and controlling which type of morphology is formed is essential in several domains, from biology to geophysics and materials science. Obtaining, in situ, three dimensional observations without introducing artifacts due to the experimental technique is nevertheless challenging. Here we show how we can use laser scanning confocal microscopy to follow in real-time the growth of smoothed and faceted ice crystals in zirconium acetate solutions. Both qualitative and quantitative observations can be made. In particular, we can precisely measure the lateral growth velocity of the crystals, a measure otherwise difficult to obtain. Such observations should help us understand the influence of the parameters that control the growth of ice crystals in various systems.

  20. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [University of Massachusetts, Amherst

    2012-11-28

    The goal of these projects was to develop molecule tools to tract the metabolic activity and physiological status of microorganisms during in situ uranium bioremediation. Such information is important in able to design improved bioremediation strategies. As summarized below, the research was highly successful with new strategies developed for estimating in situ rates of metabolism and diagnosing the physiological status of the predominant subsurface microorganisms. This is a first not only for groundwater bioremediation studies, but also for subsurface microbiology in general. The tools and approaches developed in these studies should be applicable to the study of microbial communities in a diversity of soils and sediments.

  1. Growth and development rates have different thermal responses.

    Science.gov (United States)

    Forster, Jack; Hirst, Andrew G; Woodward, Guy

    2011-11-01

    Growth and development rates are fundamental to all living organisms. In a warming world, it is important to determine how these rates will respond to increasing temperatures. It is often assumed that the thermal responses of physiological rates are coupled to metabolic rate and thus have the same temperature dependence. However, the existence of the temperature-size rule suggests that intraspecific growth and development are decoupled. Decoupling of these rates would have important consequences for individual species and ecosystems, yet this has not been tested systematically across a range of species. We conducted an analysis on growth and development rate data compiled from the literature for a well-studied group, marine pelagic copepods, and use an information-theoretic approach to test which equations best describe these rates. Growth and development rates were best characterized by models with significantly different parameters: development has stronger temperature dependence than does growth across all life stages. As such, it is incorrect to assume that these rates have the same temperature dependence. We used the best-fit models for these rates to predict changes in organism mass in response to temperature. These predictions follow a concave relationship, which complicates attempts to model the impacts of increasing global temperatures on species body size.

  2. Division-Based, Growth Rate Diversity in Bacteria

    Directory of Open Access Journals (Sweden)

    Ghislain Y. Gangwe Nana

    2018-05-01

    Full Text Available To investigate the nature and origins of growth rate diversity in bacteria, we grew Escherichia coli and Bacillus subtilis in liquid minimal media and, after different periods of 15N-labeling, analyzed and imaged isotope distributions in individual cells with Secondary Ion Mass Spectrometry. We find a striking inter- and intra-cellular diversity, even in steady state growth. This is consistent with the strand-dependent, hyperstructure-based hypothesis that a major function of the cell cycle is to generate coherent, growth rate diversity via the semi-conservative pattern of inheritance of strands of DNA and associated macromolecular assemblies. We also propose quantitative, general, measures of growth rate diversity for studies of cell physiology that include antibiotic resistance.

  3. Measurements of Protein Crystal Face Growth Rates

    Science.gov (United States)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  4. Growth of micro-crystals in solution by in-situ heating via continuous wave infrared laser light and an absorber

    Science.gov (United States)

    Pathak, Shashank; Dharmadhikari, Jayashree A.; Thamizhavel, A.; Mathur, Deepak; Dharmadhikari, Aditya K.

    2016-01-01

    We report on growth of micro-crystals such as sodium chloride (NaCl), copper sulphate (CuSO4), potassium di-hydrogen phosphate (KDP) and glycine (NH2CH2COOH) in solution by in-situ heating using continuous wave Nd:YVO4 laser light. Crystals are grown by adding single walled carbon nanotubes (SWNT). The SWNTs absorb 1064 nm light and act as an in-situ heat source that vaporizes the solvent producing microcrystals. The temporal dynamics of micro-crystal growth is investigated by varying experimental parameters such as SWNT bundle size and incident laser power. We also report crystal growth without SWNT in an absorbing medium: copper sulphate in water. Even though the growth dynamics with SWNT and copper sulphate are significantly different, our results indicate that bubble formation is necessary for nucleation. Our simple method may open up new vistas for rapid growth of seed crystals especially for examining the crystallizability of inorganic and organic materials.

  5. In-situ follow up of gold nano-particles nucleation-growth

    International Nuclear Information System (INIS)

    Abecassis, Benjamin

    2006-01-01

    In this thesis, we assess the formation mechanism of gold nanoparticles in situ in liquid media (homogeneous or in microemulsion) by small angle scattering techniques. The first part details several important concepts which are useful for an appropriate understanding of the rest of the thesis along with an overview of the literature on the subject. We then present results of time resolved synchrotron small angle X ray scattering and UV-visible experiment performed in situ during the formation of gold nanoparticles in organic solvent. We show that it is possible to follow the nucleation and growth of the particles in real time with a time resolution of a few hundreds milliseconds. We show that depending on the chemical nature of the ligand the nucleation and growth can be either simultaneous or separated in time. In the latter case, the growth is limited by surface reaction of the monomer at the particles surface. We also show that when the produced nanoparticles have an average radius larger than 5 nm, they self-assemble into ordered super-lattice which exhibit a cubic face center crystallographic structure. In a third part, by using a combination of complementary techniques we study water/oil/octyl-ammonium-octanoate microemulsions in the reverse micelles part of the phase diagram. The structure of these 'catanionic' microemulsions are revealed as a function of the water content, the temperature and the surface charge. The different observed topologies (sphere, rod-like or connected worm-like) and the phase transitions are compared to a recent theory which takes into account the curvature energy of the surfactant film. Finally, we show that these microemulsions can be used efficiently to synthesise gold nanoparticles. We show that the template effect, often cited to explain the formation of nanoparticles in reverse micelles is in our case not relevant. It is also noteworthy possible to separate and purify the as-produced nanoparticles by slightly

  6. Emittance growth rates for displaced beams

    International Nuclear Information System (INIS)

    Anderson, O.A.

    1993-05-01

    Emittance growth rates have been previously analyzed for nonuniform beams in linear channels and for initially uniform mismatched beams in nonlinear channels. These studies were for centered beams. Additional emittance growth can arise in cases where the beam is initially displaced. The purpose of this study is to obtain growth rates for displaced beams. This work differs from studies involving random displacement of electrodes. Our analysis assumes instead that the focusing system is perfectly aligned but that the beam is initially displaced with respect to the equilibrium axis. If the focusing force is slightly nonlinear, we find a gradual transfer of the potential energy of beam displacement into kinetic energy associated with emittance growth. We present explicit results for the emittance growth distance as a function of the nonlinearity of the channel. These results will have practical importance for designers of accelerators and transport systems when setting realistic tolerances for initial beam alignment. These tolerances will depend on the nonlinearity and the length of the system

  7. Growth rate of YBCO-Ag superconducting single grains

    Science.gov (United States)

    Congreve, J. V. J.; Shi, Y. H.; Dennis, A. R.; Durrell, J. H.; Cardwell, D. A.

    2017-12-01

    The large scale use of (RE)Ba2Cu3O7 bulk superconductors, where RE=Y, Gd, Sm, is, in part, limited by the relatively poor mechanical properties of these inherently brittle ceramic materials. It is reported that alloying of (RE)Ba2Cu3O7 with silver enables a significant improvement in the mechanical strength of bulk, single grain samples without any detrimental effect on their superconducting properties. However, due to the complexity and number of inter-related variables involved in the top seeded melt growth (TSMG) process, the growth of large single grains is difficult and the addition of silver makes it even more difficult to achieve successful growth reliably. The key processing variables in the TSMG process include the times and temperatures of the stages within the heating profile, which can be derived from the growth rate during the growth process. To date, the growth rate of the YBa2Cu3O7-Ag system has not been reported in detail and it is this lacuna that we have sought to address. In this work we measure the growth rate of the YBCO-Ag system using a method based on continuous cooling and isothermal holding (CCIH). We have determined the growth rate by measuring the side length of the crystallised region for a number of samples for specified isothermal hold temperatures and periods. This has enabled the growth rate to be modelled and from this an optimized heating profile for the successful growth of YBCO-Ag single grains to be derived.

  8. In situ visualization of Li/Ag2VP2O8 batteries revealing rate-dependent discharge mechanism

    Science.gov (United States)

    Kirshenbaum, Kevin; Bock, David C.; Lee, Chia-Ying; Zhong, Zhong; Takeuchi, Kenneth J.; Marschilok, Amy C.; Takeuchi, Esther S.

    2015-01-01

    The functional capacity of a battery is observed to decrease, often quite dramatically, as discharge rate demands increase. These capacity losses have been attributed to limited ion access and low electrical conductivity, resulting in incomplete electrode use. A strategy to improve electronic conductivity is the design of bimetallic materials that generate a silver matrix in situ during cathode reduction. Ex situ x-ray absorption spectroscopy coupled with in situ energy-dispersive x-ray diffraction measurements on intact lithium/silver vanadium diphosphate (Li/Ag2VP2O8) electrochemical cells demonstrate that the metal center preferentially reduced and its location in the bimetallic cathode are rate-dependent, affecting cell impedance. This work illustrates that spatial imaging as a function of discharge rate can provide needed insights toward improving realizable capacity of bimetallic cathode systems.

  9. In situ observation of low temperature growth of Ge on Si(1 1 1) by reflection high energy electron diffraction

    International Nuclear Information System (INIS)

    Grimm, Andreas; Fissel, Andreas; Bugiel, Eberhard; Wietler, Tobias F.

    2016-01-01

    Highlights: • Investigation of the initial stages of epitaxial growth of Ge on Si(1 1 1) in situ by RHEED. • Impact of growth temperature on strain evolution for temperatures between 200 °C and 400 °C. • Epitaxy with a high degree of structural perfection already at growth temperature of 200 °C. • Ordered interfacial dislocation networks already at 200 °C. • Tensile strain contribution of Si(1 1 1) 7 × 7-surface reconstruction to strain relaxation process for epitaxial growth of Ge. - Abstract: In this paper we investigate the initial stages of epitaxial growth of Ge on Si(1 1 1) and the impact of growth temperature on strain evolution in situ by reflection high energy electron diffraction (RHEED) for temperatures between 200 °C and 400 °C. The change in surface morphology from a flat wetting layer to subsequent islanding that is characteristic for Stranski–Krastanov growth is monitored by spot intensity analysis. The corresponding critical layer thickness is determined to 3.1 < d c < 3.4 ML. In situ monitoring of the strain relaxation process reveals a contribution of the Si(1 1 1) 7 × 7-surface reconstruction to the strain relaxation process. High resolution transmission electron microscopy confirms that the Ge islands exhibit a high degree of structural perfection and an ordered interfacial misfit dislocation network already at a growth temperature of 200 °C is established. The temperature dependency of island shape, density and height is characterized by atomic force microscopy and compared to the RHEED investigations.

  10. Growth rate, population entropy, and perturbation theory.

    OpenAIRE

    Demetrius, L.

    1989-01-01

    This paper is concerned with the connection between two classes of population variables: measures of population growth rate—the Malthusian parameter, the net reproduction rate, the gross reproduction rate, and the mean life expectancy; and measures of demographic heterogeneity—population entropy. It is shown that the entropy functions predict the response of the growth rate parameters to perturbations in the age-specific fecundity and mortality schedule. These results are invoked to introduce...

  11. Radial Growth of Self-Catalyzed GaAs Nanowires and the Evolution of the Liquid Ga-Droplet Studied by Time-Resolved in Situ X-ray Diffraction.

    Science.gov (United States)

    Schroth, Philipp; Jakob, Julian; Feigl, Ludwig; Mostafavi Kashani, Seyed Mohammad; Vogel, Jonas; Strempfer, Jörg; Keller, Thomas F; Pietsch, Ullrich; Baumbach, Tilo

    2018-01-10

    We report on a growth study of self-catalyzed GaAs nanowires based on time-resolved in situ X-ray structure characterization during molecular-beam-epitaxy in combination with ex situ scanning-electron-microscopy. We reveal the evolution of nanowire radius and polytypism and distinguish radial growth processes responsible for tapering and side-wall growth. We interpret our results using a model for diameter self-stabilization processes during growth of self-catalyzed GaAs nanowires including the shape of the liquid Ga-droplet and its evolution during growth.

  12. EVIDENCE ON EMPLOYMENT RATE AND ECONOMIC GROWTH

    Directory of Open Access Journals (Sweden)

    Cornelia VĂCEANU

    2014-11-01

    Full Text Available This paper explores a causal relationship between employment rate and economic growth for European Union countries, in general, and produces a structural assessment of employment on the background of labour market dynamics. Economic growth is the key in economic theory and the main source of well-being and quality of life. Since the 2008 financial crisis, most European countries have experienced job shortage and unemployment problem, but today's European economic outlook is strengthening on the bases of a GDP growing momentum. Empirical data shows, regardless the GDP's moderate positive trend, the employment rate did not increase enough. Given this, the present analysis address the question: to what extent the employment rate is affected by economic growth?

  13. Hatching rate and growth rate of Nothobranchius guentheri fertilized eggs after space flight

    International Nuclear Information System (INIS)

    Guo Mingzhong; Zheng Leyun; Lin Guangji; Zhong Jianxing; Yang Huosheng; Zheng Yangfu

    2012-01-01

    Hatching, abnormal, growth and survival rate of the fertilized eggs of Nothobranchius guentheri were carried by Shenzhou 7 spacecraft were studied. The results indicated that the hatching and abnormal rate were no significant difference between the spaceflight group (99.3% and 16.8%) and ground group (97.2% and 10.4%); but the growth rate of male fish from spaceflight group was significant higher (0.094 g/d) than that of ground group (0.059 g/d), leading to the significant bigger of the male fish from spaceflight group. The survival rate of spaceflight group (66.7%) was higher than the ground group (47.9%). It was concluded that there was a higher growth and survival rate of Nothobranchius guentheri fertilized eggs after space flight. (authors)

  14. The effect of size and competition on tree growth rate in old-growth coniferous forests

    Science.gov (United States)

    Das, Adrian

    2012-01-01

    Tree growth and competition play central roles in forest dynamics. Yet models of competition often neglect important variation in species-specific responses. Furthermore, functions used to model changes in growth rate with size do not always allow for potential complexity. Using a large data set from old-growth forests in California, models were parameterized relating growth rate to tree size and competition for four common species. Several functions relating growth rate to size were tested. Competition models included parameters for tree size, competitor size, and competitor distance. Competitive strength was allowed to vary by species. The best ranked models (using Akaike’s information criterion) explained between 18% and 40% of the variance in growth rate, with each species showing a strong response to competition. Models indicated that relationships between competition and growth varied substantially among species. The results also suggested that the relationship between growth rate and tree size can be complex and that how we model it can affect not only our ability to detect that complexity but also whether we obtain misleading results. In this case, for three of four species, the best model captured an apparent and unexpected decline in potential growth rate for the smallest trees in the data set.

  15. In Situ Room Temperature Electron-Beam Driven Graphene Growth from Hydrocarbon Contamination in a Transmission Electron Microscope

    Directory of Open Access Journals (Sweden)

    Mark H Rummeli

    2018-05-01

    Full Text Available The excitement of graphene (as well as 2D materials in general has generated numerous procedures for the fabrication of graphene. Here we present a mini-review on a rather less known, but attractive, in situ means to fabricate graphene inside a transmission electron microscope (TEM. This is achieved in a conventional TEM (viz. no sophisticated specimen holders or microscopes are required and takes advantage of inherent hydrocarbon contamination as a carbon source. Both catalyst free and single atom catalyst approaches are reviewed. An advantage of this technique is that not only can the growth process be imaged in situ, but this can also be achieved with atomic resolution. Moreover, in the future, one can anticipate such approaches enabling the growth of nano-materials with atomic precision.

  16. In situ release rates of Cu and Zn from commercial antifouling paints at different salinities.

    Science.gov (United States)

    Lagerström, Maria; Lindgren, J Fredrik; Holmqvist, Albin; Dahlström, Mia; Ytreberg, Erik

    2018-02-01

    Antifouling paints are environmentally risk assessed based on their biocidal release rates to the water phase. In situ release rates of copper (Cu) and zinc (Zn) were derived for five commercial paints in two recreational marinas with different salinities (5 and 14 PSU) using an X-Ray Fluorescence spectrometer (XRF). Salinity was found to significantly affect the Cu release, with twice the amount of Cu released at the higher salinity, while its influence on the Zn release was paint-specific. Site-specific release rates for water bodies with salinity gradients, e.g. the Baltic Sea, are therefore necessary for more realistic risk assessments of antifouling paints. Furthermore, the in situ release rates were up to 8 times higher than those generated using standardized laboratory or calculation methods. The environmental risk assessment repeated with the field release rates concludes that it is questionable whether the studied products should be allowed on the Swedish market. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Volume growth rate of acoustic neurinomas

    International Nuclear Information System (INIS)

    Laasonen, E.M.; Troupp, H.

    1986-01-01

    Of 79 acoustic neurinomas seen between June 1980 and June 1984, at least two CT scans were available for each of 23 tumours (21 patients); the scans were performed at intervals of at least 6 months. The volume growth rate of the tumours was either moderate, with a volume doubling time ranging from 205 to 545 days, or slow, with a doubling time ranging from 1090 days to no observable growth. No single clinical, radiological or histological feature correlated with any type of growth rate. However, some conclusions were drawn. If a primary CT scan is negative, at least 1 year should elapse before it is worthwhile taking another scan, even though audiological findings suggest growth; after an apparently radical removal, at least 3 years should elapse before a check CT scan is worthwhile; and if a small acoustic neurinoma is diagnosed, but for some reason not operated upon, a second CT scan should be carried out 1 year later in order to reassess the case. (orig.)

  18. Growth of the (001) face of borax crystals

    OpenAIRE

    Suharso, Suharso

    2010-01-01

    he growth rates of borax crystals from aqueous solutions in the (001) direction at various relative supersaturations were measured using in situ cell optical microscopy method. The result shows that the growth mechanism of the (001) face of borax crystal at temperature of 20 °C is spiral growth mechanism.   Keywords: Growth mechanism, borax.

  19. Growth rate characteristics of acidophilic heterotrophic organisms from mine waste rock piles

    Science.gov (United States)

    Yacob, T. W.; Silverstein, J.; Jenkins, J.; Andre, B. J.; Rajaram, H.

    2010-12-01

    Autotrophic iron oxidizing bacteria play a key role in pyrite oxidation and generation of acid mine drainage AMD. Scarcity of organic substrates in many disturbed sites insures that IOB have sufficient oxygen and other nutrients for growth. It is proposed that addition of organic carbon substrate to waste rock piles will result in enrichment of heterotrophic microorganisms limiting the role of IOB in AMD generation. Previous researchers have used the acidophilic heterotroph Acidiphilium cryptum as a model to study the effects of organic substrate addition on the pyrite oxidation/AMD cycle. In order to develop a quantitative model of effects such as competition for oxygen, it is necessary to use growth and substrate consumption rate expressions, and one approach is to choose a model strain such as A. cryptum for kinetic studies. However we have found that the growth rate characteristics of A. cryptum may not provide an accurate model of the remediation effects of organic addition to subsurface mined sites. Fluorescent in-situ hybridization (FISH) assays of extracts of mine waste rock enriched with glucose and yeast extract did not produce countable numbers of cells in the Acidiphilium genus, with a detection limit of3 x 104 cells/gram rock, despite evidence of the presence of well established heterotrophic organisms. However, an MPN enrichment produced heterotrophic population estimates of 1x107 and 1x109 cells/gram rock. Growth rate studies of A. cryptum showed that cultures took 120 hours to degrade 50% of an initial glucose concentration of 2,000 mg/L. However a mixed culture enriched from mine waste rock consumed 100% of the same amount of glucose in 24 hours. Substrate consumption data for the mixed culture were fit to a Monod growth model: {dS}/{dt} = μ_{max}S {( {X_0}/{Y} + S_0 -S )}/{(K_s +S)} Kinetic parameters were estimated utilizing a non linear regression method coupled with an ODE solver. The maximum specific growth rate of the mixed population with

  20. Grain Nucleation and Growth in Deformed NiTi Shape Memory Alloys: An In Situ TEM Study

    Science.gov (United States)

    Burow, J.; Frenzel, J.; Somsen, C.; Prokofiev, E.; Valiev, R.; Eggeler, G.

    2017-12-01

    The present study investigates the evolution of nanocrystalline (NC) and ultrafine-grained (UFG) microstructures in plastically deformed NiTi. Two deformed NiTi alloys were subjected to in situ annealing in a transmission electron microscope (TEM) at 400 and 550 °C: an amorphous material state produced by high-pressure torsion (HPT) and a mostly martensitic partly amorphous alloy produced by wire drawing. In situ annealing experiments were performed to characterize the microstructural evolution from the initial nonequilibrium states toward energetically more favorable microstructures. In general, the formation and evolution of nanocrystalline microstructures are governed by the nucleation of new grains and their subsequent growth. Austenite nuclei which form in HPT and wire-drawn microstructures have sizes close to 10 nm. Grain coarsening occurs in a sporadic, nonuniform manner and depends on the physical and chemical features of the local environment. The mobility of grain boundaries in NiTi is governed by the local interaction of each grain with its microstructural environment. Nanograin growth in thin TEM foils seems to follow similar kinetic laws to those in bulk microstructures. The present study demonstrates the strength of in situ TEM analysis and also highlights aspects which need to be considered when interpreting the results.

  1. Money Supply, Interest Rate, and Economic Growth in Cameroon: A ...

    African Journals Online (AJOL)

    Money Supply, Interest Rate, and Economic Growth in Cameroon: A Time Series ... the impacts of money and interest rate on economic growth and development. ... Money Supply, Interest Rates, Economic growth, Co-integration and Inflation.

  2. SEM in situ laboratory investigations on damage growth in GFRP composite under three-point bending tests

    DEFF Research Database (Denmark)

    Zhou, Hong Wei; Mishnaevsky, Leon; Brøndsted, Povl

    2010-01-01

    Glass fiber-reinforced polymer (GFRP) composites are widely used in low-weight constructions. SEM (scanning electron microscopy) in situ experiments of damage growth in GFRP composite under three-point bending loads are carried out. By summarizing the experimental results of three groups of samples...

  3. Physico-chemical and mechanical characterization of in-situ forming xyloglucan gels incorporating a growth factor to promote cartilage reconstruction

    International Nuclear Information System (INIS)

    Dispenza, Clelia; Todaro, Simona; Bulone, Donatella; Sabatino, Maria Antonietta; Ghersi, Giulio; San Biagio, Pier Luigi; Lo Presti, Caterina

    2017-01-01

    The development of growth factors is very promising in the field of tissue regeneration but specifically designed formulations have to be developed in order to enable such new biological entities (NBEs). In particular, the range of therapeutic concentrations is usually very low compared to other active proteins and the confinement in the target site can be of crucial importance. In-situ forming scaffolds are very promising solutions for minimally invasive intervention in cartilage reconstruction and targeting of NBEs. In this work injectable, in-situ forming gels of a temperature responsive partially degalactosylated xyloglucan (Deg-XG) incorporating the growth factor FGF-18 are formulated and characterized. In particular, injectability and shear viscosity at room temperature, time-to-gel at body temperature, morphology and mechanical properties of gels are investigated. The highly hydrophobic growth factor is favorably incorporated and retained by the gel. Gels undergo a slow erosion process when immersed in PBS at 37 °C that opens up their porous structure. The prolonged hydrothermal treatment leads to structural rearrangements towards tougher networks with increased dynamic shear modulus. Preliminary biological evaluations confirm absence of cytotoxicity and the ability of these scaffolds to host cells and promote their proliferation. - Highlights: • In-situ forming gels incorporating a growth factor are formulated and characterized. • The gel retains the growth factor and is colonized by chondrocytes. • Mechanical properties and porosity of gels are controlled by polymer concentration. • Incubation at 37 °C increases the gel strength and opens up the porous structure.

  4. Response of Escherichia coli growth rate to osmotic shock.

    Science.gov (United States)

    Rojas, Enrique; Theriot, Julie A; Huang, Kerwyn Casey

    2014-05-27

    It has long been proposed that turgor pressure plays an essential role during bacterial growth by driving mechanical expansion of the cell wall. This hypothesis is based on analogy to plant cells, for which this mechanism has been established, and on experiments in which the growth rate of bacterial cultures was observed to decrease as the osmolarity of the growth medium was increased. To distinguish the effect of turgor pressure from pressure-independent effects that osmolarity might have on cell growth, we monitored the elongation of single Escherichia coli cells while rapidly changing the osmolarity of their media. By plasmolyzing cells, we found that cell-wall elastic strain did not scale with growth rate, suggesting that pressure does not drive cell-wall expansion. Furthermore, in response to hyper- and hypoosmotic shock, E. coli cells resumed their preshock growth rate and relaxed to their steady-state rate after several minutes, demonstrating that osmolarity modulates growth rate slowly, independently of pressure. Oscillatory hyperosmotic shock revealed that although plasmolysis slowed cell elongation, the cells nevertheless "stored" growth such that once turgor was reestablished the cells elongated to the length that they would have attained had they never been plasmolyzed. Finally, MreB dynamics were unaffected by osmotic shock. These results reveal the simple nature of E. coli cell-wall expansion: that the rate of expansion is determined by the rate of peptidoglycan insertion and insertion is not directly dependent on turgor pressure, but that pressure does play a basic role whereby it enables full extension of recently inserted peptidoglycan.

  5. Can we estimate bacterial growth rates from ribosomal RNA content?

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, P.F.

    1995-12-31

    Several studies have demonstrated a strong relationship between the quantity of RNA in bacterial cells and their growth rate under laboratory conditions. It may be possible to use this relationship to provide information on the activity of natural bacterial communities, and in particular on growth rate. However, if this approach is to provide reliably interpretable information, the relationship between RNA content and growth rate must be well-understood. In particular, a requisite of such applications is that the relationship must be universal among bacteria, or alternately that the relationship can be determined and measured for specific bacterial taxa. The RNA-growth rate relationship has not been used to evaluate bacterial growth in field studies, although RNA content has been measured in single cells and in bulk extracts of field samples taken from coastal environments. These measurements have been treated as probable indicators of bacterial activity, but have not yet been interpreted as estimators of growth rate. The primary obstacle to such interpretations is a lack of information on biological and environmental factors that affect the RNA-growth rate relationship. In this paper, the available data on the RNA-growth rate relationship in bacteria will be reviewed, including hypotheses regarding the regulation of RNA synthesis and degradation as a function of growth rate and environmental factors; i.e. the basic mechanisms for maintaining RNA content in proportion to growth rate. An assessment of the published laboratory and field data, the current status of this research area, and some of the remaining questions will be presented.

  6. In situ nucleophilic substitutional growth of methylammonium lead iodide polycrystals.

    Energy Technology Data Exchange (ETDEWEB)

    Acik, Muge [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Alam, Todd M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Organic Materials Science; Guo, Fangmin [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Ren, Yang [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Lee, Byeongdu [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Rosenberg, Richard A. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Mitchell, JF [Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division; Kinaci, Alper [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Chan, Maria [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Darling, Seth B. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Univ. of Chicago, IL (United States). Inst. for Molecular Engineering

    2017-01-01

    Methylammonium lead iodide (MAPbIx) perovskites are organic-inorganic semiconductors that serve as the light-harvesting component of the photovoltaics, and are desirable with their long diffusion length yielding power conversion efficiencies of ≥22%. Conventional techniques grow perovskites by spin coating precursors on an oxide or a polymer substrate followed by annealing, however, use of high boiling point solvents and high temperatures hinder device stability and performance. Through a one-step, acid-catalyzed nucleophilic-substitutional crystal growth in polar protic solvents, we show evidence for the substrate- and annealing- free production of MAPbIx polycrystals that are metallic-lead-free with negligibly small amount of PbI2 precipitation (<10%). On the basis of this chemical composition, we have devised an in situ growth of highly air (upto ~1.5 months) and thermally-stable (≤300°C), tetragonal-phased, variable-sized polycrystals (~100 nm-10 μm) amendable for large-area deposition, and ultimately, large-scale manufacturing. This method is encouraging for stable optoelectronic devices, and leads to energy-efficient and low-cost processing.

  7. Resistive Wall Growth Rate Measurements in the Fermilab Recycler

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, R. [Fermilab; Adamson, P. [Fermilab; Burov, A. [Fermilab; Kourbanis, I. [Fermilab

    2016-10-05

    Impedance could represent a limitation of running high intensity beams in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this,studies have been performed measuring the growth rate of presumably the resistive wall instability. The growth rates at varying intensities and chromaticities are shown. The measured growth rates are compared to ones calculated with the resistive wall impedance.

  8. Effective Exchange Rate Classifications and Growth

    OpenAIRE

    Justin M. Dubas; Byung-Joo Lee; Nelson C. Mark

    2005-01-01

    We propose an econometric procedure for obtaining de facto exchange rate regime classifications which we apply to study the relationship between exchange rate regimes and economic growth. Our classification method models the de jure regimes as outcomes of a multinomial logit choice problem conditional on the volatility of a country's effective exchange rate, a bilateral exchange rate and international reserves. An `effective' de facto exchange rate regime classification is then obtained by as...

  9. In-Situ Synchrotron Radiation Study of Formation and Growth of Crystalline CexZr1-xO2 Nanoparticles Synthesized in Supercritical Water

    DEFF Research Database (Denmark)

    Tyrsted, Christoffer; Becker-Christensen, Jacob; Hald, Peter

    2010-01-01

    -zirconia system, the growth of ceria and zirconia nanoparticles is fundamentally different under supercritical water conditions. For comparison, ex situ synthesis has also been performed using an in-house supercritical flow reactor. The resulting samples were analyzed using PXRD, small-angle X-ray scattering......In situ synchrotron powder X-ray diffraction (PXRD) measurements have been conducted to follow the nucleation and growth of crystalline CexZr1-xO2 nanoparticles synthesized in supercritical water with a full substitution variation (x = 0, 0.2, 0.5, 0.8, and 1.0). Direction-dependent growth curves...... are determined and described using reaction kinetic models. A distinct change in growth kinetics is observed with increasing cerium content. For x = 0.8 and 1.0 (high cerium content), the growth is initially limited by the surface reaction kinetics; however, at a size of ∼6 nm, the growth changes and becomes...

  10. In situ growth optimization in focused electron-beam induced deposition

    Directory of Open Access Journals (Sweden)

    Paul M. Weirich

    2013-12-01

    Full Text Available We present the application of an evolutionary genetic algorithm for the in situ optimization of nanostructures that are prepared by focused electron-beam-induced deposition (FEBID. It allows us to tune the properties of the deposits towards the highest conductivity by using the time gradient of the measured in situ rate of change of conductance as the fitness parameter for the algorithm. The effectiveness of the procedure is presented for the precursor W(CO6 as well as for post-treatment of Pt–C deposits, which were obtained by the dissociation of MeCpPt(Me3. For W(CO6-based structures an increase of conductivity by one order of magnitude can be achieved, whereas the effect for MeCpPt(Me3 is largely suppressed. The presented technique can be applied to all beam-induced deposition processes and has great potential for a further optimization or tuning of parameters for nanostructures that are prepared by FEBID or related techniques.

  11. In-situ x-ray characterization of wurtzite formation in GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Krogstrup, Peter; Hannibal Madsen, Morten; Nygaard, Jesper; Feidenhans' l, Robert [Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Hu Wen [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo, Hyogo 679-5148 (Japan); Kozu, Miwa; Nakata, Yuka [University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297 (Japan); Takahasi, Masamitu [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo, Hyogo 679-5148 (Japan); University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297 (Japan)

    2012-02-27

    In-situ monitoring of the crystal structure formation during Ga-assisted GaAs nanowire growth on Si(111) substrates has been performed in a combined molecular beam epitaxy growth and x-ray characterization experiment. Under Ga rich conditions, we show that an increase in the V/III ratio increases the formation rate of the wurtzite structure. Moreover, the response time for changes in the structural phase formation to changes in the beam fluxes is observed to be much longer than predicted time scales of adatom kinetics and liquid diffusion. This suggests that the morphology of the growth interface plays the key role for the relative growth structure formation rates.

  12. In-situ growth of LiFePO4 nanocrystals on interconnected carbon nanotubes/mesoporous carbon nanosheets for high-performance lithium ion batteries

    International Nuclear Information System (INIS)

    Wu, Ruofei; Xia, Guofeng; Shen, Shuiyun; Zhu, Fengjuan; Jiang, Fengjing; Zhang, Junliang

    2015-01-01

    Graphical abstract: In-situ soft-templated LFP nanocrystals on interconnected carbon nanotubes/mesoporous carbon nanosheets (designated as LFP@CNTs/CNSs), exhibited superior electrochemical performance due to the synergetic effect between CNTs and CNSs, which form interconnected conductive network for fast transport of both electrons and lithium ions. - Highlights: • LFP nanocrystals were in-situ synthesized on interconnected CNTs/CNSs framework with an in-situ soft-templated method. • LFP@CNTs/CNSs exhibited superior rate capability and cycling stability, due to interconnected conductive network for fast transport of both electrons and lithium ions. • The synergetic effect between CNTs and CNSs on the electrochemical performance of LFP electrode was demonstrated by a systematically electrochemical study compared with LFP/CNSs and LFP/CNTs. - Abstract: Lithium ion phosphate (LiFePO 4 ) nanocrystals are successfully in-situ grown on interconnected carbon nanotubes/mesoporous carbon nanosheets (designated as LFP@CNTs/CNSs) with a soft-templated method, which involves the multi-constituent co-assembly of a triblock copolymer, CNTs, resol and precursors of LFP followed by thermal treatment. X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy and N 2 adsorption-desorption techniques are used to characterize the structure and morphology of the as-synthesized materials. When used as the cathode of lithium ion batteries, the LFP@CNTs/CNSs composite exhibits superior rate capability and cycling stability, compared with the samples modified only with CNSs (designated as LFP/CNSs) or with CNTs (designated as LFP/CNTs). This is mainly attributed to the synergetic effect between CNTs and CNSs caused by their unique structure, which forms interconnected conductive network for fast transport of both electrons and lithium ions, and thus remarkably improves the electrode kinetics. Firstly, nano-sized LFP are in-situ grown on the

  13. Re-assessing copepod growth using the Moult Rate method

    DEFF Research Database (Denmark)

    Hirst, Andrew G.; Keister, J. E.; Richardson, A. J.

    2014-01-01

    Estimating growth and production rates of mesozooplankton, and copepods in particular, is important in describing flows of material and energy though pelagic systems. Over the past 30 years, the Moult Rate (MR) method has been used to estimate juvenile copepod growth rates in ∼40 papers. Yet the MR......-moulting stage, e.g. copepodite stage 5 to adult. We performed experiments with Calanus pacificus to estimate growth of stage C5 using an alternative method. We found that the error size and sign varied between mass type (i.e. DW, C and N). Recommendations for practical future assessments of growth in copepods...

  14. In Situ Measurement of Local Hydrogen Production Rate by Bubble-Evolved Recording

    Directory of Open Access Journals (Sweden)

    Xiaowei Hu

    2013-01-01

    Full Text Available Hydrogen visibly bubbles during photocatalytic water splitting under illumination with above-bandgap radiation, which provides a direct measurement of local gas-evolving reaction rate. In this paper, optical microscopy of superfield depth was used for recording the hydrogen bubble growth on Cd0.5Zn0.5S photocatalyst in reaction liquid and illuminated with purple light. By analyzing change of hydrogen bubble size as a function of time, we understood that hydrogen bubble growth experienced two periods, which were inertia effect dominated period and diffusion effect dominated period, respectively. The tendency of hydrogen bubble growth was similar to that of the gas bubble in boiling, while the difference in bubble diameter and growth time magnitude was great. Meanwhile, we obtained the local hydrogen production rate on photocatalyst active site by measuring hydrogen bubble growth variation characteristics. This method makes it possible to confirm local actual hydrogen evolution rate quantitatively during photocatalytic water splitting.

  15. Divergent biparietal diameter growth rates in twin pregnancies.

    Science.gov (United States)

    Houlton, M C

    1977-05-01

    Twenty-eight twin pregnancies were monitored by serial ultrasonic cephalometry from 30 or 31 weeks' gestation. The rates of growth of the individual twins as determined by biparietal diameters were similar in 11 cases (39%) and divergent in 17 (61%). When the rates of growth were divergent, the lesser rate was always below the mean for singleton pregnancies, and the incidence of small-for-gestational-age babies was 18 of 34 (53%). It was apparent that the greater the difference in biparietal diameters within the 2 weeks preceding delivery, the higher the risk of a small-for-gestation-age baby being delivered. No comment could be made on the growth rate prior to 28 weeks except that at diagnosis there was little or no difference in biparietal diameters.

  16. Preliminary observation of genital secretions, growth rate and ...

    African Journals Online (AJOL)

    Cane rats are large terrestial rodents which have the potential to increase animal protein intake. There is paucity of information on the genital secretions and growth rate of caged cane rats. This study observed the genital secretions, growth rate, feeds, feeding and the behaviour of caged cane rats. When animals adjusted to ...

  17. Seasonal variations in ectotherm growth rates: Quantifying growth as an intermittent non steady state compensatory process

    Science.gov (United States)

    Guarini, J.-M.; Chauvaud, Laurent; Cloern, J.E.; Clavier, J.; Coston-Guarini, J.; Patry, Y.

    2011-01-01

    Generally, growth rates of living organisms are considered to be at steady state, varying only under environmental forcing factors. For example, these rates may be described as a function of light for plants or organic food resources for animals and these could be regulated (or not) by temperature or other conditions. But, what are the consequences for an individual's growth (and also for the population growth) if growth rate variations are themselves dynamic and not steady state? For organisms presenting phases of dormancy or long periods of stress, this is a crucial question. A dynamic perspective for quantifying short-term growth was explored using the daily growth record of the scallop Pecten maximus (L.). This species is a good biological model for ectotherm growth because the shell records growth striae daily. Independently, a generic mathematical function representing the dynamics of mean daily growth rate (MDGR) was implemented to simulate a diverse set of growth patterns. Once the function was calibrated with the striae patterns, the growth rate dynamics appeared as a forced damped oscillation during the growth period having a basic periodicity during two transitory phases (mean duration 43. days) and appearing at both growth start and growth end. This phase is most likely due to the internal dynamics of energy transfer within the organism rather than to external forcing factors. After growth restart, the transitory regime represents successive phases of over-growth and regulation. This pattern corresponds to a typical representation of compensatory growth, which from an evolutionary perspective can be interpreted as an adaptive strategy to coping with a fluctuating environment. ?? 2011 Elsevier B.V.

  18. In Situ Synchrotron XRD on a Capillary Li-O2 Battery Cell

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Johnsen, Rune; Norby, Poul

    2014-01-01

    of a electrolyte filled capillary with anode and cathode in each end suspended on stainless steel wires, the oxygen in-let is placed on the cathode side of the capillary with a flushing system for oxygen in-let. In this study we present a flexible design of a capillary based Li-O2 battery with discharge and charge...... a stainless steel wire where the cathode is attached. The in situ XRD measurements show how the Li2O2 growth depend on current discharge rate and how the FWHM changes dependent on reflection and charge/discharge.Several cells were tested both ex situ and in situ, and in situ XRD for 1st discharge/charge and 2...

  19. Role of Phase Composition of PEO Coatings on AA2024 for In-Situ LDH Growth

    Directory of Open Access Journals (Sweden)

    Maria Serdechnova

    2017-11-01

    Full Text Available Plasma electrolytic oxidation (PEO is an environmentally friendly anodizing technique leading to the formation of a ceramic-like coatings under high-voltage discharges. Layered double hydroxides (LDHs were grown directly on γ, α, and amorphous Al2O3 powders, respectively, in order to investigate the phase responsible for in-situ LDH growth on PEO coating. Furthermore, it is shown that LDH growth is limited by the high tortuosity of the PEO layer and the accessibility of Al ( OH 4 − anions from the substrate covered with thin amorphous aluminum oxide, through the pores.

  20. In-situ secondary growth of nanocube-based Prussian-blue film as an ultrasensitive biosensor

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2017-06-01

    Full Text Available A regular nanostructure has been widely confirmed to result ina marked improvement in material performance in biosensing applications. In the present study, a regular nanostructured Prussian blue (PB film with two heterogeneous crystal layers was synthesized in-situ using a secondary growth method. A PB seed layer was first controlled to form uniform cube-like crystal nuclei through an ultrasonic reaction with a single reactant. Then, well-defined 100 nm PB nanocubes were further crystallized on this seed layer using a self-assembly approach. In order to accelerate the electron transfer rate during the enzyme reaction for glucose detection, the graphene was used as the main cross-linker to immobilize glucose oxidase on the PB film. The as-prepared biosensor exhibited high electrocatalysis and electron conductivity for the detection of trace glucose with a sensitivity of 141.5 μA mM−1 cm−2, as well as excellent anti-interference ability in the presence of ascorbic acid and uric acid under a low operation potential of −0.05 V.

  1. Resolving nanoparticle growth mechanisms from size- and time-dependent growth rate analysis

    Science.gov (United States)

    Pichelstorfer, Lukas; Stolzenburg, Dominik; Ortega, John; Karl, Thomas; Kokkola, Harri; Laakso, Anton; Lehtinen, Kari E. J.; Smith, James N.; McMurry, Peter H.; Winkler, Paul M.

    2018-01-01

    Atmospheric new particle formation occurs frequently in the global atmosphere and may play a crucial role in climate by affecting cloud properties. The relevance of newly formed nanoparticles depends largely on the dynamics governing their initial formation and growth to sizes where they become important for cloud microphysics. One key to the proper understanding of nanoparticle effects on climate is therefore hidden in the growth mechanisms. In this study we have developed and successfully tested two independent methods based on the aerosol general dynamics equation, allowing detailed retrieval of time- and size-dependent nanoparticle growth rates. Both methods were used to analyze particle formation from two different biogenic precursor vapors in controlled chamber experiments. Our results suggest that growth rates below 10 nm show much more variation than is currently thought and pin down the decisive size range of growth at around 5 nm where in-depth studies of physical and chemical particle properties are needed.

  2. Growth kinetics and initial stage growth during plasma-enhanced Ti atomic layer deposition

    CERN Document Server

    Kim, H

    2002-01-01

    We have investigated the growth kinetics of plasma-enhanced Ti atomic layer deposition (ALD) using a quartz crystal microbalance. Ti ALD films were grown at temperatures from 20 to 200 deg. C using TiCl sub 4 as a source gas and rf plasma-produced atomic H as the reducing agent. Postdeposition ex situ chemical analyses of thin films showed that the main impurity is oxygen, mostly incorporated during the air exposure prior to analysis. The thickness per cycle, corresponding to the growth rate, was measured by quartz crystal microbalance as a function of various key growth parameters, including TiCl sub 4 and H exposure time, rf plasma power, and sample temperature. The growth rates were independent of TiCl sub 4 exposure above 1x10 sup 3 L, indicating typical ALD mode growth. The key kinetic parameters for Cl extraction reaction and TiCl sub 4 adsorption kinetics were obtained and the growth kinetics were modeled to predict the growth rates based upon these results. Also, the dependency of growth kinetics on d...

  3. Copepod community growth rates in relation to body size, temperature, and food availability in the East China Sea: a test of metabolic theory of ecology

    Directory of Open Access Journals (Sweden)

    K. Y. Lin

    2013-03-01

    Full Text Available Zooplankton play an essential role in marine food webs, and understanding how community-level growth rates of zooplankton vary in the field is critical for predicting how marine ecosystem function may vary in the face of environmental changes. Here, we used the artificial cohort method to examine the effects of temperature, body size, and chlorophyll concentration (a proxy for food on weight-specific growth rates for copepod communities in the East China Sea. Specifically, we tested the hypothesis that copepod community growth rates can be described by the metabolic theory of ecology (MTE, linking spatio-temporal variation of copepod growth rate with temperature and their body size. Our results generally agree with predictions made by the MTE and demonstrate that weight-specific growth rates of copepod communities in our study area are positively related with temperature and negatively related to body size. However, the regression coefficients of body size do not approach the theoretical predictions. Furthermore, we find that the deviation from the MTE predictions may be partly attributed to the effect of food availability (which is not explicitly accounted for by the MTE. In addition, significant difference in the coefficients of temperature and body size exists among taxonomic groups. Our results suggest that considering the effects of food limitation and taxonomy is necessary to better understand copepod growth rates under in situ conditions, and such effects on the MTE-based predictions need further investigation.

  4. Methods for monitoring corals and crustose coralline algae to quantify in-situ calcification rates

    Science.gov (United States)

    Morrison, Jennifer M.; Kuffner, Ilsa B.; Hickey, T. Don

    2013-01-01

    The potential effect of global climate change on calcifying marine organisms, such as scleractinian (reef-building) corals, is becoming increasingly evident. Understanding the process of coral calcification and establishing baseline calcification rates are necessary to detect future changes in growth resulting from climate change or other stressors. Here we describe the methods used to establish a network of calcification-monitoring stations along the outer Florida Keys Reef Tract in 2009. In addition to detailing the initial setup and periodic monitoring of calcification stations, we discuss the utility and success of our design and offer suggestions for future deployments. Stations were designed such that whole coral colonies were securely attached to fixed apparati (n = 10 at each site) on the seafloor but also could be easily removed and reattached as needed for periodic weighing. Corals were weighed every 6 months, using the buoyant weight technique, to determine calcification rates in situ. Sites were visited in May and November to obtain winter and summer rates, respectively, and identify seasonal patterns in calcification. Calcification rates of the crustose coralline algal community also were measured by affixing commercially available plastic tiles, deployed vertically, at each station. Colonization by invertebrates and fleshy algae on the tiles was low, indicating relative specificity for the crustose coralline algal community. We also describe a new, nonlethal technique for sampling the corals, used following the completion of the monitoring period, in which two slabs were obtained from the center of each colony. Sampled corals were reattached to the seafloor, and most corals had completely recovered within 6 months. The station design and sampling methods described herein provide an effective approach to assessing coral and crustose coralline algal calcification rates across time and space, offering the ability to quantify the potential effects of

  5. Estimation of the growth curve and heritability of the growth rate for giant panda (Ailuropoda melanoleuca) cubs.

    Science.gov (United States)

    Che, T D; Wang, C D; Jin, L; Wei, M; Wu, K; Zhang, Y H; Zhang, H M; Li, D S

    2015-03-27

    Giant panda cubs have a low survival rate during the newborn and early growth stages. However, the growth and developmental parameters of giant panda cubs during the early lactation stage (from birth to 6 months) are not well known. We examined the growth and development of giant panda cubs by the Chapman growth curve model and estimated the heritability of the maximum growth rate at the early lactation stage. We found that 83 giant panda cubs reached their maximum growth rate at approximately 75-120 days after birth. The body weight of cubs at 75 days was 4285.99 g. Furthermore, we estimated that the heritability of the maximum growth rate was moderate (h(2) = 0.38). Our study describes the growth and development of giant panda cubs at the early lactation stage and provides valuable growth benchmarks. We anticipate that our results will be a starting point for more detailed research on increasing the survival rate of giant panda cubs. Feeding programs for giant panda cubs need further improvement.

  6. Growth Termination and Multiple Nucleation of Single-Wall Carbon Nanotubes Evidenced by in Situ Transmission Electron Microscopy

    DEFF Research Database (Denmark)

    Zhang, Lili; He, Maoshuai; Hansen, Thomas Willum

    2017-01-01

    and successive growth of additional SWCNTs on Co catalyst particles supported on MgO by means of environmental transmission electron microscopy. Such in situ observations reveal the plethora of solid carbon formations at the local scale while it is happening and thereby elucidate the multitude of configurations...

  7. Exchange Rate Fluctuation and the Nigeria Economic Growth

    Directory of Open Access Journals (Sweden)

    Lawal Adedoyin Isola

    2016-11-01

    Full Text Available The aim of this study is to investigate the impact of exchange rate fluctuation on economic growth in Nigeria within the context of four profound theories: purchasing power parity; monetary model of exchange rates; the portfolio balance approach; and the optimal currency area theory. Data was collected from the CBN statistical bulletin in Nigeria from 2003– 2013and the Autoregressive Distributed Lag (ARDL model was employed to estimate the model. In the model, real GDP (RGDP was used as the proxy for economic growth while Inflation rate (IF, Exchange rate (EXC, Interest rate (INT and Money Supply(M2 as proxies for other macroeconomic variables. The empirical results show that exchange rate fluctuation has no effect on economic growth in the long run though a short run relationship exist between the two. Based on these findings, this paper recommends that the Central bank for policy purposes should ensure that stern foreign exchange control policies are put in place in order to help in appropriate determination of the value of the exchange rate. This will in the long run help to strengthen the value of the Naira.

  8. In-situ real time measurements of net erosion rates of copper during hydrogen plasma exposure

    Science.gov (United States)

    Kesler, Leigh; Wright, Graham; Peterson, Ethan; Whyte, Dennis

    2013-10-01

    In order to properly understand the dynamics of net erosion/deposition in fusion reactors, such as tokamaks, a diagnostic measuring the real time rates of net erosion/deposition during plasma exposure is necessary. The DIONISOS experiment produces real time measurements of net erosion/deposition by using Rutherford backscattering spectroscopy (RBS) ion beam analysis simultaneously with plasma exposure from a helicon plasma source. This in-situ method improves on ex-situ weight loss measurements by allowing measurement of possible synergistic effects of high ion implantation rates and net erosion rate and by giving a real time response to changes in plasma parameters. Previous work has validated this new technique for measuring copper (Cu) erosion from helium (He) plasma ion bombardment. This technique is now extended to measure copper erosion due to deuterium and hydrogen plasma ion exposure. Targets used were a 1.5 μm Cu layer on an aluminum substrate. Cu layer thickness is tracked in real time using 1.2 MeV proton RBS. Measured erosion rates will be compared to results from literature and He erosion rates. Supported by US DoE award DE-SC00-02060.

  9. Effect of selection for relative growth rate and bodyweight of mice on rate, composition and efficiency of growth

    NARCIS (Netherlands)

    Bakker, H.

    1974-01-01

    To evaluate the effect of selection for parameters of a growth curve, four selection lines and a control line were started from one base population. In the selection lines is selected for a large and a small relative growth rate between 21 and 29 days (RGH and RGL) and for a large and

  10. Growth-rate-dependent dynamics of a bacterial genetic oscillator

    Science.gov (United States)

    Osella, Matteo; Lagomarsino, Marco Cosentino

    2013-01-01

    Gene networks exhibiting oscillatory dynamics are widespread in biology. The minimal regulatory designs giving rise to oscillations have been implemented synthetically and studied by mathematical modeling. However, most of the available analyses generally neglect the coupling of regulatory circuits with the cellular “chassis” in which the circuits are embedded. For example, the intracellular macromolecular composition of fast-growing bacteria changes with growth rate. As a consequence, important parameters of gene expression, such as ribosome concentration or cell volume, are growth-rate dependent, ultimately coupling the dynamics of genetic circuits with cell physiology. This work addresses the effects of growth rate on the dynamics of a paradigmatic example of genetic oscillator, the repressilator. Making use of empirical growth-rate dependencies of parameters in bacteria, we show that the repressilator dynamics can switch between oscillations and convergence to a fixed point depending on the cellular state of growth, and thus on the nutrients it is fed. The physical support of the circuit (type of plasmid or gene positions on the chromosome) also plays an important role in determining the oscillation stability and the growth-rate dependence of period and amplitude. This analysis has potential application in the field of synthetic biology, and suggests that the coupling between endogenous genetic oscillators and cell physiology can have substantial consequences for their functionality.

  11. Molecular beam epitaxy growth of In0.52Al0.48As/In0.53Ga0.47As metamorphic high electron mobility transistor employing growth interruption and in situ rapid thermal annealing

    International Nuclear Information System (INIS)

    Ihn, Soo-Ghang; Jo, Seong June; Song, Jong-In

    2006-01-01

    We investigated the effects of high temperature (∼700 deg. C) in situ rapid thermal annealing (RTA) carried out during growth interruption between spacer and δ-doping layers of an In 0.52 Al 0.48 As/In 0.53 Ga 0.47 As metamorphic high electron mobility transistor (MHEMT) grown on a compositionally graded InGaAlAs buffer layer. The in situ RTA improved optical and structural properties of the MHEMT without degradation of transport property, while postgrowth RTA improved the structural property of the MHEMT but significantly degraded mobility due to the defect-assisted Si diffusion. The results indicate the potential of the in situ RTA for use in the growth of high-quality metamorphic epitaxial layers for optoelectronic applications requiring improved optical and electrical properties

  12. Variation in coral growth rates with depth at Discovery Bay, Jamaica

    Energy Technology Data Exchange (ETDEWEB)

    Huston, M

    1985-01-01

    Growth rates, determined by X-radiographic measurement of skeletal extension, decreased with depth for four of six species of coral examined at Discovery Bay, Jamaica. Growth of Porites astreoides, Montastrea annularis, Colpophyllia natans, and Siderastrea siderea decreased significantly with depth over a 1- to 30-m depth range. In Montastrea cavernosa, the highest growth rate occurred in the middle of the sampled depth range. Agaricia agaricites had no measurable change in growth rate with depth. A compilation of available growth data for Atlantic and Pacific corals shows a strong pattern of highest growth rates a short distance below the surface and a decrease with depth.

  13. Influence of fracture extension on in-situ stress in tight reservoir

    Science.gov (United States)

    Zhang, Yongping; Wei, Xu; Zhang, Ye; Xing, Libo; Xu, Jianjun

    2018-01-01

    Currently, hydraulic fracturing is an important way to develop low permeability reservoirs. The fractures produced during the fracturing process are the main influencing factors of changing in-situ stress. In this paper, the influence of fracture extension on in-situ stress is studied by establishing a mathematical model to describe the relationship between fracture length and in-situ stress. The results show that the growth rate gradually decreases after the fracture reaches a certain length with the increase of fracturing time; the continuous extension of the fracture is the main factor to change the in-situ stress. In order to reduce the impact on the subsequent fracture extension due to the changing of in-situ stress, controlling fracturing time and fracture length without affecting the stimulated reservoir effect is an important way. The results presented in this study can effectively reduce the impact of changing of in-situ stress on subsequent fracturing construction.

  14. In situ study of the growth and degradation processes in tetragonal lysozyme crystals on a silicon substrate by high-resolution X-ray diffractometry

    Science.gov (United States)

    Kovalchuk, M. V.; Prosekov, P. A.; Marchenkova, M. A.; Blagov, A. E.; D'yakova, Yu. A.; Tereshchenko, E. Yu.; Pisarevskii, Yu. V.; Kondratev, O. A.

    2014-09-01

    The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.

  15. GROWTH-RATES OF SHRUBS ON DIFFERENT SOILS IN TANZANIA

    NARCIS (Netherlands)

    PRINS, HHT; VANDERJEUGD, HP

    1992-01-01

    Because little is known of growth rates of shrubs in East Africa, the growth rates of Acalypha fructicosa, Gardenia jovis-tonantis, Justicia cordata, Maerua triphylla, and Ocimum suave were measured in Lake Manyara National Park, northern Tanzania. Branch diameter increments and branch length

  16. Growth rates of shrubs on different soils in Tanzania.

    NARCIS (Netherlands)

    Prins, H.H.T.; Jeugd, van der H.P.

