WorldWideScience

Sample records for situ drifts studies

  1. Analysis and Calibration of in situ scanning tunnelling microscopy Images with atomic Resolution Influenced by Surface Drift Phenomena

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per

    1994-01-01

    The influence of surface drift velocities on in situ scanning tunnelling microscopy (STM) experiments with atomic resolution is analysed experimentally and mathematically. Constant drift velocities much smaller than the speed of scanning can in many in situ STM experiments with atomic resolution ...... as well as the vectors of the non-distorted surface lattice can be determined. The calibration of distances can thus be carried out also when the image is influenced by drift. Results with gold surfaces and graphite surfaces are analysed and discussed....

  2. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Directory of Open Access Journals (Sweden)

    M. S. Demyan

    2013-05-01

    Full Text Available An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS is being proposed to rapidly characterize soil organic matter (SOM to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2 in order to relate evolved gas (i.e., CO2 to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i the Static Fertilization Experiment, Bad Lauchstädt (Chernozem, from treatments of farmyard manure (FYM, mineral fertilizer (NPK, their combination (FYM + NPK and control without fertilizer inputs; (ii Kraichgau; and (iii Swabian Alb (Cambisols areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM, sand and stable aggregates (Sa + A, silt and clay (Si + C, and NaOCl oxidized Si + C (rSOC to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm−1 being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min−1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max. Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the

  3. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils

    Science.gov (United States)

    Demyan, M. S.; Rasche, F.; Schütt, M.; Smirnova, N.; Schulz, E.; Cadisch, G.

    2013-05-01

    An optimized spectroscopic method combining quantitative evolved gas analysis via Fourier transform infrared spectroscopy (FTIR-EGA) in combination with a qualitative in situ thermal reaction monitoring via diffuse reflectance Fourier transform infrared spectroscopy (in situT DRIFTS) is being proposed to rapidly characterize soil organic matter (SOM) to study its dynamics and stability. A thermal reaction chamber coupled with an infrared gas cell was used to study the pattern of thermal evolution of carbon dioxide (CO2) in order to relate evolved gas (i.e., CO2) to different qualities of SOM. Soil samples were taken from three different arable sites in Germany: (i) the Static Fertilization Experiment, Bad Lauchstädt (Chernozem), from treatments of farmyard manure (FYM), mineral fertilizer (NPK), their combination (FYM + NPK) and control without fertilizer inputs; (ii) Kraichgau; and (iii) Swabian Alb (Cambisols) areas, Southwest Germany. The two latter soils were further fractionated into particulate organic matter (POM), sand and stable aggregates (Sa + A), silt and clay (Si + C), and NaOCl oxidized Si + C (rSOC) to gain OM of different inferred stabilities; respiration was measured from fresh soil samples incubated at 20 °C and 50% water holding capacity for 490 days. A variable long path length gas cell was used to record the mid-infrared absorbance intensity of CO2 (2400 to 2200 cm-1) being evolved during soil heating from 25 to 700 °C with a heating rate of 68 °C min-1 and holding time of 10 min at 700 °C. Separately, the heating chamber was placed in a diffuse reflectance chamber (DRIFTS) for measuring the mid-infrared absorbance of the soil sample during heating. Thermal stability of the bulk soils and fractions was measured via the temperature of maximum CO2 evolution (CO2max). Results indicated that the FYM + NPK and FYM treatments of the Chernozem soils had a lower CO2max as compared to both NPK and CON treatments. On average, CO2max of the Chernozem

  4. Thermal simulation of drift emplacement (TSS): In-situ instrumentation and numerical modeling of stress measurement methods

    International Nuclear Information System (INIS)

    Heusermann, S.

    1988-01-01

    In the course of the planned demonstration test Thermal Simulation of Drift Emplacement (TSS) BGR is carrying out in-situ-measurements of rock stresses, rock deformability and permeability of salt rock and backfill material. The following techniques developed and proved by BGR during the last years are planned to be used in the TSS project: overcoring technique, dilatometer technique, hard inclusion technique, slot-cutting techniques, large-flatjack technique, compensation tests in laboratory, vacuum tests, injection tests, and tracer tests. The purpose of measurements is to determine: the initial stress state; stress gradients around test drifts; stress change caused by mining activities, by creep and stress relaxation and by temperature; the in-situ load-deformation behavior of rock salt; the permeability of rock salt around test drifts; the compaction behavior of backfill material; and the load-deformation behavior of rock salt and borehole grout in laboratory tests

  5. Barents Sea field test of herder to thicken oil for in-situ burning in drift ice

    International Nuclear Information System (INIS)

    Buist, I.; Potter, S.; Sorstrom, S.E.

    2009-01-01

    Thick oil slicks are the key to effective in situ burning. Pack ice can enable in situ burning by keeping slicks thick. Oil spills in drift ice conditions can rapidly spread and become too thin to ignite. The application of chemical surface-active agents known as oil herders are commonly used in open waters to clean and contain oil slicks. Herders result in the formation of a monolayer of surfactants on the water surface and reduce the surface tension on the surrounding water considerably. When the surfactant monolayer reaches the edge of a thin oil slick, it changes the balance of interfacial forces acting on the slick edge and allows the interfacial tensions to contract the oil into thicker layers. This study examined the use of chemical herding agents to thicken oil spills in broken ice to allow them to be ignited and burned in situ. Two meso-scale field burn tests were conducted in May 2008 with crude oil slicks of about 0.1 and 0.7 m 3 in open drift ice off Svalbard in the Barents Sea. Prior to the field experiments, 2 series of small laboratory tests were conducted using Heidrun and Statfjord crudes to determine the ability of the U.S. Navy herding agent to contract slicks of the oil. In the first field experiment involving 102 litres of fresh Heidrun, the slick was unexpectedly carried by currents to a nearby ice edge where the oil was ignited and burned. Approximately 80 per cent of the oil was consumed in the burn. In the second field experiment involving 630 litres of fresh Heidrun, the free-drifting oil was allowed to spread for 15 minutes until it was much too thin to ignite. When the herding agent was applied, the slick contracted and thickened for about 10 minutes and was then ignited using a gelled gas igniter. A 9-minute long burn consumed about 90 per cent of the oil. 9 refs., 5 tabs., 34 figs.

  6. In situ observation of lithium hydride hydrolysis by DRIFT spectroscopy

    International Nuclear Information System (INIS)

    Awbery, Roy P.; Broughton, Duncan A.; Tsang, S.C.

    2008-01-01

    Polycrystalline LiH was studied in situ using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy to investigate the effect water vapour has on the rate of production of the corrosion products, particularly LiOH. The reaction rate of the formation of surface LiOH was monitored by measurement of the hydroxyl (OH) band at 3676 cm -1 . The initial hydrolysis rate of LiH exposed to water vapour at 50% relative humidity was found to be almost two times faster than LiH exposed to water vapour at 2% relative humidity. The hydrolysis rate was shown to be initially very rapid followed by a much slower, almost linear rate. The change in hydrolysis rate was attributed to the formation of a coherent layer of LiOH on the LiH surface. Exposure to lower levels of water vapour appeared to result in the formation of a more coherent corrosion product, resulting in effective passivation of the surface to further attack from water

  7. Facile synthesis of surface N-doped Bi_2O_2CO_3: Origin of visible light photocatalytic activity and in situ DRIFTS studies

    International Nuclear Information System (INIS)

    Zhou, Ying; Zhao, Ziyan; Wang, Fang; Cao, Kun; Doronkin, Dmitry E.; Dong, Fan; Grunwaldt, Jan-Dierk

    2016-01-01

    Graphical abstract: Surfactant (CTAB) can induce nitrogen interstitially doping in the Bi_2O_2CO_3 surface, leading to the formation of localized states from N−O bond, which probably account for the origin of the visible light activity. Moreover, the photocatalytic NO oxidation processes over Bi_2O_2CO_3 were successfully monitored for the first time by in situ DRIFTS. - Highlights: • Interstitially doping N in the Bi_2O_2CO_3 surface was achieved at room temperature. • N-doped Bi_2O_2CO_3 exhibited significantly enhanced visible light photocatalytic activity compared to the pristine Bi_2O_2CO_3. • The formation of localized states from N−O bond could account for the visible light activity of Bi_2O_2CO_3. • The photocatalytic NO oxidation process was monitored by in situ DRIFTS. - Abstract: Bi_2O_2CO_3 nanosheets with exposed {001} facets were prepared by a facile room temperature chemical method. Due to the high oxygen atom density in {001} facets of Bi_2O_2CO_3, the addition of cetyltrimethylammonium bromide (CTAB) does not only influence the growth of crystalline Bi_2O_2CO_3, but also modifies the surface properties of Bi_2O_2CO_3 through the interaction between CTAB and Bi_2O_2CO_3. Nitrogen from CTAB as dopant interstitially incorporates in the Bi_2O_2CO_3 surface evidenced by both experimental and theoretical investigations. Hence, the formation of localized states from N−O bond improves the visible light absorption and charge separation efficiency, which leads to an enhancement of visible light photocatalytic activity toward to the degradation of Rhodamine B (RhB) and oxidation of NO. In addition, the photocatalytic NO oxidation over Bi_2O_2CO_3 nanosheets was successfully monitored for the first time using in situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS). Both bidentate and monodentate nitrates were identified on the surface of catalysts during the photocatalytic reaction process. The application of this strategy to

  8. CTF Void Drift Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gosdin, Chris [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gergar, Marcus [Pennsylvania State Univ., University Park, PA (United States)

    2015-10-26

    This milestone report is a summary of work performed in support of expansion of the validation and verification (V&V) matrix for the thermal-hydraulic subchannel code, CTF. The focus of this study is on validating the void drift modeling capabilities of CTF and verifying the supporting models that impact the void drift phenomenon. CTF uses a simple turbulent-diffusion approximation to model lateral cross-flow due to turbulent mixing and void drift. The void drift component of the model is based on the Lahey and Moody model. The models are a function of two-phase mass, momentum, and energy distribution in the system; therefore, it is necessary to correctly model the ow distribution in rod bundle geometry as a first step to correctly calculating the void distribution due to void drift.

  9. Cooling tower drift: comprehensive case study

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Ulanski, S.L.

    1979-01-01

    A comprehensive experiment to study drift from mechanical drift cooling towers was conducted during June 1978 at the PG and E Pittsburg Power Plant. The data from this study will be used for validation of drift deposition models. Preliminary results show the effects of tower geometry and orientation with respect to the wind and to single- or two-tower operation. The effect of decreasing relative humidity during a test run can also be seen

  10. Ground Control for Non-Emplacement Drifts for LA

    International Nuclear Information System (INIS)

    Tang, D.

    2004-01-01

    The purpose of this calculation is to analyze the stability of repository non-emplacement drifts during the preclosure period, and to provide a final ground support method for non-emplacement drifts for the License Application (LA). This calculation will provide input for the development of LA documents. The scope of this calculation is limited to the non-emplacement drifts including access mains, ramps, exhaust mains, turnouts, intersections between access mains and turnouts, and intersections between exhaust mains and emplacement drifts, portals, TBM launch chambers, observation drift and test alcove in the performance confirmation (PC) facilities, etc. The calculation is limited to the non-emplacement drifts subjected to a combined loading of in-situ stress, seismic stress, and/or thermal stress. Other effects such as hydrological and chemical effects are not considered in this analysis

  11. In situ DRIFTS study of O{sub 3} adsorption on CaO, γ-Al{sub 2}O{sub 3}, CuO, α-Fe{sub 2}O{sub 3} and ZnO at room temperature for the catalytic ozonation of cinnamaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianfeng; Su, Tongming; Jiang, Yuexiu; Xie, Xinling [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Qin, Zuzeng, E-mail: qinzuzeng@gmail.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Ji, Hongbing, E-mail: jihb@mail.sysu.edu.cn [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China)

    2017-08-01

    Highlights: • In situ DRIFTS study of O{sub 3} adsorption on metal oxides at room temperature. • Using acidic probe molecules (DRIFTS) characterization of surface basicity. • Correlation between basic strength of metal oxides and O{sub 3} adsorption. • Study on the competitive adsorption of O{sub 3} and CO{sub 2}. • DRIFTS study of cinnamaldehyde ozonation and benzaldehyde excessive oxidation. - Abstract: In situ DRIFTS were conducted to identify adsorbed ozone and/or adsorbed oxygen species on CaO, ZnO, γ-Al{sub 2}O{sub 3}, CuO and α-Fe{sub 2}O{sub 3} surfaces at room temperature. Samples were characterized by means of TG, XRD, N{sub 2} adsorption–desorption, pyridine-IR, nitrobenzene-IR, chloroform-IR, and CO{sub 2}-TPD. Pyridine-DRIFTS measurements evidence two kinds of acid sites in all the samples. Nitrobenzene, chloroform-DRIFTS, and CO{sub 2}-TPD reveal that there are large amounts of medium-strength base sites on all the metal oxides, and only CaO, ZnO, and γ-Al{sub 2}O{sub 3} have strong base sites. And the benzaldehyde selectivity was increased in the same order of the alkalinity of the metal oxides. With weaker sites, ozone molecules form coordinative complexes bound via the terminal oxygen atom, observed by vibrational frequencies at 2095–2122 and 1026–1054 cm{sup −1}. The formation of ozonide O{sub 3}{sup −} at 790 cm{sup −1}, atomic oxygen at 1317 cm{sup −1}, and superoxide O{sub 2}{sup −} at 1124 cm{sup −1} was detected; these species are believed to be intermediates of O{sub 3} decomposition on strong acid/base sites. The adsorption of ozone on metal oxides is a weak adsorption, and other gases, such as CO{sub 2}, will compete with O{sub 3} adsorption. The mechanism of cinnamaldehyde ozonation at room temperature over CaO shows that cinnamaldehyde can not only be oxidized into cinnamic acid, but also be further oxidized into benzaldehyde, benzoic acid, maleic anhydride, and ultimately mineralized to CO{sub 2} in the

  12. Facile synthesis of surface N-doped Bi{sub 2}O{sub 2}CO{sub 3}: Origin of visible light photocatalytic activity and in situ DRIFTS studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ying, E-mail: yzhou@swpu.edu.cn [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Zhao, Ziyan [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Wang, Fang; Cao, Kun [The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Rd. 8, Chengdu 610500 (China); Doronkin, Dmitry E. [Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Dong, Fan [College of Environmental and Biological Engineering, Chonqing Technology and Business University, Chongqing 400067 (China); Grunwaldt, Jan-Dierk, E-mail: grunwaldt@kit.edu [Insititute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany)

    2016-04-15

    Graphical abstract: Surfactant (CTAB) can induce nitrogen interstitially doping in the Bi{sub 2}O{sub 2}CO{sub 3} surface, leading to the formation of localized states from N−O bond, which probably account for the origin of the visible light activity. Moreover, the photocatalytic NO oxidation processes over Bi{sub 2}O{sub 2}CO{sub 3} were successfully monitored for the first time by in situ DRIFTS. - Highlights: • Interstitially doping N in the Bi{sub 2}O{sub 2}CO{sub 3} surface was achieved at room temperature. • N-doped Bi{sub 2}O{sub 2}CO{sub 3} exhibited significantly enhanced visible light photocatalytic activity compared to the pristine Bi{sub 2}O{sub 2}CO{sub 3}. • The formation of localized states from N−O bond could account for the visible light activity of Bi{sub 2}O{sub 2}CO{sub 3}. • The photocatalytic NO oxidation process was monitored by in situ DRIFTS. - Abstract: Bi{sub 2}O{sub 2}CO{sub 3} nanosheets with exposed {001} facets were prepared by a facile room temperature chemical method. Due to the high oxygen atom density in {001} facets of Bi{sub 2}O{sub 2}CO{sub 3}, the addition of cetyltrimethylammonium bromide (CTAB) does not only influence the growth of crystalline Bi{sub 2}O{sub 2}CO{sub 3}, but also modifies the surface properties of Bi{sub 2}O{sub 2}CO{sub 3} through the interaction between CTAB and Bi{sub 2}O{sub 2}CO{sub 3}. Nitrogen from CTAB as dopant interstitially incorporates in the Bi{sub 2}O{sub 2}CO{sub 3} surface evidenced by both experimental and theoretical investigations. Hence, the formation of localized states from N−O bond improves the visible light absorption and charge separation efficiency, which leads to an enhancement of visible light photocatalytic activity toward to the degradation of Rhodamine B (RhB) and oxidation of NO. In addition, the photocatalytic NO oxidation over Bi{sub 2}O{sub 2}CO{sub 3} nanosheets was successfully monitored for the first time using in situ diffuse reflectance infrared Fourier

  13. Lithium-drifted silicon for harsh radiation environments

    Science.gov (United States)

    Grant, J.; Buttar, C.; Brozel, M.; Keffous, A.; Cheriet, A.; Bourenane, K.; Bourenane, A.; Kezzoula, F.; Menari, H.

    2008-06-01

    A model describing the passivation by Li atoms of acceptors arising from radiation damage in Si detectors has been developed. Our studies indicate that it is possible to produce a protocol that will allow the in-situ recovery of lithium-drifted Si particle detectors under irradiation by high-energy particles. Our model for particle damage recovery is supported by preliminary results on the recovery of old, degraded detectors.

  14. Lithium-drifted silicon for harsh radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Grant, J. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)], E-mail: j.grant@physics.gla.ac.uk; Buttar, C. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Brozel, M. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); School of Chemistry, University of Bristol, Bristol BS81TS (United Kingdom); Keffous, A.; Cheriet, A.; Bourenane, K.; Bourenane, A.; Kezzoula, F.; Menari, H. [Unite de Developpment de la Technologie du Silicium, 02 Bd Frantz Fanon, B.P. 399 Alger-Gare (Algeria)

    2008-06-11

    A model describing the passivation by Li atoms of acceptors arising from radiation damage in Si detectors has been developed. Our studies indicate that it is possible to produce a protocol that will allow the in-situ recovery of lithium-drifted Si particle detectors under irradiation by high-energy particles. Our model for particle damage recovery is supported by preliminary results on the recovery of old, degraded detectors.

  15. In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst

    Science.gov (United States)

    Zhang, Qiulin; Fan, Jie; Ning, Ping; Song, Zhongxian; Liu, Xin; Wang, Lanying; Wang, Jing; Wang, Huimin; Long, Kaixian

    2018-03-01

    A series of ceria modified zirconium phosphate catalysts were synthesized for selective catalytic reduction of NO with ammonia (NH3-SCR). Over 98% NOx conversion and 98% N2 selectivity were obtained by the CeO2/ZrP catalyst with 20 wt.% CeO2 loading at 250-425 °C. The interaction between CeO2 and zirconium phosphate enhanced the redox abilities and surface acidities of the catalysts, resulting in the improvement of NH3-SCR activity. The in situ DRIFTS results indicated that the NH3-SCR reaction over the catalysts followed both Eley-Rideal and Langmuir-Hinshelwood mechanisms. The amide (sbnd NH2) groups and the NH4+ bonded to Brønsted acid sites were the important intermediates of Eley-Rideal mechanism.

  16. Field investigation of the drift shadow

    International Nuclear Information System (INIS)

    Su, Grace W.; Kneafsey, Timothy J.; Ghezzehei, Teamrat A.; Marshall, Brian D.; Cook, Paul J.

    2005-01-01

    A drift shadow is an area immediately beneath an underground void that, in theory, will be relatively drier than the surrounding rockmass. Numerical and analytical models of water flow through unsaturated rock predict the existence of a drift shadow, but field tests confirming its existence have yet to be performed. Proving the existence of drift shadows and understanding their hydrologic and transport characteristics could provide a better understanding of how contaminants move in the subsurface if released from waste emplacement drifts such as the proposed nuclear waste repository at Yucca Mountain, Nevada. We describe the field program that will be used to investigate the existence of a drift shadow and the corresponding hydrological process at the Hazel-Atlas silica-sandmine located at the Black Diamond Mines Regional Preserve in Antioch, California. The location and configuration of this mine makes it an excellent site to observe and measure drift shadow characteristics. The mine is located in a porous sandstone unit of the Domengine Formation, an approximately 230 meter thick series of interbedded Eocene-age shales, coals, and massive-bedded sandstones. The mining method used at the mine required the development of two parallel drifts, one above the other, driven along the strike of the mined sandstone stratum. This configuration provides the opportunity to introduce water into the rockmass in the upper drift and to observe and measure its flow around the underlying drift. The passive and active hydrologic tests to be performed are described. In the passive method, cores will be obtained in a radial pattern around a drift and will be sectioned and analyzed for in-situ water content and chemical constituents. With the active hydrologic test, water will be introduced into the upper drift of the two parallel drifts and the flow of the water will be tracked as it passes near the bottom drift. Tensiometers, electrical resistance probes, neutron probes, and ground

  17. FIELD INVESTIGATION OF THE DRIFT SHADOW

    International Nuclear Information System (INIS)

    G.W. Su; T.J. Kneafsey

    2006-01-01

    A drift shadow is an area immediately beneath an underground void that, in theory, will be relatively drier than the surrounding rock mass. Numerical and analytical models of water flow through unsaturated rock predict the existence of a drift shadow, but field tests confirming the existence of the drift shadow have yet to be performed. Proving the existence of drift shadows and understanding their hydrologic and transport characteristics could provide a better understanding of how contaminants move in the subsurface if released from waste emplacement drifts such as the proposed nuclear waste repository at Yucca Mountain, Nevada. We describe the field program that will be used to investigate the existence of a drift shadow--and the corresponding hydrological process at the Hazel-Atlas silica-sand mine located at the Black Diamond Mines Regional Preserve in Antioch, California. The location and configuration of this mine makes it an excellent site to observe and measure drift shadow characteristics. The mine is located in a porous sandstone unit of the Domengine formation, an approximately 230 meter thick series of interbedded Eocene-age shales, coals, and massive-bedded sandstones. The mining method used at the mine required the development of two parallel drifts, one above the other, driven along the strike of the mined sandstone stratum. This configuration provides the opportunity to introduce water into the rock mass in the upper drift and to observe and measure its flow around the underlying drift. The passive and active hydrologic tests to be performed are described. In the passive method, cores will be obtained in a radial pattern around a drift and will be sectioned and analyzed for in-situ water content using a gravimetric technique, as well as analyzed for chemistry. With the active hydrologic test, water will be introduced into the upper drift of the two parallel drifts and the flow of the water will be tracked as it passes near the bottom drift

  18. Ground Control for Emplacement Drifts for SR

    International Nuclear Information System (INIS)

    Y. Sun

    2000-01-01

    This analysis demonstrates that a satisfactory ground control system can be designed for the Yucca Mountain site, and provides the technical basis for the design of ground support systems to be used in repository emplacement and non-emplacement drifts. The repository ground support design was based on analytical methods using acquired computer codes, and focused on the final support systems. A literature review of case histories, including the lessons learned from the design and construction of the ESF, the studies on the seismic damages of underground openings, and the use of rock mass classification systems in the ground support design, was conducted (Sections 6.3.4 and 6.4). This review provided some basis for determining the inputs and methodologies used in this analysis. Stability of the supported and unsupported emplacement and non-emplacement drifts was evaluated in this analysis. The excavation effects (i.e., state of the stress change due to excavation), thermal effects (i.e., due to heat output from waste packages), and seismic effects (i.e., from potential earthquake events) were evaluated, and stress controlled modes of failure were examined for two in situ stress conditions (k 0 =0.3 and 1.0) using rock properties representing rock mass categories of 1 and 5. Variation of rock mass units such as the non-lithophysal (Tptpmn) and lithophysal (Tptpll) was considered in the analysis. The focus was on the non-lithophysal unit because this unit appears to be relatively weaker and has much smaller joint spacing. Therefore, the drift stability and ground support needs were considered to be controlled by the design for this rock unit. The ground support systems for both emplacement and non-emplacement drifts were incorporated into the models to assess their performance under in situ, thermal, and seismic loading conditions. Both continuum and discontinuum modeling approaches were employed in the analyses of the rock mass behavior and in the evaluation of the

  19. SEEPAGE INTO DRIFTS IN UNSATRUATED FRACTURED ROCK AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    JENS BIRHOLZER; GUOMIN LI; CHIN-FU TSANG; YVONNE TSANG

    1998-01-01

    An important issue for the long-term performance of underground nuclear waste repositories is the rate of seepage into the waste emplacement drifts. A prediction of the future seepage rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, as it is located in thick, partially saturated, fractured tuff formations. The long-term situation in the drifts several thousand years after waste emplacement will be characterized by a relative humidity level close to or equal to 100%. as the drifts will be sealed and unventilated, and the waste packages will have cooled. The underground tunnels will then act as capillary barriers for the unsaturated flow, ideally diverting water around them, if the capillary forces are stronger than gravity and viscous forces. Seepage into the drifts will only be possible if the hydraulic pressure in the rock close to the drift walls increases to positive values; i.e., the flow field becomes locally saturated. In the present work, we have developed and applied a methodology to study the potential rate of seepage into underground cavities embedded in a variably saturated, heterogeneous fractured rock formation. The fractured rock mass is represented as a stochastic continuum where the fracture permeabilities vary by several orders of magnitude. Three different realizations of random fracture permeability fields are generated, with the random permeability structure based on extensive fracture mapping, borehole video analysis, and in-situ air permeability testing. A 3-D numerical model is used to simulate the heterogeneous steady-state flow field around the drift, with the drift geometry explicitly represented within the numerical discretization grid. A variety of flow scenarios are considered assuming present-day and future climate conditions at Yucca Mountain. The numerical study is complemented by theoretical evaluations of the drift seepage problem, using stochastic perturbation theory to develop a better

  20. The Study of Westward Drift in the Main Geomagnetic Field

    Directory of Open Access Journals (Sweden)

    G. Bayanjargal

    2013-01-01

    Full Text Available We have obtained a solution for the velocity of westward drift from the induction equation in which an approach for main geomagnetic field was built. Distribution functions B(r, t entered into the induction equation have been built by the observatories' data in North America and the Europe from 1991 to 2006. The longitudinal −0.123 degree/year and latitudinal 0.068 degree/year drifts were defined in North America. And the longitudinal −0.257 degree/year drift was defined in Europe from 1991 to 2006. These drifts are similar to results of other studies.

  1. Mechanical degradation of Emplacement Drifts at Yucca Mountain - A Modeling Case Study. Part I: Nonlithophysal Rock

    International Nuclear Information System (INIS)

    M. Lin; D. Kicker; B. Damjanac; M. Board; M. Karakouzian

    2006-01-01

    This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for the proposed U.S. high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. The term 'lithophysal' refers to hollow, bubble like cavities in volcanic rock that are surrounded by a porous rim formed by fine-grained alkali feldspar, quartz, and other minerals. Lithophysae are typically a few centimeters to a few decimeters in diameter. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, and seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation

  2. Cooling tower drift studies at the Paducah, Kentucky Gaseous Diffusion Plant. [Transport of drift-derived chromium in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, F.G.; Hanna, S.R.; Parr, P.D.

    1979-01-01

    The transfer and fate of chromium from cooling tower drift to terrestrial ecosystems were quantified at the Department of Energy's uranium enrichment facility at Paducah, Kentucky. Chromium concentrations in plant materials (fescue grass) decreased with increasing distance from the cooing tower, ranging from 251 +- 19 ppM at 15 meters to 0.52 +- 0.07 ppM at 1500 meters. The site of drift contamination, size characteristics, and elemental content of drift particles were determined using a scanning electron microscope with energy dispersive x-ray analysis capabilities. Results indicate that elemental content in drift water (mineral residue) may not be equivalent to the content in the recirculating cooling water of the tower. This hypothesis is contrary to basic assumptions in calculating drift emissions. A laboratory study simulating throughfall from 1 to 6 inches of rain suggested that there are more exchange sites associated with litter than live foliage. Leachate from each one inch throughfall simulant removed 3% of the drift mass from litter compared to 7 to 9% from live foliage. Results suggest that differences in retention are related to chemical properties of the drift rather than physical lodging of the particle residue. To determine the potential for movement of drift-derived chromium to surface streams, soil--water samplers (wells) were placed along a distance gradient to Little Bayou Creek. Samples from two depths following rainstorms revealed the absence of vertical or horizontal movement with maximum concentrations of 0.13 ppb at 50 meters from the tower. Preliminary model estimates of drift deposition are compared to depositionmeasurements. Isopleths of the predicted deposition are useful to identify areas of maximum drift transport in the environs of the gaseous diffusion plant.

  3. DRIFT-INDUCED PERPENDICULAR TRANSPORT OF SOLAR ENERGETIC PARTICLES

    International Nuclear Information System (INIS)

    Marsh, M. S.; Dalla, S.; Kelly, J.; Laitinen, T.

    2013-01-01

    Drifts are known to play a role in galactic cosmic ray transport within the heliosphere and are a standard component of cosmic ray propagation models. However, the current paradigm of solar energetic particle (SEP) propagation holds the effects of drifts to be negligible, and they are not accounted for in most current SEP modeling efforts. We present full-orbit test particle simulations of SEP propagation in a Parker spiral interplanetary magnetic field (IMF), which demonstrate that high-energy particle drifts cause significant asymmetric propagation perpendicular to the IMF. Thus in many cases the assumption of field-aligned propagation of SEPs may not be valid. We show that SEP drifts have dependencies on energy, heliographic latitude, and charge-to-mass ratio that are capable of transporting energetic particles perpendicular to the field over significant distances within interplanetary space, e.g., protons of initial energy 100 MeV propagate distances across the field on the order of 1 AU, over timescales typical of a gradual SEP event. Our results demonstrate the need for current models of SEP events to include the effects of particle drift. We show that the drift is considerably stronger for heavy ion SEPs due to their larger mass-to-charge ratio. This paradigm shift has important consequences for the modeling of SEP events and is crucial to the understanding and interpretation of in situ observations

  4. In situ stress measurements at the Spent Fuel Test-Climax facility

    International Nuclear Information System (INIS)

    Creveling, J.B.; Shuri, F.S.; Foster, K.M.; Mills, S.V.

    1984-05-01

    The status of the following studies is given: in situ state of stress; stress gradient into rib from south heater drift; pillar stresses; and rock deformational properties. 11 references, 38 figures, 12 tables

  5. Stokes drift

    Science.gov (United States)

    van den Bremer, T. S.; Breivik, Ø.

    2017-12-01

    During its periodic motion, a particle floating at the free surface of a water wave experiences a net drift velocity in the direction of wave propagation, known as the Stokes drift (Stokes 1847 Trans. Camb. Philos. Soc. 8, 441-455). More generally, the Stokes drift velocity is the difference between the average Lagrangian flow velocity of a fluid parcel and the average Eulerian flow velocity of the fluid. This paper reviews progress in fundamental and applied research on the induced mean flow associated with surface gravity waves since the first description of the Stokes drift, now 170 years ago. After briefly reviewing the fundamental physical processes, most of which have been established for decades, the review addresses progress in laboratory and field observations of the Stokes drift. Despite more than a century of experimental studies, laboratory studies of the mean circulation set up by waves in a laboratory flume remain somewhat contentious. In the field, rapid advances are expected due to increasingly small and cheap sensors and transmitters, making widespread use of small surface-following drifters possible. We also discuss remote sensing of the Stokes drift from high-frequency radar. Finally, the paper discusses the three main areas of application of the Stokes drift: in the coastal zone, in Eulerian models of the upper ocean layer and in the modelling of tracer transport, such as oil and plastic pollution. Future climate models will probably involve full coupling of ocean and atmosphere systems, in which the wave model provides consistent forcing on the ocean surface boundary layer. Together with the advent of new space-borne instruments that can measure surface Stokes drift, such models hold the promise of quantifying the impact of wave effects on the global atmosphere-ocean system and hopefully contribute to improved climate projections. This article is part of the theme issue 'Nonlinear water waves'.

  6. Characterization Of Cobalt-Exchanged Zeolite A By DRIFT Spectroscopy

    Science.gov (United States)

    Kappers, M. J.; van der Maas, John H.; Chalmers, J. M.; Howard, J.

    1989-12-01

    In-situ DRIFT spectroscopy has been succesfully used for the characterization of Co4Na4-A. Dehydration of the zeolite A appears to involve formation and breakdown of hydration complexes and hydrolysis. The position of cations and hydroxyl groups within the zeolite structure was derived from the adsorption of carbon monoxide and acetonitrile.

  7. Drift-scale thermomechanical analysis for the retrievability systems study

    International Nuclear Information System (INIS)

    Tsai, F.C.

    1996-01-01

    A numerical method was used to estimate the stability of potential emplacement drifts without considering a ground support system as a part of the Thermal Loading Systems Study for the Yucca Mountain Site Characterization Project. The stability of the drift is evaluated with two variables: the level of thermal loading and the diameter of the emplacement drift. The analyses include the thermomechanical effects generated by the excavation of the drift, subsequently by the thermal loads from heat-emitting waste packages, and finally by the thermal reduction resulting from rapid cooling ventilation required for the waste retrieval if required. The Discontinuous Deformation Analysis (DDA) code was used to analyze the thermomechanical response of the rock mass of multiple blocks separated by joints. The result of this stability analysis is used to discuss the geomechanical considerations for the advanced conceptual design (ACD) with respect to retrievability. In particular, based on the rock mass strength of the host rock described in the current version of the Reference Information Base, the computed thermal stresses, generated by 111 MTU/acre thermal loads in the near field at 100 years after waste emplacement, is beyond the criterion for the rock mass strength used to predict the stability of the rock mass surrounding the emplacement drift

  8. Drift study of SU8 cantilevers in liquid and gaseous environments.

    Science.gov (United States)

    Tenje, Maria; Keller, Stephan; Dohn, Søren; Davis, Zachary J; Boisen, Anja

    2010-05-01

    We present a study of the drift, in terms of cantilever deflections without probe/target interactions, of polymeric SU8 cantilevers. The drift is measured in PBS buffer (pH 7.4) and under vacuum (1mbar) conditions. We see that the cantilevers display a large drift in both environments. We believe this is because the polymer matrix absorbs liquid in one situation whereas it is being degassed in the other. An inhomogeneous expansion/contraction of the cantilever is seen because one surface of the cantilever may still have remains of the release layer from the fabrication. To further study the effect, we coat the cantilevers with a hydrophobic coating, perfluorodecyltrichlorosilane (FDTS). Fully encapsulating the SU8 cantilever greatly reduces the drift in liquid whereas a less significant change is seen in vacuum.

  9. Drift study of SU8 cantilevers in liquid and gaseous environments

    DEFF Research Database (Denmark)

    Tenje, Maria; Keller, Stephan Sylvest; Dohn, Søren

    2010-01-01

    We present a study of the drift, in terms of cantilever deflections without probe/target interactions, of polymeric SU8 cantilevers. The drift is measured in PBS buffer (pH 7.4) and under vacuum (1 mbar) conditions. We see that the cantilevers display a large drift in both environments. We believe...... coat the cantilevers with a hydrophobic coating, perfluorodecyltrichlorosilane (FDTS). Fully encapsulating the SU8 cantilever greatly reduces the drift in liquid whereas a less significant change is seen in vacuum....... this is because the polymer matrix absorbs liquid in one situation whereas it is being degassed in the other. An inhomogeneous expansion/contraction of the cantilever is seen because one surface of the cantilever may still have remains of the release layer from the fabrication. To further study the effect, we...

  10. Estimating Outer Zone Radial Diffusion Coefficients from Drift Scale Fluctuations in Van Allen Particle Data

    Science.gov (United States)

    O'Brien, T. P., III; Claudepierre, S. G.

    2017-12-01

    During geomagnetic storms, the Earth's outer radiation belt experiences enhanced radial transport. This transport occurs via phase-dependent radial displacements of particles, either by impulsive events or drift resonant waves. Because transport is phase dependent, it produces drift phase bunching, which can be observed with in situ particle detectors. We provide bounds on the radial diffusion coefficients derived from this drift phase structure as seen by NASA's Van Allen Probes. We compare these bounds to published radial diffusion coefficient models, particularly those derived independently from electromagnetic field observations.

  11. Cooling tower drift studies at the Paducah, Kentucky Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Taylor, F.G.; Hanna, S.R.; Parr, P.D.

    1979-01-01

    The transfer and fate of chromium from cooling tower drift to terrestrial ecosystems were quantified at the Department of Energy's uranium enrichment facility at Paducah, Kentucky. Chromium concentrations in plant materials (fescue grass) decreased with increasing distance from the cooing tower, ranging from 251 +- 19 ppM at 15 meters to 0.52 +- 0.07 ppM at 1500 meters. The site of drift contamination, size characteristics, and elemental content of drift particles were determined using a scanning electron microscope with energy dispersive x-ray analysis capabilities. Results indicate that elemental content in drift water (mineral residue) may not be equivalent to the content in the recirculating cooling water of the tower. This hypothesis is contrary to basic assumptions in calculating drift emissions. A laboratory study simulating throughfall from 1 to 6 inches of rain suggested that there are more exchange sites associated with litter than live foliage. Leachate from each one inch throughfall simulant removed 3% of the drift mass from litter compared to 7 to 9% from live foliage. Results suggest that differences in retention are related to chemical properties of the drift rather than physical lodging of the particle residue. To determine the potential for movement of drift-derived chromium to surface streams, soil--water samplers (wells) were placed along a distance gradient to Little Bayou Creek. Samples from two depths following rainstorms revealed the absence of vertical or horizontal movement with maximum concentrations of 0.13 ppb at 50 meters from the tower. Preliminary model estimates of drift deposition are compared to depositionmeasurements. Isopleths of the predicted deposition are useful to identify areas of maximum drift transport in the environs of the gaseous diffusion plant

  12. Verification of Drift Seal Systems at the Morsleben Repository, Germany - Proof of Technical Feasibility and Functionality

    International Nuclear Information System (INIS)

    Wollrath, Juergen; Mauke, R.; Siemann, M.

    2014-01-01

    The Morsleben repository (ERAM) for low- and intermediate-level mainly short-lived radioactive wastes is located in a former salt mine. The closure concept is based on extensive backfilling with salt concrete complemented by seals that should prevent the penetration of solution into the waste emplacement areas and the emission of radionuclides out of these areas. The drift seals located in rock salt are made up of one or more segments of salt concrete in lengths between 25 m and 30 m. The sealing structure consists of three components: the seal body made of salt concrete, the contact zone between the seal body and the surrounding rock salt and the rock salt excavation damaged zone (EDZ). To demonstrate the feasibility of constructing such a seal structure an in-situ experiment is performed and a test drift and an accompanying parallel drift have been excavated for the experiment. The trial construction also comprises geotechnical instrumentation for stress, strain, displacement, temperature and pore pressure measurements and a comprehensive site investigation programme has been carried out, notably with regard to the stress state and the convergence behaviour of the surrounding rock salt. In addition to in-situ measurements, test specimens from different areas of the construction have been drilled and tested (strength and permeability). The pressure chamber has also been filled with brine solution to ascertain the permeability of the whole sealing structure. Another in-situ experiment is planned for the seal to be built in the non-creeping anhydrite. Both in-situ experiments will aid to prove the technical feasibility and functionality of the drift seal systems

  13. Studies of dynamics of electron clouds in STAR silicon drift detectors

    CERN Document Server

    Bellwied, R; Brandon, N; Caines, H; Chen, W; Dimassimo, D; Dyke, H; Hall, J R; Hardtke, D; Hoffmann, G W; Humanic, T J; Kotova, A I; Kotov, I V; Kraner, H W; Li, Z; Lynn, D; Middelkamp, P; Ott, G; Pandey, S U; Pruneau, C A; Rykov, V L; Schambach, J; Sedlmeir, J; Sugarbaker, E R; Takahashi, J; Wilson, W K

    2000-01-01

    The dynamics of electrons generated in silicon drift detectors was studied using an IR LED. Electrons were generated at different drift distances. In this way, the evolution of the cloud as a function of drift time was measured. Two methods were used to measure the cloud size. The method of cumulative functions was used to extract the electron cloud profiles. Another method obtains the cloud width from measurements of the charge collected on a single anode as a function of coordinate of the light spot. The evolution of the electron cloud width with drift time is compared with theoretical calculations. Experimental results agreed with theoretical expectations.

  14. Metocean input data for drift models applications: Loustic study

    International Nuclear Information System (INIS)

    Michon, P.; Bossart, C.; Cabioc'h, M.

    1995-01-01

    Real-time monitoring and crisis management of oil slicks or floating structures displacement require a good knowledge of local winds, waves and currents used as input data for operational drift models. Fortunately, thanks to world-wide and all-weather coverage, satellite measurements have recently enabled the introduction of new methods for the remote sensing of the marine environment. Within a French joint industry project, a procedure has been developed using basically satellite measurements combined to metocean models in order to provide marine operators' drift models with reliable wind, wave and current analyses and short term forecasts. Particularly, a model now allows the calculation of the drift current, under the joint action of wind and sea-state, thus radically improving the classical laws. This global procedure either directly uses satellite wind and waves measurements (if available on the study area) or indirectly, as calibration of metocean models results which are brought to the oil slick or floating structure location. The operational use of this procedure is reported here with an example of floating structure drift offshore from the Brittany coasts

  15. Reactions of SO 2 on hydrated cement particle system for atmospheric pollution reduction: A DRIFTS and XANES study

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Girish; Wu, Qiyuan; Moon, Juhyuk; Orlov, Alexander

    2017-07-01

    An investigation of the adsorptive property of hydrated cement particle system for sulfur dioxide (SO2) removal was conducted. In situ and ex situ experiments using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and X-ray Absorption Near Edge Spectroscopy (XANES) characterization techniques were employed to identify surface species formed during the exposure to SO2. Oxidation of SO2 to sulfate and sulfite species observed during these experiments indicated dominant reaction pathways for SO2 reaction with concrete constituents, such as calcium hydroxide, which were also moderated by adsorption on porous surfaces of crushed aggregates. The impact of variable composition of concrete on its adsorption capacity and reaction mechanisms was also proposed in this work.