    1992-01-01

    Because little is known of growth rates of shrubs in East Africa, the growth rates of Acalypha fructicosa, Gardenia jovis-tonantis, Justicia cordata, Maerua triphylla, and Ocimum suave were measured in Lake Manyara National Park, northern Tanzania. Branch diameter increments and branch length

  17. Postnatal Growth Rates of Hummingbirds : Review and New Records

    NARCIS (Netherlands)

    Freymann, Bernd P.; Schuchmann, Karl-Ludwig

    2008-01-01

    We review the published information on postnatal growth rates of hummingbirds (13 species), and report previously unpublished records for nine additional trochilid species. The allometric relationship based on the log(10)-transformed data of K (logistic growth rate constant) and body mass has a

  18. The Variance Composition of Firm Growth Rates

    Directory of Open Access Journals (Sweden)

    Luiz Artur Ledur Brito

    2009-04-01

    Full Text Available Firms exhibit a wide variability in growth rates. This can be seen as another manifestation of the fact that firms are different from one another in several respects. This study investigated this variability using the variance components technique previously used to decompose the variance of financial performance. The main source of variation in growth rates, responsible for more than 40% of total variance, corresponds to individual, idiosyncratic firm aspects and not to industry, country, or macroeconomic conditions prevailing in specific years. Firm growth, similar to financial performance, is mostly unique to specific firms and not an industry or country related phenomenon. This finding also justifies using growth as an alternative outcome of superior firm resources and as a complementary dimension of competitive advantage. This also links this research with the resource-based view of strategy. Country was the second source of variation with around 10% of total variance. The analysis was done using the Compustat Global database with 80,320 observations, comprising 13,221 companies in 47 countries, covering the years of 1994 to 2002. It also compared the variance structure of growth to the variance structure of financial performance in the same sample.

  19. In-situ virtual metrology for the silicon-dioxide etch rate by using optical emission spectroscopy data

    International Nuclear Information System (INIS)

    Kim, Boomsoo; Hong, Sangjeen

    2014-01-01

    As a useful tool for process control in a high volume semiconductor manufacturing environment, virtual metrology for the etch rate in a plasma etch process is investigated using optical emission spectroscopy (OES) data. Virtual metrology is a surrogate measurement taken from the process instead of from direct measurement, and it can provide in-situ metrology of a wafer's geometry from a predictive model. A statistical regression model that correlates the selected wavelengths of the optical emission spectra to the etch rate is established using the OES data collected over 20 experimental runs. In addition, an argon actinometry study is employed to quantify the OES data, and it provides valuable insight into the analysis of the OES data. The established virtual metrology model is further verified with an additional 20 runs of data. As a result, the virtual metrology model with both process recipe tool data and in-situ data shows higher prediction accuracy by as much as 56% compared with either the process recipe tool data or the in-situ data alone.

  20. Vertical instability in TCV: comparison of experimental and theoretical growth rates

    International Nuclear Information System (INIS)

    Hofmann, F.; Dutch, M.J.; Ward, D.J.; Anton, M.; Furno, I.; Lister, J.B.; Moret, J.M.

    1996-12-01

    Growth rates of the axisymmetric mode in vertically elongated plasmas in the TCV tokamak are measured and compared with numerically calculated growth rates for the reconstructed equilibria. This comparison is made over a range of discharge parameters including elongation, triangularity, and vertical position within the vacuum vessel. Growth rates increase with respect to increasing elongation, decreasing triangularity and increasing vertical distance from the top of the vacuum vessel, as expected. The agreement between the measured growth rates in the experiment and the numerically determined growth rates is excellent, in particular for the full linear MHD model which accounts for the non-rigid motion of strongly shaped plasma cross-sections. (author) 7 figs., 22 refs

  1. Nd isotopes and crustal growth rate

    International Nuclear Information System (INIS)

    Albarede, F.

    1988-01-01

    Sm/Nd isotopic constraints on crustal growth is discussed. In order to constrain Sm/Nd fractionation between continental crust and depleted mantle, an extensive data base of isotopic measurements (assumed to be adequately representative of continental crust) was compiled. The results imply that the evolution of depleted mantles was roughly linear, with no major discontinuities over the course of geologic time. This is different from other determinations of depleting mantle evolution, which show nonlinear behavior. The Sm/Nd evolution lines for continental crust and depleted mantle intersect between 3.8 to 4.0 Ga, which may indicate that the onset of continental growth was later than 4.5 Ga. A mathematical model is described, the results of which imply that time integrated crustal additions from the mantle are about 1.8 to 2.5 cu km/a, whereas crustal subtractions by sediment recycling are about 0.6 to 1.5 cu km/a. This results in a net time integrated crustal growth rate of about 1 cu km/a, which is similar to present day rates determined, for example, by Reymer and Schubert

  2. Comparing Basal Area Growth Rates in Repeated Inventories: Simpson's Paradox in Forestry

    Science.gov (United States)

    Charles E. Thomas; Bernard R. Parresol

    1989-01-01

    Recent analyses of radial growth rates in southern commercial forests have shown that current rates are lower than past rates when compared diameter class by diameter class. These results have been interpreted as an indication that the growth rate of the forest is declining. In this paper, growth rates of forest populations in Alabama are studied. Basal area growth (a...

  3. In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature

    International Nuclear Information System (INIS)

    Singh, Shiv Prakash; Karmakar, Basudeb

    2011-01-01

    In this study, in situ control growth of bismuth nanoparticles (Bi 0 NPs) was demonstrated in bismuth-based glass dielectrics under an electron beam (EB) irradiation at room temperature. The effects of EB irradiation were investigated in situ using transmission electron microscopy (TEM), selected-area electron diffraction and high-resolution transmission electron microscopy. The EB irradiation for 2–8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure and diameter of 4–9 nm. The average particle size was found to increase with the irradiation time. Bismuth metal has a melting point of 271 °C and this low melting temperature makes easy the progress of energy induced structural changes during in situ TEM observations. This is a very useful technique in nano-patterning for integrated optics and other applications.

  4. In situ studies of oxide nucleation, growth, and transformation using slow electrons

    Science.gov (United States)

    Flege, Jan Ingo; Grinter, David C.

    2018-05-01

    Surface processes such as metal oxidation and metal oxide growth invariably influence the physical and chemical properties of materials and determine their interaction with their surroundings and hence their functionality in many technical applications. On a fundamental level, these processes are found to be governed by a complex interplay of thermodynamic variables and kinetic constraints, resulting in a rich variety of material-specific phenomena. In this review article, we discuss recent results and insights on transition metal oxidation and rare-earth oxide growth acquired by low-energy electron microscopy and related techniques. We demonstrate that the use of in situ surface sensitive methods is a prerequisite to gaining a deeper understanding of the underlying concepts and the mechanisms responsible for the emerging oxide structure and morphology. Furthermore, examples will be provided on how structural and chemical modifications of the oxide films and nanostructures can be followed in real-time and analyzed in terms of local reactivity and cooperative effects relevant for heterogeneous model catalysis.

  5. Protein thermodynamics can be predicted directly from biological growth rates.

    Directory of Open Access Journals (Sweden)

    Ross Corkrey

    Full Text Available Life on Earth is capable of growing from temperatures well below freezing to above the boiling point of water, with some organisms preferring cooler and others hotter conditions. The growth rate of each organism ultimately depends on its intracellular chemical reactions. Here we show that a thermodynamic model based on a single, rate-limiting, enzyme-catalysed reaction accurately describes population growth rates in 230 diverse strains of unicellular and multicellular organisms. Collectively these represent all three domains of life, ranging from psychrophilic to hyperthermophilic, and including the highest temperature so far observed for growth (122 °C. The results provide credible estimates of thermodynamic properties of proteins and obtain, purely from organism intrinsic growth rate data, relationships between parameters previously identified experimentally, thus bridging a gap between biochemistry and whole organism biology. We find that growth rates of both unicellular and multicellular life forms can be described by the same temperature dependence model. The model results provide strong support for a single highly-conserved reaction present in the last universal common ancestor (LUCA. This is remarkable in that it means that the growth rate dependence on temperature of unicellular and multicellular life forms that evolved over geological time spans can be explained by the same model.

  6. Interacting growth and loss rates: The balance of top-down and bottom-up controls in plankton communities

    International Nuclear Information System (INIS)

    Lehman, J.T.

    1991-01-01

    Application of resource-based competition theory to high-nutrient, low-chlorophyll regions of the ocean suggests that single-factor controls on vertical export rates of carbon from euphotic zones are unlikely. High specific rates of grazing or sinking losses interact with growth physiology to produce nutrient requirements in situ that are much higher than those required for the growth of populations held in bottle bioassays. The efficiency of vertical export of carbon by sinking particulates can vary with species composition of the plankton, which in turn can be altered by nutrient manipulation. A simulation model explores possible changes to species composition and vertical carbon flux which might result from addition of Fe to Southern Ocean plankton communities. Nutrient manipulation permits invasion of plankton communities by taxa not originally present and does not necessarily increase the biomass or metabolism of resident species. This makes a priori prediction of fluxes associated with an enriched and altered community fundamentally uncertain if predictions are based on stoichiometries and physiologies of the original resident taxa. Vertical carbon flux could either increase or decrease in response to single-element addition, depending on the attributes of the invading species

  7. Individual Growth Rates of Nikolsky’s Viper, Vipera berus nikolskii (Squamata, Viperidae

    Directory of Open Access Journals (Sweden)

    Bondarenko Z. S.

    2016-02-01

    Full Text Available Capture-mark-recapture data was used to infer growth rates of the Nikolsky’s viper, Vipera berus nikolskii (Vedmederja, Grubant et Rudaeva, 1986, in the Eastern Ukraine. We have found that growth rate is negatively correlated with age. The difference in growth rates before maturation is not significant between different sexes. Growth rates decrease rapidly after maturation in males and females, however adult males retain significantly higher average growth rates. There is large dispersion of growth rates in the group of adult females, which is caused, probably, by alteration of complete arrest of growth in the years with reproduction and more intensive growth in the years without it. Asymptotic snout-ventral length estimated after Von Bertalanffy model was 680 mm in females and 630 mm in males. Females mature after fifth and males mature after fourth hibernation. The larger females in vipers can not be the result of higher growth rates in females, but are the outcome of a combination of other factors including different maturation time and size (older and being larger, and, perhaps, longer life span due to lower mortality. Growth rates of the Nikolsky’s viper in the nature are higher than in other species in the group of small Eurasian vipers.

  8. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    OpenAIRE

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth...

  9. In situ growth of p and n-type graphene thin films and diodes by pulsed laser deposition

    KAUST Repository

    Sarath Kumar, S. R.

    2013-11-07

    We report the in situ growth of p and n-type graphene thin films by ultraviolet pulsed laser deposition in the presence of argon and nitrogen, respectively. Electron microscopy and Raman studies confirmed the growth, while temperature dependent electrical conductivity and Seebeck coefficient studies confirmed the polarity type of graphene films. Nitrogen doping at different sites of the honeycomb structure, responsible for n-type conduction, is identified using X-ray photoelectron spectroscopy, for films grown in nitrogen. A diode-like rectifying behavior is exhibited by p-n junction diodes fabricated using the graphene films.

  10. Effect of feeding frequency and feeding rate on growth of ...

    African Journals Online (AJOL)

    Effect of feeding frequency and feeding rate on growth of Oreochromis mossambicus (Teleostei: Cichlidae) fry. ... Weight gain, specific growth rate and gross food conversion ratio were significantly affected by ... AJOL African Journals Online.

  11. High-resistive layers obtained through periodic growth and in situ annealing of InGaN by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuo; Ma, Ping, E-mail: maping@semi.ac.cn; Liu, Boting; Wu, Dongxue; Li, Jinmin [Research and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Huang, Yuliang [Beijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, Beijing 100083 (China); Wang, Junxi [State Key Laboratory of Solid State Lighting, Beijing 100083 (China)

    2016-06-15

    High-resistive layers were obtained by periodic growth and in situ annealing of InGaN. The effect of the annealing temperature of InGaN on the indium content and the material sheet resistive was investigated. The indium content decreased as the increase of in situ annealing temperature. Additionally, the material sheet resistance increased with the increase of the in situ annealing temperature for the annealed samples and reached 2 × 10{sup 10}Ω/sq in the light and 2 × 10{sup 11}Ω/sq in the dark when the in situ annealing temperature reached 970{sup ∘}C. The acquirement of high-resistive layers is attributed to the generation of indium vacancy-related defects. Introducing indium vacancy-related defects to compensate background carriers can be an effective method to grow high-resistance material.

  12. High-resistive layers obtained through periodic growth and in situ annealing of InGaN by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhang, Shuo; Ma, Ping; Liu, Boting; Wu, Dongxue; Li, Jinmin; Huang, Yuliang; Wang, Junxi

    2016-01-01

    High-resistive layers were obtained by periodic growth and in situ annealing of InGaN. The effect of the annealing temperature of InGaN on the indium content and the material sheet resistive was investigated. The indium content decreased as the increase of in situ annealing temperature. Additionally, the material sheet resistance increased with the increase of the in situ annealing temperature for the annealed samples and reached 2 × 10"1"0Ω/sq in the light and 2 × 10"1"1Ω/sq in the dark when the in situ annealing temperature reached 970"∘C. The acquirement of high-resistive layers is attributed to the generation of indium vacancy-related defects. Introducing indium vacancy-related defects to compensate background carriers can be an effective method to grow high-resistance material.

  13. In-situ atomic layer deposition growth of Hf-oxide

    International Nuclear Information System (INIS)

    Karavaev, Konstantin

    2010-01-01

    We have grown HfO 2 on Si(001) by atomic layer deposition (ALD) using HfCl 4 , TEMAHf, TDMAHf and H 2 O as precursors. The early stages of the ALD were investigated with high-resolution photoelectron spectroscopy and X-ray absorption spectroscopy. We observed the changes occurring in the Si 2p, O 1s, Hf 4f, Hf 4d, and Cl 2p (for HfCl 4 experiment) core level lines after each ALD cycle up to the complete formation of two layers of HfO 2 . The investigation was carried out in situ giving the possibility to determine the properties of the grown film after every ALD cycle or even after a half cycle. This work focused on the advantages in-situ approach in comparison with ex-situ experiments. The study provides to follow the evolution of the important properties of HfO 2 : contamination level, density and stoichiometry, and influence of the experimental parameters to the interface layer formation during ALD. Our investigation shows that in-situ XPS approach for ALD gives much more information than ex-situ experiments. (orig.)

  14. In-situ atomic layer deposition growth of Hf-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Karavaev, Konstantin

    2010-06-17

    We have grown HfO{sub 2} on Si(001) by atomic layer deposition (ALD) using HfCl{sub 4}, TEMAHf, TDMAHf and H{sub 2}O as precursors. The early stages of the ALD were investigated with high-resolution photoelectron spectroscopy and X-ray absorption spectroscopy. We observed the changes occurring in the Si 2p, O 1s, Hf 4f, Hf 4d, and Cl 2p (for HfCl{sub 4} experiment) core level lines after each ALD cycle up to the complete formation of two layers of HfO{sub 2}. The investigation was carried out in situ giving the possibility to determine the properties of the grown film after every ALD cycle or even after a half cycle. This work focused on the advantages in-situ approach in comparison with ex-situ experiments. The study provides to follow the evolution of the important properties of HfO{sub 2}: contamination level, density and stoichiometry, and influence of the experimental parameters to the interface layer formation during ALD. Our investigation shows that in-situ XPS approach for ALD gives much more information than ex-situ experiments. (orig.)

  15. In Situ Loading of Basic Fibroblast Growth Factor Within Porous Silica Nanoparticles for a Prolonged Release

    Directory of Open Access Journals (Sweden)

    Postovit Lynne-Marie

    2009-01-01

    Full Text Available Abstract Basic fibroblast growth factor (bFGF, a protein, plays a key role in wound healing and blood vessel regeneration. However, bFGF is easily degraded in biologic systems. Mesoporous silica nanoparticles (MSNs with well-tailored porous structure have been used for hosting guest molecules for drug delivery. Here, we report an in situ route to load bFGF in MSNs for a prolonged release. The average diameter (d of bFGF-loaded MSNs is 57 ± 8 nm produced by a water-in-oil microemulsion method. The in vitro releasing profile of bFGF from MSNs in phosphate buffer saline has been monitored for 20 days through a colorimetric enzyme linked immunosorbent assay. The loading efficiency of bFGF in MSNs is estimated at 72.5 ± 3%. In addition, the cytotoxicity test indicates that the MSNs are not toxic, even at a concentration of 50 μg/mL. It is expected that the in situ loading method makes the MSNs a new delivery system to deliver protein drugs, e.g. growth factors, to help blood vessel regeneration and potentiate greater angiogenesis.

  16. Growth rates of breeder reactor fuel. Final report

    International Nuclear Information System (INIS)

    Ott, K.O.

    1979-01-01

    During the contract period, a consistent formalism for the definition of the growth rates (and thus the doubling time) of breeder reactor fuel has been developed. This formalism was then extended to symbiotic operation of breeder and converter reactors. Further, an estimation prescription for the growth rate has been developed which is based upon the breeding worth factors. The characteristics of this definition have been investigated, which led to an additional integral concept, the breeding bonus

  17. Effects of lowered pH on marine phytoplankton growth rates

    DEFF Research Database (Denmark)

    Berge, Terje; Daugbjerg, Niels; Andersen, Betinna Balling

    2010-01-01

    concentration of seawater. Ocean acidification may potentially both stimulate and reduce primary production by marine phytoplankton. Data are scarce on the response of marine phytoplankton growth rates to lowered pH/increased CO2. Using the acid addition method to lower the seawater pH and manipulate...... the carbonate system, we determined in detail the lower pH limit for growth rates of 2 model species of common marine phytoplankton. We also tested whether growth and production rates of 6 other common species of phytoplankton were affected by ocean acidification (lowered to pH 7.0). The lower pH limits...... statistically similar in the pH range of ~7.0 to 8.5. Our results and literature reports on growth at lowered pH indicate that marine phytoplankton in general are resistant to climate change in terms of ocean acidification, and do not increase or decrease their growth rates according to ecological relevant...

  18. From atoms to layers: in situ gold cluster growth kinetics during sputter deposition

    Science.gov (United States)

    Schwartzkopf, Matthias; Buffet, Adeline; Körstgens, Volker; Metwalli, Ezzeldin; Schlage, Kai; Benecke, Gunthard; Perlich, Jan; Rawolle, Monika; Rothkirch, André; Heidmann, Berit; Herzog, Gerd; Müller-Buschbaum, Peter; Röhlsberger, Ralf; Gehrke, Rainer; Stribeck, Norbert; Roth, Stephan V.

    2013-05-01

    The adjustment of size-dependent catalytic, electrical and optical properties of gold cluster assemblies is a very significant issue in modern applied nanotechnology. We present a real-time investigation of the growth kinetics of gold nanostructures from small nuclei to a complete gold layer during magnetron sputter deposition with high time resolution by means of in situ microbeam grazing incidence small-angle X-ray scattering (μGISAXS). We specify the four-stage growth including their thresholds with sub-monolayer resolution and identify phase transitions monitored in Yoneda intensity as a material-specific characteristic. An innovative and flexible geometrical model enables the extraction of morphological real space parameters, such as cluster size and shape, correlation distance, layer porosity and surface coverage, directly from reciprocal space scattering data. This approach enables a large variety of future investigations of the influence of different process parameters on the thin metal film morphology. Furthermore, our study allows for deducing the wetting behavior of gold cluster films on solid substrates and provides a better understanding of the growth kinetics in general, which is essential for optimization of manufacturing parameters, saving energy and resources.The adjustment of size-dependent catalytic, electrical and optical properties of gold cluster assemblies is a very significant issue in modern applied nanotechnology. We present a real-time investigation of the growth kinetics of gold nanostructures from small nuclei to a complete gold layer during magnetron sputter deposition with high time resolution by means of in situ microbeam grazing incidence small-angle X-ray scattering (μGISAXS). We specify the four-stage growth including their thresholds with sub-monolayer resolution and identify phase transitions monitored in Yoneda intensity as a material-specific characteristic. An innovative and flexible geometrical model enables the extraction

  19. Control of growth mode in SrTiO3 homoepitaxy under 500 deg. C

    International Nuclear Information System (INIS)

    Li Yanrong; Li Jinlong; Zhang Ying; Wei Xianhua; Deng Xinwu; Liu Xingzhao

    2004-01-01

    Homoepitaxial SrTiO 3 thin films were grown by laser molecular beam epitaxy. The growth mode was determined by in-situ reflective high energy electron diffraction, and the surface of the films was studied by ex-situ atomic force microscopy. At the deposition rate of 0.16A ring /sec and the laser energy density of 6J/cm 2 , layer-by-layer growth was observed above 460 deg. C substrate temperature, while the Stranski-Krastanov growth mode, that is layer-by-layer growth plus island growth mode, prevailed between 460 deg. C and 410 deg. C. On further decreasing the substrate temperature, the island growth was determined under 410 deg. C. With the optimization of deposition process in terms of laser energy density and deposition rate, the lowest crystallization temperatures of SrTiO 3 films grown in layer-by-layer growth mode were obtained as low as 280 deg. C. The effects of laser energy density on growth temperature were studied

  20. Visualization of living terminal hypertrophic chondrocytes of growth plate cartilage in situ by differential interference contrast microscopy and time-lapse cinematography.

    Science.gov (United States)

    Farnum, C E; Turgai, J; Wilsman, N J

    1990-09-01

    The functional unit within the growth plate consists of a column of chondrocytes that passes through a sequence of phases including proliferation, hypertrophy, and death. It is important to our understanding of the biology of the growth plate to determine if distal hypertrophic cells are viable, highly differentiated cells with the potential of actively controlling terminal events of endochondral ossification prior to their death at the chondro-osseous junction. This study for the first time reports on the visualization of living hypertrophic chondrocytes in situ, including the terminal hypertrophic chondrocyte. Chondrocytes in growth plate explants are visualized using rectified differential interference contrast microscopy. We record and measure, using time-lapse cinematography, the rate of movement of subcellular organelles at the limit of resolution of this light microscopy system. Control experiments to assess viability of hypertrophic chondrocytes include coincubating organ cultures with the intravital dye fluorescein diacetate to assess the integrity of the plasma membrane and cytoplasmic esterases. In this system, all hypertrophic chondrocytes, including the very terminal chondrocyte, exist as rounded, fully hydrated cells. By the criteria of intravital dye staining and organelle movement, distal hypertrophic chondrocytes are identical to chondrocytes in the proliferative and early hypertrophic cell zones.

  1. Modification of cell growth rate by irradiation

    International Nuclear Information System (INIS)

    Itoh, Hisao; Takemasa, Kazuhiko; Nishiguchi, Iku; Ka, Wei-Jei; Kutsuki, Shoji; Hashimoto, Shozo

    1993-01-01

    The effect of irradiation on the proliferation kinetics of the monolayer cells has been studied. Two human cell lines with different doubling times (HeLa-P and RMUG) and two clones that have the same radiosensitivity but different doubling times (HeLa-R and HeLa-S) were irradiated with a daily dose of 2 Gy for 6 days. The number of the clonogenic cells/dish was calculated by multiplying the number of total cell/dish by the survival fraction. In the rapidly growing cells (HeLa-P, HeLa-R), the number of the clonogenic cells was not decreased by the first two fractionated irradiations, but decreased thereafter at a similar rate as by single-dose fractionation, whereas the clonogenic cell number decreased from the first fractionated irradiation in the slowly growing cells (RMUG, HeLa-S). When the proliferation of clonogenic cell number increased along with a similar growth rates that was seen in all other types of cells. Further, no correlation was seen between the growth rates of cells without irradiation and cells that received irradiation. This latter result suggests that the slow growth rate of non-irradiated cells may not be the predictive factor of the tumor cure and the interruption of radiotherapy may reduce the beneficial effect of this treatment even in slow growing tumors. (author)

  2. In situ boron doping during heteroepitaxial growth of diamond on Ir/YSZ/Si

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Andre F.; Fischer, Martin; Gsell, Stefan; Schreck, Matthias [Universitaet Augsburg, Institut fuer Physik, 86135 Augsburg (Germany)

    2012-09-15

    In situ boron doping of heteroepitaxial diamond films grown by microwave plasma chemical vapor deposition on Ir/YSZ/Si (001) is investigated. The study comprises the analysis of the gas phase by optical emission spectroscopy (OES) and measurements of B doped films by secondary ion mass spectroscopy (SIMS), cathodoluminescence (CL), and X-ray diffraction (XRD). The OE intensity of BH species scales linearly with the concentration of the boron precursor trimethylboron (TMB) in the feed gas. Addition of CO{sub 2} as an oxygen source causes a proportional reduction of the BH signal. At a ratio C:O = 1, a reduction factor of {proportional_to}50 is obtained. It is shown for two diamond samples that the boron incorporation drops nearly identical to the BH emission intensity. We conclude that the influence of oxygen on boron incorporation is a pure gas phase effect. In contrast, CN and BH emission indicate a negligible interaction between N{sub 2} and TMB added to the feed gas. At the same time, preliminary growth rate measurements show that the boron background pressure in the chamber after growth with TMB completely cancels the growth acceleration by nitrogen up to N{sub 2} concentrations of 100 ppm which points to the dominance of surface processes. Heteroepitaxial diamond films grown on Ir at 50 mbar between 720 and 900 C contain high intrinsic stress that varies from -2.2 GPa compressive at the lowest to slightly tensile at the highest deposition temperature. The observed behavior is similar to former work at 200 mbar in which effective climb of dislocations was suggested as responsible mechanism. Addition of boron rather enhances the stress formation than causing a relaxation. The B concentration in the heteroepitaxial films is deduced by SIMS, CL, and XRD and correlated with the TMB concentration in the gas phase. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. In situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion as potential electrode materials for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Mombrú, Dominique [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Romero, Mariano, E-mail: mromero@fq.edu.uy [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Faccio, Ricardo, E-mail: rfaccio@fq.edu.uy [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Castiglioni, Jorge [Laboratorio de Fisicoquímica de Superficies – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Mombrú, Alvaro W., E-mail: amombru@fq.edu.uy [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay)

    2017-06-15

    In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. In addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of ~3–8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications. - Highlights: • In situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion. • Polyaniline charge carriers at the interface and charge interactions between quantum dots. • Easy extrapolation to sol-gel derived quantum dots into polymer host as potential electrode materials.

  4. Analytic solutions for Rayleigh-Taylor growth rates in smooth density gradients

    International Nuclear Information System (INIS)

    Munro, D.H.

    1988-01-01

    The growth rate of perturbations on the shell of a laser fusion target can be estimated as √gk , where g is the shell acceleration and k is the transverse wave number of the perturbation. This formula overestimates the growth rate, and should be modified for the effects of density gradients and/or ablation of the unstable interface. The density-gradient effect is explored here analytically. With the use of variational calculus to explore all possible density profiles, the growth rate is shown to exceed √gk/(1+kL) , where L is a typical density-gradient scale length. Density profiles actually exhibiting this minimum growth rate are found

  5. Modelling of tomato stem diameter growth rate based on physiological responses

    International Nuclear Information System (INIS)

    Li, L.; Tan, J.; Lv, T.

    2017-01-01

    The stem diameter is an important parameter describing the growth of tomato plant during vegetative growth stage. A stem diameter growth model was developed to predict the response of plant growth under different conditions. By analyzing the diurnal variations of stem diameter in tomato (Solanum lycopersicum L.), it was found that the stem diameter measured at 3:00 am was the representative value as the daily basis of tomato stem diameter. Based on the responses of growth rate in stem diameter to light and temperature, a linear regression relationship was applied to establish the stem diameter growth rate prediction model for the vegetative growth stage in tomato and which was further validated by experiment. The root mean square error (RMSE) and relative error (RE) were used to test the correlation between measured and modeled stem diameter variations. Results showed that the model can be used in prediction for stem diameter growth rate at vegetative growth stage in tomato. (author)

  6. Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition

    DEFF Research Database (Denmark)

    Vincent, B.; Gencarelli, F.; Bender, H.

    2011-01-01

    In this letter, we propose an atmospheric pressure-chemical vapor deposition technique to grow metastable GeSn epitaxial layers on Ge. We report the growth of defect free fully strained undoped and in-situ B doped GeSn layers on Ge substrates with Sit contents up to 8%. Those metastable layers stay...

  7. Growth mechanism of NaClO 3 and NaBrO 3 crystals from aqueous ...

    Indian Academy of Sciences (India)

    A study of growth rates of NaClO3 and NaBrO3 has been carried out using a small growth cell by in situ observation. Normal growth rates of {100} faces of NaClO3 and {111} faces of NaBrO3 along ⟨ 110 ⟩ direction are measured under relatively high supersaturation ranging from 3–8%. In the initial stages of growth, {100}, ...

  8. A quantitative theory of solid tumor growth, metabolic rate and vascularization.

    Directory of Open Access Journals (Sweden)

    Alexander B Herman

    Full Text Available The relationships between cellular, structural and dynamical properties of tumors have traditionally been studied separately. Here, we construct a quantitative, predictive theory of solid tumor growth, metabolic rate, vascularization and necrosis that integrates the relationships between these properties. To accomplish this, we develop a comprehensive theory that describes the interface and integration of the tumor vascular network and resource supply with the cardiovascular system of the host. Our theory enables a quantitative understanding of how cells, tissues, and vascular networks act together across multiple scales by building on recent theoretical advances in modeling both healthy vasculature and the detailed processes of angiogenesis and tumor growth. The theory explicitly relates tumor vascularization and growth to metabolic rate, and yields extensive predictions for tumor properties, including growth rates, metabolic rates, degree of necrosis, blood flow rates and vessel sizes. Besides these quantitative predictions, we explain how growth rates depend on capillary density and metabolic rate, and why similar tumors grow slower and occur less frequently in larger animals, shedding light on Peto's paradox. Various implications for potential therapeutic strategies and further research are discussed.

  9. Growth rate correlates negatively with protein turnover in Arabidopsis accessions.

    Science.gov (United States)

    Ishihara, Hirofumi; Moraes, Thiago Alexandre; Pyl, Eva-Theresa; Schulze, Waltraud X; Obata, Toshihiro; Scheffel, André; Fernie, Alisdair R; Sulpice, Ronan; Stitt, Mark

    2017-08-01

    Previous studies with Arabidopsis accessions revealed that biomass correlates negatively to dusk starch content and total protein, and positively to the maximum activities of enzymes in photosynthesis. We hypothesized that large accessions have lower ribosome abundance and lower rates of protein synthesis, and that this is compensated by lower rates of protein degradation. This would increase growth efficiency and allow more investment in photosynthetic machinery. We analysed ribosome abundance and polysome loading in 19 accessions, modelled the rates of protein synthesis and compared them with the observed rate of growth. Large accessions contained less ribosomes than small accessions, due mainly to cytosolic ribosome abundance falling at night in large accessions. The modelled rates of protein synthesis resembled those required for growth in large accessions, but were up to 30% in excess in small accessions. We then employed 13 CO 2 pulse-chase labelling to measure the rates of protein synthesis and degradation in 13 accessions. Small accessions had a slightly higher rate of protein synthesis and much higher rates of protein degradation than large accessions. Protein turnover was negligible in large accessions but equivalent to up to 30% of synthesised protein day -1 in small accessions. We discuss to what extent the decrease in growth in small accessions can be quantitatively explained by known costs of protein turnover and what factors may lead to the altered diurnal dynamics and increase of ribosome abundance in small accessions, and propose that there is a trade-off between protein turnover and maximisation of growth rate. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Application of Hoffman modulation contrast microscopy coupled with three-wavelength two-beam interferometry to the in situ direct observation of the growth process of a crystal in microgravity

    Science.gov (United States)

    Tsukamoto, Katsuo

    1988-01-01

    Direct visualization of three dimensional transfer process of both heat and mass around a growing crystal and mono-molecular growth layers on the surface is possible in situ by means of high resolution Hoffman modulation contrast microscopy coupled with three wavelength two beam Mach-Zehnder interferometry. This in situ observation is very suitable for the verification of the growth mechanism of a crystal in a solution or a melt in microgravity.

  11. Estimating cumulative soil accumulation rates with in situ-produced cosmogenic nuclide depth profiles

    International Nuclear Information System (INIS)

    Phillips, William M.

    2000-01-01

    A numerical model relating spatially averaged rates of cumulative soil accumulation and hillslope erosion to cosmogenic nuclide distribution in depth profiles is presented. Model predictions are compared with cosmogenic 21 Ne and AMS radiocarbon data from soils of the Pajarito Plateau, New Mexico. Rates of soil accumulation and hillslope erosion estimated by cosmogenic 21 Ne are significantly lower than rates indicated by radiocarbon and regional soil-geomorphic studies. The low apparent cosmogenic erosion rates are artifacts of high nuclide inheritance in cumulative soil parent material produced from erosion of old soils on hillslopes. In addition, 21 Ne profiles produced under conditions of rapid accumulation (>0.1 cm/a) are difficult to distinguish from bioturbated soil profiles. Modeling indicates that while 10 Be profiles will share this problem, both bioturbation and anomalous inheritance can be identified with measurement of in situ-produced 14 C

  12. Investigating calcite growth rates using a quartz crystal microbalance with dissipation (QCM-D)

    Science.gov (United States)

    Cao, Bo; Stack, Andrew G.; Steefel, Carl I.; DePaolo, Donald J.; Lammers, Laura N.; Hu, Yandi

    2018-02-01

    Calcite precipitation plays a significant role in processes such as geological carbon sequestration and toxic metal sequestration and, yet, the rates and mechanisms of calcite growth under close to equilibrium conditions are far from well understood. In this study, a quartz crystal microbalance with dissipation (QCM-D) was used for the first time to measure macroscopic calcite growth rates. Calcite seed crystals were first nucleated and grown on sensors, then growth rates of calcite seed crystals were measured in real-time under close to equilibrium conditions (saturation index, SI = log ({Ca2+}/{CO32-}/Ksp) = 0.01-0.7, where {i} represent ion activities and Ksp = 10-8.48 is the calcite thermodynamic solubility constant). At the end of the experiments, total masses of calcite crystals on sensors measured by QCM-D and inductively coupled plasma mass spectrometry (ICP-MS) were consistent, validating the QCM-D measurements. Calcite growth rates measured by QCM-D were compared with reported macroscopic growth rates measured with auto-titration, ICP-MS, and microbalance. Calcite growth rates measured by QCM-D were also compared with microscopic growth rates measured by atomic force microscopy (AFM) and with rates predicted by two process-based crystal growth models. The discrepancies in growth rates among AFM measurements and model predictions appear to mainly arise from differences in step densities, and the step velocities were consistent among the AFM measurements as well as with both model predictions. Using the predicted steady-state step velocity and the measured step densities, both models predict well the growth rates measured using QCM-D and AFM. This study provides valuable insights into the effects of reactive site densities on calcite growth rate, which may help design future growth models to predict transient-state step densities.

  13. Growth rates of alien Oreochromis niloticus and indigenous ...

    African Journals Online (AJOL)

    Growth rates of indigenous Oreochromis mortimeri and alien Oreochromis niloticus from Lake Kariba were estimated from samples collected in 1997–2000, 2003–2005 and 2010–2011. Growth zones on scales and otoliths of O. niloticus and on the otoliths and opercula of O. mortimeri were deposited annually.

  14. Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth

    Science.gov (United States)

    Forth, Scott C.; Herman, Dave J.; James, Mark A.

    2003-01-01

    Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).

  15. Growth rates, grazing, sinking, and iron limitation of equatorial Pacific phytoplankton

    International Nuclear Information System (INIS)

    Chavez, F.P.; Buck, K.R.; Coale, K.H.; Martin, J.H.; DiTullio, G.R.; Welschmeyer, N.A.; Barber, R.T.; Jacobson, A.C.

    1991-01-01

    Concentrations of phytoplankton and NO 3 are consistently low and high in surface waters of the oceanic eastern and central equatorial Pacific, and phytoplankton populations are dominated by small solitary phytoplankton. Growth rates of natural phytoplankton populations, needed to assess the relative importance of many of the processes considered in the equatorial Pacific, were estimated by several methods. The growth rates of natural phytoplankton populations were found to be ∼0.7 d -1 or 1 biomass doubling d -1 and were similar for all methods. To keep this system in its observed balance requires that loss rates approximate observed growth rates. Grazing rates, measured with a dilution grazing experiment, were high, accounting for a large fraction of the daily production. Additions of various forms of Fe to 5-7-d incubations utilizing ultraclean techniques resulted in significant shifts in autotrophic and heterotrophic assemblages between initial samples, controls, and Fe enrichments, which were presumably due to Fe, grazing by both protistan and metazoan components, and incubation artifacts. Estimated growth rates of small pennate diatoms showed increases in Fe enrichments with respect to controls. The growth rates of the pennate diatoms were similar to those estimated for the larger size fraction of the natural populations

  16. Sales Growth Rate Forecasting Using Improved PSO and SVM

    Directory of Open Access Journals (Sweden)

    Xibin Wang

    2014-01-01

    Full Text Available Accurate forecast of the sales growth rate plays a decisive role in determining the amount of advertising investment. In this study, we present a preclassification and later regression based method optimized by improved particle swarm optimization (IPSO for sales growth rate forecasting. We use support vector machine (SVM as a classification model. The nonlinear relationship in sales growth rate forecasting is efficiently represented by SVM, while IPSO is optimizing the training parameters of SVM. IPSO addresses issues of traditional PSO, such as relapsing into local optimum, slow convergence speed, and low convergence precision in the later evolution. We performed two experiments; firstly, three classic benchmark functions are used to verify the validity of the IPSO algorithm against PSO. Having shown IPSO outperform PSO in convergence speed, precision, and escaping local optima, in our second experiment, we apply IPSO to the proposed model. The sales growth rate forecasting cases are used to testify the forecasting performance of proposed model. According to the requirements and industry knowledge, the sample data was first classified to obtain types of the test samples. Next, the values of the test samples were forecast using the SVM regression algorithm. The experimental results demonstrate that the proposed model has good forecasting performance.

  17. Do fish growth rates correlate with PCB body burdens?

    Science.gov (United States)

    Andrew L. Rypel; David R.. Bayne

    2010-01-01

    We evaluated whether growth rates of six fish species correlated with PCB concentrations in a moderately-to-heavily polluted freshwater ecosystem. Using a large dataset (n ¼ 984 individuals), and after accounting for growth effects related to fish age, habitat, sex, and lipids, growth correlated significantly, but positively with lipid-corrected PCB concentrations for...

  18. Real time nanoscale structural evaluation of gold structures on Si (100) surface using in-situ transmission electron microscopy

    International Nuclear Information System (INIS)

    Rath, A.; Juluri, R. R.; Satyam, P. V.

    2014-01-01

    Transport behavior of gold nanostructures on Si(100) substrate during annealing under high vacuum has been investigated using in-situ real time transmission electron microscopy (TEM). A comparative study has been done on the morphological changes due to annealing under different vacuum environments. Au thin films of thickness ∼2.0 nm were deposited on native oxide covered silicon substrate by using thermal evaporation system. In-situ real time TEM measurements at 850 °C showed the isotropic growth of rectangular/square shaped gold-silicon alloy structures. During the growth, it is observed that the alloying occurs in liquid phase followed by transformation into the rectangular shapes. For similar system, ex-situ annealing in low vacuum (10 −2 millibars) at 850 °C showed the spherical gold nanostructures with no Au-Si alloy formation. Under low vacuum annealing conditions, the rate of formation of the oxide layer dominates the oxide desorption rate, resulting in the creation of a barrier layer between Au and Si, which restricts the inter diffusion of Au in to Si. This work demonstrates the important role of interfacial oxide layer on the growth of nanoscale Au-Si alloy structures during the initial growth. The time dependent TEM images are presented to offer a direct insight into the fundamental dynamics of the sintering process at the nanoscale

  19. On the growth rate of the foliicolous lichen Strigula elegans

    NARCIS (Netherlands)

    Wilde-Duyfjes, de B.E.E.

    1967-01-01

    The diametral growth rate of the foliicolous lichen Strigula elegans (Fée) Müll. Arg., measured under natural conditions in the African tropical rainforest, has been established to amount to (0.7-)3-3-6(-8) mm annually. As compared to the diametral growth rate of lichens from temperate regions,

  20. Thickness and growth-condition dependence of in-situ mobility and carrier density of epitaxial thin-film Bi2Se3

    International Nuclear Information System (INIS)

    Hellerstedt, Jack; Fuhrer, Michael S.; Edmonds, Mark T.; Zheng, C. X.; Chen, J. H.; Cullen, William G.

    2014-01-01

    Bismuth selenide Bi 2 Se 3 was grown by molecular beam epitaxy, while carrier density and mobility were measured directly in situ as a function of film thickness. Carrier density shows high interface n-doping (1.5 × 10 13  cm −2 ) at the onset of film conduction and bulk dopant density of ∼5 × 10 11  cm −2 per quintuple-layer unit, roughly independent of growth temperature profile. Mobility depends more strongly on the growth temperature and is related to the crystalline quality of the samples quantified by ex-situ atomic force microscopy measurements. These results indicate that Bi 2 Se 3 as prepared by widely employed parameters is n-doped before exposure to atmosphere, the doping is largely interfacial in origin, and dopants are not the limiting disorder in present Bi 2 Se 3 films.

  1. Pretreatment Growth Rate Predicts Radiation Response in Vestibular Schwannomas

    International Nuclear Information System (INIS)

    Niu, Nina N.; Niemierko, Andrzej; Larvie, Mykol; Curtin, Hugh; Loeffler, Jay S.; McKenna, Michael J.; Shih, Helen A.

    2014-01-01

    Purpose: Vestibular schwannomas (VS) are often followed without initial therapeutic intervention because many tumors do not grow and radiation therapy is associated with potential adverse effects. In an effort to determine whether maximizing initial surveillance predicts for later treatment response, the predictive value of preirradiation growth rate of VS on response to radiation therapy was assessed. Methods and Materials: Sixty-four patients with 65 VS were treated with single-fraction stereotactic radiation surgery or fractionated stereotactic radiation therapy. Pre- and postirradiation linear expansion rates were estimated using volumetric measurements on sequential magnetic resonance images (MRIs). In addition, postirradiation tumor volume change was classified as demonstrating shrinkage (ratio of volume on last follow-up MRI to MRI immediately preceding irradiation <80%), stability (ratio 80%-120%), or expansion (ratio >120%). The median pre- and postirradiation follow-up was 20.0 and 27.5 months, respectively. Seven tumors from neurofibromatosis type 2 (NF2) patients were excluded from statistical analyses. Results: In the 58 non-NF2 patients, there was a trend of correlation between pre- and postirradiation volume change rates (slope on linear regression, 0.29; P=.06). Tumors demonstrating postirradiation expansion had a median preirradiation growth rate of 89%/year, and those without postirradiation expansion had a median preirradiation growth rate of 41%/year (P=.02). As the preirradiation growth rate increased, the probability of postirradiation expansion also increased. Overall, 24.1% of tumors were stable, 53.4% experienced shrinkage, and 22.5% experienced expansion. Predictors of no postirradiation tumor expansion included no prior surgery (P=.01) and slower tumor growth rate (P=.02). The control of tumors in NF2 patients was only 43%. Conclusions: Radiation therapy is an effective treatment for VS, but tumors that grow quickly preirradiation may be

  2. Pretreatment Growth Rate Predicts Radiation Response in Vestibular Schwannomas

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Nina N. [Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (United States); Harvard Medical School, Department of Medicine, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Niemierko, Andrzej [Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (United States); Larvie, Mykol [Harvard Medical School, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts (United States); Curtin, Hugh [Harvard Medical School, Department of Radiology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts (United States); Loeffler, Jay S. [Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (United States); McKenna, Michael J. [Harvard Medical School, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts (United States); Shih, Helen A., E-mail: hshih@partners.org [Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-05-01

    Purpose: Vestibular schwannomas (VS) are often followed without initial therapeutic intervention because many tumors do not grow and radiation therapy is associated with potential adverse effects. In an effort to determine whether maximizing initial surveillance predicts for later treatment response, the predictive value of preirradiation growth rate of VS on response to radiation therapy was assessed. Methods and Materials: Sixty-four patients with 65 VS were treated with single-fraction stereotactic radiation surgery or fractionated stereotactic radiation therapy. Pre- and postirradiation linear expansion rates were estimated using volumetric measurements on sequential magnetic resonance images (MRIs). In addition, postirradiation tumor volume change was classified as demonstrating shrinkage (ratio of volume on last follow-up MRI to MRI immediately preceding irradiation <80%), stability (ratio 80%-120%), or expansion (ratio >120%). The median pre- and postirradiation follow-up was 20.0 and 27.5 months, respectively. Seven tumors from neurofibromatosis type 2 (NF2) patients were excluded from statistical analyses. Results: In the 58 non-NF2 patients, there was a trend of correlation between pre- and postirradiation volume change rates (slope on linear regression, 0.29; P=.06). Tumors demonstrating postirradiation expansion had a median preirradiation growth rate of 89%/year, and those without postirradiation expansion had a median preirradiation growth rate of 41%/year (P=.02). As the preirradiation growth rate increased, the probability of postirradiation expansion also increased. Overall, 24.1% of tumors were stable, 53.4% experienced shrinkage, and 22.5% experienced expansion. Predictors of no postirradiation tumor expansion included no prior surgery (P=.01) and slower tumor growth rate (P=.02). The control of tumors in NF2 patients was only 43%. Conclusions: Radiation therapy is an effective treatment for VS, but tumors that grow quickly preirradiation may be

  3. Growth-Phase Sterigmatocystin Formation on Lactose Is Mediated via Low Specific Growth Rates in Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Zoltán Németh

    2016-11-01

    Full Text Available Seed contamination with polyketide mycotoxins such as sterigmatocystin (ST produced by Aspergilli is a worldwide issue. The ST biosynthetic pathway is well-characterized in A. nidulans, but regulatory aspects related to the carbon source are still enigmatic. This is particularly true for lactose, inasmuch as some ST production mutant strains still synthesize ST on lactose but not on other carbon substrates. Here, kinetic data revealed that on d-glucose, ST forms only after the sugar is depleted from the medium, while on lactose, ST appears when most of the carbon source is still available. Biomass-specified ST production on lactose was significantly higher than on d-glucose, suggesting that ST formation may either be mediated by a carbon catabolite regulatory mechanism, or induced by low specific growth rates attainable on lactose. These hypotheses were tested by d-glucose limited chemostat-type continuous fermentations. No ST formed at a high growth rate, while a low growth rate led to the formation of 0.4 mg·L−1 ST. Similar results were obtained with a CreA mutant strain. We concluded that low specific growth rates may be the primary cause of mid-growth ST formation on lactose in A. nidulans, and that carbon utilization rates likely play a general regulatory role during biosynthesis.

  4. Bistable Bacterial Growth Rate in Response to Antibiotics with Low Membrane Permeability

    Science.gov (United States)

    Elf, Johan; Nilsson, Karin; Tenson, Tanel; Ehrenberg, Måns

    2006-12-01

    We demonstrate that growth rate bistability for bacterial cells growing exponentially at a fixed external antibiotic concentration can emerge when the cell wall permeability for the drug is low and the growth rate sensitivity to the intracellular drug concentration is high. Under such conditions, an initially high growth rate can remain high, due to dilution of the intracellular drug concentration by rapid cell volume increase, while an initially low growth rate can remain low, due to slow cell volume increase and insignificant drug dilution. Our findings have implications for the testing of novel antibiotics on growing bacterial strains.

  5. Microstructure evolution, thermal stability and fractal behavior of water vapor flow assisted in situ growth poly(vinylcarbazole)-titania quantum dots nanocomposites

    Science.gov (United States)

    Mombrú, Dominique; Romero, Mariano; Faccio, Ricardo; Mombrú, Alvaro W.

    2017-12-01

    Here, we report a novel strategy for the preparation of TiO2 quantum dots fillers prepared from alkoxide precursor via in situ water vapor flow diffusion into poly(N-vinylcarbazole) host. A detailed characterization by means of infrared and Raman spectroscopy, X-ray powder diffraction, small angle X-ray scattering and differential scanning calorimetry is reported. The growth mechanism of both crystallites and particles was mostly governed by the classical coarsening reaction limited growth and the polymer host showed no detectable chemical modifications at the interface or active participation in the growing process. The main relevance of our strategy respect to the typical sol-gel growth in solution is the possibility of the interruption of the reaction by simple stopping the water vapor flow diffusion into the polymer host thus achieving good control in the nanoparticles size. The thermal stability and fractal behavior of our nanocomposites were also studied by differential scanning calorimetry and in situ small angle X-ray scattering versus temperature. Strong correlations between modifications in the fractal behavior and glass transition or fusion processes were observed for these nanocomposites.

  6. Circadian cycles in growth and feeding rates of heterotrophic protist plankton

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik; Strom, S.L.

    2004-01-01

    Growth and feeding rates of four species of planktonic marine heterotrophic protists showed pronounced diel cycles. In most cases, rates were higher during the day and lower at night. However, for the ciliate Strobilidium sp., growth was highest at night. In another ciliate species, Balanion...... comatum, no day-night difference in growth and feeding rates was found. Maintenance of day-night rate differences during 24-h exposures to continuous darkness demonstrated that most of these protists had circadian cycles. The heterotrophic dinoflagellate Oxyrrhis marina exhibited a clear irradiance...... to culturing in a day: night light cycle in O. marina and found that resetting the circadian cycle in this dinoflagellate temporarily arrested growth and feeding. We suggest that protists use a time-integrated light threshold rather than an instantaneous irradiance to maintain the circadian cell cycle...

  7. Evidence of A Bimodal US GDP Growth Rate Distribution: A Wavelet Approach

    Directory of Open Access Journals (Sweden)

    Sandro Claudio Lera

    2017-04-01

    Full Text Available We present a quantitative characterisation of the fluctuations of the annualized growth rate of the real US GDP per capita at many scales, using a wavelet transform analysis of two data sets, quarterly data from 1947 to 2015 and annual data from 1800 to 2010. The chosen mother wavelet (first derivative of the Gaussian function applied to the logarithm of the real US GDP per capita provides a robust estimation of the instantaneous growth rate at different scales. Our main finding is that business cycles appear at all scales and the distribution of GDP growth rates can be well approximated by a bimodal function associated to a series of switches between regimes of strong growth rate $\\rho_\\text{high}$ and regimes of low growth rate $\\rho_\\text{low}$. The succession of such two regimes compounds to produce a remarkably stable long term average real annualized growth rate of 1.6% from 1800 to 2010 and $\\approx 2.0\\%$ since 1950, which is the result of a subtle compensation between the high and low growth regimes that alternate continuously. Thus, the overall growth dynamics of the US economy is punctuated, with phases of strong growth that are intrinsically unsustainable, followed by corrections or consolidation until the next boom starts. We interpret these findings within the theory of "social bubbles" and argue as a consequence that estimations of the cost of the 2008 crisis may be misleading. We also interpret the absence of strong recovery since 2008 as a protracted low growth regime $\\rho_\\text{low}$ associated with the exceptional nature of the preceding large growth regime.

  8. Numerical Analysis of Inlet Gas-Mixture Flow Rate Effects on Carbon Nanotube Growth Rate

    Directory of Open Access Journals (Sweden)

    B. Zahed

    2013-01-01

    Full Text Available The growth rate and uniformity of Carbon Nano Tubes (CNTs based on Chemical Vapor Deposition (CVD technique is investigated by using a numerical model. In this reactor, inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as  carrier gas enters into a horizontal CVD reactor at atmospheric pressure. Based on the gas phase and surface reactions, released carbon atoms are grown as CNTs on the iron catalysts at the reactor hot walls. The effect of inlet gas-mixture flow rate, on CNTs growth rate and its uniformity is discussed. In addition the velocity and temperature profile and also species concentrations throughout the reactor are presented.

  9. In situ holographic measurements of the sizes and settling rates of oceanic particulates

    Science.gov (United States)

    Carder, Kendall L.; Steward, Robert G.; Betzer, Peter R.

    1982-07-01

    A free-floating sediment trap equipped with a holographic particle velocimeter (HPV) was deployed for 14.4 hours at a depth of 30 m in the western North Atlantic Ocean. The system recorded the in situ sizes, shapes, orientations, and settling rates of microscopic particles moving through the laser beam. The primary data reduction revealed particles from the system's lower limit of resolution, 15 micrometers in diameter, to 250 micrometers in diameter with settling velocities ranging from 0.0190 to 0.2302 cm/s (16-198 m/day). Individual particle densities, calculated from a modified Stokes equation, ranged from 1.37 to 5.10 g/ml. The presence of high density particles was independently corroborated through individual particle analysis of the trapped material with a computer-controlled, scanning electron microscope equipped with an energy dispersive X-ray analyzer. In the future, in situ holographic systems might be used to further our understanding of primary productivity, sediment erosion/deposition, and particle aggregation/disruption/dissolution.

  10. GROWTH RATE DISPERSION (GRD OF THE (010 FACE OF BORAX CRYSTALS IN FLOWING SOLUTION

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The growth rates of borax crystals from aqueous solutions in the (010 direction at various flow rates were measured. The observed variations of the growth rate can be represented by a normal distribution.  It was found that there is no correlation between growth rate distribution and solution flow under these experimental conditions.   Keywords: Growth rate dispersion (GRD, borax, flow rate

  11. Uranium oxidation kinetics monitored by in-situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Zalkind, S., E-mail: shimonzl@nrcn.org.il; Rafailov, G.; Halevy, I.; Livneh, T.; Rubin, A.; Maimon, H.; Schweke, D.

    2017-03-15

    The oxidation kinetics of U-0.1 wt%Cr at oxygen pressures of 150 Torr and the temperature range of 90–150 °C was studied by means of in-situ X-ray diffraction (XRD). A “breakaway” in the oxidation kinetics is found at ∼0.25 μm, turning from a parabolic to a linear rate law. At the initial stage of oxidation the growth plane of UO{sub 2}(111) is the prominent one. As the oxide thickens, the growth rate of UO{sub 2}(220) plane increases and both planes grow concurrently. The activation energies obtained for the oxide growth are Q{sub parabolic} = 17.5 kcal/mol and Q{sub linear} = 19 kcal/mol. Enhanced oxidation around uranium carbide (UC) inclusions is clearly observed by scanning electron microscopy (SEM).

  12. Bacterial growth on surfaces: Automated image analysis for quantification of growth rate-related parameters

    DEFF Research Database (Denmark)

    Møller, S.; Sternberg, Claus; Poulsen, L. K.

    1995-01-01

    species-specific hybridizations with fluorescence-labelled ribosomal probes to estimate the single-cell concentration of RNA. By automated analysis of digitized images of stained cells, we determined four independent growth rate-related parameters: cellular RNA and DNA contents, cell volume......, and the frequency of dividing cells in a cell population. These parameters were used to compare physiological states of liquid-suspended and surfacegrowing Pseudomonas putida KT2442 in chemostat cultures. The major finding is that the correlation between substrate availability and cellular growth rate found...

  13. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield.

    Directory of Open Access Journals (Sweden)

    Meike T Wortel

    2018-02-01

    Full Text Available Microbes may maximize the number of daughter cells per time or per amount of nutrients consumed. These two strategies correspond, respectively, to the use of enzyme-efficient or substrate-efficient metabolic pathways. In reality, fast growth is often associated with wasteful, yield-inefficient metabolism, and a general thermodynamic trade-off between growth rate and biomass yield has been proposed to explain this. We studied growth rate/yield trade-offs by using a novel modeling framework, Enzyme-Flux Cost Minimization (EFCM and by assuming that the growth rate depends directly on the enzyme investment per rate of biomass production. In a comprehensive mathematical model of core metabolism in E. coli, we screened all elementary flux modes leading to cell synthesis, characterized them by the growth rates and yields they provide, and studied the shape of the resulting rate/yield Pareto front. By varying the model parameters, we found that the rate/yield trade-off is not universal, but depends on metabolic kinetics and environmental conditions. A prominent trade-off emerges under oxygen-limited growth, where yield-inefficient pathways support a 2-to-3 times higher growth rate than yield-efficient pathways. EFCM can be widely used to predict optimal metabolic states and growth rates under varying nutrient levels, perturbations of enzyme parameters, and single or multiple gene knockouts.

  14. Nationwide Macroeconomic Variables and the Growth Rate of Bariatric Surgeries in Brazil.

    Science.gov (United States)

    Cazzo, Everton; Ramos, Almino Cardoso; Pareja, José Carlos; Chaim, Elinton Adami

    2018-06-06

    The effect of nationwide economic issues on the necessary expansion in the number of bariatric procedures remains unclear. This study aims to determine whether there are correlations between the growth rate in the number of bariatric surgeries and the major macroeconomic variables over time in Brazil. It is a nationwide analysis regarding the number of bariatric surgeries in Brazil and the main national macroeconomic variables from 2003 through 2016: gross domestic product (GDP), inflation rate, and the unemployment rate, as well as the evolution in the number of registered bariatric surgeons. There were significant positive correlations of the growth rate of surgeries with the early variations of the GDP (R = 0.5558; p = 0.04863) and of the overall health expenditure per capita (R = 0.78322; p = 0.00259). The growth rate of the number of bariatric surgeries was not correlated with the unemployment and inflation rates, as well as with the growth rate of available bariatric surgeons. There were direct relationships between the growth rate of bariatric surgeries and the evolutions of the GDP and health care expenditure per capita. These variables appear to influence the nationwide offer of bariatric surgery.

  15. Age class, longevity and growth rate relationships: protracted growth increases in old trees in the eastern United States.

    Science.gov (United States)

    Johnson, Sarah E; Abrams, Marc D

    2009-11-01

    This study uses data from the International Tree-Ring Data Bank website and tree cores collected in the field to explore growth rate (basal area increment, BAI) relationships across age classes (from young to old) for eight tree species in the eastern US. These species represent a variety of ecological traits and include those in the genera Populus, Quercus, Pinus, Tsuga and Nyssa. We found that most trees in all age classes and species exhibit an increasing BAI throughout their lives. This is particularly unusual for trees in the older age classes that we expected to have declining growth in the later years, as predicted by physiological growth models. There exists an inverse relationship between growth rate and increasing age class. The oldest trees within each species have consistently slow growth throughout their lives, implying an inverse relationship between growth rate and longevity. Younger trees (trees when they are of the same age resulting from a higher proportion of fast-growing trees in these young age classes. Slow, but increasing, BAI in the oldest trees in recent decades is a continuation of their growth pattern established in previous centuries. The fact that they have not shown a decreasing growth rate in their old age contradicts physiological growth models and may be related to the stimulatory effects of global change phenomenon (climate and land-use history).

  16. Orbit width scaling of TAE instability growth rate

    International Nuclear Information System (INIS)

    Wong, H.V.; Berk, H.L.; Breizman, B.N.

    1995-07-01

    The growth rate of Toroidal Alfven Eigenmodes (TAE) driven unstable by resonant coupling of energetic charged particles is evaluated in the ballooning limit over a wide range of parameters. All damping effects are ignored. Variations in orbit width, aspect ratio, and the ratio of alfven velocity to energetic particle birth velocity, are explored. The relative contribution of passing and trapped particles, and finite Larmor radius effects, are also examined. The phase space location of resonant particles with interact strongly with the modes is described. The accuracy of the analytic results with respect to growth rate magnitude and parametric dependence is investigated by comparison with numerical results

  17. Orbit width scaling of TAE instability growth rate

    International Nuclear Information System (INIS)

    Wong, H.V.; Berk, H.L.; Breizman, B.N.

    1995-01-01

    The growth rate of toroidal Alfven eigenmodes (TAEs) driven unstable by resonant coupling of energetic charged particles is evaluated in the 'ballooning' limit over a wide range of parameters. All damping effects are ignored. Variations in orbit width, aspect ratio and the ratio of Alfven velocity to energetic particle 'birth' velocity are explored. The relative contribution of passing and trapped particles, and finite Larmor radius effects, are also examined. The phase space location of resonant particles that interact strongly with the modes is described. The accuracy of the analytic results with respect to growth rate magnitude and parametric dependence is investigated by comparison with numerical results. (author). 16 refs, 8 figs

  18. Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses

    Directory of Open Access Journals (Sweden)

    Redon Emma

    2008-07-01

    Full Text Available Abstract Background The development of transcriptomic tools has allowed exhaustive description of stress responses. These responses always superimpose a general response associated to growth rate decrease and a specific one corresponding to the stress. The exclusive growth rate response can be achieved through chemostat cultivation, enabling all parameters to remain constant except the growth rate. Results We analysed metabolic and transcriptomic responses of Lactococcus lactis in continuous cultures at different growth rates ranging from 0.09 to 0.47 h-1. Growth rate was conditioned by isoleucine supply. Although carbon metabolism was constant and homolactic, a widespread transcriptomic response involving 30% of the genome was observed. The expression of genes encoding physiological functions associated with biogenesis increased with growth rate (transcription, translation, fatty acid and phospholipids metabolism. Many phages, prophages and transposon related genes were down regulated as growth rate increased. The growth rate response was compared to carbon and amino-acid starvation transcriptomic responses, revealing constant and significant involvement of growth rate regulations in these two stressful conditions (overlap 27%. Two regulators potentially involved in the growth rate regulations, llrE and yabB, have been identified. Moreover it was established that genes positively regulated by growth rate are preferentially located in the vicinity of replication origin while those negatively regulated are mainly encountered at the opposite, thus indicating the relationship between genes expression and their location on chromosome. Although stringent response mechanism is considered as the one governing growth deceleration in bacteria, the rigorous comparison of the two transcriptomic responses clearly indicated the mechanisms are distinct. Conclusion This work of integrative biology was performed at the global level using transcriptomic analysis

  19. Unusual growth rate during cystic echinococcosis.

    Science.gov (United States)

    Valour, Florent; Khenifer, Safia; Della-Schiava, Nellie; Cotte, Eddy; Guibert, Benoit; Wallon, Martine; Durupt, Stéphane; Durieu, Isabelle

    2014-04-01

    Cystic echinococcosis is a world wild zoonosis caused by Echinococcus granulosus, leading to hepatic and lung cysts with a usually slight growth rate. We report the case of an 82year-old Algerian woman with hepatic and lung cystic echinococcosis with a 10-fold size increase in 6months. Copyright © 2013. Published by Elsevier Ireland Ltd.

  20. In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth.

    Science.gov (United States)

    Patera, Laerte L; Africh, Cristina; Weatherup, Robert S; Blume, Raoul; Bhardwaj, Sunil; Castellarin-Cudia, Carla; Knop-Gericke, Axel; Schloegl, Robert; Comelli, Giovanni; Hofmann, Stephan; Cepek, Cinzia

    2013-09-24

    The key atomistic mechanisms of graphene formation on Ni for technologically relevant hydrocarbon exposures below 600 °C are directly revealed via complementary in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. For clean Ni(111) below 500 °C, two different surface carbide (Ni2C) conversion mechanisms are dominant which both yield epitaxial graphene, whereas above 500 °C, graphene predominantly grows directly on Ni(111) via replacement mechanisms leading to embedded epitaxial and/or rotated graphene domains. Upon cooling, additional carbon structures form exclusively underneath rotated graphene domains. The dominant graphene growth mechanism also critically depends on the near-surface carbon concentration and hence is intimately linked to the full history of the catalyst and all possible sources of contamination. The detailed XPS fingerprinting of these processes allows a direct link to high pressure XPS measurements of a wide range of growth conditions, including polycrystalline Ni catalysts and recipes commonly used in industrial reactors for graphene and carbon nanotube CVD. This enables an unambiguous and consistent interpretation of prior literature and an assessment of how the quality/structure of as-grown carbon nanostructures relates to the growth modes.

  1. A panel data investigation of real exchange rate misalignment and growth

    Directory of Open Access Journals (Sweden)

    Flávio Vilela Vieira

    2012-09-01

    Full Text Available The paper investigates the role of real exchange rate misalignment on long-run growth for a set of ninety countries using time series data from 1980 to 2004. We first estimate a panel data model (fixed and random effects for the real exchange rate in order to produce estimates of the equilibrium real exchange rate and this is then used to construct measures of real exchange rate misalignment. We provide an alternative set of estimates of RER misalignment using panel cointegration methods. The results for the two-step System GMM panel growth models indicate that the coefficients for real exchange rate misalignment are positive for different model specification and samples, which means that a more depreciated (appreciated real exchange rate helps (harms long-run growth. The estimated coefficients are higher for developing and emerging countries.

  2. The effect of rumen content transfer on rate of bacteria and protozoa growth

    International Nuclear Information System (INIS)

    Suharyono; M Winugroho; Y Widiati; S Marijati

    1998-01-01

    The aims the experiment wants to know the benefit of rate of microbial protein in rumen content and to complete the information that isolates is useful for ruminant animals feed. The result indicated that buffaloes from East Nusa Tenggara is the best when they are used as donor rumen transfer making isolate. When rumen of ongole cattle generation was mixed in rumen content of buffaloes from East Nusa Tenggara and incubated 48 h, the rate of bacteria cell growth is better than rate of protozoa cell growth comparing to the other animals. The values are 30.99 mg/h/100 ml and 24.92 mg.h/100 ml respectively. The results of isolate selection in 48 h incubation indicated that treatment F is the best. The results rates of bacteria cell growth and rate of protozoa's cell growth are 26.96 mg/h/100 ml and 2.53 mg/h/100 respectively. The result of in vitro study indicated that pH and ammonia concentration support the rate of bacteria cell growth and do not cause the toxicity of microbes and animal . The rate of bacteria cell growth on D treatment is significant to A,B, and C treatments. The values are 21.44 mg/h/100 ml. 7.99; 13.13; and 13.38 mg/h/100 ml respectively. The result rates of protozoa's cell growth tends lower than rates of bacteria cell. The overall conclusion is a lower or a higher rate of microorganism cell growth depends on the environment condition. (author)

  3. Monitoring the in-situ oxide growth on uranium by ultraviolet-visible reflectance spectroscopy

    Science.gov (United States)

    Schweke, Danielle; Maimon, Chen; Chernia, Zelig; Livneh, Tsachi

    2012-11-01

    We demonstrate the in-situ monitoring of oxide growth on U-0.1 wt. % Cr by means of UV-visible reflectance spectroscopy in the thickness range of ˜20-150 nm. Two different approaches are presented: In the "modeling approach," we employ a model for a metallic substrate covered by a dielectric layer, while taking into account the buildup of oxygen gradient and surface roughness. Then, we fit the simulated spectra to the experimental one. In the "extrema analysis," we derive an approximated analytical expression, which relates the oxide thickness to the position of the extrema in the reflectance spectra based on the condition for optical interference of the reflected light. Good agreement is found between the values extracted by the two procedures. Activation energy of ˜21 kcal/mole was obtained by monitoring the oxide growth in the temperature range of 22-90 °C. The upper bound for the thickness determination is argued to be mostly dictated by cracking and detachment processes in the formed oxide.

  4. The frequency effect on the fatigue crack growth rate of 304 stainless steel

    International Nuclear Information System (INIS)

    Shih, Y.-S.; Chen, J.-J.

    1999-01-01

    Under cyclic loading condition, the fatigue crack growth (FCG) rate governed by stress intensity factor and stress ratio is well known; Walker's equation, Forman's equation and Elber's equation are typical formulae to describe the fatigue crack growth rate. However, the loading frequency effect on the fatigue crack growth rate has yet to be explored. Recently, studies have focused on the loading frequency effect on some visco-elastic materials, and have provided a clearer understanding of the frequency effect on the fatigue crack growth rate. In a physical sense, knowledge about the loading frequency effect on the fatigue crack growth rate for 304 stainless steel is still lacking. James conducted a lot of experiments, and through data analysis, he concluded an evaluation equation which is based upon the experimental illustration. In this study, the physical properties of the material are used to illustrate the modification of fatigue crack growth rate, and a new formula which is based upon the modified Forman's equation, is provided. (orig.)

  5. On the growth rate of gallstones in the human gallbladder

    Science.gov (United States)

    Nudelman, I.

    1993-05-01

    The growth rate of a single symmetrically oval shaped gallbladder stone weighing 10.8 g was recorded over a period of six years before surgery and removal. The length of the stone was measured by ultrasonography and the growth rate was found to be linear with time, with a value of 0.4 mm/year. A smaller stone growing in the wall of the gallbladder was detected only three years before removal and grew at a rate of ˜ 1.33 mm/year. The morphology and metallic ion chemical composition of the large stone and of a randomly selected small stone weighing about 1.1 g, extracted from another patient, were analyzed and compared. It was found that the large stone contained besides calcium also lead, whereas the small stone contained mainly calcium. It is possible that the lead causes a difference in mechanism between the growth of a single large and growth of multiple small gallstones.

  6. DKDP crystal growth controlled by cooling rate

    Science.gov (United States)

    Xie, Xiaoyi; Qi, Hongji; Shao, Jianda

    2017-08-01

    The performance of deuterated potassium dihydrogen phosphate (DKDP) crystal directly affects beam quality, energy and conversion efficiency in the Inertial Confinement Fusion(ICF)facility, which is related with the initial saturation temperature of solution and the real-time supersaturation during the crystal growth. However, traditional method to measure the saturation temperature is neither efficient nor accurate enough. Besides, the supersaturation is often controlled by experience, which yields the higher error and leads to the instability during the crystal growth. In this paper, DKDP solution with 78% deuteration concentration is crystallized in different temperatures. We study the relation between solubility and temperature of DKDP and fit a theoretical curve with a parabola model. With the model, the measurement of saturation temperature is simplified and the control precision of the cooling rate is improved during the crystal growth, which is beneficial for optimizing the crystal growth process.

  7. In-situ observation of recrystallization in an AlMgScZr alloy using confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Taendl, J.; Nambu, S.; Orthacker, A.; Kothleitner, G.; Inoue, J.; Koseki, T.; Poletti, C.

    2015-01-01

    In this work we present a novel in-situ approach to study the recrystallization behavior of age hardening alloys. We use confocal laser scanning microscopy (CLSM) at 400 °C to investigate the static recrystallization of an AlMg4Sc0.4Zr0.12 alloy in-situ. The results are combined with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analyses. It was found that CLSM is a powerful tool to visualize both the local initiation and temporal sequence of recrystallization. After fast nucleation and initial growth, the grain growth rate decreases and the grain boundary migration stops after some minutes due to Zener pinning from Al 3 (Sc,Zr) precipitates produced during the heat treatment. EBSD and TEM analyses confirm both the boundary movements and the particle-boundary interactions. - Highlights: • First time that CLSM is used to study recrystallization in-situ. • The start and end of recrystallization can be directly observed. • The procedure is easy to apply and requires only simple data interpretation. • In-situ observations on the surface correlate to modifications inside the bulk. • In-situ observations correlate to EBSD and EFTEM analyses.

  8. In-situ observation of recrystallization in an AlMgScZr alloy using confocal laser scanning microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taendl, J., E-mail: johannes.taendl@tugraz.atl [Institute of Materials Science and Welding, Graz University of Technology, Graz (Austria); Nambu, S. [Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); Orthacker, A.; Kothleitner, G. [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Graz (Austria); Graz Center for Electron Microscopy, Graz (Austria); Inoue, J.; Koseki, T. [Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); Poletti, C. [Institute of Materials Science and Welding, Graz University of Technology, Graz (Austria)

    2015-10-15

    In this work we present a novel in-situ approach to study the recrystallization behavior of age hardening alloys. We use confocal laser scanning microscopy (CLSM) at 400 °C to investigate the static recrystallization of an AlMg4Sc0.4Zr0.12 alloy in-situ. The results are combined with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analyses. It was found that CLSM is a powerful tool to visualize both the local initiation and temporal sequence of recrystallization. After fast nucleation and initial growth, the grain growth rate decreases and the grain boundary migration stops after some minutes due to Zener pinning from Al{sub 3}(Sc,Zr) precipitates produced during the heat treatment. EBSD and TEM analyses confirm both the boundary movements and the particle-boundary interactions. - Highlights: • First time that CLSM is used to study recrystallization in-situ. • The start and end of recrystallization can be directly observed. • The procedure is easy to apply and requires only simple data interpretation. • In-situ observations on the surface correlate to modifications inside the bulk. • In-situ observations correlate to EBSD and EFTEM analyses.

  9. Skeletal muscle protein accretion rates and hindlimb growth are reduced in late gestation intrauterine growth-restricted fetal sheep.

    Science.gov (United States)

    Rozance, Paul J; Zastoupil, Laura; Wesolowski, Stephanie R; Goldstrohm, David A; Strahan, Brittany; Cree-Green, Melanie; Sheffield-Moore, Melinda; Meschia, Giacomo; Hay, William W; Wilkening, Randall B; Brown, Laura D

    2018-01-01

    Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass, which may contribute to insulin resistance and the development of diabetes. We demonstrate slower hindlimb linear growth and muscle protein synthesis rates that match the reduced hindlimb blood flow and oxygen consumption rates in IUGR fetal sheep. These adaptations resulted in hindlimb blood flow rates in IUGR that were similar to control fetuses on a weight-specific basis. Net hindlimb glucose uptake and lactate output rates were similar between groups, whereas amino acid uptake was significantly lower in IUGR fetal sheep. Among all fetuses, blood O 2 saturation and plasma glucose, insulin and insulin-like growth factor-1 were positively associated and norepinephrine was negatively associated with hindlimb weight. These results further our understanding of the metabolic and hormonal adaptations to reduced oxygen and nutrient supply with placental insufficiency that develop to slow hindlimb growth and muscle protein accretion. Reduced skeletal muscle mass in the fetus with intrauterine growth restriction (IUGR) persists into adulthood and may contribute to increased metabolic disease risk. To determine how placental insufficiency with reduced oxygen and nutrient supply to the fetus affects hindlimb blood flow, substrate uptake and protein accretion rates in skeletal muscle, late gestation control (CON) (n = 8) and IUGR (n = 13) fetal sheep were catheterized with aortic and femoral catheters and a flow transducer around the external iliac artery. Muscle protein kinetic rates were measured using isotopic tracers. Hindlimb weight, linear growth rate, muscle protein accretion rate and fractional synthetic rate were lower in IUGR compared to CON (P fetal norepinephrine and reduced IGF-1 and insulin. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  10. In-Situ Growth and Characterization of Indium Tin Oxide Nanocrystal Rods

    Directory of Open Access Journals (Sweden)

    Yan Shen

    2017-11-01

    Full Text Available Indium tin oxide (ITO nanocrystal rods were synthesized in-situ by a vapor-liquid-solid (VLS method and electron beam evaporation technique. When the electron-beam gun bombarded indium oxide (In2O3 and tin oxide (SnO2 mixed sources, indium and tin droplets appeared and acted as catalysts. The nanocrystal rods were in-situ grown on the basis of the metal catalyst point. The nanorods have a single crystal structure. Its structure was confirmed by X-ray diffraction (XRD and transmission electron microscopy (TEM. The surface morphology was analyzed by scanning electron microscopy (SEM. During the evaporation, a chemical process was happened and an In2O3 and SnO2 solid solution was formed. The percentage of doped tin oxide was calculated by Vegard’s law to be 3.18%, which was in agreement with the mixture ratio of the experimental data. The single crystal rod had good semiconductor switch property and its threshold voltage of single rod was approximately 2.5 V which can be used as a micro switch device. The transmission rate of crystalline nanorods ITO film was over 90% in visible band and it was up to 95% in the blue green band as a result of the oxygen vacancy recombination luminescence.

  11. Breast meat quality of chickens with divergent growth rates and its relation to growth curve parameters

    Directory of Open Access Journals (Sweden)

    P. C. Muth

    2017-11-01

    Full Text Available The effects of the increase of body weight of contemporary broilers during growth on functional meat quality and color characteristics of the chicken breast muscle are controversially debated. Therefore, male chickens (n = 264 of a fast-growing commercial broiler (Ross 308 and two slow-growing experimental meat-type chicken lines were compared at equal age and at similar body weight in order to investigate the effect of growth rate on selected functional breast meat traits and meat color. Additionally, the breast meat characteristics of birds with different growth profiles were compared within lines. When the body weight of commercial broilers reached about 40 to 60 % of their growth potential, they exhibited particularly high ultimate pH values compared with slow-growing lines. The ability of the meat of fast-growing broilers to retain water during cooking was impaired (5 to 16 percentage points increased cooking loss compared to slow-growing lines, which, in contrast to pH, was only marginally affected by body weight and/or age at slaughter. No unfavorable correlations of breast meat quality traits with the growth profile, represented by growth curve parameters derived from the Gompertz–Laird equation, were detected within any of the investigated chicken lines. It is noteworthy that the associations of ultimate pH and cooking loss with maximum growth speed indicate a non-linear relationship. Thus, some of the functional characteristics of breast meat of the fast-growing broiler resembled the white-striping defect described for poultry meat, but the hypothesis that selection on increased growth rates is detrimental for meat quality per se could not be confirmed. In fact, an elevated growth potential in particular, i.e., body weight at maturity, could have some beneficial effects for the water-holding capacity of breast meat, regardless of the genotypic growth rate.

  12. In situ investigation of helium fuzz growth on tungsten in relation to ion flux, fluence, surface temperature and ion energy using infrared imaging in PSI-2

    International Nuclear Information System (INIS)

    Möller, S; Kachko, O; Rasinski, M; Kreter, A; Linsmeier, Ch

    2017-01-01

    Tungsten is a candidate material for plasma-facing components in nuclear fusion reactors. In operation it will face temperatures >800 K together with an influx of helium ions. Previously, the evolution of special surface nanostructures called fuzz was found under these conditions in a limited window of surface temperature, ion flux and ion energy. Fuzz potentially leads to lower heat load tolerances, enhanced erosion and dust formation, hence should be avoided in a fusion reactor. Here the fuzz growth is reinvestigated in situ during its growth by considering its impact on the surfaces infrared emissivity at 4 μ m wavelength with an infrared camera in the linear plasma device PSI-2. A hole in the surface serves as an emissivity reference to calibrate fuzz thickness versus infrared emissivity. Among new data on the above mentioned relations, a lower fuzz growth threshold of 815 ± 24 K is found. Fuzz is seen to grow on rough and polished surfaces and even on the hole’s side walls alike. Literature scalings for thickness, flux and time relations of the fuzz growth rate could not be reproduced, but for the temperature scaling a good agreement to the Arrhenius equation was found. (paper)

  13. Growth rate change driven by external perturbation in the azuki bean weevil

    CERN Document Server

    Fukano, T

    2003-01-01

    In laboratory experiments we obtain that the apparent growth rate of the population becomes larger than one under the normal condition, triggered by the external perturbation as the removal of individuals. The changed growth rate is stable for a while. We also propose a simple model of population dynamics allowing both matching and mis-matching the trend of the external perturbation, and show that the growth rate of the model population is changeable and stable to some extent.

  14. Growth rate change driven by external perturbation in the azuki bean weevil

    International Nuclear Information System (INIS)

    Fukano, Takao; Gunji, Yukio-Pegio

    2003-01-01

    In laboratory experiments we obtain that the apparent growth rate of the population becomes larger than one under the normal condition, triggered by the external perturbation as the removal of individuals. The changed growth rate is stable for a while. We also propose a simple model of population dynamics allowing both matching and mis-matching the trend of the external perturbation, and show that the growth rate of the model population is changeable and stable to some extent

  15. Diversity and distribution of microbes in deep-sea sub-vent systems, using newly designed in situ growth chambers

    Science.gov (United States)

    Higashi, Y.; Sunamura, M.; Utsumi, M.; Urabe, T.; Maruyama, A.

    2004-12-01

    Subsurface of deep-sea hydrothermal vent environments is one of the most difficult fields on the Earth to approach and collect reliable samples for microbiological study. In our Archaean Park project, we developed in situ incubation instruments to directly collect microbes from sub-vent fields through a drilled borehole. After excavation using a portable submarine driller (BMS) around deep-sea hydrothermal vents in the Suiyo Seamount on the Izu-Bonin Arc (2001, 2002) and the South Mariana (2003), microbial diversity was examined in samples collected from the boreholes, as well as natural vents, using catheter- and column-type in situ growth chambers. In the catheter samples collected from the Suiyo Seamount, several novel phylotypes of microbial SSU rRNA genes were assigned within epsilon-Proteobacteria and hyperthermophile-related Euryarchaea groups. The former novel epsilon group (SSSV-BE1) was also detected in the South Mariana, but they only appeared in the catheter samples collected just below the venting seafloor. These suggest that the group must be significant in warm, shallow and microaerobic sub-vent layers over the sea, at least in the northwest Pacific Ocean. The column-type in situ growth chamber was specially designed for creating and maintaining physico-chemical gradients in a ca. 40-cm-long column situated on an active vent. In Suiyo Seamount samples (vent temp.: ca. 30-100 degree C), a unique vertical profile was found in the diversity of Archaea. At the column bottom, most of the clones were assigned to be members within the lithoautotrophic thermophilic Ignicoccus, while heterotrophic thermophilic Thermococcus were abundant at the column top. Similar vertical profile has also been appeared in the column samples from the South Mariana. Further quantitative population analysis is now under going using these samples. Our approach to the sub-vent biosphere by the combination of drilling and in situ incubation is almost sure to give us important clues

  16. Cell Size and Growth Rate Are Modulated by TORC2-Dependent Signals.

    Science.gov (United States)

    Lucena, Rafael; Alcaide-Gavilán, Maria; Schubert, Katherine; He, Maybo; Domnauer, Matthew G; Marquer, Catherine; Klose, Christian; Surma, Michal A; Kellogg, Douglas R

    2018-01-22

    The size of all cells, from bacteria to vertebrates, is proportional to the growth rate set by nutrient availability, but the underlying mechanisms are unknown. Here, we show that nutrients modulate cell size and growth rate via the TORC2 signaling network in budding yeast. An important function of the TORC2 network is to modulate synthesis of ceramide lipids, which play roles in signaling. TORC2-dependent control of ceramide signaling strongly influences both cell size and growth rate. Thus, cells that cannot make ceramides fail to modulate their growth rate or size in response to changes in nutrients. PP2A associated with the Rts1 regulatory subunit (PP2A Rts1 ) is embedded in a feedback loop that controls TORC2 signaling and helps set the level of TORC2 signaling to match nutrient availability. Together, the data suggest a model in which growth rate and cell size are mechanistically linked by ceramide-dependent signals arising from the TORC2 network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Influence of Crucible Support Rod on the Growth Rate and Temperature Gradient in a Bridgman Growth of Tin Crystal

    OpenAIRE

    IMASHIMIZU, Yuji; MIURA, Koji; KAMATA, Masaki; WATANABE, Jiro

    2003-01-01

    Bridgman growth of tincrystal was carried out in a graphite crucible that was fixed on a quartz support rod or a copper one. The growth rate and axial temperature distribution were examined by recording the temperature variation with time at each of four prescribed positions in the solid-liquidsystem during solidification, l) Actual growth rate of crystal increased with progress of solidification while the furnace elevated at a constant rate, but the tendency was different depending on the ty...

  18. [Specific growth rate and the rate of energy metabolism in the ontogenesis of axolotl, Ambystoma mexicanum (Amphibia: Ambystomatidae)].

    Science.gov (United States)

    Vladimirova, I G; Kleĭmenov, S Iu; Alekseeva, T A; Radzinskaia, L I

    2003-01-01

    Concordant changes in the rate of energy metabolism and specific growth rate of axolotls have been revealed. Several periods of ontogeny are distinguished, which differ in the ratio of energy metabolism to body weight and, therefore, are described by different allometric equations. It is suggested that the specific growth rate of an animal determines the type of dependence of energy metabolism on body weight.

  19. Postnatal growth rates covary weakly with embryonic development rates and do not explain adult mortality probability among songbirds on four continents.

    Science.gov (United States)

    Martin, Thomas E; Oteyza, Juan C; Mitchell, Adam E; Potticary, Ahva L; Lloyd, Penn

    2015-03-01

    Growth and development rates may result from genetic programming of intrinsic processes that yield correlated rates between life stages. These intrinsic rates are thought to affect adult mortality probability and longevity. However, if proximate extrinsic factors (e.g., temperature, food) influence development rates differently between stages and yield low covariance between stages, then development rates may not explain adult mortality probability. We examined these issues based on study of 90 songbird species on four continents to capture the diverse life-history strategies observed across geographic space. The length of the embryonic period explained little variation (ca. 13%) in nestling periods and growth rates among species. This low covariance suggests that the relative importance of intrinsic and extrinsic influences on growth and development rates differs between stages. Consequently, nestling period durations and nestling growth rates were not related to annual adult mortality probability among diverse songbird species within or among sites. The absence of a clear effect of faster growth on adult mortality when examined in an evolutionary framework across species may indicate that species that evolve faster growth also evolve physiological mechanisms for ameliorating costs on adult mortality. Instead, adult mortality rates of species in the wild may be determined more strongly by extrinsic environmental causes.

  20. Ergodicity, hidden bias and the growth rate gain

    Science.gov (United States)

    Rochman, Nash D.; Popescu, Dan M.; Sun, Sean X.

    2018-05-01

    Many single-cell observables are highly heterogeneous. A part of this heterogeneity stems from age-related phenomena: the fact that there is a nonuniform distribution of cells with different ages. This has led to a renewed interest in analytic methodologies including use of the ‘von Foerster equation’ for predicting population growth and cell age distributions. Here we discuss how some of the most popular implementations of this machinery assume a strong condition on the ergodicity of the cell cycle duration ensemble. We show that one common definition for the term ergodicity, ‘a single individual observed over many generations recapitulates the behavior of the entire ensemble’ is implied by the other, ‘the probability of observing any state is conserved across time and over all individuals’ in an ensemble with a fixed number of individuals but that this is not true when the ensemble is growing. We further explore the impact of generational correlations between cell cycle durations on the population growth rate. Finally, we explore the ‘growth rate gain’—the phenomenon that variations in the cell cycle duration leads to an improved population-level growth rate—in this context. We highlight that, fundamentally, this effect is due to asymmetric division.

  1. Effect of neutron irradiation on hatching rate of eggs and growth rate of chicken

    International Nuclear Information System (INIS)

    Liu Yubin; Zhao Jide; Liu Shengdian; Xy Xiuwei

    1995-01-01

    It was proved through 3 years of experiments and productions that after the eggs of AA meat chickens being irradiated by 14 MeV fast neutron, the hatching rate and the survival rate as well the weight of commercial chickens increased greatly. In addition it is found that the optimum neutron fluence for hatching and growth rate is 6.2 x 10 5 n·cm -2

  2. CHRONIC UNSTABILITY AND POTENTIAL GROWTH RATE: TURKISH EXPERIENCE, 1960-2006

    Directory of Open Access Journals (Sweden)

    MUSTAFA İSMİHAN

    2013-06-01

    Full Text Available This study investigates the role of macroeconomic instability on potential growth rate of output in Turkey over the period 1960-2006. In doing so, it also attempts to estimate the potential growth rate of Turkish economy over the sample period by using Hodrick-Prescott filter and model based on production function approach. Descriptive and empirical results suggest that Turkish economy suffered from a significant output loss during the chronic instability episodes, between the mid-1970s and 2001. A significant fall in macroeconomic instability has provided the main contribution to the achievement of the recent high growth episode (2002-2006 of Turkish economy. However, in order to continue the desired high growth performance in near future it is necessary to accelerate both human and physical capital formation while preserving stability.

  3. Growth, Mortality and Exploitation Rates of Sarotherodon ...

    African Journals Online (AJOL)

    Evans

    ABSTRACT. Sarotherodon melanotheron population of Dominli Lagoon in the Western Region of Ghana was studied for its growth and mortality parameters as well as exploitation rate. The study generally aimed at providing basic information necessary for the assessment and management of the fish stock in the lagoon.

  4. Applications of ribosomal in situ hybridization for the study of bacterial cells in the mouse intestine

    DEFF Research Database (Denmark)

    Licht, Tine Rask; Poulsen, Lars Kongsbak; Molin, Søren

    1997-01-01

    Localization of E. coli and S. typhimurium in the large and small intestine of streptomycin-treated mice was visualized by in situ hybridization with specific rRNA target probes and epi-fluorescence microscopy. Growth rates of E. coli BJ4 colonizing the large intestine of streptomycin-treated mic...

  5. In situ growth monitoring of AlGaN/GaN distributed Bragg reflectors at 530 nm using a 633 nm laser

    Energy Technology Data Exchange (ETDEWEB)

    Wen Feng; Huang Lirong; Jiang Bo; Tong Liangzhu; Xu Wei; Liu Deming, E-mail: hlr5649@163.co [Wuhan National Laboratory for Optoelectronics, College of Opto-Electronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-09-15

    The metal-organic chemical vapor deposition (MOCVD) growth of AlGaN/GaN distributed Bragg reflectors (DBR) with a reflection peak at 530 nm was in situ monitored using 633 nm laser reflectometry. Evolutions of in situ reflected reflectivity for different kinds of AlGaN/GaN DBR were simulated by the classical transfer matrix method. Two DBR samples, which have the same parameters as the simulated structures, were grown by MOCVD. The simulated and experimental results show that it is possible to evaluate the DBR parameters from the envelope shape of the in situ reflectivity spectrum. With the help of the 633 nm laser reflectometry, a DBR light emitting diode (LED) was grown. The room temperature photoluminescence spectra show that the reflection peak of the DBR in the LED is within the design region. (semiconductor devices)

  6. A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models

    International Nuclear Information System (INIS)

    Vanaei, H.R.; Eslami, A.; Egbewande, A.

    2017-01-01

    Pipelines are the very important energy transmission systems. Over time, pipelines can corrode. While corrosion could be detected by in-line inspection (ILI) tools, corrosion growth rate prediction in pipelines is usually done through corrosion rate models. For pipeline integrity management and planning selecting the proper corrosion ILI tool and also corrosion growth rate model is important and can lead to significant savings and safer pipe operation. In this paper common forms of pipeline corrosion, state of the art ILI tools, and also corrosion growth rate models are reviewed. The common forms of pipeline corrosion introduced in this paper are Uniform/General Corrosion, Pitting Corrosion, Cavitation and Erosion Corrosion, Stray Current Corrosion, Micro-Bacterial Influenced Corrosion (MIC). The ILI corrosion detection tools assessed in this study are Magnetic Flux Leakage (MFL), Circumferential MFL, Tri-axial MFL, and Ultrasonic Wall Measurement (UT). The corrosion growth rate models considered in this study are single-value corrosion rate model, linear corrosion growth rate model, non-linear corrosion growth rate model, Monte-Carlo method, Markov model, TD-GEVD, TI-GEVD model, Gamma Process, and BMWD model. Strengths and limitations of ILI detection tools, and also corrosion predictive models with some practical examples are discussed. This paper could be useful for those whom are supporting pipeline integrity management and planning. - Highlights: • Different forms of pipeline corrosion are explained. • Common In-Line Inspection (ILI) tools and corrosion growth rate models are introduced. • Strength and limitations of corrosion growth rate models/ILI tools are discussed. • For pipeline integrity management programs using more than one corrosion growth rate model/ILI tool is suggested.

  7. Effect of infection with Metacercariae of Himasthla elongata (Trematoda: Echinostomatidae) on cardiac activity and growth rate in blue mussels (Mytilus edulis) in situ

    Science.gov (United States)

    Bakhmet, Igor; Nikolaev, Kirill; Levakin, Ivan

    2017-05-01

    Trematode parasites can affect their molluscan hosts, which serve as the first intermediate hosts in their life cycles, in manifold ways, but little is known about trematode-induced effects on their second intermediate hosts. Experimental infection of blue mussels Mytilus edulis serving as second intermediate hosts for larval stages (metacercariae) of the trematodes Himasthla elongata was studied in field experiments during one year. The heart rates and growth rates of noninfected mussels were significantly higher than those of infected mussels. During the summer, the heart rates of noninfected mussels showed rhythmic oscillations, whereas the parasitized animals displayed no any rhythmicity. There was a significant difference between the infected and uninfected mussels in relation to heart rates and temperature. The results indicate that mussels infected with H. elongata metacercariae may be at an energetic disadvantage relative to noninfected mussels. Furthermore, trematode infection may disrupt neuronal control of cardiac function.

  8. A new approach to estimate the in situ fractional degradation rate of organic matter and nitrogen in wheat yeast concentrates

    NARCIS (Netherlands)

    De Jonge, L. H.; Van Laar, H.; Hendriks, W. H.; Dijkstra, J.

    2015-01-01

    In the classic in situ method, small particles are removed during rinsing and hence their fractional degradation rate cannot be determined. A new approach was developed to estimate the fractional degradation rate of nutrients in small particles. This approach was based on an alternative rinsing

  9. Au-assisted growth of anisotropic and epitaxial cdse colloidal nanocrystals via in situ dismantling of quantum dots

    KAUST Repository

    Fernà ndez-Altable, Ví ctor; Dalmases, Mariona; Falqui, Andrea; Casu, Alberto; Torruella, Pau; Estradé , Sò nia; Peiró , Francesca; Figuerola, Albert

    2015-01-01

    Metallic nanocrystals have been revealed in the past years as valuable materials for the catalytic growth of semiconductor nanowires. Yet, only low melting point metals like Bi have been reported to successfully assist the growth of elongated CdX (X = S, Se, Te) systems in solution, and the possibility to use plasmonic noble metals has become a challenging task. In this work we show that the growth of anisotropic CdSe nanostructures in solution can also be efficiently catalyzed by colloidal Au nanoparticles, following a preferential crystallographic alignment between the metallic and semiconductor domains. Noteworthy, we report the heterodox use of semiconductor quantum dots as a homogeneous and tunable source of reactive monomer species to the solution. The mechanistic studies reveal that the in situ delivery of these cadmium and chalcogen monomer species and the formation of AuxCdy alloy seeds are both key factors for the epitaxial growth of elongated CdSe domains. The implementation of this method suggests an alternative synthetic approach for the assembly of different semiconductor domains into more complex heterostructures.

  10. Au-assisted growth of anisotropic and epitaxial cdse colloidal nanocrystals via in situ dismantling of quantum dots

    KAUST Repository

    Fernàndez-Altable, Víctor

    2015-03-10

    Metallic nanocrystals have been revealed in the past years as valuable materials for the catalytic growth of semiconductor nanowires. Yet, only low melting point metals like Bi have been reported to successfully assist the growth of elongated CdX (X = S, Se, Te) systems in solution, and the possibility to use plasmonic noble metals has become a challenging task. In this work we show that the growth of anisotropic CdSe nanostructures in solution can also be efficiently catalyzed by colloidal Au nanoparticles, following a preferential crystallographic alignment between the metallic and semiconductor domains. Noteworthy, we report the heterodox use of semiconductor quantum dots as a homogeneous and tunable source of reactive monomer species to the solution. The mechanistic studies reveal that the in situ delivery of these cadmium and chalcogen monomer species and the formation of AuxCdy alloy seeds are both key factors for the epitaxial growth of elongated CdSe domains. The implementation of this method suggests an alternative synthetic approach for the assembly of different semiconductor domains into more complex heterostructures.

  11. Stainless steels: general considerations and rates of crack growth

    International Nuclear Information System (INIS)

    Chator, T.

    1992-05-01

    This report describes the different types of stainless steels, and presents the laws governing the rates of crack growth for several stainless steels extensively used for the manufacture of structures in nuclear power plants. The laws are not discussed in detail in the report. After a brief review of the development of stainless steels, the main categories of stainless steels, their mechanical characteristics and corrosion resistance, are presented. Finally, the rates of crack growth are presented for various stainless steels, mainly austenitic. The study overall aim is an investigation of the cracking in the 900 MWe primary pump thermal barriers and shafts

  12. DETERMINATION OF THE SPECIFIC GROWTH RATE ON ...

    African Journals Online (AJOL)

    Sewage generation is one of the dense problems Nigerians encounter on daily bases, mostly at the urbanized area where factories and industries are located. This paper is aimed at determining the specific growth rate “K” of biological activities on cassava wastewater during degradation using Michaelis-Menten Equation.

  13. Size-dependent standard deviation for growth rates: empirical results and theoretical modeling.

    Science.gov (United States)

    Podobnik, Boris; Horvatic, Davor; Pammolli, Fabio; Wang, Fengzhong; Stanley, H Eugene; Grosse, I

    2008-05-01

    We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation sigma(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation sigma(R) on the average value of the wages with a scaling exponent beta approximately 0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation sigma(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of sigma(R) on the average payroll with a scaling exponent beta approximately -0.08 . Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.

  14. Size-dependent standard deviation for growth rates: Empirical results and theoretical modeling

    Science.gov (United States)

    Podobnik, Boris; Horvatic, Davor; Pammolli, Fabio; Wang, Fengzhong; Stanley, H. Eugene; Grosse, I.

    2008-05-01

    We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation σ(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation σ(R) on the average value of the wages with a scaling exponent β≈0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation σ(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of σ(R) on the average payroll with a scaling exponent β≈-0.08 . Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.

  15. Real-time imaging of vertically aligned carbon nanotube array growth kinetics

    International Nuclear Information System (INIS)

    Puretzky, A A; Eres, G; Rouleau, C M; Ivanov, I N; Geohegan, D B

    2008-01-01

    In situ time-lapse photography and laser irradiation are applied to understand unusual coordinated growth kinetics of vertically aligned carbon nanotube arrays including pauses in growth, retraction, and local equilibration in length. A model is presented which explains the measured kinetics and determines the conditions for diffusion-limited growth. Laser irradiation of the growing nanotube arrays is first used to prove that the nanotubes grow from catalyst particles at their bases, and then increase their growth rate and terminal lengths

  16. Mathematical model for predicting molecular-beam epitaxy growth rates for wafer production

    International Nuclear Information System (INIS)

    Shi, B.Q.

    2003-01-01

    An analytical mathematical model for predicting molecular-beam epitaxy (MBE) growth rates is reported. The mathematical model solves the mass-conservation equation for liquid sources in conical crucibles and predicts the growth rate by taking into account the effect of growth source depletion on the growth rate. Assumptions made for deducing the analytical model are discussed. The model derived contains only one unknown parameter, the value of which can be determined by using data readily available to MBE growers. Procedures are outlined for implementing the model in MBE production of III-V compound semiconductor device wafers. Results from use of the model to obtain targeted layer compositions and thickness of InP-based heterojunction bipolar transistor wafers are presented

  17. In-situ, real-time, studies of film growth processes using ion scattering and direct recoil spectroscopy techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Smentkowski, V. S.

    1999-04-22

    Time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) enables the characterization of the composition and structure of surfaces with 1-2 monolayer specificity. It will be shown that surface analysis is possible at ambient pressures greater than 3 mTorr using TOF-ISARS techniques; allowing for real-time, in situ studies of film growth processes. TOF-ISARS comprises three analytical techniques: ion scattering spectroscopy (ISS), which detects the backscattered primary ion beam; direct recoil spectroscopy (DRS), which detects the surface species recoiled into the forward scattering direction; and mass spectroscopy of recoiled ions (MSRI), which is 3 variant of DRS capable of isotopic resolution for all surface species--including H and He. The advantages and limitations of each of these techniques will be discussed. The use of the three TOF-ISARS methods for real-time, in situ film growth studies at high ambient pressures will be illustrated. It will be shown that MSRI analysis is possible during sputter deposition. It will be also be demonstrated that the analyzer used for MSRI can also be used for time of flight secondary ion mass spectroscopy (TOF-SIMS) under high vacuum conditions. The use of a single analyzer to perform the complimentary surface analytical techniques of MSRI and SIMS is unique. The dwd functionality of the MSRI analyzer provides surface information not obtained when either MSRI or SIMS is used independently.

  18. Growth rate in the dynamical dark energy models

    International Nuclear Information System (INIS)

    Avsajanishvili, Olga; Arkhipova, Natalia A.; Samushia, Lado; Kahniashvili, Tina

    2014-01-01

    Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter α that describes the steepness of the scalar field potential. (orig.)

  19. Growth rate in the dynamical dark energy models.

    Science.gov (United States)

    Avsajanishvili, Olga; Arkhipova, Natalia A; Samushia, Lado; Kahniashvili, Tina

    Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter [Formula: see text] that describes the steepness of the scalar field potential.

  20. In situ observation of carbon nanotube layer growth on microbolometers with substrates at ambient temperature

    Science.gov (United States)

    Svatoš, Vojtěch; Gablech, Imrich; Ilic, B. Robert; Pekárek, Jan; Neužil, Pavel

    2018-03-01

    Carbon nanotubes (CNTs) have near unity infrared (IR) absorption efficiency, making them extremely attractive for IR imaging devices. Since CNT growth occurs at elevated temperatures, the integration of CNTs with IR imaging devices is challenging and has not yet been achieved. Here, we show a strategy for implementing CNTs as IR absorbers using differential heating of thermally isolated microbolometer membranes in a C2H2 environment. During the process, CNTs were catalytically grown on the surface of a locally heated membrane, while the substrate was maintained at an ambient temperature. CNT growth was monitored in situ in real time using optical microscopy. During growth, we measured the intensity of light emission and the reflected light from the heated microbolometer. Our measurements of bolometer performance show that the CNT layer on the surface of the microbolometer membrane increases the IR response by a factor of (2.3 ± 0.1) (mean ± one standard deviation of the least-squares fit parameters). This work opens the door to integrating near unity IR absorption, CNT-based, IR absorbers with hybrid complementary metal-oxide-semiconductor focal plane array architectures.

  1. Growth of pentacene on α -Al2O3 (0001) studied by in situ optical spectroscopy

    Science.gov (United States)

    Zhang, Lei; Fu, X.; Hohage, M.; Zeppenfeld, P.; Sun, L. D.

    2017-09-01

    The growth of pentacene thin films on a sapphire α -Al2O3 (0001) surface was investigated in situ using differential reflectance spectroscopy (DRS). Two different film structures are observed depending on the substrate temperature. If pentacene is deposited at room temperature, a wetting layer consisting of flat-lying molecules is formed after which upright-standing molecular layers with a herringbone structure start to grow. At low substrate temperature of 100 K, the long molecular axis of the pentacene molecules remains parallel to the surface plane throughout the entire growth regime up to rather large thicknesses. Heating thin films deposited at 100 K to room temperature causes the pentacene molecules beyond the wetting layer to stand up and assemble into a herringbone structure. Another interesting observation is the dewetting of the first flat-lying monolayer upon exposure to air, leading to the condensation of islands consisting of upright-standing molecules. Our results emphasize the interplay between growth kinetics and thermodynamics and its influence on the molecular orientation in organic thin films.

  2. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    Science.gov (United States)

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  3. Coordinated Changes in Mutation and Growth Rates Induced by Genome Reduction

    Directory of Open Access Journals (Sweden)

    Issei Nishimura

    2017-07-01

    Full Text Available Genome size is determined during evolution, but it can also be altered by genetic engineering in laboratories. The systematic characterization of reduced genomes provides valuable insights into the cellular properties that are quantitatively described by the global parameters related to the dynamics of growth and mutation. In the present study, we analyzed a small collection of W3110 Escherichia coli derivatives containing either the wild-type genome or reduced genomes of various lengths to examine whether the mutation rate, a global parameter representing genomic plasticity, was affected by genome reduction. We found that the mutation rates of these cells increased with genome reduction. The correlation between genome length and mutation rate, which has been reported for the evolution of bacteria, was also identified, intriguingly, for genome reduction. Gene function enrichment analysis indicated that the deletion of many of the genes encoding membrane and transport proteins play a role in the mutation rate changes mediated by genome reduction. Furthermore, the increase in the mutation rate with genome reduction was highly associated with a decrease in the growth rate in a nutrition-dependent manner; thus, poorer media showed a larger change that was of higher significance. This negative correlation was strongly supported by experimental evidence that the serial transfer of the reduced genome improved the growth rate and reduced the mutation rate to a large extent. Taken together, the global parameters corresponding to the genome, growth, and mutation showed a coordinated relationship, which might be an essential working principle for balancing the cellular dynamics appropriate to the environment.

  4. Nerve growth factor concentration and implications in photorefractive keratectomy vs laser in situ keratomileusis.

    Science.gov (United States)

    Lee, Hyung Keun; Lee, Kyung Sub; Kim, Hyeon Chang; Lee, Sung Ho; Kim, Eung Kweon

    2005-06-01

    To determine whether tear nerve growth factor (NGF) concentration correlates with corneal sensation and ocular surface dryness after photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK). Prospective, nonrandomized comparative clinical trial. Seventy eyes of 35 patients and 76 eyes of 38 patients underwent PRK and LASIK procedures to correct myopia and myopic astigmatism, respectively. Total tear protein level, tear NGF concentration, tear film breakup time (BUT) and Schirmer values were measured before and 1 day, 1 week, 1 month, 3 months, and 6 months after surgery. The postoperative mean tear NGF/total tear protein (NGF/tP) ratio increased in both PRK and LASIK patients compared with preoperative levels (P PRK than in LASIK subjects (P LASIK in the ablated zone was lower than the preoperative sensation (P PRK subjects. Mean BUT and Schirmer values were significantly lower in LASIK-treated eyes compared with PRK-treated eyes up to 6 months postoperatively (P PRK-treated and LASIK-treated eyes might be related to the difference in the early postoperative levels of NGF, which is a potent nerve growth stimulator.

  5. Diagnostic Accuracy of Growth Rate in Differentiating Etiologies of Short Stature in Children

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Alaei

    2016-08-01

    Full Text Available Background  Short stature is a manifestation of a wide variety of conditions that some of which may be amenable to timely treatment and a suboptimal growth rate may be an early marker pointing to the cause of growth retardation. This study was conducted to evaluate the diagnostic utility of growth rate in differential diagnosis of children with short stature. Materials and Methods All children between the ages of 2 and 18 years who visited in pediatric endocrinology clinic in a five years period were recruited in a prospective cohort study. Children with standing height Results One hundred forty three patients fulfilled the inclusion criteria. Mean follow up period was 14.4±10.9 months. Etiologies of short stature were: constitutional growth delay (CGD 46.9%, familial short stature (FSS 28.7%, hypothyroidism 4.2%, growth hormone deficiency (GHD 4.2% and miscellaneous causes in 16% of patients.  Mean Z- score for children with constitutional growth delay was -2.3±0.69, in familial short stature was -2.3±0.65 and for other condition was -2.7±1.49. There was a meaningful statistical correlation between growth rate and etiology of short stature (P0.05. Conclusion There was significant difference in growth rate between children with constitutional growth delay and familial short stature in comparing to short stature due to endocrine problem and other etiologies. Assessment of growth rate has some utility in diagnosing the etiology of short stature.

  6. In situ characterization of delamination and crack growth of a CGO–LSM multi-layer ceramic sample investigated by X-ray tomographic microscopy

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Esposito, Vincenzo; Lauridsen, Erik Mejdal

    2014-01-01

    The densification, delamination and crack growth behavior in a Ce0.9Gd0.1O1.95 (CGO) and (La0.85Sr0.15)0.9MnO3 (LSM) multi-layer ceramic sample was studied using in situ X-ray tomographic microscopy (microtomography) to investigate the critical dynamics of crack propagation and delamination...... in a multilayered sample. Naturally occurring defects, caused by the sample preparation process, are shown not to be critical in sample degradation. Instead defects are nucleated during the debinding step. Crack growth is significantly faster along the material layers than perpendicular to them, and crack growth...

  7. Daily changes in temperature, not the circadian clock, regulate growth rate in Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Dominick A Matos

    Full Text Available Plant growth is commonly regulated by external cues such as light, temperature, water availability, and internal cues generated by the circadian clock. Changes in the rate of growth within the course of a day have been observed in the leaves, stems, and roots of numerous species. However, the relative impact of the circadian clock on the growth of grasses has not been thoroughly characterized. We examined the influence of diurnal temperature and light changes, and that of the circadian clock on leaf length growth patterns in Brachypodium distachyon using high-resolution time-lapse imaging. Pronounced changes in growth rate were observed under combined photocyles and thermocycles or with thermocycles alone. A considerably more rapid growth rate was observed at 28°C than 12°C, irrespective of the presence or absence of light. In spite of clear circadian clock regulated gene expression, plants exhibited no change in growth rate under conditions of constant light and temperature, and little or no effect under photocycles alone. Therefore, temperature appears to be the primary cue influencing observed oscillations in growth rate and not the circadian clock or photoreceptor activity. Furthermore, the size of the leaf meristem and final cell length did not change in response to changes in temperature. Therefore, the nearly five-fold difference in growth rate observed across thermocycles can be attributed to proportionate changes in the rate of cell division and expansion. A better understanding of the growth cues in B. distachyon will further our ability to model metabolism and biomass accumulation in grasses.