  16. Drift Degradation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dwayne C. Kicker

    2001-09-28

    analyzed is relatively minor. (3) The analysis of thermal and time-dependent effects on rock fall in this study is based on a reduction in the joint cohesion. Joint cohesion has been conservatively reduced from a laboratory test value of 0.86 MPa to a value of 0.01 MPa after 10,000 years. The results from this analysis indicate that time-dependent and thermal effects have a minor impact on rock fall. (4) Both the 75 percentile and the worst-case drift degradation profiles have been provided in this analysis for the current emplacement drift azimuth of approximately 75{sup o}. Most of the emplacement drift openings were not affected by rock fall. For the current emplacement drift alignment, the highest percentage of drift affected by rock fall was 8% in the Tptpmn unit. The Tptpmn unit produced the highest frequency of key blocks per kilometer compared to the other lithologic units (Tables 26 and 41). (5) This key block analysis has shown that the current drift alignment is relatively favorable in terms of reducing the potential maximum size rock block compared to most drift orientations.

  17. Study and analysis of drift chamber parameters

    International Nuclear Information System (INIS)

    Martinez Laso, L.

    1988-01-01

    The present work deals mainly with drift chambers. In the first chapter a summary of drift chamber properties is presented. The information has been collected from the extensive bibliography available in this field. A very simple calculation procedure of drift chamber parameters has been developed and is presented in detail in the second chapter. Some prototypes have been made following two geometries (multidrift chamber and Z-chambers). Several installations have been used for test and calibration of these prototypes. A complete description of these installations is given in the third chapter. Cosmic rays, beta particles from a Ru106 radiactive source and a test beam in the WA (West Area) of SPS at CERN have been used for experimental purposes. The analysis and the results are described for the different setups. The experimental measurements have been used to produce a complete cell parametrization (position as function of drift time) and to obtain spatial resolution values (in the range of 200-250 um). Experimental results are in good agreement with numerical calculations. (Author)

  18. Seepage into drifts in unsaturated fractured rock at Yucca Mountain

    International Nuclear Information System (INIS)

    Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

    1998-01-01

    An important issue for the long-term performance of underground nuclear waste repository is the rate of seepage into the waste emplacement drifts. A prediction of the future seepage rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, as it is located in thick, partially saturated, fractured tuff formations. The long-term situation in the drifts several thousand years after waste emplacement will be characterized by a relative humidity level close to or equal to 100%, as the drifts will be sealed and unventilated, and the waste packages will have cooled. The underground tunnels will then act as capillary barriers for the unsaturated flow, ideally diverting water around them, if the capillary forces are stronger than gravity and viscous forces. Seepage into the drifts will only be possible if the hydraulic pressure in the rock close to the drift walls increases to positive values; i.e., the flow field becomes locally saturated. In the present work, they have developed and applied a methodology to study the potential rate of seepage into underground cavities embedded in a variably saturated, heterogeneous fractured rock formation. The fractured rock mass is represented as a stochastic continuum where the fracture permeabilities vary by several orders of magnitude. Three different realizations of random fracture permeability fields are generated, with the random permeability structure based on extensive fracture mapping, borehole video analysis, and in-situ air permeability testing. A 3-D numerical model is used to simulate the heterogeneous steady-state flow field around the drift, with the drift geometry explicitly represented within the numerical discretization grid. A variety of flow scenarios are considered assuming present-day and future climate conditions at Yucca Mountain. The numerical study is complemented by theoretical evaluations of the drift seepage problem, using stochastic perturbation theory to develop a better

  19. Experimental oil release on Haltenbanken 1982. Drifting and spreading of oil. [Norway

    Energy Technology Data Exchange (ETDEWEB)

    Soerstroem, S.E.; Johansen, Oe; Celius, K.K.; Audunson, T.; Steinbakke, P.

    1984-03-29

    In the experiment, 100 m/sup 3/ of Statfjord crude oil was released at Haltenbanken. The oil was followed for 7 days and projects concerning drifting and spreading of oil, microbiological decay and ecological effects, ecological studies of the impact on fish, zooplancton, fish eggs and larvae, training with equipment and control functions and experiment leading and coordination were carried out. In this project ''drifting and spreading of oil'' information on physical environment, decay of oil, mixing of oil in water, oil spill surveillance, warning and simulation and numerical modelling are collected. The results of these areas were compared to the mathematical simulation and warning models Oilsim and Sliktrak. New methods for in situ measurements for relative values of oil in water were used. It was found that most of the physical and chemical changes of oil spills occur during the first 24 hours. The drifting and alterations of the oil was recorded and a new simulation model for three-dimentional spreading of oil in water was made. 49 tables, 130 drawings, 32 references.

  20. Reducing Pesticide Drift

    Science.gov (United States)

    Provides information about pesticide spray drift, including problems associated with drift, managing risks from drift and the voluntary Drift Reduction Technology program that seeks to reduce spray drift through improved spray equipment design.

  1. Drift scale thermomechanical analysis for thermal loading and retrievability studies

    International Nuclear Information System (INIS)

    Tsai, F.C.

    1995-01-01

    The repository portion of the Mined Geologic Disposal System for the disposal of spent nuclear fuel and high-level radioactive waste is currently in the advanced conceptual design stage. In support of systems studies, a numerical method was used to estimate the stability of emplacement drifts. Thermomechanical analyses, using the Discontinuous Deformation Analysis code, were performed using input data from Yucca Mountain documents. The analysis found that the stresses produced in the rock at thermal loads of 27.4 kilograms uranium per m2 (KgU/m2) would exceed stability criteria and could result in tunnel instability. At thermal loads between 20.5 KgU/m2, the drift is predicted to be stable and its structural integrity remains after thermal loading. In this case, the smaller diameter drift emplacement appears to have better stability. However, local rock spalling may occur. According to the numerical prediction, more rock fall may occur during the retrieval period due to the stress relaxation caused by the rapid cooling in the immediate drift area

  2. Coupled Thermal-Hydrologic-Chemical Coupled Model for In-Drift Disposal Test

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zyvoloski, George Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Otto, Shawn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-06

    The simulation work presented in this report supports DOE-NE Used Fuel Disposition Campaign (UFDC) goals related to the development of drift scale in-situ field testing of heat-generating nuclear waste (HGNW) in salt formations. Numerical code verification and validation is an important part of the lead-up to field testing, allowing exploration of potential heater emplacement designs, monitoring locations, and perhaps most importantly the ability to predict heat and mass transfer around an evolving test. Such predictions are crucial for the design and location of sampling and monitoring that can be used to validate our understanding of a drift scale test that is likely to span several years.

  3. Coupled Thermal-Hydrologic-Chemical Coupled Model for In-Drift Disposal Test

    International Nuclear Information System (INIS)

    Jordan, Amy B.; Zyvoloski, George Anthony; Weaver, Douglas James; Otto, Shawn; Stauffer, Philip H.

    2016-01-01

    The simulation work presented in this report supports DOE-NE Used Fuel Disposition Campaign (UFDC) goals related to the development of drift scale in-situ field testing of heat-generating nuclear waste (HGNW) in salt formations. Numerical code verification and validation is an important part of the lead-up to field testing, allowing exploration of potential heater emplacement designs, monitoring locations, and perhaps most importantly the ability to predict heat and mass transfer around an evolving test. Such predictions are crucial for the design and location of sampling and monitoring that can be used to validate our understanding of a drift scale test that is likely to span several years.

  4. Horonobe underground research laboratory project. The plan for the in-situ experiments in Phase 2 and Phase 3 in/around URL

    International Nuclear Information System (INIS)

    Matsui, Hiroya

    2005-09-01

    This report describes for preliminary research plan in Phase 2 and Phase 3 taken into consideration of expected geological environment at location of URL based on the results of the investigations until FY 2003/2004. Duration of construction phase and total cost are considered as important factors for planning as well. The below items are planned for in-situ experiments in Phase 2 and Phase 3 in/around URL are planning. Phase 2. (In-situ experiments for understanding of geological environment) Geological survey at tunnel. Inflow measurement in shafts. Water pressure monitoring and groundwater sampling around shafts during excavation of URL. Investigation for EDZ around shafts. Stress measurement on support. Detail investigations for geological environment around drifts. Excavation disturbance experiment in a drift. Investigation for desaturation zone and REDOX condition around drifts. (Engineered barrier system) In-situ experiment on low-alkali concrete. In-situ experiment for gas migration in engineering barrier system. Phase 3. (In-situ experiments for understanding of geological environment) EDZ experiment for stress interference. Investigation of long-term behavior of EDZ around drifts. Detail investigation on fault/fault zone. Monitoring for the change of geological environment at earthquake. Backfill test in boreholes. (Engineered barrier system) T-H-M-C experiment. In-situ experiment for corrosion of overpack. Investigation of the influence of a concrete to engineering barrier system and geological environment. In-situ experiment for interference between backfill material and geological environment. Backfill test in a drift. (Safety assessment) Tracer tests in engineering barrier system, natural barrier and fault/fault zone. (author)

  5. Drift-Scale Radionuclide Transport

    International Nuclear Information System (INIS)

    Houseworth, J.

    2004-01-01

    The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the

  6. An Experimental Study of the Accuracy of Compensation in Lithium Drifted Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lauber, A; Malmsten, B

    1969-10-15

    The nature and magnitude of the space charge existing in the compensated layer of lithium drifted germanium detectors has been studied as a function of drifted depth and of the electric field applied during drift. Experimental values were obtained from the dependence of detector capacitance on applied bias. In most cases there was a linear space charge gradient in the compensated layer. When small electric fields were applied to deep compensated layers, the space charge became constant throughout a large part of the compensated layer. There is some evidence for a strong decrease of mobile carrier recombination lifetime with increasing drifted depth, possibly down to a few microseconds for drifted depths of the order of 7 mm. The experimental results of the investigation are to a large extent in good agreement with theory.

  7. The Cascade Drift Module: a GIS-based study on regional pesticide deposition

    NARCIS (Netherlands)

    Holterman, H.J.; Zande, van de J.C.

    2008-01-01

    The Cascade Project describes the modelling of spray drift and pesticide fate for a network of interconnected water bodies in a rural area. The present study concerns the first part of the proj ect, the Cascade Drift Module, which models the spatial and temporal distribution of deposits of spray

  8. Rectangular drift tube characteristics

    International Nuclear Information System (INIS)

    Denisov, D.S.; Musienko, Yu.V.

    1985-01-01

    Results on the study of the characteristics of a 50 x 100 mm aluminium drift tube are presented. The tube was filled with argon-methane and argon-isobutane mixtures. With 16 per cent methane concentration the largest deviation from a linear relation between the drift time and the drift path over 50 mm is less than 2 mm. The tube filled with argon-isobutane mixture is capable of operating in a limited streamer mode

  9. Electron drift time in silicon drift detectors: A technique for high precision measurement of electron drift mobility

    International Nuclear Information System (INIS)

    Castoldi, A.; Rehak, P.

    1995-01-01

    This paper presents a precise absolute measurement of the drift velocity and mobility of electrons in high resistivity silicon at room temperature. The electron velocity is obtained from the differential measurement of the drift time of an electron cloud in a silicon drift detector. The main features of the transport scheme of this class of detectors are: the high uniformity of the electron motion, the transport of the signal electrons entirely contained in the high-purity bulk, the low noise timing due to the very small anode capacitance (typical value 100 fF), and the possibility to measure different drift distances, up to the wafer diameter, in the same semiconductor sample. These features make the silicon drift detector an optimal device for high precision measurements of carrier drift properties. The electron drift velocity and mobility in a 10 kΩ cm NTD n-type silicon wafer have been measured as a function of the electric field in the range of possible operation of a typical drift detector (167--633 V/cm). The electron ohmic mobility is found to be 1394 cm 2 /V s. The measurement precision is better than 1%. copyright 1995 American Institute of Physics

  10. Barber's Point, Oahu, Hawaii Drift Card Study 2002-2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Drift cards were be released from Barber's Point, Oahu, approximately once a month during the two year span to get an idea of the distribution of card drift under...

  11. Cooling tower drift studies at the Paducah, Kentucky Gaseous Diffusion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, F. G.; Hanna, S. R.; Parr, P. D.

    1978-12-01

    The transfer and fate of chromium from cooling tower drift to terrestrial ecosystems were quantified with concentrations in plant materials (fescue grass) decreasing with increasing distance from the cooling tower. Results indicate that elemental content in drift water (mineral residue) may not be equivalent to the content in the recirculating cooling water of the tower. This hypothesis is contrary to basic assumptions in calculating drift emissions. Results suggest that differences in retention in litter and foliage are related to chemical properties of the drift rather than physical lodging of the particle residue. To determine the potential for movement of drift-derived chromium to surface streams, soil-water samplers (wells) were placed along a distance gradient to Little Bayou Creek. Preliminary model estimates of drift deposition are compared to deposition measurements.

  12. Drift chamber

    International Nuclear Information System (INIS)

    Inagaki, Yosuke

    1977-01-01

    Drift chamber is becoming an important detector in high energy physics as a precision and fast position detector because of its high spatial resolution and count-rate. The basic principle is that it utilizes the drift at constant speed of electrons ionized along the tracks of charged particles towards the anode wire in the nearly uniform electric field. The method of measuring drift time includes the analog and digital ones. This report describes about the construction of and the application of electric field to the drift chamber, mathematical analysis on the electric field and equipotential curve, derivation of spatial resolution and the factor for its determination, and selection of gas to be used. The performance test of the chamber was carried out using a small test chamber, the collimated β source of Sr-90, and 500 MeV/C electron beam from the 1.3 GeV electron synchrotron in the Institute of Nuclear Study, University of Tokyo. Most chambers to date adopted one dimensional read-out, but it is very advantageous if the two dimensional read-out is feasible with one chamber when the resolution in that direction is low. The typical methods of delay line and charge division for two dimensional read-out are described. The development of digital read-out system is underway, which can process the signal of a large scale drift chamber at high speed. (Wakatsuki, Y.)

  13. Dike/Drift Interactions

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Gaffney

    2003-10-08

    This report documents the model of events associated with a potential intrusion of magma from a volcanic dike into a drift or drifts in the Yucca Mountain Nuclear Waste Repository. The following topics are included in this report: (1) A discussion of dike propagation, which provides the basis for describing the path that a representative dike, or swarm of dikes, would follow during an event. (2) A discussion of magma flow, which evaluates the interaction at the junction of the propagating dike with the drift and the movement of magmatic products into and down drifts and, potentially, through a drift to the surface by way of access drift or a secondary dike opened up along the drift. (3) A discussion of gas flow and conductive cooling of a magma-filled drift, describing how an adjacent drift that has not been intersected by a dike could be affected by post-intrusion phenomena. Note that a gas flow analysis is also addressed in ''Igneous Intrusion Impacts on Waste Form and Waste Packages'' (BSC 2003 [DIRS 161810]), and those results are consistent with the results presented in this report.

  14. Dike/Drift Interactions

    International Nuclear Information System (INIS)

    E.S. Gaffney

    2003-01-01

    This report documents the model of events associated with a potential intrusion of magma from a volcanic dike into a drift or drifts in the Yucca Mountain Nuclear Waste Repository. The following topics are included in this report: (1) A discussion of dike propagation, which provides the basis for describing the path that a representative dike, or swarm of dikes, would follow during an event. (2) A discussion of magma flow, which evaluates the interaction at the junction of the propagating dike with the drift and the movement of magmatic products into and down drifts and, potentially, through a drift to the surface by way of access drift or a secondary dike opened up along the drift. (3) A discussion of gas flow and conductive cooling of a magma-filled drift, describing how an adjacent drift that has not been intersected by a dike could be affected by post-intrusion phenomena. Note that a gas flow analysis is also addressed in ''Igneous Intrusion Impacts on Waste Form and Waste Packages'' (BSC 2003 [DIRS 161810]), and those results are consistent with the results presented in this report

  15. Drift velocity monitoring of the CMS muon drift chambers

    CERN Document Server

    Sonnenschein, Lars

    2010-01-01

    The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented.

  16. Analysis of long-term closure in drifts excavated in Callovo-Oxfordian clay-stone: roles of anisotropy and hydro-mechanical couplings

    International Nuclear Information System (INIS)

    Guayacan Carrillo, Lina Maria

    2016-01-01

    The French National Radioactive Waste Management Agency (Andra) began in 2000 the construction of an Underground Research Laboratory (URL) with the main goal of demonstrating the feasibility of a geological repository in Callovo-Oxfordian clay-stone. Several research programs have taken place to improve the knowledge of the rock properties and its response to the excavation progress. A network of experimental drifts has been constructed with variations on: excavation method, structure geometry, supports system and orientations with respect to principal stresses' directions. In each drift different sections have been instrumented to monitor the hydro-mechanical behavior of the rock mass formation. Continuous monitoring of the excavated zone around the drifts in the main level (-490 m) revealed the development of a fractured zone (extensional and shear fractures) induced by the excavation. The extent of this fractured zone depends on the drift orientation regarding the in-situ stress field. Accordingly, the convergence measurements showed an anisotropic closure which depends also on the drifts' orientations. Moreover, marked overpressures and an anisotropic pore pressure field around the drifts have been also observed. The approach proposed in this work is mainly based on a direct analysis of the convergence measurements, for studying the anisotropic response of the rock formation during and after excavation. The convergence evolution is analyzed on the basis of the semi-empirical law proposed by Sulem et al. (1987) [Int J Rock Mech Min Sci Geomech Abstr 24: 145-154]. The monitoring and analysis of convergence data can provide a reliable approach of the interaction between rock mass and support. Therefore, the anisotropy and the variability of the closure are analyzed taking into account different field cases: drifts excavated in two different orientations (i.e. influence of the initial stress state), different methods, sizes and rates of excavation and

  17. Drift Degradation Analysis

    International Nuclear Information System (INIS)

    D. Kicker

    2004-01-01

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA

  18. Drift Degradation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal

  19. Drift chamber performance in the field of a superconducting magnet: measurement of the drift angle

    International Nuclear Information System (INIS)

    Sanders, G.H.; Sherman, S.; McDonald, K.T.; Smith, A.J.S.; Thaler, J.J.

    1977-01-01

    Results are presented of the first measurements in a study of drift chamber performance in magnetic fields up to 6 tesla. The angle of the electron drift was measured as a function of electric and magnetic field intensity. It appears that even at the high fields of superconducting magnets (3 to 6 tesla) the drift angle induced by the Lorentz force can be corrected for with tilted electric drift fields and/or the use of Xenon gas. At 3 tesla a drift field tilted at 45 0 with a magnitude of 3.5 kV/cm should restore normal operating conditions. At 4 tesla, a 45 0 tilt field would have a magnitude 5 kV/cm

  20. Measurement of the positron-drift time relation of a high-pressure drift chamber

    International Nuclear Information System (INIS)

    Pruefert, W.

    1989-04-01

    As a test of its performance, the measurement of the drift time versus drift distance relation of a high pressure drift chamber using cosmic rays is described. Two multiwire proportional chambers, mounted above and below the detector, are used to define the track of the cosmic particle in the drift chamber. The drift chamber is read out by FADCs (Flash Analog to Digital Converter), and the drift time is determined from the FADC signals by the DOS- (Difference Of Samples) method. The measured drift time versus drift distance relation showed good agreement with the relation, which is expected from the spatial dependence of the electric field and the dependence of the drift velocity on this field. (orig.) [de

  1. IN SITU FIELD TESTING OF PROCESSES

    International Nuclear Information System (INIS)

    YANG, J.S.Y.

    2004-01-01

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes2. The scientific analysis of data for inputs to model calibration and validation as documented in2 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and analyses

  2. Dendrogeomorphology - a new tool to study drift-sand dynamics Netherlands Journal of Geosciences

    NARCIS (Netherlands)

    Ouden, den J.; Sass-Klaassen, U.; Copini, P.

    2007-01-01

    dendrogeomorphological approach is presented, using wood characteristics of native oak (Quercus robur L.) to infer dynamics of aeolian sediment transport in drift-sand areas. Wood samples, taken from oaks in two drift-sand areas, were analysed to study changes in tree-ring pattern and wood anatomy

  3. Drift Degradation Analysis

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The outputs from the drift degradation analysis support scientific analyses, models, and design calculations, including the following: (1) Abstraction of Drift Seepage; (2) Seismic Consequence Abstraction; (3) Structural Stability of a Drip Shield Under Quasi-Static Pressure; and (4) Drip Shield Structural Response to Rock Fall. This report has been developed in accordance with ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The drift degradation analysis includes the development and validation of rockfall models that approximate phenomenon associated with various components of rock mass behavior anticipated within the repository horizon. Two drift degradation rockfall models have been developed: the rockfall model for nonlithophysal rock and the rockfall model for lithophysal rock. These models reflect the two distinct types of tuffaceous rock at Yucca Mountain. The output of this modeling and analysis activity documents the expected drift deterioration for drifts constructed in accordance with the repository layout configuration (BSC 2004 [DIRS 172801])

  4. Drift velocity and pressure monitoring of the CMS muon drift chambers

    CERN Document Server

    Sonnenschein, Lars

    2011-01-01

    The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore, the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented. Another important parameter to be monitored is the pressure inside the muon drift tube chambers. The differential pressure must not exceed a certain value and the absolute pressure has to be kept slightly above ambient pressure to prevent air from entering into the muon drift tube chambers in case of a leak. Latest drift velocity monitoring results are discussed.

  5. Scanning transmission X-ray microscopy probe for in situ mechanism study of graphene-oxide-based resistive random access memory.

    Science.gov (United States)

    Nho, Hyun Woo; Kim, Jong Yun; Wang, Jian; Shin, Hyun-Joon; Choi, Sung-Yool; Yoon, Tae Hyun

    2014-01-01

    Here, an in situ probe for scanning transmission X-ray microscopy (STXM) has been developed and applied to the study of the bipolar resistive switching (BRS) mechanism in an Al/graphene oxide (GO)/Al resistive random access memory (RRAM) device. To perform in situ STXM studies at the C K- and O K-edges, both the RRAM junctions and the I0 junction were fabricated on a single Si3N4 membrane to obtain local XANES spectra at these absorption edges with more delicate I0 normalization. Using this probe combined with the synchrotron-based STXM technique, it was possible to observe unique chemical changes involved in the BRS process of the Al/GO/Al RRAM device. Reversible oxidation and reduction of GO induced by the externally applied bias voltages were observed at the O K-edge XANES feature located at 538.2 eV, which strongly supported the oxygen ion drift model that was recently proposed from ex situ transmission electron microscope studies.

  6. Drift velocity and pressure monitoring of the CMS muon drift chambers

    CERN Document Server

    Sonnenschein, Lars

    2010-01-01

    The drift velocity in drift tubes of the CMS muon chambers is a key parameter for the muon track reconstruction and trigger. It needs to be monitored precisely in order to detect any deviation from its nominal value. A change in absolute pressure, a variation of the gas admixture or a contamination of the chamber gas by air affect the drift velocity. Furthermore, the temperature and magnetic field influence its value. First data, taken with a dedicated Velocity Drift Chamber (VDC) built by RWTH Aachen IIIA are presented. Another important parameter to be monitored is the pressure inside the muon drift tube chambers because the drift velocity depends on it. Furthermore the differential pressure must not exceed a certain value and the absolute pressure has to be kept slightly above ambient pressure to prevent air from entering into the muon drift tube chambers in case of a leak. Latest pressure monitoring results are discussed.

  7. Studies of electron drift velocity in nitrogen and isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Pontificia Univ. Catolica de Sao Paulo (PUC/SP), SP (Brazil); Vivaldini, Tulio C.; Lima, Iara B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ridenti, Marco A.; Pascholati, Paulo R. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Fonte, Paulo; Mangiarotti, Alessio [Universidade de Coimbra (Portugal). Dept. de fisica. Lab. de Instrumentacao e Fisica Experimental de Particulas

    2009-07-01

    Full text: The electron drift velocity is one of the most important transport parameters used to describe the physical behaviour of gas discharges and the development of avalanches in gaseous detectors, mainly when temporal information is significant, as in drift chambers and in the recent Resistive Plate Chambers (RPCs). Although many filling gases, isobutane is frequently used in RPCs, due to its excellent timing properties, but at high electric fields conditions there are insufficient data available in literature. In the present work we report the preliminary results related to the dependence of the electron drift velocity for isobutane as function of the reduced electric field E/N, in the range of 100 Td up to 216 Td. There are different methods to determine electron drift velocity in a gas, and our measurements were based on the Pulsed Townsend technique, which consists of extracting electrons from a metallic cathode and accelerates them toward the anode by a uniform electric field. Once the drift distance and the transit time are known, the drift velocities can be determined. In our system, the incidence of a nitrogen laser beam (LTB MNL200-LD) liberates electron from the cathode made of aluminium (40mm diameter). By means of a high voltage supply (Bertan, 225-30), these electrons are accelerated toward the anode (made of a high resistivity glass - 2:10{sup 12}{omega} cm) and this movement produces a fast electric signal in the anode, which is digitalized in an oscilloscope (LeCroy WavePro 7000) with 1 GHz bandwidth and 10 GS/s. The values obtained were compared to that ones of a Bolsig+ simulation code. In order to validate the technique and to analyze non-uniformity effects, results for nitrogen are also presented. (author)

  8. Studies of electron drift velocity in nitrogen and isobutane

    International Nuclear Information System (INIS)

    Goncalves, Josemary A.C.; Botelho, Suzana; Tobias, Carmen C.B.; Vivaldini, Tulio C.; Lima, Iara B.; Ridenti, Marco A.; Pascholati, Paulo R.; Fonte, Paulo; Mangiarotti, Alessio

    2009-01-01

    Full text: The electron drift velocity is one of the most important transport parameters used to describe the physical behaviour of gas discharges and the development of avalanches in gaseous detectors, mainly when temporal information is significant, as in drift chambers and in the recent Resistive Plate Chambers (RPCs). Although many filling gases, isobutane is frequently used in RPCs, due to its excellent timing properties, but at high electric fields conditions there are insufficient data available in literature. In the present work we report the preliminary results related to the dependence of the electron drift velocity for isobutane as function of the reduced electric field E/N, in the range of 100 Td up to 216 Td. There are different methods to determine electron drift velocity in a gas, and our measurements were based on the Pulsed Townsend technique, which consists of extracting electrons from a metallic cathode and accelerates them toward the anode by a uniform electric field. Once the drift distance and the transit time are known, the drift velocities can be determined. In our system, the incidence of a nitrogen laser beam (LTB MNL200-LD) liberates electron from the cathode made of aluminium (40mm diameter). By means of a high voltage supply (Bertan, 225-30), these electrons are accelerated toward the anode (made of a high resistivity glass - 2:10 12 Ω cm) and this movement produces a fast electric signal in the anode, which is digitalized in an oscilloscope (LeCroy WavePro 7000) with 1 GHz bandwidth and 10 GS/s. The values obtained were compared to that ones of a Bolsig+ simulation code. In order to validate the technique and to analyze non-uniformity effects, results for nitrogen are also presented. (author)

  9. Drifting oscillations in axion monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Flauger, Raphael [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); McAllister, Liam [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Silverstein, Eva [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States); Westphal, Alexander, E-mail: flauger@physics.ucsd.edu, E-mail: mcallister@cornell.edu, E-mail: evas@stanford.edu, E-mail: alexander.westphal@desy.de [Theory Group, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg (Germany)

    2017-10-01

    We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.

  10. Drifting oscillations in axion monodromy

    International Nuclear Information System (INIS)

    Flauger, Raphael; Westphal, Alexander

    2014-12-01

    We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.

  11. Dike/Drift Interactions

    Energy Technology Data Exchange (ETDEWEB)

    E. Gaffiney

    2004-11-23

    This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses of the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1).

  12. Dike/Drift Interactions

    International Nuclear Information System (INIS)

    Gaffiney, E.

    2004-01-01

    This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses of the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1)

  13. The Study of Westward Drift in the Main Geomagnetic Field

    OpenAIRE

    Bayanjargal, G.

    2013-01-01

    We have obtained a solution for the velocity of westward drift from the induction equation in which an approach for main geomagnetic field was built. Distribution functions B(r, t) entered into the induction equation have been built by the observatories' data in North America and the Europe from 1991 to 2006. The longitudinal −0.123 degree/year and latitudinal 0.068 degree/year drifts were defined in North America. And the longitudinal −0.257 degree/year drift was defined in Europe from 1991...

  14. Evaluation of intensity drift correction strategies using MetaboDrift, a normalization tool for multi-batch metabolomics data.

    Science.gov (United States)

    Thonusin, Chanisa; IglayReger, Heidi B; Soni, Tanu; Rothberg, Amy E; Burant, Charles F; Evans, Charles R

    2017-11-10

    In recent years, mass spectrometry-based metabolomics has increasingly been applied to large-scale epidemiological studies of human subjects. However, the successful use of metabolomics in this context is subject to the challenge of detecting biologically significant effects despite substantial intensity drift that often occurs when data are acquired over a long period or in multiple batches. Numerous computational strategies and software tools have been developed to aid in correcting for intensity drift in metabolomics data, but most of these techniques are implemented using command-line driven software and custom scripts which are not accessible to all end users of metabolomics data. Further, it has not yet become routine practice to assess the quantitative accuracy of drift correction against techniques which enable true absolute quantitation such as isotope dilution mass spectrometry. We developed an Excel-based tool, MetaboDrift, to visually evaluate and correct for intensity drift in a multi-batch liquid chromatography - mass spectrometry (LC-MS) metabolomics dataset. The tool enables drift correction based on either quality control (QC) samples analyzed throughout the batches or using QC-sample independent methods. We applied MetaboDrift to an original set of clinical metabolomics data from a mixed-meal tolerance test (MMTT). The performance of the method was evaluated for multiple classes of metabolites by comparison with normalization using isotope-labeled internal standards. QC sample-based intensity drift correction significantly improved correlation with IS-normalized data, and resulted in detection of additional metabolites with significant physiological response to the MMTT. The relative merits of different QC-sample curve fitting strategies are discussed in the context of batch size and drift pattern complexity. Our drift correction tool offers a practical, simplified approach to drift correction and batch combination in large metabolomics studies

  15. Geotechnical characterization for the Main Drift of the Exploratory Studies Facility

    International Nuclear Information System (INIS)

    Kicker, D.C.; Martin, E.R.; Brechtel, C.E.; Stone, C.A.; Kessel, D.S.

    1997-07-01

    Geotechnical characterization of the Main Drift of the Exploratory Studies Facility was based on borehole data collected in site characterization drilling and on scanline rock mass quality data collected during the excavation of the North Ramp. The Main Drift is the planned 3,131-m near-horizontal tunnel to be excavated at the potential repository horizon for the Yucca Mountain Site Characterization Project. Main Drift borehole data consisted of three holes--USW SD-7, SD-9, and SD-12--drilled along the tunnel alignment. In addition, boreholes USW UZ-14, NRG-6, and NRG-7/7A were used to supplement the database on subsurface rock conditions. Specific data summarized and presented included lithologic and rock structure core logs, rock mechanics laboratory testing, and rock mass quality indices. Cross sections with stratigraphic and thermal-mechanical units were also presented. Topics discussed in the report include geologic setting, geologic features of engineering and construction significance, anticipated ground conditions, and the range of required ground support. Rock structural and rock mass quality data have been developed for each 3-m interval of core in the middle nonlithophysal stratigraphic zone of the Topopah Spring Tuff Formation. The distribution of the rock mass quality data in all boreholes used to characterize the Main Drift was assumed to be representative of the variability of the rock mass conditions to be encountered in the Main Drift. Observations in the North Ramp tunnel have been used to project conditions in the lower lithophysal zone and in fault zones

  16. Mechanistic Drifting Forecast Model for A Small Semi-Submersible Drifter Under Tide-Wind-Wave Conditions

    Science.gov (United States)

    Zhang, Wei-Na; Huang, Hui-ming; Wang, Yi-gang; Chen, Da-ke; Zhang, lin

    2018-03-01

    Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide-wind-wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5-6; while wind drag contributes mostly at wind scale 2-4.

  17. IN SITU FIELD TESTING OF PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    J.S.Y. YANG

    2004-11-08

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes REV 02. The scientific analysis of data for inputs to model calibration and validation as documented in REV 02 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what

  18. Equatorial F-region plasma depletion drifts: latitudinal and seasonal variations

    Directory of Open Access Journals (Sweden)

    A. A. Pimenta

    2003-12-01

    Full Text Available The equatorial ionospheric irregularities have been observed in the past few years by different techniques (e.g. ground-based radar, digisonde, GPS, optical instruments, in situ satellite and rocket instrumentation, and its time evolution and propagation characteristics can be used to study important aspects of ionospheric dynamics and thermosphere-ionosphere coupling. At present, one of the most powerful optical techniques to study the large-scale ionospheric irregularities is the all-sky imaging photometer system, which normally measures the strong F-region nightglow 630 nm emission from atomic oxygen. The monochromatic OI 630 nm emission images usually show quasi-north-south magnetic field-aligned intensity depletion bands, which are the bottomside optical signatures of large-scale F-region plasma irregularities (also called plasma bubbles. The zonal drift velocities of the plasma bubbles can be inferred from the space-time displacement of the dark structures (low intensity regions seen on the images. In this study, images obtained with an all-sky imaging photometer, using the OI 630 nm nightglow emission, from Cachoeira Paulista (22.7° S, 45° W, 15.8° S dip latitude, Brazil, have been used to determine the nocturnal monthly and latitudinal variation characteristics of the zonal plasma bubble drift velocities in the low latitude (16.7° S to 28.7° S region. The east and west walls of the plasma bubble show a different evolution with time. The method used here is based on the western wall of the bubble, which presents a more stable behavior. Also, the observed zonal plasma bubble drift velocities are compared with the thermospheric zonal neutral wind velocities obtained from the HWM-90 model (Hedin et al., 1991 to investigate the thermosphere-ionosphere coupling. Salient features from this study are presented and discussed.Key words. Ionosphere (ionosphere-atmosphere interactions; ionospheric irregularities; instruments and techniques

  19. Self-shielding flex-circuit drift tube, drift tube assembly and method of making

    Science.gov (United States)

    Jones, David Alexander

    2016-04-26

    The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.

  20. Drift chamber detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez Laso, L.

    1989-01-01

    A review of High Energy Physics detectors based on drift chambers is presented. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysied, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author)

  1. Construction update and drift velocity calibration for the CLAS drift chamber system

    International Nuclear Information System (INIS)

    Mestayer, M.D.; Barbosa, F.J.; Bonneau, P.; Burtin, E.; Christo, S.; Doolittle, G.; Dytman, S.A.; Gilfoyle, G.P.; Hyde-Wright, C.E.; Klein, A.; Kossov, M.V.; Kuhn, S.E.; Magahiz, R.; Miskimen, R.A.; Murphy, L.Y.; O'Meara, J.E.; Pyron, T.D.; Qin, L.; Raue, B.A.; Schumacher, R.A.; Tuzel, W.; Weinstein, L.B.; Yegneswaran, A.

    1995-01-01

    We briefly describe the drift chamber system for the CLAS detector at CEBAF, concentrating on the method which will be used to calibrate the drift velocity function. We identify key features of the function which should apply to any small-cell drift chamber geometry in which the cathode and anode surfaces are wires. Using these ideas, we describe a simple method to compensate for variations in the drift velocity function due to environmental changes. (orig.)

  2. Construction update and drift velocity calibration for the CLAS drift chamber system

    Energy Technology Data Exchange (ETDEWEB)

    Mestayer, M.D. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Barbosa, F.J. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Bonneau, P. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Burtin, E. [University of South Carolina, Columbia, SC (United States); Christo, S. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Doolittle, G. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Dytman, S.A. [University of Pittsburg, Pittsburg, PA (United States); Gilfoyle, G.P. [University of Richmond, Richmond, VA (United States); Hyde-Wright, C.E. [Old Dominion University, Norfolk, VA (United States); Klein, A. [Old Dominion University, Norfolk, VA (United States); Kossov, M.V. [Christopher Newport University, Newport News, VA (United States); Kuhn, S.E. [Old Dominion University, Norfolk, VA (United States); Magahiz, R. [Carnegie-Mellon Univ., Pittsburgh, PA (United States); Miskimen, R.A. [University of Massachussetts, Amherst, MA (United States); Murphy, L.Y. [CE Saclay, Gif sur Yvette (France); O`Meara, J.E. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Pyron, T.D. [Old Dominion University, Norfolk, VA (United States); Qin, L. [Old Dominion University, Norfolk, VA (United States); Raue, B.A. [Old Dominion University, Norfolk, VA (United States); Schumacher, R.A. [Carnegie-Mellon Univ., Pittsburgh, PA (United States); Tuzel, W. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Weinstein, L.B. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States); Yegneswaran, A. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)

    1995-12-11

    We briefly describe the drift chamber system for the CLAS detector at CEBAF, concentrating on the method which will be used to calibrate the drift velocity function. We identify key features of the function which should apply to any small-cell drift chamber geometry in which the cathode and anode surfaces are wires. Using these ideas, we describe a simple method to compensate for variations in the drift velocity function due to environmental changes. (orig.).

  3. Drift Chambers detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez laso, L.

    1989-01-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs

  4. Results from the large scale in situ drift sealing experiment in the salt mine Sondershausen

    Energy Technology Data Exchange (ETDEWEB)

    Sitz, P.; Koch, G. [Freiberg Univ. of Mining an Technology, Institute of Mining Engineering (Germany); Gruner, M. [Wilsnack and Partners Freiberg / Saxony (Germany)

    2003-07-01

    The aim of the research, which is supported by the Federal Ministry for Education and Research (Bundesministerium fur Bildung und Forschung) and the state of Thuringia from 1997 to 2003, are long term stable drift sealing systems for underground waste disposals. As a result of the material selection for the sealing element bricks from a mixture of bentonite and quartz-sand were produced. The static abutment was built with natural salt bricks. A real drift sealing system was built in the former potash mine Sondershausen in a depth of 700 m and then tested under a fluid pressure up to 80 bar with saturated salt-brine. The functionality of the bentonite sealing element was proved successfully. Since 1998 some 500 t of such bentonite blocks with sand have been produced and built-in in underground sealing elements in salt mines. (authors)

  5. Drift reversal capability in helical systems

    International Nuclear Information System (INIS)

    Yokoyama, M.; Itoh, K.; Okamura, S.

    2002-10-01

    The maximum-J (J is the second adiabatic invariant) capability, i.e., the drift reversal capability, is examined in quasi-axisymmetric (QAS) stellarators and quasi-poloidally symmetric (QPS) stellarators as a possible mechanism for turbulent transport suppression. Due to the existence of non-axisymmetry of the magnetic field strength in QAS configurations, a local maximum of J is created to cause the drift reversal. The increase of magnetic shear in finite beta equilibria also has favorable effect in realizing the drift reversal. The radial variation of the uniform magnetic field component plays a crucial role for the drift reversal in a QPS configuration. Thus, the drift reversal capability and its external controllability are demonstrated for QAS and QPS stellarators, by which the impact of magnetic configuration on turbulent transport can be studied in experiments. (author)

  6. Drift reversal capability in helical systems

    International Nuclear Information System (INIS)

    Yokoyama, M.; Itoh, K.; Okamura, S.; Matsuoka, K.; Nakajima, N.; Itoh, S.-I.; Neilson, G.H.; Zarnstorff, M.C.; Rewoldt, G.

    2003-01-01

    The maximum-J (J is the second adiabatic invariant) capability, i.e., the drift reversal capability, is examined in quasi-axisymmetric (QAS) stellarators and quasi-poloidally symmetric (QPS) stellarators as a possible mechanism for turbulent transport suppression. Due to the existence of non-axisymmetry of the magnetic field strength in QAS configurations, a local maximum of J is created to cause the drift reversal. The increase of magnetic shear in finite beta equilibria also has favorable effect in realizing the drift reversal. The radial variation of the uniform magnetic field component plays a crucial role for the drift reversal in a QPS configuration. Thus, the drift reversal capability and its external controllability are demonstrated for QAS and QPS stellarators, by which the impact of magnetic configuration on turbulent transport can be studied in experiments. (author)

  7. Seepage into drifts with mechanical degradation

    International Nuclear Information System (INIS)

    Li, Guomin; Tsang, Chin-Fu

    2002-01-01

    Seepage into drifts in unsaturated tuff is an important issue for the long-term performance of the potential nuclear waste repository at Yucca Mountain, Nevada. Drifts in which waste packages will potentially be emplaced are subject to degradation in the form of rockfall from the drift ceiling induced by stress relief, seismic, or thermal effects. The objective of this study is to calculate seepage rates for various drift-degradation scenarios and for different values of percolation flux for the Topopah Spring middle nonlithophysal (Tptpmn) and the Topopah Spring lower lithophysal (Tptpll) units. Seepage calculations are conducted by (1) defining a heterogeneous permeability model on the drift scale that is consistent with field data, (2) selecting calibrated parameters associated with the Tptpmn and Tptpll units, and (3) simulating seepage on detailed degraded-drift profiles, which were obtained from a separate rock mechanics engineering analysis. The simulation results indicate (1) that the seepage threshold (i.e., the percolation flux at which seepage first occurs) is not significantly changed by drift degradation, and (2) the degradation-induced increase in seepage above the threshold is influenced more by the shape of the cavity created by rockfall than the rockfall volume

  8. Dissipative drift instability in dusty plasma

    Directory of Open Access Journals (Sweden)

    Nilakshi Das

    2012-03-01

    Full Text Available An investigation has been done on the very low-frequency electrostatic drift waves in a collisional dusty plasma. The dust density gradient is taken perpendicular to the magnetic field B0⃗, which causes the drift wave. In this case, low-frequency drift instabilities can be driven by E1⃗×B0⃗ and diamagnetic drifts, where E1⃗ is the perturbed electric field. Dust charge fluctuation is also taken into consideration for our study. The dust- neutral and ion-neutral collision terms have been included in equations of motion. It is seen that the low-frequency drift instability gets damped in such a system. Both dust charging and collision of plasma particles with the neutrals may be responsible for the damping of the wave. Both analytical and numerical techniques have been used while developing the theory.

  9. The OPAL vertex drift chamber

    International Nuclear Information System (INIS)

    Carter, J.R.; Elcombe, P.A.; Hill, J.C.; Roach, C.M.; Armitage, J.C.; Carnegie, R.K.; Estabrooks, P.; Hemingway, R.; Karlen, D.; McPherson, A.; Pinfold, J.; Roney, J.M.; Routenburg, P.; Waterhouse, J.; Hargrove, C.K.; Klem, D.; Oakham, F.G.; Carter, A.A.; Jones, R.W.L.; Lasota, M.M.B.; Lloyd, S.L.; Pritchard, T.W.; Wyatt, T.R.

    1990-01-01

    A high precision vertex drift chamber has been installed in the OPAL experiment at LEP. The design of the chamber and the associated readout electronics is described. The performance of the system has been studied using cosmic ray muons and the results of these studies are presented. A space resolution of 50 μm in the drift direction is obtained using the OPAL central detector gas mixture at 4 bar. (orig.)

  10. High-speed and supersonic upward plasma drifts: multi-instrumental study

    Science.gov (United States)

    Astafyeva, E.; Zakharenkova, I.; Hairston, M. R.; Huba, J.; Coley, W. R.

    2017-12-01

    Since the pioneering observations by Aggson et al. (1992, JGR, doi: 10.1002/92JA00644), there have been several reports of the occurrence of high-speed (Vz>800 m/s) and supersonic plasma flows in the post-sunset (e.g., Hysell et al., 1994, JGR, doi: 10.1029/94JA00476; Hanson et al., 1997, JGR, doi: 10.1029/96JA03376) and the pre-dawn sector (Astafyeva and Zakharenkova, 2015, GRL, doi:10.1002/2015GL066369). However, despite this observational evidence, these events remain rare and are not well understood. The main issue is to determine the background conditions leading to the occurrence of these high-speed plasma drifts. In this work, we perform a multi-instrumental study of high-speed and supersonic upward plasma drift events/structures. For this purpose, we analyze data from several ground-based and space-borne instruments, including data from the DMSP, Swarm and C/NOFS (IVM instrument) satellites. In addition to the space-borne instruments, we use data from ground-based GPS-receivers and ionosondes to further investigate the background ionosphere conditions, as well as the effects produced by the plasma bubbles and ionospheric irregularities. Besides the observations, we add the SAMI3/ESF modeling results on plasma bubble simulations and high-speed drifts inside plasma bubbles. TIE-GCM runs (from the CCMC, https://ccmc.gsfc.nasa.gov) are used to define the background atmospheric/ionospheric and electrodynamical conditions leading to the occurrence of the high-speed and supersonic plasma drift events. Our search of events with upward plasma drift exceeding 800 m/s in the data of DMSP for the years 2002-2016 shows that such high-speed events are extremely rare. During this period of time, only 6 events were found, two of them occurred during the recovery phase of a geomagnetic storm, while the other four were detected during geomagnetically quiet conditions. Concerning the generation of such events, our preliminary results show that enhanced electric fields are

  11. Abstraction of Drift Seepage

    International Nuclear Information System (INIS)

    J.T. Birkholzer

    2004-01-01

    This model report documents the abstraction of drift seepage, conducted to provide seepage-relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts. Water that seeps into drifts may contact waste packages and potentially mobilize radionuclides, and may result in advective transport of radionuclides through breached waste packages [''Risk Information to Support Prioritization of Performance Assessment Models'' (BSC 2003 [DIRS 168796], Section 3.3.2)]. The unsaturated rock layers overlying and hosting the repository form a natural barrier that reduces the amount of water entering emplacement drifts by natural subsurface processes. For example, drift seepage is limited by the capillary barrier forming at the drift crown, which decreases or even eliminates water flow from the unsaturated fractured rock into the drift. During the first few hundred years after waste emplacement, when above-boiling rock temperatures will develop as a result of heat generated by the decay of the radioactive waste, vaporization of percolation water is an additional factor limiting seepage. Estimating the effectiveness of these natural barrier capabilities and predicting the amount of seepage into drifts is an important aspect of assessing the performance of the repository. The TSPA-LA therefore includes a seepage component that calculates the amount of seepage into drifts [''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504], Section 6.3.3.1)]. The TSPA-LA calculation is performed with a probabilistic approach that accounts for the spatial and temporal variability and inherent uncertainty of seepage-relevant properties and processes. Results are used for subsequent TSPA-LA components that may handle, for example, waste package corrosion or radionuclide transport

  12. Cooling tower drift: experiment design for comprehensive case study

    International Nuclear Information System (INIS)

    Laulainen, N.S.

    1978-01-01

    A drift experiment program to develop a data base which can be used for validation of drift deposition models has been formulated. The first field effort is designed for a suitable mechanical-draft cooling tower to be selected after site visits have been conducted. The discussion here demonstrates the importance of characterizing the droplet size spectrum emitted from the tower and to accurately account for droplet evaporation, because the downwind droplet deposition patterns and near-surface airborne concentrations are extremely sensitive to these parameters

  13. Study on a drift chamber for high energy experiments

    International Nuclear Information System (INIS)

    Puget, Maria Augusta Constante

    1993-01-01

    This work deals with the studies of a multiwire gaseous detector operating as a drift chamber, which will be part of the SELEX spectrometer of the experiment Fermilab E781. A prototype was designed to be built and tested at IFUSP. Results are shown of the analysis of data taken with another similar detector whose construction and test were done at Fermilab, with the aim of studying its characterization and performance. (author)

  14. Time dependent drift Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1982-04-01

    The motion of individual charged particles in a given magnetic and an electric fields is discussed. An idea of a guiding center distribution function f is introduced. The guiding center distribution function is connected to the asymptotic Hamiltonian through the drift kinetic equation. The general non-stochastic magnetic field can be written in a contravariant and a covariant forms. The drift Hamiltonian is proposed, and the canonical gyroradius is presented. The proposed drift Hamiltonian agrees with Alfven's drift velocity to lowest non-vanishing order in the gyroradius. The relation between the exact, time dependent equations of motion and the guiding center equation is clarified by a Lagrangian analysis. The deduced Lagrangian represents the drift motion. (Kato, T.)

  15. Drift chamber tracking with neural networks

    International Nuclear Information System (INIS)

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed

  16. In Situ Structure-Function Studies of Oxide Supported Rhodium Catalysts by Combined Energy Dispersive XAFS and DRIFTS Spectroscopies

    International Nuclear Information System (INIS)

    Evans, John; Dent, Andrew J.; Diaz-Moreno, Sofia; Fiddy, Steven G.; Jyoti, Bhrat; Tromp, Moniek; Newton, Mark A.

    2007-01-01

    The techniques of energy dispersive EXAFS (EDE), diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) and mass spectrometry (MS) have been combined to study the structure and function of an oxide supported metal catalyst, namely 5 wt% Rh/Al2O3. Using a FreLoN camera as the EDE detector and a rapid-scanning IR spectrometer, experiments could be performed with a repetition rate of 50 ms. The results show that the nature of the rhodium centers is a function of the partial pressures of the reacting gases (CO and NO) and also temperature. This combination of gases oxidizes metallic rhodium particles to Rh(CO)2 at room temperature. The proportion of the rhodium adopting this site increases as the temperature is raised (up to 450 K). Above that temperature the dicarbonyl decomposes and the metal reclusters. Once this condition is met, catalysis ensues. Gas switching techniques show that at 573 K with NO in excess, the clusters can be oxidized rapidly to afford a linear nitrosyl complex; re-exposure to CO also promotes reclustering and the CO adopts terminal (atop) and bridging (2-fold) sites

  17. Solar Drift-Pair Bursts

    Science.gov (United States)

    Stanislavsky, A.; Volvach, Ya.; Konovalenko, A.; Koval, A.

    2017-08-01

    In this paper a new sight on the study of solar bursts historically called drift pairs (DPs) is presented. Having a simple morphology on dynamic spectra of radio records (two short components separated in time, and often they are very similar) and discovered at the dawn of radio astronomy, their features remain unexplained totally up to now. Generally, the DPs are observed during the solar storms of type III bursts, but not every storm of type III bursts is linked with DPs. Detected by ground-based instruments at decameter and meter wavelengths, the DP bursts are limited in frequency bandwidth. They can drift from high frequencies to low ones and vice versa. Their frequency drift rate may be both lower and higher than typical rates of type III bursts at the same frequency range. The development of low-frequency radio telescopes and data processing provide additional possibilities in the research. In this context the fresh analysis of DPs, made from recent observations in the summer campaign of 2015, are just considered. Their study was implemented by updated tools of the UTR-2 radio telescope at 9-33 MHz. During 10-12 July of 2015, DPs forming the longest patterns on dynamic spectra are about 7% of the total number of recorded DPs. Their marvelous resemblance in frequency drift rates with the solar S-bursts is discussed.

  18. [Study of spectrum drifting of primary colors and its impact on color rendering properties].

    Science.gov (United States)

    Cui, Xiao-yan; Zhang, Xiao-dong

    2012-08-01

    LEDs are currently used widely to display text, graphics and images in large screens. With red, green and blue LEDs as three primary colors, color rendition will be realized through color mixing. However, LEDs' spectrum will produce drifts with the changes in the temperature environment. With the changes in the driving current simulating changes in the temperature, the three primary color LEDs' spectral drifts were tested, and the drift characteristics of the three primary colors were obtained respectively. Based on the typical characteristics of the LEDs and the differences between LEDs with different colors in composition and molecular structure, the paper analyzed the reason for the spectrum drifts and the drift characteristics of different color LEDs, and proposed the equations of spectrum drifts. Putting the experimental data into the spectrum drift equations, the paper analyzed the impacts of primary colors on the mixed color, pointed out a way to reduce the chromatic aberration, and provided the theory for engineering application of color LEDs.

  19. Investigative study of the underground excavations for a nuclear waste repository in tuff: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    St John, C.M.

    1987-07-01

    Numerical studies were conducted on the behavior of a tuff rock mass within which emplacement drifts for a nuclear waste repository are excavated. The first study evaluated the effects of rockbolting and excavation-induced damage on the behavior of the rock mass round typical drifts. The second study provided a simple means of assessing the significance of drift shape, drift size, and in-situ state of stress on the deformation and stress in the vicinity of drifts for vertical and horizontal emplacement of waste. Neither study considered the effect of heating of the rock mass after emplacement of the waste so the conclusions pertain only to the conditions immediately after excavation of the underground openings. The results of analyses of the rockbolted excavations indicated that rockbolts do not have a significant influence on the states of deformation or stress within the rock mass, and that the rockbolts are subjected to acceptable levels of stress even if installed as close to the face of the excavation as possible. Accordingly, rockbolts were not considered in the study of drift shape, drift size, and the in-situ state of stress. That study indicated that stable openings of the dimensions investigated can be constructed within a tuff rock mass with the properties assumed. Of the parameters investigated, the in-situ state of stress appeared to be most important. Potentially adverse conditions were predicted if the in-situ horizontal stress is very low, but current indications are that it lies within a range which is consistent with good conditions and a stable roof. 28 refs., 49 figs., 11 tabs

  20. Consistent guiding center drift theories

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1982-04-01

    Various guiding-center drift theories are presented that are optimized in respect of consistency. They satisfy exact energy conservation theorems (in time-independent fields), Liouville's theorems, and appropriate power balance equations. A theoretical framework is given that allows direct and exact derivation of associated drift-kinetic equations from the respective guiding-center drift-orbit theories. These drift-kinetic equations are listed. Northrop's non-optimized theory is discussed for reference, and internal consistency relations of G.C. drift theories are presented. (orig.)

  1. Efficiency profile method to study the hit efficiency of drift chambers

    International Nuclear Information System (INIS)

    Abyzov, A.; Bel'kov, A.; Lanev, A.; Spiridonov, A.; Walter, M.; Hulsbergen, W.

    2002-01-01

    A method based on the usage of efficiency profile is proposed to estimate the hit efficiency of drift chambers with a large number of channels. The performance of the method under real conditions of the detector operation has been tested analysing the experimental data from the HERA-B drift chambers

  2. Equatorial F-region plasma depletion drifts: latitudinal and seasonal variations

    Directory of Open Access Journals (Sweden)

    A. A. Pimenta

    Full Text Available The equatorial ionospheric irregularities have been observed in the past few years by different techniques (e.g. ground-based radar, digisonde, GPS, optical instruments, in situ satellite and rocket instrumentation, and its time evolution and propagation characteristics can be used to study important aspects of ionospheric dynamics and thermosphere-ionosphere coupling. At present, one of the most powerful optical techniques to study the large-scale ionospheric irregularities is the all-sky imaging photometer system, which normally measures the strong F-region nightglow 630 nm emission from atomic oxygen. The monochromatic OI 630 nm emission images usually show quasi-north-south magnetic field-aligned intensity depletion bands, which are the bottomside optical signatures of large-scale F-region plasma irregularities (also called plasma bubbles. The zonal drift velocities of the plasma bubbles can be inferred from the space-time displacement of the dark structures (low intensity regions seen on the images. In this study, images obtained with an all-sky imaging photometer, using the OI 630 nm nightglow emission, from Cachoeira Paulista (22.7° S, 45° W, 15.8° S dip latitude, Brazil, have been used to determine the nocturnal monthly and latitudinal variation characteristics of the zonal plasma bubble drift velocities in the low latitude (16.7° S to 28.7° S region. The east and west walls of the plasma bubble show a different evolution with time. The method used here is based on the western wall of the bubble, which presents a more stable behavior. Also, the observed zonal plasma bubble drift velocities are compared with the thermospheric zonal neutral wind velocities obtained from the HWM-90 model (Hedin et al., 1991 to investigate the thermosphere-ionosphere coupling. Salient features from this study are presented

  3. Spray particle drift mitigation using field corn (Zea mays L.) as a drift barrier.

    Science.gov (United States)

    Vieira, Bruno C; Butts, Thomas R; Rodrigues, Andre O; Golus, Jeffrey A; Schroeder, Kasey; Kruger, Greg R

    2018-04-24

    Herbicide particle drift reduces application efficacy and can cause severe impacts on nearby vegetation depending on the herbicide mode-of-action, exposure level, and tolerance to the herbicide. A particle drift mitigation effort placing windbreaks or barriers on the field boundaries to reduce off-target movement of spray particles has been utilized in the past. The objective of this research was to evaluate the effectiveness of field corn (Zea mays L.) at different heights as a particle drift barrier. Applications with a non-air inclusion flat fan nozzle (ER11004) resulted in greater particle drift when compared to an air inclusion nozzle (TTI11004). Eight rows of corn were used as barriers (0.91, 1.22, and 1.98 m height) which reduced the particle drift for both nozzles, especially at shorter downwind distances. Applications with the ER11004 nozzle without corn barriers had 1% of the applied rate (D 99 ) predicted to deposit at 14.8 m downwind, whereas this distance was reduced (up to 7-fold) when applications were performed with corn barriers. The combination of corn drift barriers and nozzle selection (TTI11004) provided satisfactory particle drift reduction when the D 99 estimates were compared to applications with the ER11004 nozzle without corn barriers (up to 10-fold difference). The corn drift barriers were effective in reducing particle drift from applications with the ER11004 and the TTI11004 nozzles (Fine and Ultra Coarse spray classifications, respectively). The corn drift barrier had appropriate porosity and width as the airborne spray was captured within its canopy instead of deflecting up and over it. This article is protected by copyright. All rights reserved.

  4. The new insight into the structure-activity relation of Pd/CeO2-ZrO2-Nd2O3 catalysts by Raman, in situ DRIFTS and XRD Rietveld analysis.

    Science.gov (United States)

    Yang, X; Yang, L; Lin, J; Zhou, R

    2016-01-28

    Pd/CeO2-ZrO2-Nd2O3 (CZN) catalysts with different CeO2/ZrO2 molar ratios were synthesized and have been characterized by multiple techniques, e.g. XRD in combination with Rietveld refinement, UV-Raman, XPS and in situ DRIFTS. The XRD pattern of CZN with CeO2/ZrO2 molar ratios ≥1/2 can be indexed satisfactorily to the fluorite structure with a space group Fm3̄m, while the XRD patterns of CZ12 only display diffraction peaks of the tetragonal phase (S.G. P42/nmc). Nd addition can effectively stabilize the cubic structure of the CZN support and increase the enrichment of defect sites on the surface, which may be related to the better catalytic activity of Pd/CZN12 catalysts compared with Pd/CZ12. The presence of moderate ZrO2 can increase the concentration of O* active species, leading to accelerate the formation of nitrate species and thus enhance the catalytic activity of NOx and HC elimination. The Pd-dispersion decreases with the increasing Zr content, leading to the decreased CO catalytic activity, especially for the aged catalysts. The change regularity of the OSC value is almost the same with the in situ dynamic operational window, demonstrating that the in situ dynamic operational window is basically affected by the OSC value.

  5. Collisional drift fluids and drift waves

    International Nuclear Information System (INIS)

    Pfirsch, D.; Correa-Restrepo, D.

    1995-05-01

    The usual theoretical description of drift-wave turbulence (considered to be one possible cause of anomalous transport in a plasma), e.g. the Hasegawa-Wakatani theory, makes use of various approximations, the effect of which is extremely difficult to assess. This concerns in particular the conservation laws for energy and momentum. The latter is important as concerns charge separation and resulting electric fields which are possibly related to the L-H transition. Energy conservation is crucial for the stability behaviour; it will be discussed via an example. New collisional multispecies drift-fluid equations were derived by a new method which yields in a transparent way conservation of energy and total angular momentum, and the law for energy dissipation. Both electrostatic and electromagnetic field variations are considered. The method is based primarily on a Lagrangian for dissipationless fluids in drift approximation with isotropic pressures. The dissipative terms are introduced by adding corresponding terms to the ideal equations of motion and of the pressures. The equations of motion, of course, no longer result from a Lagrangian via Hamilton's principle. Their relation to the ideal equations imply, however, also a relation to the ideal Lagrangian of which one can take advantage. Instead of introducing heat conduction one can also assume isothermal behaviour, e.g. T ν (x)=const. Assumptions of this kind are often made in the literature. The new method of introducing dissipation is not restricted to the present kind of theories; it can equally well be applied to theories such as multi-fluid theories without using the drift approximation of the present paper. Linear instability is investigated via energy considerations and the implications of taking ohmic resistivity into account are discussed. (orig./WL)

  6. A novel silicon drift detector with two dimensional drift time measurement

    International Nuclear Information System (INIS)

    Hijzen, E.A.; Schooneveld, E.M.; Van Eijk, C.W.E.; Hollander, R.W.; Sarro, P.M.; Van den Bogaard, A.

    1994-01-01

    Until now silicon drift detectors with two dimensional position resolution made use of drift time measurement in one dimension only. The resolution in the other dimension was obtained by dividing the collecting anode into small pixels. In this paper we present a new type of drift detector that uses drift time measurements for both dimensions. The design consists of concentric quadrilateral closed strips with a small collecting anode in the centre. At first electrons will travel perpendicular to the strips until they reach a diagonal. Then they will proceed along this diagonal until they are collected at the centre. Position resolution in two dimensions can be obtained when both the time the electrons need to reach the diagonal and the time they need to reach the centre are measured. The latter is obtained from the collecting anode, the former from a diagonal strip present at the back side of the detector. Compared to common 2D drift detectors this detector offers the advantage of a small amount of readout electronics. It also has the advantage of having just one small collecting anode with a very low capacitance, resulting in low noise and therefore in a good energy resolution. ((orig.))

  7. Studies of Helium Based Gas Mixtures Using a Small Cell Drift Chamber

    International Nuclear Information System (INIS)

    Heise, Jaret; British Columbia U.

    2006-01-01

    An international collaboration is currently working on the construction and design of an asymmetric B Factory at the Stanford Linear Accelerator Center that will be ready to collect data in 1999. The main physics motivation for such a facility is to test the description and mechanism of CP violation in the Standard Model of particle physics and provide insight into the question of why more matter than antimatter is observed in the universe today. In particular, this experiment will measure CP violation in the decay of B mesons. In the early stages of this effort, the Canadian contingent proposed to build the central tracking chamber for the BABAR detector. Presently, a prototype drift chamber is in operation and studies are being performed to test some of the unique features of drift chamber design dictated by the conditions of the experiment. Using cosmic muons, it is possible to study tracking and pattern recognition in the prototype chamber, and therefore calculate the efficiency and spatial resolution of the prototype chamber cells. These performance features will be used to test whether or not the helium-based gas mixtures proposed for the BABAR drift chamber are a viable alternative to the more traditional argon-based gases

  8. Zonal Flows Driven by Small-Scale Drift-Alfven Modes

    International Nuclear Information System (INIS)

    Li Dehui; Zhou Deng

    2011-01-01

    Generation of zonal flows by small-scale drift-Alfven modes is investigated by adopting the approach of parametric instability with the electron polarization drift included. The zonal mode can be excited by primary modes propagating at both electron and ion diamagnetic drift directions in contrast to the assertion in previous studies that only primary modes propagating in the ion diamagnetic drift directions can drive zonal instabilities. Generally, the growth rate of the driven zonal mode is in the same order as that in previous study. However, different from the previous work, the growth rate is no longer proportional to the difference between the diamagnetic drift frequencies of electrons and ions. (magnetically confined plasma)

  9. Drift Scale THM Model

    International Nuclear Information System (INIS)

    Rutqvist, J.

    2004-01-01

    This model report documents the drift scale coupled thermal-hydrological-mechanical (THM) processes model development and presents simulations of the THM behavior in fractured rock close to emplacement drifts. The modeling and analyses are used to evaluate the impact of THM processes on permeability and flow in the near-field of the emplacement drifts. The results from this report are used to assess the importance of THM processes on seepage and support in the model reports ''Seepage Model for PA Including Drift Collapse'' and ''Abstraction of Drift Seepage'', and to support arguments for exclusion of features, events, and processes (FEPs) in the analysis reports ''Features, Events, and Processes in Unsaturated Zone Flow and Transport and Features, Events, and Processes: Disruptive Events''. The total system performance assessment (TSPA) calculations do not use any output from this report. Specifically, the coupled THM process model is applied to simulate the impact of THM processes on hydrologic properties (permeability and capillary strength) and flow in the near-field rock around a heat-releasing emplacement drift. The heat generated by the decay of radioactive waste results in elevated rock temperatures for thousands of years after waste emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, resulting in water redistribution and altered flow paths. These temperatures will also cause thermal expansion of the rock, with the potential of opening or closing fractures and thus changing fracture permeability in the near-field. Understanding the THM coupled processes is important for the performance of the repository because the thermally induced permeability changes potentially effect the magnitude and spatial distribution of percolation flux in the vicinity of the drift, and hence the seepage of water into the drift. This is important because a sufficient amount of water must be available within a

  10. Annual report for fiscal 1995, Kamaishi in-situ experiments (phase 2)

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Kazuhiro; Araki, Ryusuke; Koide, Kaoru; Sawada, Atsushi; Shimizu, Isao; Fujita, Asao; Yoshida, Eiichi [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1996-04-01

    The Kamaishi in-situ experiments (Phase 2) have strived to ascertain geological characteristics of the deep underground and the various phenomenon occurring therein and to improve technologies and methodologies required for such studies since fiscal 1993. Fiscal 1995 is the third year of Phase 2. The in-situ experiments are conducted at the northern most end of the Kamaishi mine in order to minimize the effect of the already excavated drifts totaling approximately 140 km long. The studies are conducted in Kurihashi granodiorite of Early Cretaceous widely distributed in this area. Major activities performed in this fiscal year are summarized below: (1) TASK 1 (Characterization of the deep underground geological environment). (2) TASK 2 (Study of excavation disturbance in fractured rock). (3) TASK 3 (Study of groundwater flow and solute transport in crystalline rock). (4) TASK 4 (Study of engineered barrier). (5) TASK 5 (Study of earthquakes). (J.P.N.)

  11. Laboratory Course on Drift Chambers

    International Nuclear Information System (INIS)

    Garcia-Ferreira, Ix-B.; Garcia-Herrera, J.; Villasenor, L.

    2006-01-01

    Drift chambers play an important role in particle physics experiments as tracking detectors. We started this laboratory course with a brief review of the theoretical background and then moved on to the the experimental setup which consisted of a single-sided, single-cell drift chamber. We also used a plastic scintillator paddle, standard P-10 gas mixture (90% Ar, 10% CH4) and a collimated 90Sr source. During the laboratory session the students performend measurements of the following quantities: a) drift velocities and their variations as function of the drift field; b) gas gains and c) diffusion of electrons as they drifted in the gas

  12. Characteristic parameters of drift chambers calculation

    International Nuclear Information System (INIS)

    Duran, I.; Martinez-Laso, L.

    1989-01-01

    We present here the methods we used to analyse the characteristic parameters of drift chambers. The algorithms to calculate the electric potential in any point for any drift chamber geometry are presented. We include the description of the programs used to calculate the electric field, the drift paths, the drift velocity and the drift time. The results and the errors are discussed. (Author) 7 refs

  13. Mitigating Backgrounds with a Novel Thin-Film Cathode in the DRIFT-IId Dark Matter Detector

    Science.gov (United States)

    Miller, Eric H.

    The nature of dark matter, which comprises 85% of the matter density in the universe, is a major outstanding question in physics today. The standard hypothesis is that the dark matter is a new weakly interacting massive particle, which is present throughout the galaxy. These particles could interact within detectors on Earth, producing low-energy nuclear recoils. Two distinctive signatures arise from the solar motion through the galaxy. The DRIFT experiment aims to measure one of these, the directional signature that is based on the sidereal modulation of the nuclear recoil directions. Although DRIFT has demonstrated its capability for detecting this signature, it has been plagued by a large number of backgrounds that have limited its reach. The focus of this thesis is on characterizing these backgrounds and describing techniques that have essentially eliminated them. The background events in the DRIFT-IId detector are predominantly caused by alpha decays on the central cathode in which the alpha particles completely or partially absorbed by the cathode material. This thesis describes the installation a 0.9 mum thick aluminized-mylar cathode as a way to reduce the probability of producing these backgrounds. We study three generations of cathode (wire, thin-film, and radiologically clean thin-film) with a focus on identifying and quantifying the sources of alpha decay backgrounds, as well as their contributions to the background rate in the detector. This in-situ study is based on alpha range spectroscopy and the determination of the absolute alpha detection efficiency. The results for the final radiologically clean version of the cathode give a contamination of 3.3 +/- 0.1 ppt 234U and 73 +/- 2 ppb 238U, and an efficiency for rejecting an RPR from an alpha decay that is a factor 70 +/- 20 higher than for the original wire cathode. Along with other background reduction measures, the thin-film cathode has reduced the observed background rate from 130/day to 1.7/day

  14. Electromagnetic drift waves dispersion for arbitrarily collisional plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)

    2015-07-15

    The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.

  15. Generalized drift-flux correlation

    International Nuclear Information System (INIS)

    Takeuchi, K.; Young, M.Y.; Hochreiter, L.E.

    1991-01-01

    A one-dimensional drift-flux model with five conservation equations is frequently employed in major computer codes, such as TRAC-PD2, and in simulator codes. In this method, the relative velocity between liquid and vapor phases, or slip ratio, is given by correlations, rather than by direct solution of the phasic momentum equations, as in the case of the two-fluid model used in TRAC-PF1. The correlations for churn-turbulent bubbly flow and slug flow regimes were given in terms of drift velocities by Zuber and Findlay. For the annular flow regime, the drift velocity correlations were developed by Ishii et al., using interphasic force balances. Another approach is to define the drift velocity so that flooding and liquid hold-up conditions are properly simulated, as reported here. The generalized correlation is used to reanalyze the MB-2 test data for two-phase flow in a large-diameter pipe. The results are applied to the generalized drift flux velocity, whose relationship to the other correlations is discussed. Finally, the generalized drift flux correlation is implemented in TRAC-PD2. Flow reversal from countercurrent to cocurrent flow is computed in small-diameter U-shaped tubes and is compared with the flooding curve

  16. The CLEO III drift chamber

    CERN Document Server

    Peterson, D; Briere, R A; Chen, G; Cronin-Hennessy, D; Csorna, S; Dickson, M; Dombrowski, S V; Ecklund, K M; Lyon, A; Marka, S; Meyer, T O; Patterson, J R; Sadoff, A; Thies, P; Thorndike, E H; Urner, D

    2002-01-01

    The CLEO group at the Cornell Electron Storage Ring has constructed and commissioned a new central drift chamber. With 9796 cells arranged in 47 layers ranging in radius from 13.2 to 79 cm, the new drift chamber has a smaller outer radius and fewer wires than the drift chamber it replaces, but allows the CLEO tracking system to have improved momentum resolution. Reduced scattering material in the chamber gas and in the inner skin separating the drift chamber from the silicon vertex detector provides a reduction of the multiple scattering component of the momentum resolution and an extension of the usable measurement length into the silicon. Momentum resolution is further improved through quality control in wire positioning and symmetry of the electric fields in the drift cells which have provided a reduction in the spatial resolution to 88 mu m (averaged over the full drift range).

  17. Silicon drift-chamber studies for possible use at RHIC

    International Nuclear Information System (INIS)

    Humanic, T.J.

    1990-01-01

    It is proposed to continue the program now underway at the University of Pittsburgh to study the feasibility of using silicon drift-chambers as particle tracking devices at RHIC. We are currently testing a UA6-type detector obtained from BNL and plan to also study a new device that will become available this year: a cylindrical geometry detector designed for NA45 (CERN). In addition we propose to fabricate and study a detector to be used in vertex determination for the RHIC OASIS experiment. The two-year budget for this proposal is $246.962. 5 refs., 12 figs

  18. Intrafractional baseline drift during free breathing breast cancer radiation therapy.

    Science.gov (United States)

    Jensen, Christer Andre; Acosta Roa, Ana María; Lund, Jo-Åsmund; Frengen, Jomar

    2017-06-01

    Intrafraction motion in breast cancer radiation therapy (BCRT) has not yet been thoroughly described in the literature. It has been observed that baseline drift occurs as part of the intrafraction motion. This study aims to measure baseline drift and its incidence in free-breathing BCRT patients using an in-house developed laser system for tracking the position of the sternum. Baseline drift was monitored in 20 right-sided breast cancer patients receiving free breathing 3D-conformal RT by using an in-house developed laser system which measures one-dimensional distance in the AP direction. A total of 357 patient respiratory traces from treatment sessions were logged and analysed. Baseline drift was compared to patient positioning error measured from in-field portal imaging. The mean overall baseline drift at end of treatment sessions was -1.3 mm for the patient population. Relatively small baseline drift was observed during the first fraction; however it was clearly detected already at the second fraction. Over 90% of the baseline drift occurs during the first 3 min of each treatment session. The baseline drift rate for the population was -0.5 ± 0.2 mm/min in the posterior direction the first minute after localization. Only 4% of the treatment sessions had a 5 mm or larger baseline drift at 5 min, all towards the posterior direction. Mean baseline drift in the posterior direction in free breathing BCRT was observed in 18 of 20 patients over all treatment sessions. This study shows that there is a substantial baseline drift in free breathing BCRT patients. No clear baseline drift was observed during the first treatment session; however, baseline drift was markedly present at the rest of the sessions. Intrafraction motion due to baseline drift should be accounted for in margin calculations.

  19. Optical drift effects in general relativity

    Science.gov (United States)

    Korzyński, Mikołaj; Kopiński, Jarosław

    2018-03-01

    We consider the question of determining the optical drift effects in general relativity, i.e. the rate of change of the apparent position, redshift, Jacobi matrix, angular distance and luminosity distance of a distant object as registered by an observer in an arbitrary spacetime. We present a fully relativistic and covariant approach, in which the problem is reduced to a hierarchy of ODE's solved along the line of sight. The 4-velocities and 4-accelerations of the observer and the emitter and the geometry of the spacetime along the line of sight constitute the input data. We build on the standard relativistic geometric optics formalism and extend it to include the time derivatives of the observables. In the process we obtain two general, non-perturbative relations: the first one between the gravitational lensing, represented by the Jacobi matrix, and the apparent position drift, also called the cosmic parallax, and the second one between the apparent position drift and the redshift drift. The applications of the results include the theoretical study of the drift effects of cosmological origin (so-called real-time cosmology) in numerical or exact Universe models.

  20. Drift-modeling and monitoring comparisons

    International Nuclear Information System (INIS)

    Chen, N.C.J.; Hanna, S.R.

    1977-01-01

    Congress is looking into the conglomeration of nuclear reactors into energy centers of limited area. Drift from cooling towers can corrode and damage structures in the immediate vicinity of the towers, cause a public nuisance if located near parking lots or high-density traffic areas, and endanger local vegetation. The estimation of salt deposition has relied primarily on predictions from a variety of models, with very few direct measurements. One of the major efforts in our program is to evaluate the assumptions, limitations, and applicabilities of various analytical models for drift deposition prediction. Several drift deposition models are compared using a set of standard input conditions. The predicted maximum drift deposition differs by two orders of magnitude, and the downwind locations of the maximum differ by one order of magnitude. The discrepancies are attributed mainly to different assumptions in the models regarding the initial effective height of the droplets. Current programs in which drift characteristics at the tower mouth and drift deposition downwind of the tower are being measured are summarized. At the present time, drift deposition measurements, sufficiently comprehensive for model verifications, are unavailable. Hopefully, the Chalk Point Program will satisfy this need

  1. Silicon drift chamber studies for the RHIC STAR experiment

    International Nuclear Information System (INIS)

    Humanic, T.J.

    1992-01-01

    The two-hit resolution of a silicon drift chamber is measured using a pulsed Nd:Yag laser and a time digitizer readout. The data is analyzed by forming the covariance matrix in time samples, and transforming to a matrix in amplitude and time variation of each of the two hits. The resolution of the two-hit separation is found to be better than 25 microns with a drift field of 530 V/cm and a separation of more than 500 microns, with the resolution increasing to 50 microns as the separation nears 500 microns. Results are also presented for multiply ionizing tracks, showing a great improvement over single minimum ionizing. 8 refs

  2. Style drift in private equity

    NARCIS (Netherlands)

    Cumming, D.; Fleming, G.; Schwienbacher, A.

    2009-01-01

    We introduce the concept of style drift to private equity investment. We present theory and evidence pertaining to style drifts in terms of a fund manager's stated focus on particular stages of entrepreneurial development. We develop a model that derives conditions under which style drifts are less

  3. Collisional drift fluid equations and implications for drift waves

    International Nuclear Information System (INIS)

    Pfirsch, Dieter; Correa-Restrepo, Dario

    1996-01-01

    The usual theoretical description of drift-wave turbulence (considered to be one possible cause of anomalous transport in a plasma), e.g. the Hasegawa-Wakatani theory, makes use of various approximations, the effects of which are extremely difficult to assess. This concerns in particular the conservation laws for energy and momentum. The latter law is important in relation to charge separation and the resulting electric fields, which are possibly related to the L-H transition. Energy conservation is crucial to the stability behaviour, it will be discussed by means of an example. New collisional multi-species drift-fluid equations were derived by a new method which yields, in a transparent way, conservation of energy and total angular momentum and the law for energy dissipation. Both electrostatic and electromagnetic field variations are considered. The only restriction involved is the validity of the drift approximation; in particular, there are no assumptions restricting the geometry of the system. The method is based primarily on a Lagrangian for dissipationless fluids in the drift approximation with isotropic pressures. The dissipative terms are introduced by adding corresponding terms to the ideal equations of motion and of the pressures. The equations of motion, of course, no longer result from a Lagrangian via Hamilton's principle. However, their relation to the ideal equations also implies a relation to the ideal Lagrangian, which can be used to advantage. Instead of introducing heat conduction one can also assume isothermal behaviour, e.g. T v (x) = constant. Assumptions of this kind are often made in the literature. The new method of introducing dissipation is not restricted to the present kind of theory; it can equally well be applied to theories such as multi-fluid theories without using the drift approximation of the present paper. (author)

  4. Computer controlled drifting of Si(Li) detectors

    International Nuclear Information System (INIS)

    Landis, D.A.; Wong, Y.K.; Walton, J.T.; Goulding, F.S.

    1989-01-01

    A relatively inexpensive computer-controlled system for performing the drift process used in fabricating Si(Li) detectors is described. The system employs a small computer to monitor the leakage current, applied voltage and temperature on eight individual drift stations. The associated computer program initializes the drift process, monitors the drift progress and then terminates the drift when an operator set drift time has elapsed. The improved control of the drift with this system has been well demonstrated over the past three years in the fabrication of a variety of Si(Li) detectors. A few representative system responses to detector behavior during the drift process are described

  5. Experimental study on the thermal performance of a mechanical cooling tower with different drift eliminators

    International Nuclear Information System (INIS)

    Lucas, M.; Martinez, P.J.; Viedma, A.

    2009-01-01

    Cooling towers are equipment devices commonly used to dissipate heat from power generation units, water-cooled refrigeration, air conditioning and industrial processes. Water drift emitted from cooling towers is objectionable for several reasons, mainly due to human health hazards. It is common practice to fit drift eliminators to cooling towers in order to minimize water loss from the system. It is foreseeable that the characteristics of the installed drift eliminators, like their pressure drop, affect the thermal performance of the cooling tower. However, no references regarding this fact have been found in the reviewed bibliography. This paper studies the thermal performance of a forced draft counter-flow wet cooling tower fitted with different drift eliminators for a wide range of air and water mass flow rates. The data registered in the experimental set-up were employed to obtain correlations of the tower characteristic, which defines the cooling tower's thermal performance. The outlet water temperature predicted by these correlations was compared with the experimentally registered values obtaining a maximum difference of ±3%

  6. Electron drift in a large scale solid xenon

    International Nuclear Information System (INIS)

    Yoo, J.; Jaskierny, W.F.

    2015-01-01

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Therefore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon

  7. Nonlinear radial propagation of drift wave turbulence

    International Nuclear Information System (INIS)

    Prakash, M.

    1985-01-01

    We study the linear and the nonlinear radial propagation of drift wave energy in an inhomogeneous plasma. The drift mode excited in such a plasma is dispersive in nature. The drift wave energy spreads out symmetrically along the direction of inhomogeneity with a finite group velocity. To study the effect of the nonlinear coupling on the propagation of energy in a collision free plasma, we solve the Hasegawa-Mima equation as a mixed initial boundary-value problem. The solutions of the linearized equation are used to check the reliability of our numerical calculations. Additional checks are also performed on the invariants of the system. Our results reveal that a pulse gets distorted as it propagates through the medium. The peak of the pulse propagates with a finite velocity that depends on the amplitude of the initial pulse. The polarity of propagation depends on the initial parameters of the pulse. We have also studied drift wave propagation in a resistive plasma. The Hasegawa-Wakatani equations are used to investigate this problem

  8. In Situ Field Testing of Processes

    International Nuclear Information System (INIS)

    Wang, J.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR

  9. Modeling concept drift

    DEFF Research Database (Denmark)

    Borchani, Hanen; Martinez, Ana Maria; Masegosa, Andrés R.

    2015-01-01

    An often used approach for detecting and adapting to concept drift when doing classification is to treat the data as i.i.d. and use changes in classification accuracy as an indication of concept drift. In this paper, we take a different perspective and propose a framework, based on probabilistic ...... data set from a Spanish bank....

  10. Discovery of remarkable subpulse drifting pattern in PSR B0818-41

    Science.gov (United States)

    Bhattacharyya, B.; Gupta, Y.; Gil, J.; Sendyk, M.

    The study of pulsars showing systematic subpulse drift patterns provides important clues for understanding of pulsar emission mechanism. Pulsars with wide profiles provide extra insights because of the presence of multiple drift bands (e.g PSR B0826-34). We report the discovery of a remarkable subpulse drift pattern in a relatively less studied wide profile pulsar, PSR B0818-41, using the GMRT. We find simultaneous occurrence of three drift regions with two drift rates, an inner region with steeper apparent drift rate flanked on each side by a region of slower apparent drift rate. Furthermore, the two closely spaced drift regions always maintain a constant phase relationship. These unique drift properties seen for this pulsar is very rare. We interpret that the observed drift pattern is created by intersection of our line of sight (LOS) with two conal rings in a inner LOS (negative beta) geometry. We argue that the carousel rotation periodicity (P_4) and the number of sparks (N_sp) are the same for the rings and claim that P_4 is close to the measured P_3. Based on our analysis results and interpretations, we simulate the radiation from B0818-41. The simulations support our interpretations and reproduce the average profile and the observed drift pattern. The results of our study show that PSR B0818-41 is a powerful system to explore the pulsar radio emission mechanism, the implications of which are also discussed in our work.

  11. The Drift Burst Hypothesis

    OpenAIRE

    Christensen, Kim; Oomen, Roel; Renò, Roberto

    2016-01-01

    The Drift Burst Hypothesis postulates the existence of short-lived locally explosive trends in the price paths of financial assets. The recent US equity and Treasury flash crashes can be viewed as two high profile manifestations of such dynamics, but we argue that drift bursts of varying magnitude are an expected and regular occurrence in financial markets that can arise through established mechanisms such as feedback trading. At a theoretical level, we show how to build drift bursts into the...

  12. Drift tubes of Linac 2

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    With the advent of the 800 MeV PS Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows Linac 2 drift-tubes, suspended on stems coming from the top, in contrast to Linac 1, where the drift-tubes stood on stems coming from the bottom.