  8. Dispersion relation and growth rate in a Cherenkov free electron laser: Finite axial magnetic field

    International Nuclear Information System (INIS)

    Kheiri, Golshad; Esmaeilzadeh, Mahdi

    2013-01-01

    A theoretical analysis is presented for dispersion relation and growth rate in a Cherenkov free electron laser with finite axial magnetic field. It is shown that the growth rate and the resonance frequency of Cherenkov free electron laser increase with increasing axial magnetic field for low axial magnetic fields, while for high axial magnetic fields, they go to a saturation value. The growth rate and resonance frequency saturation values are exactly the same as those for infinite axial magnetic field approximation. The effects of electron beam self-fields on growth rate are investigated, and it is shown that the growth rate decreases in the presence of self-fields. It is found that there is an optimum value for electron beam density and Lorentz relativistic factor at which the maximum growth rate can take place. Also, the effects of velocity spread of electron beam are studied and it is found that the growth rate decreases due to the electron velocity spread

  9. Spatial distribution of soda straws growth rates of the Coufin Cave (Vercors, France

    Directory of Open Access Journals (Sweden)

    Perrette Yves

    2010-07-01

    Full Text Available The Choranche Cave system (Vercors, France is an excellent locality for measuring the growth rates of large numbers soda straws. This is especially the case for the Coufin Cave, as enlargement of the cave entrance in 1875 led to a change in stalactite color from brown to white, thus providing a reliable chronomarker. The date of this brown-to-white calcite transition has been confirmed by lamina counting. We measured and georeferenced the growth-lengths of 306 soda straws in a 1m2 area of the roof of the Coufin Cave entrance chamber. Because of the very slow and sometimes inexistent water feeding of those stalactites, hydrochemistry analysis were not achieved and drop rate effect on growth were neglected; this study is based on a geomorphological and geostatistical work. By measuring a large number of soda straws in a very small area for which most of the parameters affecting stalactite growth could be considered uniform, and because flow rates are very slow (frequencies are always superior to 1 drop per half hour, we could ascribe differences in growth rates to variations in the global increase of water flow through the unsaturated matrix. Statistical and geostatistical analyses of the measurements showed that this set of similarly shaped stalactites actually consisted of three Gaussian populations with different mean growth rates: fast growth rate (FGR- mean of 0.92 mm.y-1, medium growth rate (MGR- mean of 0.47 mm.y-1 and low growth rate (LGR- 0.09 mm.y-1. Plotting the lengths and spatial distribution of the 20 longest FGR soda straws revealed that there is a rough pattern to the water flow through the cave roof. Even if no direction is statisticaly different from others, the observed directional pattern is consistent with local and regional tectonic observations. Plots of the spatial distribution of the soda straws show that FGR soda straws follow lines of regional geological stress, whereas MGR and LGR soda straws are more dispersed.

  10. Variability in growth rates of larval haddock in the northern North Sea

    DEFF Research Database (Denmark)

    Gallego, A.; Heath, M.R.; Basford, D.J.

    1999-01-01

    of the spring plankton production bloom, and a likely explanation for the absence of environmental effects on larval growth was high food availability and larval feeding rates. Nevertheless, differences in growth were observed between cohorts, with larvae hatched later in the spring displaying higher growth...... at age than those hatched earlier. Particle-tracking modelling suggested that differences in temperature history between cohorts, on their own or compounded by a potential interaction between temperature and the development of plankton production, may explain the higher growth rate of the larvae hatched...

  11. Gross domestic product growth rates as confined Lévy flights: Towards a unifying theory of economic growth rate fluctuations

    Science.gov (United States)

    Lera, Sandro Claudio; Sornette, Didier

    2018-01-01

    A model that combines economic growth rate fluctuations at the microscopic and macroscopic levels is presented. At the microscopic level, firms are growing at different rates while also being exposed to idiosyncratic shocks at the firm and sector levels. We describe such fluctuations as independent Lévy-stable fluctuations, varying over multiple orders of magnitude. These fluctuations are aggregated and measured at the macroscopic level in averaged economic output quantities such as GDP. A fundamental question is thereby to what extent individual firm size fluctuations can have a noticeable impact on the overall economy. We argue that this question can be answered by considering the Lévy fluctuations as embedded in a steep confining potential well, ensuring nonlinear mean-reversal behavior, without having to rely on microscopic details of the system. The steepness of the potential well directly controls the extent to which idiosyncratic shocks to firms and sectors are damped at the level of the economy. Additionally, the theory naturally accounts for business cycles, represented in terms of a bimodal economic output distribution and thus connects two so far unrelated fields in economics. By analyzing 200 years of U.S. gross domestic product growth rates, we find that the model is in good agreement with the data.

  12. Influence of corruption on economic growth rate and foreign investment

    Science.gov (United States)

    Podobnik, Boris; Shao, Jia; Njavro, Djuro; Ivanov, Plamen Ch.; Stanley, H. E.

    2008-06-01

    We analyze the dependence of the Gross Domestic Product ( GDP) per capita growth rates on changes in the Corruption Perceptions Index ( CPI). For the period 1999 2004 for all countries in the world, we find on average that an increase of CPI by one unit leads to an increase of the annual GDP per capita growth rate by 1.7%. By regressing only the European countries with transition economies, we find that an increase of CPI by one unit generates an increase of the annual GDP per capita growth rate by 2.4%. We also analyze the relation between foreign direct investments received by different countries and CPI, and we find a statistically significant power-law functional dependence between foreign direct investment per capita and the country corruption level measured by the CPI. We introduce a new measure to quantify the relative corruption between countries based on their respective wealth as measured by GDP per capita.

  13. Alexandrium minutum growth controlled by phosphorus An applied model

    OpenAIRE

    Chapelle, Annie; Labry, Claire; Sourisseau, Marc; Lebreton, Carole; Youenou, Agnes; Crassous, Marie-pierre

    2010-01-01

    Toxic algae are a worldwide problem threatening aquaculture public health and tourism Alexandrium a toxic dinoflagellate proliferates in Northwest France estuaries (i e the Penze estuary) causing Paralytic Shellfish Poisoning events Vegetative growth and in particular the role of nutrient uptake and growth rate are crucial parameters to understand toxic blooms With the goal of modelling in situ Alexandrium blooms related to environmental parameters we first try to calibrate a zero-dimensional...

  14. CK2 activity is modulated by growth rate in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Tripodi, Farida; Cirulli, Claudia; Reghellin, Veronica; Marin, Oriano; Brambilla, Luca; Schiappelli, Maria Patrizia; Porro, Danilo; Vanoni, Marco; Alberghina, Lilia; Coccetti, Paola

    2010-01-01

    Research highlights: → CK2 subunits are nuclear both in glucose and in ethanol growing yeast cells. → CK2 activity is modulated in S. cerevisiae. → CK2 activity is higher in conditions supporting higher growth rates. → V max is higher in faster growing cells, while K m is not affected. -- Abstract: CK2 is a highly conserved protein kinase controlling different cellular processes. It shows a higher activity in proliferating mammalian cells, in various types of cancer cell lines and tumors. The findings presented herein provide the first evidence of an in vivo modulation of CK2 activity, dependent on growth rate, in Saccharomyces cerevisiae. In fact, CK2 activity, assayed on nuclear extracts, is shown to increase in exponential growing batch cultures at faster growth rate, while localization of catalytic and regulatory subunits is not nutritionally modulated. Differences in intracellular CK2 activity of glucose- and ethanol-grown cells appear to depend on both increase in molecule number and k cat . Also in chemostat cultures nuclear CK2 activity is higher in faster growing cells providing the first unequivocal demonstration that growth rate itself can affect CK2 activity in a eukaryotic organism.

  15. Tax Rates, Tax Evasion, and Growth in a Multi-period Economy

    OpenAIRE

    Jordi Caballé; Judith Panadés

    2007-01-01

    We extend the basic tax evasion model to a multi-period economy exhibiting sustained growth. When individuals conceal part of their true income from the tax authority, they face the risk of being audited and hence of paying the corresponding fine. Both taxes and fines determine individual saving and the rate of capital accumulation. We show that, if the penalty imposed on tax evaders is proportional to the amount of evaded taxes, then the growth rate is decreasing in the tax rate. However, th...

  16. [Growth rate and bone maturation in celiac disease (author's transl)].

    Science.gov (United States)

    Martínez Sopena, M J; Calvo Romero, M C; Bedate Calderón, P; Alonso Franch, M; Sánchez Villares, E

    1978-05-01

    The growth and bone maturation of 43 celiac patients were analyzed. A significant correlation between gluten intake and growth rate was found. The authors suggest this is a good parameter to advise the best moment to make the control biopsie and the provocation test.

  17. Quantification of human epidermal growth factor receptor 2 immunohistochemistry using the Ventana Image Analysis System: correlation with gene amplification by fluorescence in situ hybridization: the importance of instrument validation for achieving high (>95%) concordance rate.

    Science.gov (United States)

    Dennis, Jake; Parsa, Rezvaneh; Chau, Donnie; Koduru, Prasad; Peng, Yan; Fang, Yisheng; Sarode, Venetia Rumnong

    2015-05-01

    The use of computer-based image analysis for scoring human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) has gained a lot of interest recently. We investigated the performance of the Ventana Image Analysis System (VIAS) in HER2 quantification by IHC and its correlation with fluorescence in situ hybridization (FISH). We specifically compared the 3+ IHC results using the manufacturer's machine score cutoffs versus laboratory-defined cutoffs with the FISH assay. Using the manufacturer's 3+ cutoff (VIAS score; 2.51 to 3.5), 181/536 (33.7%) were scored 3+, and FISH was positive in 147/181 (81.2%), 2 (1.1%) were equivocal, and 32 (17.6%) were FISH (-). Using the laboratory-defined 3+ cutoff (VIAS score 3.5), 52 (28.7%) cases were downgraded to 2+, of which 29 (55.7%) were FISH (-), and 23 (44.2%) were FISH (+). With the revised cutoff, there were improvements in the concordance rate from 89.1% to 97.0% and in the positive predictive value from 82.1% to 97.6%. The false-positive rate for 3+ decreased from 9.0% to 0.8%. Six of 175 (3.4%) IHC (-) cases were FISH (+). Three cases with a VIAS score 3.5 showed polysomy of chromosome 17. In conclusion, the VIAS may be a valuable tool for assisting pathologists in HER2 scoring; however, the positive cutoff defined by the manufacturer is associated with a high false-positive rate. This study highlights the importance of instrument validation/calibration to reduce false-positive results.

  18. Growth, exchange rates and trade in Brazil: a structuralist post-Keynesian approach

    Directory of Open Access Journals (Sweden)

    Nelson H. Barbosa Filho

    2004-01-01

    Full Text Available This paper presents a structuralist post-Keynesian analysis of trade adjustment in Brazil. Based on the concept of the balance-of-payments (BoP constraint on growth, the paper investigates the relationship between income growth and real-exchange-rate devaluation necessary to adjust trade to a foreign-exchange constraint. The main result is that, with price-inelastic and income-elastic imports and based on its trade structure in 2002, Brazil may have to compensate an additional 1% of income growth with approximately 7% of real-exchange-rate devaluation in order to keep its trade balance stable in relation to GDP in the near future. Moreover, the trade parameters of Brazil seem to be unfavorable to growth with stable trade, that is, even moderate rates of GDP expansion lead to a substantial increase of imports and, therefore, require an also substantial devaluation of the real exchange rate to avoid a deterioration of the trade balance.

  19. Growth, exchange rates and trade in Brazil: a structuralist post Keynesian approach

    Directory of Open Access Journals (Sweden)

    Nelson H. Barbosa Filho

    2009-06-01

    Full Text Available This paper presents a structuralist post-Keynesian analysis of trade adjustment in Brazil. Based on the concept of the balance-of-payments (BoP constraint on growth, the paper investigates the relationship between income growth and real-exchange-rate devaluation necessary to adjust trade to a foreign-exchange constraint. The main result is that, with price-inelastic and income-elastic imports and based on its trade structure in 2002, Brazil may have to compensate an additional 1% of income growth with approximately 7% of real-exchange-rate devaluation in order to keep its trade balance stable in relation to GDP in the near future. Moreover, the trade parameters of Brazil seem to be unfavorable to growth with stable trade, that is, even moderate rates of GDP expansion lead to a substantial increase of imports and, therefore, require an also substantial devaluation of the real exchange rate to avoid a deterioration of the trade balance.

  20. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate.

    Directory of Open Access Journals (Sweden)

    Uri Barenholz

    Full Text Available Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms.

  1. Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates

    Science.gov (United States)

    Petrenko, Vasilii V.; Severinghaus, Jeffrey P.; Schaefer, Hinrich; Smith, Andrew M.; Kuhl, Tanner; Baggenstos, Daniel; Hua, Quan; Brook, Edward J.; Rose, Paul; Kulin, Robb; Bauska, Thomas; Harth, Christina; Buizert, Christo; Orsi, Anais; Emanuele, Guy; Lee, James E.; Brailsford, Gordon; Keeling, Ralph; Weiss, Ray F.

    2016-03-01

    Carbon-14 (14C) is incorporated into glacial ice by trapping of atmospheric gases as well as direct near-surface in situ cosmogenic production. 14C of trapped methane (14CH4) is a powerful tracer for past CH4 emissions from ;old; carbon sources such as permafrost and marine CH4 clathrates. 14C in trapped carbon dioxide (14CO2) can be used for absolute dating of ice cores. In situ produced cosmogenic 14C in carbon monoxide (14CO) can potentially be used to reconstruct the past cosmic ray flux and past solar activity. Unfortunately, the trapped atmospheric and in situ cosmogenic components of 14C in glacial ice are difficult to disentangle and a thorough understanding of the in situ cosmogenic component is needed in order to extract useful information from ice core 14C. We analyzed very large (≈1000 kg) ice samples in the 2.26-19.53 m depth range from the ablation zone of Taylor Glacier, Antarctica, to study in situ cosmogenic production of 14CH4 and 14CO. All sampled ice is >50 ka in age, allowing for the assumption that most of the measured 14C originates from recent in situ cosmogenic production as ancient ice is brought to the surface via ablation. Our results place the first constraints on cosmogenic 14CH4 production rates and improve on prior estimates of 14CO production rates in ice. We find a constant 14CH4/14CO production ratio (0.0076 ± 0.0003) for samples deeper than 3 m, which allows the use of 14CO for correcting the 14CH4 signals for the in situ cosmogenic component. Our results also provide the first unambiguous confirmation of 14C production by fast muons in a natural setting (ice or rock) and suggest that the 14C production rates in ice commonly used in the literature may be too high.

  2. Evaluation of Mycelium Growth Rate and Yield of White Button Mushroom Isolates (Agaricus bisporus in Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Ahmadi Lahijani

    2017-10-01

    Full Text Available Introduction: Among edible mushrooms, white button mushroom is the most cultivated one around the world. Mono-spores diversity in terms of growth rate, colony type, yield and etc. is used for intra strain genetic improvement. High yielding isolates with filamentous mycelium type are screened and used for spawn production (Farsi and Gordan, 2002. Success in mushroom production largely depends on the quality of spawn produced in sterile conditions (Sanchez, 2010. Farsi and Gordan, (2004 reported that colony shape and mycelium growth type are very important factors in screening isolates in terms of mycelium growth rate and yield. To screen isolates based on their mycelium growth, solid media are among the most suitable ones (Griffin, 1994. In a study conducted to evaluate mycelium growth rate of six Morchella species on different media, PDA and MEA were known as the best ones (Kalmis and Kalyoncu, 2008. The present study was conducted in order to evaluate mycelium growth rate and yield of white button mushroom isolates in solid medium, spawn and compost media. Materials and methods: Eighteen isolates of white button mushroom were compared on PDA (Potato Dextrose Agar, CYM (Complete Yeast Medium, spawn and compost media based on mycelium growth rate, type and class growth and yield at the mushroom research center of Faculty of Agriculture, Ferdowsi University of Mashhad, in 2014. A piece of mycelium of each isolate was placed in the center of each petri dish and was kept in 23±1°C, and the radial growth rate of mycelium was measured as two perpendicular diameters in three consecutive weeks. Mycelium growth rate on spawn and compost media was measured based on the percentage of surface coverage during the 15 consecutive days. Yield of each isolate was measured by daily harvesting of mushrooms during 35 days of experiment. Analysis of variance and means comparison of the variables were carried out using SAS software. Means analysis was performed

  3. Surface monitoring for pitting evolution into uniform corrosion on Cu-Ni-Zn ternary alloy in alkaline chloride solution: ex-situ LCM and in-situ SECM

    Science.gov (United States)

    Kong, Decheng; Dong, Chaofang; Zheng, Zhaoran; Mao, Feixiong; Xu, Aoni; Ni, Xiaoqing; Man, Cheng; Yao, Jizheng; Xiao, Kui; Li, Xiaogang

    2018-05-01

    The evolution of the corrosion process on Cu-Ni-Zn alloy in alkaline chloride solution was investigated by in-situ scanning electrochemical microscopy, X-ray photoelectron spectroscopy, and ex-situ laser confocal microscopy, and the effects of ambient temperature and polarization time were also discussed. The results demonstrated a higher pitting nucleation rate and lower pit growth rate at low temperature. The ratio of pit depth to mouth diameter decreased with increasing pit volume and temperature, indicating that pits preferentially propagate in the horizontal direction rather than the vertical direction owing to the presence of corrosion products and deposited copper. The surface current was uniform and stabilized at approximately 2.2 nA during the passive stage, whereas the current increased after the pits were formed with the maximum approaching 3 nA. Increasing the temperature led to an increase in porous corrosion products (CuO, Zn(OH)2, and Ni(OH)2) and significantly increased the rate of transition from pitting to uniform corrosion. Dezincification corrosion was detected by energy dispersive spectrometry, and a mechanism for pitting transition into uniform corrosion induced by dezincification at the grain boundaries is proposed.

  4. Last Five Years Pakistan Economic Growth Rate GDP And Its Comparison With China India And Bangladesh

    Directory of Open Access Journals (Sweden)

    Abdul Rehman

    2015-01-01

    Full Text Available Abstract This paper formulates and reviews Pakistans last five years economic growth rate and its comparison with the growth rate of China India and Bangladesh. As growth rate the amount of increment of a specific variable has gained within a specific period of time and context. In fact economic growth rate provides general direction and magnitude of growth for overall economy.

  5. Capital accumulation, structural change and real exchange rate in a Keynesian-Structuralist growth model

    Directory of Open Access Journals (Sweden)

    Oreiro José Luis

    2015-01-01

    Full Text Available The aim of this paper is to show at theoretical level that maintaining a competitive real exchange rate positively affects the economic growth of developing countries by means of a Keynesian-Structuralist model that combines elements of Kaleckian growth models with the balance of payments constrained growth models pioneered developed by Thirlwall. In this setting, the level of real exchange rate is capable, due to its effect over capital accumulation, to induce a structural change in the economy, making endogenous income elasticities of exports and imports. For reasonable parameter values it is shown that in steady-state growth there is two long-run equilibrium values for real exchange rate, one that corresponds to an under-valued currency and another that corresponds to an over-valued currency. If monetary authorities run exchange rate policy in order to target a competitive level for real exchange rate, than under-valued equilibrium is stable and the economy will show a high growth rate in the long-run.

  6. A method for in situ estimation of prey selectivity and predation rate in large plankton, exemplified with the jellyfish Aurelia aurita (L.)

    DEFF Research Database (Denmark)

    Hansson, L.J.

    2006-01-01

    , predation rate can be calculated as increase in gut content over time. Clearance rates for different prey can be calculated from predation rates and prey concentrations in the water, allowing accurate estimates of prey selectivity. Thus, the problem of unknown feeding history and feeding environment, which...... of a specific individual plankton predator in situ.After prey has been evacuated from the gut of an individual predator, the predator is incubated in situ, and observed by SCUBA-divers who recapture the individual after a defined time. Given that this incubation time is shorter than prey digestion time...... among individual jellyfish and among the various oral arms and gastric pouches within individuals. Clearance rates varied strongly with prey type. The medusae selected large crustacean prey (cladocerans and copepods/copepodites) over echinoderm larvae and copepod nauplii. Prey distribution within...

  7. Variation in relative growth rate and growth traits in wild and cultivated Capsicum accessions grown under different temperatures

    NARCIS (Netherlands)

    Swart, de E.A.M.; Marcelis, L.F.M.; Voorrips, R.E.

    2006-01-01

    Differences in environmental conditions are known to influence plant growth and growth-related traits. The aim of this study was to identify the variation in relative growth rate (RGR), and its underlying physiological and morphological traits, in a group of ten wild and cultivated Capsicum

  8. Coral growth rates revisited after 31 years: what is causing lower extension rates in Acropora palmata?

    NARCIS (Netherlands)

    Bak, R.P.M.; Nieuwland, G.; Meesters, H.W.G.

    2009-01-01

    Linear extension of branches in the same Acropora palmata (Lamarck, 1816) population in Curaçao was measured, employing exactly the same methods, in 1971-1973 and in 2002-2004, and the resulting coral growth rates are compared. Linear growth shows the same pattern over seasons in both periods with

  9. In situ reproduction, abundance, and growth of young-of-year and adult largemouth bass in a population exposed to polychlorinated biphenyls.

    Science.gov (United States)

    Reiser, Dudley W; Greenberg, Emily S; Helser, Thomas E; Branton, Margaret; Jenkins, Kenneth D

    2004-07-01

    We conducted a two-year field study (2000-2001) in the Housatonic River, Massachusetts (USA) to determine if we could detect in situ population-level effects on largemouth bass (Micropterus salmoides) exposed to elevated levels of polychlorinated biphenyls (PCBs). Calculated whole-body PCB concentrations in adult bass in 2002 averaged 121 mg/kg (range = 34-556 mg/kg). Polychlorinated biphenyl concentrations in young-of-year (YOY) composites in 2000 and 2002 averaged 28 mg/kg (range = 21-41 mg/kg) and 19 mg/kg (range = 16-24 mg/kg), respectively. Laboratory studies of fish have reported PCB toxicity at exposure levels below and within the range of those found in the Housatonic River. We evaluated five field-derived metrics: reproductive activity, relative abundance of YOY, YOY growth rates, adult growth, and adult condition to determine whether we could detect effects of PCBs in the largemouth bass population. These computed metrics, when compared with data sets assembled for numerous largemouth bass populations in North America, provided no evidence of population-level impairment. Results of this study suggest that PCB tissue concentrations associated with effects in laboratory studies do not necessarily translate to detectable effects on largemouth bass populations in their natural environment.

  10. InGaN nanocolumn growth self-induced by in-situ annealing and ion irradiation during growth process with molecular beam epitaxy method

    Science.gov (United States)

    Xue, Junjun; Cai, Qing; Zhang, Baohua; Ge, Mei; Chen, Dunjun; Zheng, Jianguo; Zhi, Ting; Tao, Zhikuo; Chen, Jiangwei; Wang, Lianhui; Zhang, Rong; Zheng, Youdou

    2017-11-01

    Incubation and shape transition are considered as two essential processes for nucleating of self-assembly InGaN nanocolumns (NCs) in traditional way. We propose a new approach for nuclei forming directly by in-situ annealing and ion irradiating the InGaN template during growing process. The nanoislands, considered as the nuclei of NCs, were formed by a combinational effect of thermal and ion etching (TIE), which made the gaps of the V-pits deeper and wider. On account of the decomposition of InGaN during TIE process, more nitride-rich amorphous alloys would intent to accumulate in the corroded V-pits. The amorphous alloys played a key role to promote the following growth from 2D regime into Volmer-Weber growth regime so that the NC morphology took place, rather than a compact film. As growth continued, the subsequently epitaxial InGaN alloys on the annealed NC nuclei were suffered in biaxial compressive stress for losing part of indium content from the NC nuclei during the TIE process. Strain relaxation, accompanied by thread dislocations, came up and made the lattice planes misoriented, which prevented the NCs from coalescence into a compact film at later period of growing.

  11. Efficient in situ growth of enzyme-inorganic hybrids on paper strips for the visual detection of glucose.

    Science.gov (United States)

    Li, WanYun; Lu, ShiYu; Bao, ShuJuan; Shi, ZhuanZhuan; Lu, Zhisong; Li, ChangMing; Yu, Ling

    2018-01-15

    A visual colorimetric microfluidic paper-based analytical device (μPAD) was constructed following the direct synthesis of enzyme-inorganic hybrid nanomaterials on the paper matrix. An inorganic solution of MnSO 4 and KH 2 PO 4 containing a diluted enzyme (glucose oxidase, GOx) was subsequently pipetted onto cellulose paper for the in situ growth of GOx@Mn 3 (PO 4 ) 2 hybrid functional materials. The characterization of the morphology and chemical composition validated the presence of hybrid materials roots in the paper fiber, while the Mn 3 (PO 4 ) 2 of the hybrid provided both a surface for enzyme anchoring and a higher peroxidase-like catalytic activity as compared to the Mn 3 (PO 4 ) 2 crystal that was synthesized without enzyme modulation. This new approach for the in situ growth of an enzyme-inorganic hybrid on a paper matrix eliminates centrifugation and the dry process by casting the solution on paper. The sensing material loading was highly reproducible because of the accuracy and stability of pipetting, which eventually contributed to the reliability of the μPAD. The self-assembled natural and artificial enzyme hybrid on the μPADs specifically detected glucose from a group of interferences, which shows great specificity using this method. Moreover, the colorimetric signal exhibited detection limitation for glucose is 0.01mM, which lies in the physiological range of glucose in biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Optimal tax rate and economic growth. Evidence from Nigeria and South Africa

    Directory of Open Access Journals (Sweden)

    Olufemi Muibi SAIBU

    2015-05-01

    Full Text Available The recent economic crisis had made developing countries to look inward for financial resources to finance development. The readily alternative is the tax revenues however, the possible adverse direct and indirect effects of tax on productivity and work efforts as well as on aggregate consumption had make some African countries (especially Nigeria and South Africa reluctant in implementing far reaching tax policy reform. This paper examines optimal tax burden and real output growth Nigeria and South Africa, two of the top four economies in Africa. The paper empirically determined what should be the optimal tax rate for Nigeria and South Africa-the two leading economies in Africa. The paper found that nonlinearity hypothesis in the effects of tax in the case of South Africa is rejected while a significant nonlinear relationship is found in the case of Nigeria. The results suggest that the growth-maximizing tax rate is about 15% of per capita GDP for South Africa and 30% for Nigeria. At that tax rate, the economic growth rate would be around 6% and 8% instead of the actual mean growth rate of 2.84% and 4.51% for South Africa and Nigeria respectively. The paper concluded the current tax burden in the two countries may be sub-optimal and may hurt long term sustainable growth process in the two countries

  13. The evaluation system of city's smart growth success rates

    Science.gov (United States)

    Huang, Yifan

    2018-04-01

    "Smart growth" is to pursue the best integrated perform+-ance of the Economically prosperous, socially Equitable, and Environmentally Sustainable(3E). Firstly, we establish the smart growth evaluation system(SGI) and the sustainable development evaluation system(SDI). Based on the ten principles and the definition of three E's of sustainability. B y using the Z-score method and the principal component analysis method, we evaluate and quantify indexes synthetically. Then we define the success of smart growth as the ratio of the SDI to the SGI composite score growth rate (SSG). After that we select two cities — Canberra and Durres as the objects of our model in view of the model. Based on the development plans and key data of these two cities, we can figure out the success of smart growth. And according to our model, we adjust some of the growth indicators for both cities. Then observe the results before and after adjustment, and finally verify the accuracy of the model.

  14. In-situ metrology in multiwafer reactors during MOVPE of AIN-based UV-LEDs (Conference Presentation)

    Science.gov (United States)

    Knauer, Arne; Brunner, Frank; Kolbe, Tim; Hagedorn, Sylvia; Kueller, Viola; Weyers, Markus

    2017-02-01

    UV-LEDs are of great interest for applications like disinfection, gas sensing, and phototherapy. The cost sensitive LEDs are commonly grown by MOVPE on transparent AlN/sapphire templates. The large thermal and lattice mismatch between AlN and sapphire generates a very high dislocation density (DD) and causes big challenges in strain management. The threading dislocation density should be reduced to the order of low 108cm-2 for high internal efficiency of the AlGaN based UV-LED structures. The TDD will be reduced mainly by dislocation annihilation during the growth of thick Al(Ga)N layers, which is a challenge in terms of strain management. We present how in-situ reflectometry and curvature measurement (EpiCurveTT(at)LayTec) in commercial multiwafer growth reactors helps to optimize the growth processes concerning growth rates, surface roughening and avoidance of layer cracking on 2inch substrates and enhance the reproducibility of epitaxial growth. The growth of up to 3 μm thick planar AlN templates and up-to 10 μm thick AlN/sapphire templates by epitaxial lateral overgrowth of stripe patterned templates for UV-C LED structures will be highlighted. The implementation of different types of AlN/GaN superlattices for the subsequent growth of up to 5μm thick Al0.5Ga0.5N layer for UVB LED structures will be shown. Correlations to ex-situ measurements like X-ray diffraction and TEM analysis of defects in the LED structures will be shown. Some challenges of in-situ control through very narrow viewports as in Close Coupled Showerhead reactors will be discussed as well as the influence of silicon doping on curvature and dislocation density in Al(Ga)N layers.

  15. Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Regenberg, Birgitte; Grotkjær, Thomas; Winther, Ole

    2006-01-01

    Growth rate is central to the development of cells in all organisms. However, little is known about the impact of changing growth rates. We used continuous cultures to control growth rate and studied the transcriptional program of the model eukaryote Saccharomyces cerevisiae, with generation time...

  16. Growth Rates and Mechanisms of Magmatic Orbicule Formation: Insights from Calcium Isotopes

    Science.gov (United States)

    Antonelli, M. A.; Watkins, J. M.; DePaolo, D. J.

    2017-12-01

    Orbicular diorites and granites are rare plutonic rock textures that remain enigmatic despite a century of study. Orbicules consist of a rounded core (xenolith, xenocryst, or autolith) surrounded by a variable number of concentric rings defined by different modal mineralogies and textures. Recent work suggests that the alternating layers of mineral growth are a consequence of either changes in external conditions of the magma (e.g. temperature, magma composition due to mixing, changes in volatile abundances), or rapid growth of one mineral phase (e.g plagioclase) creating a depleted boundary layer that then promotes precipitation of an alternative mineral phase (e.g. pyroxene). This process can be repeated to produce multiple layers. The rates at which orbicules grow is also of interest and relates to the mechanisms. Studies of orbicular diorites from the northern Sierra Nevada suggest exceptionally high growth rates (McCarthy et al., 2016). Ca isotopes can offer a unique perspective on orbicule formation, as diffusive isotope fractionation should be substantial when growth rates are high, and they are also sensitive to the nature of the growth medium (silicate liquid or supercritical fluid phase). We present δ44Ca measurements and chemistry for a transect of a dioritic orbicule collected from Emerald Lake, California (Sierra Nevada), where the growth layers are defined by variations in plagioclase/pyroxene ratio, grain size, and texture. Ca concentration varies from 5-13 wt%, and d44Ca values oscillate between -0.5 to 0.0‰ relative to BSE, correlating with changes in mineralogy and texture. Zones of plagioclase comb texture are associated with negative δ44Ca excursions of -0.2 to -0.4‰, consistent with diffusive isotope fractionation during rapid mineral growth. Assuming a 10‰ difference in diffusivity for 44Ca vs. 40Ca in dioritic liquids (Watson et al., 2016), and using the models of Watson and Muller (2009) as a guide, these small fractionations

  17. Growth rate distribution in the forming lateral root of arabidopsis.

    Science.gov (United States)

    Szymanowska-Pułka, Joanna; Lipowczan, Marcin

    2014-10-01

    Microscopic observations of lateral roots (LRs) in Arabidopsis thaliana reveal that the cross-sectional shape of the organ changes from its basal to its apical region. The founder cells for LRs are elongated along the parent root axis, and thus from the site of initiation the base of LRs resemble an ellipse. The circumference of the apical part of LRs is usually a circle. The objective of this study was to analyse the characteristics of changes in the growth field of LRs possessing various shapes in their basal regions. The LRs of the wild type (Col-0) and two transgenic arabidopsis lines were analysed. On the basis of measurements of the long and short diameters (DL and DS, respectively) of the ellipse-like figure representing the bases of particular LRs, their asymmetry ratios (DL/DS) were determined. Possible differences between accessions were analysed by applying statistical methods. No significant differences between accessions were detected. Comparisons were therefore made of the maximal, minimal and mean value of the ratio of all the LRs analysed. Taking into consideration the lack of circular symmetry of the basal part, rates of growth were determined at selected points on the surface of LRs by the application of the growth tensor method, a mathematical tool previously applied only to describe organs with rotational symmetry. Maps showing the distribution of growth rates were developed for surfaces of LRs of various asymmetry ratios. The maps of growth rates on the surfaces of LRs having various shapes of the basal part show differences in both the geometry and the manner of growth, thus indicating that the manner of growth of the LR primordium is correlated to its shape. This is the first report of a description of growth of an asymmetric plant organ using the growth tensor method. The mathematical modelling adopted in the study provides new insights into plant organ formation and shape. © The Author 2014. Published by Oxford University Press on

  18. Wavelength dependence of the linear growth rate of the Es layer instability

    Directory of Open Access Journals (Sweden)

    R. B. Cosgrove

    2007-06-01

    Full Text Available It has recently been shown, by computation of the linear growth rate, that midlatitude sporadic-E (Es layers are subject to a large scale electrodynamic instability. This instability is a logical candidate to explain certain frontal structuring events, and polarization electric fields, which have been observed in Es layers by ionosondes, by coherent scatter radars, and by rockets. However, the original growth rate derivation assumed an infinitely thin Es layer, and therefore did not address the short wavelength cutoff. Also, the same derivation ignored the effects of F region loading, which is a significant wavelength dependent effect. Herein is given a generalized derivation that remedies both these short comings, and thereby allows a computation of the wavelength dependence of the linear growth rate, as well as computations of various threshold conditions. The wavelength dependence of the linear growth rate is compared with observed periodicities, and the role of the zeroth order meridional wind is explored. A three-dimensional paper model is used to explain the instability geometry, which has been defined formally in previous works.

  19. Slow growth rates of Amazonian trees: Consequences for carbon cycling

    Science.gov (United States)

    Vieira, Simone; Trumbore, Susan; Camargo, Plinio B.; Selhorst, Diogo; Chambers, Jeffrey Q.; Higuchi, Niro; Martinelli, Luiz Antonio

    2005-01-01

    Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only ≈1mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests. PMID:16339903

  20. Stress corrosion crack growth rate in dissimilar metal welds

    International Nuclear Information System (INIS)

    Fernandez, M. P.; Lapena, J.; Lancha, A. M.; Perosanz, F. J.; Navas, M.

    2000-01-01

    Dissimilar welds, used to join different sections in light water reactors, are potentially susceptible to stress corrosion cracking (SCC) in aqueous mediums characteristic of nuclear plants. However, the study of these The ma has been limited to evaluating the weld material susceptibility in these mediums. Little scarce data are available on crack growth rates due, fundamentally, to inadequate testing techniques. In order to address this lack of information the crack growth rate at the interface of ferritic SA 533 B-1 alloy and alloy I-82, in a dissimilar weld (SA533B-1/I-82/316L), was studied. Experiments were conducted in water at 288 degree centigrade, 8 ppm of O 2 and 1 μS/cm conductivity. (Author) 33 refs

  1. In-situ synchrotron PXRD study of spinel LiMn2O4 formation

    DEFF Research Database (Denmark)

    Birgisson, Steinar; Jensen, Kirsten Marie Ørnsbjerg; Christiansen, Troels Lindahl

    structural properties for the reaction being studied. Normally the reactions are started by heating and a constant temperature is kept throughout the experiment. In this study the hydrothermal reaction previously shown to produce spinel LiMn2O4 nanoparticles is studied in-situ to learn more about the phase......O4, depending on the initial concentration if Li-ions. An impurity phase, identified as Mn3O4, is also detected in different concentrations depending on reaction time and temperature. We have developed an experimental technique for in-situ measurements of solvothermal reactions under sub...... in the in-situ measurements it gives a unique opportunity to study reaction kinetics and thermodynamic quantities of the reactions. A temperature study of the reaction has been conducted to see how the formation rate and particle growth is affected by temperature while the precursor concentration is kept...

  2. Air kerma rate estimation by means of in-situ gamma spectrometry: A Bayesian approach

    International Nuclear Information System (INIS)

    Cabal, Gonzalo; Kluson, Jaroslav

    2008-01-01

    Full text: Bayesian inference is used to determine the Air Kerma Rate based on a set of in situ environmental gamma spectra measurements performed with a NaI(Tl) scintillation detector. A natural advantage of such approach is the possibility to quantify uncertainty not only in the Air Kerma Rate estimation but also for the gamma spectra which is unfolded within the procedure. The measurements were performed using a 3'' x 3'' NaI(Tl) scintillation detector. The response matrices of such detection system were calculated using a Monte Carlo code. For the calculations of the spectra as well as the Air Kerma Rate the WinBugs program was used. WinBugs is a dedicated software for Bayesian inference using Monte Carlo Markov chain methods (MCMC). The results of such calculations are shown and compared with other non-Bayesian approachs such as the Scofield-Gold iterative method and the Maximum Entropy Method

  3. Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate.

    Science.gov (United States)

    Lee, T H; Byun, I G; Kim, Y O; Hwang, I S; Park, T J

    2006-01-01

    An in situ measuring system of respiration rate was applied for monitoring biodegradation of diesel fuel in a bioventing process for bioremediation of diesel contaminated soil. Two laboratory-scale soil columns were packed with 5 kg of soil that was artificially contaminated by diesel fuel as final TPH (total petroleum hydrocarbon) concentration of 8,000 mg/kg soil. Nutrient was added to make a relative concentration of C:N:P = 100:10:1. One soil column was operated with continuous venting mode, and the other one with intermittent (6 h venting/6 h rest) venting mode. On-line O2 and CO2 gas measuring system was applied to measure O2 utilisation and CO2 production during biodegradation of diesel for 5 months. Biodegradation rate of TPH was calculated from respiration rate measured by the on-line gas measuring system. There were no apparent differences between calculated biodegradation rates from two columns with different venting modes. The variation of biodegradation rates corresponded well with trend of the remaining TPH concentrations comparing other biodegradation indicators, such as C17/pristane and C18/phytane ratio, dehydrogenase activity, and the ratio of hydrocarbon utilising bacteria to total heterotrophic bacteria. These results suggested that the on-line measuring system of respiration rate would be applied to monitoring biodegradation rate and to determine the potential applicability of bioventing process for bioremediation of oil contaminated soil.

  4. Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten

    International Nuclear Information System (INIS)

    Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; Voter, Arthur Ford

    2016-01-01

    Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 10"6 to 10"1"2 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structure around the bubble.

  5. Growth rates of important East African montane forest trees, with ...

    African Journals Online (AJOL)

    These trees showed growth rates at least twice as high as those of the primary species. Juniperus procera was found to be the fastest growing species in the cedar forest, underlining its success in forming dense stands after a fire. Only young Podocarpus latifolius showed a similar fast growth. Olea europaea ssp. cuspidata, ...

  6. Relationships between coastal bacterioplankton growth rates and biomass production: comparison of leucine and thymidine uptake with single-cell physiological characteristics.

    Science.gov (United States)

    Franco-Vidal, Leticia; Morán, Xosé Anxelu G

    2011-02-01

    Specific growth rates of heterotrophic bacterioplankton have been frequently estimated from in situ bacterial production (BP) to biomass (BB) ratios, using a series of assumptions that may result in serious discrepancies with values obtained from predator-free cultures. Here, we used both types of approaches together with a comprehensive assessment of single-cell physiological characteristics (membrane integrity, nucleic acid content, and active respiration) of coastal bacterioplankton during a complete annual cycle (February 2007-January 2008) in the southern Bay of Biscay off Xixón, Spain. Both leucine and thymidine incorporation rates were used in conjunction with empirical tracer to carbon or cells conversion factors (eCFs) to accurately derive BP. Leu and TdR incorporation rates covaried year-round, as did the corresponding eCFs at 0 and 50 m depth. eCFs peaked in autumn, with mean annual values close to the theoretical ones (3.4 kg C mol Leu(-1) and 2.0 × 10(18) cells mol TdR(-1)). Bacterial abundance (0.2-1.5 × 10(6) cells L(-1)) showed a bimodal distribution with maxima in May and October and minima in March. Live (membrane-intact) cells dominated year-round (79-97%), with high nucleic acid cells (42-88%) and actively respiring bacteria (CTC+, 1-16%) showing distinct surface maxima in April and July, respectively. BB (557-1,558 mg C m(-2)) and BP (7-139 mg C m(-2) day(-1)) presented two distinct peaks in spring and autumn, both of similar size due to a strong upwelling event observed in September. Specific growth rates (0.35-3.8 day(-1)) were one order of magnitude higher in predator-free incubations than bacterial turnover rates derived from integrated BP:BB ratios (0.01-0.16 and 0.01-0.09 day(-1), for Leu and TdR, respectively) and were not correlated, probably due to a significant contribution of low activity cells to total standing stocks. The Leu:TdR molar ratio averaged for the water column (6.6-25.5) decreased significantly with higher integrated

  7. SCC crack growth rate of cold worked 316L stainless steel in PWR environment

    Science.gov (United States)

    Du, Donghai; Chen, Kai; Yu, Lun; lu, Hui; Zhang, Lefu; Shi, Xiuqiang; Xu, Xuelian

    2015-01-01

    Many component failures in nuclear power plants were found to be caused by stress corrosion cracking (SCC) of cold worked austenitic steels. Some of the pressure boundary component materials are even cold worked up to 35% plastic deformation, leaving high residual stress and inducing high growth rate of corrosion crack. Controlling water chemistry is one of the best counter measure to mitigate this problem. In this work, the effects of temperature (200 up to 325 °C) and dissolved oxygen (0 up to 2000 μg/L) on SCC crack growth rates of cold worked austenitic stainless steel type 316L have been tested by using direct current potential drop (DCPD) method. The results showed that temperature affected SCC crack growth rates more significantly in oxygenated water than in deaerated water. In argon deaerated water, the crack growth rate exhibited a peak at about 250 °C, which needs further verification. At 325 °C, the SCC crack growth rate increased rapidly with the increase of dissolved oxygen concentration within the range from 0 up to 200 μg/L, while when dissolved oxygen was above 200 μg/L, the crack growth rate followed a shallower dependence on dissolved oxygen concentration.

  8. Sex-based differences in Adelie penguin (Pygoscelis adeliae) chick growth rates.

    Science.gov (United States)

    Jennings, Scott; Varsani, Arvind; Dugger, Catherine; Ballard, Grant; Ainley, David G.

    2016-01-01

    Sexually size-dimorphic species must show some difference between the sexes in growth rate and/or length of growing period. Such differences in growth parameters can cause the sexes to be impacted by environmental variability in different ways, and understanding these differences allows a better understanding of patterns in productivity between individuals and populations. We investigated differences in growth rate and diet between male and female Adélie Penguin (Pygoscelis adeliae) chicks during two breeding seasons at Cape Crozier, Ross Island, Antarctica. Adélie Penguins are a slightly dimorphic species, with adult males averaging larger than adult females in mass (~11%) as well as bill (~8%) and flipper length (~3%). We measured mass and length of flipper, bill, tibiotarsus, and foot at 5-day intervals for 45 male and 40 female individually-marked chicks. Chick sex was molecularly determined from feathers. We used linear mixed effects models to estimate daily growth rate as a function of chick sex, while controlling for hatching order, brood size, year, and potential variation in breeding quality between pairs of parents. Accounting for season and hatching order, male chicks gained mass an average of 15.6 g d-1 faster than females. Similarly, growth in bill length was faster for males, and the calculated bill size difference at fledging was similar to that observed in adults. There was no evidence for sex-based differences in growth of other morphological features. Adélie diet at Ross Island is composed almost entirely of two species—one krill (Euphausia crystallorophias) and one fish (Pleuragramma antarctica), with fish having a higher caloric value. Using isotopic analyses of feather samples, we also determined that male chicks were fed a higher proportion of fish than female chicks. The related differences in provisioning and growth rates of male and female offspring provides a greater understanding of the ways in which ecological factors may impact

  9. The epidermal growth factor receptor (EGFr) as a target for in situ radiation therapy

    International Nuclear Information System (INIS)

    Vallis, K.A.; Reilly, R.M.

    2003-01-01

    In situ radiation therapy traditionally involves the use of a monoclonal antibody (mAb) directed against a specific tumor-associated antigen and labeled with α-particle emitter such as 131-I. An alternative strategy is to use a low molecular weight peptide rather than a mAb as the carrier molecule. Also, recent evidence shows that radioactive elements that emit Auger electrons may be useful for inducing receptor/cell-specific cytotoxicity. Auger electrons provide low energy emissions (<10-20 keV). Although they have a short range in tissue (a few mm), Auger electrons have a high rate of energy deposition that is comparable to high linear energy transfer radiation such as -particles. Human epidermal growth factor (hEGF) is a natural peptide ligand for EGFr, which is frequently overexpressed in breast cancer. EGF is rapidly internalized and translocated to the cell nucleus following binding to EGFr. We are developing a strategy of EGF conjugated to an Auger electron-emitting radionuclide, 111-In, as a treatment for EGFr-overexpressing breast cancers. This strategy has several advantages over the mAb approach, as EGF is an endogenous peptide and should not be immunogenic. Also, its small molecular size should facilitate extravasation and tumor penetration. We have shown that 111In-hEGF is highly and selectively radiotoxic to MDA-MB-468 human breast cancer cells overexpressing EGFr but was not radiotoxic to MCF-7 breast cancer cells with a 100-fold lower level of EGFr expression. We have also demonstrated that 111-In-hEGF was greater than 80-fold more potent on a molar concentration basis at inhibiting the growth of MDA-MB-468 breast cancer cells than paclitaxel (IC50 70 pM vs. 6 nM respectively) and greater than 400-fold more potent than doxorubicin (IC50 20 nM). We have evaluated the therapeutic efficacy of 111-In-hEGF in athymic mice implanted subcutaneously with MDA-MB-468 breast cancer xenografts. Tumour growth was strongly inhibited following administration of

  10. Age, growth rate, and otolith growth of polar cod (Boreogadus saida in two fjords of Svalbard, Kongsfjorden and Rijpfjorden

    Directory of Open Access Journals (Sweden)

    Dariusz P. Fey

    2017-10-01

    Full Text Available This work presents biological information for polar cod (Boreogadus saida collected with a Campelen 1800 shrimp bottom trawl in Kongsfjorden (two stations located in the inner part of the fjord adjacent to the glacier and Rijpfjorden (one station at the entrance to the fjord in September and October 2013. The otolith-based ages of polar cod collected in Kongsfjorden (6.1–24 cm total length TL; n = 813 ranged from 0 to 4 years. The growth rate was relatively constant at approximately 4.7 cm year−1 between years 1 and 4, which indicates that growth was fast in the glacier area. The ages of polar cod collected in Rijpfjorden (8.6–15.9 cm TL; n = 64 ranged from 2 to 3 years. The fish from Rijpfjorden were smaller at age than those from Kongsfjorden, and their growth rate between years 2 and 3 (no other age classes were available was approximately 3.3 cm year−1. In both fjords, males and females were of the same size-at-age and the same weight-at-TL. The small sampling area means that the results on growth rate are not representative of the entire fjords. Instead, the results can be discussed as presenting the possible growth rates of some populations. A strong relationship was identified between otolith size (length and weight and fish size (TL and TW, with no differences between males and females or the fjords. A significant, strong relationship was also noted between fish and otolith growth rates.

  11. Effect of diffusion from a lateral surface on the rate of GaN nanowire growth

    International Nuclear Information System (INIS)

    Sibirev, N. V.; Tchernycheva, M.; Cirlin, G. E.; Patriarche, G.; Harmand, J. C.; Dubrovskii, V. G.

    2012-01-01

    The kinetics of the growth of GaN crystalline nanowires on a Si (111) surface with no catalyst is studied experimentally and theoretically. Noncatalytic GaN nanowires were grown by molecular-beam epitaxy with AlN inserts, which makes it possible to determine the rate of the vertical growth of nanowires. A model for the formation of GaN nanowires is developed, and an expression for their rate of growth is derived. It is shown that, in the general case, the dependence of the rate of growth on the nanowire diameter has a minimum. The diameter corresponding to the experimentally observed minimum of the rate of growth steadily increases with increasing diffusion flux from the lateral surface.

  12. Mechanisms promoting higher growth rate in arctic than in temperate shorebirds

    NARCIS (Netherlands)

    Schekkerman, H.; Tulp, I.Y.M.; Piersma, T.; Visser, G.H.

    2003-01-01

    We compared prefledging growth, energy expenditure, and time budgets in the arctic-breeding red knot (Calidris canutus) to those in temperate shorebirds, to investigate how arctic chicks achieve a high growth rate despite energetic difficulties associated with precocial development in a cold

  13. Mechanisms promoting higher growth rate in arctic than in temperate shorebirds

    NARCIS (Netherlands)

    Schekkerman, H; Tulp, Ingrid; Piersma, T.; Visser, G.H.

    We compared prefledging growth, energy expenditure, and time budgets in the arctic-breeding red knot (Calidris canutus) to those in temperate shorebirds, to investigate how arctic chicks achieve a high growth rate despite energetic difficulties associated with precocial development in a cold

  14. Monitoring dynamic electrochemical processes with in situ ptychography

    Science.gov (United States)

    Kourousias, George; Bozzini, Benedetto; Jones, Michael W. M.; Van Riessen, Grant A.; Dal Zilio, Simone; Billè, Fulvio; Kiskinova, Maya; Gianoncelli, Alessandra

    2018-03-01

    The present work reports novel soft X-ray Fresnel CDI ptychography results, demonstrating the potential of this method for dynamic in situ studies. Specifically, in situ ptychography experiments explored the electrochemical fabrication of Co-doped Mn-oxide/polypyrrole nanocomposites for sustainable and cost-effective fuel-cell air-electrodes. Oxygen-reduction catalysts based on Mn-oxides exhibit relatively high activity, but poor durability: doping with Co has been shown to improve both reduction rate and stability. In this study, we examine the chemical state distribution of the catalytically crucial Co dopant to elucidate details of the Co dopant incorporation into the Mn/polymer matrix. The measurements were performed using a custom-made three-electrode thin-layer microcell, developed at the TwinMic beamline of Elettra Synchrotron during a series of experiments that were continued at the SXRI beamline of the Australian Synchrotron. Our time-resolved ptychography-based investigation was carried out in situ after two representative growth steps, controlled by electrochemical bias. In addition to the observation of morphological changes, we retrieved the spectroscopic information, provided by multiple ptychographic energy scans across Co L3-edge, shedding light on the doping mechanism and demonstrating a general approach for the molecular-level investigation complex multimaterial electrodeposition processes.

  15. Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic

    Science.gov (United States)

    Bjorndal, Karen A.; Bolten, Alan B.; Chaloupka, Milani; Saba, Vincent S.; Bellini, Cláudio; Marcovaldi, Maria A.G.; Santos, Armando J.B.; Bortolon, Luis Felipe Wurdig; Meylan, Anne B.; Meylan, Peter A.; Gray, Jennifer; Hardy, Robert; Brost, Beth; Bresette, Michael; Gorham, Jonathan C.; Connett, Stephen; Crouchley, Barbara Van Sciver; Dawson, Mike; Hayes, Deborah; Diez, Carlos E.; van Dam, Robert P.; Willis, Sue; Nava, Mabel; Hart, Kristen M.; Cherkiss, Michael S.; Crowder, Andrew; Pollock, Clayton; Hillis-Starr, Zandy; Muñoz Tenería, Fernando A.; Herrera-Pavón, Roberto; Labrada-Martagón, Vanessa; Lorences, Armando; Negrete-Philippe, Ana; Lamont, Margaret M.; Foley, Allen M.; Bailey, Rhonda; Carthy, Raymond R.; Scarpino, Russell; McMichael, Erin; Provancha, Jane A.; Brooks, Annabelle; Jardim, Adriana; López-Mendilaharsu, Milagros; González-Paredes, Daniel; Estrades, Andrés; Fallabrino, Alejandro; Martínez-Souza, Gustavo; Vélez-Rubio, Gabriela M.; Boulon, Ralf H.; Collazo, Jaime; Wershoven, Robert; Hernández, Vicente Guzmán; Stringell, Thomas B.; Sanghera, Amdeep; Richardson, Peter B.; Broderick, Annette C.; Phillips, Quinton; Calosso, Marta C.; Claydon, John A.B.; Metz, Tasha L.; Gordon, Amanda L.; Landry, Andre M.; Shaver, Donna J.; Blumenthal, Janice; Collyer, Lucy; Godley, Brendan J.; McGowan, Andrew; Witt, Matthew J.; Campbell, Cathi L.; Lagueux, Cynthia J.; Bethel, Thomas L.; Kenyon, Lory

    2017-01-01

    Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles – hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta – exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO) – the strongest on record – combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -0.94) and the Multivariate ENSO Index (MEI) for all years (r = 0.74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study

  16. Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic.

    Science.gov (United States)

    Bjorndal, Karen A; Bolten, Alan B; Chaloupka, Milani; Saba, Vincent S; Bellini, Cláudio; Marcovaldi, Maria A G; Santos, Armando J B; Bortolon, Luis Felipe Wurdig; Meylan, Anne B; Meylan, Peter A; Gray, Jennifer; Hardy, Robert; Brost, Beth; Bresette, Michael; Gorham, Jonathan C; Connett, Stephen; Crouchley, Barbara Van Sciver; Dawson, Mike; Hayes, Deborah; Diez, Carlos E; van Dam, Robert P; Willis, Sue; Nava, Mabel; Hart, Kristen M; Cherkiss, Michael S; Crowder, Andrew G; Pollock, Clayton; Hillis-Starr, Zandy; Muñoz Tenería, Fernando A; Herrera-Pavón, Roberto; Labrada-Martagón, Vanessa; Lorences, Armando; Negrete-Philippe, Ana; Lamont, Margaret M; Foley, Allen M; Bailey, Rhonda; Carthy, Raymond R; Scarpino, Russell; McMichael, Erin; Provancha, Jane A; Brooks, Annabelle; Jardim, Adriana; López-Mendilaharsu, Milagros; González-Paredes, Daniel; Estrades, Andrés; Fallabrino, Alejandro; Martínez-Souza, Gustavo; Vélez-Rubio, Gabriela M; Boulon, Ralf H; Collazo, Jaime A; Wershoven, Robert; Guzmán Hernández, Vicente; Stringell, Thomas B; Sanghera, Amdeep; Richardson, Peter B; Broderick, Annette C; Phillips, Quinton; Calosso, Marta; Claydon, John A B; Metz, Tasha L; Gordon, Amanda L; Landry, Andre M; Shaver, Donna J; Blumenthal, Janice; Collyer, Lucy; Godley, Brendan J; McGowan, Andrew; Witt, Matthew J; Campbell, Cathi L; Lagueux, Cynthia J; Bethel, Thomas L; Kenyon, Lory

    2017-11-01

    Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles-hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta-exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO)-the strongest on record-combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -.94) and the Multivariate ENSO Index (MEI) for all years (r = .74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study demonstrates the

  17. Linear Stability of Binary Alloy Solidification for Unsteady Growth Rates

    Science.gov (United States)

    Mazuruk, K.; Volz, M. P.

    2010-01-01

    An extension of the Mullins and Sekerka (MS) linear stability analysis to the unsteady growth rate case is considered for dilute binary alloys. In particular, the stability of the planar interface during the initial solidification transient is studied in detail numerically. The rapid solidification case, when the system is traversing through the unstable region defined by the MS criterion, has also been treated. It has been observed that the onset of instability is quite accurately defined by the "quasi-stationary MS criterion", when the growth rate and other process parameters are taken as constants at a particular time of the growth process. A singular behavior of the governing equations for the perturbed quantities at the constitutional supercooling demarcation line has been observed. However, when the solidification process, during its transient, crosses this demarcation line, a planar interface is stable according to the linear analysis performed.