  13. Noise-induced drift in two-dimensional anisotropic systems

    Science.gov (United States)

    Farago, Oded

    2017-10-01

    We study the isothermal Brownian dynamics of a particle in a system with spatially varying diffusivity. Due to the heterogeneity of the system, the particle's mean displacement does not vanish even if it does not experience any physical force. This phenomenon has been termed "noise-induced drift," and has been extensively studied for one-dimensional systems. Here, we examine the noise-induced drift in a two-dimensional anisotropic system, characterized by a symmetric diffusion tensor with unequal diagonal elements. A general expression for the mean displacement vector is derived and presented as a sum of two vectors, depicting two distinct drifting effects. The first vector describes the tendency of the particle to drift toward the high diffusivity side in each orthogonal principal diffusion direction. This is a generalization of the well-known expression for the noise-induced drift in one-dimensional systems. The second vector represents a novel drifting effect, not found in one-dimensional systems, originating from the spatial rotation in the directions of the principal axes. The validity of the derived expressions is verified by using Langevin dynamics simulations. As a specific example, we consider the relative diffusion of two transmembrane proteins, and demonstrate that the average distance between them increases at a surprisingly fast rate of several tens of micrometers per second.

  14. Radial plasma drifts deduced from VLF whistler mode signals - A modelling study

    Science.gov (United States)

    Poulter, E. M.; Andrews, M. K.; Bailey, G. J.; Moffett, R. J.

    1984-05-01

    VLF whistler mode signals have previously been used to infer radial plasma drifts in the equatorial plane of the plasmasphere and the field-aligned ionosphere-protonosphere coupling fluxes. Physical models of the plasmasphere consisting of O(+) adn H(+) ions along dipole magnetic field lines, and including radial E x B drifts, are applied to a mid-latitude flux tube appropriate to whistler mode signals received at Wellington, New Zealand, from the fixed frequency VLF transmitter NLK (18.6 kHz) in Seattle, U.S.A. These models are first shown to provide a good representation of the recorded Doppler shift and group delay data. They are then used to simulate the process of deducing the drifts and fluxes from the recorded data. Provided the initial whistler mode duct latitude and the ionospheric contributions are known, the drifts at the equatorial plane can be estimated to about + or - 20 m/s (approximately 10-15 percent), and the two hemisphere ionosphere-protonosphere coupling fluxes to about + or - 10 to the 12th/sq m-sec (approximately 40 percent).

  15. Nonlinear drift tearing mode

    International Nuclear Information System (INIS)

    Zelenyj, L.M.; Kuznetsova, M.M.

    1989-01-01

    Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed

  16. In-silico studies of neutral drift for functional protein interaction networks

    Science.gov (United States)

    Ali, Md Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    We have developed a minimal physically-motivated model of protein-protein interaction networks. Our system consists of two classes of enzymes, activators (e.g. kinases) and deactivators (e.g. phosphatases), and the enzyme-mediated activation/deactivation rates are determined by sequence-dependent binding strengths between enzymes and their targets. The network is evolved by introducing random point mutations in the binding sequences where we assume that each new mutation is either fixed or entirely lost. We apply this model to studies of neutral drift in networks that yield oscillatory dynamics, where we start, for example, with a relatively simple network and allow it to evolve by adding nodes and connections while requiring that dynamics be conserved. Our studies demonstrate both the importance of employing a sequence-based evolutionary scheme and the relative rapidity (in evolutionary time) for the redistribution of function over new nodes via neutral drift. Surprisingly, in addition to this redistribution time we discovered another much slower timescale for network evolution, reflecting hidden order in sequence space that we interpret in terms of sparsely connected domains.

  17. Drift curves from spray applications on commom bean crop

    Directory of Open Access Journals (Sweden)

    Mariana Rodrigues Bueno

    Full Text Available ABSTRACT In order to avoid the occurrence of drift in pesticide applications, it is fundamental to know the behavior of sprayed droplets. This study aimed to determine drift curves in pesticide applications on common bean crop under brazilian weather conditions, using different nozzle types and compared them with the "German" and "Dutch" drift prediction models. The experiment was conducted in Uberlândia, Minas Gerais/Brazil, in completely randomized design with ten replications and 4 x 20 split-plot arrangement in space. Drift deposited on collectors located over ground level was resulted by 150 L ha-1 carrier volume applications through four nozzle types (XR 11002 (fine droplets; AIXR 11002 (coarse droplets; TT 11002 (medium droplets; TTI 11002 (extremely coarse droplets, collected in 20 downwind distances, parallel to the crop line outside the target area, spaced by 2.5 m. The tracer rhodamine B was added to the spray to be quantified by fluorimetry. Drift prediction models adjusted by exponential functions were obtained considering the 90th percentile for XR, TT, AIXR and TTI nozzles. It is suggested to use the estimated drift models from this study for each nozzle type in drift prediction evaluations on bean crops under brazilian weather conditions.

  18. Evaluation of multi-mode CryoSat-2 altimetry data over the Po River against in situ data and a hydrodynamic model

    DEFF Research Database (Denmark)

    Schneider, Raphael; Tarpanelli, Angelica; Nielsen, Karina

    2018-01-01

    Coverage of in situ observations to monitor surface waters is insufficient on the global scale, and decreasing across the globe. Satellite altimetry has become an increasingly important monitoring technology for continental surface waters. The ESA CryoSat-2 altimetry mission, launched in 2010, has...... two novel features. (i) The radar altimeter instrument on board of CryoSat-2 is operated in three modes; two of them reduce the altimeter footprint by using Delay-Doppler processing. (ii) CryoSat-2 is placed on a distinct orbit with a repeat cycle of 369 days, leading to a drifting ground track...... pattern. The drifting ground track pattern challenges many common methods of processing satellite altimetry data over rivers. This study evaluates the observation error of CryoSat-2 water level observations over the Po River, Italy, against in situ observations. The average RMSE between CryoSat-2...

  19. Thermal annealing dynamics of carbon-coated LiFePO{sub 4} nanoparticles studied by in-situ analysis

    Energy Technology Data Exchange (ETDEWEB)

    Krumeich, Frank, E-mail: krumeich@inorg.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich (Switzerland); Waser, Oliver; Pratsinis, Sotiris E. [Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich (Switzerland)

    2016-10-15

    The thermal behavior of core-shell carbon-coated lithium iron phosphate (LiFePO{sub 4}-C) nanoparticles made by flame spray pyrolysis (FSP) during annealing was investigated by in-situ transmission electron microscopy (TEM), in-situ X-ray powder diffraction (XRD) as well as ex-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Crystallization of the initially glassy LiFePO{sub 4}-C nanoparticles starts at quite low temperatures (T=400 °C), forming single crystals inside the confinement of the carbon shell. Upon increasing the temperature to T≥700 °C, LiFePO{sub 4} starts to diffuse through the carbon shell resulting in cavities inside the mostly intact carbon shell. By increasing the temperature further to T≥800 °C, the initial core-shell morphology converts into open carbon shells (flakes and cenospheres) and bulky LiFePO{sub 4} particles (diameter in the range 300–400 nm), in agreement with ex-situ experiments. - Graphical abstract: TEM images of a typical sample area recorded at room temperature and after heating in-situ heating reveal the growth of particles and the formation of empty carbon cages. - Highlights: • LiFePO{sub 4} coated by a carbon shell is produced by flame spray pyrolysis. • The amorphous LiFePO{sub 4} starts to crystallize at 400 °C as revealed by in-situ XRD. • Crystal growth was visualized by TEM heating experiments. • The formation of empty carbon cages starts at 700 °C.

  20. Study on the snow drifting modelling criteria in boundary layer wind tunnels

    Directory of Open Access Journals (Sweden)

    Georgeta BĂETU

    2014-07-01

    Full Text Available The paper presents a study on modelling the wind drifting of the snow deposited on the flat roofs of buildings in wind tunnel. The physical model of snow drifting in wind tunnel simulating the urban exposure to wind action is not frequently reported in literature, but is justified by the serious damages under accidental important snow falls combined with strong wind actions on the roofs of various buildings. A uniform layer of snow deposited on the flat roof was exposed to wind action in order to obtain the drifting. The parameters involved in the modelling at reduced scale, with particles of glass beads, of the phenomenon of transportation of the snow from the roof were analysed, particularly the roughness length and the friction wind speed. A numerical simulation in ANSYS CFX program was developed in parallel, by which a more accurate visualization of the particularities of the wind flow over the roof was possible, in the specific areas where the phenomenon of snow transportation was more susceptible to occur. Modified roughness length and friction wind speed were determined through methods used in the literature, an attempt being made in this work to analyse the factors that influence their values.

  1. Characterizing the nature of subpulse drifting in pulsars

    Science.gov (United States)

    Basu, Rahul; Mitra, Dipanjan

    2018-04-01

    We report a detailed study of subpulse drifting in four long-period pulsars. These pulsars were observed in the Meterwavelength Single-pulse Polarimetric Emission Survey and the presence of phase-modulated subpulse drifting was reported in each case. We carried out longer duration and more sensitive observations lasting 7000-12 000 periods in the frequency range 306-339 MHz. The drifting features were characterized in great detail, including the phase variations across the pulse window. For two pulsars, J0820-1350 and J1720-2933, the phases changed steadily across the pulse window. The pulsar J1034-3224 has five components. The leading component was very weak and was barely detectable in our single-pulse observations. The four trailing components showed subpulse drifting. The phase variations changed in alternate components with a reversal in the sign of the gradient. This phenomenon is known as bi-drifting. The pulsar J1555-3134 showed two distinct peak frequencies of comparable strengths in the fluctuation spectrum. The two peaks did not appear to be harmonically related and were most likely a result of different physical processes. Additionally, the long observations enabled us to explore the temporal variations of the drifting features. The subpulse drifting was largely constant with time but small fluctuations around a mean value were seen.

  2. An analytic study of the perpendicularly propagating electromagnetic drift instabilities in the Magnetic Reconnection Experiment

    International Nuclear Information System (INIS)

    Wang Yansong; Kulsrud, Russell; Ji, Hantao

    2008-01-01

    A local linear theory is proposed for a perpendicularly propagating drift instability driven by relative drifts between electrons and ions. The theory takes into account local cross-field current, pressure gradients, and modest collisions as in the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)]. The unstable waves have very small group velocities in the direction of the pressure gradient, but have a large phase velocity near the relative drift velocity between electrons and ions in the direction of the cross-field current. By taking into account the electron-ion collisions and applying the theory in the Harris sheet, we establish that this instability could be excited near the center of the Harris sheet and have enough e-foldings to grow to large amplitude before it propagates out of the unstable region. Comparing with the other magnetic reconnection related instabilities (lower-hybrid-drift instability, modified two-stream instability, etc.) studied previously, we believe the instability we found is a favorable candidate to produce anomalous resistivity because of its unique wave characteristics, such as electromagnetic component, large phase velocity, and small group velocity in the cross-current-layer direction.

  3. Impact of groyne fields on the littoral drift: A hybrid morphological modelling study

    DEFF Research Database (Denmark)

    Kristensen, S. E.; Drønen, N.; Deigaard, R.

    2016-01-01

    of this mechanism is presented including effects of scales, e.g. the effect of the relative length of the groynes (compared to the width of the surf zone).The model results indicate a strong dependency of the reduction in littoral drift on the initial geometric bypass ratio (Qgeo*), which is defined from the groyne......This paper concerns numerical modelling of the impact on the littoral drift and the shoreline from groynes forming a field of equidistant and identical groynes. The most important effect of a groyne on the shoreline morphology is that the littoral drift is blocked completely or partially. A local...... reduction in the littoral drift around the groyne introduces alongshore gradients in the alongshore sediment transport and sedimentation and erosion around the groyne which will cause re-orientation of the bed contours towards the prevailing wave direction until an equilibrium is reached. A discussion...

  4. Charge collection in the Silicon Drift Detectors of the ALICE experiment

    CERN Document Server

    Alessandro, B; Batigne, G; Beolé, S; Biolcati, E; Cerello, P; Coli, S; Corrales Morales, Y; Crescio, E; De Remigis, P; Falchieri, D; Giraudo, G; Giubellino, P; Lea, R; Marzari Chiesa, A; Masera, M; Mazza, G; Ortona, G; Prino, F; Ramello, L; Rashevsky, A; Riccati, L; Rivetti, A; Senyukov, S; Siciliano, M; Sitta, M; Subieta, M; Toscano, L; Tosello, F

    2010-01-01

    A detailed study of charge collection efficiency has been performed on the Silicon Drift Detectors (SDD) of the ALICE experiment. Three different methods to study the collected charge as a function of the drift time have been implemented. The first approach consists in measuring the charge at different injection distances moving an infrared laser by means of micrometric step motors. The second method is based on the measurement of the charge injected by the laser at fixed drift distance and varying the drift field, thus changing the drift time. In the last method, the measurement of the charge deposited by atmospheric muons is used to study the charge collection efficiency as a function of the drift time. The three methods gave consistent results and indicated that no charge loss during the drift is observed for the sensor types used in 99% of the SDD modules mounted on the ALICE Inner Tracking System. The atmospheric muons have also been used to test the effect of the zero-suppression applied to reduce the d...

  5. SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE

    International Nuclear Information System (INIS)

    C. Tsang

    2004-01-01

    The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to

  6. The Geodiversity in Drift Sand Landscapes of The Netherlands

    Science.gov (United States)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk; Riksen, Michel

    2015-04-01

    The authors carried out detailed field studies of more than twelve drift sand landscapes in The Netherlands. The objective of these studies was to restore Natura-2000 values by restoring the wind activity. Active drift sands occur almost exclusively in The Netherlands, Natura 2000 habitat 2330 'Inland dunes with open Corynephorus and Agrostis grasslands', for which reason our country is largely responsible for this European landscape. Active drift sands had almost disappeared for two reasons: first, the stabilization of the drift sands by air pollution, mainly nitrogen, which stimulates the growth of algae and grasses that initiate soil formation, and second, by the growth of forests surrounding the sands, which decreases the wind force. The restoration studies revealed differences in the geodiversity between and within the drift sand areas. Whereas the drift sands on geological and soil maps show as almost homogenous areas, they have in fact highly variable geo-conditions of which examples will be given. These geodiversity aspects concern differences in geomorphological structure, origin, sediments and age of the drift sands. Differences in wind and water erosion, trampling and soil formation add to the geodiversity within the drift sand areas. Especially in the primary stages of succession the differences in geodiversity are relevant for the Natura-2000 values. We discerned three main types of active sands. Firstly, the impressive drift sands with large parabolic dune structures, often consisting of series of interlocking parabolic dunes. They developed from the northeast towards the southwest, against the direction of the dominant wind, and must have taken centuries to develop. Small parts of these systems are still active, other parts show different degrees of soil formation. Their origin is still unclear but probably dates from medieval times (Heidinga, 1985, Jungerius & Riksen, 2008). Second are the drift sand areas with irregular hills from 0.5 to about 2

  7. Small-scale lacustrine drifts in Lake Champlain, Vermont

    Science.gov (United States)

    Manley, Patricia L.; Manley, T.O.; Hayo, Kathryn; Cronin, Thomas

    2012-01-01

    High resolution CHIRP (Compressed High Intensity Radar Pulse) seismic profiles reveal the presence of two lacustrine sediment drifts located in Lake Champlain's Juniper Deep. Both drifts are positive features composed of highly laminated sediments. Drift B sits on a basement high while Drift A is built on a trough-filling acoustically-transparent sediment unit inferred to be a mass-transport event. These drifts are oriented approximately north–south and are parallel to a steep ridge along the eastern shore of the basin. Drift A, located at the bottom of a structural trough, is classified as a confined, elongate drift that transitions northward to become a system of upslope asymmetric mudwaves. Drift B is perched atop a structural high to the west of Drift A and is classified as a detached elongate drift. Bottom current depositional control was investigated using Acoustic Doppler Current Profilers (ADCPs) located across Drift A. Sediment cores were taken at the crest and at the edges of the Drift A and were dated. Drift source, deposition, and evolution show that these drifts are formed by a water column shear with the highest deposition occurring along its crest and western flank and began developing circa 8700–8800 year BP.

  8. Performance of silicon drift detectors in a magnetic field

    International Nuclear Information System (INIS)

    Castoldi, A.; Gatti, E.; Manzari, V.; Rehak, P.

    1997-01-01

    A study of the properties of silicon drift detectors in a magnetic field was carried out. A silicon drift detector with 41 anodes, providing unambiguous x and y position information, was used for measurements. Studies were done in three principal orientations of the detector relative to the direction of the magnetic field. The magnetic field was varied between 0 and 0.7 T and the drift field between 300 and 600 V/cm. Basic agreement with the theory of electron transport in semiconductors in a magnetic field was found. The transport properties of electrons in a magnetic field can be described by a mobility matrix. The components of the matrix depend on the electron mobility, Hall mobility and on the vector of the magnetic field. The precision of measurement was better than 0.2% for most of the parameters. For the electric field of a silicon drift detector, there is a first-order effect of the magnetic field only in one out of three principal directions. In this direction, the plane of the detector is perpendicular to the magnetic field and electrons drift at an angle α relative to the direction of the drift field. In two other principal directions, which are more important for tracking of the particles with drift detectors, there are no first-order magnetic effects. (orig.)

  9. Prediction of littoral drift with artificial neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, A.K.; Deo, M.C.; SanilKumar, V.

    of the rate of sand drift has still remained as a problem. The current study addresses this issue through the use of artificial neural networks (ANN). Feed forward networks were developed to predict the sand drift from a variety of causative variables...

  10. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  11. Tabulated In-Drift Geometric and Thermal Properties Used In Drift-Scale Models for TSPA-SR

    International Nuclear Information System (INIS)

    N.D. Francis

    2000-01-01

    The objective of this calculation is to provide in-drift physical properties required by the drift-scale models (both two- and three-dimensional) used in total system performance assessments (TSPA). The physical properties include waste package geometry, waste package thermal properties, emplacement drift geometry including backfill and invert geometry and properties (both thermal and hydrologic), drip shield geometry and thermal properties, all tabulated in a single source

  12. Study of the performance of ATLAS muon drift-tube chambers in magntic fields and at high irradiation rates

    Energy Technology Data Exchange (ETDEWEB)

    Valderanis, Chrysostomos

    2012-07-26

    The performance of ATLAS muon drift-tube (MDT) chambers has been studied in detail using high-energy muon beams. The measurements of the drift tube properties in magnetic fields showed that inelastic collisions of the drifting electrons with the CO{sub 2} molecules in the Ar:CO{sub 2} (93:7) gas mixture of the MDT chambers have to be taken into account in the simulation of the drift properties. Such inelastic collisions are now correctly treated by the Garfield simulation programme from version 9 providing an accurate description of the behaviour of the ATLAS muon drift tubes, in particular in the magnetic field. Measurements at the Gamma Irradiation Facility at CERN were performed to study the performance of the MDT chambers in the presence of high {gamma} ray background fluences. The chambers have a spatial resolution better than 40 {mu}m at the nominal background rates expected at the Large Hadron Collider design luminosity of 10{sup 34} cm{sup -2}s{sup -1} and a resolution better than 50 {mu}m for up to five times higher background rates. Efficient muon detection up to background counting rates of 500 kHz per tube corresponding to 35% occupancy was demonstrated.

  13. Nearshore drift dynamics of natural versus artificial seagrass wrack

    Science.gov (United States)

    Baring, Ryan J.; Fairweather, Peter G.; Lester, Rebecca E.

    2018-03-01

    Drifting macrophytes such as seagrass and macroalgae are commonly found washed ashore on sandy beaches but few studies have investigated the drift trajectories of macrophytes whilst near to the coast. This is the first study to investigate the surface drifting of small clumps of seagrass released at various distances from shore, across multiple days with contrasting wind and tidal conditions, in a large gulf in southern Australia. Natural and artificial radio-tagged seagrass units generally travelled in the same directions as tides but trajectories were variable across sampling days and when tagged units were released at different distances from shore. Natural and artificial units diverged from each other particularly on days when wind speeds increased but generally drifted in the same direction and ended up within close proximity to each other at the 6-h endpoint. During calm conditions, tagged seagrass units drifted with tides for 0.25-5 km and, during one sampling day when wind speeds increased, drifted for >5 km over the 6-h time period. Only tagged units that were released closest to shore stranded on sandy beaches within the six hours of observation, so it would be difficult to predict the eventual stranding location on shorelines for macrophytes released further offshore. This study provides evidence of the variability of macrophyte drift dynamics near to coastlines. Acknowledging this variability is essential for further understanding of the ecological significance of allochthonous material arriving at shorelines, which should be integrated into future research and management of sandy-beach ecosystems.

  14. Argus drift chamber

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, M; Nagovizin, V; Hasemann, H; Michel, E; Schmidt-Parzefall, W; Wurth, R; Kim, P

    1983-11-15

    The ARGUS detector came into operation at the DORIS-II e/sup +/s/sup -/ storage ring at the end of 1982. Its two meter long drift chamber contains 5940 sense and 24588 field wires organized in uniform 18x18.8 mm/sup 2/ drift cells filling the whole volume. These cells form 36 layers, 18 of which provide stereo views. Each sense wire is equipped with a single hit TDC and ADC for coordinate and dE/dx measurements. The chamber is operated with propane to improve momentum and dE/dx resolution. The drift chamber design and initial performance are presented. With a very crude space-time relation approximation and without all the necessary corrections applied a spatial resolution of about 200 ..mu..m was obtained for half of the drift cell volume. Further corrections should improve this result. An intrinsic dE/dx resolution of 4.2% and an actual resolution of 5% were obtained for cosmic muons and also for Bhabha scattered electrons. An actual dE/dx resolution of 5.6% was obtained for pions from e/sup +/e/sup -/ annihilation data with almost no track selection. A relativistic rise of 30% was observed in good agreement with theory. The long-term stability is still to be investigated.

  15. Optimization of curved drift tubes for ultraviolet-ion mobility spectrometry

    Science.gov (United States)

    Ni, Kai; Ou, Guangli; Zhang, Xiaoguo; Yu, Zhou; Yu, Quan; Qian, Xiang; Wang, Xiaohao

    2015-08-01

    Ion mobility spectrometry (IMS) is a key trace detection technique for toxic pollutants and explosives in the atmosphere. Ultraviolet radiation photoionization source is widely used as an ionization source for IMS due to its advantages of high selectivity and non-radioactivity. However, UV-IMS bring problems that UV rays will be launched into the drift tube which will cause secondary ionization and lead to the photoelectric effect of the Faraday disk. So air is often used as working gas to reduce the effective distance of UV rays, but it will limit the application areas of UV-IMS. In this paper, we propose a new structure of curved drift tube, which can avoid abnormally incident UV rays. Furthermore, using curved drift tube may increase the length of drift tube and then improve the resolution of UV-IMS according to previous research. We studied the homogeneity of electric field in the curved drift tube, which determined the performance of UV-IMS. Numerical simulation of electric field in curved drift tube was conducted by SIMION in our study. In addition, modeling method and homogeneity standard for electric field were also presented. The influences of key parameters include radius of gyration, gap between electrode as well as inner diameter of curved drift tube, on the homogeneity of electric field were researched and some useful laws were summarized. Finally, an optimized curved drift tube is designed to achieve homogenous drift electric field. There is more than 98.75% of the region inside the curved drift tube where the fluctuation of the electric field strength along the radial direction is less than 0.2% of that along the axial direction.

  16. In Situ Field Testing of Processes

    Energy Technology Data Exchange (ETDEWEB)

    J. Wang

    2001-12-14

    The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR.

  17. Seepage Model for PA Including Drift Collapse

    International Nuclear Information System (INIS)

    Li, G.; Tsang, C.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M andO 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M andO 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to

  18. Electronics for proportional drift tubes

    International Nuclear Information System (INIS)

    Fremont, G.; Friend, B.; Mess, K.H.; Schmidt-Parzefall, W.; Tarle, J.C.; Verweij, H.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration); Geske, K.; Riege, H.; Schuett, J.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration); Semenov, Y.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration)

    1980-01-01

    An electronic system for the read-out of a large number of proportional drift tubes (16,000) has been designed. This system measures deposited charge and drift-time of the charge of a particle traversing a proportional drift tube. A second event can be accepted during the read-out of the system. Up to 40 typical events can be collected and buffered before a data transfer to a computer is necessary. (orig.)

  19. A DRIFTS study of the partial oxidation of ethanol on Rh catalysts; Estudo da oxidacao parcial do etanol em catalisadores de Rh por DRIFTS

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Raquel Lima; Passos, Fabio Barboza, E-mail: fbpassos@vm.uff.br [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Departamento de Engenharia Quimica e de Petroleo

    2013-09-01

    The partial oxidation of ethanol on {gamma}-Al{sub 2}O{sub 3}, CeO{sub 2}, ZrO{sub 2} and Ce{sub x}Zr{sub 1-x}O{sub 2} supported rhodium catalysts was investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The catalysts were characterized by temperature-programmed reduction (TPR) and cyclohexane dehydrogenation. DRIFTS studies on the partial oxidation of ethanol showed that ethanol is adsorbed dissociatively, through O-H bond breaking, with the formation of ethoxy species, followed by successive dehydrogenation to acetaldehyde and acetyl species. Further oxidation to acetate and carbonate species lead to the formation of CO, CH{sub 4} and H{sub 2} by decomposition. The presence of CeO{sub 2} in the catalysts favored the oxidation steps due to its oxygen storage capacity. (author)

  20. 3D shape measurements with a single interferometric sensor for in-situ lathe monitoring

    Science.gov (United States)

    Kuschmierz, R.; Huang, Y.; Czarske, J.; Metschke, S.; Löffler, F.; Fischer, A.

    2015-05-01

    Temperature drifts, tool deterioration, unknown vibrations as well as spindle play are major effects which decrease the achievable precision of computerized numerically controlled (CNC) lathes and lead to shape deviations between the processed work pieces. Since currently no measurement system exist for fast, precise and in-situ 3d shape monitoring with keyhole access, much effort has to be made to simulate and compensate these effects. Therefore we introduce an optical interferometric sensor for absolute 3d shape measurements, which was integrated into a working lathe. According to the spindle rotational speed, a measurement rate of 2,500 Hz was achieved. In-situ absolute shape, surface profile and vibration measurements are presented. While thermal drifts of the sensor led to errors of several mµm for the absolute shape, reference measurements with a coordinate machine show, that the surface profile could be measured with an uncertainty below one micron. Additionally, the spindle play of 0.8 µm was measured with the sensor.

  1. Theoretical Studies of Drift-Alfven and Energetic Particle Physics in Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chen

    2005-07-06

    Nonlinear equations for the slow space-time evolution of the radial drift-wave envelope and zonal flow amplitude have been self-consistently derived for a model nonuniform tokamak equilibrium within the coherent four-wave drift wave-zonal flow modulation interaction model of Chen, Lin, and White [Phys. Plasmas 7, 3129 (2000)]. Solutions clearly demonstrate turbulence spreading due to nonlinearly dispersiveness and, consequently, the device-size dependence of the saturated wave intensities and transport coefficients.

  2. An in situ FTIR spectroscopic and thermogravimetric analysis study of the dehydration and dihydroxylation of SnO2: the contribution of the (100), (110) and (111) facets.

    Science.gov (United States)

    Christensen, P A; Attidekou, P S; Egdell, R G; Maneelok, S; Manning, D A C

    2016-08-17

    Nanoparticulate SnO2 produced by a hydrothermal method was characterised by BET, XRD, TGA-MS and in situ variable temperature diffuse reflectance infra red spectroscopy (DRIFTS) to determine the surface behaviour of water. For the (100) facets, hydrogen bonding does not occur, and water adsorption is less strong than for the (111) and (110) facets where hydrogen bonding does occur. Reversible uptake of oxygen was observed. These findings have implications for other surface-gas reactions in which Ni and Sb co-doped SnO2 (NATO) anodes are used for ozone generation. BET showed the relatively high surface area and nanometer scale of the SnO2 particles, whilst XRD confirmed the nano dimension of the crystallites and showed only the cassiterite phase. TGA analysis indicated four temperature regions over which mass loss was observed. These and the in situ DRIFTS studies revealed the existence of various forms of water associated with specific crystal facets of the SnO2, as well as the existence of isolated O-H groups and adsorbed oxygen species. Electronic absorptions were also observed and the data rationalised in terms of the existence of both free electron absorptions, and absorptions from oxygen vacancy states. The role of adsorbed molecular oxygen in electrochemical ozone generation at Ni and Sb co-doped SnO2 (NATO) anodes was strongly suggested by this work.

  3. Silicon drift-chamber studies for possible use at RHIC

    International Nuclear Information System (INIS)

    Humanic, T.J.

    1990-01-01

    It is proposed to continue the program now underway at the University of Pittsburgh to study the feasibility of using silicon drift-chambers as particle tracking devices at RHIC. We are currently testing a UA6-type detector obtained from BNL, and propose to also study a new device that will become available this year: a cylindrical geometry detector design for NA45 (CERN). This new detector will be produced at BNL and the MPI-Institute in Munich and will incorporate updated techniques which should result in a reliable device with improved performance over the UA6-type detector. The one-year budget for this proposal is $50,079. 28 refs., 2 figs

  4. Characterising large area silicon drift detectors with MOS injectors

    International Nuclear Information System (INIS)

    Bonvicini, V.; Rashevsky, A.; Vacchi, A.

    1999-01-01

    In the framework of the INFN DSI project, the first prototypes of a large-area Silicon Drift Detector (SDD) have been designed and produced on 5'' diameter wafers of Neutron Transmutation Doped (NTD) silicon with a resistivity of 3000 Ω·cm. The detector is a 'butterfly' bi-directional structure with a drift length of 32 mm and the drifting charge is collected by two arrays of anodes having a pitch of 200 μm. The high-voltage divider is integrated on-board and is realised with p + implantations. For test and calibration purposes, the detector has a new type of MOS injector. The paper presents results obtained to injecting charge at the maximum drift distance (32mm) from the anodes by means of the MOS injecting structure, As front-end electronics, the authors have used a 32-channels low-noise bipolar VLSI circuit (OLA, Omni-purpose Low-noise Amplifer) specifically designed for silicon drift detectors. The uniformity of the drift time in different regions of the sensitive area and its dependence on the ambient temperature are studied

  5. Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    This paper describes the calibration procedure for the drift tubes of the CMS barrel muon system and reports the main results obtained with data collected during a high statistics cosmic ray data-taking period. The main goal of the calibration is to determine, for each drift cell, the minimum time delay for signals relative to the trigger, accounting for the drift velocity within the cell. The accuracy of the calibration procedure is influenced by the random arrival time of cosmic muons. A more refined analysis of the drift velocity was performed during the offline reconstruction phase, which takes into account this feature of cosmic ray events.

  6. Comparison of electrostatic and electromagnetic synchronization of drift waves and suppression of drift wave turbulence in a linear device

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C; Grulke, O; Klinger, T, E-mail: christian.brandt@lpmi.uhp-nancy.f [Max-Planck-Institute for Plasma Physics, EURATOM Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)

    2010-05-15

    Experiments in a cylindrical magnetized plasma on the control of drift waves by means of two different spatiotemporal open-loop control systems-an electrostatic and an electromagnetic exciter-are reported. The drift wave dynamics is controlled by a mode-selective signal created with azimuthal arrangements of eight electrodes and eight saddle coils, respectively. Nonlinear interaction between the control signals and drift waves is observed, leading to synchronization of coherent drift waves and suppression of broadband drift wave turbulence. The cross-phase between density and potential fluctuations reduces from {approx}{pi}/2 in turbulence to {approx}0 in controlled turbulence. Hence, the cross-field transport is reduced to the level of coherent drift waves. For both control systems the coupling to the drift wave can be ascribed to the drive of parallel currents, on the one hand via direct electric contact and, on the other hand, via electromagnetic induction.

  7. Drift chamber data readout system

    International Nuclear Information System (INIS)

    Basiladze, S.G.; Lokhonyai, L.

    1980-01-01

    An electronic system for processing drift chamber signals is described. The system consists of 4-channel fast amplifier-discriminators of low threshold, 16-channel time-expanders transforming 0.5 μs time intervals to 10 μs and a 9-bit time-to-digital converter (TDC) recording up to 16 expanded time intervals. If the average track multiplicity is small, TDC is capable to process signals from 4 time-expanders (i.e., 64 drift gaps). In order to record multiple tracks per drift gap discriminator outputs can be connected to a number of time-expander channels. The fast clear input enables the system to be cleared within 0.5 μs. Efficient readout from TDC is facilated by reading only those channels which contain non-zero data (9 bits - drift time; 6 bits - wire number)

  8. An electrodeless drift chamber

    International Nuclear Information System (INIS)

    Allison, J.; Barlow, R.J.; Bowdery, C.K.; Duerdoth, I.; Rowe, P.G.

    1982-01-01

    We describe a chamber in which the drift field is controlled by the deposition of electrostatic charge on an insulating surface. The chamber operates with good efficiency and precision for observed drift distances of up to 45 cm, promises to be extremely robust and adaptable and offers a very cheap way of making particle detectors. (orig.)

  9. Studies on the detection characteristics of the OPERA drift tube spectrometer; Studien zu den Nachweiseigenschaften des OPERA-Driftroehrenspektrometers

    Energy Technology Data Exchange (ETDEWEB)

    Oldorf, Christian

    2009-07-15

    Within the framework of this diploma thesis the density dependent detection characteristics of the OPERA Precision Tracker are studied at a test set up with two drift tube modules. Measurements of gain, hit efficiency, spatial resolution and time-to-distance relation are presented depending on the density, anode voltage and discriminator thresholds. At a constant anode voltage the gain falls with increasing density. Therefore the hit efficiency and the spatial resolution decrease with increasing density above 1,70 kg/m{sup 3}. Within the temperature-fluctuations of 6 K inside the LNGS, an uncertainty of the spatial resolution up to 75 {mu}m is found. Within these temperature-fluctuations the upper limit for the variation of the drift distance at a drift time of 1200 ns is about 220 {mu}m. Both effects are tolerable for the spatial resolution of the OPERA Drift Tubes. (orig.)

  10. Effect of magnetic shear on dissipative drift instabilities

    International Nuclear Information System (INIS)

    Guzdar, P.N.; Chen, L.; Kaw, P.K.; Oberman, C.

    1978-03-01

    In this letter we report the results of a linear radial eigenmode analysis of dissipative drift waves in a plasma with magnetic shear and spatially varying density gradient. The results of the analysis are shown to be consistent with a recent experiment on the study of dissipative drift instabilities in a toroidal stellarator

  11. Drift design methodology and preliminary application for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Hardy, M.P.; Bauer, S.J.

    1991-12-01

    Excavation stability in an underground nuclear waste repository is required during construction, emplacement, retrieval (if required), and closure phases to ensure worker health and safety, and to prevent development of potential pathways for radionuclide migration in the post-closure period. Stable excavations are developed by appropriate excavation procedures, design of the room shape, design and installation of rock support reinforcement systems, and implementation of appropriate monitoring and maintenance programs. In addition to the loads imposed by the in situ stress field, the repository drifts will be impacted by thermal loads developed after waste emplacement and, periodically, by seismic loads from naturally occurring earthquakes and underground nuclear events. A priori evaluation of stability is required for design of the ground support system, to confirm that the thermal loads are reasonable, and to support the license application process. In this report, a design methodology for assessing drift stability is presented. This is based on site conditions, together with empirical and analytical methods. Analytical numerical methods are emphasized at this time because empirical data are unavailable for excavations in welded tuff either at elevated temperatures or under seismic loads. The analytical methodology incorporates analysis of rock masses that are systematically jointed, randomly jointed, and sparsely jointed. In situ thermal and seismic loads are considered. Methods of evaluating the analytical results and estimating ground support requirements for all the full range of expected ground conditions are outlines. The results of a preliminary application of the methodology using the limited available data are presented. 26 figs., 55 tabs

  12. In-Drift Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    D. Jolley

    2000-11-09

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses.

  13. In-Drift Microbial Communities

    International Nuclear Information System (INIS)

    Jolley, D.

    2000-01-01

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses

  14. Diel drift of Chironomidae larvae in a pristine Idaho mountain stream

    Science.gov (United States)

    Tilley, L.J.

    1989-01-01

    Simultaneous hourly net collections in a meadow and canyon reach of a mountain stream determined diel and spatial abundances of drifting Chironomidae larvae. Sixty-one taxa were identified to the lowest practical level, 52 in the meadow and 41 in the canyon. Orthocladiinae was the most abundant subfamily with 32 taxa and a 24 h mean density of 294 individuals 100 m-3 (meadow) and 26 taxa and a mean of 648 individuals 100 m-3 (canyon). Chironominae was the second most abundant subfamily. Nonchironomid invertebrates at both sites and total Chironomidae larvae (meadow) were predominantly night-drifting. Parakiefferiella and Psectrocladius were day-drifting (meadow) whereas 8 other chironomid taxa (meadow) and 2 taxa (canyon) were night-drifting. All others were aperiodic or too rare to test periodicity, Stempellinella cf brevis Edwards exhibited catastrophic drift in the canyon only. The different drift patterns between sites is attributed to greater loss of streambed habitat in the canyon compared to the meadow as streamflow decreased. Consequent crowding of chironomid larvae in the canyon caused catastrophic drift or interfered with drift periodicty. This study adds to knowledge of Chironomidae drift and shows influences on drift of hydrologic and geomorphic conditions. ?? 1989 Kluwer Academic Publishers.

  15. Single nozzle spray drift measurements of drift reducing nozzles at two forward speeds

    NARCIS (Netherlands)

    Stallinga, H.; Zande, van de J.C.; Michielsen, J.G.P.; Velde, van P.

    2016-01-01

    In 2011‒2012 single nozzle field experiments were carried out to determine the effect of different flat fan spray nozzles of the spray drift reduction classes 50, 75, 90 and 95% on spray drift at two different forward speeds (7.2 km h-1 and 14.4 km h-1). Experiments were performed with a single

  16. Correlating the Integral Sensing Properties of Zeolites with Molecular Processes by Combining Broadband Impedance and DRIFT Spectroscopy—A New Approach for Bridging the Scales

    Directory of Open Access Journals (Sweden)

    Peirong Chen

    2015-11-01

    Full Text Available Zeolites have been found to be promising sensor materials for a variety of gas molecules such as NH3, NOx, hydrocarbons, etc. The sensing effect results from the interaction of the adsorbed gas molecules with mobile cations, which are non-covalently bound to the zeolite lattice. The mobility of the cations can be accessed by electrical low-frequency (LF; mHz to MHz and high-frequency (HF; GHz impedance measurements. Recent developments allow in situ monitoring of catalytic reactions on proton-conducting zeolites used as catalysts. The combination of such in situ impedance measurements with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS, which was applied to monitor the selective catalytic reduction of nitrogen oxides (DeNOx-SCR, not only improves our understanding of the sensing properties of zeolite catalysts from integral electric signal to molecular processes, but also bridges the length scales being studied, from centimeters to nanometers. In this work, recent developments of zeolite-based, impedimetric sensors for automotive exhaust gases, in particular NH3, are summarized. The electrical response to NH3 obtained from LF impedance measurements will be compared with that from HF impedance measurements, and correlated with the infrared spectroscopic characteristics obtained from the DRIFTS studies of molecules involved in the catalytic conversion. The future perspectives, which arise from the combination of these methods, will be discussed.

  17. Correlating the Integral Sensing Properties of Zeolites with Molecular Processes by Combining Broadband Impedance and DRIFT Spectroscopy—A New Approach for Bridging the Scales

    Science.gov (United States)

    Chen, Peirong; Schönebaum, Simon; Simons, Thomas; Rauch, Dieter; Dietrich, Markus; Moos, Ralf; Simon, Ulrich

    2015-01-01

    Zeolites have been found to be promising sensor materials for a variety of gas molecules such as NH3, NOx, hydrocarbons, etc. The sensing effect results from the interaction of the adsorbed gas molecules with mobile cations, which are non-covalently bound to the zeolite lattice. The mobility of the cations can be accessed by electrical low-frequency (LF; mHz to MHz) and high-frequency (HF; GHz) impedance measurements. Recent developments allow in situ monitoring of catalytic reactions on proton-conducting zeolites used as catalysts. The combination of such in situ impedance measurements with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), which was applied to monitor the selective catalytic reduction of nitrogen oxides (DeNOx-SCR), not only improves our understanding of the sensing properties of zeolite catalysts from integral electric signal to molecular processes, but also bridges the length scales being studied, from centimeters to nanometers. In this work, recent developments of zeolite-based, impedimetric sensors for automotive exhaust gases, in particular NH3, are summarized. The electrical response to NH3 obtained from LF impedance measurements will be compared with that from HF impedance measurements, and correlated with the infrared spectroscopic characteristics obtained from the DRIFTS studies of molecules involved in the catalytic conversion. The future perspectives, which arise from the combination of these methods, will be discussed. PMID:26580627

  18. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop.

    Science.gov (United States)

    Wolters, André; Linnemann, Volker; van de Zande, Jan C; Vereecken, Harry

    2008-11-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done according to good agricultural practice. Deposition was measured by horizontal collectors in various arrangements in and outside the treated area. Airborne spray drift was measured both with a passive and an active air collecting system. Spray deposits on top of the treated canopy ranged between 68 and 71% of the applied dose and showed only small differences for various arrangements of the collectors. Furthermore, only small variations were measured within the various groups of collectors used for these arrangements. Generally, the highest spray deposition outside the treated area was measured close to the sprayed plot and was accompanied by a high variability of values, while a rapid decline of deposits was detected in more remote areas. Estimations of spray deposits with the IMAG Drift Calculator were in accordance with experimental findings only for areas located at a distance of 0.5-4.5 m from the last nozzle, while there was an overestimation of a factor of 4 at a distance of 2.0-3.0 m, thus revealing a high level of uncertainty of the estimation of deposition for short distances. Airborne spray drift measured by passive and active air collecting systems was approximately at the same level, when taking into consideration the collector efficiency of the woven nylon wire used as sampling material for the passive collecting system. The maximum value of total airborne spray drift for both spray applications (0.79% of the applied dose) was determined by the active collecting system. However, the comparatively high variability of measurements at various heights above the soil by active and passive collecting systems revealed need for further studies to elucidate the spatial

  19. Low Drift Type N Thermocouples for Nuclear Applications

    International Nuclear Information System (INIS)

    Scervini, M.; Rae, C.