  18. Extending the durability of cultivar resistance by limiting epidemic growth rates.

    Science.gov (United States)

    Carolan, Kevin; Helps, Joe; van den Berg, Femke; Bain, Ruairidh; Paveley, Neil; van den Bosch, Frank

    2017-09-27

    Cultivar resistance is an essential part of disease control programmes in many agricultural systems. The use of resistant cultivars applies a selection pressure on pathogen populations for the evolution of virulence, resulting in loss of disease control. Various techniques for the deployment of host resistance genes have been proposed to reduce the selection for virulence, but these are often difficult to apply in practice. We present a general technique to maintain the effectiveness of cultivar resistance. Derived from classical population genetics theory; any factor that reduces the population growth rates of both the virulent and avirulent strains will reduce selection. We model the specific example of fungicide application to reduce the growth rates of virulent and avirulent strains of a pathogen, demonstrating that appropriate use of fungicides reduces selection for virulence, prolonging cultivar resistance. This specific example of chemical control illustrates a general principle for the development of techniques to manage the evolution of virulence by slowing epidemic growth rates. © 2017 The Author(s).

  19. Causality Relationship Between Import, Export and Growth Rate in Developing Countries

    Directory of Open Access Journals (Sweden)

    Serhat YUKSEL

    2017-06-01

    Full Text Available In this paper, we tried to determine the relationship between imports, exports and growth rate in developing countries. Within this scope, 6 developing countries (Argentina, Brazil, China, Malaysia, Mexico and Turkey were analyzed in this study. In order to achieve this purpose, annual data for the periods between 1961 and 2014 was tested by using Engle Granger co-integration analysis, Vector Error Correction Model and Toda Yamamoto causality analysis. According to the result of the analysis, it was determined that there is not any relationship among three variables in Brazil and Mexico. On the other hand, we defined that increase in export causes higher growth rate in Argentina. Moreover, it was concluded that there is a causal relationship from import to export in China and Turkey. Furthermore, it was determined that export causes higher import in Malaysia. Therefore, it can be concluded that the relationship between import, export and growth rate is not same for all developing countries..

  20. Population growth, interest rate, and housing tax in the transitional China

    Science.gov (United States)

    He, Ling-Yun; Wen, Xing-Chun

    2017-03-01

    This paper combines and develops the models in Lastrapes (2002) and Mankiw and Weil (1989), which enables us to analyze the effects of interest rate and population growth shocks on housing price in one integrated framework. Based on this model, we carry out policy simulations to examine whether the housing (stock or flow) tax reduces the housing price fluctuations caused by interest rate or population growth shocks. Simulation results imply that the choice of housing tax tools depends on the kind of shock that housing market faces. In the situation where the housing price volatility is caused by the population growth shock, the flow tax can reduce the volatility of housing price while the stock tax makes no difference to it. If the shock is resulting from the interest rate, the policy maker should not impose any kind of the housing taxes. Furthermore, the effect of one kind of the housing tax can be strengthened by that of the other type of housing tax.

  1. In situ method for measurements of community clearance rate on shallow water bivalve populations

    DEFF Research Database (Denmark)

    Hansen, Benni W.; Dolmer, Per; Vismann, Bent

    2011-01-01

    An open-top chamber was designed for measuring ambient community clearance rate on undisturbed bivalve populations in the field. The chamber was pressed 5-10 cm down in the sediment on the mussel bed. It holds approximately 30-40 cm water column equal to a volume of 43-77 L. It was provided...... with an air lift connected to a SCUBA diver pressure tank generating a continuous and gentle water circulation. This ensures a complete mixture of suspended particles, and thereby, a maximum filtration by the bivalves. An in situ fluorometer was mounted to record plant pigment reduction due to mussel...

  2. Regeneration and growth rates of allofragments in four common stream plants

    DEFF Research Database (Denmark)

    Riis, Tenna; Madsen, Tom Vindbæk; Sennels, R. S. H.

    2009-01-01

    perfoliatus L. and Ranunculus baudotii x pseudofluitans. The objectives of this study were to determine (1) if shoots with an apical tip have higher regeneration (growth of new shoots and rhizomes from allofragments) and colonisation (root attachment in sediment) abilities and higher relative growth rates...

  3. Growth rates of rhizosphere microorganisms depend on competitive abilities of plants for nitrogen

    Science.gov (United States)

    Blagodatskaya, Evgenia; Littschwager, Johanna; Lauerer, Marianna; Kuzyakov, Yakov

    2010-05-01

    Rhizosphere - one of the most important ‘hot spots' in soil - is characterized not only by accelerated turnover of microbial biomass and nutrients but also by strong intra- and inter-specific competition. Intra-specific competition occurs between individual plants of the same species, while inter-specific competition can occur both at population level (plant species-specific, microbial species-specific interactions) and at community level (plant - microbial interactions). Such plant - microbial interactions are mainly governed by competition for available N sources, since N is one of the main growth limiting nutrients in natural ecosystems. Functional structure and activity of microbial community in rhizosphere is not uniform and is dependent on quantity and quality of root exudates which are plant specific. It is still unclear how microbial growth and turnover in the rhizosphere are dependent on the features and competitive abilities of plants for N. Depending on C and N availability, acceleration and even retardation of microbial activity and carbon mineralization can be expected in the rhizosphere of plants with high competitive abilities for N. We hypothesized slower microbial growth rates in the rhizosphere of plants with smaller roots, as they usually produce less exudates compared to plants with small shoot-to-root ratio. As the first hypothesis is based solely on C availability, we also expected the greater effect of N availability on microbial growth in rhizosphere of plants with smaller root mass. These hypothesis were tested for two plant species of strawberry: Fragaria vesca L. (native species), and Duchesnea indica (Andrews) Focke (an invasive plant in central Europe) growing in intraspecific and interspecific competition. Microbial biomass and the kinetic parameters of microbial growth in the rhizosphere were estimated by dynamics of CO2 emission from the soil amended with glucose and nutrients. Specific growth rate (µ) of soil microorganisms was

  4. Influence of temperature on growth rate and lag phase of fungi isolated from Argentine corn.

    Science.gov (United States)

    González, H H; Resnik, S L; Vaamonde, G

    1988-03-01

    The influence of temperature on the growth of nine strains of fungi belonging to the genera Eurotium, Aspergillus, Penicillium and Fusarium has been investigated for the temperature range 15-35 degrees C. The lag phase and the growth rate were evaluated by using a laboratory medium. The maximum growth rate for E. repens, A. wentii and P. chrysogenum was observed at about 25 degrees C, for P. citrinum near 30 degrees C and for F. semitectum and F. moniliforme between 20 and 25 degrees C. The growth rate of A. niger, A. flavus and A. parasiticus increased with increasing temperatures in the range studied. For all strains studied it appeared that the higher the growth rate the lower the lag phase was.

  5. Sodium Flux Growth of Bulk Gallium Nitride

    Science.gov (United States)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were 1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of GaN from the sodium-gallium melt. Different stages of N2 pressure decay were identified and linked to

  6. The effect of salinity on growth rate and osmolyte concentration of ...

    African Journals Online (AJOL)

    Although at a slower rate, growth is maintained in seawater cultures supplemented with nutrients. Differences were found in carbohydrate content between cultures in different growth media. The highest carbohydrate content was observed in cultures growing in Zarrouk medium supplemented with 4 NaCl and in seawater ...

  7. Comparison of cyanobacterial and green algal growth rates at different temperatures

    NARCIS (Netherlands)

    Lurling, M.; Faassen, E.J.; Kosten, S.; Eshetu, Z.; Huszar, V.M.

    2013-01-01

    1.The hypothesis that cyanobacteria have higher optimum growth temperatures and higher growth rates at the optimum as compared to chlorophytes was tested by running a controlled experiment with eight cyanobacteria species and eight chlorophyte species at six different temperatures (20-35°C) and by

  8. Measurement of fatigue crack growth rate of reactor structural material in air based on DCPD method

    International Nuclear Information System (INIS)

    Du Donghai; Chen Kai; Yu Lun; Zhang Lefu; Shi Xiuqiang; Xu Xuelian

    2014-01-01

    The principles and details of direct current potential drop (DCPD) in monitoring the crack growth of reactor structural materials was introduced in this paper. Based on this method, the fatigue crack growth rate (CGR) of typical structural materials in nuclear power systems was measured. The effects of applied load, load ratio and loading frequency on the fatigue crack growth rate of reactor structural materials were discussed. The result shows that the fatigue crack growth rate of reactor structural materials depends on the hardness of materials, and the harder the material is, the higher the rate of crack growth is. (authors)

  9. Volume doubling time and growth rate of renal cell carcinoma determined by helical CT: a single-institution experience

    International Nuclear Information System (INIS)

    Lee, Ji Young; Kim, Chan Kyo; Choi, Dongil; Park, Byung Kwan

    2008-01-01

    The purpose of this study was to retrospectively evaluate the volume doubling time (VDT) and growth rate of renal cell carcinomas (RCC) on a serial computed tomography (CT) scan. Thirty pathologically proven RCCs were reviewed with helical CT. Each tumor underwent at least two CT scans. Tumor volume was determined using an area measuring tool and the summation-of-areas technique. Growth rate was evaluated in terms of diameter and volume changes. VDT and volume growth rate were compared in relation to several factors (initial diameter, initial volume, diameter growth rate, volume growth rate, tumor grade, tumor subtype, sex or age). Mean VDT of RCCs was 505 days. Mean diameter and volume growth rate were 0.59 cm/year and 19.1 cm 3 /year, respectively. For volume and diameter growth rate, tumors ≤4 cm showed lower rates than those >4 cm (P 0.05). Volume growth rate was moderately to strongly positively correlated with initial diameter, initial volume and diameter growth rate (P < 0.05). In conclusion, small RCCs grew at a slow rate both diametrically and volumetrically. More accurate assessment of tumor growth rate and VDT may be helpful to understand the natural history of RCC. (orig.)

  10. Use of bioreactor landfill for nitrogen removal to enhance methane production through ex situ simultaneous nitrification-denitrification and in situ denitrification.

    Science.gov (United States)

    Sun, Xiaojie; Zhang, Hongxia; Cheng, Zhaowen

    2017-08-01

    High concentrations of nitrate-nitrogen (NO 3 - -N) derived from ex situ nitrification phase can inhibit methane production during ex situ nitrification and in situ denitrification bioreactor landfill. A combined process comprised of ex situ simultaneous nitrification-denitrification (SND) in an aged refuse bioreactor (ARB) and in situ denitrification in a fresh refuse bioreactor (FRB) was conducted to reduce the negative effect of high concentrationsof NO 3 - -N. Ex situ SND can be achieved because NO 3 - -N concentration can be reduced and the removal rate of ammonium-nitrogen (NH 4 + -N) remains largely unchanged when the ventilation rate of ARB-A2 is controlled. The average NO 3 - -N concentrations of effluent were 470mg/L in ex situ nitrification ARB-A1 and 186mg/L in ex situ SND ARB-A2. The average NH 4 + -N removal rates of ARB-A1 and ARB-A2 were 98% and 94%, respectively. Based on the experimental data from week 4 to week 30, it is predicted that NH 4 + -N concentration in FRB-F1 of the ex situ nitrification and in situ denitrification process would reach 25mg/L after 63weeks, and about 40weeks for the FRB-F2 of ex situ SND and in situ denitrification process . Ex situ SND and in situ denitrification process can improve themethane production of FRB-F2. The lag phase time of methane production for the FRB-F2 was 11weeks. This phase was significantly shorter than the 15-week phases of FRB-F1 in ex situ nitrification and in situ denitrification process. A seven-week stabilizationphase was required to increase methane content from 5% to 50% for FRB-F2. Methane content in FRB-F1 did not reach 50% but reached the 45% peak after 20weeks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Exchange-Driven Growth with Birth Rate Less Than Death

    International Nuclear Information System (INIS)

    Lin Zhenquan; Ye Gaoxiang; Ke Jianhong

    2005-01-01

    We further study the kinetic behavior of the exchange-driven growth with birth and death for the case of birth rate kernel being less than that of death based on the mean-field theory. The symmetric exchange rate kernel is K(k,j) = K'(k,j) = Ikj υ , and the birth and death rates are proportional to the aggregate's size. The long time asymptotic behavior of the aggregate size distribution a k (t) is found to obey a much unusual scaling law with an exponentially growing scaling function Φ(x) = exp (x).

  12. The Effect of Growth Temperature and V/III Flux Ratio of MOCVD Antimony Based Semiconductors on Growth Rate and Surface Morphology

    Directory of Open Access Journals (Sweden)

    Ramelan Ari Handono

    2017-01-01

    Full Text Available Epitaxial Alx Ga1-x Sb layers on GaSb and GaAs substrates have been grown by atmospheric pressure metalorganic chemical vapor deposition using TMAl, TMGa and TMSb. Nomarski microscope and a profiler were employed to examine the surface morphology and growth rate of the samples. We report the effect of growth temperature and V/III flux ratio on growth rate and surface morphology. Growth temperatures in the range of 520°C and 680°C and V/III ratios from 1 to 5 have been investigated. A growth rate activation energy of 0.73 eV was found. At low growth temperatures between 520 and 540°C, the surface morphology is poor due to antimonide precipitates associated with incomplete decomposition of the TMSb. For layers grown on GaAs at 580°C and 600°C with a V/III ratio of 3 a high quality surface morphology is typical, with a mirror-like surface and good composition control. It was found that a suitable growth temperature and V/III flux ratio was beneficial for producing good AlGaSb layers. Undoped AlGaSb grown at 580°C with a V/III flux ratio of 3 at the rate of 3.5 μm/hour shows p-type conductivity with smooth surface morphology

  13. Polymorphonuclear leukocytes restrict growth of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients

    DEFF Research Database (Denmark)

    Kragh, Kasper Nørskov; Alhede, Morten; Jensen, Peter Østrup

    2014-01-01

    Cystic fibrosis (CF) patients have increased susceptibility to chronic lung infections by Pseudomonas aeruginosa, but the ecophysiology within the CF lung during infections is poorly understood. The aim of this study was to elucidate the in vivo growth physiology of P. aeruginosa within lungs...... of chronically infected CF patients. A novel, quantitative peptide nucleic acid (PNA) fluorescence in situ hybridization (PNA-FISH)-based method was used to estimate the in vivo growth rates of P. aeruginosa directly in lung tissue samples from CF patients and the growth rates of P. aeruginosa in infected lungs...... in a mouse model. The growth rate of P. aeruginosa within CF lungs did not correlate with the dimensions of bacterial aggregates but showed an inverse correlation to the concentration of polymorphonuclear leukocytes (PMNs) surrounding the bacteria. A growth-limiting effect on P. aeruginosa by PMNs was also...

  14. Reoperation Rates in Ductal Carcinoma In Situ vs Invasive Breast Cancer After Wire-Guided Breast-Conserving Surgery

    DEFF Research Database (Denmark)

    Langhans, Linnea; Jensen, Maj-Britt; Talman, Maj-Lis M

    2017-01-01

    Importance: New techniques for preoperative localization of nonpalpable breast lesions may decrease the reoperation rate in breast-conserving surgery (BCS) compared with rates after surgery with the standard wire-guided localization. However, a valid reoperation rate for this procedure needs...... to be established for comparison, as previous studies on this procedure include a variety of malignant and benign breast lesions. Objectives: To determine the reoperation rate after wire-guided BCS in patients with histologically verified nonpalpable invasive breast cancer (IBC) or ductal carcinoma in situ (DCIS......) and to examine whether the risk of reoperation is associated with DCIS or histologic type of the IBC. Design, Setting, and Participants: This nationwide study including women with histologically verified IBC or DCIS having wire-guided BCS performed between January 1, 2010, and December 31, 2013, used data from...

  15. Influence of water relations and growth rate on plant element uptake and distribution

    International Nuclear Information System (INIS)

    Greger, Maria

    2006-02-01

    Plant uptake of Ni, Sr, Mo, Cs, La, Th, Se, Cl and I was examined to determine how plant water relations and growth rate influence the uptake and distribution of these elements in the studied plants. The specific questions were how water uptake and growth rate influenced the uptake of various nuclides and how transpiration influenced translocation to the shoot. The knowledge gained will be used in future modelling of radionuclide leakage from nuclear waste deposits entering the ecosystem via plants. The plant studied was willow, Salix viminalis, a common plant in the areas suggested for waste disposal; since there can be clone variation, two different clones having different uptake properties for several other heavy metals were used. The plants were grown in nutrient solution and the experiments on 3-month-old plants were run for 3 days. Polyethylene glycol was added to the medium to decrease the water uptake rate, a fan was used to increase the transpiration rate, and different light intensities were used to produce different growth rates. Element concentration was analysed in roots and shoots. The results show that both the uptake and distribution of various elements are influenced in different ways and to various extents by water flow and plant growth rate, and that it is not possible from the chemical properties of these elements to know how they will react. However, in most cases increased growth rate diluted the concentration of the element in the tissue, reduced water uptake reduced the element uptake, while transpiration had no effect on the translocation of elements to the shoot. The clones did not differ in terms of either the uptake or translocation of the elements, except that I was not taken up and translocated to the shoot in one of the clones when the plant water flow or growth rate was too low. Not all of the elements were found in the plant in the same proportions as they had been added to the nutrient solution

  16. Influence of water relations and growth rate on plant element uptake and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria [Stockholm Univ. (Sweden). Dept. of Botany

    2006-02-15

    Plant uptake of Ni, Sr, Mo, Cs, La, Th, Se, Cl and I was examined to determine how plant water relations and growth rate influence the uptake and distribution of these elements in the studied plants. The specific questions were how water uptake and growth rate influenced the uptake of various nuclides and how transpiration influenced translocation to the shoot. The knowledge gained will be used in future modelling of radionuclide leakage from nuclear waste deposits entering the ecosystem via plants. The plant studied was willow, Salix viminalis, a common plant in the areas suggested for waste disposal; since there can be clone variation, two different clones having different uptake properties for several other heavy metals were used. The plants were grown in nutrient solution and the experiments on 3-month-old plants were run for 3 days. Polyethylene glycol was added to the medium to decrease the water uptake rate, a fan was used to increase the transpiration rate, and different light intensities were used to produce different growth rates. Element concentration was analysed in roots and shoots. The results show that both the uptake and distribution of various elements are influenced in different ways and to various extents by water flow and plant growth rate, and that it is not possible from the chemical properties of these elements to know how they will react. However, in most cases increased growth rate diluted the concentration of the element in the tissue, reduced water uptake reduced the element uptake, while transpiration had no effect on the translocation of elements to the shoot. The clones did not differ in terms of either the uptake or translocation of the elements, except that I was not taken up and translocated to the shoot in one of the clones when the plant water flow or growth rate was too low. Not all of the elements were found in the plant in the same proportions as they had been added to the nutrient solution.

  17. The use of Ampelisca abdita growth rate as an indicator of sediment quality

    International Nuclear Information System (INIS)

    Weston, D.P.; Thompson, B.

    1995-01-01

    Acute lethal bioassays with amphipod crustaceans are routinely used to assess toxicity of bulk sediments. A study within the San Francisco Bay Regional Monitoring Program (RMP) is in progress to develop a chronic bioassay with the amphipod Ampelisca abdita, measuring both survivorship and growth rates. This approach is attractive because depression of growth rate is likely to be a more sensitive indicator of toxic effects than acute lethality, and natural populations of A. abdita exist throughout the Bay. Spiked sediment bioassays, using cadmium and crude oil, were used to demonstrate the relative sensitivity of the standard 10-day lethal test vs. the 30-day growth test. Sediments were also collected from 9 sites throughout the Bay, ranging from areas adjacent to municipal wastewater discharges to areas distant from known point source inputs. These samples were then split, and used for side-by-side comparison of acute (lethal) and chronic (growth) toxicity tests. Survivorship exceeded 90% in all tests, including those sediments collected nearest the wastewater outfalls. Growth rates were contrasted among the various treatments to examine the utility of this end point in discriminating the outfall sites. Data on the spatial distribution, abundance, and size-frequency distribution of native populations was examined within the context of using growth rate as an indicator of toxic effects in natural populations as well

  18. Real-time growth study of plasma assisted atomic layer epitaxy of InN films by synchrotron x-ray methods

    Energy Technology Data Exchange (ETDEWEB)

    Nepal, Neeraj [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; Anderson, Virginia R. [American Society for Engineering Education, 1818 N Street NW, Washington, DC 20036; Johnson, Scooter D. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; Downey, Brian P. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; Meyer, David J. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; DeMasi, Alexander [Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215; Robinson, Zachary R. [Department of Physics, SUNY College at Brockport, 350 New Campus Dr, Brockport, New York 14420; Ludwig, Karl F. [Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215; Eddy, Charles R. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375

    2017-03-13

    The temporal evolution of high quality indium nitride (InN) growth by plasma-assisted atomic layer epitaxy (ALEp) on a-plane sapphire at 200 and 248 °C was probed by synchrotron x-ray methods. The growth was carried out in a thin film growth facility installed at beamline X21 of the National Synchrotron Light Source at Brookhaven National Laboratory and at beamline G3 of the Cornell High Energy Synchrotron Source, Cornell University. Measurements of grazing incidence small angle x-ray scattering (GISAXS) during the initial cycles of growth revealed a broadening and scattering near the diffuse specular rod and the development of scattering intensities due to half unit cell thick nucleation islands in the Yoneda wing with correlation length scale of 7.1 and 8.2 nm, at growth temperatures (Tg) of 200 and 248 °C, respectively. At about 1.1 nm (two unit cells) of growth thickness nucleation islands coarsen, grow, and the intensity of correlated scattering peak increased at the correlation length scale of 8.0 and 8.7 nm for Tg = 200 and 248 °C, respectively. The correlated peaks at both growth temperatures can be fitted with a single peak Lorentzian function, which support single mode growth. Post-growth in situ x-ray reflectivity measurements indicate a growth rate of ~0.36 Å/cycle consistent with the growth rate previously reported for self-limited InN growth in a commercial ALEp reactor. Consistent with the in situ GISAXS study, ex situ atomic force microscopy power spectral density measurements also indicate single mode growth. Electrical characterization of the resulting film revealed an electron mobility of 50 cm2/V s for a 5.6 nm thick InN film on a-plane sapphire, which is higher than the previously reported mobility of much thicker InN films grown at higher temperature by molecular beam epitaxy directly on sapphire. These early results indicated that in situ synchrotron x-ray study of the epitaxial growth kinetics of InN films is a very powerful method to

  19. Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: A three factor design

    DEFF Research Database (Denmark)

    Fazio, Alessandro; Jewett, Michael Christopher; Daran-Lapujade, Pascale

    2008-01-01

    , such as Ace2 and Swi6, and stress response regulators, such as Yap1, were also shown to have significantly enriched target sets. Conclusion: Our work, which is the first genome-wide gene expression study to investigate specific growth rate and consider the impact of oxygen availability, provides a more......Background: Characterization of cellular growth is central to understanding living systems. Here, we applied a three-factor design to study the relationship between specific growth rate and genome-wide gene expression in 36 steady-state chemostat cultures of Saccharomyces cerevisiae. The three...... factors we considered were specific growth rate, nutrient limitation, and oxygen availability. Results: We identified 268 growth rate dependent genes, independent of nutrient limitation and oxygen availability. The transcriptional response was used to identify key areas in metabolism around which m...

  20. Airborne measurements of nucleation mode particles I: coastal nucleation and growth rates

    Directory of Open Access Journals (Sweden)

    C. D. O'Dowd

    2007-01-01

    Full Text Available A light aircraft was equipped with a bank of Condensation Particle Counters (CPCs (50% cut from 3–5.4–9.6 nm and a nano-Scanning Mobility Particle Sizer (nSMPS and deployed along the west coast of Ireland, in the vicinity of Mace Head. The objective of the exercise was to provide high resolution micro-physical measurements of the coastal nucleation mode in order to map the spatial extent of new particle production regions and to evaluate the evolution, and associated growth rates of the coastal nucleation-mode aerosol plume. Results indicate that coastal new particle production is occurring over most areas along the land-sea interface with peak concentrations at the coastal plume-head in excess of 106 cm−3. Pseudo-Lagrangian studies of the coastal plume evolution illustrated significant growth of new particles to sizes in excess of 8 nm approximately 10 km downwind of the source region. Close to the plume head (<1 km growth rates can be as high as 123–171 nm h−1, decreasing gradually to 53–72 nm h−1 at 3 km. Further along the plume, at distances up to 10 km, the growth rates are calculated to be 17–32 nm h−1. Growth rates of this magnitude suggest that after a couple of hours, coastal nucleation mode particles can reach significant sizes where they can contribution to the regional aerosol loading.

  1. Species Diversity Enhances Predator Growth Rates

    International Nuclear Information System (INIS)

    Olson, M.H.; Jacobs, R.P.; O'Donnell, E.B.

    2007-01-01

    Predators can be important top-down regulators of community structure and are known to have both positive and negative effects on species diversity. However, little is known about the reciprocal effects of species diversity on predators. Across a set of 80 lakes in Connecticut, USA, we found a strong positive correlation between prey species diversity (using the Shannon-Weiner Diversity Index) and growth rates of largemouth bass (Micropterus salmoides). This correlation was strongest for small predators and decreased with body size. Although the underlying mechanisms are not known, the correlation is not driven by total fish abundance, predator abundance, or productivity.

  2. A Longitudinal Study and Color Rating System of Acquisition Cost Growth

    Science.gov (United States)

    2017-03-23

    cost growth analysis. Ways in which this research can be carried forward include: • Collect more SAR data to further populate our research database... Growth Cory N. D’Amico Follow this and additional works at: https://scholar.afit.edu/etd Part of the Finance and Financial Management Commons This...and Color Rating System of Acquisition Cost Growth " (2017). Theses and Dissertations. 781. https://scholar.afit.edu/etd/781 A Longitudinal

  3. Effect of extremely low frequency electromagnetic fields on growth rate and morphology of bacteria.

    Science.gov (United States)

    Inhan-Garip, Ayse; Aksu, Burak; Akan, Zafer; Akakin, Dilek; Ozaydin, A Nilufer; San, Tangul

    2011-12-01

    To determine the effect of extremely low frequency (bacteria and to determine any morphological changes that might have been caused by ELF-EMF. Six bacterial strains, three Gram-negative and three Gram-positive were subjected to 50 Hz, 0.5 mT ELF-EMF for 6 h. To determine growth rate after ELF-EMF application, bacteria exposed to ELF-EMF for 3 h were collected, transferred to fresh medium and cultured without field application for another 4 h. Growth-rate was determined by optical density (OD) measurements made every hour. Morphological changes were determined with Transmission electron microscopy (TEM) for two gram-negative and two gram-positive strains collected after 3 h of field application. A decrease in growth rate with respect to control samples was observed for all strains during ELF-EMF application. The decrease in growth-rate continued when exposed bacteria were cultured without field application. Significant ultrastructural changes were observed in all bacterial strains, which were seen to resemble the alterations caused by cationic peptides. This study shows that ELF-EMF induces a decrease in growth rate and morphological changes for both Gram-negative and Gram-positive bacteria.

  4. Inferring time derivatives including cell growth rates using Gaussian processes

    Science.gov (United States)

    Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B. N.; Vogel, Jackie; Pilizota, Teuta

    2016-12-01

    Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable.

  5. Impact of Macroeconomic Policies on Poverty and Unemployment Rates in Nigeria, Implications for Attaining Inclusive Growth

    Directory of Open Access Journals (Sweden)

    Philip Nwosa

    2016-04-01

    Full Text Available This paper examined the effect of macroeconomic policies on unemployment and poverty rates in Nigeria from 1980 to 2013 with implication to achieving inclusive growth. The inability of macroeconomic policies in addressing the rising issues unemployment and poverty rates in Nigeria despite the impressive economic growth experience over the last decades has increasingly called for the need for the pursuance of inclusive growth to address the social issues of unemployment and poverty rate. Previous studies have not considered the extent to which macroeconomic policies affects unemployment and poverty rate in Nigeria, and the implication of this relationship to the attainment of inclusive growth in Nigeria. The study adopts the Ordinary Least Square (OLS technique. The study observed that among macroeconomic policy variables only exchange rate significantly influenced unemployment rate while only fiscal policy significantly influenced and poverty rate. This implies that present macroeconomic policies in Nigeria do not guarantee the attainment of inclusive growth in Nigeria. The contribution of the paper is that to achieve inclusive growth that guarantees high employment and reduced poverty rate, there is the need for a re-examination of macroeconomic policy management in Nigeria.

  6. Major Changes in Growth Rate and Growth Variability of Beech (Fagus sylvatica L. Related to Soil Alteration and Climate Change in Belgium

    Directory of Open Access Journals (Sweden)

    Nicolas Latte

    2016-08-01

    Full Text Available Global change—particularly climate change, forest management, and atmospheric deposition—has significantly altered forest growing conditions in Europe. The influences of these changes on beech growth (Fagus sylvatica L. were investigated for the past 80 years in Belgium, using non-linear mixed effects models on ring-width chronologies of 149 mature and dominant beech trees (87–186 years old. The effects of the developmental stage (i.e., increasing tree size were filtered out in order to focus on time-dependent growth changes. Beech radial growth was divided into a low-frequency signal (=growth rate, mainly influenced by forest management and atmospheric deposition, and into a high-frequency variability (≈mean sensitivity, mainly influenced by climate change. Between 1930 and 2008, major long-term and time-dependent changes were highlighted. The beech growth rate has decreased by about 38% since the 1950–1960s, and growth variability has increased by about 45% since the 1970–1980s. Our results indicate that (1 before the 1980s, beech growth rate was not predominantly impacted by climate change but rather by soil alteration (i.e., soil compaction and/or nitrogen deposition; and (2 since the 1980s, climate change induced more frequent and intense yearly growth reductions that amplified the growth rate decrease. The highlighted changes were similar in the two ecoregions of Belgium, although more pronounced in the lowlands than in the uplands.

  7. Exchange Rate Volatility and Employment Growth in Developing Countries: Evidence from Turkey

    OpenAIRE

    Demir, Firat

    2010-01-01

    Employing a unique panel of 691 private firms that accounted for 26% of total value-added in manufacturing in Turkey, the paper explores the impacts of exchange rate volatility on employment growth during the period of 1983 - 2005. The empirical analysis using a variety of specifications, estimation techniques, and robustness tests suggests that exchange rate volatility has a statistically and economically significant employment growth reducing effect on manufacturing firms. Using point estim...

  8. Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post-mitotic growth rates.

    Science.gov (United States)

    Kavanová, Monika; Lattanzi, Fernando Alfredo; Schnyder, Hans

    2008-06-01

    Nitrogen deficiency severely inhibits leaf growth. This response was analysed at the cellular level by growing Lolium perenne L. under 7.5 mM (high) or 1 mM (low) nitrate supply, and performing a kinematic analysis to assess the effect of nitrogen status on cell proliferation and cell growth in the leaf blade epidermis. Low nitrogen supply reduced leaf elongation rate (LER) by 43% through a similar decrease in the cell production rate and final cell length. The former was entirely because of a decreased average cell division rate (0.023 versus 0.032 h(-1)) and thus longer cell cycle duration (30 versus 22 h). Nitrogen status did not affect the number of division cycles of the initial cell's progeny (5.7), and accordingly the meristematic cell number (53). Meristematic cell length was unaffected by nitrogen deficiency, implying that the division and mitotic growth rates were equally impaired. The shorter mature cell length arose from a considerably reduced post-mitotic growth rate (0.033 versus 0.049 h(-1)). But, nitrogen stress did not affect the position where elongation stopped, and increased cell elongation duration. In conclusion, nitrogen deficiency limited leaf growth by increasing the cell cycle duration and decreasing mitotic and post-mitotic elongation rates, delaying cell maturation.

  9. The “Flexi-Chamber”: A Novel Cost-Effective In Situ Respirometry Chamber for Coral Physiological Measurements

    Science.gov (United States)

    Camp, Emma F.; Krause, Sophie-Louise; Santos, Lourianne M. F.; Naumann, Malik S.; Kikuchi, Ruy K. P.; Smith, David J.; Wild, Christian; Suggett, David J.

    2015-01-01

    Coral reefs are threatened worldwide, with environmental stressors increasingly affecting the ability of reef-building corals to sustain growth from calcification (G), photosynthesis (P) and respiration (R). These processes support the foundation of coral reefs by directly influencing biogeochemical nutrient cycles and complex ecological interactions and therefore represent key knowledge required for effective reef management. However, metabolic rates are not trivial to quantify and typically rely on the use of cumbersome in situ respirometry chambers and/or the need to remove material and examine ex situ, thereby fundamentally limiting the scale, resolution and possibly the accuracy of the rate data. Here we describe a novel low-cost in situ respirometry bag that mitigates many constraints of traditional glass and plexi-glass incubation chambers. We subsequently demonstrate the effectiveness of our novel “Flexi-Chamber” approach via two case studies: 1) the Flexi-Chamber provides values of P, R and G for the reef-building coral Siderastrea cf. stellata collected from reefs close to Salvador, Brazil, which were statistically similar to values collected from a traditional glass respirometry vessel; and 2) wide-scale application of obtaining P, R and G rates for different species across different habitats to obtain inter- and intra-species differences. Our novel cost-effective design allows us to increase sampling scale of metabolic rate measurements in situ without the need for destructive sampling and thus significantly expands on existing research potential, not only for corals as we have demonstrated here, but also other important benthic groups. PMID:26448294

  10. Colorimetry provides a rapid objective measurement of de novo hair growth rate in mice.

    Science.gov (United States)

    Tzung, Tien-Yi; Yang, Chia-Yi; Huang, Yung-Chang; Kao, Fu-Jen

    2009-11-01

    Depilated mice have been used as a test platform for hair growth-regulating agents. However, currently available assessment tools for hair growth in mice are less than ideal. Tristimulus colorimetry of the fur color of depilated agouti, albino, and black mice with L*, a*, and b* values were performed daily until the full growth of pelage. Using light-emitting diode (LED) irradiation (650 and 890 nm) with a daily dose of 3.5 J/cm(2) as hair growth regulators, the hair growth rates observed by the global assessment were compared with those derived from colorimetry. In contrast to a* and b* values, L* values changed more drastically over time in the anagen phase regardless of fur color. Unlike the inhibitory effect of 650 nm irradiation, LED of 890 nm promoted de novo hair regrowth in mice. The difference in hair growth rates detected by colorimetry paralleled the observation made by the global assessment. The L* value of fur color obtained by tristimulus colorimetry was a sensitive yet quantitative indicator of de novo hair growth, and could be used to project the hair growth rate in mice.

  11. Effect of different saccharides on growth, sporulation rate and d ...

    African Journals Online (AJOL)

    MFCS

    2012-05-17

    May 17, 2012 ... general, high sporulation rate was related with high growth rate and high viable cell count (>1.5 x 1012 cfu/ml). .... The sterile culture medium (180 ml) in a 1000 ml Erlenmeyer flask was ... The column temperature was set at 85°C. A series of ..... inactivation of certain sugar-metabolizing operons, such as lac ...

  12. Epitaxial growth of manganese oxide films on MgAl2O4 (001) substrates and the possible mechanism

    Science.gov (United States)

    Ren, Lizhu; Wu, Shuxiang; Zhou, Wenqi; Li, Shuwei

    2014-03-01

    Three types of manganese oxide films were grown on MgAl2O4 (001) substrates by plasma-assisted molecular beam epitaxy (PA-MBE) under different growth rates and substrate temperatures. The structural characteristics and chemical compositions of the films were investigated by using in-situ reflection high-energy electron diffraction (RHEED), ex-situ X-ray diffraction, Raman, and X-ray photoelectron spectra (XPS). At a lower substrate temperature (730 K), the epitaxial film tends to form mixed phases with a coexistence of Mn3O4 and Mn5O8 in order to relieve the mismatch-strain. However, at a higher substrate temperature (750 K), all of the films crystallize into Mn3O4; the critical thickness of the film grown under a lower growth rate (7 Å/min) is much larger than that under a high growth rate (10 Å/min). When the film reaches a certain critical thickness, the surface will become fairly rough, and another oriented phase Mn3O4 would crystallize on such a surface.

  13. Population Growth Rate, Life Expectancy and Pension Program Improvement in China

    OpenAIRE

    Yang, Zaigui

    2008-01-01

    Applying an overlapping-generations model with lifetime uncertainty, we examine in this paper China’s partially funded public pension system. The findings show that the individual contribution rate does not affect the capital-labor ratio but the firm contribution rate does. The optimal firm contribution rate depends on the capital share of income, social discount factor, survival probability, and population growth rate. The simulation results indicate that the optimal firm contribution rate r...

  14. Growth, nisA Gene Expression, and In Situ Activity of Novel Lactococcus lactis subsp. cremoris Costarter Culture in Commercial Hard Cheese Production.

    Science.gov (United States)

    Noutsopoulos, Dimitrios; Kakouri, Athanasia; Kartezini, Eleftheria; Pappas, Dimitrios; Hatziloukas, Efstathios; Samelis, John

    2017-12-01

    This study evaluated in situ expression of the nisA gene by an indigenous, nisin A-producing (NisA+) Lactococcus lactis subsp. cremoris raw milk genotype, represented by strain M78, in traditional Greek Graviera cheeses under real factory-scale manufacturing and ripening conditions. Cheeses were produced with added a mixed thermophilic and mesophilic commercial starter culture (CSC) or with the CSC plus strain M78 (CSC+M78). Cheeses were sampled after curd cooking (day 0), fermentation of the unsalted molds for 24 h (day 1), brining (day 7), and ripening of the brined molds (14 to 15 kg each) for 30 days in a fully controlled industrial room (16.5°C; 91% relative humidity; day 37). Total RNA was directly extracted from the cheese samples, and the expression of nisA gene was evaluated by real-time reverse transcription PCR (qRT-PCR). Agar overlay and well diffusion bioassays were correspondingly used for in situ detection of the M78 NisA+ colonies in the cheese agar plates and antilisterial activity in whole-cheese slurry samples, respectively. Agar overlay assays showed good growth (>8 log CFU/g of cheese) of the NisA+ strain M78 in coculture with the CSC and vice versa. The nisA expression was detected in CSC+M78 cheese samples only, with its expression levels being the highest (16-fold increase compared with those of the control gene) on day 1, followed by significant reduction on day 7 and almost negligible expression on day 37. Based on the results, certain intrinsic and mainly implicit hurdle factors appeared to reduce growth prevalence rates and decrease nisA gene expression, as well as the nisin A-mediated antilisterial activities of the NisA+ strain M78 postfermentation. To our knowledge, this is the first report on quantitative expression of the nisA gene in a Greek cooked hard cheese during commercial manufacturing and ripening conditions by using a novel, rarely isolated, indigenous NisA+ L. lactis subsp. cremoris genotype as costarter culture.

  15. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis.

    Science.gov (United States)

    Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent

    2016-05-17

    Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  16. In situ characterization of thin film growth: Boron nitride on silicon

    International Nuclear Information System (INIS)

    Fukarek, W.

    2001-01-01

    Real-time ellipsometry (RTE) in combination with particle flux measurement is applied to ion beam assisted deposition of boron nitride (BN) films. RTE is used as a tool for process diagnostic to improve the deposition stability. A novel technique for the determination of absolute density depth profiles from dynamic growth rate data and film forming particle flux is employed. From real-time cantilever curvature measurement and simultaneously recorded film thickness data instantaneous stress depth profiles are derived with a depth resolution in the nm range. The synergistic effects on the information obtained from RTE, particle flux, and cantilever bending data are demonstrated. The density of turbostratic BN (tBN) is found to increase slightly with film thickness while the compressive stress decreases, indicating an increasing quality and/or size of crystallites in the course of film growth. Refractive index and density depth profiles in cubic BN (cBN) films correspond perfectly to structural information obtained from dark field transmission electron microscope graphs. The established tBN/cBN two-layer model is found to be a crude approximation that has to be replaced by a three-layer model including nucleation, grain growth, and coalescence of cBN. The instantaneous compressive stress in a homogeneous tBN film is found to decrease, while the density increases during growth. The instantaneous compressive stress depth profiles in cBN films are more complex and not easy to understand but reliable information on the structural evolution during growth can be extracted

  17. In situ doping of catalyst-free InAs nanowires with Si: Growth, polytypism, and local vibrational modes of Si

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, Emmanouil; Ramsteiner, Manfred; Huang, Chang-Ning; Trampert, Achim; Riechert, Henning; Geelhaar, Lutz [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Davydok, Anton; Biermanns, Andreas; Pietsch, Ullrich [Festkörperphysik, Universität Siegen, Walter-Flex-Str. 3, 57072 Siegen (Germany)

    2013-09-30

    Growth and structural aspects of the in situ doping of InAs nanowires with Si have been investigated. The nanowires were grown catalyst-free on Si(111) substrates by molecular beam epitaxy. The supply of Si influenced the growth kinetics, affecting the nanowire dimensions, but not the degree of structural polytypism, which was always pronounced. As determined by Raman spectroscopy, Si was incorporated as substitutional impurity exclusively on In sites, which makes it a donor. Previously unknown Si-related Raman peaks at 355 and 360 cm{sup −1} were identified, based on their symmetry properties in polarization-dependent measurements, as the two local vibrational modes of an isolated Si impurity on In site along and perpendicular, respectively, to the c-axis of the wurtzite InAs crystal.

  18. Growth rates and energy intake of hand-reared cheetah cubs (Acinonyx jubatus) in South Africa.

    Science.gov (United States)

    Bell, K M; Rutherfurd, S M; Morton, R H

    2012-04-01

    Growth rate is an important factor in neonatal survival. The aim of this study was to determine growth rates in hand-reared cheetah cubs in South Africa fed a prescribed energy intake, calculated for growth in the domestic cat. Growth was then compared with previously published data from hand-reared cubs in North America and the relationship between growth and energy intake explored. Daily body weight (BW) gain, feed and energy intake data was collected from 18 hand-reared cheetah cubs up to 120 days of age. The average pre-weaning growth rate was 32 g/day, which is lower than reported in mother-reared cubs and hand-reared cubs in North American facilities. However, post-weaning growth increased to an average of 55 g/day. Growth was approximately linear prior to weaning, but over the entire age range it exhibited a sigmoidal shape with an asymptotic plateau averaging 57 kg. Energy intake associated with pre-weaning growth was 481 kJ ME/kg BW(0.75). Regression analysis described the relationship between metabolic BW, metabolisable energy (ME) intake, and hence daily weight gain. This relationship may be useful in predicting energy intake required to achieve growth rates in hand-reared cheetah cubs similar to those observed for their mother-reared counterparts. © 2011 Blackwell Verlag GmbH.

  19. The dependence of the growth rate and meat content of young boars on semen parameters and conception rate.

    Science.gov (United States)

    Knecht, D; Jankowska-Mąkosa, A; Duziński, K

    2017-05-01

    Boars have a decisive impact on the progress in pig production, however, there is no recent information about the optimal growth parameters during the rearing period for modern breed later used in artificial insemination (AI) stations. Therefore, the objective of the research was to conduct semen parameter and conception rate analyses on the basis of growth rate and meat content assessments made during the rearing of AI boars of different genotypes. The study was carried out between 2010 and 2014 and included 184 boars in five breed combinations: 46 Polish Large White, 50 Polish Landrace, 27 Pietrain, 36 Duroc×Pietrain and 25 Hampshire×Pietrain. Boars were qualified by daily gains and meat content assessment (between 170 and 210 days of life). A total number of 38 272 ejaculates were examined (semen volume (ml), spermatozoa concentration (×106 ml-1), total number of spermatozoa (×109) and number of insemination doses from one ejaculate (n)). The fertility was determined by the conception rate (%). Semen volume, spermatozoa concentration and conception rate (PMeat content affected semen volume, number of insemination doses and conception rate (Pmeat content helps AI stations to increase the efficiency and economic profitability, and the number of insemination doses to increase by up to 300 doses/boar within a year. The analyses of growth parameters may help increase the efficiency and economic viability of AI stations.

  20. Periodic matrix population models: growth rate, basic reproduction number, and entropy.

    Science.gov (United States)

    Bacaër, Nicolas

    2009-10-01

    This article considers three different aspects of periodic matrix population models. First, a formula for the sensitivity analysis of the growth rate lambda is obtained that is simpler than the one obtained by Caswell and Trevisan. Secondly, the formula for the basic reproduction number R0 in a constant environment is generalized to the case of a periodic environment. Some inequalities between lambda and R0 proved by Cushing and Zhou are also generalized to the periodic case. Finally, we add some remarks on Demetrius' notion of evolutionary entropy H and its relationship to the growth rate lambda in the periodic case.

  1. In situ rheology of yeast biofilms.

    Science.gov (United States)

    Brugnoni, Lorena I; Tarifa, María C; Lozano, Jorge E; Genovese, Diego

    2014-01-01

    The aim of the present work was to investigate the in situ rheological behavior of yeast biofilms growing on stainless steel under static and turbulent flow. The species used (Rhodototula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from a clarified apple juice industry. The flow conditions impacted biofilm composition over time, with a predominance of C. krusei under static and turbulent flow. Likewise, structural variations occurred, with a tighter appearance under dynamic flow. Under turbulent flow there was an increase of 112 μm in biofilm thickness at 11 weeks (p < 0.001) and cell morphology was governed by hyphal structures and rounded cells. Using the in situ growth method introduced here, yeast biofilms were determined to be viscoelastic materials with a predominantly solid-like behavior, and neither this nor the G'0 values were significantly affected by the flow conditions or the growth time, and at large deformations their weak structure collapsed beyond a critical strain of about 1.5-5%. The present work could represent a starting point for developing in situ measurements of yeast rheology and contribute to a thin body of knowledge about fungal biofilm formation.

  2. Physiological levels of nitrate support anoxic growth by denitrification of Pseudomonas aeruginosa at growth rates reported in cystic fibrosis lungs and sputum

    DEFF Research Database (Denmark)

    Line, Laura; Alhede, Morten; Kolpen, Mette

    2014-01-01

    denitrification. The growth rate of P. aeruginosa achieved by denitrification at physiological levels (~400 μM) of nitrate (NO(-) 3) is however, not known. Therefore, we have measured growth rates of anoxic cultures of PAO1 and clinical isolates (n = 12) in LB media supplemented with NO(-) 3 and found...... a significant increase of growth when supplementing PAO1 and clinical isolates with ≥150 μM NO(-) 3 and 100 μM NO(-) 3, respectively. An essential contribution to growth by denitrification was demonstrated by the inability to establish a significantly increased growth rate by a denitrification deficient Δnir...... of the four N-oxide reductases in PAO1 (Nar, Nir, Nor, Nos) further verified the engagement of denitrification, showing a transient increase in activation and expression and rapid consumption of NO(-) 3 followed by a transient increase of NO(-) 2. Growth rates obtained by denitrification in this study were...

  3. Microscopic Rate Constants of Crystal Growth from Molecular Dynamic Simulations Combined with Metadynamics

    Directory of Open Access Journals (Sweden)

    Dániel Kozma

    2012-01-01

    Full Text Available Atomistic simulation of crystal growth can be decomposed into two steps: the determination of the microscopic rate constants and a mesoscopic kinetic Monte Carlo simulation. We proposed a method to determine kinetic rate constants of crystal growth. We performed classical molecular dynamics on the equilibrium liquid/crystal interface of argon. Metadynamics was used to explore the free energy surface of crystal growth. A crystalline atom was selected at the interface, and it was displaced to the liquid phase by adding repulsive Gaussian potentials. The activation free energy of this process was calculated as the maximal potential energy density of the Gaussian potentials. We calculated the rate constants at different interfacial structures using the transition state theory. In order to mimic real crystallization, we applied a temperature difference in the calculations of the two opposite rate constants, and they were applied in kinetic Monte Carlo simulation. The novelty of our technique is that it can be used for slow crystallization processes, while the simple following of trajectories can be applied only for fast reactions. Our method is a possibility for determination of elementary rate constants of crystal growth that seems to be necessary for the long-time goal of computer-aided crystal design.

  4. Concurrent growth rate and transcript analyses reveal essential gene stringency in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Shan Goh

    Full Text Available BACKGROUND: Genes essential for bacterial growth are of particular scientific interest. Many putative essential genes have been identified or predicted in several species, however, little is known about gene expression requirement stringency, which may be an important aspect of bacterial physiology and likely a determining factor in drug target development. METHODOLOGY/PRINCIPAL FINDINGS: Working from the premise that essential genes differ in absolute requirement for growth, we describe silencing of putative essential genes in E. coli to obtain a titration of declining growth rates and transcript levels by using antisense peptide nucleic acids (PNA and expressed antisense RNA. The relationship between mRNA decline and growth rate decline reflects the degree of essentiality, or stringency, of an essential gene, which is here defined by the minimum transcript level for a 50% reduction in growth rate (MTL(50. When applied to four growth essential genes, both RNA silencing methods resulted in MTL(50 values that reveal acpP as the most stringently required of the four genes examined, with ftsZ the next most stringently required. The established antibacterial targets murA and fabI were less stringently required. CONCLUSIONS: RNA silencing can reveal stringent requirements for gene expression with respect to growth. This method may be used to validate existing essential genes and to quantify drug target requirement.

  5. Facilitating control of fed-batch fermentation processes by monitoring the growth rates of saccharomyces cerevisiae

    NARCIS (Netherlands)

    Keulers, M.L.B.; Ariaans, L.J.J.M.; Soeterboek, R.; Giuseppin, M.

    1994-01-01

    In this paper we present a growth rate controller for a fed-batch bioprocess. An observer estimates the growth rate. The observer is based on knowledge about the stoichiometric relations of the process. Furthermore, the observer needs online measurements of the oxygen uptake rate and the

  6. Ex-situ bioremediation of U(VI from contaminated mine water using Acidithiobacillus ferrooxidans strains

    Directory of Open Access Journals (Sweden)

    Maria eRomero-Gonzalez

    2016-05-01

    Full Text Available The ex-situ bioremoval of U(VI from contaminated water using Acidithiobacillus ferrooxidans strain 8455 and 13538 was studied under a range of pH and uranium concentrations. The effect of pH on the growth of bacteria was evaluated across the range 1.5 – 4.5 pH units. The respiration rate of At. ferrooxidans at different U(VI concentrations was quantified as a measure of the rate of metabolic activity over time using an oxygen electrode. The biosorption process was quantified using a uranyl nitrate solution, U-spiked growth media and U-contaminated mine water. The results showed that both strains of At. ferrooxidans are able to remove U(VI from solution at pH 2.5 – 4.5, exhibiting a buffering capacity at pH 3.5. The respiration rate of the micro-organism was affected at U(VI concentration of 30 mg L-1. The kinetics of the sorption fitted a pseudo-first order equation, and depended on the concentration of U(VI. The KD obtained from the biosorption experiments indicated that strain 8455 is more efficient for the removal of U(VI. A bioreactor designed to treat a solution of 100 mg U(VI L-1 removed at least 50% of the U(VI in water. The study demonstrated that At. ferrooxidans can be used for the ex-situ bioremediation of U(VI contaminated mine water.

  7. In-situ Measurements of the Effect of Au Doping in Ni Catalysts on the Yield of Tubular Carbon Nanostructures

    DEFF Research Database (Denmark)

    Sharma, Renu; Chee, S.; Rez, P.

    characterization of as-deposited films, the samples were heated in vacuum up to reaction temperatures (500-650 °C). Acetylene was introduced in the sample region and pressures were kept constant during each experiment but varied between 1-3 mTorr for each individual experiment. Digital videos (15 frames/s) at low....... Formation of different structures depended upon the rate of growth, which was in turn controlled by pressure and temperature. Both in-situ and ex-situ analysis of the composition of the catalyst particles, effect of temperature and pressure on the morphology and structural mechanism for the formation...

  8. Generation and growth rates of nonlinear distortions in a traveling wave tube

    International Nuclear Information System (INIS)

    Woehlbier, John G.; Dobson, Ian; Booske, John H.

    2002-01-01

    The structure of a steady state multifrequency model of a traveling wave tube amplifier is exploited to describe the generation of intermodulation frequencies and calculate their growth rates. The model describes the evolution of Fourier coefficients of circuit and electron beam quantities and has the form of differential equations with quadratic nonlinearities. Intermodulation frequencies are sequentially generated by the quadratic nonlinearities in a series solution of the differential equations. A formula for maximum intermodulation growth rates is derived and compared to simulation results

  9. Dynamic environments of fungus-farming termite mounds exert growth-modulating effects on fungal crop parasites.

    Science.gov (United States)

    Katariya, Lakshya; Ramesh, Priya B; Borges, Renee M

    2018-03-01

    This study investigated for the first time the impact of the internal mound environment of fungus-growing termites on the growth of fungal crop parasites. Mounds of the termite Odontotermes obesus acted as (i) temperature and relative humidity (RH) 'stabilisers' showing dampened daily variation and (ii) 'extreme environments' exhibiting elevated RH and CO 2 levels, compared to the outside. Yet, internal temperatures exhibited seasonal dynamics as did daily and seasonal CO 2 levels. During in situ experiments under termite-excluded conditions within the mound, the growth of the crop parasite Pseudoxylaria was greater inside than outside the mound, i.e., Pseudoxylaria is 'termitariophilic'. Also, ex situ experiments on parasite isolates differing in growth rates and examined under controlled conditions in the absence of termites revealed a variable effect with fungal growth decreasing only under high CO 2 and low temperature conditions, reflecting the in situ parasite growth fluctuations. In essence, the parasite appears to be adapted to survive in the termite mound. Thus the mound microclimate does not inhibit the parasite but the dynamic environmental conditions of the mound affect its growth to varying extents. These results shed light on the impact of animal-engineered structures on parasite ecology, independent of any direct role of animal engineers. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. On Decidable Growth-Rate Properties of Imperative Programs

    Directory of Open Access Journals (Sweden)

    Amir M. Ben-Amram

    2010-05-01

    Full Text Available In 2008, Ben-Amram, Jones and Kristiansen showed that for a simple "core" programming language - an imperative language with bounded loops, and arithmetics limited to addition and multiplication - it was possible to decide precisely whether a program had certain growth-rate properties, namely polynomial (or linear bounds on computed values, or on the running time. This work emphasized the role of the core language in mitigating the notorious undecidability of program properties, so that one deals with decidable problems. A natural and intriguing problem was whether more elements can be added to the core language, improving its utility, while keeping the growth-rate properties decidable. In particular, the method presented could not handle a command that resets a variable to zero. This paper shows how to handle resets. The analysis is given in a logical style (proof rules, and its complexity is shown to be PSPACE-complete (in contrast, without resets, the problem was PTIME. The analysis algorithm evolved from the previous solution in an interesting way: focus was shifted from proving a bound to disproving it, and the algorithm works top-down rather than bottom-up.

  11. Stiff mutant genes of Phycomyces target turgor pressure and wall mechanical properties to regulate elongation growth rate

    Directory of Open Access Journals (Sweden)

    Joseph K. E. Ortega

    2012-05-01

    Full Text Available Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses and differential elongation growth rate (tropic responses. Stiff mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least four genes; madD, madE, madF and madG. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the growth zone. Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type. A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (- and C216 geo- (-. Experimental results demonstrate that turgor pressure is larger but irreversible deformation rates of the wall within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to wild type. These findings explain the diminished tropic responses of the stiff mutant sporangiophores and suggest that the defective genes affect the amount of wall-building material delivered to the inner

  12. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    Science.gov (United States)

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. Copyright © 2015. Published by Elsevier Inc.

  13. Hoof Growth Rates of the European Roe Deer (Capreolus capreolus for Dating the Hoof’s Isotopic Archive

    Directory of Open Access Journals (Sweden)

    Benjamin D. Hafner

    2017-11-01

    Full Text Available Hooves preserve the isotopic information laid down during their growth and may be used for reconstruction of animal feeding history. To assign certain positions along hooves to corresponding times, growth rates are required. Hoof growth rates are known for domestic animals; however, they cannot be obtained easily in wild animals. We estimated the hoof growth rate of the European roe deer (Capreolus capreolus L. by using the immediate drop in δ13C along the hoof as a tag that is assigned to the date of maize (Zea mays L. harvest. Keratin samples were taken each mm along 17 hooves and analyzed for their δ13C. A linear regression between (1 time differences of expected maize harvest to animal death and (2 distances between the points of the δ13C drop to the periople yielded the growth rate. Mean hoof growth rate was 0.122 mm/day (95% CI 0.014 mm/day and 0.365%/day (±0.026%/day of the hoof length and within the range of domestic animals. The method may be applied to determine growth rates of other incrementally growing tissues. Our estimated growth rate fosters dating isotopic information in hooves, facilitating research on feed resources and space use of roe deer.

  14. Growth-Rate Dependent Regulation of tRNA Level and Charging in Bacillus licheniformis.

    Science.gov (United States)

    Ferro, Iolanda; Liebeton, Klaus; Ignatova, Zoya

    2017-10-13

    Cellular growth crucially depends on protein synthesis and the abundance of translational components. Among them, aminoacyl-tRNAs play a central role in biosynthesis and shape the kinetics of mRNA translation, thus influencing protein production. Here, we used microarray-based approaches to determine the charging levels and tRNA abundance of Bacillus licheniformis. We observed an interesting cross-talk among tRNA expression, charging pattern, and growth rate. For a large subset of tRNAs, we found a co-regulated and augmented expression at high growth rate. Their tRNA aminoacylation level is kept relatively constant through riboswitch-regulated expression of the cognate aminoacyl-tRNA-synthetase (AARS). We show that AARSs with putative riboswitch-controlled expression are those charging tRNAs with amino acids which disfavor cell growth when individually added to the nutrient medium. Our results suggest that the riboswitch-regulated AARS expression in B. licheniformis is a powerful mechanism not only to maintain a constant ratio of aminoacyl-tRNA independent of the growth rate but concomitantly to control the intracellular level of free amino acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Data compilation of respiration, feeding, and growth rates of marine pelagic organisms

    DEFF Research Database (Denmark)

    2013-01-01

    's adaptation to the environment, with consequently less universal mass scaling properties. Data on body mass, maximum ingestion and clearance rates, respiration rates and maximum growth rates of animals living in the ocean epipelagic were compiled from the literature, mainly from original papers but also from...

  16. Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Li, Boyan; Ou, Longwen; Dang, Qi; Meyer, Pimphan A.; Jones, Susanne B.; Brown, Robert C.; Wright, Mark

    2015-11-01

    This study evaluates the techno-economic uncertainty in cost estimates for two emerging biorefinery technologies for biofuel production: in situ and ex situ catalytic pyrolysis. Stochastic simulations based on process and economic parameter distributions are applied to calculate biorefinery performance and production costs. The probability distributions for the minimum fuel-selling price (MFSP) indicate that in situ catalytic pyrolysis has an expected MFSP of $4.20 per gallon with a standard deviation of 1.15, while the ex situ catalytic pyrolysis has a similar MFSP with a smaller deviation ($4.27 per gallon and 0.79 respectively). These results suggest that a biorefinery based on ex situ catalytic pyrolysis could have a lower techno-economic risk than in situ pyrolysis despite a slightly higher MFSP cost estimate. Analysis of how each parameter affects the NPV indicates that internal rate of return, feedstock price, total project investment, electricity price, biochar yield and bio-oil yield are significant parameters which have substantial impact on the MFSP for both in situ and ex situ catalytic pyrolysis.

  17. Thermal effects on growth and respiration rates of the mayfly, Dolania americana (ephemeroptera)

    International Nuclear Information System (INIS)

    Harvey, R.S.

    1975-01-01

    The mayfly Dolania Americana, common in the sand of Upper Three Runs Creek, Savannah River Plant, was studied to determine the effects of seasonal changes in temperature on population growth rates and to determine the effects of slight elevations in water temperature on respiration rates of this benthic species. Growth of the population increased with stream temperature until peak emergence of adults in June and July. There was a strong inverse correlation between body weight and respiration rates of immature nymphs. Respiration rates at 2.5, 5, and 10 0 C above ambient creekwater temperatures were not significantly higher than those measured at ambient creekwater temperatures. (auth)

  18. Investigating the asymmetric relationship between inflation-output growth exchange rate changes

    Science.gov (United States)

    Chu, Jenq Fei; Sek, Siok Kun

    2017-08-01

    The relationship between inflation-output growth or output variation has long been studied. In this study, we extend the investigation under two exchange rate flexibility/regime in four Asian countries (Indonesia, Korea, Philippines and Thailand) that have experienced drastic exchange rate regime changes aftermath the financial crisis of 1997. These countries have switched from fixed/rigid exchange rate regime to flexible exchange rate and inflation targeting (IT) regime after the crisis. Our main objective is to compare the inflation-output trade-off relationship in the pre-IT and post-IT periods as a tool to evaluate the efficiency of monetary policy. A nonlinear autoregressive distributed lags (NARDL) model is applied to capture the asymmetric effects of exchange rate changes (increases and decreases). The data ranging from 1981M1 onwards till 2016M3. Our results show that exchange rate has asymmetric effect on inflation both short-run and long-run with larger impact in the post-IT period under flexible regime. Depreciation of exchange rate has leads to higher inflation. Furthermore, we find evidences on the relationship between inflation and growth in both short-run and long-run, but the trade-off only detected in the short run both in the pre- and post-IT periods.

  19. New approaches investigating production rates of in-situ produced terrestrial cosmogenic nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Merchel, Silke [CEREGE, CNRS-IRD-Universite Aix-Marseille, Aix-en-Provence (France); FZD, Dresden (Germany); Braucher, Regis; Benedetti, Lucilla; Bourles, Didier [CEREGE, CNRS-IRD-Universite Aix-Marseille, Aix-en-Provence (France)

    2010-07-01

    In-situ produced cosmogenic nuclides have proved to be valuable tools for environmental and Earth sciences. However, accurate application of this method is only possible, if terrestrial production rates in a certain environment over a certain time period and their depth-dependence within the exposed material are exactly known. Unfortunately, the existing data and models differ up to several tens of percent. Thus, one of the European project CRONUS-EU goals is the high quality calibration of the {sup 36}Cl production rate by spallation at independently dated surfaces. As part of fulfilling this task we have investigated calcite-rich samples from four medieval landslide areas in the Alps: Mont Granier, Le Claps, Dobratsch, and Veliki Vrh (330-1620 m, 1248-1442 AD). For investigating the depth-dependence of the different nuclear reactions, especially, the muon- and thermal neutron-induced contributions, we have analysed mixtures of carbonates and siliceous conglomerate samples - for {sup 10}Be, {sup 26}Al, and {sup 36}Cl - exposed at different shielding depths and taken from a core drilled in 2005 at La Ciotat, France (from surface to 11 m shielding). AMS of {sup 36}Cl was performed at LLNL and ETH, {sup 10}Be and {sup 26}Al at ASTER.

  20. A new culture system for in situ observation of the growth and development of Eucyclops serrulatus (Copepoda: Cyclopoida)

    Science.gov (United States)

    Park, Sung-Hee; Chang, Cheon-Young

    2005-01-01

    A practical and convenient method of rearing Eucyclops serrulatus in a microculture environment is described. A complete life cycle of E. serrulatus was maintained in a narrow space on a microscope slide glass on which a cover glass of 22 x 40 mm in size was mounted at a height of 0.8 mm. The culture medium was constituted by bottled mineral water boiled with grains of Glycine max (soybean). Chilomonas paramecium, a free-living protozoan organism, was provided as live food. Growth of nauplii hatched from eggs to the first stage of copepodite took an average of 7.7 days, and the growth of copepodite 1 to the egg-bearing adult female took an average of 20.1 days in the microculture cell with an average life time of 44.7 days. Continuous passage of copepods was successfully maintained as long as sufficient medium and food were provided. The microculture method enables an in situ microscopic observation on the growth and developmental process of helminth larvae experimentally infected to copepods as well as of copepod itself. Furthermore, it does not require anesthetization and, therefore, minimize the amount of stress exposed to copepods during the handling process. PMID:16340303

  1. Rising CO2 interacts with growth light and growth rate to alter photosystem II photoinactivation of the coastal diatom Thalassiosira pseudonana.

    Directory of Open Access Journals (Sweden)

    Gang Li

    Full Text Available We studied the interactive effects of pCO(2 and growth light on the coastal marine diatom Thalassiosira pseudonana CCMP 1335 growing under ambient and expected end-of-the-century pCO(2 (750 ppmv, and a range of growth light from 30 to 380 µmol photons·m(-2·s(-1. Elevated pCO(2 significantly stimulated the growth of T. pseudonana under sub-saturating growth light, but not under saturating to super-saturating growth light. Under ambient pCO(2 susceptibility to photoinactivation of photosystem II (σ(i increased with increasing growth rate, but cells growing under elevated pCO(2 showed no dependence between growth rate and σ(i, so under high growth light cells under elevated pCO(2 were less susceptible to photoinactivation of photosystem II, and thus incurred a lower running cost to maintain photosystem II function. Growth light altered the contents of RbcL (RUBISCO and PsaC (PSI protein subunits, and the ratios among the subunits, but there were only limited effects on these and other protein pools between cells grown under ambient and elevated pCO(2.

  2. Using wavelength-normalized optical spectroscopy to improve the accuracy of bacteria growth rate quantification

    Science.gov (United States)

    McBirney, Samantha E.; Trinh, Kristy; Wong-Beringer, Annie; Armani, Andrea M.

    2017-02-01

    One of the fundamental analytical measurements performed in microbiology is monitoring and characterizing cell concentration in culture media. Measurement error will give rise to reproducibility problems in a wide range of applications, from biomanufacturing to basic research. Therefore, it is critical that the generated results are consistent. Single wavelength optical density (OD) measurements have become the preferred approach. Here, we compare the conventional OD600 technique with a multi-wavelength normalized scattering optical spectroscopy method to measure the growth rates of Pseudomonas aeruginosa and Staphylococcus aureus, two of the leading nosocomial pathogens with proven abilities to develop resistance. The multi-wavelength normalization process minimizes the impact of bacteria byproducts and environmental noise on the signal, thereby accurately quantifying growth rates with high fidelity at low concentrations. In contrast, due to poor absorbance and scattering at 600 nm, the classic OD600 measurement method is able to detect bacteria but cannot quantify the growth rate reliably. Our wavelength-normalization protocol to detect bacteria growth rates can be readily and easily adopted by research labs, given that it only requires the use of a standard spectrophotometer and implementation of straightforward data analysis. Measuring and monitoring bacteria growth rates play a critical role in a wide range of settings, spanning from therapeutic design and development to diagnostics and disease prevention. Having a full understanding of the growth cycles of bacteria known to cause severe infections and diseases will lead to a better understanding of the pathogenesis of these illnesses, leading to better treatment and, ultimately, the development of a cure.

  3. Carbon nanotubes-porous ceramic composite by in situ CCVD growth of CNTs

    International Nuclear Information System (INIS)

    Mazumder, Sangram; Sarkar, Naboneeta; Park, Jung Gyu; Han, In Sub; Kim, Ik Jin

    2016-01-01

    A novel approach towards the formation of Carbon nanotubes-porous alumina ceramic composite was attempted by the application of three different reaction techniques. Porous alumina ceramics having micrometer pore dimensions were developed using the direct foaming technique. NaA zeolites were simultaneously synthesized and coated within the porous ceramics by an in situ hydrothermal process and were subjected to a simple ion exchange reaction for preparing the suitable catalyst material for Carbon nanotubes (CNTs) synthesis. The catalytic chemical vapour deposition (CCVD) technique was used to grow CNTs within the porous ceramics and the effect of growth time on the synthesized CNTs were investigated. Phase compositions of the samples were analysed by X-ray diffractometer (XRD). Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) were used for morphology, surface quality and structural analysis. Crystallinity, defects and yield were studied by Raman spectroscopy and thermogravimetric analysis (TGA). - Highlights: • Novel processing route of MWCNTs grown on Cobalt-zeolites-porous ceramics by CCVD. • CCVD time of 120 min produced MWCNTs with most prominent tube-like structure. • 120 min produced highest yield (19.46%) of CNTs with an I_D/I_G ratio of 0.88.

  4. Radiosensitivity of the swiss-rap mouse as a function of its growth rate

    International Nuclear Information System (INIS)

    Legeay, G.; Glas, J.F.

    1969-01-01

    The results of an exhaustive study of the age dependence of the radiosensitivity of female Swiss-Rap mice are given. A close relationship of radiosensitivity versus age could not be brought out, whereas the weekly growth rate could be accurately related to radiosensitivity. Thus, the latter should be studied when a strain is to be used for biological experiments, as the rates of growth are different with the strains. (author) [fr

  5. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length.

    Science.gov (United States)

    Rossi, Sergio; Deslauriers, Annie; Anfodillo, Tommaso; Morin, Hubert; Saracino, Antonio; Motta, Renzo; Borghetti, Marco

    2006-01-01

    Intra-annual radial growth rates and durations in trees are reported to differ greatly in relation to species, site and environmental conditions. However, very similar dynamics of cambial activity and wood formation are observed in temperate and boreal zones. Here, we compared weekly xylem cell production and variation in stem circumference in the main northern hemisphere conifer species (genera Picea, Pinus, Abies and Larix) from 1996 to 2003. Dynamics of radial growth were modeled with a Gompertz function, defining the upper asymptote (A), x-axis placement (beta) and rate of change (kappa). A strong linear relationship was found between the constants beta and kappa for both types of analysis. The slope of the linear regression, which corresponds to the time at which maximum growth rate occurred, appeared to converge towards the summer solstice. The maximum growth rate occurred around the time of maximum day length, and not during the warmest period of the year as previously suggested. The achievements of photoperiod could act as a growth constraint or a limit after which the rate of tree-ring formation tends to decrease, thus allowing plants to safely complete secondary cell wall lignification before winter.

  6. Kinetics of monolayer graphene growth by segregation on Pd(111)

    International Nuclear Information System (INIS)

    Mok, H. S.; Murata, Y.; Kodambaka, S.; Ebnonnasir, A.; Ciobanu, C. V.; Nie, S.; McCarty, K. F.

    2014-01-01

    Using in situ low-energy electron microscopy and density functional theory calculations, we follow the growth of monolayer graphene on Pd(111) via surface segregation of bulk-dissolved carbon. Upon lowering the substrate temperature, nucleation of graphene begins on graphene-free Pd surface and continues to occur during graphene growth. Measurements of graphene growth rates and Pd surface work functions establish that this continued nucleation is due to increasing C adatom concentration on the Pd surface with time. We attribute this anomalous phenomenon to a large barrier for attachment of C adatoms to graphene coupled with a strong binding of the non-graphitic C to the Pd surface

  7. The Growth of Small Corrosion Fatigue Cracks in Alloy 7075

    Science.gov (United States)

    Piascik, Robert S.

    2015-01-01

    The corrosion fatigue crack growth characteristics of small (greater than 35 micrometers) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500×) crack length measurements in laboratory air and 1% sodium chloride (NaCl) environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.

  8. Kinetics of monolayer graphene growth by segregation on Pd(111)

    Energy Technology Data Exchange (ETDEWEB)

    Mok, H. S.; Murata, Y.; Kodambaka, S., E-mail: kodambaka@ucla.edu [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 (United States); Ebnonnasir, A.; Ciobanu, C. V. [Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401 (United States); Nie, S.; McCarty, K. F. [Sandia National Laboratories, Livermore, California 94550 (United States)

    2014-03-10

    Using in situ low-energy electron microscopy and density functional theory calculations, we follow the growth of monolayer graphene on Pd(111) via surface segregation of bulk-dissolved carbon. Upon lowering the substrate temperature, nucleation of graphene begins on graphene-free Pd surface and continues to occur during graphene growth. Measurements of graphene growth rates and Pd surface work functions establish that this continued nucleation is due to increasing C adatom concentration on the Pd surface with time. We attribute this anomalous phenomenon to a large barrier for attachment of C adatoms to graphene coupled with a strong binding of the non-graphitic C to the Pd surface.

  9. Temperature Effects on the Growth Rates and Photosynthetic Activities of Symbiodinium Cells

    Directory of Open Access Journals (Sweden)

    Widiastuti Karim

    2015-06-01

    Full Text Available Coral bleaching is caused by environmental stress and susceptibility to bleaching stress varies among types of coral. The physiological properties of the algal symbionts (Symbiodinium spp., especially extent of damage to PSII and its repair capacity, contribute importantly to this variability in stress susceptibility. The objective of the present study was to investigate the relationship between the growth rates and photosynthetic activities of six cultured strains of Symbiodinium spp. (clades A, B, C, D, and F at elevated temperature (33 °C. We also observed the recovery of photodamaged-PSII in the presence or absence of a chloroplast protein synthesis inhibitor (lincomycin. The growth rates and photochemical efficiencies of PSII (Fv/Fm decreased in parallel at high temperature in thermally sensitive strains, B-K100 (clade B followed by culture name and A-Y106, but not in thermally tolerant strains, F-K102 and D-K111. In strains A-KB8 and C-Y103, growth declined markedly at high temperature, but Fv/Fm decreased only slightly. These strains may reallocate energy from growth to the repair of damaged photosynthetic machineries or protection pathways. Alternatively, since recoveries of photo-damaged PSII at 33 °C were modest in strains A-KB8 and C-Y103, thermal stressing of other metabolic pathways may have reduced growth rates in these two strains. This possibility should be explored in future research efforts.

  10. Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints

    NARCIS (Netherlands)

    Asheim, G.B.; Buchholz, W.; Hartwick, J.M.; Mitra, T.; Withagen, C.A.A.M.

    2007-01-01

    In the Dasgupta–Heal–Solow–Stiglitz (DHSS) model of capital accumulation and resource depletion we show the following equivalence: if an efficient path has constant (gross and net of population growth) savings rates, then population growth must be quasi-arithmetic and the path is a maximin or a

  11. Ant Larval Demand Reduces Aphid Colony Growth Rates in an Ant-Aphid Interaction

    Directory of Open Access Journals (Sweden)

    James M. Cook

    2012-02-01

    Full Text Available Ants often form mutualistic interactions with aphids, soliciting honeydew in return for protective services. Under certain circumstances, however, ants will prey upon aphids. In addition, in the presence of ants aphids may increase the quantity or quality of honeydew produced, which is costly. Through these mechanisms, ant attendance can reduce aphid colony growth rates. However, it is unknown whether demand from within the ant colony can affect the ant-aphid interaction. In a factorial experiment, we tested whether the presence of larvae in Lasius niger ant colonies affected the growth rate of Aphis fabae colonies. Other explanatory variables tested were the origin of ant colonies (two separate colonies were used and previous diet (sugar only or sugar and protein. We found that the presence of larvae in the ant colony significantly reduced the growth rate of aphid colonies. Previous diet and colony origin did not affect aphid colony growth rates. Our results suggest that ant colonies balance the flow of two separate resources from aphid colonies- renewable sugars or a protein-rich meal, depending on demand from ant larvae within the nest. Aphid payoffs from the ant-aphid interaction may change on a seasonal basis, as the demand from larvae within the ant colony waxes and wanes.

  12. Re-alimentation in harbor seal pups: effects on the somatotropic axis and growth rate.

    Science.gov (United States)

    Richmond, Julie P; Norris, Tenaya; Zinn, Steven A

    2010-01-15

    The metabolic hormones, growth hormone (GH) and insulin-like growth factor (IGF)-I, together with IGF binding proteins (IGFBP), have been well studied in domestic species and are the primary components of the somatotropic axis. This hormone axis is responsive to nutrient intake, associated with growth rate, and accretion of protein and adipose. However, this relationship has not been evaluated in species that rely heavily on adipose stores for survival, such as pinnipeds. The primary objectives of this research were to investigate the response of the somatotropic axis to reduced nutrient intake and re-alimentation in rehabilitated harbor seal pups, and to assess if these hormones are related to nutritional status and growth rate in harbor seals. Stranded harbor seal pups (n=24) arrived at the rehabilitation facility very thin after fasting for several days (nutritional nadir). Throughout rehabilitation nutrient intake increased and pups gained mass and body condition. Concentrations of GH and IGFBP-2 decreased with re-alimentation, while IGF-I and IGFBP-3 concentrations increased. Overall, GH and IGFBP-2 were negatively associated and IGF-I and IGFBP-3 were positively associated with growth rate and increased body condition of harbor sea pups. Further, the magnitude of the growth response was related to the magnitude in response of the somatotropic axis to varied levels of intake. These data suggest that multiple components of the somatotropic axis may be used to assess the energy status of individuals and may also provide information on the level of feed intake that is predictive of growth rate.

  13. In situ measurement of conductivity during nanocomposite film deposition

    International Nuclear Information System (INIS)

    Blattmann, Christoph O.; Pratsinis, Sotiris E.

    2016-01-01

    Highlights: • Flame-made nanosilver dynamics are elucidated in the gas-phase & on substrates. • The resistance of freshly depositing nanosilver layers is monitored. • Low T g polymers facilitate rapid synthesis of conductive films. • Conductive nanosilver films form on top of or within the polymer depending on MW. - Abstract: Flexible and electrically conductive nanocomposite films are essential for small, portable and even implantable electronic devices. Typically, such film synthesis and conductivity measurement are carried out sequentially. As a result, optimization of filler loading and size/morphology characteristics with respect to film conductivity is rather tedious and costly. Here, freshly-made Ag nanoparticles (nanosilver) are made by scalable flame aerosol technology and directly deposited onto polymeric (polystyrene and poly(methyl methacrylate)) films during which the resistance of the resulting nanocomposite is measured in situ. The formation and gas-phase growth of such flame-made nanosilver, just before incorporation onto the polymer film, is measured by thermophoretic sampling and microscopy. Monitoring the nanocomposite resistance in situ reveals the onset of conductive network formation by the deposited nanosilver growth and sinternecking. The in situ measurement is much faster and more accurate than conventional ex situ four-point resistance measurements since an electrically percolating network is detected upon its formation by the in situ technique. Nevertheless, general resistance trends with respect to filler loading and host polymer composition are consistent for both in situ and ex situ measurements. The time lag for the onset of a conductive network (i.e., percolation) depends linearly on the glass transition temperature (T g ) of the host polymer. This is attributed to the increased nanoparticle-polymer interaction with decreasing T g . Proper selection of the host polymer in combination with in situ resistance monitoring

  14. Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates.

    Science.gov (United States)

    Niklas, Karl J

    2006-02-01

    Life forms as diverse as unicellular algae, zooplankton, vascular plants, and mammals appear to obey quarter-power scaling rules. Among the most famous of these rules is Kleiber's (i.e. basal metabolic rates scale as the three-quarters power of body mass), which has a botanical analogue (i.e. annual plant growth rates scale as the three-quarters power of total body mass). Numerous theories have tried to explain why these rules exist, but each has been heavily criticized either on conceptual or empirical grounds. N,P-STOICHIOMETRY: Recent models predicting growth rates on the basis of how total cell, tissue, or organism nitrogen and phosphorus are allocated, respectively, to protein and rRNA contents may provide the answer, particularly in light of the observation that annual plant growth rates scale linearly with respect to standing leaf mass and that total leaf mass scales isometrically with respect to nitrogen but as the three-quarters power of leaf phosphorus. For example, when these relationships are juxtaposed with other allometric trends, a simple N,P-stoichiometric model successfully predicts the relative growth rates of 131 diverse C3 and C4 species. The melding of allometric and N,P-stoichiometric theoretical insights provides a robust modelling approach that conceptually links the subcellular 'machinery' of protein/ribosomal metabolism to observed growth rates of uni- and multicellular organisms. Because the operation of this 'machinery' is basic to the biology of all life forms, its allometry may provide a mechanistic explanation for the apparent ubiquity of quarter-power scaling rules.

  15. Long branch-chains of amylopectin with B-type crystallinity in rice seed with inhibition of starch branching enzyme I and IIb resist in situ degradation and inhibit plant growth during seedling development : Degradation of rice starch with inhibition of SBEI/IIb during seedling development.

    Science.gov (United States)

    Pan, Ting; Lin, Lingshang; Wang, Juan; Liu, Qiaoquan; Wei, Cunxu

    2018-01-08

    Endosperm starch provides prime energy for cereal seedling growth. Cereal endosperm with repression of starch branching enzyme (SBE) has been widely studied for its high resistant starch content and health benefit. However, in barley and maize, the repression of SBE changes starch component and amylopectin structure which affects grain germination and seedling establishment. A high resistant starch rice line (TRS) has been developed through inhibiting SBEI/IIb, and its starch has very high resistance to in vitro hydrolysis and digestion. However, it is unclear whether the starch resists in situ degradation in seed and influences seedling growth after grain germination. In this study, TRS and its wild-type rice cultivar Te-qing (TQ) were used to investigate the seedling growth, starch property changes, and in situ starch degradation during seedling growth. The slow degradation of starch in TRS seed restrained the seedling growth. The starch components including amylose and amylopectin were simultaneously degraded in TQ seeds during seedling growth, but in TRS seeds, the amylose was degraded faster than amylopectin and the amylopectin long branch-chains with B-type crystallinity had high resistance to in situ degradation. TQ starch was gradually degraded from the proximal to distal region of embryo and from the outer to inner in endosperm. However, TRS endosperm contained polygonal, aggregate, elongated and hollow starch from inner to outer. The polygonal starch similar to TQ starch was completely degraded, and the other starches with long branch-chains of amylopectin and B-type crystallinity were degraded faster at the early stage of seedling growth but had high resistance to in situ degradation during TRS seedling growth. The B-type crystallinity and long branch-chains of amylopectin in TRS seed had high resistance to in situ degradation, which inhibited TRS seedling growth.

  16. Reliability of chromogenic in situ hybridization for epidermal growth factor receptor gene copy number detection in non-small-cell lung carcinomas: a comparison with fluorescence in situ hybridization study.

    Science.gov (United States)

    Yoo, Seol Bong; Lee, Hyun Ju; Park, Jung Ok; Choe, Gheeyoung; Chung, Doo Hyun; Seo, Jeong-Wook; Chung, Jin-Haeng

    2010-03-01

    Fluorescence in situ hybridization (FISH) has been known to be the most representative and standardized test for assessing gene amplification. However, FISH requires a fluorescence microscope, the signals are labile and rapidly fade over time. Recently, chromogenic in situ hybridization (CISH) has emerged as a potential alternative to FISH. The aim of this study is to test the reliability of CISH technique for the detection of epidermal growth factor receptor (EGFR) gene amplification in non-small-cell lung carcinomas (NSCLC), to compare CISH results with FISH. A total of 277 formalin-fixed and paraffin embedded NSCLC tissue samples were retrieved from the surgical pathology archives at Seoul National University Bundang Hospital. CISH and FISH examinations were performed to test EGFR gene amplification status. There was high concordance in the assessment of EGFR gene copy number between CISH and FISH tests (Kappa coefficient=0.83). Excellent concordance was shown between two observers on the interpretation of the CISH results (Kappa coefficient=0.90). In conclusion, CISH result is highly reproducible, accurate and practical method to determine EGFR gene amplification in NSCLC. In addition, CISH allows a concurrent analysis of histological features of the tumors and gene copy numbers.

  17. The daily weight gain, growth rate and length-weight relationships of ...

    African Journals Online (AJOL)

    The daily weight gain, growth rate and length-weight relationships of Clarias gariepinus, Heterobranchus longifilis and their reciprocal hybrids (Pisces: Clariidae) reared under ambient environmental conditions.

  18. Rate-dependent mode I interlaminar crack growth mechanisms in graphite/epoxy and graphite/PEEK

    Science.gov (United States)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Smiley, A. J.

    1987-01-01

    In this paper the mode I fracture behavior of graphite/epoxy and graphite/PEEK composites is examined over four decades of crosshead rates (0.25-250 mm/min). Straight-sided double-cantilever-beam specimens consisting of unidirectional laminates were tested at room temperature. For graphite/epoxy the load-deflection response was linear to fracture, and stable slow crack growth initiating at the highest load level was observed for all rates tested. In contrast, mode I crack growth in the graphite/PEEK material was often unstable and showed stick-slip behavior. Subcritical crack growth occurring prior to the onset of fracture was observed at intermediate displacement rates. A mechanism for the fracture behavior of the graphite/PEEK material (based on viscoelastic, plastic, and microcrack coalescence in the process zone) is proposed and related to the observed rate-dependent phenomena.

  19. On the relationship between tumour growth rate and survival in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Hitesh B. Mistry

    2017-11-01

    Full Text Available A recurrent question within oncology drug development is predicting phase III outcome for a new treatment using early clinical data. One approach to tackle this problem has been to derive metrics from mathematical models that describe tumour size dynamics termed re-growth rate and time to tumour re-growth. They have shown to be strong predictors of overall survival in numerous studies but there is debate about how these metrics are derived and if they are more predictive than empirical end-points. This work explores the issues raised in using model-derived metric as predictors for survival analyses. Re-growth rate and time to tumour re-growth were calculated for three large clinical studies by forward and reverse alignment. The latter involves re-aligning patients to their time of progression. Hence, it accounts for the time taken to estimate re-growth rate and time to tumour re-growth but also assesses if these predictors correlate to survival from the time of progression. I found that neither re-growth rate nor time to tumour re-growth correlated to survival using reverse alignment. This suggests that the dynamics of tumours up until disease progression has no relationship to survival post progression. For prediction of a phase III trial I found the metrics performed no better than empirical end-points. These results highlight that care must be taken when relating dynamics of tumour imaging to survival and that bench-marking new approaches to existing ones is essential.

  20. Electrochemical studies, in-situ and ex-situ characterizations of different manganese compounds electrodeposited in aerated solutions; Etudes electrochimiques, suivis in-situ et caracterisations ex-situ de divers composes de manganese electrodeposes dans des solutions aerees

    Energy Technology Data Exchange (ETDEWEB)

    Peulon, S.; Lacroix, A.; Chausse, A. [Univ. d' Evry-val-d' Essonne, Laboratoire Analyse et Modelisation pour la Biologie et l' Environnement (LAMBE CNRS UMR 8587), 91 - Evry (France); Larabi-Gruet, N. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR/L3MR), 91 - Gif sur Yvette (France)

    2007-07-01

    This work deals with the electrodeposition of manganese compounds. A systematic study of the synthesis experimental conditions has been carried out, and the obtained depositions have been characterized by different ex-situ analyses methods (XRD, FTIR, SEM). The in-situ measurements of mass increase with a quartz microbalance during the syntheses have allowed to estimate the growth mechanisms which are in agreement with the ex-situ characterizations. The cation has an important role in the nature of the electrodeposited compounds. In presence of sodium, a mixed lamellar compound Mn(III)/Mn(IV), the birnessite, is deposited, whereas in presence of potassium, bixbyite is formed (Mn{sub 2}O{sub 3}), these two compounds having a main role in the environment. The substrate can also influence the nature of the formed intermediary compounds. Little studied compounds such as feitkneichtite ({beta}-MnOOH) and groutite ({alpha}-MnOOH) have been revealed. (O.M.)

  1. Effects of void anisotropy on the ignition and growth rates of energetic materials

    Science.gov (United States)

    Rai, Nirmal Kumar; Sen, Oishik; Udaykumar, H. S.

    2017-06-01

    Initiation of heterogeneous energetic materials is thought to occur at hot spots; reaction fronts propagate from sites of such hot spots into the surrounding material resulting in complete consumption of the material. Heterogeneous materials, such as plastic bonded explosives (PBXs) and pressed materials contain numerous voids, defects and interfaces at which hot spots can occur. Amongst the various mechanisms of hot spot formation, void collapse is considered to be the predominant one in the high strain rate loading conditions. It is established in the past the shape of the voids has a significant effect on the initiation behavior of energetic materials. In particular, void aspect ratio and orientations play an important role in this regard. This work aims to quantify the effects of void aspect ratio and orientation on the ignition and growth rates of chemical reaction from the hot spot. A wide range of aspect ratio and orientations is considered to establish a correlation between the ignition and growth rates and the void morphology. The ignition and growth rates are obtained from high fidelity reactive meso-scale simulations. The energetic material considered in this work is HMX and Tarver McGuire HMX decomposition model is considered to capture the reaction mechanism of HMX. The meso-scale simulations are performed using a Cartesian grid based Eulerian solver SCIMITAR3D. The void morphology is shown to have a significant effect on the ignition and growth rates of HMX.

  2. Constant Growth Rate Can Be Supported by Decreasing Energy Flux and Increasing Aerobic Glycolysis

    Directory of Open Access Journals (Sweden)

    Nikolai Slavov

    2014-05-01

    Full Text Available Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such roles in yeast batch cultures by quantifying O2 consumption, CO2 production, amino acids, mRNAs, proteins, posttranslational modifications, and stress sensitivity in the course of nine doublings at constant rate. During this course, the cells support a constant biomass-production rate with decreasing rates of respiration and ATP production but also decrease their stress resistance. As the respiration rate decreases, so do the levels of enzymes catalyzing rate-determining reactions of the tricarboxylic-acid cycle (providing NADH for respiration and of mitochondrial folate-mediated NADPH production (required for oxidative defense. The findings demonstrate that exponential growth can represent not a single metabolic/physiological state but a continuum of changing states and that aerobic glycolysis can reduce the energy demands associated with respiratory metabolism and stress survival.

  3. Human disturbance influences reproductive success and growth rate in California sea lions (Zalophus californianus.

    Directory of Open Access Journals (Sweden)

    Susannah S French

    Full Text Available The environment is currently undergoing changes at both global (e.g., climate change and local (e.g., tourism, pollution, habitat modification scales that have the capacity to affect the viability of animal and plant populations. Many of these changes, such as human disturbance, have an anthropogenic origin and therefore may be mitigated by management action. To do so requires an understanding of the impact of human activities and changing environmental conditions on population dynamics. We investigated the influence of human activity on important life history parameters (reproductive rate, and body condition, and growth rate of neonate pups for California sea lions (Zalophus californianus in the Gulf of California, Mexico. Increased human presence was associated with lower reproductive rates, which translated into reduced long-term population growth rates and suggested that human activities are a disturbance that could lead to population declines. We also observed higher body growth rates in pups with increased exposure to humans. Increased growth rates in pups may reflect a density dependent response to declining reproductive rates (e.g., decreased competition for resources. Our results highlight the potentially complex changes in life history parameters that may result from human disturbance, and their implication for population dynamics. We recommend careful monitoring of human activities in the Gulf of California and emphasize the importance of management strategies that explicitly consider the potential impact of human activities such as ecotourism on vertebrate populations.

  4. Higher Growth Rate of Branch Duct Intraductal Papillary Mucinous Neoplasms Associates With Worrisome Features.

    Science.gov (United States)

    Kolb, Jennifer M; Argiriadi, Pamela; Lee, Karen; Liu, Xiaoyu; Bagiella, Emilia; Lucas, Aimee L; Kim, Michelle Kang; Kumta, Nikhil A; Nagula, Satish; Sarpel, Umut; DiMaio, Christopher J

    2018-03-11

    For patients with branch duct intraductal papillary mucinous neoplasms (BD-IPMNs, cysts), it is a challenge to identify those at high risk for malignant lesions. We sought to identify factors associated with development of pancreatic cancer, focusing on neoplasm growth rate. We performed a retrospective study of 189 patients with BD-IPMNs who underwent at least 2 contrast-enhanced cross-sectional imaging studies, 1 year or more apart, at a tertiary referral center from January 2003 through 2013. Patients with cysts that had Fukuoka worrisome or high-risk features were excluded. Two radiologists reviewed all images. Cyst size was recorded at the initial and final imaging studies and growth rate was calculated. We collected patient demographic data, cyst characteristics, and clinical outcomes; univariate logistic regression models were used to determine the odds of developing worrisome features. The primary outcomes were to determine growth rate of low-risk BD-IPMNs and to assess whether cyst growth rate correlates high-risk features of IPMNs. Based on image analyses, cysts were initially a median 11 mm (range, 3-31 mm) and their final size was 12.5 mm (range, 3-42 mm). After a median follow-up time of 56 months (range, 12-163 months), the median cyst growth rate was 0.29 mm/year. Twelve patients developed worrisome features, no patients developed high-risk features, 4 patients had surgical resection, and no cancers developed. The rate of BD-IPMN growth was greater in patients who developed worrisome features than those who did not (2.84 mm/year vs 0.23 mm/year; P < .001). The odds of developing worrisome features increased for each unit (mm) increase in cyst size (odds ratio, 1.149; 95% CI, 1.035-1.276, P = .009). In a retrospective analysis of images from patients with BD-IPMN, we found low-risk BD-IPMNs to grow at an extremely low rate (less than 0.3 mm/year). BD-IPMNs in only about 6% of patients developed worrisome features, and none developed high-risk features

  5. Cu2O-directed in situ growth of Au nanoparticles inside HKUST-1 nanocages.

    Science.gov (United States)

    Liu, Yongxin; Liu, Ting; Tian, Long; Zhang, Linlin; Yao, Lili; Tan, Taixing; Xu, Jin; Han, Xiaohui; Liu, Dan; Wang, Cheng

    2016-12-07

    Controllable integration of metal nanoparticles (MNPs) and metal-organic frameworks (MOFs) is attracting considerable attention as the obtained composite materials always show synergistic effects in applications of catalysis, delivery, as well as sensing. Herein, a Cu 2 O-directed in situ growth strategy was developed to integrate Au nanoparticles and HKUST-1. In this strategy, Cu 2 O@HKUST-1 core-shell heterostructures, HKUST-1 nanocages, Cu 2 O@Au@HKUST-1 sandwich core-shell heterostructures and Au@HKUST-1 balls-in-cage heterostructures were successfully synthesized. Cu 2 O@HKUST-1 core-shell heterostructures were synthesized by soaking Cu 2 O nanocrystals in benzene-1,3,5-tricarboxylic acid solution. The well-defined Cu 2 O@HKUST-1 core-shell heterostructures were demonstrated to be dominated by the ratio of Cu 2+ cations to btc 3- ligands in solution during the period of HKUST-1 formation. Cu 2 O@Au@HKUST-1 sandwich core-shell or Au@HKUST-1 balls-in-cage heterostructures were obtained by impregnating HAuCl 4 into Cu 2 O@HKUST-1 core-shell heterostructures. Due to the porosity of HKUST-1 and reducibility of Cu 2 O, HAuCl 4 could pass through the HKUST-1 shell and be reduced by the Cu 2 O core in situ forming Au nanoparticles. Finally, CO oxidation reaction at high temperatures was carried out to assess the catalytic functionality of the obtained composite heterostructures. This strategy can circumvent some drawbacks of the existing approaches for integrating MNPs and MOFs, such as nonselective deposition of MNPs at the outer surface of the MOF matrices, extreme treatment conditions and additional surface modifications.

  6. Growth rates in modern speleothems from Santana Cave, Brazil, by the 210Pb-method

    International Nuclear Information System (INIS)

    Bonotto, D.M.; Karmann, I.; Baskaran, M.M.

    2012-01-01

    The Santana Cave is located at the Upper Ribeira Touristic State Park (PETAR-Parque Estadual Turístico do Alto Ribeira) in southern São Paulo State, Brazil. This paper describes 210 Pb activity concentration data in soda straw stalactites samples collected at Salão das Flores in Santana Cave that is a fossil tributary of the cave river. Non-expensive alpha counting following some analytical steps for extracting and depositing 210 Po were used for providing the 210 Pb data. In the analyzed samples, 210 Pb values of increasingly older samples fitted an exponential curve, thus suggesting that the production of 210 Pb has been constant with time. Also, the near-ideal fit indicated that the growth was uniform and there was no break in the continuous growth. The soda straw growth rates were determined from the best fit to the exponential curve through the 210 Pb activity concentration. The results of the measurements allowed estimate a longitudinal rate corresponding to 1.3 mm/yr and a lateral rate of 0.01 mm/yr, which permitted calculate times of 70 years and 317–498 years for their formation, respectively. The lateral growth rate is compatible with values from studies of chemical weathering rates held under laboratory and natural conditions.

  7. An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions

    Directory of Open Access Journals (Sweden)

    B. Verheggen

    2006-01-01

    Full Text Available Classical nucleation theory is unable to explain the ubiquity of nucleation events observed in the atmosphere. This shows a need for an empirical determination of the nucleation rate. Here we present a novel inverse modeling procedure to determine particle nucleation and growth rates based on consecutive measurements of the aerosol size distribution. The particle growth rate is determined by regression analysis of the measured change in the aerosol size distribution over time, taking into account the effects of processes such as coagulation, deposition and/or dilution. This allows the growth rate to be determined with a higher time-resolution than can be deduced from inspecting contour plots ('banana-plots''. Knowing the growth rate as a function of time enables the evaluation of the time of nucleation of measured particles of a certain size. The nucleation rate is then obtained by integrating the particle losses from time of measurement to time of nucleation. The regression analysis can also be used to determine or verify the optimum value of other parameters of interest, such as the wall loss or coagulation rate constants. As an example, the method is applied to smog chamber measurements. This program offers a powerful interpretive tool to study empirical aerosol population dynamics in general, and nucleation and growth in particular.

  8. In situ electron backscattered diffraction of individual GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Prikhodko, S.V. [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States)], E-mail: sergey@seas.ucla.edu; Sitzman, S. [Oxford Instruments America, Concord, MA 01742 (United States); Gambin, V. [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States); Kodambaka, S. [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2008-12-15

    We suggest and demonstrate that electron backscattered diffraction, a scanning electron microscope-based technique, can be used for non-destructive structural and morphological characterization of statistically significant number of nanowires in situ on their growth substrate. We obtain morphological, crystal phase, and crystal orientation information of individual GaAs nanowires in situ on the growth substrate GaAs(1 1 1) B. Our results, verified using transmission electron microscopy and selected area electron diffraction analyses of the same set of wires, indicate that most wires possess a wurtzite structure with a high density of thin structural defects aligned normal to the wire growth axis, while others grow defect-free with a zincblende structure. The demonstrated approach is general, applicable to other material systems, and is expected to provide important insights into the role of substrate structure on nanowire structure on nanowire crystallinity and growth orientation.

  9. Effect of repeated oral therapeutic doses of methylphenidate on food intake and growth rate in rats.

    Science.gov (United States)

    Alam, Nausheen; Najam, Rahila

    2015-01-01

    Central nervous system stimulants are known to produce anorexia. Previous data suggest that methylphenidate can have variable effects on caloric intake and growth rate. A dose-response study was performed to monitor caloric intake, liquid intake and growth rate in rats following repeated administration of human oral therapeutic doses 2 mg/kg/day, 5mg/kg/day and 8mg/kg/day of methylphenidate. We found that food intake and water intake, increased in all weeks and at all doses used in the study. Growth rate increased more at higher dose (8mg/kg/day) and at low dose (2mg/kg/day) of methylphenidate in 1(st) and 2(nd) week whereas more decreased by the above doses in 3(rd) week, suggesting that food stimulation leads to initial increase in growth rate but long term administration of methylphenidate attenuate growth rate that is not due to modulation of appetite but may be due to anxiety and increased activity produce by stimulants. A possible role of DA, 5HT receptors in modulation of appetite and anxiety is discussed.

  10. Growth rate variation of the stalked barnacle Pollicipes pollicipes (Crustacea: Cirripedia using calcein as a chemical marker

    Directory of Open Access Journals (Sweden)

    David Jacinto

    2015-03-01

    Full Text Available This study describes the use of calcein as a chemical tagging methodology to estimate growth rate variation of the stalked barnacle Pollicipes pollicipes, an ecologically important intertidal species and economic resource, in SW Portugal. Calcein tagging had a high success rate (94% in marking both juvenile and adult barnacles for a period of 2.5 months, providing a valuable method for obtaining reliable data in growth studies of P. pollicipes. Growth rate decreased with barnacle size and was highly variable amongst individuals, particularly in smaller barnacles. No effect of shore level on barnacle growth was detected. Growth rates were higher in smaller juvenile barnacles, peaking at a 1.1-mm monthly increment in rostro-carinal length (RC for individuals with RC=5 mm, and decreased with barnacle size (monthly growth rates of 0.5 mm for adult barnacles with RC~12.5 mm. Growth rates observed in adults with commercial interest (RC ≥ 18 mm was < 0.25 mm per month. The advantages of tagging P. pollicipes with calcein were the possibility of mass marking individual barnacles of different size cohorts within a short period (less than 1 day of manipulation; and reduced time of fieldwork, which is very important because this species inhabits very exposed rocky shores.

  11. Determining the nucleation rate from the dimer growth probability

    NARCIS (Netherlands)

    Ter Horst, J.H.; Kashchiev, D.

    2005-01-01

    A new method is proposed for the determination of the stationary one-component nucleation rate J with the help of data for the growth probability P2 of a dimer which is the smallest cluster of the nucleating phase. The method is based on an exact formula relating J and P2, and is readily applicable

  12. Morphology and mycelial growth rate of Pleurotus spp. strains from the Mexican mixtec region

    Science.gov (United States)

    Guadarrama-Mendoza, P.C.; del Toro, G. Valencia; Ramírez-Carrillo, R.; Robles-Martínez, F.; Yáñez-Fernández, J.; Garín-Aguilar, M.E.; Hernández, C.G.; Bravo-Villa, G.

    2014-01-01

    Two native Pleurotus spp. strains (white LB-050 and pale pink LB-051) were isolated from rotten tree trunks of cazahuate (Ipomoea murucoides) from the Mexican Mixtec Region. Both strains were chemically dedikaryotized to obtain their symmetrical monokaryotic components (neohaplonts). This was achieved employing homogenization time periods from 60 to 65 s, and 3 day incubation at 28 °C in a peptone-glucose solution (PGS). Pairing of compatible neohaplonts resulted in 56 hybrid strains which were classified into the four following hybrid types: (R1-nxB1-n, R1-nxB2-1, R2-nxB1-n and R2-nxB2-1). The mycelial growth of Pleurotus spp. monokaryotic and dikaryotic strains showed differences in texture (cottony or floccose), growth (scarce, regular or abundant), density (high, regular or low), and pigmentation (off-white, white or pale pink). To determine the rate and the amount of mycelium growth in malt extract agar at 28 °C, the diameter of the colony was measured every 24 h until the Petri dish was completely colonized. A linear model had the best fit to the mycelial growth kinetics. A direct relationship between mycelial morphology and growth rate was observed. Cottony mycelium presented significantly higher growth rates (p < 0.01) in comparison with floccose mycelium. Thus, mycelial morphology can be used as criterion to select which pairs must be used for optimizing compatible-mating studies. Hybrids resulting from cottony neohaplonts maintained the characteristically high growth rates of their parental strains with the hybrid R1-nxB1-n being faster than the latter. PMID:25477920

  13. Growth rate enhancement of free-electron laser by two consecutive ...

    Indian Academy of Sciences (India)

    2014-06-03

    Jun 3, 2014 ... been the subject of many papers published by different groups all around the world. The radiation is generated by relativistic electron beam passing through a wiggler. ..... Shown in figure 2 are plots of growth rate, Im ¯k, vs.

  14. White emission by self-regulated growth of InGaN/GaN quantum wells on in situ self-organized faceted n-GaN islands

    International Nuclear Information System (INIS)

    Fang Zhilai

    2011-01-01

    The in situ self-organization of three-dimensional n-GaN islands of distinct sidewall faceting was realized by initial low V/III ratio growth under high reactor pressure followed by variations of the V/III ratio and reactor pressure. The naturally formed faceted islands with top and sidewall facets of various specific polar angles may serve as an ideal template for self-regulated growth of the InGaN/GaN multiple quantum wells (MQWs), i.e. the growth behavior is specific polar angle dependent. Further, the growth behavior and luminescence properties of the InGaN/GaN MQWs on various facets of different specific polar angles are directly compared and discussed. Tetrachromatic white emissions (blue, cyan, green, and red) from single-chip phosphor-free InGaN/GaN MQWs are realized by color tuning through island shaping, shape variations, and self-regulated growth of the InGaN/GaN MQWs.

  15. Sex-Based Differences in Adelie Penguin (Pygoscelis adeliae Chick Growth Rates and Diet.

    Directory of Open Access Journals (Sweden)

    Scott Jennings

    Full Text Available Sexually size-dimorphic species must show some difference between the sexes in growth rate and/or length of growing period. Such differences in growth parameters can cause the sexes to be impacted by environmental variability in different ways, and understanding these differences allows a better understanding of patterns in productivity between individuals and populations. We investigated differences in growth rate and diet between male and female Adélie Penguin (Pygoscelis adeliae chicks during two breeding seasons at Cape Crozier, Ross Island, Antarctica. Adélie Penguins are a slightly dimorphic species, with adult males averaging larger than adult females in mass (~11% as well as bill (~8% and flipper length (~3%. We measured mass and length of flipper, bill, tibiotarsus, and foot at 5-day intervals for 45 male and 40 female individually-marked chicks. Chick sex was molecularly determined from feathers. We used linear mixed effects models to estimate daily growth rate as a function of chick sex, while controlling for hatching order, brood size, year, and potential variation in breeding quality between pairs of parents. Accounting for season and hatching order, male chicks gained mass an average of 15.6 g d(-1 faster than females. Similarly, growth in bill length was faster for males, and the calculated bill size difference at fledging was similar to that observed in adults. There was no evidence for sex-based differences in growth of other morphological features. Adélie diet at Ross Island is composed almost entirely of two species--one krill (Euphausia crystallorophias and one fish (Pleuragramma antarctica, with fish having a higher caloric value. Using isotopic analyses of feather samples, we also determined that male chicks were fed a higher proportion of fish than female chicks. The related differences in provisioning and growth rates of male and female offspring provides a greater understanding of the ways in which ecological factors

  16. Thin film growth studies using time-resolved x-ray scattering

    Science.gov (United States)

    Kowarik, Stefan

    2017-02-01

    Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.

  17. Breeding of in-situ Petroleum Degrading Bacteria in Hangzhou Bay and evaluating for the In-situ repair effect

    Science.gov (United States)

    Lan, Ru; Lin, Hai; Qiao, Bing; Dong, Yingbo; Zhang, Wei; Chang, Wen

    2018-02-01

    In this paper, the restoration behaviour of the in-situ microorganisms in seawater and sediments to the marine accident oil spill was researched. The experimental study on the breeding of in-situ petroleum-degrading bacteria in the seawater and sediments of Hangzhou Bay and the restoration of oil spill were carried out. Making use of the reinforced microbial flora, combined with physical and chemical methods in field environment, petroleum degrading and restoration experiment were performed, the effect of the breeding of in-situ degrading bacteria was evaluated, and the standard process of in-situ bacteria sampling, laboratory screening, domestication and degradation efficiency testing were formed. This study laid a foundation for further evaluation of the advantages and disadvantages for the petroleum-degrading bacteria of Hangzhou Bay during the process of in-situ restoration. The results showed that in-situ microbes of Hangzhou Bay could reach the growth peak in 5 days with the suitable environmental factors and sufficient nutrient elements, and the degradation efficiency could reach 65.2% (or 74.8% after acclimation). And also the microbes could adapt to the local sea water and environmental conditions, with a certain degree of degradation. The research results could provide parameter support for causal judgment and quantitative assessment of oil spill damage.

  18. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes

    Science.gov (United States)

    Lifton, Nathaniel; Sato, Tatsuhiko; Dunai, Tibor J.

    2014-01-01

    Several models have been proposed for scaling in situ cosmogenic nuclide production rates from the relatively few sites where they have been measured to other sites of interest. Two main types of models are recognized: (1) those based on data from nuclear disintegrations in photographic emulsions combined with various neutron detectors, and (2) those based largely on neutron monitor data. However, stubborn discrepancies between these model types have led to frequent confusion when calculating surface exposure ages from production rates derived from the models. To help resolve these discrepancies and identify the sources of potential biases in each model, we have developed a new scaling model based on analytical approximations to modeled fluxes of the main atmospheric cosmic-ray particles responsible for in situ cosmogenic nuclide production. Both the analytical formulations and the Monte Carlo model fluxes on which they are based agree well with measured atmospheric fluxes of neutrons, protons, and muons, indicating they can serve as a robust estimate of the atmospheric cosmic-ray flux based on first principles. We are also using updated records for quantifying temporal and spatial variability in geomagnetic and solar modulation effects on the fluxes. A key advantage of this new model (herein termed LSD) over previous Monte Carlo models of cosmogenic nuclide production is that it allows for faster estimation of scaling factors based on time-varying geomagnetic and solar inputs. Comparing scaling predictions derived from the LSD model with those of previously published models suggest potential sources of bias in the latter can be largely attributed to two factors: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. Given that the LSD model generates flux spectra for each cosmic-ray particle of interest, it is also relatively straightforward to generate nuclide-specific scaling

  19. Maternal body size and condition determine calf growth rates in southern right whales

    DEFF Research Database (Denmark)

    Christiansen, Fredrik; Vivier, Fabien; Charlton, Claire

    2018-01-01

    The cost of reproduction is a key parameter determining a species' life history strategy. Despite exhibiting some of the fastest offspring growth rates among mammals, the cost of reproduction in baleen whales is largely unknown since standard field metabolic techniques cannot be applied. We...... quantified the cost of reproduction for southern right whales Eubalaena australis over a 3 mo breeding season. We did this by determining the relationship between calf growth rate and maternal rate of loss in energy reserves, using repeated measurements of body volume obtained from unmanned aerial vehicle...... period, and highlights the importance of sufficient maternal energy reserves for reproduction in this capital breeding species....

  20. Population Growth Rate: Teaching Guide. Measures of Progress Poster Kit Number 2.

    Science.gov (United States)

    World Bank, Washington, DC.

    This teaching guide accompanies the Population Growth Rate poster kit which is designed to teach students about population growth differences between rich and poor nations and about what people in developing countries are doing to help improve their quality of life. The guide is designed for use with: (1) a poster map of the world providing social…

  1. Role of temperature on growth and metabolic rate in the tenebrionid beetles Alphitobius diaperinus and Tenebrio molitor.