    2013-06-01

    Thermocouples are the most commonly used sensors for temperature measurement in nuclear reactors. They are crucial for the control of current nuclear reactors and for the development of GEN IV reactors. In nuclear applications thermocouples are strongly affected by intense neutron fluxes. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. Thermocouple drift can be very significant for in-pile temperature measurements and may render the temperature sensors unreliable after exposure to nuclear radiation for relatively short times compared to the life required for temperature sensors in nuclear applications. Previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type N thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of Nickel based thermocouples is limited to temperatures lower than 1000 deg. C due to drift related to phenomena other than nuclear irradiation. In this work, undertaken as part of the European project METROFISSION, the drift of type N thermocouples has been investigated in the temperature range 600-1300 deg. C. The approach of this study is based on the attempt to separate the contributions of each thermo-element to drift. In order to identify the dominant thermo-element for drift, the contributions of both positive (NP) and negative (NN) thermo-elements to the total drift of 3.2 mm diameter MIMS thermocouples have been measured in each drift test using a pure Pt thermo-element as a reference. Conventional Inconel-600 sheathed type N thermocouples have been compared with type N thermocouples sheathed in a new alloy. At temperatures higher than 1000 deg. C conventional Inconel600 sheathed type N thermocouples can experience a

  20. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I; Martinez laso, L

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  1. Current components, physical, ocean circulation, wind circulation, and other data from moored buoys, CTD casts, drifting buoys, and in situ wind recorders from AIRCRAFT and other platforms from the North Atlantic Ocean and other locations as part of the Seasonal Response of the Equatorial Atlantic Experiment/Français Océan et Climat dans l'Atlantique Equatorial (SEQUAL/FOCAL) project from 1980-01-25 to 1985-12-18 (NODC Accession 8700111)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, ocean circulation, wind circulation, and other data were collected from moored buoys, CTD casts, drifting buoys, and in situ wind...

  2. Drift mechanism for energetic charged particles at shocks

    International Nuclear Information System (INIS)

    Webb, G.M.; Axford, W.I.; Terasawa, T.

    1983-01-01

    The energy changes of energetic charged particles at a plane shock due to the so-called drift mechanism are analyzed by using the ''adiabatic treatment.'' The analysis shows that for a fast MHD shock, particles lose energy owing to acceleration (curvature) drift in the magnetic field at the shock with the drift velocity being antiparallel to the electric field, and they gain energy owing to gradient drift parallel to the electric field. It is shown that particles with pitch angles aligned along the magnetic field which pass through the shock tend to lose energy owing to acceleration drift, whereas particles with pitch angles nonaligned to the magnetic field gain energy owing to gradient drift. Particles that are reflected by the shock always gain energy. Slow-mode shocks may be similarly analyzed, but in this case curvature drifts give rise to particle energy gains, and gradient drifts result in particle energy losses

  3. Ageing studies for the ATLAS MDT Muonchambers and development of a gas filter to prevent drift tube ageing

    CERN Document Server

    König, Stefan

    2008-01-01

    The muon spectrometer of the ATLAS detector at CERN uses drift tubes as basic detection elements over most of the solid angle. The performance of these monitored drift tubes (MDTs), in particular their spatial resolution of 80 µm, determines the precision of the spectrometer. If ageing effects occur, the precision of the drift tubes will be degraded. Hence ageing effects have to be minimized or avoided altogether if possible. Even with a gas mixture of Ar:CO2 (93:7), which was selected for its good ageing properties, ageing effects were observed in test systems. They were caused by small amounts of impurities, in particular volatile silicon compounds. Systematic studies revealed the required impurity levels deteriorating the drift tubes to be well below 1 ppm. Many components of the ATLAS MDT gas system are supplied by industry. In a newly designed ageing experiment in Freiburg these components were validated for their use in ATLAS. With a fully assembled ATLAS gas distribution rack as test component ageing ...

  4. Properties of low-pressure drift chambers

    International Nuclear Information System (INIS)

    Breskin, A.; Trautner, N.

    1976-01-01

    Drift chambers operated with methylal vapour or ethylene at pressures in the range of 10-110 torr are described. A systematic study of position resolution, pulse height and rise time shows that especially for ethylene they are strongly influenced by electron diffusion. Intrinsic position resolution was found to be at least as good as found at atmospheric pressure. A relative pulse height resolution of 10% was obtained with 5.5 MeV alpha-particles. A simple mathematical model which can describe the processes in the drift chamber is presented. (Auth.)

  5. IN DRIFT CORROSION PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley

    1999-12-02

    As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.

  6. Drift of suspended ferromagnetic particles due to the Magnus effect

    Science.gov (United States)

    Denisov, S. I.; Pedchenko, B. O.

    2017-01-01

    A minimal system of equations is introduced and applied to study the drift motion of ferromagnetic particles suspended in a viscous fluid and subjected to a time-periodic driving force and a nonuniformly rotating magnetic field. It is demonstrated that the synchronized translational and rotational oscillations of these particles are accompanied by their drift in a preferred direction, which occurs under the action of the Magnus force. We calculate both analytically and numerically the drift velocity of particles characterized by single-domain cores and nonmagnetic shells and show that there are two types of drift, unidirectional and bidirectional, which can be realized in suspensions composed of particles with different core-shell ratios. The possibility of using the phenomenon of bidirectional drift for the separation of core-shell particles in suspensions is also discussed.

  7. Amplifying the helicopter drift in a conformal HMD

    Science.gov (United States)

    Schmerwitz, Sven; Knabl, Patrizia M.; Lueken, Thomas; Doehler, Hans-Ullrich

    2016-05-01

    Helicopter operations require a well-controlled and minimal lateral drift shortly before ground contact. Any lateral speed exceeding this small threshold can cause a dangerous momentum around the roll axis, which may cause a total roll over of the helicopter. As long as pilots can observe visual cues from the ground, they are able to easily control the helicopter drift. But whenever natural vision is reduced or even obscured, e.g. due to night, fog, or dust, this controllability diminishes. Therefore helicopter operators could benefit from some type of "drift indication" that mitigates the influence of a degraded visual environment. Generally humans derive ego motion by the perceived environmental object flow. The visual cues perceived are located close to the helicopter, therefore even small movements can be recognized. This fact was used to investigate a modified drift indication. To enhance the perception of ego motion in a conformal HMD symbol set the measured movement was used to generate a pattern motion in the forward field of view close or on the landing pad. The paper will discuss the method of amplified ego motion drift indication. Aspects concerning impact factors like visualization type, location, gain and more will be addressed. Further conclusions from previous studies, a high fidelity experiment and a part task experiment, will be provided. A part task study will be presented that compared different amplified drift indications against a predictor. 24 participants, 15 holding a fixed wing license and 4 helicopter pilots, had to perform a dual task on a virtual reality headset. A simplified control model was used to steer a "helicopter" down to a landing pad while acknowledging randomly placed characters.

  8. Radial semiconductor drift chambers

    International Nuclear Information System (INIS)

    Rawlings, K.J.

    1987-01-01

    The conditions under which the energy resolution of a radial semiconductor drift chamber based detector system becomes dominated by the step noise from the detector dark current have been investigated. To minimise the drift chamber dark current attention should be paid to carrier generation at Si/SiO 2 interfaces. This consideration conflicts with the desire to reduce the signal risetime: a higher drift field for shorter signal pulses requires a larger area of SiO 2 . Calculations for the single shaping and pseudo Gaussian passive filters indicate that for the same degree of signal risetime sensitivity in a system dominated by the step noise from the detector dark current, the pseudo Gaussian filter gives only a 3% improvement in signal/noise and 12% improvement in rate capability compared with the single shaper performance. (orig.)

  9. An Analytic Study of the Perpendicularly Propagating Electromagnetic Drift Instabilities in the Magnetic Reconnection Experiment

    International Nuclear Information System (INIS)

    Wang, Y.; Kulsrud, R.; Ji, H.

    2008-01-01

    A local linear theory is proposed for a perpendicularly propagating drift instability driven by relative drifts between electrons and ions. The theory takes into account local cross-field current, pressure gradients and modest collisions as in the Magnetic Reconnection Experiment (MRX) (10). The unstable waves have very small group velocities in the direction of the pressure gradient, but have a large phase velocity near the relative drift velocity between electrons and ions in the direction of cross-field current. By taking into account the electron-ion collisions and applying the theory in the Harris sheet, we establish that this instability could be excited near the center of the Harris sheet and have enough efoldings to grow to large amplitude before it propagates out of the unstable region. Comparing with the other magnetic reconnection related instabilities (LHDI, MTSI et.) studied previously, we believe the instability we find is a favorable candidate to produce anomalous resistivity because of its unique wave characteristics, such as electromagnetic component, large phase velocity, and small group velocity in the cross current layer direction

  10. Role of drifts in diffusive shock acceleration

    International Nuclear Information System (INIS)

    Decker, R.B.

    1988-01-01

    The role played by shock-associated drifts during the diffusive acceleration of charged particles at collisionless MHD shocks is evaluated. In the rest frame of the shock, the total energy gained by a particle is shown to result from two coupled acceleration mechanisms, the usual first-order Fermi mechanism and the drift mechanism. When averaged over a distribution of particles, the ratio of the drift-associated energy gain to the total energy is found to be independent of the total energy at a given theta1 (the angle between the shock normal and the unperturbed upstream magnetic field) in agreement with theoretical predictions. No evidence is found for drift-associated deceleration, suggesting that drifts always augment acceleration. 35 references

  11. TBV 361 RESOLUTION ANALYSIS: EMPLACEMENT DRIFT ORIENTATION

    International Nuclear Information System (INIS)

    Lin, M.; Kicker, D.C.; Sellers, M.D.

    1999-01-01

    The purpose of this To Be Verified/To Be Determined (TBX) resolution analysis is to release ''To Be Verified'' (TBV)-361 related to the emplacement drift orientation. The system design criterion in ''Subsurface Facility System Description Document'' (CRWMS M andO 1998a, p.9) specifies that the emplacement drift orientation relative to the dominant joint orientations should be at least 30 degrees. The specific objectives for this analysis include the following: (1) Collect and evaluate key block data developed for the repository host horizon rock mass. (2) Assess the dominant joint orientations based on available fracture data. (3) Document the maximum block size as a function of drift orientation. (4) Assess the applicability of the drift orientation/joint orientation offset criterion in the ''Subsurface Facility System Description Document'' (CRWMS M andO 1998a, p.9). (5) Consider the effects of seepage on drift orientation. (6) Verify that the viability assessment (VA) drift orientation complies with the drift orientation/joint orientation offset criterion, or provide justifications and make recommendations for modifying the VA emplacement drift layout. In addition to providing direct support to the System Description Document (SDD), the release of TBV-361 will provide support to the Repository Subsurface Design Department. The results from this activity may also provide data and information needs to support the MGR Requirements Department, the MGR Safety Assurance Department, and the Performance Assessment Organization

  12. Evaluation of multi-mode CryoSat-2 altimetry data over the Po River against in situ data and a hydrodynamic model

    Science.gov (United States)

    Schneider, Raphael; Tarpanelli, Angelica; Nielsen, Karina; Madsen, Henrik; Bauer-Gottwein, Peter

    2018-02-01

    Coverage of in situ observations to monitor surface waters is insufficient on the global scale, and decreasing across the globe. Satellite altimetry has become an increasingly important monitoring technology for continental surface waters. The ESA CryoSat-2 altimetry mission, launched in 2010, has two novel features. (i) The radar altimeter instrument on board of CryoSat-2 is operated in three modes; two of them reduce the altimeter footprint by using Delay-Doppler processing. (ii) CryoSat-2 is placed on a distinct orbit with a repeat cycle of 369 days, leading to a drifting ground track pattern. The drifting ground track pattern challenges many common methods of processing satellite altimetry data over rivers. This study evaluates the observation error of CryoSat-2 water level observations over the Po River, Italy, against in situ observations. The average RMSE between CryoSat-2 and in situ observations was found to be 0.38 meters. CryoSat-2 was also shown to be useful for channel roughness calibration in a hydrodynamic model of the Po River. The small across-track distance of CryoSat-2 means that observations are distributed almost continuously along the river. This allowed resolving channel roughness with higher spatial resolution than possible with in situ or virtual station altimetry data. Despite the Po River being extensively monitored, CryoSat-2 still provides added value thanks to its unique spatio-temporal sampling pattern.

  13. Relative drift between black aurora and the ionospheric plasma

    Directory of Open Access Journals (Sweden)

    E. M. Blixt

    2005-07-01

    Full Text Available Black auroras are recognized as spatially well-defined regions within uniform diffuse aurora where the optical emission is significantly reduced. Although a well studied phenomenon, there is no generally accepted theory for black auroras. One theory suggests that black regions are formed when energetic magnetospheric electrons no longer have access to the loss cone. If this blocking mechanism drifts with the source electron population in the magnetosphere, black auroras in the ionosphere should drift eastward with a velocity that increases with the energy of the precipitating electrons in the surrounding aurora, since the gradient-B curvature drift is energy dependent. It is the purpose of this paper to test this hypothesis. To do so we have used simultaneous measurements by the European Incoherent Scatter (EISCAT radar and an auroral TV camera at Tromsø, Norway. We have analyzed 8 periods in which a black aurora occurred frequently to determine their relative drift with respect to the ionospheric plasma. The black aurora was found to drift eastward with a velocity of 1.5–4km/s, which is in accordance with earlier observations. However, one case was found where a black patch was moving westward, this being the first report of such behaviour in the literature. In general, the drift was parallel to the ionospheric flow but at a much higher velocity. This suggests that the generating mechanism is not of ionospheric origin. The characteristic energy of the precipitating electron population was estimated through inversion of E-region plasma density profiles. We show that the drift speed of the black patches increased with the energy of the precipitating electrons in a way consistent with the gradient-B curvature drift, suggesting a magnetospheric mechanism for the black aurora. As expected, a comparison of the drift speeds with a rudimentary dipole field model of the gradient-B curvature drift speed only yields order-of-magnitude agreement, which

  14. Diogene pictorial drift chamber

    International Nuclear Information System (INIS)

    Gosset, J.

    1984-01-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive)

  15. The KLOE drift chamber

    International Nuclear Information System (INIS)

    Ferrari, A.

    2002-01-01

    The design and construction of the large drift chamber of the KLOE experiment is presented. The track reconstruction is described, together with the calibration method and the monitoring systems. The stability of operation and the performance are studied with samples of e + e - , K S K L and K + K - events

  16. A statistical study of gyro-averaging effects in a reduced model of drift-wave transport

    Science.gov (United States)

    da Fonseca, J. D.; del-Castillo-Negrete, D.; Sokolov, I. M.; Caldas, I. L.

    2016-08-01

    A statistical study of finite Larmor radius (FLR) effects on transport driven by electrostatic drift-waves is presented. The study is based on a reduced discrete Hamiltonian dynamical system known as the gyro-averaged standard map (GSM). In this system, FLR effects are incorporated through the gyro-averaging of a simplified weak-turbulence model of electrostatic fluctuations. Formally, the GSM is a modified version of the standard map in which the perturbation amplitude, K0, becomes K0J0(ρ ̂ ) , where J0 is the zeroth-order Bessel function and ρ ̂ is the Larmor radius. Assuming a Maxwellian probability density function (pdf) for ρ ̂ , we compute analytically and numerically the pdf and the cumulative distribution function of the effective drift-wave perturbation amplitude K0J0(ρ ̂ ) . Using these results, we compute the probability of loss of confinement (i.e., global chaos), Pc, and the probability of trapping in the main drift-wave resonance, Pt. It is shown that Pc provides an upper bound for the escape rate, and that Pt provides a good estimate of the particle trapping rate. The analytical results are compared with direct numerical Monte-Carlo simulations of particle transport.

  17. Non-linear coupling of drift modes in a quadrupole

    International Nuclear Information System (INIS)

    Elliott, J.A.; Sandeman, J.C.; Tessema, G.Y.

    1990-01-01

    We report continuing experimental studies of non-linear interactions of drift waves, with direct evidence of a growth saturation mechanism by transfer of energy to lower frequency modes. Wave launching experiments show that the decay rate of drift waves can be strongly amplitude dependent. (author) 9 refs., 5 figs

  18. Spin-drift transport in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong-4331 (Bangladesh)

    2008-02-07

    We present a study on spin transport in semiconductors under applied electric fields. Our experiments detect photoinjected electron spins and their relaxation during drift transport in intrinsic and moderately n-doped GaAs, based on the extraordinary Hall (eH) effect. For relatively low electric field (E), the optically spin-induced eH effect in n-doped GaAs is found to be enhanced with increasing doping density and not to depend much on E, indicating that a substantial amount of optical spin polarization is preserved during the drift transport in these extrinsic semiconductors. However, when the spin-oriented electrons are injected with a high E, a very significant decrease is observed in the eH voltage (V{sub eH}) due to an increase in the spin precession frequency of the hot electrons. Spin relaxation by the D'yakonov-Perel' mechanism is calculated, and is suggested to be the reason for such a rapid spin relaxation for hot electrons under a high E. However, in an intrinsic GaAs (i-GaAs), a much weaker V{sub eH} is observed and, as the electron spins scattered by holes due to the Coulomb interaction in i-GaAs, the spin relaxation by the Bir-Aronov-Pikus mechanism is considered. Skew scattering and side jump as possible mechanisms of the optically spin-induced transverse Hall currents are discussed. Based on a spin drift-diffusion model, drift and diffusion contributions to the V{sub eH} are examined. The results are also discussed in comparison with theoretical investigations.

  19. Precision alignment of permanent-magnet drift tubes

    International Nuclear Information System (INIS)

    Liska, D.J.; Dauelsberg, L.B.; Spalek, G.

    1986-01-01

    The Lawrence Berkeley National Laboratory (LBNL) technique of drift-tube alignment has been resurrected at Los Alamos for the precision alignment of 1-cm-bore drift tubes that carry high-gradient rare-earth-cobalt quadrupole. Because the quadrupole cannot be switched off, this technique is not applicable to a drift-tube assembly, but tests indicate that individual magnetic centers can be detected with a precision of +- 0.003 mm. Methods of transferring this information to machined alignment flats on the sides of the drift-tube body are discussed. With measurements of drift tubes designed for a 100-mA. 425-MHz drift-tube linac, we have detected offsets between the geometric and magnetic axes of up to +- 0.05 mm following final assembly and welding. This degree of offset is serious if not accommodated, because it represents the entire alignment tolerance for the 40-cell tank. The measurement equipment and technique are described

  20. Data Quality Assessment of In Situ and Altimeter Observations Through Two-Way Intercomparison Methods

    Science.gov (United States)

    Guinehut, Stephanie; Valladeau, Guillaume; Legeais, Jean-Francois; Rio, Marie-Helene; Ablain, Michael; Larnicol, Gilles

    2013-09-01

    This proceeding presents an overview of the two-way inter-comparison activities performed at CLS for both space and in situ observation agencies and why this activity is a required step to obtain accurate and homogenous data sets that can then be used together for climate studies or in assimilation/validation tools. We first describe the work performed in the frame of the SALP program to assess the stability of altimeter missions through SSH comparisons with tide gauges (GLOSS/CLIVAR network). Then, we show how the SSH comparison between the Argo array and altimeter time series allows the detection of drifts or jumps in altimeter (SALP program) but also for some Argo floats (Ifremer/Coriolis center). Lastly, we describe how the combine use of altimeter and wind observations helps the detection of drogue loss of surface drifting buoys (GDP network) and allow the computation of a correction term for wind slippage.

  1. Geology of the ECRB Cross Drift-Exploratory Studies Facility, Yucca Mountain Project, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    DOE

    1999-01-01

    The Enhanced Characterization of the Repository Block Cross Drift (Cross Drift) excavated at Yucca Mountain is being studied to determine its suitability as a permanent high-level nuclear waste repository. This report presents a summary of data collected by the U.S. Bureau of Reclamation (USBR) personnel on behalf of the U.S. Geological Survey (USGS) for the Department of Energy in the Cross Drift from Sta. 00+00 to 26+64. This report includes descriptions of lithostratigraphic units, an analysis of data from full-periphery geologic maps (FPGM) and detailed line survey (DLS) data, a detailed description of the Solitario Canyon Fault zone (SCFZ), and an analysis of geotechnical and engineering characteristics. The Cross Drift is excavated entirely within the Topopah Spring Tuff formation of the Paintbrush Group. Units exposed in the crystal-poor member of the Topopah Spring Tuff, include the Topopah Spring crystal-poor upper lithophysal zone (Tptpul) (Sta. 0+00 to 10+15), the Topopah Spring crystal-poor middle nonlithophysal zone (Tptpmn) (Sta. 10+15 to 14+44), the Topopah Spring crystal-poor lower lithophysal zone (Tptpll) (Sta. 14+44 to 23+26), and the Topopah Spring crystal-poor lower nonlithophysal zone (Tptpln) (Sta. 23+26 to 25+85). The lower portion of the Topopah Spring crystal-rich lithophysal transition subzone (Tptrl1) is exposed on the west side of the Solitario Canyon fault from Sta. 26+57.5 to 26+64. Lithologically, the units exposed in the Cross Drift are similar in comparable stratigraphic intervals of the Exploratory Studies Facility (ESF), particularly in terms of welding, secondary crystallization, fracturing, and type, size, color, and abundance of pumice and lithic clasts. The most notable difference is the lack of the intensely fractured zone (IFZ) in the Cross Drift. The as-built cross section and the pre-construction cross section compare favorably. Lithostratigraphic contacts and structures on the pre-construction cross section were

  2. Progress in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Walton, J.; Gatti, E.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements

  3. Drift Chambers Simulations in BM@N Experiment

    Directory of Open Access Journals (Sweden)

    Fedorišin Ján

    2016-01-01

    Full Text Available Drift chambers constitute an important part of the tracking system of the BM@N experiment designed to study the production of baryonic matter at the Nuclotron energies. GEANT programming package is employed to investigate the drift chamber response to particles produced in relativistic nuclear collisions of C+C nuclei, which are simulated by the UrQMD and LAQGSM Monte Carlo generators. These simulations are combined with the first BM@N experimental data to estimate particle track coordinates and their errors.

  4. Electron injection in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Castoldi, A.; Vacchi, A.

    1990-01-01

    The paper reports the first successful results of a simple MOS structure to inject electrons at a given position in Silicon Drift Detectors. The structure allows on-line calibration of the drift velocity of electrons within the detector. The calibration is a practical method to trace the temperature dependence of the electron mobility. Several of these injection structures can be implemented in silicon drift detectors without additional steps in the fabrication process. 5 refs., 11 figs

  5. Pulse shape simulation for drift chambers with long drift paths

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, H J

    1987-09-15

    A detailed Monte Carlo program for the simulation of drift chamber pulse shapes is described. It has been applied to the case of a jet chamber with drift paths up to 24 cm. Results on pulse shapes and corresponding spatial and double hit resolution are discussed and compared to recent measurements of the OPAL central detector jet chamber full size prototype and to measurements of a small 20-wire prototype, which was designed to study the pulse shapes generated by tracks in a magnetic field. Simulated pulse shapes and spatial resolutions agree well with the experimental data. Clustering, saturation and wire crosstalk are shown to be necessary ingredients in the simulation. A deterioration in resolution due to the influence of crosstalk signals is correctly reproduced, as well as the cancellation of this effect by a hardwired first and second neighbour crosstalk compensation. The simulation correctly describes the asymmetry in spatial resolution observed for tracks with positive or negative inclination against the wire plane when a magnetic field is present. The effect of saturation on double hit resolution is found to be small. The magnetic field is predicted to improve the double hit resolution.

  6. Pulse shape simulation for drift chambers with long drift paths

    International Nuclear Information System (INIS)

    Mayer, H.J.

    1987-01-01

    A detailed Monte Carlo program for the simulation of drift chamber pulse shapes is described. It has been applied to the case of a jet chamber with drift paths up to 24 cm. Results on pulse shapes and corresponding spatial and double hit resolution are discussed and compared to recent measurements of the OPAL central detector jet chamber full size prototype and to measurements of a small 20-wire prototype, which was designed to study the pulse shapes generated by tracks in a magnetic field. Simulated pulse shapes and spatial resolutions agree well with the experimental data. Clustering, saturation and wire crosstalk are shown to be necessary ingredients in the simulation. A deterioration in resolution due to the influence of crosstalk signals is correctly reproduced, as well as the cancellation of this effect by a hardwired first and second neighbour crosstalk compensation. The simulation correctly describes the asymmetry in spatial resolution observed for tracks with positive or negative inclination against the wire plane when a magnetic field is present. The effect of saturation on double hit resolution is found to be small. The magnetic field is predicted to improve the double hit resolution. (orig.)

  7. Learning From Short Text Streams With Topic Drifts.

    Science.gov (United States)

    Li, Peipei; He, Lu; Wang, Haiyan; Hu, Xuegang; Zhang, Yuhong; Li, Lei; Wu, Xindong

    2017-09-18

    Short text streams such as search snippets and micro blogs have been popular on the Web with the emergence of social media. Unlike traditional normal text streams, these data present the characteristics of short length, weak signal, high volume, high velocity, topic drift, etc. Short text stream classification is hence a very challenging and significant task. However, this challenge has received little attention from the research community. Therefore, a new feature extension approach is proposed for short text stream classification with the help of a large-scale semantic network obtained from a Web corpus. It is built on an incremental ensemble classification model for efficiency. First, more semantic contexts based on the senses of terms in short texts are introduced to make up of the data sparsity using the open semantic network, in which all terms are disambiguated by their semantics to reduce the noise impact. Second, a concept cluster-based topic drifting detection method is proposed to effectively track hidden topic drifts. Finally, extensive studies demonstrate that as compared to several well-known concept drifting detection methods in data stream, our approach can detect topic drifts effectively, and it enables handling short text streams effectively while maintaining the efficiency as compared to several state-of-the-art short text classification approaches.

  8. In situ DRIFTs investigation of the reaction mechanism over MnO{sub x}-MO{sub y}/Ce{sub 0.75}Zr{sub 0.25}O{sub 2} (M = Fe, Co, Ni, Cu) for the selective catalytic reduction of NO{sub x} with NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hang; Zha, Kaiwen; Li, Hongrui; Shi, Liyi; Zhang, Dengsong, E-mail: dszhang@shu.edu.cn

    2016-11-30

    Highlights: • MnO{sub x}-FeO{sub y}/Ce{sub 0.75}Zr{sub 0.25}O{sub 2} catalyst has a strong NO oxidation ability. • A high dispersion of active components is achieved on catalyst surface. • At high temperatures, bidentate nitrate is the common active species. • The addition of Fe can improve the reactivity of gaseous NO{sub 2} and bridged nitrates. - Abstract: A series of MnO{sub x}-MO{sub y}/Ce{sub 0.75}Zr{sub 0.25}O{sub 2} (M = Fe, Co, Ni, Cu) catalysts were synthesized by an impregnation method and used for selective catalytic reduction (SCR) of NO{sub x} with NH{sub 3}. The catalytic performances of various MnO{sub x}-MO{sub y}/Ce{sub 0.75}Zr{sub 0.25}O{sub 2} catalysts were studied. It was found that MnO{sub x}-FeO{sub y}/Ce{sub 0.75}Zr{sub 0.25}O{sub 2} catalyst showed excellent low-temperature activity and a broad temperature window. The catalysts were characterized by N{sub 2} adsorption/desorption, X-ray diffraction, X-ray photoelectron spectroscopy and in situ diffuse reflectance infrared transform spectroscopy (DRIFTS). Characterization of the catalyst confirmed the addition of iron oxide can enhance the NO oxidation ability of the catalyst which results in the outstanding low-temperature SCR activity. Meanwhile, iron oxides were well dispersed on catalyst surface which could avoid the agglomeration of active species, contributing to the strong interaction between active species and the support. More importantly, in situ DRIFTS results confirmed that bidentate nitrates are general active species on these catalysts, whereas the reactivity of gaseous NO{sub 2} and bridged nitrates got improved because of the addition of Fe.

  9. World in the drift-ice; Ryuhyo no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Aota, M. [Hokkaido Univ., Hokkaido (Japan)

    1999-06-07

    What freezes in the sea in the circumference in our country is only Sea of Okhotsk. What will be the drift-ice for the people who live in this beach? The distress by the drift-ice often occurred. The drift-ice spoils tearing, shell in the pickpocket in respect of the fishing gear in respect of destruction and kelp. The boat was landed, when the drift-ice came, the fisherman came out, and it went to the labor. The seafood processing field becomes also the closure condition. The drift-ice was a white demon for people of the beach, and it was a troublesome person. In the meantime, the drift-ice soothes the wave, and it becomes a natural float breakwater, the coast is kept, and the salt damage does be held. There is some that it is faced the sea off beach cleaning. People of the seashore in Okohtsk live with the drift-ice with merits and both demerit sideses. (NEDO)

  10. Ground Control for Emplacement Drifts for LA

    International Nuclear Information System (INIS)

    Y. Sun

    2004-01-01

    The purpose of this calculation is to analyze the stability of repository emplacement drifts during the preclosure period, and to provide a final ground support method for emplacement drifts for the License Application (LA). The scope of the work includes determination of input parameter values and loads, selection of appropriate process and methods for the calculation, application of selected methods, such as empirical or analytical, to the calculation, development and execution of numerical models, and evaluation of results. Results from this calculation are limited to use for design of the emplacement drifts and the final ground support system installed in these drifts. The design of non-emplacement openings and their ground support systems is covered in the ''Ground Control for Non-Emplacement Drifts for LA'' (BSC 2004c)

  11. Drift-Scale THC Seepage Model

    International Nuclear Information System (INIS)

    C.R. Bryan

    2005-01-01

    The purpose of this report (REV04) is to document the thermal-hydrologic-chemical (THC) seepage model, which simulates the composition of waters that could potentially seep into emplacement drifts, and the composition of the gas phase. The THC seepage model is processed and abstracted for use in the total system performance assessment (TSPA) for the license application (LA). This report has been developed in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2005 [DIRS 172761]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this report. The plan for validation of the models documented in this report is given in Section 2.2.2, ''Model Validation for the DS THC Seepage Model,'' of the TWP. The TWP (Section 3.2.2) identifies Acceptance Criteria 1 to 4 for ''Quantity and Chemistry of Water Contacting Engineered Barriers and Waste Forms'' (NRC 2003 [DIRS 163274]) as being applicable to this report; however, in variance to the TWP, Acceptance Criterion 5 has also been determined to be applicable, and is addressed, along with the other Acceptance Criteria, in Section 4.2 of this report. Also, three FEPS not listed in the TWP (2.2.10.01.0A, 2.2.10.06.0A, and 2.2.11.02.0A) are partially addressed in this report, and have been added to the list of excluded FEPS in Table 6.1-2. This report has been developed in accordance with LP-SIII.10Q-BSC, ''Models''. This report documents the THC seepage model and a derivative used for validation, the Drift Scale Test (DST) THC submodel. The THC seepage model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC submodel uses a drift

  12. Spin drift and spin diffusion currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au

    2008-09-15

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  13. Spin drift and spin diffusion currents in semiconductors

    Directory of Open Access Journals (Sweden)

    M Idrish Miah

    2008-01-01

    Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  14. Spin drift and spin diffusion currents in semiconductors

    International Nuclear Information System (INIS)

    Idrish Miah, M

    2008-01-01

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  15. Studies of drift waves in a toroidal heliac

    International Nuclear Information System (INIS)

    Shi, X.H.; Blackwell, B.D.; Hamberger, S.M.

    1989-01-01

    Low frequency, coherent density fluctuations have been studied for three typical magnetic configurations in the helical axis stellarator SHEILA using Langmuir probe techniques. The parametric dependence, the threshold magnetic field, the frequency spectrum and the spatial structure of the fluctuations are measured experimentally. Mode analyses are made in a magnetic coordinate system. Both the mode numbers thus obtained and the smallness of the directly measured values of the wavenumber along the magnetic field lines indicate a close correspondence between the helicity of the fluctuations and the field lines. These experimental results are consistent with a collisional drift wave model, derived from a linearized two-fluid theory, related to the heliac geometry. Density reduction associated with the fluctuations is clearly observed and is consistent with rough estimates of the cross-filed particle flux due to the fluctuations. 17 refs., 18 figs., 1 tab

  16. Drift in salinity data from Argo profiling floats in the Sea of Japan

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Bajish, C.C.; Behera, S.; Gopalakrishna, V.V.

    In drift analysis of salinity sensors, one major problem is the difficulty in delineating sensor drift from water mass changes. In the present study, a new method is proposed for finding sensor drift that is free from water mass changes...

  17. Dike Propagation Near Drifts

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this Analysis and Model Report (AMR) supporting the Site Recommendation/License Application (SR/LA) for the Yucca Mountain Project is the development of elementary analyses of the interactions of a hypothetical dike with a repository drift (i.e., tunnel) and with the drift contents at the potential Yucca Mountain repository. This effort is intended to support the analysis of disruptive events for Total System Performance Assessment (TSPA). This AMR supports the Process Model Report (PMR) on disruptive events (CRWMS M and O 2000a). This purpose is documented in the development plan (DP) ''Coordinate Modeling of Dike Propagation Near Drifts Consequences for TSPA-SR/LA'' (CRWMS M and O 2000b). Evaluation of that Development Plan and the work to be conducted to prepare Interim Change Notice (ICN) 1 of this report, which now includes the design option of ''Open'' drifts, indicated that no revision to that DP was needed. These analyses are intended to provide reasonable bounds for a number of expected effects: (1) Temperature changes to the waste package from exposure to magma; (2) The gas flow available to degrade waste containers during the intrusion; (3) Movement of the waste package as it is displaced by the gas, pyroclasts and magma from the intruding dike (the number of packages damaged); (4) Movement of the backfill (Backfill is treated here as a design option); (5) The nature of the mechanics of the dike/drift interaction. These analyses serve two objectives: to provide preliminary analyses needed to support evaluation of the consequences of an intrusive event and to provide a basis for addressing some of the concerns of the Nuclear Regulatory Commission (NRC) expressed in the Igneous Activity Issue Resolution Status Report

  18. Site characterization and validation - Inflow to the validation drift

    International Nuclear Information System (INIS)

    Harding, W.G.C.; Black, J.H.

    1992-01-01

    Hydrogeological experiments have had an essential role in the characterization of the drift site on the Stripa project. This report focuses on the methods employed and the results obtained from inflow experiments performed on the excavated drift in stage 5 of the SCV programme. Inflows were collected in sumps on the floor, in plastic sheeting on the upper walls and ceiling, and measured by means of differential humidity of ventilated air at the bulkhead. Detailed evaporation experiments were also undertaken on uncovered areas of the excavated drift. The inflow distribution was determined on the basis of a system of roughly equal sized grid rectangles. The results have highlighted the overriding importance of fractures in the supply of water to the drift site. The validation drift experiment has revealed that in excess of 99% of inflow comes from a 5 m section corresponding to the 'H' zone, and that as much as 57% was observed coming from a single grid square (267). There was considerable heterogeneity even within the 'H' zone, with 38% of such samples areas yielding no flow at all. Model predictions in stage 4 underestimated the very substantial declines in inflow observed in the validation drift when compared to the SDE; this was especially so in the 'good' rock areas. Increased drawdowns in the drift have generated less flow and reduced head responses in nearby boreholes by a similar proportion. This behaviour has been the focus for considerable study in the latter part of the SCV project, and a number of potential processes have been proposed. These include 'transience', stress redistribution resulting from the creation of the drift, chemical precipitation, blast-induced dynamic unloading and related gas intrusion, and degassing. (au)

  19. Collisional transport across the magnetic field in drift-fluid models

    DEFF Research Database (Denmark)

    Madsen, Jens; Naulin, Volker; Nielsen, Anders Henry

    2016-01-01

    Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without...

  20. Aging Studies for the Large Honeycomb Drift Tube System of the Outer Tracker of HERA-B

    CERN Document Server

    Albrecht, H; Beck, M; Belkov, A; Berkhan, K; Bohm, G; Bruinsma, M; Buran, T; Capeans, M; Chamanina, J; Chen, BX; Deckers, H; Dehmelt, K; Dong, X; Eckmann, R; Emelianov, D; Fourletov, S; Golutvin, I; Hohlmann, M; Hoepfner, Kerstin; Hulsbergen, W; Jia, Y; Jiang, C; Kapitza, H; Karabekyan, S; Ke, Z; Kiryushin, Y; Kolanoski, H; Korpar, S; Krizan, P; Krucker, D; Lanyov, A; Liu, Y Q; Lohse, T; Loke, R; Mankel, R; Medin, G; Michel, E; Moshkin, A; Ni, J; Nowak, S; Ouchrif, M; Padilla, C; Pose, D; Ressing, D; Saveliev, V; Schmidt, B; Schmidt-Parzefall, W; Schreiner, A; Schwanke, U; Schwarz, Andreas S; Siccama, I; Solunin, S; Somov, S; Souvorov, V; Spiridonov, A; Staric, M; Stegmann, C; Steinkamp, O; Tesch, N; Tsakov, I; Uwer, U; Vassiliev, S; Vukotic, I; Walter, M; Wang, J J; Wang, Y M; Wurth, R; Yang, J; Zheng, Z; Zhu, Z; Zimmerman, R

    2003-01-01

    The HERA-B Outer Tracker consists of drift tubes folded from polycarbonate foil and is operated with Ar/CF4/CO2 as drift gas. The detector has to stand radiation levels which are similar to LHC conditions. The first prototypes exposed to radiation in HERA-B suffered severe radiation damage due to the development of self-sustaining currents (Malter effect). In a subsequent extended R&D program major changes to the original concept for the drift tubes (surface conductivity, drift gas, production materials) have been developed and validated for use in harsh radiation environments. In the test program various aging effects (like Malter currents, gain loss due to anode aging and etching of the anode gold surface) have been observed and cures by tuning of operation parameters have been developed.

  1. Ocean modelling aspects for drift applications

    Science.gov (United States)

    Stephane, L.; Pierre, D.

    2010-12-01

    Nowadays, many authorities in charge of rescue-at-sea operations lean on operational oceanography products to outline research perimeters. Moreover, current fields estimated with sophisticated ocean forecasting systems can be used as input data for oil spill/ adrift object fate models. This emphasises the necessity of an accurate sea state forecast, with a mastered level of reliability. This work focuses on several problems inherent to drift modeling, dealing in the first place with the efficiency of the oceanic current field representation. As we want to discriminate the relevance of a particular physical process or modeling option, the idea is to generate series of current fields of different characteristics and then qualify them in term of drift prediction efficiency. Benchmarked drift scenarios were set up from real surface drifters data, collected in the Mediterranean sea and off the coasts of Angola. The time and space scales that we are interested in are about 72 hr forecasts (typical timescale communicated in case of crisis), for distance errors that we hope about a few dozen of km around the forecast (acceptable for reconnaissance by aircrafts) For the ocean prediction, we used some regional oceanic configurations based on the NEMO 2.3 code, nested into Mercator 1/12° operational system. Drift forecasts were computed offline with Mothy (Météo France oil spill modeling system) and Ariane (B. Blanke, 1997), a Lagrangian diagnostic tool. We were particularly interested in the importance of the horizontal resolution, vertical mixing schemes, and any processes that may impact the surface layer. The aim of the study is to ultimately point at the most suitable set of parameters for drift forecast use inside operational oceanic systems. We are also motivated in assessing the relevancy of ensemble forecasts regarding determinist predictions. Several tests showed that mis-described observed trajectories can finally be modelled statistically by using uncertainties

  2. Development of an in situ temperature stage for synchrotron X-ray spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, R., E-mail: rupak@alum.mit.edu, E-mail: buonassisi@mit.edu; Serdy, J.; Culpepper, M. L.; Buonassisi, T., E-mail: rupak@alum.mit.edu, E-mail: buonassisi@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); West, B.; Stuckelberger, M.; Bertoni, M. I. [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Lai, B.; Maser, J. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-11-15

    In situ characterization of micro- and nanoscale defects in polycrystalline thin-film materials is required to elucidate the physics governing defect formation and evolution during photovoltaic device fabrication and operation. X-ray fluorescence spectromicroscopy is particularly well-suited to study defects in compound semiconductors, as it has a large information depth appropriate to study thick and complex materials, is sensitive to trace amounts of atomic species, and provides quantitative elemental information, non-destructively. Current in situ methods using this technique typically require extensive sample preparation. In this work, we design and build an in situ temperature stage to study defect kinetics in thin-film solar cells under actual processing conditions, requiring minimal sample preparation. Careful selection of construction materials also enables controlled non-oxidizing atmospheres inside the sample chamber such as H{sub 2}Se and H{sub 2}S. Temperature ramp rates of up to 300 °C/min are achieved, with a maximum sample temperature of 600 °C. As a case study, we use the stage for synchrotron X-ray fluorescence spectromicroscopy of CuIn{sub x}Ga{sub 1−x}Se{sub 2} (CIGS) thin-films and demonstrate predictable sample thermal drift for temperatures 25–400 °C, allowing features on the order of the resolution of the measurement technique (125 nm) to be tracked while heating. The stage enables previously unattainable in situ studies of nanoscale defect kinetics under industrially relevant processing conditions, allowing a deeper understanding of the relationship between material processing parameters, materials properties, and device performance.

  3. Strong drifts effects on neoclassical transport

    International Nuclear Information System (INIS)

    Tessarotto, M.; Gregoratto, D.; White, R.B.