    Science.gov (United States)

    Bjørge, Julie Dahl; Overgaard, Johannes; Malte, Hans; Gianotten, Natasja; Heckmann, Lars-Henrik

    2018-03-10

    Insects are increasingly used as a dietary source for food and feed and it is therefore important to understand how rearing conditions affect growth and development of these agricultural animals. Temperature is arguably the most important factor affecting metabolism and growth rate in insects. Here, we investigated how rearing temperature affected growth rate, growth efficiency and macronutrient composition in two species of edible beetle larvae: Alphitobius diaperinus and Tenebrio molitor. Growth rates of both species were quantified at temperatures ranging from 15.2 to 38.0 °C after which we measured protein and lipid content of the different treatment groups. Metabolic rate was measured in a similar temperature range by measuring the rate of O 2 consumption (V·O 2 ) and CO 2 production (V·CO 2 ) using repeated measures closed respirometry. Using these measurements, we calculated the growth efficiency of mealworms by relating the energy assimilation rate to the metabolic rate. Maximum daily growth rates were 18.3% and 16.6% at 31 °C, for A. diaperinus and T. molitor respectively, and we found that A. diaperinus was better at maintaining growth at high temperatures while T. molitor had superior growth at lower temperatures. Both species had highest efficiencies of energy assimilation in the temperature range of 23.3-31.0 °C, with values close to 2 J assimilated/J metabolised in A. diaperinus and around 4 J assimilated/J metabolised in T. molitor. Compared to "conventional" terrestrial livestock, both species of insects were characterised by high growth rates and very high energy conversion efficiency at most experimental temperatures. For A. diaperinus, lipid content was approximately 30% of dry mass and protein content approximately 50% of dry mass across most temperatures. Temperature had a greater influence on the body composition of T. molitor. At 31.0 °C the lipid and protein content was measured to 47.4% and 37.9%, respectively but lipid

  2. In situ ceramic layer growth on coated fuel particles dispersed in a zirconium metal matrix

    Science.gov (United States)

    Terrani, K. A.; Silva, C. M.; Kiggans, J. O.; Cai, Z.; Shin, D.; Snead, L. L.

    2013-06-01

    The extent and nature of the chemical interaction between the outermost coating layer of coated fuel particles embedded in zirconium metal during fabrication of metal matrix microencapsulated fuels were examined. Various particles with outermost coating layers of pyrocarbon, SiC, and ZrC have been investigated in this study. ZrC-Zr interaction was the least substantial, while the PyC-Zr reaction can be exploited to produce a ZrC layer at the interface in an in situ manner. The thickness of the ZrC layer in the latter case can be controlled by adjusting the time and temperature during processing. The kinetics of ZrC layer growth is significantly faster from what is predicted using literature carbon diffusivity data in ZrC. SiC-Zr interaction is more complex and results in formation of various chemical phases in a layered aggregate morphology at the interface.

  3. Layer-by-Layer Epitaxial Growth of Defect-Engineered Strontium Cobaltites

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Tassie K. [Materials Science; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Cook, Seyoung [Materials Science; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Wan, Gang [Materials Science; Hong, Hawoong [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States; Marks, Laurence D. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Fong, Dillon D. [Materials Science

    2018-01-31

    Control over structure and composition of (ABO(3)) perovskite oxides offers exciting opportunities since these materials possess unique, tunable properties. Perovskite oxides with cobalt B-site cations are particularly promising, as the range of the cations stable oxidation states leads to many possible structural frameworks. Here, we report growth of strontium cobalt oxide thin films by molecular beam epitaxy, and conditions necessary to stabilize different defect concentration phases. In situ X-ray scattering is used to monitor structural evolution during growth, while in situ X-ray absorption near-edge spectroscopy is used to probe oxidation state and measure changes to oxygen vacancy concentration as a function of film thickness. Experimental results are compared to kinetically limited thermodynamic predictions, in particular, solute trapping, with semiquantitative agreement. Agreement between observations of dependence of cobaltite phase on oxidation activity and deposition rate, and predictions indicates that a combined experimental/theoretical approach is key to understanding phase behavior in the strontium cobalt oxide system.

  4. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF).

    Science.gov (United States)

    Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh

    2015-12-01

    Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p culture media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast division stimulation. It also suggests that the effects of bFGF on different cell types with

  5. Influence of Cell-Cell Interactions on the Population Growth Rate in a Tumor

    Science.gov (United States)

    Chen, Yong

    2017-12-01

    The understanding of the macroscopic phenomenological models of the population growth at a microscopic level is important to predict the population behaviors emerged from the interactions between the individuals. In this work, we consider the influence of the population growth rate R on the cell-cell interaction in a tumor system and show that, in most cases especially small proliferative probabilities, the regulative role of the interaction will be strengthened with the decline of the intrinsic proliferative probabilities. For the high replication rates of an individual and the cooperative interactions, the proliferative probability almost has no effect. We compute the dependences of R on the interactions between the cells under the approximation of the nearest neighbor in the rim of an avascular tumor. Our results are helpful to qualitatively understand the influence of the interactions between the individuals on the growth rate in population systems. Supported by the National Natural Science Foundation of China under Grant Nos. 11675008 and 21434001

  6. Parameter estimations in predictive microbiology: Statistically sound modelling of the microbial growth rate.

    Science.gov (United States)

    Akkermans, Simen; Logist, Filip; Van Impe, Jan F

    2018-04-01

    When building models to describe the effect of environmental conditions on the microbial growth rate, parameter estimations can be performed either with a one-step method, i.e., directly on the cell density measurements, or in a two-step method, i.e., via the estimated growth rates. The two-step method is often preferred due to its simplicity. The current research demonstrates that the two-step method is, however, only valid if the correct data transformation is applied and a strict experimental protocol is followed for all experiments. Based on a simulation study and a mathematical derivation, it was demonstrated that the logarithm of the growth rate should be used as a variance stabilizing transformation. Moreover, the one-step method leads to a more accurate estimation of the model parameters and a better approximation of the confidence intervals on the estimated parameters. Therefore, the one-step method is preferred and the two-step method should be avoided. Copyright © 2017. Published by Elsevier Ltd.

  7. Electrochemical studies, in-situ and ex-situ characterizations of different manganese compounds electrodeposited in aerated solutions

    International Nuclear Information System (INIS)

    Peulon, S.; Lacroix, A.; Chausse, A.; Larabi-Gruet, N.

    2007-01-01

    This work deals with the electrodeposition of manganese compounds. A systematic study of the synthesis experimental conditions has been carried out, and the obtained depositions have been characterized by different ex-situ analyses methods (XRD, FTIR, SEM). The in-situ measurements of mass increase with a quartz microbalance during the syntheses have allowed to estimate the growth mechanisms which are in agreement with the ex-situ characterizations. The cation has an important role in the nature of the electrodeposited compounds. In presence of sodium, a mixed lamellar compound Mn(III)/Mn(IV), the birnessite, is deposited, whereas in presence of potassium, bixbyite is formed (Mn 2 O 3 ), these two compounds having a main role in the environment. The substrate can also influence the nature of the formed intermediary compounds. Little studied compounds such as feitkneichtite (β-MnOOH) and groutite (α-MnOOH) have been revealed. (O.M.)

  8. Climate is a stronger driver of tree and forest growth rates than soil and disturbance

    NARCIS (Netherlands)

    Toledo, M.; Poorter, L.; Peña-Claros, M.; Alarcón, A.; Balcázar, J.; Leaño, C.; Licona, J.C.; Llanque, O.; Vroomans, V.; Zuidema, P.; Bongers, F.

    2011-01-01

    1. Essential resources such as water, nutrients and light vary over space and time and plant growth rates are expected to vary accordingly. We examined the effects of climate, soil and logging disturbances on diameter growth rates at the tree and stand level, using 165 1-ha permanent sample plots

  9. In situ diffraction studies of electrode surface structure during gold electrodeposition

    International Nuclear Information System (INIS)

    Magnussen, O.M.; Krug, K.; Ayyad, A.H.; Stettner, J.

    2008-01-01

    Surface X-ray scattering (SXS) in transmission geometry provides a valuable tool for in situ structural studies of electrochemical interfaces under reaction conditions, as illustrated here for homoepitaxial electrodeposition on Au(1 0 0) and Au(1 1 1) electrodes. Employing diffusion-limited deposition conditions to separate the effects of potential and deposition rate, a mutual interaction between the interface structure and the growth behavior is found. Time-dependent SXS measurements during Au(1 0 0) homoepitaxy show with decreasing potential transitions from step flow to layer-by-layer growth, then to multilayer growth, and finally back to layer-by-layer growth. This complex growth behavior can be explained within the framework of kinetic growth theory by the effect of potential, Cl adsorbates and the Au surface structure, specifically the presence of the surface reconstruction, on the Au surface mobility. Conversely, the electrodeposition process influences the structure of the reconstructed Au surface, as illustrated for Au(1 1 1), where a significant deposition-induced compression of the Au surface layer as compared to Au(1 1 1) surfaces under ultrahigh vacuum conditions or in Au-free electrolyte is found. This compression increases towards more negative potentials, which may be explained by a release of potential-induced surface stress

  10. Effects of Phlomis umbrosa Root on Longitudinal Bone Growth Rate in Adolescent Female Rats

    Directory of Open Access Journals (Sweden)

    Donghun Lee

    2016-04-01

    Full Text Available This study aimed to investigate the effects of Phlomis umbrosa root on bone growth and growth mediators in rats. Female adolescent rats were administered P. umbrosa extract, recombinant human growth hormone or vehicle for 10 days. Tetracycline was injected intraperitoneally to produce a glowing fluorescence band on the newly formed bone on day 8, and 5-bromo-2′-deoxyuridine was injected to label proliferating chondrocytes on days 8–10. To assess possible endocrine or autocrine/paracrine mechanisms, we evaluated insulin-like growth factor-1 (IGF-1, insulin-like growth factor binding protein-3 (IGFBP-3 or bone morphogenetic protein-2 (BMP-2 in response to P. umbrosa administration in either growth plate or serum. Oral administration of P. umbrosa significantly increased longitudinal bone growth rate, height of hypertrophic zone and chondrocyte proliferation of the proximal tibial growth plate. P. umbrosa also increased serum IGFBP-3 levels and upregulated the expressions of IGF-1 and BMP-2 in growth plate. In conclusion, P. umbrosa increases longitudinal bone growth rate by stimulating proliferation and hypertrophy of chondrocyte with the increment of circulating IGFBP-3. Regarding the immunohistochemical study, the effect of P. umbrosa may also be attributable to upregulation of local IGF-1 and BMP-2 expressions in the growth plate, which can be considered as a GH dependent autocrine/paracrine pathway.

  11. Estimating blue whale skin isotopic incorporation rates and baleen growth rates: Implications for assessing diet and movement patterns in mysticetes

    Science.gov (United States)

    Busquets-Vass, Geraldine; Newsome, Seth D.; Calambokidis, John; Serra-Valente, Gabriela; Jacobsen, Jeff K.; Aguíñiga-García, Sergio; Gendron, Diane

    2017-01-01

    Stable isotope analysis in mysticete skin and baleen plates has been repeatedly used to assess diet and movement patterns. Accurate interpretation of isotope data depends on understanding isotopic incorporation rates for metabolically active tissues and growth rates for metabolically inert tissues. The aim of this research was to estimate isotopic incorporation rates in blue whale skin and baleen growth rates by using natural gradients in baseline isotope values between oceanic regions. Nitrogen (δ15N) and carbon (δ13C) isotope values of blue whale skin and potential prey were analyzed from three foraging zones (Gulf of California, California Current System, and Costa Rica Dome) in the northeast Pacific from 1996–2015. We also measured δ15N and δ13C values along the lengths of baleen plates collected from six blue whales stranded in the 1980s and 2000s. Skin was separated into three strata: basale, externum, and sloughed skin. A mean (±SD) skin isotopic incorporation rate of 163±91 days was estimated by fitting a generalized additive model of the seasonal trend in δ15N values of skin strata collected in the Gulf of California and the California Current System. A mean (±SD) baleen growth rate of 15.5±2.2 cm y-1 was estimated by using seasonal oscillations in δ15N values from three whales. These oscillations also showed that individual whales have a high fidelity to distinct foraging zones in the northeast Pacific across years. The absence of oscillations in δ15N values of baleen sub-samples from three male whales suggests these individuals remained within a specific zone for several years prior to death. δ13C values of both whale tissues (skin and baleen) and potential prey were not distinct among foraging zones. Our results highlight the importance of considering tissue isotopic incorporation and growth rates when studying migratory mysticetes and provide new insights into the individual movement strategies of blue whales. PMID:28562625

  12. Insights into crystal growth rates from a study of orbicular granitoids from western Australia

    Science.gov (United States)

    Zhang, J.; Lee, C. T.

    2017-12-01

    The purpose of this study is to develop new tools for constraining crystal growth rate in geologic systems. Of interest is the growth of crystals in magmatic systems because crystallization changes the rheology of a magma as well as provides surfaces on which bubbles can nucleate. To explore crystal growth in more detail, we conducted a case study of orbicular granitoids from western Australia. The orbicules occur as spheroids dispersed in a granitic matrix. Most orbicules have at least two to three concentric bands, composed of elongate and radially oriented hornblende surrounded by interstitial plagioclase. We show that mineral modes and hence bulk composition at the scale of the band is homogeneous from rim to core. Crystal number density decreases and crystal size increases from rim to core. These observations suggest that the orbicules crystallized rapidly from rim to core. We hypothesize that the orbicules are blobs of hot dioritic liquid injected into a cold granitic magma and subsequently cooled and solidified. Crystals stop growing when the mass transport rate tends to zero due to the low temperature. We estimated cooling timescales based on conductive cooling models, constraining crystal growth rates to be 10-6 to 10-5 m/s. We also show that the oscillatory banding is controlled by disequilibrium crystallization, wherein hornblende preferentially crystallizes, resulting in the diffusive growth of a chemical boundary layer enriched in plagioclase component, which in turns results in crystallization of plagioclase. We show that the correlation between the width of each crystallization couplet (band) with distance from orbicule rim is linear, with the slope corresponding to the square root of the ratio between chemical diffusivity in the growth medium and thermal diffusivity. We estimate chemical diffusivity of 2*10-7 m2/s, which is remarkably fast for silicate liquids but reasonable for diffusion in hot aqueous fluids, suggesting that crystallization

  13. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [Univ. of Southern California, Los Angeles, CA (United States)

    2017-10-20

    Objectives: Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass Brachypodium distachyon also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation. Description: The project is divided in three main parts: 1) Performing time-lapse imaging and growth measurement in B. distachyon and S. bicolor to determine growth rate dynamic during the day/night cycle. Identifying growth-associated genes whose expression patterns follow the observed growth dynamics using deep sequencing technology, 2) identifying regulators of these genes by screening for DNA-binding proteins interacting with the growth-associated gene promoters identified in Aim 1. Screens will be performed using a validated yeast-one hybrid strategy paired with a specifically designed B. distachyon and S. bicolor transcription factor libraries (1000 clones each), and 3) Selecting 50 potential growth regulators from the screen for downstream characterization. The selection will be made by using a sytems biology approach by calculating the connectivity between growth rate, rhythmic gene expression profiles and TF expression profile and determine which TF is likely part of a hub

  14. Value of volume measurements in evaluating abdominal aortic aneurysms growth rate and need for surgical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kontopodis, Nikolaos, E-mail: kontopodisn@yahoo.gr [Department of Vascular Surgery, University of Crete Medical School, Heraklion (Greece); Metaxa, Eleni, E-mail: emmetaxa@gmail.com [Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Crete (Greece); Papaharilaou, Yannis, E-mail: yannisp@iacm.forth.gr [Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Crete (Greece); Georgakarakos, Efstratios, E-mail: efstratiosgeorg@gmail.com [Vascular Surgery Department, “Demokritus” University of Thrace Medical School, Alexandroupolis (Greece); Tsetis, Dimitris, E-mail: tsetis@med.uoc.gr [Interventional Radiology Unit, Department of Radiology, University of Crete Medical School, Heraklion, Crete (Greece); Ioannou, Christos V., E-mail: ioannou@med.uoc.gr [Department of Vascular Surgery, University of Crete Medical School, Heraklion (Greece)

    2014-07-15

    Purpose: To examine whether indices other than the traditionally used abdominal aortic aneurysm (AAA) maximum diameter, such as AAA volume, intraluminal thrombus (ILT) thickness and ILT volume, may be superior to evaluate aneurismal enlargement. Materials and methods: Thirty-four small AAAs (initially presenting a maximum diameter <5.5 cm which is the threshold for surgical repair) with an initial and a follow-up CT were examined. Median increase and percentile annual change of these variables was calculated. Correlation between growth rates as determined by the new indices under evaluation and those of maximum diameter were assessed. AAAs were divided according to outcome (surveillance vs. elective repair after follow-up which is based on the maximum diameter criterion) and according to growth rate (high vs. low) based on four indices. Contingency between groups of high/low growth rate regarding each of the four indices on one hand and those regarding need for surgical repair on the other was assessed. Results: A strong correlation between growth rates of maximum diameter and those of AAA and ILT volumes could be established. Evaluation of contingency between groups of outcome and those of growth rate revealed significant associations only for AAA and ILT volumes. Subsequently AAAs with a rapid volumetric increase over time had a likelihood ratio of 10 to be operated compared to those with a slower enlargement. Regarding increase of maximum diameter, likelihood ratio between AAAs with rapid and those with slow expansion was only 3. Conclusion: Growth rate of aneurysms regarding 3Dimensional indices of AAA and ILT volumes is significantly associated with the need for surgical intervention while the same does not hold for growth rates determined by 2Dimensional indices of maximum diameter and ILT thickness.

  15. Value of volume measurements in evaluating abdominal aortic aneurysms growth rate and need for surgical treatment

    International Nuclear Information System (INIS)

    Kontopodis, Nikolaos; Metaxa, Eleni; Papaharilaou, Yannis; Georgakarakos, Efstratios; Tsetis, Dimitris; Ioannou, Christos V.

    2014-01-01

    Purpose: To examine whether indices other than the traditionally used abdominal aortic aneurysm (AAA) maximum diameter, such as AAA volume, intraluminal thrombus (ILT) thickness and ILT volume, may be superior to evaluate aneurismal enlargement. Materials and methods: Thirty-four small AAAs (initially presenting a maximum diameter <5.5 cm which is the threshold for surgical repair) with an initial and a follow-up CT were examined. Median increase and percentile annual change of these variables was calculated. Correlation between growth rates as determined by the new indices under evaluation and those of maximum diameter were assessed. AAAs were divided according to outcome (surveillance vs. elective repair after follow-up which is based on the maximum diameter criterion) and according to growth rate (high vs. low) based on four indices. Contingency between groups of high/low growth rate regarding each of the four indices on one hand and those regarding need for surgical repair on the other was assessed. Results: A strong correlation between growth rates of maximum diameter and those of AAA and ILT volumes could be established. Evaluation of contingency between groups of outcome and those of growth rate revealed significant associations only for AAA and ILT volumes. Subsequently AAAs with a rapid volumetric increase over time had a likelihood ratio of 10 to be operated compared to those with a slower enlargement. Regarding increase of maximum diameter, likelihood ratio between AAAs with rapid and those with slow expansion was only 3. Conclusion: Growth rate of aneurysms regarding 3Dimensional indices of AAA and ILT volumes is significantly associated with the need for surgical intervention while the same does not hold for growth rates determined by 2Dimensional indices of maximum diameter and ILT thickness

  16. Carbon nanotubes-porous ceramic composite by in situ CCVD growth of CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Sangram; Sarkar, Naboneeta; Park, Jung Gyu [Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University, #360 Daegok-ri, Haemi-myeon, Seosan-si, Chungnam, 356-706 (Korea, Republic of); Han, In Sub [Korea Institute of Energy Research (KIER), #152 Gajeong-gu, Daejeon 305-343 (Korea, Republic of); Kim, Ik Jin, E-mail: ijkim@hanseo.ac.kr [Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University, #360 Daegok-ri, Haemi-myeon, Seosan-si, Chungnam, 356-706 (Korea, Republic of)

    2016-03-01

    A novel approach towards the formation of Carbon nanotubes-porous alumina ceramic composite was attempted by the application of three different reaction techniques. Porous alumina ceramics having micrometer pore dimensions were developed using the direct foaming technique. NaA zeolites were simultaneously synthesized and coated within the porous ceramics by an in situ hydrothermal process and were subjected to a simple ion exchange reaction for preparing the suitable catalyst material for Carbon nanotubes (CNTs) synthesis. The catalytic chemical vapour deposition (CCVD) technique was used to grow CNTs within the porous ceramics and the effect of growth time on the synthesized CNTs were investigated. Phase compositions of the samples were analysed by X-ray diffractometer (XRD). Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) were used for morphology, surface quality and structural analysis. Crystallinity, defects and yield were studied by Raman spectroscopy and thermogravimetric analysis (TGA). - Highlights: • Novel processing route of MWCNTs grown on Cobalt-zeolites-porous ceramics by CCVD. • CCVD time of 120 min produced MWCNTs with most prominent tube-like structure. • 120 min produced highest yield (19.46%) of CNTs with an I{sub D}/I{sub G} ratio of 0.88.

  17. The Effect of CO2 Injection on Macroalgae Gelidium latifolium Biomass Growth Rate and Carbohydrate Content

    Directory of Open Access Journals (Sweden)

    Mujizat Kawaroe

    2016-06-01

    Full Text Available There are many species of macroalga grow in marine ecosystem and potentially as raw material for bioethanol resource. Bioethanol is a conversion result of carbohydrate, one of macroalgae biomass content. The exploration of macroalgae require information about  growth rate ability to determine availability in the nature. This research analyze growth rate and carbohydrate content of marine macroalga Gelidium latifolium on cultivation using varied injection of carbon dioxide and aeration. The treatments were control (K, 2000 cc CO2 injection and aeration (P1, 3000 cc CO2 injection and aeration (P2, 2000 cc CO2 injection without aeration (P3, and 3000 cc CO2 injection without aeration (P4. Samples weight were 3 gram in early cultivation on laboratorium scale for 42 days observation. The results showed that the daily growth rate Gelidium latifolium during the study ranged from 0.02-1.06%. The highest daily growth rate was 1.06±0.14% (P2. Carbohydrate yield was 18.23% in early cultivation then 19.40% (K and P2, 20.40% (P1, 16.87% (K3, and 16.40% (P4 after cultivation. The high of carbohydrates value may not guarantee the sustainable Gelidium latifolium biomass utilization as raw material for bioethanol production because of the low growth rate, thus it is necessary to modified and encourage cultivation method effectively. Keywords: CO2 injection, growth rate, carbohydrate, macroalgae, Gelidium latifolium

  18. Simple mass transport model for metal uptake by marine macroalgae growing at different rates

    Energy Technology Data Exchange (ETDEWEB)

    Rice, D.L.

    1984-01-01

    Although algae growing at different rates may exhibit different concentrations of a given metal, such differences in algal chemistry may or may not reflect actual effects of environmental growth factors on the kinetics of metal uptake. Published data on uptake of rubidium, cadmium, and manganese by the green seaweed Ulva fasciata Delile grown at different rates in open system sea water was interpreted using the model. Differences in exposure time to sea water of relatively old and relatively young thalli were responsible for significant decreases in algal rubidium and cadmium concentrations with increases in specific growth rate. The biomass-specific growth rates of uptake of these two metals did not vary with growth rate. Both algal concentrations and specific rates of uptake of manganese increase significantly with increasing growth rate, thus indicating a distinct link between the kinetics of manganese uptake and metabolic rate. Under some circumstances, seaweed bioassay coupled with an interpretive model may provide the only reasonable approach to the study of chemical uptake-growth phenomena. In practice, if the residence time of sea water in culture chambers is sufficiently low to preclude pseudo-closed system artifacts, differences in trace metal concentrations between input and output sea water may be difficult to detect. In the field and in situ experiments based on time-series monitoring of changes in the water chemistry would be technically difficult or perhaps impossible to perform. 13 references, 1 figure.

  19. Interstate Differences on Economic Growth Rates in Australia, 1953-54 to 1990-91

    OpenAIRE

    Harris, P; Harris, D

    1992-01-01

    This paper examines interstate differences in economic growth rates in Australia over the period 1953-54 to 1990-91 using a six State classification (with ACT included in New South Wales and the Northern Territory in South Australia). The economic growth rate is measured by the increase in constant price gross state product at factor cost (GSP) per head of population over time, using three year moving averages of GSP and population to remove some of the annual fluctuations in the data. The an...

  20. Flexibility in metabolic rate confers a growth advantage under changing food availability.

    Science.gov (United States)

    Auer, Sonya K; Salin, Karine; Rudolf, Agata M; Anderson, Graeme J; Metcalfe, Neil B

    2015-09-01

    1. Phenotypic flexibility in physiological, morphological and behavioural traits can allow organisms to cope with environmental challenges. Given recent climate change and the degree of habitat modification currently experienced by many organisms, it is therefore critical to quantify the degree of phenotypic variation present within populations, individual capacities to change and what their consequences are for fitness. 2. Flexibility in standard metabolic rate (SMR) may be particularly important since SMR reflects the minimal energetic cost of living and is one of the primary traits underlying organismal performance. SMR can increase or decrease in response to food availability, but the consequences of these changes for growth rates and other fitness components are not well known. 3. We examined individual variation in metabolic flexibility in response to changing food levels and its consequences for somatic growth in juvenile brown trout (Salmo trutta). 4. SMR increased when individuals were switched to a high food ration and decreased when they were switched to a low food regime. These shifts in SMR, in turn, were linked with individual differences in somatic growth; those individuals that increased their SMR more in response to elevated food levels grew fastest, while growth at the low food level was fastest in those individuals that depressed their SMR most. 5. Flexibility in energy metabolism is therefore a key mechanism to maximize growth rates under the challenges imposed by variability in food availability and is likely to be an important determinant of species' resilience in the face of global change. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  1. Effect of Alfvén waves on the growth rate of the electron-cyclotron maser emission

    Energy Technology Data Exchange (ETDEWEB)

    Wu, D. J., E-mail: djwu@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2014-06-15

    By using the non-relativistic approximation for the calculation of growth rates, but taking account of the weakly relativistic modification for the electron-cyclotron resonance condition, it is shown that the effect of Alfvén waves (AWs) on the electron-cyclotron maser emission leads to the significant increase of the O-mode growth rate, but has little effect on the X-mode growth rate. We propose that this is because the O-mode wave has the field-aligned polarization sense in the same as the field-aligned oscillatory current, which is created by the field-aligned oscillatory motion of the energetic electrons caused via the presence of AWs. It is this field-aligned oscillatory current that contributes a novel growth rate to the O-mode wave but has little effect on the X-mode wave.

  2. How to determine control of growth rate in a chemostat. Using metabolic control analysis to resolve the paradox

    DEFF Research Database (Denmark)

    Snoep, Jacky L.; Jensen, Peter Ruhdal; Groeneveld, Philip

    1994-01-01

    how, paradoxically, one can determine control of growth rate, of growth yield and of other fluxes in a chemostat. We develop metabolic control analysis for the chemostat. this analysis does not depend on the particular way in which specific growth rate varies with the concentration of the growth...

  3. Calculating in situ degradation rates of hydrocarbon compounds in deep waters of the Gulf of Mexico.

    Science.gov (United States)

    Thessen, Anne E; North, Elizabeth W

    2017-09-15

    Biodegradation is an important process for hydrocarbon weathering that influences its fate and transport, yet little is known about in situ biodegradation rates of specific hydrocarbon compounds in the deep ocean. Using data collected in the Gulf of Mexico below 700m during and after the Deepwater Horizon oil spill, we calculated first-order degradation rate constants for 49 hydrocarbons and inferred degradation rate constants for an additional 5 data-deficient hydrocarbons. Resulting calculated (not inferred) half-lives of the hydrocarbons ranged from 0.4 to 36.5days. The fastest degrading hydrocarbons were toluene (k=-1.716), methylcyclohexane (k=-1.538), benzene (k=-1.333), and C1-naphthalene (k=-1.305). The slowest degrading hydrocarbons were the large straight-chain alkanes, C-26 through C-33 (k=-0.0494 through k=-0.007). Ratios of C-18 to phytane supported the hypothesis that the primary means of degradation in the subsurface was microbial biodegradation. These degradation rate constants can be used to improve models describing the fate and transport of hydrocarbons in the event of an accidental deep ocean oil spill. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. TEST OF THE CATCH-UP HYPOTHESIS IN AFRICAN AGRICULTURAL GROWTH RATES

    Directory of Open Access Journals (Sweden)

    Kalu Ukpai IFEGWU

    2015-11-01

    Full Text Available The paper tested the catch-up hypothesis in agricultural growth rates of twenty-six African countries. Panel data used was drawn from the Food and Agricultural Organization Statistics (FAOSTAT of the United Nations. The Data Envelopment Analysis Method for measuring productivity was used to estimate productivity growth rates. The cross-section framework consisting of sigma-convergence and beta-convergence was employed to test the catching up process. Catching up is said to exist if the value of beta is negative and significant. Since catching up does not necessarily imply narrowing of national productivity inequalities, sigma-convergence which measures inequality, was estimated for the same variables. The results showed evidence of the catch-up process, but failed to find a narrowing of productivity inequalities among countries.

  5. Growth mechanism and internal structure of vertically aligned single-walled carbon nanotubes.

    Science.gov (United States)

    Einarsson, Erik; Kadowaki, Masayuki; Ogura, Kazuaki; Okawa, Jun; Xiang, Rong; Zhang, Zhengyi; Yamamoto, Takahisa; Ikuhara, Yuichi; Maruyama, Shigeo

    2008-11-01

    An in situ optical absorbance technique was used to monitor the growth of vertically aligned single-walled carbon nanotubes (VA-SWNTs) at various temperatures and pressures. The effects of the growth temperature and ethanol pressure on the initial growth rate and catalyst lifetime were investigated. It was found that the ideal pressure for VA-SWNT synthesis changes with the growth temperature, shifting toward higher pressure as the growth temperature increases. It was also found that the growth reaction is first-order below this ideal pressure. Additionally, the internal structure of the VA-SWNT film was observed at different depths into the film by transmission electron microscopy. The absence of large bundles was confirmed, and little change in the structure was observed to a depth of approximately 1 microm.

  6. Analysis of in situ electric field and specific absorption rate in human models for wireless power transfer system with induction coupling

    International Nuclear Information System (INIS)

    Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; Onishi, Teruo

    2014-01-01

    This study investigates the specific absorption rate (SAR) and the in situ electric field in anatomically based human models for the magnetic field from an inductive wireless power transfer system developed on the basis of the specifications of the wireless power consortium. The transfer system consists of two induction coils covered by magnetic sheets. Both the waiting and charging conditions are considered. The transfer frequency considered in this study is 140 kHz, which is within the range where the magneto-quasi-static approximation is valid. The SAR and in situ electric field in the chest and arm of the models are calculated by numerically solving the scalar potential finite difference equation. The electromagnetic modelling of the coils in the wireless power transfer system is verified by comparing the computed and measured magnetic field distributions. The results indicate that the peak value of the SAR averaged over a 10 g of tissue and that of the in situ electric field are 72 nW kg −1  and 91 mV m −1  for a transmitted power of 1 W, Consequently, the maximum allowable transmitted powers satisfying the exposure limits of the SAR (2 W kg −1 ) and the in situ electric field (18.9 V m −1 ) are found to be 28 MW and 43 kW. The computational results show that the in situ electric field in the chest is the most restrictive factor when compliance with the wireless power transfer system is evaluated according to international guidelines. (paper)

  7. Analysis of in situ electric field and specific absorption rate in human models for wireless power transfer system with induction coupling.

    Science.gov (United States)

    Sunohara, Tetsu; Hirata, Akimasa; Laakso, Ilkka; Onishi, Teruo

    2014-07-21

    This study investigates the specific absorption rate (SAR) and the in situ electric field in anatomically based human models for the magnetic field from an inductive wireless power transfer system developed on the basis of the specifications of the wireless power consortium. The transfer system consists of two induction coils covered by magnetic sheets. Both the waiting and charging conditions are considered. The transfer frequency considered in this study is 140 kHz, which is within the range where the magneto-quasi-static approximation is valid. The SAR and in situ electric field in the chest and arm of the models are calculated by numerically solving the scalar potential finite difference equation. The electromagnetic modelling of the coils in the wireless power transfer system is verified by comparing the computed and measured magnetic field distributions. The results indicate that the peak value of the SAR averaged over a 10 g of tissue and that of the in situ electric field are 72 nW kg(-1) and 91 mV m(-1) for a transmitted power of 1 W, Consequently, the maximum allowable transmitted powers satisfying the exposure limits of the SAR (2 W kg(-1)) and the in situ electric field (18.9 V m(-1)) are found to be 28 MW and 43 kW. The computational results show that the in situ electric field in the chest is the most restrictive factor when compliance with the wireless power transfer system is evaluated according to international guidelines.

  8. Effect of feeding frequency and feeding rate on growth performance ...

    African Journals Online (AJOL)

    Fish fed at higher feeding rates accumulated significantly more lipid within the body and had associated decreases in moisture, protein, and ash content, but carcass composition was unaffected by feeding frequency. Juvenile pompano show better growth performance when fed 10% BW/day 3 and 6 times a day.

  9. A comparison of growth rate of late Holocene stalagmites with atmospheric precipitation and temperature, and its implications for paleoclimatology

    Science.gov (United States)

    Railsback, L. Bruce

    2018-05-01

    Growth rate of stalagmites can vary with many factors of physical environment, ecology, and karst hydrogeology, to the extent that growth rates calculated from a carefully selected set of data from 80 stalagmites from around the world vary by a factor of 400 from smallest to largest. Growth rates of those 80 stalagmites nonetheless collectively show correlations to atmospheric precipitation and temperature that are non-trivial (r2 = 0.12 and 0.20, respectively) and unlikely to have arisen randomly (p = 0.002 and 0.00002). Those global relationships are also supported by previously published studies of individual drip sites. The general trend of growth rates is not a monotonic increase with precipitation; instead, it reaches a maximum at annual precipitation rates between 700 and 2300 mm/year, which both counters many model predictions that growth rates should increase monotonically with drip rate and complicates use of growth rate as a proxy for past precipitation. The general trend of growth rates among the 80 stalagmites is a monotonic increase with temperature. However, the low values of r2 in both of these general trends indicate that growth rate can be at best a qualitative rather than quantitative proxy of past conditions. Growth rate shows no statistically significant relationship to effective precipitation, seemingly because of the confounding effect of temperature. Growth rates of aragonite-bearing stalagmites are commonly greater than rates in stalagmites in which calcite is the only carbonate mineral, suggesting both the need for careful identification of mineralogy and the special applicability of aragonitic stalagmites in high-resolution studies. Aragonite has exceptionally great frequency in settings with low effective atmospheric precipitation, supporting previous linkages of that mineral to warm dry environments. Closely-spaced sampling used in recent paleoclimatological studies suggests that unexploited long-term low-resolution records of past

  10. An in-plane solid-liquid-solid growth mode for self-avoiding lateral silicon nanowires.

    Science.gov (United States)

    Yu, Linwei; Alet, Pierre-Jean; Picardi, Gennaro; Roca i Cabarrocas, Pere

    2009-03-27

    We report an in-plane solid-liquid-solid (IPSLS) mode for obtaining self-avoiding lateral silicon nanowires (SiNW) in a reacting-gas-free annealing process, where the growth of SiNWs is guided by liquid indium drops that transform the surrounding a-SiratioH matrix into crystalline SiNWs. The SiNWs can be approximately mm long, with the smallest diameter down to approximately 22 nm. A high growth rate of >10(2) nm/s and rich evolution dynamics are revealed in a real-time in situ scanning electron microscopy observation. A qualitative growth model is proposed to account for the major features of this IPSLS SiNW growth mode.

  11. Linear growth rates of resistive tearing modes with sub-Alfvénic streaming flow

    International Nuclear Information System (INIS)

    Wu, L. N.; Ma, Z. W.

    2014-01-01

    The tearing instability with sub-Alfvénic streaming flow along the external magnetic field is investigated using resistive MHD simulation. It is found that the growth rate of the tearing mode instability is larger than that without the streaming flow. With the streaming flow, there exist two Alfvén resonance layers near the central current sheet. The larger perturbation of the magnetic field in two closer Alfvén resonance layers could lead to formation of the observed cone structure and can largely enhance the development of the tearing mode for a narrower streaming flow. For a broader streaming flow, a larger separation of Alfvén resonance layers reduces the magnetic reconnection. The linear growth rate decreases with increase of the streaming flow thickness. The growth rate of the tearing instability also depends on the plasma beta (β). When the streaming flow is embedded in the current sheet, the growth rate increases with β if β  s , but decreases if β > β s . The existence of the specific value β s can be attributed to competition between the suppressing effect of β and the enhancing effect of the streaming flow on the magnetic reconnection. The critical value β s increases with increase of the streaming flow strength

  12. Methods of forecasting crack growth rate under creep conditions

    International Nuclear Information System (INIS)

    Ol'kin, S.I.

    1979-01-01

    Using construction aluminium alloy application possibility of linear mechanics of the destruction for quantitative description of crack development process under creepage conditions is investigated. It is shown, that the grade dependence between the stress intensity coefficient and the crack growth rate takes place only at certain combination of the sample geometry and creepage parameters, and consequently, its applicability in every given case must necessarily be tested experimentally

  13. In-situ cyclic pulse annealing of InN on AlN/Si during IR-lamp-heated MBE growth

    Science.gov (United States)

    Suzuki, Akira; Bungi, Yu; Araki, Tsutomu; Nanishi, Yasushi; Mori, Yasuaki; Yamamoto, Hiroaki; Harima, Hiroshi

    2009-05-01

    To improve crystal quality of InN, an in-situ cyclic rapid pulse annealing during growth was carried out using infrared-lamp-heated molecular beam epitaxy. A cycle of 4 min growth of InN at 400 °C and 3 s pulse annealing at a higher temperature was repeated 15 times on AlN on Si substrate. Annealing temperatures were 550, 590, 620, and 660 °C. The back of Si was directly heated by lamp irradiation through a quartz rod. A total InN film thickness was about 200 nm. With increasing annealing temperature up to 620 °C, crystal grain size by scanning electron microscope showed a tendency to increase, while widths of X-ray diffraction rocking curve of (0 0 0 2) reflection and E 2 (high) mode peak of Raman scattering spectra decreased. A peak of In (1 0 1) appeared in X-ray diffraction by annealing higher than 590 °C, and In droplets were found on the surface by annealing at 660 °C.

  14. Si{sub 3}N{sub 4} layers for the in-situ passivation of GaN-based HEMT structures

    Energy Technology Data Exchange (ETDEWEB)

    Yunin, P. A., E-mail: yunin@ipmras.ru; Drozdov, Yu. N.; Drozdov, M. N.; Korolev, S. A.; Okhapkin, A. I.; Khrykin, O. I.; Shashkin, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-11-15

    A method for the in situ passivation of GaN-based structures with silicon nitride in the growth chamber of a metal organic vapor phase epitaxy (MOVPE) reactor is described. The structural and electrical properties of the obtained layers are investigated. The in situ and ex situ passivation of transistor structures with silicon nitride in an electron-beam-evaporation device are compared. It is shown that ex situ passivation changes neither the initial carrier concentration nor the mobility. In situ passivation makes it possible to protect the structure surface against uncontrollable degradation upon the finishing of growth and extraction to atmosphere. In the in situ passivated structure, the carrier concentration increases and the mobility decreases. This effect should be taken into account when manufacturing passivated GaN-based transistor structures.

  15. Quorum sensing influences Vibrio harveyi growth rates in a manner not fully accounted for by the marker effect of bioluminescence.

    Science.gov (United States)

    Nackerdien, Zeena E; Keynan, Alexander; Bassler, Bonnie L; Lederberg, Joshua; Thaler, David S

    2008-02-27

    The light-emitting Vibrios provide excellent material for studying the interaction of cellular communication with growth rate because bioluminescence is a convenient marker for quorum sensing. However, the use of bioluminescence as a marker is complicated because bioluminescence itself may affect growth rate, e.g. by diverting energy. The marker effect was explored via growth rate studies in isogenic Vibrio harveyi (Vh) strains altered in quorum sensing on the one hand, and bioluminescence on the other. By hypothesis, growth rate is energy limited: mutants deficient in quorum sensing grow faster because wild type quorum sensing unleashes bioluminescence and bioluminescence diverts energy. Findings reported here confirm a role for bioluminescence in limiting Vh growth rate, at least under the conditions tested. However, the results argue that the bioluminescence is insufficient to explain the relationship of growth rate and quorum sensing in Vh. A Vh mutant null for all genes encoding the bioluminescence pathway grew faster than wild type but not as fast as null mutants in quorum sensing. Vh quorum sensing mutants showed altered growth rates that do not always rank with their relative increase or decrease in bioluminescence. In addition, the cell-free culture fluids of a rapidly growing Vibrio parahaemolyticus (Vp) strain increased the growth rate of wild type Vh without significantly altering Vh's bioluminescence. The same cell-free culture fluid increased the bioluminescence of Vh quorum mutants. The effect of quorum sensing on Vh growth rate can be either positive or negative and includes both bioluminescence-dependent and independent components. Bioluminescence tends to slow growth rate but not enough to account for the effects of quorum sensing on growth rate.

  16. Quorum sensing influences Vibrio harveyi growth rates in a manner not fully accounted for by the marker effect of bioluminescence.

    Directory of Open Access Journals (Sweden)

    Zeena E Nackerdien

    2008-02-01

    Full Text Available The light-emitting Vibrios provide excellent material for studying the interaction of cellular communication with growth rate because bioluminescence is a convenient marker for quorum sensing. However, the use of bioluminescence as a marker is complicated because bioluminescence itself may affect growth rate, e.g. by diverting energy.The marker effect was explored via growth rate studies in isogenic Vibrio harveyi (Vh strains altered in quorum sensing on the one hand, and bioluminescence on the other. By hypothesis, growth rate is energy limited: mutants deficient in quorum sensing grow faster because wild type quorum sensing unleashes bioluminescence and bioluminescence diverts energy. Findings reported here confirm a role for bioluminescence in limiting Vh growth rate, at least under the conditions tested. However, the results argue that the bioluminescence is insufficient to explain the relationship of growth rate and quorum sensing in Vh. A Vh mutant null for all genes encoding the bioluminescence pathway grew faster than wild type but not as fast as null mutants in quorum sensing. Vh quorum sensing mutants showed altered growth rates that do not always rank with their relative increase or decrease in bioluminescence. In addition, the cell-free culture fluids of a rapidly growing Vibrio parahaemolyticus (Vp strain increased the growth rate of wild type Vh without significantly altering Vh's bioluminescence. The same cell-free culture fluid increased the bioluminescence of Vh quorum mutants.The effect of quorum sensing on Vh growth rate can be either positive or negative and includes both bioluminescence-dependent and independent components. Bioluminescence tends to slow growth rate but not enough to account for the effects of quorum sensing on growth rate.

  17. Interest Rate Deregulation, Bank Development And Economic Growth In South Africa: An Empirical Investigation

    OpenAIRE

    Nicholas M Odhiambo

    2010-01-01

    In this paper the dynamic relationship between interest rate reforms, bank-based financial development and economic growth is examined – using two models in a stepwise fashion. In the first model, the impact of interest rate reforms on financial development is examined using a financial deepening model. In the second model, the dynamic causal relationship between financial development and economic growth is examined, by including investment as an intermittent variable in the bi-variate settin...

  18. Growth rate of matter perturbations as a probe of large-scale magnetism

    CERN Document Server

    Giovannini, Massimo

    2011-01-01

    The growth rate of matter perturbations is computed in a magnetized environment for the LambdaCDM and wCDM paradigms. It is argued that the baryons do not necessarily follow into the dark matter potential wells after they are released from the drag of the photons. The baryonic evolution equations inherit a forcing term whose explicit form depends on the plasma description and can be deduced, for instance, in the resistive magnetohydrodynamical approximation. After deriving an analytical expression for the growth rate applicable when dark energy does not cluster, the effects of relativistic corrections and of the inhomogeneities associated with the other species of the plasma are taken into account numerically. The spectral amplitudes and slopes of the stochastic magnetic background are selected to avoid appreciable distortions in the measured temperature and polarization anisotropies of the Cosmic Microwave Background. The growth of structures in the current paradigms of structure formation represents a compl...

  19. The impact of risk management on internal and sustainable growth rate: Evidence from Tehran Stock Exchange

    Directory of Open Access Journals (Sweden)

    Hamid Reza Vakili Fard

    2014-09-01

    Full Text Available Measuring the relative risk of firms has been an open discussion among researchers. There are many studies on learning how leverage may influence on growth of the firms. This article reviews the relationship between risk management, internal and sustainable growth of accepted companies in Tehran stock exchange. The survey considers three types of risks including operating, financial and compound and investigates their relationships with internal growth rate as well as sustainable growth rate. Using some regression techniques, the study has determined negative and meaningful relationships between different types of leverage on side and internal as well as sustainable growth on the other side.

  20. In situ growth of metal particles on 3D urchin-like WO3 nanostructures.

    Science.gov (United States)

    Xi, Guangcheng; Ye, Jinhua; Ma, Qiang; Su, Ning; Bai, Hua; Wang, Chao

    2012-04-18

    Metal/semiconductor hybrid materials of various sizes and morphologies have many applications in areas such as catalysis and sensing. Various organic agents are necessary to stabilize metal nanoparticles during synthesis, which leads to a layer of organic compounds present at the interfaces between the metal particles and the semiconductor supports. Generally, high-temperature oxidative treatment is used to remove the organics, which can extensively change the size and morphology of the particles, in turn altering their activity. Here we report a facile method for direct growth of noble-metal particles on WO(3) through an in situ redox reaction between weakly reductive WO(2.72) and oxidative metal salts in aqueous solution. This synthetic strategy has the advantages that it takes place in one step and requires no foreign reducing agents, stabilizing agents, or pretreatment of the precursors, making it a practical method for the controlled synthesis of metal/semiconductor hybrid nanomaterials. This synthetic method may open up a new way to develop metal-nanoparticle-loaded semiconductor composites. © 2012 American Chemical Society

  1. Survey: Did the TFP Growth Rate in Japan Decline in the 1990s?(in Japanese)

    OpenAIRE

    INUI Tomohiko; KWON Hyeog Ug

    2004-01-01

    This paper surveys the body of research grounded on a basic question "Did the total factor productivity (TFP) growth rate in Japan decline in the 1990s?" In addition, using industry-level data of the Japan Industrial Productivity Database (JIP database) we estimate the mark-ups and the degree of returns to scale and then re-estimate TFP growth rates. Most of studies reviewed in this paper show a decline in TFP growth in the 1990s at the macro-level and the industry-level. There are some studi...

  2. Decreased growth rate of P. falciparum blood stage parasitemia with age in a holoendemic population.

    Science.gov (United States)

    Pinkevych, Mykola; Petravic, Janka; Chelimo, Kiprotich; Vulule, John; Kazura, James W; Moormann, Ann M; Davenport, Miles P

    2014-04-01

    In malaria holoendemic settings, decreased parasitemia and clinical disease is associated with age and cumulative exposure. The relative contribution of acquired immunity against various stages of the parasite life cycle is not well understood. In particular, it is not known whether changes in infection dynamics can be best explained by decreasing rates of infection, or by decreased growth rates of parasites in blood. Here, we analyze the dynamics of Plasmodium falciparum infection after treatment in a cohort of 197 healthy study participants of different ages. We use both polymerase chain reaction (PCR) and microscopy detection of parasitemia in order to understand parasite growth rates and infection rates over time. The more sensitive PCR assay detects parasites earlier than microscopy, and demonstrates a higher overall prevalence of infection than microscopy alone. The delay between PCR and microscopy detection is significantly longer in adults compared with children, consistent with slower parasite growth with age. We estimated the parasite multiplication rate from delay to PCR and microscopy detections of parasitemia. We find that both the delay between PCR and microscopy infection as well as the differing reinfection dynamics in different age groups are best explained by a slowing of parasite growth with age.

  3. In situ detection of porosity initiation during aluminum thin film anodizing

    Science.gov (United States)

    Van Overmeere, Quentin; Nysten, Bernard; Proost, Joris

    2009-02-01

    High-resolution curvature measurements have been performed in situ during aluminum thin film anodizing in sulfuric acid. A well-defined transition in the rate of internal stress-induced curvature change is shown to allow for the accurate, real-time detection of porosity initiation. The validity of this in situ diagnostic tool was confirmed by a quantitative analysis of the spectral density distributions of the anodized surfaces. These were obtained by analyzing ex situ atomic force microscopy images of surfaces anodized for different times, and allowed to correlate the in situ detected transition in the rate of curvature change with the appearance of porosity.

  4. Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates

    Directory of Open Access Journals (Sweden)

    Arike Liisa

    2011-02-01

    Full Text Available Abstract Background Lactococcus lactis is recognised as a safe (GRAS microorganism and has hence gained interest in numerous biotechnological approaches. As it is fastidious for several amino acids, optimization of processes which involve this organism requires a thorough understanding of its metabolic regulations during multisubstrate growth. Results Using glucose limited continuous cultivations, specific growth rate dependent metabolism of L. lactis including utilization of amino acids was studied based on extracellular metabolome, global transcriptome and proteome analysis. A new growth medium was designed with reduced amino acid concentrations to increase precision of measurements of consumption of amino acids. Consumption patterns were calculated for all 20 amino acids and measured carbon balance showed good fit of the data at all growth rates studied. It was observed that metabolism of L. lactis became more efficient with rising specific growth rate in the range 0.10 - 0.60 h-1, indicated by 30% increase in biomass yield based on glucose consumption, 50% increase in efficiency of nitrogen use for biomass synthesis, and 40% reduction in energy spilling. The latter was realized by decrease in the overall product formation and higher efficiency of incorporation of amino acids into biomass. L. lactis global transcriptome and proteome profiles showed good correlation supporting the general idea of transcription level control of bacterial metabolism, but the data indicated that substrate transport systems together with lower part of glycolysis in L. lactis were presumably under allosteric control. Conclusions The current study demonstrates advantages of the usage of strictly controlled continuous cultivation methods combined with multi-omics approach for quantitative understanding of amino acid and energy metabolism of L. lactis which is a valuable new knowledge for development of balanced growth media, gene manipulations for desired product

  5. Effect of indium accumulation on the characteristics of a-plane InN epi-films under different growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yun-Yo [Institute of Photonics, National Changhua University of Education, Changhua, Taiwan, ROC (China); Huang, Man-Fang, E-mail: mfhuang@cc.ncue.edu.tw [Institute of Photonics, National Changhua University of Education, Changhua, Taiwan, ROC (China); Chiang, Yu-Chia [Institute of Photonics, National Changhua University of Education, Changhua, Taiwan, ROC (China); Fan, Jenn-Chyuan [Department of Electronic Engineering, Nan Kai University of Technology, Nantou, Taiwan, ROC (China)

    2015-08-31

    This study investigated the influence of indium accumulation happened on the surface of a-plane InN grown under different growth conditions. Three different growth rates with N/In ratio from stoichiometric to N-rich were used to grow a-plane InN epifilms on GaN-buffered r-plane sapphires by plasma-assisted molecular beam epitaxy. When a-plane InN was grown above 500 °C with a high growth rate, abnormally high in-situ reflectivity was found during a-plane InN growth, which was resulted from indium accumulation on surface owing to In-N bonding difficulty on certain crystal faces of a-plane InN surface. Even using excess N-flux, indium accumulation could still be found in initial growth and formed 3-dimension-like patterns on a-plane InN surface which resulted in rough surface morphology. By reducing growth rate, surface roughness was improved because indium atoms could have more time to migrate to suitable position. Nonetheless, basal stacking fault density and crystal anisotropic property were not affected by growth rate. - Highlights: • High growth temperature could cause indium accumulation on a-plane InN surface. • Indium accumulation on a-plane InN surface causes rough surface. • Low growth rate improves surface morphology but not crystal quality.

  6. Effect of deposition conditions on the growth rate and electrical properties of ZnO thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Roro, K.T.; Botha, J.R.; Leitch, A.W.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2008-07-01

    ZnO thin films have been grown on glass substrates by MOCVD. The effect of deposition conditions such as VI/II molar ratio, DEZn flow rate and total reactor pressure on the growth rate and electrical properties of the films was studied. It is found that the growth rate decreases with an increase in the VI/II molar ratio. This behaviour is ascribed to the competitive adsorption of reactant species on the growth surface. The growth rate increases with an increase in DEZn flow rate, as expected. It is shown that the carrier concentration is independent of the DEZn flow rate. An increase in the total reactor pressure yields a decrease in growth rate. This phenomenon is attributed to the depletion of the gas phase due to parasitic prereactions between zinc and oxygen species at high pressure. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Investigation of the growth rate for joint fast breeder reactor and light water reactor operation

    International Nuclear Information System (INIS)

    Hanan, N.A.; Borg, C.R.; Ott, K.O.

    1977-07-01

    An investigation of fuel consumption and breeding characteristics of FBR-LWR joint operation is presented. The FBR operates in a closed cycle with joint-reprocessing of core and blanket material. The LWR-portion that runs on FBR plutonium operates in an open cycle. The growth rate of the system is defined based upon the fact that the discharge from the system will make up a fraction of an identical system; the system growth rate is found to have an almost linear dependence on the fraction of the LWR fed by plutonium from the FBR. The LWR growth rate, which is negative, is a constant and represents the fraction of the fuel burnt in the LWR-fraction that runs on FBR plutonium per year

  8. EFFECTS OF INTEREST RATE DEREGULATION ON AGRICULTURAL FINANCE AND GROWTH IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Louis O. ONYISHI

    2015-03-01

    Full Text Available The study examined the effects of interest rate deregulation on agricultural finance and growth in Nigeria. The study specifically ascertained the factors that determine the aggregate credit volume to agriculture within the periods of regulation and deregulation in the Nigerian economy, determined the effects of government finance interventions on agricultural sector performance in the Nigerian economy, determined the periodic effects of macroeconomic financial indicators on Agriculture’s gross domestic product (GDP contribution to Nigerian economy and estimated the level of real credit growth of agricultural finance in Nigeria. Descriptive statistics, Ordinary Least Squares (OLS regression technique and chow test were used for data analysis. The chow test showed that there was a significant differential effect on the aggregate credit volume to agricultural sector between the regulated and deregulated regimes. Interest rate was an important determinant of aggregate credit volume to the agricultural sector in Nigeria, especially during the deregulated period but monetary authorities should ensure appropriate determination of interest rate level that will break the double-edge effect of interest rates on savers and investors.

  9. Influence of nutrition on ovulation rate and testicular growth of Merino sheep

    International Nuclear Information System (INIS)

    Rowe, J.B.

    1988-01-01

    The effect of nutrition on reproductive performance was studied in a series of experiments using two models. Increased supply of nutrients was based on feeding lupin grain as a supplement and measurements of testicular growth or ovulation rates were used to measure reproductive characteristics. Purified sources of protein and energy were provided to determine the macronutrient(s), supplied with lupin feeding, responsible for initiating increases in testicular growth and ovulation rate. Increases in both of these parameters were closely related to the supply of additional energy but not protein. The production of acetate and glucose resulting from supplementary feeding with 750 g lupins/d was measured using infusions of 14 C tracers. Subsequently, infusions of glucose and acetate (individually and in combination) were found to produce similar increases in ovulation rate to those measured in ewes receiving lupins. It was concluded that effects of nutrition on ovulation rate are associated with increased energy intake and may be mediated through pathways linked with the synthesis and/or utilization of glucose. (author). 18 refs, 2 figs, 3 tabs

  10. Impact of delays in plutonium use on the stationary growth rate of fast breeder reactor fuel

    International Nuclear Information System (INIS)

    Borg, R.C.; Ott, K.O.