    1996-01-01

    It is well known that strong drifts play an important role in plasma equilibrium, stability and confinement A significant example concerns, in particular for tokamak plasmas, the case of strong toroidal differential rotation produced by E x B drift which is currently regarded as potentially important for its influence in equilibrium, stability and transport. In fact, theoretically, it has been found that shear flow can substantially affect the stability of microinstabilities as well modify substantially transport. Recent experimental observations of enhanced confinement and transport regimes in Tokamaks, show, however, evidence of the existence of strong drifts in the plasma core. These are produced not only by the radial electric field [which gives rise to the E x B drift], but also by density [N s ], temperature [T s ] and mass flow [V = ωRe var-phi , with e var-phi the toroidal unit vector, R the distance for the symmetry axis of the torus and ω being the toroidal angular rotation velocity] profiles which are suitably steep. This implies that, in a significant part of the plasma core, the relevant scale lengths of the gradients [of N s , T s , ω], i.e., respectively L N , L T and L ω can be as large as the radial scale length characterizing the banana orbits, L b . Interestingly enough, the transport estimates obtained appear close or even lower than the predictions based on the simplest neoclassical model. However, as is well known, the latter applies, in a strict sense only in the case of weak drifts and also ignoring even the contribution of shear flow related to strong E x B drift. Thus a fundamental problem appears the extension of neoclassical transport theory to include the effect of strong drifts in Tokamak confinement systems. The goal of this investigation is to develop a general formulation of neoclassical transport embodying such important feature

  4. Height drift correction in non-raster atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Travis R. [Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095 (United States); Ziegler, Dominik [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Brune, Christoph [Institute for Computational and Applied Mathematics, University of Münster (Germany); Chen, Alex [Statistical and Applied Mathematical Sciences Institute, Research Triangle Park, NC 27709 (United States); Farnham, Rodrigo; Huynh, Nen; Chang, Jen-Mei [Department of Mathematics and Statistics, California State University Long Beach, Long Beach, CA 90840 (United States); Bertozzi, Andrea L., E-mail: bertozzi@math.ucla.edu [Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095 (United States); Ashby, Paul D., E-mail: pdashby@lbl.gov [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-02-01

    We propose a novel method to detect and correct drift in non-raster scanning probe microscopy. In conventional raster scanning drift is usually corrected by subtracting a fitted polynomial from each scan line, but sample tilt or large topographic features can result in severe artifacts. Our method uses self-intersecting scan paths to distinguish drift from topographic features. Observing the height differences when passing the same position at different times enables the reconstruction of a continuous function of drift. We show that a small number of self-intersections is adequate for automatic and reliable drift correction. Additionally, we introduce a fitness function which provides a quantitative measure of drift correctability for any arbitrary scan shape. - Highlights: • We propose a novel height drift correction method for non-raster SPM. • Self-intersecting scans enable the distinction of drift from topographic features. • Unlike conventional techniques our method is unsupervised and tilt-invariant. • We introduce a fitness measure to quantify correctability for general scan paths.

  5. Effects of Fault Displacement on Emplacement Drifts

    International Nuclear Information System (INIS)

    Duan, F.

    2000-01-01

    The purpose of this analysis is to evaluate potential effects of fault displacement on emplacement drifts, including drip shields and waste packages emplaced in emplacement drifts. The output from this analysis not only provides data for the evaluation of long-term drift stability but also supports the Engineered Barrier System (EBS) process model report (PMR) and Disruptive Events Report currently under development. The primary scope of this analysis includes (1) examining fault displacement effects in terms of induced stresses and displacements in the rock mass surrounding an emplacement drift and (2 ) predicting fault displacement effects on the drip shield and waste package. The magnitude of the fault displacement analyzed in this analysis bounds the mean fault displacement corresponding to an annual frequency of exceedance of 10 -5 adopted for the preclosure period of the repository and also supports the postclosure performance assessment. This analysis is performed following the development plan prepared for analyzing effects of fault displacement on emplacement drifts (CRWMS M and O 2000). The analysis will begin with the identification and preparation of requirements, criteria, and inputs. A literature survey on accommodating fault displacements encountered in underground structures such as buried oil and gas pipelines will be conducted. For a given fault displacement, the least favorable scenario in term of the spatial relation of a fault to an emplacement drift is chosen, and the analysis is then performed analytically. Based on the analysis results, conclusions are made regarding the effects and consequences of fault displacement on emplacement drifts. Specifically, the analysis will discuss loads which can be induced by fault displacement on emplacement drifts, drip shield and/or waste packages during the time period of postclosure

  6. Drift wave coherent vortex structures in inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Su, X.N.

    1992-01-01

    Nonlinear drift wave vortex structures in magnetized plasmas are studied theoretically and numerically in the various physical environments. The effects of density and temperature gradients on drift wave vortex dynamics are analyzed using a fully nonlinear model with the Boltzmann density distribution. The equation, based on the full Boltzmann relation, possess no localized monopole solution in the short wavelength (∼ρ s ) region, while in the longer wavelength (∼(ρ s (r) n ) 1/2 ) region the density profile governs the existence of monopole-like solutions. In the longer wavelength regime, however, the monopoles cannot be localized sufficiently to avoid coupling to propagating drift waves due to the inhomogeneity of the plasma. Thus, the monopole vortex is a long lived coherent structure, but it is not precisely a stationary structure since the coupling results in a open-quote flapping close-quote tail. The tail causes energy of the vortex to leak out, but the effect of the temperature gradient is to reduce the leaking of this energy. Nonlinear coherent structures governing by the coupled drift wave-ion acoustic mode equations in sheared magnetic field are studied analytically and numerically. A solitary vortex equation that includes the effects of density and temperature gradients and magnetic shear is derived and analyzed. The results show that for a plasma in a sheared magnetic field, there exist the solitary vortex solutions. The new vortex structures are dipole-like in their symmetry, but not the modon type of dipoles. The numerical simulations are performed in 2-D with the coupled vorticity and parallel mass flow equations. The vortex structures in an unstable drift wave system driven by parallel shear flow are studied. The nonlinear solitary vortex solutions are given and the formation of the vortices from a turbulent state is observed from the numerical simulations

  7. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...... report on the performance of 3 mm thick prototype CZT drift pixel detectors fabricated using material from eV-products. We discuss issues associated with detector module performance. Characterization results obtained from several prototype drift pixel detectors are presented. Results of position...

  8. Drift-Scale THC Seepage Model

    Energy Technology Data Exchange (ETDEWEB)

    C.R. Bryan

    2005-02-17

    The purpose of this report (REV04) is to document the thermal-hydrologic-chemical (THC) seepage model, which simulates the composition of waters that could potentially seep into emplacement drifts, and the composition of the gas phase. The THC seepage model is processed and abstracted for use in the total system performance assessment (TSPA) for the license application (LA). This report has been developed in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2005 [DIRS 172761]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this report. The plan for validation of the models documented in this report is given in Section 2.2.2, ''Model Validation for the DS THC Seepage Model,'' of the TWP. The TWP (Section 3.2.2) identifies Acceptance Criteria 1 to 4 for ''Quantity and Chemistry of Water Contacting Engineered Barriers and Waste Forms'' (NRC 2003 [DIRS 163274]) as being applicable to this report; however, in variance to the TWP, Acceptance Criterion 5 has also been determined to be applicable, and is addressed, along with the other Acceptance Criteria, in Section 4.2 of this report. Also, three FEPS not listed in the TWP (2.2.10.01.0A, 2.2.10.06.0A, and 2.2.11.02.0A) are partially addressed in this report, and have been added to the list of excluded FEPS in Table 6.1-2. This report has been developed in accordance with LP-SIII.10Q-BSC, ''Models''. This report documents the THC seepage model and a derivative used for validation, the Drift Scale Test (DST) THC submodel. The THC seepage model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral

  9. Theory of modulational interaction of trapped ion convective cells and drift wave turbulence

    International Nuclear Information System (INIS)

    Shapiro, V.D.; Diamond, P.H.; Lebedev, V.; Soloviev, G.; Shevchenko, V.

    1993-01-01

    Theoretical and computational studies of the modulational interaction between trapped ion convective cells and short wavelength drift wave turbulence are discussed. These studies are motivated by the fact that cells and drift waves are expected to coexist in tokamaks so that: (a) cells strain and modulate drift waves, and (b) drift waves open-quote ride on close-quote a background of cells. The results of the authors' investigation indicate that: (1) (nonlinear) parametric growth rates of trapped ion convective cells can exceed linear predictions (for drift wave levels at the mixing length limit); (2) a set of coupled envelope equations, akin to the Zakharov equations from Langmuir turbulence, can be derived and used to predict the formation of a dipole pair of convective cells trapped by the drift wave envelope. This dipole pair is strongly anisotropic, due to the structure of the drift wave Reynolds stress which drives the cell flow. Numerical solutions of the envelope equations are in good agreement with theoretical predictions, and indicate the persistence of the structure in time; (3) strong modulation and trapping of drift waves with k perpendicular ρ > 1 occurs. Extensions to magnetically sheared systems and the broader implications of this work as a paradigm for the dynamics of persistent structures in shearing flows are discussed

  10. Drift-free MPEG-4 AVC semi-fragile watermarking

    Science.gov (United States)

    Hasnaoui, M.; Mitrea, M.

    2014-02-01

    While intra frame drifting is a concern for all types of MPEG-4 AVC compressed-domain video processing applications, it has a particular negative impact in watermarking. In order to avoid the drift drawbacks, two classes of solutions are currently considered in the literature. They try either to compensate the drift distortions at the expense of complex decoding/estimation algorithms or to restrict the insertion to the blocks which are not involved in the prediction, thus reducing the data payload. The present study follows a different approach. First, it algebraically models the drift distortion spread problem by considering the analytic expressions of the MPEG-4 AVC encoding operations. Secondly, it solves the underlying algebraic system under drift-free constraints. Finally, the advanced solution is adapted to take into account the watermarking peculiarities. The experiments consider an m-QIM semi-fragile watermarking method and a video surveillance corpus of 80 minutes. For prescribed data payload (100 bit/s), robustness (BER < 0.1 against transcoding at 50% in stream size), fragility (frame modification detection with accuracies of 1/81 from the frame size and 3s) and complexity constraints, the modified insertion results in gains in transparency of 2 dB in PSNR, of 0.4 in AAD, of 0.002 in IF, of 0.03 in SC, of 0.017 NCC and 22 in DVQ.

  11. The Effect of Unheated Sections on Moisture Transport in the Emplacement Drift

    International Nuclear Information System (INIS)

    G. Danko; J. Birkholzer; D. Bahrami

    2006-01-01

    The goals of this study are: (1) to configure a thermal-hydrological, natural-ventilation model for simulating temperature, humidity, and condensate distributions in the coupled domains of in-drift airspace and near-field rockmass. Rokmass model: TOUGH2, in-drift model: MULTIFLUX (MF); (2) obtain meaningful results from the model for a practical application in which the beneficial effects of unheated drift sections are analyzed; and (3) study the sensitivity to the axial dispersion coefficient with the model

  12. Theoretical study of the effect of pump wavelength drift on mode instability in a high-power fiber amplifier

    Science.gov (United States)

    Liu, Yakun; Tao, Rumao; Su, Rongtao; Wang, Xiaolin; Ma, Pengfei; Zhang, Hanwei; Zhou, Pu; Si, Lei

    2018-04-01

    This paper presents an investigation of the effect of pump wavelength drift on the threshold of mode instability (MI) in high-power ytterbium-doped fiber lasers. By using a semi-analytical model, we study the effects of pump wavelength drift with a central pump wavelength around 976 nm and 915 nm, respectively. The influences of the pump absorption coefficient and total pump absorption are considered simultaneously. The results indicate that the effect of pump wavelength drift around 976 nm is stronger than that around 915 nm. For more efficient suppression of MI by shifting the pump wavelength, efficient absorption of pump power is required. The MI thresholds for fibers with different total pump absorptions and cladding diameters are compared. When the total pump absorption is increased, the gain saturation is enhanced, which results in the MI being mitigated more effectively and being more sensitive to pump wavelength drift. The MI threshold in gain fibers with larger inner cladding diameter is higher but more dependent upon pump wavelength. The results of this work can help in optimizing the pump wavelength and fiber parameters and suppressing MI in high-power fiber lasers.

  13. Energy drift in reversible time integration

    International Nuclear Information System (INIS)

    McLachlan, R I; Perlmutter, M

    2004-01-01

    Energy drift is commonly observed in reversible integrations of systems of molecular dynamics. We show that this drift can be modelled as a diffusion and that the typical energy error after time T is O(√T). (letter to the editor)

  14. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    E. Gonnenthal; N. Spyoher

    2001-02-05

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data

  15. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    International Nuclear Information System (INIS)

    Sonnenthale, E.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are

  16. P-type silicon drift detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Krieger, B.; Krofcheck, D.; O'Donnell, R.; Odyniec, G.; Partlan, M.D.; Wang, N.W.

    1995-06-01

    Preliminary results on 16 CM 2 , position-sensitive silicon drift detectors, fabricated for the first time on p-type silicon substrates, are presented. The detectors were designed, fabricated, and tested recently at LBL and show interesting properties which make them attractive for use in future physics experiments. A pulse count rate of approximately 8 x l0 6 s -1 is demonstrated by the p-type silicon drift detectors. This count rate estimate is derived by measuring simultaneous tracks produced by a laser and photolithographic mask collimator that generates double tracks separated by 50 μm to 1200 μm. A new method of using ion-implanted polysilicon to produce precise valued bias resistors on the silicon drift detectors is also discussed

  17. A preliminary comparison of F region plasma drifts and E region irregularity drifts in the auroral zone

    International Nuclear Information System (INIS)

    Ecklund, W.L.; Balsley, B.B.; Carter, D.A.

    1977-01-01

    During several days in April--May 1976 the Chatanika, Alaska, incoherent scatter radar and a temporary Doppler auroral radar located at Aniak, Alaska, were directed toward ionospheric volumes along a common magnetic field line in order to compare E region and F region drifts and associated electric fields. The Chatanika radar measured F region plasma drifts via the incoherent scatter technique, while the Aniak radar measured the drifts of E region irregularities (i.e., the radar aurora). The radar geometry was arranged so that both radars measured approximately the same velocity component of a magnetically westward or eastward motion. Preliminary data show good agreement between the drift velocity components measured by the two techniques during most of the experimental period. This result indicates that relatively modest auroral radar systems may be used, with some qualifications, to determine auroral electric fields

  18. The Effects of Radial and Poloidal ExB Drifts in the Tokamak SOL

    International Nuclear Information System (INIS)

    Ou Jing; Zhu Sizheng

    2006-01-01

    The effects of radial and poloidal ExB drifts in the scrape-off layer (SOL) of a limiter tokamak are studied with a one-dimensional fluid code. The transport equations are solved in the poloidal direction with the radial influxes as the source terms. The simulation results show that in the high recycling regime, the effect of the radial ExB drift on plasma density tends to be stronger than that of the poloidal ExB drift. In the sheath-limited regime, the effects of the radial ExB drift and poloidal ExB drift on plasma density are almost equally important. Considering the influence on the electron temperature, the poloidal ExB drift tends to be more important than the radial ExB drift in both the high recycling regime and sheath-limited regime. For the normal B φ , the poloidal ExB drift tends to raise the pressure at the low field side while the radial ExB drift favours the high field side. The simulation results also show that the ExB drift influences the asymmetries on the parameter distributions at the high field side and low field side, and the distributions are much more symmetric with the field reversal

  19. Development of an equipment diagnostic system that evaluates sensor drift

    International Nuclear Information System (INIS)

    Kanada, Masaki; Arita, Setsuo; Tada, Nobuo; Yokota, Katsuo

    2011-01-01

    The importance of condition monitoring technology for equipment has increased with the introduction of condition-based maintenance in nuclear power plants. We are developing a diagnostic system using process signals for plant equipment, such as pumps and motors. It is important to enable the diagnostic system to distinguish sensor drift and equipment failure. We have developed a sensor drift diagnostic method that combines some highly correlative sensor signals by using the MT (Mahalanobis-Taguchi) method. Furthermore, we have developed an equipment failure diagnostic method that measures the Mahalanobis distance from the normal state of equipment by the MT method. These methods can respectively detect sensor drift and equipment failure, but there are the following problems. In the sensor drift diagnosis, there is a possibility of misjudging the sensor drift when the equipment failure occurs and the process signal changes because the behavior of the process signal is the same as that of the sensor drift. Oppositely, in the equipment failure diagnosis, there is a possibility of misjudging the equipment failure when the sensor drift occurs because the sensor drift influences the change of process signal. To solve these problems, we propose a diagnostic method combining the sensor drift diagnosis and the equipment failure diagnosis by the MT method. Firstly, the sensor drift values are estimated by the sensor drift diagnosis, and the sensor drift is removed from the process signal. It is necessary to judge the validity of the estimated sensor drift values before removing the sensor drift from the process signal. We developed a method for judging the validity of the estimated sensor drift values by using the drift distribution based on the sensor calibration data. And then, the equipment failure is diagnosed by using the process signals after removal of the sensor drifts. To verify the developed diagnostic system, several sets of simulation data based on abnormal cases

  20. Mean Lagrangian drift in continental shelf waves

    Science.gov (United States)

    Drivdal, M.; Weber, J. E. H.

    2012-04-01

    The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E¯ over the shelf region, the radiation stress tensor component S¯11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio ¯S11/¯E depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of the latter depends on the ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deep water drilling accidents.

  1. Job satisfaction and preference drift.

    NARCIS (Netherlands)

    Maassen van den Brink, H.; Groot, W.J.N.

    1999-01-01

    Most empirical studies do not find that higher wages lead to more job satisfaction. In this paper we argue that the insignificant effect of wages on job satisfaction is due to preference drift. We adapt the standard ordered response model to allow for preference shifts. The empirical results support

  2. SU-F-T-279: Impact of Beam Energy Drifts On IMRT Delivery Accuracy

    International Nuclear Information System (INIS)

    Goddu, S; Kamal, G; Herman, A; Edwards, S; Cai, B; Yaddanapudi, S; Oddiraju, S; Rangaraj, D; Mutic, S

    2016-01-01

    Purpose: According to TG-40 percent-depth-dose (PDD) tolerance is ±2% but TG-142 is ±1%. Now the question is, which one is relevant in IMRT era? The primary objective of this study is to evaluate dosimetric impact of beam-energy-drifts on IMRT-delivery. Methods: Beam-energy drifts were simulated by adjusting Linac’s bending-magnet-current (BMC) followed by tuning the pulse-forming network and adjusting gun-current. PDD change of −0.6% and +1.2% were tested. Planar-dosimetry measurements were performed using an ionization-chamber-array in solid-water phantoms. Study includes 10-head-and-neck and 3-breast cancer patients. en-face beam-deliveries were also tested at 1.3cm and 5.3cm depths. Composite and single-field dose-distributions were compared against the plans to determine %Gamma pass-rates (%GPRs). For plan dose comparisons, changes in %Gamma pass-rates (cPGPRs) were computed/reported to exclude the differences between dose-computation and delivery. Dose distributions of the drifted-energies were compared against their baseline measurements to determine the% GPRs. A Gamma criteria of 3%/3mm was considered for plan-dose comparisons while 3%/1mm used for measured dose intercomparisons. Results: For composite-dose delivery, average cPGPRs were 0.41%±2.48% and −2.54%±3.65% for low-energy (LE) and high-energy (HE) drifts, respectively. For measured dose inter-comparisons, the average%GPRs were 98.4%±2.2% (LE-drift) and 95.8%±4.0 (HE-drift). The average %GPR of 92.6%±4.3% was noted for the worst-case scenario comparing LE-drift to HE-drift. All en-face beams at 5.3 cm depth have cPGPRs within ±4% of the baseline-energy measurements. However, greater variations were noted for 1.3cm depth. Average %GPRs for drifted energies were >99% at 5.3cm and >97% at 1.3cm depths. However, for the worst-case scenario (LE-drift to HE-drift) these numbers dropped to 95.2% at 5.3cm and 93.1% at 1.3cm depths. Conclusion: The dosimetric impact of beam-energy drifts was

  3. The Drift Burst Hypothesis

    DEFF Research Database (Denmark)

    Christensen, Kim; Oomen, Roel; Renò, Roberto

    are an expected and regular occurrence in financial markets that can arise through established mechanisms such as feedback trading. At a theoretical level, we show how to build drift bursts into the continuous-time Itô semi-martingale model in such a way that the fundamental arbitrage-free property is preserved......, currencies and commodities. We find that the majority of identified drift bursts are accompanied by strong price reversals and these can therefore be regarded as “flash crashes” that span brief periods of severe market disruption without any material longer term price impacts....

  4. Drift Correction of Lightweight Microbolometer Thermal Sensors On-Board Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Francisco-Javier Mesas-Carrascosa

    2018-04-01

    Full Text Available The development of lightweight sensors compatible with mini unmanned aerial vehicles (UAVs has expanded the agronomical applications of remote sensing. Of particular interest in this paper are thermal sensors based on lightweight microbolometer technology. These are mainly used to assess crop water stress with thermal images where an accuracy greater than 1 °C is necessary. However, these sensors lack precise temperature control, resulting in thermal drift during image acquisition that requires correction. Currently, there are several strategies to manage thermal drift effect. However, these strategies reduce useful flight time over crops due to the additional in-flight calibration operations. This study presents a drift correction methodology for microbolometer sensors based on redundant information from multiple overlapping images. An empirical study was performed in an orchard of high-density hedgerow olive trees with flights at different times of the day. Six mathematical drift correction models were developed and assessed to explain and correct drift effect on thermal images. Using the proposed methodology, the resulting thermally corrected orthomosaics yielded a rate of error lower than 1° C compared to those where no drift correction was applied.

  5. Drift tube with an electro-quadrupole magnet made with a conventional enamel wire for the proton engineering frontier project drift tube linac

    Science.gov (United States)

    Kim, Y. H.; Kwon, H. J.; Cho, Y. S.

    2006-12-01

    The proton engineering frontier project (PEFP) drift tube linac (DTL) chose the new type of electro-quadrupole magnet (EQM) using an enameled wire for a drift tube. By using this kind of EQM, we could simplify the drift tube structure. We verified the structural stability and thermal stability of this drift tube structure through a computational analysis and a simple experiment. We also verified the stability of the enameled wire regarding corrosion through a long period test of about 1 year. It was concluded that the design and fabrication of the drift tube and the EQM were successful.

  6. Drift tube with an electro-quadrupole magnet made with a conventional enamel wire for the proton engineering frontier project drift tube linac

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.H. [PEFP, KAERI, DaeJeon (Korea, Republic of)]. E-mail: yhkim72@kaeri.re.kr; Kwon, H.J. [PEFP, KAERI, DaeJeon (Korea, Republic of); Cho, Y.S. [PEFP, KAERI, DaeJeon (Korea, Republic of)

    2006-12-21

    The proton engineering frontier project (PEFP) drift tube linac (DTL) chose the new type of electro-quadrupole magnet (EQM) using an enameled wire for a drift tube. By using this kind of EQM, we could simplify the drift tube structure. We verified the structural stability and thermal stability of this drift tube structure through a computational analysis and a simple experiment. We also verified the stability of the enameled wire regarding corrosion through a long period test of about 1 year. It was concluded that the design and fabrication of the drift tube and the EQM were successful.

  7. Drift tube with an electro-quadrupole magnet made with a conventional enamel wire for the proton engineering frontier project drift tube linac

    International Nuclear Information System (INIS)

    Kim, Y.H.; Kwon, H.J.; Cho, Y.S.

    2006-01-01

    The proton engineering frontier project (PEFP) drift tube linac (DTL) chose the new type of electro-quadrupole magnet (EQM) using an enameled wire for a drift tube. By using this kind of EQM, we could simplify the drift tube structure. We verified the structural stability and thermal stability of this drift tube structure through a computational analysis and a simple experiment. We also verified the stability of the enameled wire regarding corrosion through a long period test of about 1 year. It was concluded that the design and fabrication of the drift tube and the EQM were successful

  8. Nonlinear Gyrokinetic Theory With Polarization Drift

    International Nuclear Information System (INIS)

    Wang, L.; Hahm, T.S.

    2010-01-01

    A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)].

  9. Investigation of drift gas selectivity in high resolution ion mobility spectrometry with mass spectrometry detection.

    Science.gov (United States)

    Matz, Laura M; Hill, Herbert H; Beegle, Luther W; Kanik, Isik

    2002-04-01

    Recent studies in electrospray ionization (ESI)/ion mobility spectrometry (IMS) have focussed on employing different drift gases to alter separation efficiency for some molecules. This study investigates four structurally similar classes of molecules (cocaine and metabolites, amphetamines, benzodiazepines, and small peptides) to determine the effect of structure on relative mobility changes in four drift gases (helium, nitrogen, argon, carbon dioxide). Collision cross sections were plotted against drift gas polarizability and a linear relationship was found for the nineteen compounds evaluated in the study. Based on the reduced mobility database, all nineteen compounds could be separated in one of the four drift gases, however, the drift gas that provided optimal separation was specific for the two compounds.

  10. Travelling fronts in stochastic Stokes’ drifts

    KAUST Repository

    Blanchet, Adrien; Dolbeault, Jean; Kowalczyk, Michał

    2008-01-01

    By analytical methods we study the large time properties of the solution of a simple one-dimensional model of stochastic Stokes' drift. Semi-explicit formulae allow us to characterize the behaviour of the solutions and compute global quantities

  11. A new variable transformation technique for the nonlinear drift vortex

    International Nuclear Information System (INIS)

    Orito, Kohtaro

    1996-02-01

    The dipole vortex solution of the Hasegawa-Mima equation describing the nonlinear drift wave is a stable solitary wave which is called the modon. The profile of the modon depends on the nonlinearity of the ExB drift. In order to investigate the nonlinear drift wave more accurately, the effect of the polarization drift needs to be considered. In case of containing the effect of the polarization drift the profile of the electrostatic potential is distorted in the direction perpendicular to the ExB drift. (author)

  12. Accurate computer simulation of a drift chamber

    International Nuclear Information System (INIS)

    Killian, T.J.

    1980-01-01

    A general purpose program for drift chamber studies is described. First the capacitance matrix is calculated using a Green's function technique. The matrix is used in a linear-least-squares fit to choose optimal operating voltages. Next the electric field is computed, and given knowledge of gas parameters and magnetic field environment, a family of electron trajectories is determined. These are finally used to make drift distance vs time curves which may be used directly by a track reconstruction program. Results are compared with data obtained from the cylindrical chamber in the Axial Field Magnet experiment at the CERN ISR

  13. Drift from the Use of Hand-Held Knapsack Pesticide Sprayers in Boyacá (Colombian Andes).

    Science.gov (United States)

    García-Santos, Glenda; Feola, Giuseppe; Nuyttens, David; Diaz, Jaime

    2016-05-25

    Offsite pesticide losses in tropical mountainous regions have been little studied. One example is measuring pesticide drift soil deposition, which can support pesticide risk assessment for surface water, soil, bystanders, and off-target plants and fauna. This is considered a serious gap, given the evidence of pesticide-related poisoning in those regions. Empirical data of drift deposition of a pesticide surrogate, Uranine tracer, within one of the highest potato-producing regions in Colombia, characterized by small plots and mountain orography, is presented. High drift values encountered in this study reflect the actual spray conditions using hand-held knapsack sprayers. Comparison between measured and predicted drift values using three existing empirical equations showed important underestimation. However, after their optimization based on measured drift information, the equations showed a strong predictive power for this study area and the study conditions. The most suitable curve to assess mean relative drift was the IMAG calculator after optimization.

  14. Adaptive Online Sequential ELM for Concept Drift Tackling

    Directory of Open Access Journals (Sweden)

    Arif Budiman

    2016-01-01

    Full Text Available A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM and Constructive Enhancement OS-ELM (CEOS-ELM by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM. It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect “underfitting” condition.

  15. Resistive drift wave turbulence and transport

    International Nuclear Information System (INIS)

    Wakatani, M.

    1986-01-01

    Our efforts for studying the properties of resistive drift wave turbulence by using model mode-coupling equations are shown. It may be related to the edge turbulence and the associated anomalous transport in tokamaks or in stellarator/heliotron. (author)

  16. The large cylindrical drift chamber of TASSO

    International Nuclear Information System (INIS)

    Boerner, H.; Fischer, H.M.; Hartmann, H.; Loehr, B.; Wollstadt, M.; Fohrmann, R.; Schmueser, P.; Cassel, D.G.; Koetz, U.; Kowalski, H.

    1980-03-01

    We have built and operated a large cylindrical drift chamber for the TASSO experiment at the DESY storage ring, PETRA. The chamber has a length of 3.5 m, a diameter of 2.5 m, and a total of 2340 drift cells. The cells are arranged in 15 concentric layers such that tracks can be reconstructed in three dimensions. A spatial resolution of 220 μm has been achieved for tracks of normal incidence on the drift cells. (orig.)

  17. Discovery of a remarkable subpulse drift pattern in PSR B0818-41

    Science.gov (United States)

    Bhattacharyya, B.; Gupta, Y.; Gil, J.; Sendyk, M.

    2007-05-01

    We report the discovery of a remarkable subpulse drift pattern in the relatively less-studied wide profile pulsar B0818-41 using high-sensitivity Giant Metrewave Radio Telescope (GMRT) observations. We find simultaneous occurrences of three drift regions with two different drift rates: an inner region with steeper apparent drift rate flanked on each side by a region of slower apparent drift rate. Furthermore, these closely spaced drift bands always maintain a constant phase relationship. Though these drift regions have significantly different values for the measured P2, the measured P3 value is the same and equal to 18.3P1. We interpret the unique drift pattern of this pulsar as being created by the intersection of our line of sight (LOS) with two conal rings on the polar cap of a fairly aligned rotator (inclination angle α ~ 11°), with an `inner' LOS geometry (impact angle ). We argue that both rings have the same values for the carousel rotation periodicity P4 and the number of sparks Nsp. We find that Nsp is 19-21 and show that it is very likely that P4 is the same as the measured P3, making it a truly unique pulsar. We present results from simulations of the radiation pattern using the inferred parameters, which support our interpretations and reproduce the average profile as well as the observed features in the drift pattern quite well.

  18. Construction of a full-length prototype of the BESIII drift chamber and on-detector test for the BESIII drift chamber electronics

    International Nuclear Information System (INIS)

    Qin Zhonghua; Wu Linghui; Liu Jianbei; Chinese Academy of Sciences, Beijing; Yan Zhikang; Hunan Univ., Changsha; Chen Yuanbo; Chen Chang; Xu Meihang; Wang Lan; Ma Xiaoyan; Jin Yan; Liu Rongguang; Tang Xiao; Zhang Guifang; Zhu Qiming; Sheng Huayi; Zhu Kejun

    2007-01-01

    A full-length prototype of the BESIII drift chamber was built. The experience gained on gas sealing, high voltage supply and front-end electronics installation should be greatly beneficial to the successful construction of the BESIII drift chamber. An on-detector test of the BESIII drift chamber electronics was carried out with the constructed prototype chamber. The noise performance, drift time and charge measurements, and electronics gains were examined specifically. The final test results indicate that the electronics have a good performance and can satisfy their design requirements. (authors)

  19. Multiline digital radiographic imager study with synchronization to detector gas ion drift

    International Nuclear Information System (INIS)

    Peyret, O.

    1985-01-01

    This direct digital radiographic imager is based on X-ray detection in high pressure rare gas ionization chamber. This linear multidetector, from which scanning radiography is realized, records many lines together. Spatial resolution performance in scanning direction are made sure by scanning synchronization with ion drift in detector. After a physical study and a potential evaluation of its performances on mock-up, a 128 cell prototype has been realized. The first images give validation and limits of such a radiographic process [fr

  20. Stabilizing effects of hot electrons on low frequency plasma drift waves

    International Nuclear Information System (INIS)

    Huang Chaosong; Qiu Lijian; Ren Zhaoxing

    1988-01-01

    The MHD equation is used to study the stabilization of low frequency drift waves driven by density gradient of plasma in a hot electron plasma. The dispersion relation is derived, and the stabilizing effects of hot electrons are discussed. The physical mechanism for hot electron stabilization of the low frequency plasma perturbations is charge uncovering due to the hot electron component, which depends only on α, the ratio of N h /N i , but not on the value of β h . The hot electrons can reduce the growth rate of the interchange mode and drift wave driven by the plasma, and suppress the enomalous plasma transport caused by the drift wave. Without including the effectof β h , the stabilization of the interchange mode requires α≅2%, and the stabilization of the drift wave requires α≅40%. The theoretical analyses predict that the drift wave is the most dangerous low frequency instability in the hot electron plasma

  1. Drift compression and final focus systems for heavy ion inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    de Hoon, Michiel Jan Laurens [Univ. of California, Berkeley, CA (United States)

    2001-01-01

    Longitudinal compression of space-charge dominated beams can be achieved by imposing a head-to-tail velocity tilt on the beam. This tilt has to be carefully tailored, such that it is removed by the longitudinal space-charge repulsion by the time the beam reaches the end of the drift compression section. The transverse focusing lattice should be designed such that all parts of the beam stay approximately matched, while the beam smoothly expands transversely to the larger beam radius needed in the final focus system following drift compression. In this thesis, several drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression. The occurrence of mismatches due to a rapidly increasing current was analyzed. In addition, the sensitivity of drift compression to errors in the initial velocity tilt and current profile was studied. These calculations were done using a new computer code that accurately calculates the longitudinal electric field in the space-charge dominated regime.

  2. Drivers of drift sand dynamics; a reconstruction for the Wekeromse Zand, the Netherlands

    Science.gov (United States)

    Hendriks, Chantal; Sonneveld, Marthijn; Wallinga, Jakob

    2013-04-01

    Inland active drift sand landscapes are regarded as unique ecosystems of great historical and geomorphological value. Recent studies have highlighted the role of multiple factors in the initiation and stabilization of drift sand landscapes. To unravel the importance of different forcings (e.g. agricultural practices, climate) and their interplay, insight in the chronology of drift sand dynamics is essential. In this study, we aimed to reconstruct the dynamics of the drift sand landscape of the Wekeromse Zand (central Netherlands) and to develop a conceptual model to understand the processes involved. The Wekeromse Zand study area (370 ha) is located on the border of a central push moraine and is characterised by open active drift sands (14 ha) and vegetated hills and valleys. The surroundings are dominated by modern agricultural practices, and remnants from ancient iron age Celtic Field systems showing that the area has been in agricultural use since at least the Iron Age. For the study area we: i) analysed historical maps going back to the early 19th century, ii) performed a field survey to map the palaeolandscape (before drift sand activation) and iii) employed optically stimulated luminescence (OSL) dating of drift sand deposits on 11 samples from two locations to determine the timing of drift sand deposition. Analysis of the available topographic maps showed no substantial aeolean activity of the area outside its morphological boundaries. OSL dating revealed that two drift sand layers were deposited between 1373 and 1462 AD and between 1680 and 1780 AD. A layer with a higher organic matter content was found at one of the sites. This suggests that the Wekeromse Zand has known three relatively stable periods: i) a period between the start of the Holocene to the Late Medieval Period, ii) in between the Medieval climatic optimum and the climatic Maunder minimum, and iii) current situation. Despite the fact that agricultural activities occurred in this area from the

  3. Measurements of electron drift and diffusion properties in a large cylindrical drift chamber (TPC) with parallel electric and magnetic fields

    International Nuclear Information System (INIS)

    Richstein, J.

    1986-01-01

    This work describes measurements on the drift of electrons in gases, using the TPC90, the prototype of the ALEPH Time Projection Chamber. Tracks which were created by UV-Laser ionization have been drifted over distances of up to 1.3 m in parallel electric and magnetic fields. Electron drift properties have been systematically measured as a function of these, in several gas mixtures. (orig./HSI)

  4. Calculation of drift seepage for alternative emplacement designs

    International Nuclear Information System (INIS)

    Li, Guomin; Tsang, Chin-Fu; Birkholzer, Jens

    1999-01-01

    The calculations presented in this report are performed to obtain seepage rates into drift and boreholes for two alternative designs of drift and waste emplacement at Yucca Mountain. The two designs are defined according to the Scope of Work 14012021M1, activity 399621, drafted October 6, 1998, and further refined in a conference telephone call on October 13, 1998, between Mark Balady, Jim Blink, Rob Howard and Chin-Fu Tsang. The 2 designs considered are: (1) Design A--Horizontal boreholes 1.0 m in diameter on both sides of the drift, with each borehole 8 m long and inclined to the drift axis by 30 degrees. The pillar between boreholes, measured parallel to the drift axis, is 3.3 m. In the current calculations, a simplified model of an isolated horizontal borehole 8 m long will be simulated. The horizontal borehole will be located in a heterogeneous fracture continuum representing the repository layer. Three different realizations will be taken from the heterogeneous field, representing three different locations in the rock. Seepage for each realization is calculated as a function of the percolation flux. Design B--Vertical boreholes, 1.0 m in diameter and 8.0 m deep, drilled from the bottom of an excavated 8.0 m diameter drift. Again, the drift with the vertical borehole will be assumed to be located in a heterogeneous fracture continuum, representing the rock at the repository horizon. Two realizations are considered, and seepage is calculated for the 8-m drift with and without the vertical 1-m borehole at its bottom

  5. Coupled In-Rock and In-Drift Hydrothermal Model Study For Yucca Mountain

    International Nuclear Information System (INIS)

    G. Danko; J. Birkholzer; D. Bahrami

    2006-01-01

    A thermal-hydrologic-natural-ventilation model is configured for simulating temperature, humidity, and condensate distributions in the coupled domains of the in-drift airspace and the near-field rockmass in the proposed Yucca Mountain repository. The multi-physics problem is solved with MULTIFLUX in which a lumped-parameter computational fluid dynamics model is iterated with TOUGH2. The solution includes natural convection, conduction, and radiation for heat as well as moisture convection and diffusion for moisture transport with half waste package scale details in the drift, and mountain-scale heat and moisture transport in the porous and fractured rock-mass. The method provides fast convergence on a personal computer computational platform. Numerical examples and comparison with a TOUGH2 based, integrated model are presented

  6. Modelling of the space-to-drift-time relationship of the ATLAS monitored drift-tube chambers in the presence of magnetic fields

    International Nuclear Information System (INIS)

    Dubbert, J.; Horvat, S.; Khartchenko, D.; Kortner, O.; Kotov, S.; Kroha, H.; Manz, A.; Nikolaev, K.; Rauscher, F.; Richter, R.; Staude, A.; Valderanis, Ch.

    2007-01-01

    The ATLAS muon spectrometer uses tracking chambers consisting of up to 5m long drift tubes filled with Ar:CO 2 (93:7) at 3bar. The chambers are run in a average toroidal magnetic field of 0.4T created by 8 air core coils. They provide a track-point accuracy of 40μm if the space-to-drift-time relationship r(t) is known with 20μm accuracy. The magnetic field B influences the electron drift inside the tubes: the maximum drift time t max =700ns increases by ∼70ns/T 2 B 2 . B varies by up to +/-0.4T along the tubes of the chambers mounted near the magnet coils which translates into a variation of t max of up to 45ns. The dependence of r(t) on B must be taken into account. Test-beam measurements show that the electron drift in case of B 0 can be modelled with the required accuracy by a Langevin equation with a friction term which is slightly non-linear in the drift velocity

  7. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  8. Study of drift tube resolution using numerical simulations

    International Nuclear Information System (INIS)

    Lundin, M.C.

    1990-01-01

    The results off a simulation of straw tube detector response are presented. These gas ionization detectors and the electronics which must presumably go along with them are characterized in a simple but meaningful manner. The physical processes which comprise the response of the individual straw tubes are broken down and examined in detail. Different parameters of the simulation are varied and resulting predictions of drift tube spatial resolution are shown. In addition, small aspects of the predictions are compared to recent laboratory results, which can be seen as a measure of the simulation's usefulness. 10 refs., 8 figs

  9. Plant reproduction is altered by simulated herbicide drift to constructed plant communities

    Science.gov (United States)

    Herbicide drift may have unintended impacts on native vegetation, adversely affecting structure and function of plant communities. However, these potential effects have been rarely studied or quantified. To determine potential ecological effects of herbicide drift, we construct...

  10. Predicting public sector accountability : From agency drift to forum drift

    NARCIS (Netherlands)

    Schillemans, Thomas|info:eu-repo/dai/nl/229913881; Busuioc, Madalina

    2015-01-01

    Principal-agent theory has been the dominant theory at the heart of public sector accountability research. The notion of the potentially drifting agent-such as independent public agencies, opaque transnational institutions, or recalcitrant street-level bureaucrats-has been the guiding paradigm in

  11. On nonlinear periodic drift waves

    International Nuclear Information System (INIS)

    Kauschke, U.; Schlueter, H.

    1990-09-01

    Nonlinear periodic drift waves are investigated on the basis of a simple perturbation scheme for both the amplitude and inverse frequency. The coefficients for the generation of the forced harmonics are derived, a nonlinear dispersion relation is suggested and a criterion for the onset of the modulational instability is obtained. The results are compared with the ones obtained with the help of a standard KBM-treatment. Moreover cnoidal drift waves are suggested and compared to an experimental observation. (orig.)

  12. An effective drift correction for dynamical downscaling of decadal global climate predictions

    Science.gov (United States)

    Paeth, Heiko; Li, Jingmin; Pollinger, Felix; Müller, Wolfgang A.; Pohlmann, Holger; Feldmann, Hendrik; Panitz, Hans-Jürgen

    2018-04-01

    Initialized decadal climate predictions with coupled climate models are often marked by substantial climate drifts that emanate from a mismatch between the climatology of the coupled model system and the data set used for initialization. While such drifts may be easily removed from the prediction system when analyzing individual variables, a major problem prevails for multivariate issues and, especially, when the output of the global prediction system shall be used for dynamical downscaling. In this study, we present a statistical approach to remove climate drifts in a multivariate context and demonstrate the effect of this drift correction on regional climate model simulations over the Euro-Atlantic sector. The statistical approach is based on an empirical orthogonal function (EOF) analysis adapted to a very large data matrix. The climate drift emerges as a dramatic cooling trend in North Atlantic sea surface temperatures (SSTs) and is captured by the leading EOF of the multivariate output from the global prediction system, accounting for 7.7% of total variability. The SST cooling pattern also imposes drifts in various atmospheric variables and levels. The removal of the first EOF effectuates the drift correction while retaining other components of intra-annual, inter-annual and decadal variability. In the regional climate model, the multivariate drift correction of the input data removes the cooling trends in most western European land regions and systematically reduces the discrepancy between the output of the regional climate model and observational data. In contrast, removing the drift only in the SST field from the global model has hardly any positive effect on the regional climate model.

  13. Accurate computer simulation of a drift chamber

    CERN Document Server

    Killian, T J

    1980-01-01

    The author describes a general purpose program for drift chamber studies. First the capacitance matrix is calculated using a Green's function technique. The matrix is used in a linear-least-squares fit to choose optimal operating voltages. Next the electric field is computed, and given knowledge of gas parameters and magnetic field environment, a family of electron trajectories is determined. These are finally used to make drift distance vs time curves which may be used directly by a track reconstruction program. The results are compared with data obtained from the cylindrical chamber in the Axial Field Magnet experiment at the CERN ISR. (1 refs).

  14. A Simple Stochastic Differential Equation with Discontinuous Drift

    DEFF Research Database (Denmark)

    Simonsen, Maria; Leth, John-Josef; Schiøler, Henrik

    2013-01-01

    In this paper we study solutions to stochastic differential equations (SDEs) with discontinuous drift. We apply two approaches: The Euler-Maruyama method and the Fokker-Planck equation and show that a candidate density function based on the Euler-Maruyama method approximates a candidate density...... function based on the stationary Fokker-Planck equation. Furthermore, we introduce a smooth function which approximates the discontinuous drift and apply the Euler-Maruyama method and the Fokker-Planck equation with this input. The point of departure for this work is a particular SDE with discontinuous...

  15. Variable-energy drift-tube linear accelerator

    Science.gov (United States)

    Swenson, Donald A.; Boyd, Jr., Thomas J.; Potter, James M.; Stovall, James E.

    1984-01-01

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  16. Optimization of drift gases for accuracy in pressurized drift tubes

    CERN Document Server

    Kirchner, J J; Dinner, A R; Fidkowski, K J; Wyatt, J H

    2001-01-01

    Modern detectors such as ATLAS use pressurized drift tubes to minimize diffusion and achieve high coordinate accuracy. However, the coordinate accuracy depends on the exact knowledge of converting measured times into coordinates. Linear space-time relationships are best for reconstruction, but difficult to achieve in the $E \\propto \\frac{1}{r}$ field. Previous mixtures, which contained methane or other organic quenchers, are disfavored because of ageing problems. From our studies of nitrogen and carbon dioxide, two mixtures with only small deviations from linearity were determined and measured. Scaling laws for different pressures and magnetic fields are also given.

  17. Optimization of drift gases for accuracy in pressurized drift tubes

    International Nuclear Information System (INIS)

    Kirchner, J.J.; Becker, U.J.; Dinner, R.B.; Fidkowski, K.J.; Wyatt, J.H.

    2001-01-01

    Modern detectors such as ATLAS use pressurized drift tubes to minimize diffusion and achieve high coordinate accuracy. However, the coordinate accuracy depends on the exact knowledge of converting measured times into coordinates. Linear space-time relationships are best for reconstruction, but difficult to achieve in the E∝1/r field. Previous mixtures, which contained methane or other organic quenchers, are disfavored because of ageing problems. From our studies of nitrogen and carbon dioxide, two mixtures with only small deviations from linearity were determined and measured. Scaling laws for different pressures and magnetic fields are also given

  18. Internal Clock Drift Estimation in Computer Clusters

    Directory of Open Access Journals (Sweden)

    Hicham Marouani

    2008-01-01

    Full Text Available Most computers have several high-resolution timing sources, from the programmable interrupt timer to the cycle counter. Yet, even at a precision of one cycle in ten millions, clocks may drift significantly in a single second at a clock frequency of several GHz. When tracing the low-level system events in computer clusters, such as packet sending or reception, each computer system records its own events using an internal clock. In order to properly understand the global system behavior and performance, as reported by the events recorded on each computer, it is important to estimate precisely the clock differences and drift between the different computers in the system. This article studies the clock precision and stability of several computer systems, with different architectures. It also studies the typical network delay characteristics, since time synchronization algorithms rely on the exchange of network packets and are dependent on the symmetry of the delays. A very precise clock, based on the atomic time provided by the GPS satellite network, was used as a reference to measure clock drifts and network delays. The results obtained are of immediate use to all applications which depend on computer clocks or network time synchronization accuracy.

  19. Radio-tagging technology reveals extreme nest-drifting behavior in a eusocial insect.

    Science.gov (United States)

    Sumner, Seirian; Lucas, Eric; Barker, Jessie; Isaac, Nick

    2007-01-23

    Kin-selection theory underlies our basic understanding of social evolution [1, 2]. Nest drifting in eusocial insects (where workers move between nests) presents a challenge to this paradigm, since a worker should remain as a helper on her natal colony, rather than visit other colonies to which she is less closely related. Here we reveal nest drifting as a strategy by which workers may maximize their indirect fitness by helping on several related nests, preferring those where the marginal return from their help is greatest. By using a novel monitoring technique, radio frequency identification (RFID) tagging, we provide the first accurate estimate of drifting in a eusocial insect: 56% of females drifted in a natural population of the eusocial paper wasp Polistes canadensis, exceeding previous records of drifting in natural populations by more than 30-fold. We demonstrate that drifting cannot be explained through social parasitism, queen succession, mistakes in nest identity, or methodological bias. Instead, workers appear to gain indirect fitness benefits by helping on several related colonies in a viscous population structure. The potential importance of this strategy as a component of the kin-selected benefits for a social insect worker has previously been overlooked because of methodological difficulties in quantifying and studying drifting.

  20. Modeling spray drift and runoff-related inputs of pesticides to receiving water.

    Science.gov (United States)

    Zhang, Xuyang; Luo, Yuzhou; Goh, Kean S

    2018-03-01

    Pesticides move to surface water via various pathways including surface runoff, spray drift and subsurface flow. Little is known about the relative contributions of surface runoff and spray drift in agricultural watersheds. This study develops a modeling framework to address the contribution of spray drift to the total loadings of pesticides in receiving water bodies. The modeling framework consists of a GIS module for identifying drift potential, the AgDRIFT model for simulating spray drift, and the Soil and Water Assessment Tool (SWAT) for simulating various hydrological and landscape processes including surface runoff and transport of pesticides. The modeling framework was applied on the Orestimba Creek Watershed, California. Monitoring data collected from daily samples were used for model evaluation. Pesticide mass deposition on the Orestimba Creek ranged from 0.08 to 6.09% of applied mass. Monitoring data suggests that surface runoff was the major pathway for pesticide entering water bodies, accounting for 76% of the annual loading; the rest 24% from spray drift. The results from the modeling framework showed 81 and 19%, respectively, for runoff and spray drift. Spray drift contributed over half of the mass loading during summer months. The slightly lower spray drift contribution as predicted by the modeling framework was mainly due to SWAT's under-prediction of pesticide mass loading during summer and over-prediction of the loading during winter. Although model simulations were associated with various sources of uncertainties, the overall performance of the modeling framework was satisfactory as evaluated by multiple statistics: for simulation of daily flow, the Nash-Sutcliffe Efficiency Coefficient (NSE) ranged from 0.61 to 0.74 and the percent bias (PBIAS) runoff in receiving waters and the design of management practices for mitigating pesticide exposure within a watershed. Published by Elsevier Ltd.

  1. Investigation of magnetic drift on transport of plasma across magnetic field

    International Nuclear Information System (INIS)

    Hazarika, Parismita; Chakraborty, Monojit; Das, Bidyut; Bandyopadhyay, Mainak

    2015-01-01

    When a metallic body is inserted inside plasma chamber it is always associated with sheath which depends on plasma and wall condition. The effect of sheath formed in the magnetic drift and magnetic field direction on cross field plasma transport has been investigated in a double Plasma device (DPD). The drifts exist inside the chamber in the transverse magnetic field (TMF) region in a direction perpendicular to both magnetic field direction and axis of the DPD chamber. The sheath are formed in the magnetic drift direction in the experimental chamber is due to the insertion of two metallic plates in these directions and in the magnetic field direction sheath is formed at the surface of the TMF channels. These metallic plates are inserted in order to obstruct the magnetic drift so that we can minimised the loss of plasma along drift direction and density in the target region is expected to increase due to the obstruction. It ultimately improves the negative ion formation parameters. The formation of sheath in the transverse magnetic field region is studied by applying electric field both parallel and antiparallel to drift direction. Data are acquired by Langmuir probe in source and target region of our chamber. (author)

  2. Drift-flux parameters for upward gas flow in stagnant liquid

    International Nuclear Information System (INIS)

    Kataoka, Yoshiyuki; Suzuki, Hiroaki; Murase, Michio

    1987-01-01

    The drift-flux model is widely used for gas-liquid two phase flow analysis, because it is applicable to various flow patterns and a wide range of void fractions. The drift-flux parameters for upward gas flow in stagnant liquid, however, have not been well examined. In this study, the distribution parameter C o and the drift velocity V gj for stagnant liquid were derived from the void fraction correlation and boundary conditions of drift-flux parameters, and then compared with C o and V gj for high liquid velocities. Also using the two region model where a circular flow area was divided into an inner region of cocurrent up-flow and an outer annulus region of liquid down flow, C o and V gj for stagnant liquid and for high liquid velocity were compared. The results showed that C o values for stagnant liquid were larger than values for high liquid velocity, while V gj values were almost the same for both cases. (author)

  3. Glass Polarization Induced Drift of a Closed-Loop Micro-Accelerometer

    Directory of Open Access Journals (Sweden)

    Wu Zhou

    2018-01-01

    Full Text Available The glass polarization effects were introduced in this paper to study the main cause of turn-on drift phenomenon of closed-loop micro-accelerometers. The glass substrate underneath the sensitive silicon structure underwent a polarizing process when the DC bias voltage was applied. The slow polarizing process induced an additional electrostatic field to continually drag the movable mass block from one position to another so that the sensing capacitance was changed, which led to an output drift of micro-accelerometers. This drift was indirectly tested by experiments and could be sharply reduced by a shielding layer deposited on the glass substrate because the extra electrical filed was prohibited from generating extra electrostatic forces on the movable fingers of the mass block. The experimental results indicate the average magnitude of drift decreased about 73%, from 3.69 to 0.99 mV. The conclusions proposed in this paper showed a meaningful guideline to improve the stability of micro-devices based on silicon-on-glass structures.

  4. Glass Polarization Induced Drift of a Closed-Loop Micro-Accelerometer.

    Science.gov (United States)

    Zhou, Wu; He, Jiangbo; Yu, Huijun; Peng, Bei; He, Xiaoping

    2018-01-20

    The glass polarization effects were introduced in this paper to study the main cause of turn-on drift phenomenon of closed-loop micro-accelerometers. The glass substrate underneath the sensitive silicon structure underwent a polarizing process when the DC bias voltage was applied. The slow polarizing process induced an additional electrostatic field to continually drag the movable mass block from one position to another so that the sensing capacitance was changed, which led to an output drift of micro-accelerometers. This drift was indirectly tested by experiments and could be sharply reduced by a shielding layer deposited on the glass substrate because the extra electrical filed was prohibited from generating extra electrostatic forces on the movable fingers of the mass block. The experimental results indicate the average magnitude of drift decreased about 73%, from 3.69 to 0.99 mV. The conclusions proposed in this paper showed a meaningful guideline to improve the stability of micro-devices based on silicon-on-glass structures.

  5. Dissipative-drift wave instability in the presence of impurity radiation

    International Nuclear Information System (INIS)

    Bharuthram, R.; Shukla, P.K.

    1992-01-01

    It is believed that electrostatic fluctuations in edge plasmas are usually triggered by micro and macroscopic plasma instabilities. The latter involve dissipative-drift waves as well as tearing and rippling modes in nonuniform plasmas. However, if the plasma edge contains impurity radiation, then the radiative condensation instability could be the cause of nonthermal fluctuations. The radiative condensation instabilities have been extensively investigated in a homogeneous plasma by many authors. The effect of equilibrium density and electron temperature inhomogeneities in the study of radiative condensation instabilities has been examined by Shukla and Yu. They found new drift-like modes driven by the combined effect of impurity radiation loss and the equilibrium density and temperature gradients. The analyses of Shukla and Yu is, however, limited to low-frequency, long wavelength collisionless drift waves. Since the edge plasma of toroidal devices is highly collisional, the results of collisionless theories cannot be directly applied to explain the origin of nonthermal fluctuations. In this paper, we study the influence of impurity radiation on the dissipative-drift wave instability in a collision-dominated nonuniform plasma embedded in a homogeneous magnetic field. (author) 6 refs

  6. Low Power Measurements on a Finger Drift Tube Linac

    CERN Document Server

    Schempp, A

    2004-01-01

    The efficiency of RFQs decreases at higher particle energies. The DTL structures used in this energy regions have a defocusing influence on the beam. To achieve a focusing effect, fingers with quadrupole symmetry were added to the drift tubes. Driven by the same power supply as the drift tubes, the fingers do not need an additional power source or feedthrough. Beam dynamics have been studied with PARMTEQ . Detailed analysis of the field distribution was done and the geometry of the finger array has been optimized with respect to beam dynamics. A spiral loaded cavity with finger drift tubes was built up and low power measurements were done. In this contribution, the results of the rf simulating with Microwave Studio are shown in comparison with bead pertubation measurement on a prototype cavity.

  7. Natural convection in tunnels at Yucca Mountain and impact on drift seepage

    Energy Technology Data Exchange (ETDEWEB)

    Halecky, N.; Birkholzer, J.T.; Peterson, P.

    2010-04-15

    The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock in the drift center to the drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water-induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity values, with reduced local seepage, form a more desirable waste package environment.

  8. Geomorphology and drift potential of major aeolian sand deposits in Egypt

    Science.gov (United States)

    Hereher, Mohamed E.

    2018-03-01

    Aeolian sand deposits cover a significant area of the Egyptian deserts. They are mostly found in the Western Desert and Northern Sinai. In order to understand the distribution, pattern and forms of sand dunes in these dune fields it is crucial to analyze the wind regimes throughout the sandy deserts of the country. Therefore, a set of wind data acquired from twelve meteorological stations were processed in order to determine the drift potential (DP), the resultant drift potential (RDP) and the resultant drift direction (RDD) of sand in each dune field. The study showed that the significant aeolian sand deposits occur in low-energy wind environments with the dominance of linear and transverse dunes. Regions of high-energy wind environments occur in the south of the country and exhibit evidence of deflation rather than accumulation with the occurrence of migratory crescentic dunes. Analysis of the sand drift potentials and their directions help us to interpret the formation of major sand seas in Egypt. The pattern of sand drift potential/direction suggests that the sands in these seas might be inherited from exogenous sources.

  9. Learning drifting concepts with neural networks

    NARCIS (Netherlands)

    Biehl, Michael; Schwarze, Holm

    1993-01-01

    The learning of time-dependent concepts with a neural network is studied analytically and numerically. The linearly separable target rule is represented by an N-vector, whose time dependence is modelled by a random or deterministic drift process. A single-layer network is trained online using

  10. Application of a drift-flux model to flashing in straight pipes

    International Nuclear Information System (INIS)

    Hirt, C.W.; Romero, N.C.

    1975-06-01

    A new computer program, SOLA-OF, has been written to solve the unsteady, two-dimensional equations of motion for a two-phase mixture. The equations solved are based on the drift-flux approximation and include a phase transition model and a general drift velocity calculation. The SOLA-DF code is used for a study of the blowdown of straight pipes initially filled with water at high temperature and pressure. Computed results are presented that show the relative importance of phase transition rates, pipe friction, drift velocity magnitude, and other model variations. The computed results are also compared with experimental data. 7 references. (auth)

  11. DRIFT-SCALE COUPLED PROCESSES (DST AND TH SEEPAGE) MODELS

    International Nuclear Information System (INIS)

    J.T. Birkholzer; S. Mukhopadhyay

    2005-01-01

    The purpose of this report is to document drift-scale modeling work performed to evaluate the thermal-hydrological (TH) behavior in Yucca Mountain fractured rock close to waste emplacement drifts. The heat generated by the decay of radioactive waste results in rock temperatures elevated from ambient for thousands of years after emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, giving rise to water redistribution and altered flow paths. The predictive simulations described in this report are intended to investigate fluid flow in the vicinity of an emplacement drift for a range of thermal loads. Understanding the TH coupled processes is important for the performance of the repository because the thermally driven water saturation changes affect the potential seepage of water into waste emplacement drifts. Seepage of water is important because if enough water gets into the emplacement drifts and comes into contact with any exposed radionuclides, it may then be possible for the radionuclides to be transported out of the drifts and to the groundwater below the drifts. For above-boiling rock temperatures, vaporization of percolating water in the fractured rock overlying the repository can provide an important barrier capability that greatly reduces (and possibly eliminates) the potential of water seeping into the emplacement drifts. In addition to this thermal process, water is inhibited from entering the drift opening by capillary forces, which occur under both ambient and thermal conditions (capillary barrier). The combined barrier capability of vaporization processes and capillary forces in the near-field rock during the thermal period of the repository is analyzed and discussed in this report

  12. Ultra-low mass drift chambers

    Science.gov (United States)

    Assiro, R.; Cappelli, L.; Cascella, M.; De Lorenzis, L.; Grancagnolo, F.; Ignatov, F.; L'Erario, A.; Maffezzoli, A.; Miccoli, A.; Onorato, G.; Perillo, M.; Piacentino, G.; Rella, S.; Rossetti, F.; Spedicato, M.; Tassielli, G.; Zavarise, G.

    2013-08-01

    We present a novel low mass drift chamber concept, developed in order to fulfill the stringent requirements imposed by the experiments for extremely rare processes, which require high resolutions (order of 100-200 keV/c) for particle momenta in a range (50-100 MeV/c) totally dominated by the multiple scattering contribution. We describe a geometry optimization procedure and a new wiring strategy with a feed-through-less wire anchoring system developed and tested on a drift chamber prototype under completion at INFN-Lecce .

  13. On stationary states of electron beams in drift space

    International Nuclear Information System (INIS)

    Kovalev, N.F.

    2002-01-01

    The article is devoted to studying the conditions of formation and existence of virtual cathodes. The problem on stationary states of the strongly magnetized electron beams in the homogeneous drift channels is discussed. The problem on the planar and coaxial moduli of the drift spaces is considered. The possibility of existing the virtual cathodes in the coaxial tubular beams by the injection currents, smaller than the threshold ones is highly proved. The inaccuracy of results of a number of works, studying the properties of the virtual cathodes in the strongly magnetized electron beams, is shown [ru

  14. Simulation study of time-walk issues for drift tubes

    International Nuclear Information System (INIS)

    Asano, Yuzo; Itoh, Setsuo; Mori, Shigeki; Ikeda, Hirokazu; Tanaka, Manobu.

    1991-01-01

    Time walk is evaluated for a drift tube of 2.9 cm in diameter filled with P10 gas, with an anode wire of 70 μm in diameter. Its magnitude, if the shaping is of Poisson type and a leading-edge discriminator is used, is found to be 2-10 ns when 50 % gain variation is allowed in the gas multiplication. On the other hand, the use of a constant fraction timing discriminator is expected to reduce this to the order of 0.1 ns. (author)

  15. Quantification of Stokes Drift as a Mechanism for Surface Oil Advection in the DWH Oil Spill

    Science.gov (United States)

    Clark, M.

    2013-12-01

    Stokes drift has previously been qualitatively shown to be a factor in ocean surface particle transport, but has never been comprehensively quantified. In addition, most operational ocean particle advection models used during the Deepwater Horizon oil spill do not explicitly account for Stokes drift, instead using a simple parameterization based on wind drift (or ignoring it completely). This research works to quantify Stokes drift via direct calculation, with a focus on shallow water, where Stokes drift is more likely to have a relatively large impact compared to other transport processes such as ocean currents. For this study, WaveWatch III modeled waves in the Gulf of Mexico are used, from which Stokes drift is calculated using the peak wave period and significant wave height outputs. Trajectories are also calculated to examine the role Stokes drift plays in bringing surface particles (and specifically surface oil slicks) onshore. The impact of Stokes drift is compared to transport by currents and traditional estimates of wind drift.

  16. Radiation stress and mean drift in continental shelf waves

    Science.gov (United States)

    Weber, Jan Erik H.; Drivdal, Magnus

    2012-03-01

    The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E̅̅ over the shelf region, the radiation stress tensor component S̅11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio S̅11/E̅ depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of latter depends on ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deepwater drilling accidents.

  17. Drifting Diaphyses: Asymmetry in Diametric Growth and Adaptation Along the Humeral and Femoral Length.

    Science.gov (United States)

    Maggiano, Isabel S; Maggiano, Corey M; Tiesler, Vera G; Chi-Keb, Julio R; Stout, Sam D

    2015-10-01

    This study quantifies regional histomorphological variation along the human humeral and femoral diaphysis in order to gain information on diaphyseal growth and modeling drift patterns. Three thin sections at 40, 50, and 60% bone length were prepared from a modern Mexican skeletal sample with known age and sex to give a longitudinal perspective on the drifting cortex (12 adults and juveniles total, 7 male and 5 female). Point-count techniques were applied across eight cross-sectional regions of interest using the starburst sampling pattern to quantify percent periosteal and endosteal primary lamellar bone at each diaphyseal level. The results of this study show a posterio-medial drift pattern in the humerus with a posterior rotational trend along the diaphysis. In the femur, we observed a consistent lateral to anteriolateral drift and an increase in primary lamellar bone area of both, periosteal and endosteal origin, towards the distal part of the diaphysis. These observations characterize drifting diaphyses in greater detail, raising important questions about how to resolve microscopic and macroscopic cross-sectional analysis towards a more complete understanding of bone growth and mechanical adaptation. Accounting for modeling drift has the potential to positively impact age and physical activity estimation, and explain some of the significant regional variation in bone histomorphology seen within (and between) bone cross-sections due to differing ages of tissue formation. More study is necessary, however, to discern between possible drift scenarios and characterize populational variation. © 2015 Wiley Periodicals, Inc.

  18. Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation

    DEFF Research Database (Denmark)

    Oliveto, Pietro S.; Witt, Carsten

    2011-01-01

    Drift analysis is a powerful tool used to bound the optimization time of evolutionary algorithms (EAs). Various previous works apply a drift theorem going back to Hajek in order to show exponential lower bounds on the optimization time of EAs. However, this drift theorem is tedious to read...... and to apply since it requires two bounds on the moment-generating (exponential) function of the drift. A recent work identifies a specialization of this drift theorem that is much easier to apply. Nevertheless, it is not as simple and not as general as possible. The present paper picks up Hajek’s line...

  19. Drift data of the sea-gravity meter (SL-2) installed on the R/V Hakurei-maru; `Hakureimaru` senjo jurokei (SL-2) no drift ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Joshima, M [Geological Survey of Japan, Tsukuba (Japan); Ishihara, T [Japan National Oil Corp., Tokyo (Japan)

    1996-05-01

    This paper reports a rapid change in the drift of a sea-gravity meter SL-2 after 1987 and after its modification in 1993. In order to confirm the accuracy of the sea-gravity meter of the Hakurei-maru, changes in the lapse of time were summarized on the relative gravity value at the Funabashi base and on the drift rate in each voyage. The drift rates in the case of departing from and returning to Funabashi base were all less than 0.1mgal/day except the first year of 1987, which was presumably due to the growing stability of the gravimeter. The drift value of 1992 was 0.05mgal/day, producing an error of only 2mgal without drift compensation at the end of a 40 day voyage. The gravimeter after the total renewal of the control part in 1993 produced a large drift in the direction opposite to the conventional drift. The cause of these phenomena was supposed to be some kind of change in the spring property during the gap of one year; this large drift seemed to be settling down after the elapse of approximately one year. 4 refs., 8 figs., 2 tabs.

  20. The properties of the cylindrical drift chambers of the CELLO detector

    International Nuclear Information System (INIS)

    Binder, U.

    1983-12-01

    In the present thesis the study of the properties of the cylindrical drift chamber of the CELLO interior detector by muons from the cosmic radiation is described. An iterative procedure for the parametrization of the timepath relation is presented. The numerical approximation obtained by means of this procedure deviated in all ranges of drift time by less than 50 μm from the experimentally determined, nonlinear time-path relation. The chamber properties were determined with and without magnetic fields: With an argon-ethane 50%/50% gas mixture a long plateau of the detection probabilities was reached. Without magnetic field by the drift chambers a mean spatial resolution of 170 μm was obtained. From the dependence of the spatial resolution from the drift path results that the drift chambers respond if the electrons from the first 2 to 3 primary ionizations reach the signal wire. The mean response probability of the drift chambers contributes to 97.5% and the overresponse probability to 3.6%. The mean spatial resolution in the magnetic field was determined by means of the chi 2 -distribution, it contributes to 170 μm. For the response probability the value of 98.3% was determined. The errors in the track parameters were determined by comparison of the cosmic ray tracks in the upper and lower half of the detector. (orig./HSI) [de

  1. Ultra-low mass drift chambers

    International Nuclear Information System (INIS)

    Assiro, R.; Cappelli, L.; Cascella, M.; De Lorenzis, L.; Grancagnolo, F.; Ignatov, F.; L'Erario, A.; Maffezzoli, A.; Miccoli, A.; Onorato, G.; Perillo, M.; Piacentino, G.; Rella, S.; Rossetti, F.; Spedicato, M.; Tassielli, G.

    2013-01-01

    We present a novel low mass drift chamber concept, developed in order to fulfill the stringent requirements imposed by the experiments for extremely rare processes, which require high resolutions (order of 100–200 keV/c) for particle momenta in a range (50–100 MeV/c) totally dominated by the multiple scattering contribution. We describe a geometry optimization procedure and a new wiring strategy with a feed-through-less wire anchoring system developed and tested on a drift chamber prototype under completion at INFN-Lecce

  2. Transient chaotic transport in dissipative drift motion

    Energy Technology Data Exchange (ETDEWEB)

    Oyarzabal, R.S. [Pós-Graduação em Ciências/Física, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Szezech, J.D. [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Batista, A.M., E-mail: antoniomarcosbatista@gmail.com [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Souza, S.L.T. de [Departamento de Física e Matemática, Universidade Federal de São João del Rei, 36420-000, Ouro Branco, MG (Brazil); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, 05315-970, São Paulo, SP (Brazil); Viana, R.L. [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR (Brazil); Sanjuán, M.A.F. [Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid (Spain)

    2016-04-22

    Highlights: • We consider a situation for which a chaotic transient is present in the dynamics of the two-wave model with damping. • The damping in plasma models can be a way for study a realistic behavior of confinement due the collisional effect. • The escape time as a function of the damping obey a power-law scaling. • We have made a qualitative transport analysis with a simple model that can be useful for more complete models. • We have shown that the pattern of the basin of attraction depends on the damping parameter. - Abstract: We investigate chaotic particle transport in magnetised plasmas with two electrostatic drift waves. Considering dissipation in the drift motion, we verify that the removed KAM surfaces originate periodic attractors with their corresponding basins of attraction. We show that the properties of the basins depend on the dissipation and the space-averaged escape time decays exponentially when the dissipation increases. We find positive finite time Lyapunov exponents in dissipative drift motion, consequently the trajectories exhibit transient chaotic transport. These features indicate how the transient plasma transport depends on the dissipation.

  3. Test of a high resolution drift chamber prototype

    International Nuclear Information System (INIS)

    Comminchau, V.; Deutschmann, M.; Draheim, K.J.; Fritze, P.; Hangarter, K.; Hawelka, P.; Herten, U.; Tonutti, M.; Anderhub, H.; Fehlmann, J.; Hofer, H.; Klein, M.; Paradiso, J.A.; Schreiber, J.; Viertel, G.

    1984-06-01

    The performance of a drift chamber prototype for a colliding beam vertex detector in a test beam at DESY is described. At one (two) atmosphere gas pressure a spatial resolution of 40 μm (30 μm) per wire for one cm drift length was achieved with a 100 MHz Flash-ADC system. An excellent double track resolution of better than 300 μm over the full drift length of 5 cm can be estimated. (orig.)

  4. In-Drift Precipitates/Salts Analysis

    International Nuclear Information System (INIS)

    Mariner, P.

    2001-01-01

    As directed by a written development plan (CRWMS M and O 1999a), an analysis of the effects of salts and precipitates on the repository chemical environment is to be developed and documented in an Analyses/Model Report (AMR). The purpose of this analysis is to assist Performance Assessment Operations (PAO) and the Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). The purpose of this ICN is to qualify and document qualification of the AMR's technical products. The scope of this document is to develop a model of the processes that govern salt precipitation and dissolution and resulting water composition in the Engineered Barrier System (EBS). This model is developed to serve as a basis for the in-drift geochemical modeling work performed by PAO and is to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. However, the concepts may also apply to some near and far field geochemical processes and can have conceptual application within the unsaturated zone and saturated zone transport modeling efforts. The intended use of the model developed in this report is to estimate, within an appropriate level of confidence, the pH, chloride concentration, and ionic strength of water on the drip shield or other location within the drift during the post-closure period. These estimates are based on evaporative processes that are subject to a broad range of potential environmental conditions and are independent of the presence or absence of backfill. An additional intended use is to estimate the environmental conditions required for complete vaporization of water. The presence and composition of liquid water

  5. In-Drift Precipitates/Salts Analysis

    Energy Technology Data Exchange (ETDEWEB)

    P. Mariner

    2001-01-10

    As directed by a written development plan (CRWMS M&O 1999a), an analysis of the effects of salts and precipitates on the repository chemical environment is to be developed and documented in an Analyses/Model Report (AMR). The purpose of this analysis is to assist Performance Assessment Operations (PAO) and the Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). The purpose of this ICN is to qualify and document qualification of the AMR's technical products. The scope of this document is to develop a model of the processes that govern salt precipitation and dissolution and resulting water composition in the Engineered Barrier System (EBS). This model is developed to serve as a basis for the in-drift geochemical modeling work performed by PAO and is to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. However, the concepts may also apply to some near and far field geochemical processes and can have conceptual application within the unsaturated zone and saturated zone transport modeling efforts. The intended use of the model developed in this report is to estimate, within an appropriate level of confidence, the pH, chloride concentration, and ionic strength of water on the drip shield or other location within the drift during the post-closure period. These estimates are based on evaporative processes that are subject to a broad range of potential environmental conditions and are independent of the presence or absence of backfill. An additional intended use is to estimate the environmental conditions required for complete vaporization of water. The presence and composition of liquid water

  6. Ageing studies for the ATLAS MDT muonchambers and development of a gas filter to prevent drift tube ageing

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, S.

    2008-01-15

    The muon spectrometer of the ATLAS detector, which is currently assembled at the LHC accelerator at CERN, uses drift tubes as basic detection elements over most of the solid angle. The performance of these monitored drift tubes (MDTs), in particular their spatial resolution of 80 {mu}m, determines the precision of the spectrometer. If ageing effects occur, the precision of the drift tubes will be degraded. Hence ageing effects have to be minimized or avoided altogether if possible. Even with a gas mixture of Ar:CO{sub 2}=93:7, which was selected for its good ageing properties, ageing effects were observed in test systems. They were caused by small amounts of impurities, in particular volatile silicon compounds. Systematic studies revealed the required impurity levels deteriorating the drift tubes to be well below 1 ppm. Many components of the ATLAS MDT gas system are supplied by industry. In a newly designed ageing experiment in Freiburg these components were validated for their use in ATLAS. With a fully assembled ATLAS gas distribution rack as test component ageing effects were observed. It was therefore decided to install gas filters in the gas distribution lines to remove volatile silicon compounds efficiently from the gas mixture. Finally a filter was designed that can adsorb up to 5.5 g of volatile silicon compounds, hereby reducing the impurities in the outlet gas mixture to less than 30 ppb. (orig.)

  7. Ageing studies for the ATLAS MDT muonchambers and development of a gas filter to prevent drift tube ageing

    International Nuclear Information System (INIS)

    Koenig, S.

    2008-01-01

    The muon spectrometer of the ATLAS detector, which is currently assembled at the LHC accelerator at CERN, uses drift tubes as basic detection elements over most of the solid angle. The performance of these monitored drift tubes (MDTs), in particular their spatial resolution of 80 μm, determines the precision of the spectrometer. If ageing effects occur, the precision of the drift tubes will be degraded. Hence ageing effects have to be minimized or avoided altogether if possible. Even with a gas mixture of Ar:CO 2 =93:7, which was selected for its good ageing properties, ageing effects were observed in test systems. They were caused by small amounts of impurities, in particular volatile silicon compounds. Systematic studies revealed the required impurity levels deteriorating the drift tubes to be well below 1 ppm. Many components of the ATLAS MDT gas system are supplied by industry. In a newly designed ageing experiment in Freiburg these components were validated for their use in ATLAS. With a fully assembled ATLAS gas distribution rack as test component ageing effects were observed. It was therefore decided to install gas filters in the gas distribution lines to remove volatile silicon compounds efficiently from the gas mixture. Finally a filter was designed that can adsorb up to 5.5 g of volatile silicon compounds, hereby reducing the impurities in the outlet gas mixture to less than 30 ppb. (orig.)

  8. Construction and test of a silicon drift chamber

    International Nuclear Information System (INIS)

    Holl, P.

    1985-06-01

    The present thesis presents the first fully applicable silicon detectors which work as drift chambers. Four different types of detectors were constructed. By a suitable geometry and electronic lay-out one- and two-dimensional position measurements were made possible. Chapter 2 describes function and construction of the detectors, chapter 3 their fabrication process. In chapter 4 construction and results of the test of a silicon drift chamber under laboratory conditions are described. By variation of the applied voltages the optimal operational conditions could be determined and material properties of the silicon, as for instance the electron mobility measured. A position resolution better than 5 μm at a drift length up to 4 mm was reached. Chapter 5 presents the results of the test of a silicon drift chamber under real experimental conditions in a particle beam of the super proton synchroton (SPS) of CERN. The best position resolution measured there is 10 μm. Chapter 6 summarizes the obtained results and discusses finally application possibilities and improvement proposals for silicon drift chambers. (orig./HSI) [de

  9. Extreme event statistics in a drifting Markov chain

    Science.gov (United States)

    Kindermann, Farina; Hohmann, Michael; Lausch, Tobias; Mayer, Daniel; Schmidt, Felix; Widera, Artur

    2017-07-01

    We analyze extreme event statistics of experimentally realized Markov chains with various drifts. Our Markov chains are individual trajectories of a single atom diffusing in a one-dimensional periodic potential. Based on more than 500 individual atomic traces we verify the applicability of the Sparre Andersen theorem to our system despite the presence of a drift. We present detailed analysis of four different rare-event statistics for our system: the distributions of extreme values, of record values, of extreme value occurrence in the chain, and of the number of records in the chain. We observe that, for our data, the shape of the extreme event distributions is dominated by the underlying exponential distance distribution extracted from the atomic traces. Furthermore, we find that even small drifts influence the statistics of extreme events and record values, which is supported by numerical simulations, and we identify cases in which the drift can be determined without information about the underlying random variable distributions. Our results facilitate the use of extreme event statistics as a signal for small drifts in correlated trajectories.

  10. Parametric decay of lower hybrid wave into drift waves

    International Nuclear Information System (INIS)

    Sanuki, Heiji.

    1976-12-01

    A dispersion relation describing the parametric decay of a lower hybrid wave into an electrostatic drift wave and a drift Alfven wave is derived for an inhomogeneous magnetized plasma. Particularly the stimulated scattering of a drift Alfven wave in such a plasma was investigated in detail. The resonance backscattering instability is found to yield the minimum threshold. (auth.)

  11. The Storm Time Evolution of the Ionospheric Disturbance Plasma Drifts

    Science.gov (United States)

    Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding; Kuai, Jiawei

    2017-11-01

    In this paper, we use the C/NOFS and ROCSAT-1 satellites observations to analyze the storm time evolution of the disturbance plasma drifts in a 24 h local time scale during three magnetic storms driven by long-lasting southward IMF Bz. The disturbance plasma drifts during the three storms present some common features in the periods dominated by the disturbance dynamo. The newly formed disturbance plasma drifts are upward and westward at night, and downward and eastward during daytime. Further, the disturbance plasma drifts are gradually evolved to present significant local time shifts. The westward disturbance plasma drifts gradually migrate from nightside to dayside. Meanwhile, the dayside downward disturbance plasma drifts become enhanced and shift to later local time. The local time shifts in disturbance plasma drifts are suggested to be mainly attributed to the evolution of the disturbance winds. The strong disturbance winds arisen around midnight can constantly corotate to later local time. At dayside the westward and equatorward disturbance winds can drive the F region dynamo to produce the poleward and westward polarization electric fields (or the westward and downward disturbance drifts). The present results indicate that the disturbance winds corotated to later local time can affect the local time features of the disturbance dynamo electric field.

  12. Loss Aversion Reflects Information Accumulation, Not Bias: A Drift-Diffusion Model Study.

    Science.gov (United States)

    Clay, Summer N; Clithero, John A; Harris, Alison M; Reed, Catherine L

    2017-01-01

    Defined as increased sensitivity to losses, loss aversion is often conceptualized as a cognitive bias. However, findings that loss aversion has an attentional or emotional regulation component suggest that it may instead reflect differences in information processing. To distinguish these alternatives, we applied the drift-diffusion model (DDM) to choice and response time (RT) data in a card gambling task with unknown risk distributions. Loss aversion was measured separately for each participant. Dividing the participants into terciles based on loss aversion estimates, we found that the most loss-averse group showed a significantly lower drift rate than the other two groups, indicating overall slower uptake of information. In contrast, neither the starting bias nor the threshold separation (barrier) varied by group, suggesting that decision thresholds are not affected by loss aversion. These results shed new light on the cognitive mechanisms underlying loss aversion, consistent with an account based on information accumulation.

  13. Linear theory of drift-tearing and interchange modes in a screw pinch

    International Nuclear Information System (INIS)

    Copenhaver, C.

    1978-04-01

    A drift dispersion relation, as applied to a resistive incompressible plasma in a screw pinch, is derived. This dispersion relation incorporates both drift-tearing and drift-interchange modes and is valid throughout the collisional regime by including kinetic theory factors. The dispersion relation reduces to the drift-tearing dispersion relation in the zero pressure gradient limit, and to the classical resistive dispersion relation in the zero drift limit. The electron temperature gradient instability is still present. Now, however, the introduction of the interchange-drift instability increases the growth rate further above the tearing-drift case. (orig.) [de

  14. Electron Drift Properties in High Pressure Gaseous Xenon

    Energy Technology Data Exchange (ETDEWEB)

    Simón, A.; et al.

    2018-04-05

    Gaseous time projection chambers (TPC) are a very attractive detector technology for particle tracking. Characterization of both drift velocity and diffusion is of great importance to correctly assess their tracking capabilities. NEXT-White is a High Pressure Xenon gas TPC with electroluminescent amplification, a 1:2 scale model of the future NEXT-100 detector, which will be dedicated to neutrinoless double beta decay searches. NEXT-White has been operating at Canfranc Underground Laboratory (LSC) since December 2016. The drift parameters have been measured using $^{83m}$Kr for a range of reduced drift fields at two different pressure regimes, namely 7.2 bar and 9.1 bar. The results have been compared with Magboltz simulations. Agreement at the 5% level or better has been found for drift velocity, longitudinal diffusion and transverse diffusion.

  15. Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas.

    Science.gov (United States)

    Kanu, Abu B; Hill, Herbert H

    2007-10-15

    This work demonstrated the potential of using a secondary drift gas of differing polarizability from the primary drift gas for confirmation of a positive response for drugs or explosives by ion mobility spectrometry (IMS). The gas phase mobilities of response ions for selected drugs and explosives were measured in four drift gases. The drift gases chosen for this study were air, nitrogen, carbon dioxide and nitrous oxide providing a range of polarizability and molecular weights. Four other drift gases (helium, neon, argon and sulfur hexafluoride) were also investigated but design limitations of the commercial instrument prevented their use for this application. When ion mobility was plotted against drift gas polarizability, the resulting slopes were often unique for individual ions, indicating that selectivity factors between any two analytes varied with the choice of drift gas. In some cases, drugs like THC and heroin, which are unresolved in air or nitrogen, were well resolved in carbon dioxide or nitrous oxide.

  16. Correcting sample drift using Fourier harmonics.

    Science.gov (United States)

    Bárcena-González, G; Guerrero-Lebrero, M P; Guerrero, E; Reyes, D F; Braza, V; Yañez, A; Nuñez-Moraleda, B; González, D; Galindo, P L

    2018-07-01

    During image acquisition of crystalline materials by high-resolution scanning transmission electron microscopy, the sample drift could lead to distortions and shears that hinder their quantitative analysis and characterization. In order to measure and correct this effect, several authors have proposed different methodologies making use of series of images. In this work, we introduce a methodology to determine the drift angle via Fourier analysis by using a single image based on the measurements between the angles of the second Fourier harmonics in different quadrants. Two different approaches, that are independent of the angle of acquisition of the image, are evaluated. In addition, our results demonstrate that the determination of the drift angle is more accurate by using the measurements of non-consecutive quadrants when the angle of acquisition is an odd multiple of 45°. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. STUDY OF THE IMPACT OF THERMAL DRIFT ON RELIABILITY OF PRESSURE SENSORS

    Directory of Open Access Journals (Sweden)

    ABDELAZIZ BEDDIAF

    2017-10-01

    Full Text Available Piezoresistive pressure sensors, using a Wheatstone bridge with the piezoresistors, are typically supplied with a voltage ranging from 3 to 10 V involve thermal drift caused by Joule heating. In this paper, an accurate numerical model for optimization and predicting the thermal drift in piezoresistive pressure sensors due to the electric heater in its piezoresistors is adopted. In this case, by using the solution of 2D heat transfer equation considering Joule heating in Cartesian coordinates for the transient regime, we determine how the temperature affects the sensor when the supply voltage is applied. For this, the elevation of temperature due to the Joule heating has been calculated for various values of supply voltage and for several operating times of the sensor; by varying different geometrical parameters. Otherwise, the variation of the coefficient 44 in p-Si and pressure sensitivity as a function of the applied potential, as well as, for various times, for different dimensions of the device, have been also established. It is observed that the electrical heating leads to an important temperature rise in the piezoresistor. Consequently, it causes drift in the pressure sensitivity of the sensor upon application of a voltage. Finally, this work allows us to evaluate the reliability of sensors. Also, it permits to predict their behaviour against temperature due to the application of a voltage of a bridge and to minimize this effect by optimizing the geometrical parameters of the sensor and by reducing the supply voltage.