    1977-07-01

    The hierarchy of the four growth rate expressions originally derived from an instantaneous reuse scheme is expanded to account for finite burnup in the core and blanket, β-decay of 241 Pu, core and blanket loading schemes, reuse delays due to reprocessing and fabricating fuel and external fuel cycle losses. The most general growth rate expression, obtained from the asymptotic slope of the accumulating fuel material in an expanding park of breeder reactors, is formally the same in both cases. Formulation of the growth rate based on the condensation of the detailed information of the equilibrium fuel cycle for a single reactor, is more complicated than without delays due to the composition difference between the average residing and excess discharge material. The third growth rate expression results from a slightly more complicated fuel-cycle eigenvalue problem than without delays. The last definition employs isotopic breeding worth factors obtained from the adjoint fuel cycle eigenvalue problem

  11. Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis

    NARCIS (Netherlands)

    Slavov, Nikolai; Budnik, Bogdan A; Schwab, David; Airoldi, Edoardo M; van Oudenaarden, Alexander

    2014-01-01

    Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such

  12. Productivity dynamics of Livestock in southern peninsular India: A Compound growth rate analysis

    Directory of Open Access Journals (Sweden)

    G. Kathiravan 1 and S. Selvam 2

    2011-04-01

    Full Text Available Although India possesses the large volume of livestock, their productivity is abysmally low at global level. India, with its wide variation in geo-ecological parameters, elucidates a high variation in the productivity of its livestock, among regions. The compound growth rate of livestock productivity was worked out for the Southern Peninsular state of India, Tamil Nadu. The average productivity of milk in cross bred cows and buffaloes in Tamil Nadu was less than the national average, while the productivity desi cows was a bit a more. The annual compound growth rate of milk productivity among crossbred cows of Tamil Nadu was at meager 0.54 per cent during the period between 1998-1999 and 2006- 2007, whereas the productivity of milk in desi cows had improved from at an annual compound growth rate of 1.29 per cent. Notably, the milk productivity in buffaloes had declined at a rate of 0.29 per cent during the period under study. The annual compound growth of egg productivity in improved hens of Tamil Nadu was 20.87 per cent. The average annual productivity was 109.531 eggs, which improved from 70.623 in 1998-1999 to 197.084 in 2004-2005. Correspondingly, the productivity of desi hens also had a positive swing from the year 2003-2004 onwards. The results implied that the simulation of increased productivity, better farm financing and improved milk marketing could result in enhanced livestock production that would meet the future demands. [Veterinary World 2011; 4(2.000: 68-74

  13. Influence of growth rate and onset of boar contact on puberty attainment of replacement gilts raised in Thailand.

    Science.gov (United States)

    Roongsitthichai, Atthaporn; Olanratmanee, Em-On; Tummaruk, Padet

    2014-10-01

    This study aimed to investigate the influence of growth rate and onset of boar contact on age at first observed estrus of the replacement gilts raised in Thailand. In total, 766 gilts were measured for body weight and backfat thickness prior to insemination. Body weight was further calculated for growth rate. Estrus detection was performed twice a day by back pressure test with an existence of mature boars with high libido. The first date of boar exposure and that of first observed estrus were individually recorded. Due to growth rate, they were classified into three groups: high (>700 g/day), moderate (600-700 g/day), and low (<600 g/day). According to onset of boar contact, the gilts were grouped into two categories: early (<150 days) and late (≥150 days). The results revealed that the gilts expressed first observed estrus, averagely, at age 205.1 ± 34.1 days, had a growth rate of 615.5 ± 57.6 g/day, and first contact with boars at 160.7 ± 19.9 days of age. The gilts with low growth rate expressed first estrus later than those with moderate (208.6 ± 2.0 vs 198.0 ± 3.2 days, P = 0.033) and high growth rate (208.6 ± 2.0 vs 193.9 ± 6.7 days, P = 0.005) groups. Together with the influence of boar exposure, the gilts contacted boar earlier with high growth rate showed first estrus at age 180.3 ± 10.1 days, whereas those with later boar contact with low growth rate showed first estrus at age 197.9 ± 3.2 days. In summary, the replacement gilts should have high growth rate and contact boar early to attain puberty faster and possess decent subsequent reproductive performance.

  14. Analysis for In-situ Fission Rate Measurements using 4He Gas Scintillation Detectors

    International Nuclear Information System (INIS)

    Lewis, Jason M.; Raetz, Dominik; Jordan, Kelly A.; Murer, David

    2013-06-01

    Active neutron interrogation is a powerful NDA technique that relies on detecting and analyzing fission neutrons produced in a fuel sample by an interrogating high neutron flux. 4 He scintillation gas fast neutron detectors are investigated in this paper for use in a novel fission rate measurement technique The He-4 detectors have excellent gamma rejection, a fast response time, and give significant information on incident neutron energy allowing for energy cuts to be applied to the detected signal. These features are shown in this work to allow for the detection of prompt fission neutrons in-situ during active neutron interrogation of a 238 U sample. The energy spectrum from three different neutrons sources ( 252 Cf, AmBe, AmLi) is measured using the 4 He detection system and analyzed. An initial response matrix for the detector is determined using these measurements and the kinematic interaction properties of the elastic scattering with the 4 He. (authors)

  15. In Situ and Ex Situ Studies of Molybdenum Thin Films Deposited by rf and dc Magnetron Sputtering as a Back Contact for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Aryal

    2012-01-01

    Full Text Available Molybdenum thin films were deposited by rf and dc magnetron sputtering and their properties analyzed with regards to their potential application as a back contact for CIGS solar cells. It is shown that both types of films tend to transition from tensile to compressive strain when the deposition pressure increases, while the conductivity and the grain size decreas. The nucleation of the films characterized by in situ and real time spectroscopic ellipsometry shows that both films follow a Volmer-Weber growth, with a higher surface roughness and lower deposition rate for the rf deposited films. The electronic relaxation time was then extracted as a function of bulk layer thickness for rf and dc films by fitting each dielectric function to a Drude free-electron model combined with a broad Lorentz oscillator. The values were fitted to a conical growth mode and demonstrated that the rf-deposited films have already smaller grains than the dc films when the bulk layer thickness is 30 nm.

  16. Dual substrate feedback control of specific growth-rate in vaccine production

    NARCIS (Netherlands)

    Neeleman, R.; Beuvery, E.C.; Vries, D.; Straten, van G.; Boxtel, van A.J.B.

    2004-01-01

    Abstract: Unexpectedly, primary concern of bio-pharmaceutical industry is not optimisation of product yield or cost reduction, but consistency in production and product quality. This paper describes the methodology and experimental results of specific growth-rate control for vaccine production. The

  17. Calculating second derivatives of population growth rates for ecology and evolution

    NARCIS (Netherlands)

    Shyu, E.; Caswell, H.

    2014-01-01

    Second derivatives of the population growth rate measure the curvature of its response to demographic, physiological or environmental parameters. The second derivatives quantify the response of sensitivity results to perturbations, provide a classification of types of selection and provide one way

  18. Experimental design and estimation of growth rate distributions in size-structured shrimp populations

    International Nuclear Information System (INIS)

    Banks, H T; Davis, Jimena L; Ernstberger, Stacey L; Hu, Shuhua; Artimovich, Elena; Dhar, Arun K

    2009-01-01

    We discuss inverse problem results for problems involving the estimation of probability distributions using aggregate data for growth in populations. We begin with a mathematical model describing variability in the early growth process of size-structured shrimp populations and discuss a computational methodology for the design of experiments to validate the model and estimate the growth-rate distributions in shrimp populations. Parameter-estimation findings using experimental data from experiments so designed for shrimp populations cultivated at Advanced BioNutrition Corporation are presented, illustrating the usefulness of mathematical and statistical modeling in understanding the uncertainty in the growth dynamics of such populations

  19. Standard test method for measurement of fatigue crack growth rates

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    1.1 This test method covers the determination of fatigue crack growth rates from near-threshold to Kmax controlled instability. Results are expressed in terms of the crack-tip stress-intensity factor range (ΔK), defined by the theory of linear elasticity. 1.2 Several different test procedures are provided, the optimum test procedure being primarily dependent on the magnitude of the fatigue crack growth rate to be measured. 1.3 Materials that can be tested by this test method are not limited by thickness or by strength so long as specimens are of sufficient thickness to preclude buckling and of sufficient planar size to remain predominantly elastic during testing. 1.4 A range of specimen sizes with proportional planar dimensions is provided, but size is variable to be adjusted for yield strength and applied force. Specimen thickness may be varied independent of planar size. 1.5 The details of the various specimens and test configurations are shown in Annex A1-Annex A3. Specimen configurations other than t...

  20. Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus).

    Science.gov (United States)

    de Margerie, E; Robin, J-P; Verrier, D; Cubo, J; Groscolas, R; Castanet, J

    2004-02-01

    Microstructure-function relationships remain poorly understood in primary bone tissues. The relationship between bone growth rate and bone tissue type, although documented in some species by previous works, remains somewhat unclear and controversial. We assessed this relationship in a species with extreme adaptations, the king penguin (Aptenodytes patagonicus). These birds have a peculiar growth, interrupted 3 months after hatching by the austral winter. Before this interruption, chicks undergo extremely rapid statural and ponderal growth. We recorded experimentally (by means of fluorescent labelling) the growth rate of bone tissue in four long bones (humerus, radius, femur and tibiotarsus) of four king penguin chicks during their fastest phase of growth (3-5 weeks after hatching) and identified the associated bone tissue types ('laminar', 'longitudinal', 'reticular' or 'radial' fibro-lamellar bone tissue). We found the highest bone tissue growth rate known to date, up to 171 microm day(-1) (mean 55 microm day(-1)). There was a highly significant relationship between bone tissue type and growth rate (P<10(-6)). Highest rates were obtained with the radial microarchitecture of fibro-lamellar bone, where cavities in the woven network are aligned radially. This result supports the heuristic value of a relationship between growth rate and bone primary microstructure. However, we also found that growth rates of bone tissue types vary according to the long bone considered (P<10(-5)) (e.g. growth rates were 38% lower in the radius than in the other long bones), a result that puts some restriction on the applicability of absolute growth rate values (e.g. to fossil species). The biomechanical disadvantages of accelerated bone growth are discussed in relation to the locomotor behaviour of the chicks during their first month of life.

  1. Astragalus Extract Mixture HT042 Increases Longitudinal Bone Growth Rate by Upregulating Circulatory IGF-1 in Rats

    Directory of Open Access Journals (Sweden)

    Donghun Lee

    2017-01-01

    Full Text Available Astragalus extract mixture HT042 is a standardized ingredient of health functional food approved by Korean FDA with a claim of “height growth of children.” HT042 stimulates bone growth rate and increases local IGF-1 expression in growth plate of rats which can be considered as direct stimulation of GH and its paracrine/autocrine actions. However, it remains unclear whether HT042 stimulates circulatory IGF-1 which also plays a major role to stimulate bone growth. To determine the effects on circulatory IGF-1, IGF-1 and IGFBP-3 expressions and phosphorylation of JAK2/STAT5 were evaluated in the liver after 10 days of HT042 administration. HT042 upregulated liver IGF-1 and IGFBP-3 mRNA expression, IGF-1 protein expression, and phosphorylation of JAK2/STAT5. HT042 also increased bone growth rate and proliferative zonal height in growth plate. In conclusion, HT042 stimulates bone growth rate via increment of proliferative rate by upregulation of liver IGF-1 and IGFBP-3 mRNA followed by IGF-1 protein expression through phosphorylation of JAK2/STAT5, which can be regarded as normal functioning of GH-dependent endocrine pathway.

  2. Nitrogen removal from landfill leachate via ex situ nitrification and sequential in situ denitrification

    International Nuclear Information System (INIS)

    Zhong Qi; Li Daping; Tao Yong; Wang Xiaomei; He Xiaohong; Zhang Jie; Zhang Jinlian; Guo Weiqiang; Wang Lan

    2009-01-01

    Ex situ nitrification and sequential in situ denitrification represents a novel approach to nitrogen management at landfills. Simultaneous ammonia and organics removal was achieved in a continuous stirred tank reactor (CSTR). The results showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l -1 d -1 and 3.84 g COD l -1 d -1 , respectively. The ammonia and chemical oxygen demand (COD) removal was over 99% and 57%, respectively. In the run of the CSTR, free ammonia (FA) inhibition and low dissolved oxygen (DO) were found to be key factors affecting nitrite accumulation. In situ denitrification was studied in a municipal solid waste (MSW) column by recalculating nitrified leachate from CSTR. The decomposition of MSW was accelerated by the recirculation of nitrified leachate. Complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON loading of 28.6 g N t -1 TS d -1 and denitrification was the main reaction responsible. Additionally, methanogenesis inhibition was observed while TON loading was over 11.4 g N t -1 TS d -1 and the inhibition was enhanced with the increase of TON loading

  3. Resource Supply Overrides Temperature as a Controlling Factor of Marine Phytoplankton Growth

    Science.gov (United States)

    Marañón, Emilio; Cermeño, Pedro; Huete-Ortega, María; López-Sandoval, Daffne C.; Mouriño-Carballido, Beatriz; Rodríguez-Ramos, Tamara

    2014-01-01

    The universal temperature dependence of metabolic rates has been used to predict how ocean biology will respond to ocean warming. Determining the temperature sensitivity of phytoplankton metabolism and growth is of special importance because this group of organisms is responsible for nearly half of global primary production, sustains most marine food webs, and contributes to regulate the exchange of CO2 between the ocean and the atmosphere. Phytoplankton growth rates increase with temperature under optimal growth conditions in the laboratory, but it is unclear whether the same degree of temperature dependence exists in nature, where resources are often limiting. Here we use concurrent measurements of phytoplankton biomass and carbon fixation rates in polar, temperate and tropical regions to determine the role of temperature and resource supply in controlling the large-scale variability of in situ metabolic rates. We identify a biogeographic pattern in phytoplankton metabolic rates, which increase from the oligotrophic subtropical gyres to temperate regions and then coastal waters. Variability in phytoplankton growth is driven by changes in resource supply and appears to be independent of seawater temperature. The lack of temperature sensitivity of realized phytoplankton growth is consistent with the limited applicability of Arrhenius enzymatic kinetics when substrate concentrations are low. Our results suggest that, due to widespread resource limitation in the ocean, the direct effect of sea surface warming upon phytoplankton growth and productivity may be smaller than anticipated. PMID:24921945

  4. The Balance of Payments Constraint as an Explanation of International Growth Rate Differences

    Directory of Open Access Journals (Sweden)

    Anthony P. Thirlwall

    2011-12-01

    Full Text Available The paper shows that if long-run balance of payments equilibrium on current account is a requirement then a country's long run growth rate can be approximated by the ratio of the growth of exports to the income elasticity of demand for imports. The model fits well the experience of eighteen OECD countries. It is output, not relative prices, that adjusts the balance of payments, contrary to the neoclassical orthodoxy. Growth can be demand constained by the balance of payments.

  5. Growth rate of dislocation loop in Fe-Ni-Cr alloy under Kr+ ion and electron irradiation

    International Nuclear Information System (INIS)

    Kimoto, T.; Allen, C.W.; Rehn, L.E.

    1991-10-01

    In order to examine the effect of irradiating particle species on the growth rate of radiation-induced dislocation loops, a solution-annealed Fe-25Ni-15Cr-0.02C alloy was irradiated at 723 K first by 1.5 MeV Kr + ions for 2520 sec, then by 1.5 MeV Kr + ions and 1.0 MeV electrons simultaneously for 780 sec, and finally by 1.0 MeV electrons for 780 sec with the HVEM-Tandem Facility in Argonne National Laboratory. The calculated damage rate by 1.5 MeV Kr + ions was 5.8 x 10 -4 dpa/s, and that by 1.0 MeV electrons was 1 x 10 -4 dpa/s. The growth rate of a dislocation loop located at the center of the specimen was 7 x 10 -3 nm/s for the Kr + ion irradiation, 4 x 10 -2 nm/s for the simultaneous Kr + and electron irradiation, and (2--3) x 10 -2 nm/s for the electron irradiation. This implies that the electron irradiation is about 19 times more effective in the growth of radiation-induced dislocation loops than the Kr + ion irradiation. The dislocation loop growth rate under the simultaneous Kr + and electron irradiation is higher than the sum of the growth rates under the individual Kr + and electron irradiations. 5 refs., 4 figs

  6. Selection for growth rate and body size have altered the expression profiles of somatotropic axis genes in chickens

    Science.gov (United States)

    Liu, Yong; Xu, Zhiqiang; Duan, Xiaohua; Li, Qihua; Dou, Tengfei; Gu, Dahai; Rong, Hua; Wang, Kun; Li, Zhengtian; Talpur, Mir Zulqarnain; Huang, Ying; Wang, Shanrong; Yan, Shixiong; Tong, Huiquan; Zhao, Sumei; Zhao, Guiping; Su, Zhengchang; Ge, Changrong

    2018-01-01

    The growth hormone / insulin-like growth factor-1 (GH/IGF-1) pathway of the somatotropic axis is the major controller for growth rate and body size in vertebrates, but the effect of selection on the expression of GH/IGF-1 somatotropic axis genes and their association with body size and growth performance in farm animals is not fully understood. We analyzed a time series of expression profiles of GH/IGF-1 somatotropic axis genes in two chicken breeds, the Daweishan mini chickens and Wuding chickens, and the commercial Avian broilers hybrid exhibiting markedly different body sizes and growth rates. We found that growth rate and feed conversion efficiency in Daweishan mini chickens were significantly lower than those in Wuding chickens and Avian broilers. The Wuding and Daweishan mini chickens showed higher levels of plasma GH, pituitary GH mRNA but lower levels of hepatic growth hormone receptor (GHR) mRNA than in Avian broilers. Daweishan mini chickens showed significantly lower levels of plasma IGF-1, thigh muscle and hepatic IGF-1 mRNA than did Avian broilers and Wuding chickens. These results suggest that the GH part of the somatotropic axis is the main regulator of growth rate, while IGF-1 may regulate both growth rate and body weight. Selection for growth performance and body size have altered the expression profiles of somatotropic axis genes in a breed-, age-, and tissue-specific manner, and manner, and alteration of regulatory mechanisms of these genes might play an important role in the developmental characteristics of chickens. PMID:29630644

  7. Proposal of fatigue crack growth rate curve in air for nickel-base alloys used in BWR

    International Nuclear Information System (INIS)

    Ogawa, Takuya; Itatani, Masao; Nagase, Hiroshi; Aoike, Satoru; Yoneda, Hideki

    2013-01-01

    When the defects are detected in the nuclear components in Japan, structural integrity assessment should be performed for the technical judgment on continuous service based on the Rules on Fitness-for-Service for Nuclear Power Plants of the Japan Society of Mechanical Engineers Code (JSME FFS Code). Fatigue crack growth analysis is required when the cyclic loading would be applied for the components. Recently, fatigue crack growth rate curve in air environment for Nickel-base alloys weld metal used in BWR was proposed by the authors and it was adopted as a code case of JSME FFS Code to evaluate the embedded flaw. In this study, fatigue crack growth behavior for heat-affected zone (HAZ) of Nickel-base alloys in air was investigated. And a unified fatigue crack growth rate curve in air for HAZ and weld metal of Nickel-base alloys used in BWR was evaluated. As a result, it was found that the curve for weld metal could be applied as a curve for both HAZ and weld metal since moderately conservative assessment of fatigue crack growth rate of HAZ is possible by the curve for weld metal in the Paris region. And the threshold value of stress intensity far range (ΔK th ) is determined to 3.0 MPa√m based on the fatigue crack growth rate of HAZ. (author)

  8. Does raking basal duff affect tree growth rates or mortality?

    Science.gov (United States)

    Erin Noonan-Wright; Sharon M. Hood; Danny R. Cluck

    2010-01-01

    Mortality and reduced growth rates due to raking accumulated basal duff were evaluated for old, large-diameter ponderosa and Jeffrey pine trees on the Lassen National Forest, California. No fire treatments were included to isolate the effect of raking from fire. Trees were monitored annually for 5 years after the raking treatment for mortality and then cored to measure...

  9. Growth Rate and Health Status of Weaned Rabbits Fed Ensiled ...

    African Journals Online (AJOL)

    In a 6 week feeding experiment, twenty five New Zealand white breed of weaned rabbits, with an average age of 8-10 weeks were used to assess the effect of ensiled water hyacinth (WH) with different additives on growth rate and blood parameters of the animals. The animals were randomly allotted to five dietary groups, ...

  10. Short-term lower-leg growth rate and urine cortisol excretion in children treated with ciclesonide

    DEFF Research Database (Denmark)

    Agertoft, Lone; Pedersen, Søren

    2005-01-01

    BACKGROUND: Measurement of short-term lower-leg growth rate in children by means of knemometry has become established as an integral part of the available measures of systemic activity of topical steroids in children. OBJECTIVE: We sought to determine the effects of clinically effective doses....... There was no statistically significant dose-response effect. Likewise, no statistically significant differences or dose-response effects were found for urinary cortisol adjusted for creatinine. CONCLUSION: Short-term lower-leg growth rate and hypothalamic-pituitary-adrenal axis function are not affected by treatment...... of the novel inhaled corticosteroid ciclesonide on lower-leg growth rate and hypothalamic-pituitary-adrenal axis function in children with asthma. METHODS: In a double-blind, placebo-controlled, 4-period crossover study, 24 children aged 6 to 12 years sequentially received ciclesonide (40, 80, and 160 microg...

  11. EFFECT OF POST-LOGGING SILVICULTURAL TREATMENT ON GROWTH RATES OF RESIDUAL STAND IN A TROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Haruni Krisnawati

    2010-12-01

    Full Text Available Post-logging silvicultural treatments are generally performed to improve yields of the remaining tree species by increasing their growth rate. In this study the effects of silvicultural treatment on the growth rates of commercial (dipterocarps and non-dipterocarps as well as non- commercial tree species in a tropical forest in West Kalimantan were examined and were compared to a control treatment. Silvicultural treatment applied was liberation of future crop trees from lianas and neighbouring competing trees. Treatments were applied to six plots of 80 m x 80 m each. The plots comprised 64 quadrats of 10 m x 10 m to allow better control of measurements. The treatment and control plots were established 6 years after logging. Effects were measured 2,4 and 7 years after treatment application. In all obser vation periods, the growth rates increased with silvicultural treatment. Overall, commercial dipterocarps, commercial non-dipterocarps and non-commercial tree species groups differed in response to silvicultural treatment. The growth rates of commercial tree species in plots that received silvicultural treatment were 62–97% higher than in the control plots. For non-commercial tree species, the increase of growth rates was 20–58%, compared to the control plots. These results indicate that the application of silvicultural treatments after logging could help improve the growth of the residual stands. These provide quantitative information that silvicultural treatments in logged-over forest should be considered as a viable management option and may guide the choice of cutting cycle.

  12. Measurement of the volume growth rate of single budding yeast with the MOSFET-based microfluidic Coulter counter.

    Science.gov (United States)

    Sun, Jiashu; Stowers, Chris C; Boczko, Erik M; Li, Deyu

    2010-11-07

    We report on measurements of the volume growth rate of ten individual budding yeast cells using a recently developed MOSFET-based microfluidic Coulter counter. The MOSFET-based microfluidic Coulter counter is very sensitive, provides signals that are immune from the baseline drift, and can work with cell culture media of complex composition. These desirable features allow us to directly measure the volume growth rate of single cells of Saccharomyces cerevisiae LYH3865 strain budding yeast in YNB culture media over a whole cell cycle. Results indicate that all budding yeast follow a sigmoid volume growth profile with reduced growth rates at the initial stage before the bud emerges and the final stage after the daughter gets mature. Analysis of the data indicates that even though all piecewise linear, Gomperitz, and Hill's function models can fit the global growth profile equally well, the data strongly support local exponential growth phenomenon. Accurate volume growth measurements are important for applications in systems biology where quantitative parameters are required for modeling and simulation.

  13. Population-Level Differentiation in Growth Rates and Leaf Traits in Seedlings of the Neotropical Live Oak Quercus oleoides Grown under Natural and Manipulated Precipitation Regimes

    Directory of Open Access Journals (Sweden)

    Jose A. Ramírez-Valiente

    2017-05-01

    Full Text Available Widely distributed species are normally subjected to spatial heterogeneity in environmental conditions. In sessile organisms like plants, adaptive evolution and phenotypic plasticity of key functional traits are the main mechanisms through which species can respond to environmental heterogeneity and climate change. While extended research has been carried out in temperate species in this regard, there is still limited knowledge as to how species from seasonally-dry tropical climates respond to spatial and temporal variation in environmental conditions. In fact, studies of intraspecific genetically-based differences in functional traits are still largely unknown and studies in these ecosystems have largely focused on in situ comparisons where environmental and genetic effects cannot be differentiated. In this study, we tested for ecotypic differentiation and phenotypic plasticity in leaf economics spectrum (LES traits, water use efficiency and growth rates under natural and manipulated precipitation regimes in a common garden experiment where seedlings of eight populations of the neotropical live oak Quercus oleoides were established. We also examined the extent to which intraspecific trait variation was associated with plant performance under different water availability. Similar to interspecific patterns among seasonally-dry tropical tree species, live oak populations with long and severe dry seasons had higher leaf nitrogen content and growth rates than mesic populations, which is consistent with a “fast” resource-acquisition strategy aimed to maximize carbon uptake during the wet season. Specific leaf area (SLA was the best predictor of plant performance, but contrary to expectations, it was negatively associated with relative and absolute growth rates. This observation was partially explained by the negative association between SLA and area-based photosynthetic rates, which is contrary to LES expectations but similar to other recent

  14. Theoretical growth rates, periods, and pulsation constants for long-period variables

    International Nuclear Information System (INIS)

    Fox, M.W.; Wood, P.R.

    1982-01-01

    Theoretical values of the growth rate, period, and pulsation constant for the first three radial pulsation modes in red giants (Population II and galactic disk) and supergiants have been derived in the linear, nonadiabatic approximation. The effects of altering the surface boundary conditions, the effective temperature (or mixing length), and the opacity in the outer layers have been explored. In the standard models, the Q-value for the first overtone can be much larger (Q 1 1 roughly-equal0.04); in addition, the Q-value for the fundamental mode is reduced from previous values, as is the period ratio P 0 /P 1 . The growth rate for the fundamental mode is found to increase with luminosity on the giant branch while the growth rate for the first overtone decreases. Dynamical instabilities found in previous adiabatic models of extreme red giants do not occur when nonadiabatic effects are included in the models. In some massive, luminous models, period ratios P 0 /P 1 approx.7 occur when P 0 approx.2000--5000 days; it is suggested that the massive galactic supergiants and carbon stars which have secondary periods Papprox.2000--7000 days and primary periods Papprox.300--700 days are first-overtone pulsators in which the long secondary periods are due to excitation of the fundamental mode. Some other consequences of the present results are briefly discussed, with particular emphasis on the mode of pulsation of the Mira variables. Subject headings: stars: long-period variables: stars: pulsation: stars: supergiants

  15. Towards establishing a combined rate law of nucleation and crystal growth - The case study of gypsum precipitation

    Science.gov (United States)

    Rendel, Pedro M.; Gavrieli, Ittai; Wolff-Boenisch, Domenik; Ganor, Jiwchar

    2018-03-01

    The main obstacle in the formulation of a quantitative rate-model for mineral precipitation is the absence of a rigorous method for coupling nucleation and growth processes. In order to link both processes, we conducted a series of batch experiments in which gypsum nucleation was followed by crystal growth. Experiments were carried out using various stirring methods in several batch vessels made of different materials. In the experiments, the initial degree of supersaturation of the solution with respect to gypsum (Ωgyp) was set between 1.58 and 1.82. Under these conditions, heterogeneous nucleation is the dominant nucleation mode. Based on changes in SO42- concentration with time, the induction time of gypsum nucleation and the following rate of crystal growth were calculated for each experiment. The induction time (6-104 h) was found to be a function of the vessel material, while the rates of crystal growth, which varied over three orders of magnitude, were strongly affected by the stirring speed and its mode (i.e. rocking, shaking, magnetic stirrer, and magnetic impeller). The SO42- concentration data were then used to formulate a forward model that couples the simple rate laws for nucleation and crystal growth of gypsum into a single kinetic model. Accordingly, the obtained rate law is based on classical nucleation theory and heterogeneous crystal growth.

  16. Prediction of PWSCC in nickel base alloys using crack growth rate models

    International Nuclear Information System (INIS)

    Thompson, C.D.

    1995-01-01

    The Ford/Andresen slip dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material condition. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip dissolution mechanism. No voids, hydrides,, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxide found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip. (author). 12 refs, 27 figs

  17. Numerical Study of Operating Pressure Effect on Carbon Nanotube Growth Rate and Length Uniformity

    Directory of Open Access Journals (Sweden)

    B. Zahed

    2014-01-01

    Full Text Available Chemical Vapor Deposition (CVD is one of the most popular methods for producing Carbon Nanotubes (CNTs. The growth rate of CNTs based on CVD technique is investigated by using a numerical model based on finite volume method. Inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as carrier gas enters into a horizontal CVD reactor at atmospheric pressure. In this article the operating pressure variations are studied as the effective parameter on CNT growth rate and length uniformity.

  18. Avaliação ecológica da qualidade da água utilizando ensaios in situ com C. riparius

    OpenAIRE

    Faria, Ana Mafalda Sá de

    2005-01-01

    This thesis deals with the use of in situ bioassays with Chironomus riparius larvae to assess water quality and the risk of contaminants on freshwater ecosystems. These bioassays were seasonally deployed in selected sites on contaminated and reference rivers of North and Central Portugal, to evaluate their performance in assessing water quality in lotic ecosystems. Several biological responses (development, growth, survival and post-exposure feeding rate) were determined and the biotic, ph...

  19. Cells competition in tumor growth poroelasticity

    Science.gov (United States)

    Fraldi, Massimiliano; Carotenuto, Angelo R.

    2018-03-01

    Growth of biological tissues has been recently treated within the framework of Continuum Mechanics, by adopting heterogeneous poroelastic models where the interaction between soft matrix and interstitial fluid flow is coupled with inelastic effects ad hoc introduced to simulate the macroscopic volumetric growth determined by cells division, cells growth and extracellular matrix changes occurring at the micro-scale level. These continuum models seem to overcome some limitations intrinsically associated to other alternative approaches based on mass balances in multiphase systems, because the crucial role played by residual stresses accompanying growth and nutrients walkway is preserved. Nevertheless, when these strategies are applied to analyze solid tumors, mass growth is usually assigned in a prescribed form that essentially copies the in vitro measured intrinsic growth rates of the cell species. As a consequence, some important cell-cell dynamics governing mass evolution and invasion rates of cancer cells, as well as their coupling with feedback mechanisms associated to in situ stresses, are inevitably lost and thus the spatial distribution and the evolution with time of the growth inside the tumor -which would be results rather than inputs- are forced to enter in the model simply as data. In order to solve this paradox, it is here proposed an enhanced multi-scale poroelastic model undergoing large deformations and embodying inelastic growth, where the net growth terms directly result from the "interspecific" predator-prey (Volterra/Lotka-like) competition occurring at the micro-scale level between healthy and abnormal cell species. In this way, a system of fully-coupled non-linear PDEs is derived to describe how the fight among cell species to grab the available common resources, stress field, pressure gradients, interstitial fluid flows driving nutrients and inhomogeneous growth all simultaneously interact to decide the tumor fate.

  20. Loading rate and test temperature effects on fracture of in situ niobium silicide-niobium composites

    International Nuclear Information System (INIS)

    Rigney, J.D.; Lewandowski, J.J.

    1996-01-01

    Arc cast, extruded, and heat-treated in situ composites of niobium silicide (Nb 5 Si 3 ) intermetallic with niobium phases (primary--Nb p and secondary--Nb s ) exhibited high fracture resistance in comparison to monolithic Nb 5 Si 3 . In toughness tests conducted at 298 K and slow applied loading rates, the fracture process proceeded by the microcracking of the Nb 5 Si 3 and plastic deformation of the Nb p and Nb s phases, producing resistance-curve behavior and toughnesses of 28 MPa√m with damage zone lengths less than 500 microm. The effects of changes in the Nb p yield strength and fracture behavior on the measured toughnesses were investigated by varying the loading rates during fracture tests at both 77 and 298 K. Quantitative fractography was utilized to completely characterize each fracture surface created at 298 K in order to determine the type of fracture mode (i.e., dimpled, cleavage) exhibited by the Nb p . Specimens tested at either higher loading rates or lower test temperatures consistently exhibited a greater amount of cleavage fracture in the Nb p , while the Nb s always remained ductile. However, the fracture toughness values determined from experiments spanning six orders of magnitude in loading rate at 298 and 77 K exhibited little variation, even under conditions when the majority of Nb p phases failed by cleavage at 77 K. The changes in fracture mode with increasing loading rate and/or decreasing test temperature and their effects on fracture toughness are rationalized by comparison to existing theoretical models

  1. Effects of growth rate, cell size, motion, and elemental stoichiometry on nutrient transport kinetics.

    Science.gov (United States)

    Flynn, Kevin J; Skibinski, David O F; Lindemann, Christian

    2018-04-01

    Nutrient acquisition is a critical determinant for the competitive advantage for auto- and osmohetero- trophs alike. Nutrient limited growth is commonly described on a whole cell basis through reference to a maximum growth rate (Gmax) and a half-saturation constant (KG). This empirical application of a Michaelis-Menten like description ignores the multiple underlying feedbacks between physiology contributing to growth, cell size, elemental stoichiometry and cell motion. Here we explore these relationships with reference to the kinetics of the nutrient transporter protein, the transporter rate density at the cell surface (TRD; potential transport rate per unit plasma-membrane area), and diffusion gradients. While the half saturation value for the limiting nutrient increases rapidly with cell size, significant mitigation is afforded by cell motion (swimming or sedimentation), and by decreasing the cellular carbon density. There is thus potential for high vacuolation and high sedimentation rates in diatoms to significantly decrease KG and increase species competitive advantage. Our results also suggest that Gmax for larger non-diatom protists may be constrained by rates of nutrient transport. For a given carbon density, cell size and TRD, the value of Gmax/KG remains constant. This implies that species or strains with a lower Gmax might coincidentally have a competitive advantage under nutrient limited conditions as they also express lower values of KG. The ability of cells to modulate the TRD according to their nutritional status, and hence change the instantaneous maximum transport rate, has a very marked effect upon transport and growth kinetics. Analyses and dynamic models that do not consider such modulation will inevitably fail to properly reflect competitive advantage in nutrient acquisition. This has important implications for the accurate representation and predictive capabilities of model applications, in particular in a changing environment.

  2. Temporal, spatial, and body size effects on growth rates of loggerhead sea turtles (Caretta caretta) in the Northwest Atlantic

    Science.gov (United States)

    Bjorndal, Karen A.; Schroeder, Barbara A.; Foley, Allen M.; Witherington, Blair E.; Bresette, Michael; Clark, David; Herren, Richard M.; Arendt, Michael D.; Schmid, Jeffrey R.; Meylan, Anne B.; Meylan, Peter A.; Provancha, Jane A.; Hart, Kristen M.; Lamont, Margaret M.; Carthy, Raymond R.; Bolten, Alan B.

    2013-01-01

    In response to a call from the US National Research Council for research programs to combine their data to improve sea turtle population assessments, we analyzed somatic growth data for Northwest Atlantic (NWA) loggerhead sea turtles (Caretta caretta) from 10 research programs. We assessed growth dynamics over wide ranges of geography (9–33°N latitude), time (1978–2012), and body size (35.4–103.3 cm carapace length). Generalized additive models revealed significant spatial and temporal variation in growth rates and a significant decline in growth rates with increasing body size. Growth was more rapid in waters south of the USA (productivity to a common environmental change should be explored to determine whether somatic growth rates can help interpret population trends based on annual counts of nests or nesting females. Because of the significant spatial and temporal variation in growth rates, population models of NWA loggerheads should avoid employing growth data from restricted spatial or temporal coverage to calculate demographic metrics such as age at sexual maturity.

  3. In-situ transmission electron microscopy growth of nanoparticles under extreme conditions

    International Nuclear Information System (INIS)

    Luce, F. P.; Azevedo, G. de M.; Baptista, D. L.; Zawislak, F. C.; Oliviero, E.; Fichtner, P. F. P.

    2016-01-01

    The formation and time resolved behavior of individual Pb nanoparticles embedded in silica have been studied by in-situ transmission electron microscopy observations at high temperatures (400–1100 °C) and under 200 keV electron irradiation. It is shown that under such extreme conditions, nanoparticles can migrate at long distances presenting a Brownian-like behavior and eventually coalesce. The particle migration phenomenon is discussed considering the influence of the thermal energy and the electron irradiation effects on the atomic diffusion process which is shown to control particle migration. These results and comparison with ex-situ experiments tackle the stability and the microstructure evolution of nanoparticles systems under extreme conditions. It elucidates on the effects of energetic particle irradiation-annealing treatments either as a tool or as a detrimental issue that could hamper their long-term applications in radiation-harsh environments such as in space or nuclear sectors

  4. Endosulfan induced changes in growth rate, pigment composition and photosynthetic activity of mosquito fern Azolla microphylla

    Directory of Open Access Journals (Sweden)

    Raja W.

    2012-11-01

    Full Text Available This paper is the first in a series reporting a study on the effects of different concentrations of insecticide, Endosulfan (0-600ppm was premeditated on 5th day after insecticide exposure with respect to growth rate, pigment composition and photosynthetic activity of Azolla microphylla under laboratory conditions which become non-target organism in the rice fields. Endosulfan inhibited the relative growth rate, pigment content and photosynthetic O2 evolution. Phycocyanin was main target followed by carotenoid and total chlorophyll. Significant increase in pigment, flavonoid and Anthocyanin was noticed after six days of treatment. In contrast to the photosynthetic activity, the rate of respiration in Azolla microphylla was increased significantly. Our results show that Endosulfan at normally recommended field rates and intervals are seldom deleterious to the beneficial and Eco friendly Azolla microphylla and their activities and thus in turn suppress plant growth and development. Phytotoxity of Azolla microphylla can be minimized by restrictions on application, timing, method and rate of application.

  5. Cristal size distribution in metamorphic rocks: an example for the relationship between nucleation and growth rates with overstepping

    International Nuclear Information System (INIS)

    Homan, S. M.

    2003-01-01

    Crystal size distribution in metamorphic rocks provide fundamental information about crystal nucleation and growth rate, growth time and the degree of overstepping. Crystal size distribution data for garnet, saluretil, keynote, and and alusite crystals from the aureole demonstrate that the earliest formed of this minerals, garnet, has the highest population density and the shortest growth time. The last formed mineral, and alusite, has the lowest population density and longest growth time. keynote and saluretil have the similar population density and growth times intermediate between those of overstepping on the nucleation and growth rates of minerals during metamorphism

  6. THE EFFECT OF FEEDING Lactobacillus ON GROWTH, SURVIVAL RATE AND PROTEASE ACTIVITY OF Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Nunak Nafiqoh

    2011-12-01

    Full Text Available This study examined the effect of two Lactobacillus bacteria on protease activity and growth rate of Litopenaeus vannamei. An experiment was conducted to examine protease activity and growth rate. The experiment consisted of two treatment tanks, the first tank was provided with artemia immersed in 2.6 x 1016 cfu/mL of bacteria solution, the second tank served as the control tank. After 20 days, the L. vannamei in the tank that received Lactobacillus have significantly different in growth, survival rate and protease activity (P<0.05 compared to the control, but no significant difference between Lactobacillus casei and Lactobacillus plantarum treatments. Within the digestive organ, protease activity of hepatopancreas and stomach demonstrated significant higher activity (P<0.05 compared to the intestine.

  7. A transcription factor links growth rate and metabolism in the hypersaline adapted archaeon Halobacterium salinarum.

    Science.gov (United States)

    Todor, Horia; Dulmage, Keely; Gillum, Nicholas; Bain, James R; Muehlbauer, Michael J; Schmid, Amy K

    2014-09-01

    Co-ordinating metabolism and growth is a key challenge for all organisms. Despite fluctuating environments, cells must produce the same metabolic outputs to thrive. The mechanisms underlying this 'growth homeostasis' are known in bacteria and eukaryotes, but remain unexplored in archaea. In the model archaeon Halobacterium salinarum, the transcription factor TrmB regulates enzyme-coding genes in diverse metabolic pathways in response to glucose. However, H. salinarum is thought not to catabolize glucose. To resolve this discrepancy, we demonstrate that TrmB regulates the gluconeogenic production of sugars incorporated into the cell surface S-layer glycoprotein. Additionally, we show that TrmB-DNA binding correlates with instantaneous growth rate, likely because S-layer glycosylation is proportional to growth. This suggests that TrmB transduces a growth rate signal to co-regulated metabolic pathways including amino acid, purine, and cobalamin biosynthesis. Remarkably, the topology and function of this growth homeostatic network appear conserved across domains despite extensive alterations in protein components. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  8. Population dynamics and growth rates of endosymbionts during Diaphorina citri (Hemiptera, Liviidae) ontogeny.

    Science.gov (United States)

    Dossi, Fabio Cleisto Alda; da Silva, Edney Pereira; Cônsoli, Fernando Luis

    2014-11-01

    The infection density of symbionts is among the major parameters to understand their biological effects in host-endosymbionts interactions. Diaphorina citri harbors two bacteriome-associated bacterial endosymbionts (Candidatus Carsonella ruddii and Candidatus Profftella armatura), besides the intracellular reproductive parasite Wolbachia. In this study, the density dynamics of the three endosymbionts associated with the psyllid D. citri was investigated by real-time quantitative PCR (qPCR) at different developmental stages. Bacterial density was estimated by assessing the copy number of the 16S rRNA gene for Carsonella and Profftella, and of the ftsZ gene for Wolbachia. Analysis revealed a continuous growth of the symbionts during host development. Symbiont growth and rate curves were estimated by the Gompertz equation, which indicated a negative correlation between the degree of symbiont-host specialization and the time to achieve the maximum growth rate (t*). Carsonella densities were significantly lower than those of Profftella at all host developmental stages analyzed, even though they both displayed a similar trend. The growth rates of Wolbachia were similar to those of Carsonella, but Wolbachia was not as abundant. Adult males displayed higher symbiont densities than females. However, females showed a much more pronounced increase in symbiont density as they aged if compared to males, regardless of the incorporation of symbionts into female oocytes and egg laying. The increased density of endosymbionts in aged adults differs from the usual decrease observed during host aging in other insect-symbiont systems.

  9. In situ and laboratory determined first-order degradation rate constants of specific organic compounds in an aerobic aquifer

    DEFF Research Database (Denmark)

    Nielsen, P.H.; Bjerg, P.L.; Nielsen, P.

    1996-01-01

    In situ microcosms (ISM) and laboratory batch microcosms (LBM) were used for determination of the first-order degradation rate constants of benzene, toluene, o-xylene, nitrobenzene, naphthalene, biphenyl, o- and p-dichlorobenzene, 1,1,1 -trichloroethane, tetrachlorometane, trichloroethene......, tetrachloroethene, phenol, o-cresol, 2,4- and 2,6-dichlorophenol, 4,6-o-dichlorocresol, and o- and p-nitrophenol in an aerobic aquifer, All aromatic hydrocarbons were degraded in ISM and LBM experiments. The phenolic hydrocarbons were ail degraded in ISM experiments, but some failed to degrade in LBM experiments....... Chlorinated aliphatic hydrocarbons were degraded neither in ISM nor LBM experiments. Degradation rate constants were determined by a model accounting for kinetic sorption (bicontinuum model), lag phases, and first-order degradation. With a few exceptions, lag phases were less than 2 weeks in both ISM and LBM...

  10. Modelling the effect of ethanol on growth rate of food spoilage moulds

    NARCIS (Netherlands)

    Dantigny, P.; Guilmart, A.; Radoi, F.; Bensoussan, M.; Zwietering, M.H.

    2005-01-01

    The effect of ethanol (E) on the radial growth rate (¿) of food spoilage moulds (Aspergillus candidus, Aspergillus flavus, Aspergillus niger, Cladosporium cladosporioides, Eurotium herbariorum, Mucor circinelloides, Mucor racemosus, Paecilomyces variotii, Penicillium chrysogenum, Penicillium

  11. Collaborative Project: Understanding the Chemical Processes tat Affect Growth rates of Freshly Nucleated Particles

    Energy Technology Data Exchange (ETDEWEB)

    McMurry, Peter [Univ. of Minnesota, Minneapolis, MN (United States); Smuth, James [University Corporation for Atmospheric Research, Irvine, CA (United States)

    2015-11-12

    This final technical report describes our research activities that have, as the ultimate goal, the development of a model that explains growth rates of freshly nucleated particles. The research activities, which combine field observations with laboratory experiments, explore the relationship between concentrations of gas-phase species that contribute to growth and the rates at which those species are taken up. We also describe measurements of the chemical composition of freshly nucleated particles in a variety of locales, as well as properties (especially hygroscopicity) that influence their effects on climate.

  12. [Study of the phase transformation of TiO2 with in-situ XRD in different gas].

    Science.gov (United States)

    Ma, Li-Jing; Guo, Lie-Jin

    2011-04-01

    TiO2 sample was prepared by sol-gel method from chloride titanium. The phase transformation of the prepared TiO2 sample was studied by in-situ XRD and normal XRD in different gas. The experimental results showed that the phase transformation temperatures of TiO2 were different under in-situ or normal XRD in different kinds of gas. The transformation of amorphous TiO2 to anatase was controlled by kinetics before 500 degrees C. In-situ XRD showed that the growth of anatase was inhibited, but the transformation of anatase to rutile was accelerated under inactive nitrogen in contrast to air. Also better crystal was obtained under hydrogen than in argon. These all showed that external oxygen might accelerate the growth of TiO2, but reduced gas might partly counteract the negative influence of lack of external oxygen. The mechanism of phase transformation of TiO2 was studied by in-situ XRD in order to control the structure in situ.

  13. Real-time observation of rotational twin formation during molecular-beam epitaxial growth of GaAs on Si (111) by x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Hidetoshi, E-mail: hsuzuki@cc.miyazaki-u.ac.jp [Faculty of Engineering, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192 (Japan); Nakata, Yuka; Takahasi, Masamitu [Graduate School of Materials Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Hyogo 678-1297 (Japan); Quantum Beam Science Center, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo-cho, Hyogo 679-5148 (Japan); Ikeda, Kazuma [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Ohshita, Yoshio; Morohara, Osamu; Geka, Hirotaka; Moriyasu, Yoshitaka [Advanced Devices and Sensor Systems Development Center, Asahi Kasei Co. Ltd., 2-1 Samejima, Fuji 416-8501 (Japan)

    2016-03-15

    The formation and evolution of rotational twin (TW) domains introduced by a stacking fault during molecular-beam epitaxial growth of GaAs on Si (111) substrates were studied by in situ x-ray diffraction. To modify the volume ratio of TW to total GaAs domains, GaAs was deposited under high and low group V/group III (V/III) flux ratios. For low V/III, there was less nucleation of TW than normal growth (NG) domains, although the NG and TW growth rates were similar. For high V/III, the NG and TW growth rates varied until a few GaAs monolayers were deposited; the mean TW domain size was smaller for all film thicknesses.

  14. Integrating spatial and temporal oxygen data to improve the quantification of in situ petroleum biodegradation rates.

    Science.gov (United States)

    Davis, Gregory B; Laslett, Dean; Patterson, Bradley M; Johnston, Colin D

    2013-03-15

    Accurate estimation of biodegradation rates during remediation of petroleum impacted soil and groundwater is critical to avoid excessive costs and to ensure remedial effectiveness. Oxygen depth profiles or oxygen consumption over time are often used separately to estimate the magnitude and timeframe for biodegradation of petroleum hydrocarbons in soil and subsurface environments. Each method has limitations. Here we integrate spatial and temporal oxygen concentration data from a field experiment to develop better estimates and more reliably quantify biodegradation rates. During a nine-month bioremediation trial, 84 sets of respiration rate data (where aeration was halted and oxygen consumption was measured over time) were collected from in situ oxygen sensors at multiple locations and depths across a diesel non-aqueous phase liquid (NAPL) contaminated subsurface. Additionally, detailed vertical soil moisture (air-filled porosity) and NAPL content profiles were determined. The spatial and temporal oxygen concentration (respiration) data were modeled assuming one-dimensional diffusion of oxygen through the soil profile which was open to the atmosphere. Point and vertically averaged biodegradation rates were determined, and compared to modeled data from a previous field trial. Point estimates of biodegradation rates assuming no diffusion ranged up to 58 mg kg(-1) day(-1) while rates accounting for diffusion ranged up to 87 mg kg(-1) day(-1). Typically, accounting for diffusion increased point biodegradation rate estimates by 15-75% and vertically averaged rates by 60-80% depending on the averaging method adopted. Importantly, ignoring diffusion led to overestimation of biodegradation rates where the location of measurement was outside the zone of NAPL contamination. Over or underestimation of biodegradation rate estimates leads to cost implications for successful remediation of petroleum impacted sites. Crown Copyright © 2013. Published by Elsevier Ltd. All rights

  15. Validity of the tritiated thymidine method for estimating bacterial growth rates: measurement of isotope dilution during DNA synthesis

    International Nuclear Information System (INIS)

    Pollard, P.C.; Moriarty, D.J.W.

    1984-01-01

    The rate of tritiated thymidine incorporation into DNA was used to estimate bacterial growth rates in aquatic environments. To be accurate, the calculation of growth rates has to include a factor for the dilution of isotope before incorporation. The validity of an isotope dilution analysis to determine this factor was verified in experiments reported here with cultures of a marine bacterium growing in a chemostat. Growth rates calculated from data on chemostat dilution rates and cell density agreed well with rates calculated by tritiated thymidine incorporation into DNA and isotope dilution analysis. With sufficiently high concentrations of exogenous thymidine, de novo synthesis of deoxythymidine monophosphate was inhibited, thereby preventing the endogenous dilution of isoope. The thymidine technique was also shown to be useful for measuring growth rates of mixed suspensions of bacteria growing anaerobically. Thymidine was incorporated into the DNA of a range of marine pseudomonads that were investigated. Three species did not take up thymidine. The common marine cyanobacterium Synechococcus species did not incorporate thymidine into DNA

  16. Growth rate and chemical composition of a manganese nodule from the EEZ of Seychelles

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Borole, D.V.

    mhe ferro-manganese nodule collected in EEZ of Seychelles yields a growth rate of 1.5 mm/10 6Y 230Th (ex)/ and 230Th (ex)/ 232Th activity ratio methods indicating very slow growth of ferro-manganese nodules. The Mn/Fe and U/Th ratios suggest...

  17. Does warming affect growth rate and biomass production of shrubs in the High Arctic?

    DEFF Research Database (Denmark)

    Campioli, Matteo; Schmidt, Niels Martin; Albert, Kristian Rost

    2013-01-01

    Few studies have assessed directly the impact of warming on plant growth and biomass production in the High Arctic. Here, we aimed to investigate the impact of 7 years of warming (open greenhouses) on the aboveground relative growth rate (RGR) of Cassiope tetragona and Salix arctica in North-East...

  18. Direct observation of strain in InAs quantum dots and cap layer during molecular beam epitaxial growth using in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, Kenichi; Ohshita, Yoshio; Kamiya, Itaru, E-mail: kamiya@toyota-ti.ac.jp [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Suzuki, Hidetoshi [Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Sasaki, Takuo; Takahasi, Masamitu [Quantum Beam Science Center, Japan Atomic Energy Agency, Koto 1-1-1, Sayo-cho, Hyogo 679-5148 (Japan)

    2015-11-14

    Direct measurements on the growth of InAs quantum dots (QDs) and various cap layers during molecular beam epitaxy are performed by in situ X-ray diffraction (XRD). The evolution of strain induced both in the QDs and cap layers during capping is discussed based on the XRD intensity transients obtained at various lattice constants. Transients with different features are observed from those obtained during InGaAs and GaAs capping. The difference observed is attributed to In-Ga intermixing between the QDs and the cap layer under limited supply of In. Photoluminescence (PL) wavelength can be tuned by controlling the intermixing, which affects both the strain induced in the QDs and the barrier heights. The PL wavelength also varies with the cap layer thickness. A large redshift occurs by reducing the cap thickness. The in situ XRD observation reveals that this is a result of reduced strain. We demonstrate how such information about strain can be applied for designing and preparing novel device structures.

  19. Direct observation of strain in InAs quantum dots and cap layer during molecular beam epitaxial growth using in situ X-ray diffraction

    International Nuclear Information System (INIS)

    Shimomura, Kenichi; Ohshita, Yoshio; Kamiya, Itaru; Suzuki, Hidetoshi; Sasaki, Takuo; Takahasi, Masamitu

    2015-01-01

    Direct measurements on the growth of InAs quantum dots (QDs) and various cap layers during molecular beam epitaxy are performed by in situ X-ray diffraction (XRD). The evolution of strain induced both in the QDs and cap layers during capping is discussed based on the XRD intensity transients obtained at various lattice constants. Transients with different features are observed from those obtained during InGaAs and GaAs capping. The difference observed is attributed to In-Ga intermixing between the QDs and the cap layer under limited supply of In. Photoluminescence (PL) wavelength can be tuned by controlling the intermixing, which affects both the strain induced in the QDs and the barrier heights. The PL wavelength also varies with the cap layer thickness. A large redshift occurs by reducing the cap thickness. The in situ XRD observation reveals that this is a result of reduced strain. We demonstrate how such information about strain can be applied for designing and preparing novel device structures

  20. Long-term experimental in situ farming of Crambe crambe (Demospongiae: Poecilosclerida).

    Science.gov (United States)

    Padiglia, Andrea; Ledda, Fabio D; Padedda, Bachisio M; Pronzato, Roberto; Manconi, Renata

    2018-01-01

    The marine sponge Crambe crambe was chosen as an experimental model of sustainable shallow-water mariculture in the Sardinian Sea (Western Mediterranean) to provide biomass with high potential in applied research. Explants were cultured in four long-term experiments (19 and 31 months at ca. 2.5 m depth), to determine the suitability of new culture techniques by testing substrata and seeding time (season), and monitoring survival and growth. Explants were excised and grown in an experimental plant close to the wild donor sponge population. Percentage growth rate (GR%) was measured in terms of surface cover area, and explant survival was monitored in situ by means of a digital photo camera. Explant survival was high throughout the trial, ranging from 78.57% to 92.85% on travertine tiles and from 50% to 71.42% on oyster shells. A few instances of sponge regression were observed. Explant cover area correlated positively with season on two substrata, i.e., tiles and shells. The surface cover area and GR% of explants were measured in the starting phase and monitored up to the end of the trial. High GR% values were observed both on tiles (>21%) and on oyster shells (>15%). The data on the behaviour and life-style of cultured fragments, together with an increase >2,400% in cover area, demonstrate that in situ aquaculture is a viable and sustainable method for the shallow-water biomass supply of Crambe crambe .