  18. The modulation of galactic cosmic rays as described by a three-dimensional drift model

    International Nuclear Information System (INIS)

    Potgieter, M.S.

    1984-01-01

    An outline of the present state of knowledge about the effect of drift on the modulation of galactic cosmic rays is given. Various observations related to the reversal of the solar magnetic field polarity are discussed. Comprehensive numerical solutions of the steady-state cosmic-ray transport equation in an axially-symmetric three-dimensional heliosphere, including drift are presented. This is an extention of the continuing effort of the past six years to understand the effect and importance of drift on the transport of galactic cosmic rays in the heliosphere. A flat neutral sheet which coincides with the equatorial plane is assumed. A general method of calculating the drift velocity in the neutral sheet including that used previously by other authors is presented. The effect of changing various modulation parameters on the drift solutions are illustrated in detail. The real significance of drift is illustrated by using Gaussian input spectra on the modulation boundary. A carefully selected set of modulation parameters is used to illustrate to what extent a drift model can explain prominent observational features. It is concluded that drift is important in in the process of cosmic-ray transport and must as such be considered in all modulation studies, but that it is not overwhelmingly dominant as previously anticipated

  19. Effects of repeated insecticide pulses on macroinvertebrate drift in indoor stream mesocosms.

    Science.gov (United States)

    Berghahn, Rüdiger; Mohr, Silvia; Hübner, Verena; Schmiediche, Ronny; Schmiedling, Ina; Svetich-Will, Erkki; Schmidt, Ralf

    2012-10-15

    Pesticide contaminations via run-off or spray drift have been reported to result in the mass drift of macroinvertebrates as well as causing structural and functional changes of the corresponding stream sections. However, pesticide pulses in the field are associated with sudden increases in flow velocity, water turbidity, and changes in water temperature, which can also induce drift. Only through replicated community testing under highly controlled conditions can these effects be disentangled. In a stream mesocosm study, 12-h pulses of 12 μg/L imidacloprid were set three times at weekly intervals and are considered a "pulse series". Two pulse series of this neonicotinoid insecticide were run in both spring and summer with 4 treatment and 4 control stream mesocosms used in each pulse series. Prior to the start of the mesocosm experiment, both pulse concentration and duration had been screened for drift responses in larval Baetidae, Chironomidae and adult Gammarus roeseli in laboratory experiments. In the subsequent mesocosm study, each pulse caused a pronounced increase in the drift of insect larvae and gammarids. The drift response was taxon-specific, which was related to preferred habitat and exposure to other stressors like current velocity, in addition to imidacloprid sensitivity. Activity measurements employing a Multispecies Freshwater Biomonitor(®) revealed that in Baetis sp. the diurnal activity pattern became more pronounced even 12h after the pulse though with slightly decreased mean physical activity. Adult G. roeseli showed a drastic pulse by pulse decrease in physical activity which after the 3rd pulse lasted longer than 24h. In conclusion, drift is a sensitive, ecologically relevant endpoint and should be regarded when a specific risk assessment for lotic surface waters is done, e.g. in the context of a spatially explicit risk assessment. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. A drift chamber constructed of aluminized mylar tubes

    Science.gov (United States)

    Baringer, P.; Jung, C.; Ogren, H. O.; Rust, D. R.

    1987-03-01

    A thin reliable drift chamber has been constructed to be used near the interaction point of the PEP storage ring in the HRS detector. It is composed of individual drift tubes with aluminized mylar walls.

  1. Silicon drift detectors, present and future prospects

    Science.gov (United States)

    Takahashi, J.; Bellwied, R.; Beuttenmuller, R.; Caines, H.; Chen, W.; Dyke, H.; Hoffmann, G. W.; Humanic, T.; Kotov, I.; Kuczewski, P.; Leonhardt, W.; Li, Z.; Lynn, D.; Minor, R.; Munhoz, M.; Ott, G.; Pandey, S. U.; Schambach, J.; Soja, R.; Sugarbaker, E.; Willson, R. M.

    2001-04-01

    Silicon drift detectors provide unambiguous two-dimensional position information for charged particle detection with a single detector layer. A large area silicon drift detector was developed for the inner tracking detector of the STAR experiment at RHIC. In this paper, we discuss the lessons learned and the future prospects of this technology.

  2. The F-Region Equatorial Ionospheric Electrodynamics Drifts ...

    African Journals Online (AJOL)

    The ionospheric plasma drift is one of the most essential parameters for understanding the dynamics of ionospheric F-region. F-region electromagnetic drifts are calculated for three seasonal conditions from ionosonde observations acquired during quiet period of a typical year of high and low solar activity at Ibadan (7.4oN, ...

  3. Study on the fabrication of Al matrix composites strengthened by combined in-situ alumina particle and in-situ alloying elements

    International Nuclear Information System (INIS)

    Huang Zanjun; Yang Bin; Cui Hua; Zhang Jishan

    2003-01-01

    A new idea to fabricate aluminum matrix composites strengthened by combined in-situ particle strengthening and in-situ alloying has been proposed. Following the concept of in-situ alloying and in-situ particle strengthening, aluminum matrix composites reinforced by Cu and α-Al 2 O 3 particulate (material I) and the same matrix reinforced by Cu, Si alloying elements and α-Al 2 O 3 particulate (material II) have been obtained. SEM observation, EDS and XRD analysis show that the alloy elements Cu and Si exist in the two materials, respectively. In-situ Al 2 O 3 particulates are generally spherical and their mean size is less than 0.5 μm. TEM observation shows that the in-situ α-Al 2 O 3 particulates have a good cohesion with the matrix. The reaction mechanism of the Al 2 O 3 particulate obtained by this method was studied. Thermodynamic considerations are given to the in-situ reactions and the distribution characteristic of in-situ the α-Al 2 O 3 particulate in the process of solidification is also discussed

  4. Micro Loudspeaker Behaviour versus 6½" Driver, Micro Loudspeaker Parameter Drift

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde

    2010-01-01

    This study tested micro loudspeaker behavior from the perspective of loudspeaker parameter drift. The main difference between traditional transducers and micro loudspeakers, apart from their size, is their suspension construction. The suspension generally is a loudspeaker's most unstable parameter......, and the study investigated temperature drift and signal dependency. There is investigated three different micro loudspeakers and compared their behavior to that of a typical bass mid-range loudspeaker unit. There is measured all linear loudspeaker parameters at different temperatures....

  5. A drift chamber constructed of aluminized mylar tubes

    International Nuclear Information System (INIS)

    Baringer, P.; Jung, C.; Ogren, H.O.; Rust, D.R.

    1987-01-01

    A thin reliable drift chamber has been constructed to be used near the interaction point of the PEP storage ring in the HRS detector. It is composed of individual drift tubes with aluminized mylar walls. (orig.)

  6. Electrochemical studies, in-situ and ex-situ characterizations of different manganese compounds electrodeposited in aerated solutions

    International Nuclear Information System (INIS)

    Peulon, S.; Lacroix, A.; Chausse, A.; Larabi-Gruet, N.

    2007-01-01

    This work deals with the electrodeposition of manganese compounds. A systematic study of the synthesis experimental conditions has been carried out, and the obtained depositions have been characterized by different ex-situ analyses methods (XRD, FTIR, SEM). The in-situ measurements of mass increase with a quartz microbalance during the syntheses have allowed to estimate the growth mechanisms which are in agreement with the ex-situ characterizations. The cation has an important role in the nature of the electrodeposited compounds. In presence of sodium, a mixed lamellar compound Mn(III)/Mn(IV), the birnessite, is deposited, whereas in presence of potassium, bixbyite is formed (Mn 2 O 3 ), these two compounds having a main role in the environment. The substrate can also influence the nature of the formed intermediary compounds. Little studied compounds such as feitkneichtite (β-MnOOH) and groutite (α-MnOOH) have been revealed. (O.M.)

  7. Study on collapse mechanism of junction between greatly deeper shaft and horizontal drifts (Contract research)

    International Nuclear Information System (INIS)

    Kurosaki, Yukio; Yamachi, Hiroshi; Katsunuma, Yoshio; Nakata, Masao; Kuwahara, Hideki; Yamada, Fumitaka; Matsushita, Kiyoshi; Sato, Toshinori

    2008-03-01

    The Mizunami underground research laboratory is planned to consist of greatly deeper shaft and horizontal drifts. A junction space between a greatly deeper shaft and horizontal drifts forms which would take a complicated mechanical behavior during a junction excavation. However, a quantitative design method of supporting measures for a deep junction has not yet been established. This is because a conventional shaft design has been conducted based on past experience. Detail records have not been left either in what kind of collapses and deformed phenomena occurring in shaft constructions in a past. In order to examine a collapse mechanism of greatly deeper shaft junction, we have conducted literature surveys and interview studies concerned with deep shaft construction works in a past, and investigated what collapses or difficulties had been occurred in deep shaft junctions. Considering the results of investigations with reviews of intellectuals, a collapse mechanism of a super deep shaft junction depends on both a construction procedure of shaft junction and a geological condition at great depth. During a construction of a shaft junction, stress state of rock masses near junction wall would take a complicated stress path. Especially, it should be necessary to take a most careful consideration on that tangential stress acted around a shaft wall may reduce during horizontal drift excavation. On the other hand, where greatly deeper junction intersects faults and/or fractures with a large angle, a collapse called 'Take-nuke' may occur or extraordinary earth pressure acts on a concrete wall. This is the most typical difficulties during shaft construction. In order to recognize a mechanism of these phenomena and to find out a cause of collapse generation, numerical studies that can simulate a practical rock mass behavior around a shaft junction should be carry out. We demonstrate the finite difference method is most adequate for these simulations with intellectual review

  8. Ionospheric drift measurements on an array of six aerials

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V; Rai, R K

    1976-03-01

    Fading records were obtained using an array of six receiving aerials. A full correlation method of analysis was applied to estimate the drift and anisotropy parameters of the diffraction pattern. A study of simultaneous observations by triangles of different sizes and orientations leads to the conclusion that on an average, the larger triangle gives slightly higher values for the true drift speed and pattern size and slightly lower value for the random velocity. Also the major axis of the correlation ellipse exhibits a tendency for alignment along the largest side of the triangle.

  9. Study of properties of helium-based gas mixtures for use of low momentum and high precision measurement in drift chambers

    International Nuclear Information System (INIS)

    Chen Chang; Zhang Qinjian; Ma Jimao; Huang Xiuping; Yi Kai; Zheng Shuchen

    1998-01-01

    Measured drift velocities using an uniform field drift chamber and multiplication factors obtained with proportional tubes in He-based gas mixtures He + CH 4 (80/20, 70/30) and He + iC 4 H 10 (85/15, 80/20, 70/30) are reported. The results are good agreement with calculations by Garfield Code. The Saturated drift velocity is V d ≅ 2.7 cm/μs and multiplication factor of M ≅ 10 4 -10 5 at certain working voltage is manageable in He/CH 4 (80/20) gas mixture, and it is good candidate of working gas for use of low momentum and high precision measurement in the drift chambers

  10. Hole drift mobility in poly(hexylphenylsilane)

    International Nuclear Information System (INIS)

    Kunimi, Y.; Seki, S.; Tagawa, S.

    2000-01-01

    Poly(n-alkylphenylsilane)s in which n-alkyl were changed from methyl to octyl were polymerized. Hole transport properties of poly(alkyllphenylsilane)s were systematically studied by the DC time-of-flight (TOF) technique. While the hole drift mobility of poly(methylphenylsilane) increased monotonously in entire field, those of poly(hexylphenylsilane) and poly(octylphenylsilane) decreased with increase in the field strength. Temperature dependence of hole drift mobility in those polymers was small. On the basis of Baessler's disorder formalism the mobility was analyzed quantitatively to disserve complex contributions of charge transport. The analyzed results indicated that with increase in the length of n-alkyl side-groups, the energetic disorder of hopping sites became smaller and the disorder of distance between hopping sites became larger. These results were supported by the results obtained by UV absorption measurement and positron annihilation life-time spectroscopy measurement. (author)

  11. Construction and operation of a drift-collection calorimeter

    International Nuclear Information System (INIS)

    Ambats, I.; Ayres, D.S.; Dawson, J.W.

    1984-01-01

    Large areas planar drift chambers with long drift distance (up to 50 cm) have been developed for possible use in the new Soudan 2 nucleon decay detector. Design goals included fine sampling to determine the topology of complex events with several low-energy tracks. The large scale of the experiment (> 1000 metric tons) required large area inexpensive chambers, which also had good position resolution and multi-track separation. The chambers were to be installed between thin sheets of steel to form a finegrained detector. A second goal was the sampling of dE/dx with each position measurement, in order to determine the direction and particle identity of each track. In this paper we report on the construction and operation of a prototype dectector consisting of 50 chambers, separated by 3 mm-thick steel plates. Readout of drift time and pulse height from anode wires and an orthogonal grid of bussed cathode pads utilized 6-bit flash ADC's. This application of the drift-collection calorimeter technique to a nucleon decay detector follows the investigation by a number of groups of calorimeters for high energy detectors based on long drifting

  12. On the Nocturnal Downward and Westward Equatorial Ionospheric Plasma Drifts During the 17 March 2015 Geomagnetic Storm

    Science.gov (United States)

    Bagiya, Mala S.; Vichare, Geeta; Sinha, A. K.; Sripathi, S.

    2018-02-01

    During quiet period, the nocturnal equatorial ionospheric plasma drifts eastward in the zonal direction and downward in the vertical direction. This quiet time drift pattern could be understood through dynamo processes in the nighttime equatorial ionosphere. The present case study reports the nocturnal simultaneous occurrence of the vertically downward and zonally westward plasma drifts over the Indian latitudes during the geomagnetic storm of 17 March 2015. After 17:00 UT ( 22:10 local time), the vertical plasma drift became downward and coincided with the westward zonal drift, a rarely observed feature of low latitude plasma drifts. The vertical drift turned upward after 18:00 UT, while the zonal drift became eastward. We mainly emphasize here the distinct bipolar type variations of vertical and zonal plasma drifts observed around 18:00 UT. We explain the vertical plasma drift in terms of the competing effects between the storm time prompt penetration and disturbance dynamo electric fields. Whereas, the westward drift is attributed to the storm time local electrodynamical changes mainly through the disturbance dynamo field in addition to the vertical Pedersen current arising from the spatial (longitudinal) gradient of the field aligned Pedersen conductivity.

  13. Suspended sediment drift and dispersion at Hibernia

    International Nuclear Information System (INIS)

    Tedford, T.; Drozdowski, A.; Hannah, C.G.

    2003-01-01

    Surface water waves and near-bottom currents around the Hibernia oil production platform on the Grand Banks of Newfoundland were examined to determine how the different seasons affect changes in wave magnitude and directions of water currents. Wave observations revealed a strong correlation with seasons, with the larger waves occurring in fall and early winter. There was no obvious seasonality in the size or direction of currents. The benthic boundary layer transport (BBLT) model was used to predict the drift and dispersion pathways of suspended drilling muds discharged from the Hibernia platform. The 2-year study from March 1998 to May 2000 involved 5-day BBLT model simulations covering the complete period of current meter deployment. The study focused on the sensitivity of the drift and dispersion to variability in the physical environment and uncertainty in the bottom stress calculation and particle settling velocity. The BBLT model incorporates a stress dependent particle settling velocity that includes the main features of the flocculations of drill mud fines under marine conditions. The study provides a better understanding of how drill mud concentration levels can change with variations in waves, currents, and bottom stress. It was determined that drift is generally oriented along the northwest/southeast axis, with a typical magnitude of 0.8 cm/sec for the fast settling velocity and 3.1 cm/sec for the slow settling velocity. It was concluded that near-surface or mid-depth discharges of drilling mud in the summer may not reach the sea floor. 17 refs., 13 tabs., 36 figs

  14. OpenDrift v1.0: a generic framework for trajectory modelling

    Science.gov (United States)

    Dagestad, Knut-Frode; Röhrs, Johannes; Breivik, Øyvind; Ådlandsvik, Bjørn

    2018-04-01

    OpenDrift is an open-source Python-based framework for Lagrangian particle modelling under development at the Norwegian Meteorological Institute with contributions from the wider scientific community. The framework is highly generic and modular, and is designed to be used for any type of drift calculations in the ocean or atmosphere. A specific module within the OpenDrift framework corresponds to a Lagrangian particle model in the traditional sense. A number of modules have already been developed, including an oil drift module, a stochastic search-and-rescue module, a pelagic egg module, and a basic module for atmospheric drift. The framework allows for the ingestion of an unspecified number of forcing fields (scalar and vectorial) from various sources, including Eulerian ocean, atmosphere and wave models, but also measurements or a priori values for the same variables. A basic backtracking mechanism is inherent, using sign reversal of the total displacement vector and negative time stepping. OpenDrift is fast and simple to set up and use on Linux, Mac and Windows environments, and can be used with minimal or no Python experience. It is designed for flexibility, and researchers may easily adapt or write modules for their specific purpose. OpenDrift is also designed for performance, and simulations with millions of particles may be performed on a laptop. Further, OpenDrift is designed for robustness and is in daily operational use for emergency preparedness modelling (oil drift, search and rescue, and drifting ships) at the Norwegian Meteorological Institute.

  15. Radiation aging studies of CO2 hydrocarbon mixtures for the SLD drift chamber

    International Nuclear Information System (INIS)

    Venuti, J.P.; Chadwick, G.B.

    1988-10-01

    The SLD drift chamber requires a 'slow' drifting gas and low diffusion to allow wave form digitization. CO 2 provides this but requires an admixture of a quencher to provide more gain. A test chamber with an 8 sense wire cell, such as will appear in the final chamber, was exposed to an x-ray tube while containing a variety of binary admixtures of Co 2 : 8% isobutane, 8% ethane, and 2% isopropanol. It was determined that adding small fractions of water (≤0.66%) or isopropanol (1--2%) to the Co 2 : 8% ethane, or 8% isobutane extended the useful life of the chamber so that integrated charge collections of /approximately/1 C/cm are permissible. Results and discussions are presented. 10 refs., 7 figs., 1 tab

  16. Collisional drift waves in the H-mode edge

    International Nuclear Information System (INIS)

    Sen, S.

    1994-01-01

    The stability of the collisional drift wave in a sheared slab geometry is found to be severely restricted at the H-mode edge plasma due to the very steep density gradient. However, a radially varying transverse velocity field is found to play the key role in stability. Velocity profiles usually found in the H-mode plasma stabilize drift waves. On the other hand, velocity profiles corresponding to the L-mode render collisional drift waves unstable even though the magnetic shear continues to play its stabilizing role. (author). 24 refs

  17. Electromagnetic drift modes in an inhomogeneous electron gas

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    A pair of nonlinear equations is derived which describes the dynamics of the electromagnetic drift oscillations in a nonuniform magnetized electron gas. It is shown that the nonlinear electromagnetic drift modes can propagate in the form of dipole vortices...

  18. Loss Aversion Reflects Information Accumulation, Not Bias: A Drift-Diffusion Model Study

    Directory of Open Access Journals (Sweden)

    Summer N. Clay

    2017-10-01

    Full Text Available Defined as increased sensitivity to losses, loss aversion is often conceptualized as a cognitive bias. However, findings that loss aversion has an attentional or emotional regulation component suggest that it may instead reflect differences in information processing. To distinguish these alternatives, we applied the drift-diffusion model (DDM to choice and response time (RT data in a card gambling task with unknown risk distributions. Loss aversion was measured separately for each participant. Dividing the participants into terciles based on loss aversion estimates, we found that the most loss-averse group showed a significantly lower drift rate than the other two groups, indicating overall slower uptake of information. In contrast, neither the starting bias nor the threshold separation (barrier varied by group, suggesting that decision thresholds are not affected by loss aversion. These results shed new light on the cognitive mechanisms underlying loss aversion, consistent with an account based on information accumulation.

  19. Strange Attractors in Drift Wave Turbulence

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2003-01-01

    A multi-grid part-in-cell algorithm for a shearless slab drift wave model with kinetic electrons is presented. The algorithm, which is based on an exact separation of adiabatic and nonadiabatic electron responses, is used to investigate the presence of strange attractors in drift wave turbulence. Although the simulation model has a large number of degrees of freedom, it is found that the strange attractor is low-dimensional and that it is strongly affected by dissipative (collisional) effects

  20. The drift velocity monitoring system of the CMS barrel muon chambers

    CERN Document Server

    Altenhoefer, Georg Friedrich; Heidemann, Carsten Andreas; Reithler, Hans; Sonnenschein, Lars; Teyssier, Daniel Francois

    2017-01-01

    The drift velocity is a key parameter of drift chambers. Its value depends on several parameters: electric field, pressure, temperature, gas mixture, and contamination, for example, by ambient air. A dedicated Velocity Drift Chamber (VDC) with 1-L volume has been built at the III. Phys. Institute A, RWTH Aachen, in order to monitor the drift velocity of all CMS barrel muon Drift Tube chambers. A system of six VDCs was installed at CMS and has been running since January 2011. We present the VDC monitoring system, its principle of operation, and measurements performed.

  1. The drift velocity monitoring system of the CMS barrel muon chambers

    Science.gov (United States)

    Altenhöfer, Georg; Hebbeker, Thomas; Heidemann, Carsten; Reithler, Hans; Sonnenschein, Lars; Teyssier, Daniel

    2018-04-01

    The drift velocity is a key parameter of drift chambers. Its value depends on several parameters: electric field, pressure, temperature, gas mixture, and contamination, for example, by ambient air. A dedicated Velocity Drift Chamber (VDC) with 1-L volume has been built at the III. Phys. Institute A, RWTH Aachen, in order to monitor the drift velocity of all CMS barrel muon Drift Tube chambers. A system of six VDCs was installed at CMS and has been running since January 2011. We present the VDC monitoring system, its principle of operation, and measurements performed.

  2. On the inward drift of runaway electrons during the plateau phase of runaway current

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Di, E-mail: hudi-2@pku.edu.cn [School of Physics, Peking University, Beijing 100871 (China); Qin, Hong [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08540 (United States); School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-03-15

    The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrange equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. This indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase.

  3. Spatial and temporal variations of Cocconeis placentula var. euglypta (Ehrenb. 1854 Grunow, 1884 in drift and periphyton

    Directory of Open Access Journals (Sweden)

    EN. Gari

    Full Text Available Spatial and temporal variations of Cocconeis placentula var. euglypta in drift and periphyton were studied in mountain streams of the Córdoba Province (Argentina. The sampling program was conducted in study sites located on a confluence between different order streams during an annual cycle. Samples were also taken every two hours during the daylight period in high and low water conditions. The relationship between drift and cellular reproduction was evaluated by valve length biometrics analysis. C. placentula var. euglypta drift was continuous; its density was not always dependent on periphyton density in each locality. C. placentula var. euglypta drift could be related to abiotic factors such as temperature and flow during the annual cycle. There were significant differences between periphyton and drift valve lengths. Moreover, drift can be associated with cellular reproduction because density was higher when valve lengths were shorter at different hours of the day. C. placentula var. euglypta epiphytims on Cladophora glomerata also influenced drift density and size distribution, modifying the relationship between periphyton and drift during the late spring when C. placentula var. euglypta was detached from senescent mats.

  4. MALDI-TOF Baseline Drift Removal Using Stochastic Bernstein Approximation

    Directory of Open Access Journals (Sweden)

    Howard Daniel

    2006-01-01

    Full Text Available Stochastic Bernstein (SB approximation can tackle the problem of baseline drift correction of instrumentation data. This is demonstrated for spectral data: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF data. Two SB schemes for removing the baseline drift are presented: iterative and direct. Following an explanation of the origin of the MALDI-TOF baseline drift that sheds light on the inherent difficulty of its removal by chemical means, SB baseline drift removal is illustrated for both proteomics and genomics MALDI-TOF data sets. SB is an elegant signal processing method to obtain a numerically straightforward baseline shift removal method as it includes a free parameter that can be optimized for different baseline drift removal applications. Therefore, research that determines putative biomarkers from the spectral data might benefit from a sensitivity analysis to the underlying spectral measurement that is made possible by varying the SB free parameter. This can be manually tuned (for constant or tuned with evolutionary computation (for .

  5. Dimethylether: a low velocity, low diffusion drift chamber gas

    International Nuclear Information System (INIS)

    Villa, F.

    1983-01-01

    There are two main motivations to look for a low electron mobility gas: the first is that a low drift velocity relaxes the need to measure drift times with nanosecond (or even subnanosecond) precision; the second is that (in an ideal drift geometry), the capability of resolving two closely spaced tracks depends upon the ratio of electron mobility to ion mobility μ/sub e//μ/sub i/. Since μ/sub i/ is rather constant, the way to separate two tracks is to slow down the electrons. Many other properties are required besides low mobility and low drifting electron temperature: the gas should have a large (> 10 3 ) stable gain; it must be chemically stable and not oxic; it should not attack materials commonly used to fabricate drift chambers, etc. With these requirements in mind, we have tried a few promising (on paper) gases, either pure or in admixture with Argon. One of the gases examined, dimethylether [(CH 3 ) 2 )], has shown interesting characteristics

  6. In-Situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes

    Science.gov (United States)

    2010-12-28

    DATES COVERED (From - To) 1/29/10-9/30/10 4. TITLE AND SUBTITLE In situ optical studies of oxidation/reduction kinetics on SOFC cermet anodes 5a...0572 In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Department of Chemistry and Biochemistry Montana State University...of Research In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Principal Investigator Robert Walker Organization

  7. Investigation of long drift chambers for a nucleon-decay detector

    International Nuclear Information System (INIS)

    Price, L.E.; Dawson, J.; Ayres, D.; Denis, R.S.

    1981-01-01

    The use of long drift chambers for a nucleon-decay detector is discussed as a means of achieving a detector with very fine tracking, but with a modest number of readout channels. Strategies for reducing the attenuation of drifting electrons are considered, particularly the necessity of shaping the electric field to reduce the effects of diffusion and of nearby grounded conductors. Measured results are presented for a chamber with 1 cm drift gap and 50 cm maximum drift distance. The measured attenuation is 12%

  8. SYSTEMS SAFETY ANALYSIS FOR FIRE EVENTS ASSOCIATED WITH THE ECRB CROSS DRIFT

    International Nuclear Information System (INIS)

    R. J. Garrett

    2001-01-01

    The purpose of this analysis is to systematically identify and evaluate fire hazards related to the Yucca Mountain Site Characterization Project (YMP) Enhanced Characterization of the Repository Block (ECRB) East-West Cross Drift (commonly referred to as the ECRB Cross-Drift). This analysis builds upon prior Exploratory Studies Facility (ESF) System Safety Analyses and incorporates Topopah Springs (TS) Main Drift fire scenarios and ECRB Cross-Drift fire scenarios. Accident scenarios involving the fires in the Main Drift and the ECRB Cross-Drift were previously evaluated in ''Topopah Springs Main Drift System Safety Analysis'' (CRWMS M and O 1995) and the ''Yucca Mountain Site Characterization Project East-West Drift System Safety Analysis'' (CRWMS M and O 1998). In addition to listing required mitigation/control features, this analysis identifies the potential need for procedures and training as part of defense-in-depth mitigation/control features. The inclusion of this information in the System Safety Analysis (SSA) is intended to assist the organization(s) (e.g., Construction, Environmental Safety and Health, Design) responsible for these aspects of the ECRB Cross-Drift in developing mitigation/control features for fire events, including Emergency Refuge Station(s). This SSA was prepared, in part, in response to Condition/Issue Identification and Reporting/Resolution System (CIRS) item 1966. The SSA is an integral part of the systems engineering process, whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach is used which incorporates operating experiences and recommendations from vendors, the constructor and the operating contractor. The risk assessment in this analysis characterizes the scenarios associated with fires in terms of relative risk and includes recommendations for mitigating all identified hazards. The priority for recommending and implementing mitigation control features is: (1) Incorporate

  9. Nonlinear excitation of geodesic acoustic modes by drift waves

    International Nuclear Information System (INIS)

    Chakrabarti, N.; Singh, R.; Kaw, P. K.; Guzdar, P. N.

    2007-01-01

    In this paper, two mode-coupling analyses for the nonlinear excitation of the geodesic acoustic modes (GAMs) in tokamak plasmas by drift waves are presented. The first approach is a coherent parametric process, which leads to a three-wave resonant interaction. This investigation allows for the drift waves and the GAMs to have comparable scales. The second approach uses the wave-kinetic equations for the drift waves, which then couples to the GAMs. This requires that the GAM scale length be large compared to the wave packet associated with the drift waves. The resonance conditions for these two cases lead to specific predictions of the radial wave number of the excited GAMs

  10. Drift tube suspension for high intensity linear accelerators

    International Nuclear Information System (INIS)

    Clark, D.C.; Frank, J.A.; Liska, D.J.; Potter, R.C.; Schamaun, R.G.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder

  11. Drift tube suspension for high intensity linear accelerators

    Science.gov (United States)

    Liska, Donald J.; Schamaun, Roger G.; Clark, Donald C.; Potter, R. Christopher; Frank, Joseph A.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  12. Experimental work on drift chambers

    International Nuclear Information System (INIS)

    Alcaraz, J.; Duran, I.; Gonzalez, E.; Martinez-Laso, L.; Olmos, P.

    1989-01-01

    An experimental work made on drift chambers is described in two chapters. In the firt chapter we present the description of the experimental installation used, as well as some details on the data adquisition systems and the characteristics on three ways used for calibration proposes (cosmic muons, β radiation and test beam using SPS at CERN facilities). The second chapter describes the defferent prototypes studied. The experimental set up and the analysis are given. Some results are discussed. The magnetic field effect is also studied. (Author)

  13. The adsorption of methanol and water on SAPO-34: in situ and ex situ X-ray diffraction studies

    DEFF Research Database (Denmark)

    Wragg, David S.; Johnsen, Rune; Norby, Poul

    2010-01-01

    The adsorption of methanol on SAPO-34 has been studied using a combination of in situ synchrotron powder X-ray diffraction to follow the process and ex situ high resolution powder diffraction to determine the structure. The unit cell volume of SAPO-34 is found to expand by 0.5% during methanol ad...

  14. Shear wall ultimate drift limits

    International Nuclear Information System (INIS)

    Duffey, T.A.; Goldman, A.; Farrar, C.R.

    1994-04-01

    Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated

  15. Thermal drift reduction with multiple bias current for MOSFET dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Carvajal, M A; Martinez-Olmos, A; Morales, D P; Lopez-Villanueva, J A; Palma, A J [Departamento de Electronica y TecnologIa de Computadores, ETSIIT, Universidad de Granada, E-18071 Granada (Spain); Lallena, A M, E-mail: carvajal@ugr.es [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)

    2011-06-21

    New thermal compensation methods suitable for p-channel MOSFET (pMOS) dosimeters with the usual dose readout procedure based on a constant drain current are presented. Measuring the source-drain voltage shifts for two or three different drain currents and knowing the value of the zero-temperature coefficient drain current, I{sub ZTC}, the thermal drift of source-drain or threshold voltages can be significantly reduced. Analytical expressions for the thermal compensation have been theoretically deduced on the basis of a linear dependence on temperature of the parameters involved. The proposed thermal modelling has been experimentally proven. These methods have been applied to a group of ten commercial pMOS transistors (3N163). The thermal coefficients of the source-drain voltage and the threshold voltage were reduced from -3.0 mV deg. C{sup -1}, in the worst case, down to -70 {mu}V deg. C{sup -1}. This means a thermal drift of -2.4 mGy deg. C{sup -1} for the dosimeter. When analysing the thermal drifts of all the studied transistors, in the temperature range from 19 to 36 deg. C, uncertainty was obtained in the threshold voltage due to a thermal drift of {+-}9mGy (2 SD), a commonly acceptable value in most radiotherapy treatments. The procedures described herein provide thermal drift reduction comparable to that of other technological or numerical strategies, but can be used in a very simple and low-cost dosimetry sensor.

  16. OpenDrift v1.0: a generic framework for trajectory modelling

    Directory of Open Access Journals (Sweden)

    K.-F. Dagestad

    2018-04-01

    Full Text Available OpenDrift is an open-source Python-based framework for Lagrangian particle modelling under development at the Norwegian Meteorological Institute with contributions from the wider scientific community. The framework is highly generic and modular, and is designed to be used for any type of drift calculations in the ocean or atmosphere. A specific module within the OpenDrift framework corresponds to a Lagrangian particle model in the traditional sense. A number of modules have already been developed, including an oil drift module, a stochastic search-and-rescue module, a pelagic egg module, and a basic module for atmospheric drift. The framework allows for the ingestion of an unspecified number of forcing fields (scalar and vectorial from various sources, including Eulerian ocean, atmosphere and wave models, but also measurements or a priori values for the same variables. A basic backtracking mechanism is inherent, using sign reversal of the total displacement vector and negative time stepping. OpenDrift is fast and simple to set up and use on Linux, Mac and Windows environments, and can be used with minimal or no Python experience. It is designed for flexibility, and researchers may easily adapt or write modules for their specific purpose. OpenDrift is also designed for performance, and simulations with millions of particles may be performed on a laptop. Further, OpenDrift is designed for robustness and is in daily operational use for emergency preparedness modelling (oil drift, search and rescue, and drifting ships at the Norwegian Meteorological Institute.

  17. Ponderomotive modification of drift tearing modes

    International Nuclear Information System (INIS)

    Urquijo, G.; Singh, R.; Sen, A.

    1997-01-01

    The linear characteristics of drift tearing modes are investigated in the presence of a significant background of radio-frequency (RF) waves in the ion cyclotron range of frequencies. The ponderomotive force, arising from the radial gradients in the RF field energy, is found to significantly modify the inner layer solutions of the drift tearing modes. It can have a stabilizing influence, even at moderate RF powers, provided the field energy has a decreasing radial profile at the mode rational surface. (author)

  18. Investigations of single-electron avalanches in a proportional drift tube

    International Nuclear Information System (INIS)

    Anderson, W.S.; Armitage, J.C.; Chevreau, P.; Heinrich, J.G.; Lu, C.; McDonald, I.; McDonald, K.T.; Miller, B.; Secrest, D.; Weckel, J.

    1990-01-01

    Detailed information on single-electron drift and avalanche behavior has a basic interest in an investigation of gas-chamber performance. Its timing, avalanche distribution, attachment by the working gas mixtures, etc., provide various criteria for choosing the best suitable gas mixture under a specific experimental circumstance. Investigations of single-electron avalanches in a proportional drift tube have been carried out with a pulsed N 2 laser. The study consists of two aspects: timing properties, and fluctuations in the gas avalanche

  19. Dynamics of zonal flows and self-regulating drift-wave turbulence

    International Nuclear Information System (INIS)

    Diamond, P.H.; Fleischer, J.; Rosenbluth, M.N.; Hinton, F.L.; Malkov, M.; Smolyakov, A.

    1999-01-01

    We present a theory of zonal flow - drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state, the fluctuation intensity and turbulent diffusivity are ultimately proportional to the collisional zonal flow damping. The implications of these results for transport models is discussed. (author)

  20. Dynamics of zonal flows and self-regulating drift-wave turbulence

    International Nuclear Information System (INIS)

    Diamond, P.H.; Fleischer, J.; Rosenbluth, M.; Hinton, F.L.; Malkov, M.; Smolyakov, A.

    2001-01-01

    We present a theory of zonal flow - drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state, the fluctuation intensity and turbulent diffusivity are ultimately proportional to the collisional zonal flow damping. The implications of these results for transport models is discussed. (author)

  1. A numerical study of the influence of the void drift model on the predictions of the assert subchannel code

    International Nuclear Information System (INIS)

    Tye, P.; Teyssedou, A.; Troche, N.; Kiteley, J.

    1996-01-01

    One of the factors which is important in order to ensure the continued safe operation of nuclear reactors is the ability to accurately predict the 'Critical Heat Flux' (CHF) throughout the rod bundles in the fuel channel. One method currently used by the Canadian nuclear industry to predict the CHF in the fuel bundles of CANDU reactors is to use the ASSERT subchannel code to predict the local thermal-hydraulic conditions prevailing at each axial location in each subchannel in conjunction with appropriate correlations or the CHF look-up table. The successful application of the above methods depends greatly on the ability of ASSERT to accurately predict the local flow conditions throughout the fuel channel. In this paper, full range qualitative verification tests, using the ASSERT subchannel code are presented which show the influence of the void drift model on the predictions of the local subchannel quality. For typical cases using a 7 rod subset of a full 37 element rod bundle taken from the ASSERT validation database, it will be shown that the void drift term can significantly influence the calculated distribution of the quality in the rod bundle. In order to isolate, as much as possible, the influence of the void drift term this first numerical study is carried out with the rod bundle oriented both vertically and horizontally. Subsequently, additional numerical experiments will be presented which show the influence that the void drift model has on the predicted CHF locations. (author)

  2. A straw drift chamber spectrometer for studies of rare kaon decays

    International Nuclear Information System (INIS)

    Lang, K.; Ambrose, D.; Arroyo, C.; Bachman, M.; Connor, D.; Eckhause, M.; Ecklund, K.M.; Graessle, S.; Hamela, M.; Hamilton, S.; Hancock, A.D.; Hartman, K.; Hebert, M.; Hoff, C.H.; Hoffmann, G.W.; Irwin, G.M.; Kane, J.R.; Kanematsu, N.; Kuang, Y.; Lee, R.; Marcin, M.; Martin, R.D.; McDonough, J.; Milder, A.; Molzon, W.R.; Ouimette, D.; Pommot-Maia, M.; Proga, M.; Riley, P.J.; Ritchie, J.L.; Rubin, P.D.; Vassilakopoulos, V.I.; Ware, B.; Welsh, R.E.; Wojcicki, S.G.; Worm, S.

    2004-01-01

    We describe the design, construction, readout, tests, and performance of planar drift chambers, based on 5-mm-diameter copperized Mylar and Kapton straws, used in an experimental search for rare kaon decays. The experiment took place in the high-intensity neutral beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory, using a neutral beam stop, two analyzing dipoles, and redundant particle identification to remove backgrounds

  3. Drift Compression and Final Focus Options for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Hong Qin; Davidson, Ronald C.; Barnard, John J.; Lee, Edward P.

    2005-01-01

    A drift compression and final focus lattice for heavy ion beams should focus the entire beam pulse onto the same focal spot on the target. We show that this requirement implies that the drift compression design needs to satisfy a self-similar symmetry condition. For un-neutralized beams, the Lie symmetry group analysis is applied to the warm-fluid model to systematically derive the self-similar drift compression solutions. For neutralized beams, the 1-D Vlasov equation is solved explicitly, and families of self-similar drift compression solutions are constructed. To compensate for the deviation from the self-similar symmetry condition due to the transverse emittance, four time-dependent magnets are introduced in the upstream of the drift compression such that the entire beam pulse can be focused onto the same focal spot

  4. Toroidal effects on drift wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.

    1992-09-23

    The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling.

  5. Toroidal effects on drift wave turbulence

    International Nuclear Information System (INIS)

    LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.

    1992-01-01

    The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling

  6. Shock drift acceleration in the presence of waves

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Attention is given to the initial results of a model designed to study the modification of the scatter-free, shock drift acceleration of energetic test particles by wave activity in the vicinity of a quasi-perpendicular, fast-mode MHD shock. It is emphasized that the concept of magnetic moment conservation is a valid approximation only in the perpendicular and nearly perpendicular regimes, when the angle theta-Bn between the shock normal and the upstream magnetic field vector is in the range from 70 deg to 90 deg. The present investigation is concerned with one step in a program which is being developed to combine the shock drift and diffusive processes at a shock of arbitrary theta-Bn.

  7. Drift-shell splitting of energetic ions injected at pseudo-substorm onsets

    International Nuclear Information System (INIS)

    Takahashi, K.; Anderson, B.J.; Ohtani, S.; Reeves, G.D.; Takahashi, S.; Sarris, T.E.; Mursula, K.

    1997-01-01

    One feature of a magnetospheric substorm is the injection of energetic particles into closed drift orbits. Injections are routinely observed by geosynchronous satellites and have been used to identify the occurrence of substorms and the local time of particle energization. In this study we examine pitch angle distributions of ion injections in the 50-to 300-keV energy range observed by the Active Magnetospheric Particle Tracer Explorers Charge Composition Explorer (AMPTE/CCE) satellite, hereinafter CCE. In a dipole field, all pitch angles follow the same drift shell, but the day night asymmetry of the magnetospheric magnetic field introduces a pitch angle dependence in particle drift orbits, so that particles with different pitch angles disperse radially as they drift. The effect is known as drift-shell splitting. For satellite observations near noon at a fixed geocentric distance, the guiding center orbits of ions detected at small pitch angles intersect the midnight meridian at larger geocentric distances than do ions with near-90 degree pitch angles. The ion pitch angle distributions detected on the dayside therefore provide information about the radial distance of the nightside acceleration region. We apply this principle to study ion injection events observed on September 17 - 18, 1984, in association with pseudo-substorm onsets. CCE was at 13 hours local time near its apogee (8.8R E ) and observed a series of ion flux enhancements. Energy dispersion of the timing of the flux increases assures that they are due to injections on the nightside. The flux increases were observed only at pitch angles from 0 degree to 60 degree. We calculate drift orbits of protons using the Tsyganenko 89c magnetic field model and find that the drift orbits for 60 degree pitch angle protons observed at the satellite pass through midnight at 9R E , well outside of geostationary orbit, indicating that the ion injections occurred tailward of 9R E . Energetic ion data from geostationary

  8. Studies of Read-Out Electronics and Trigger for Muon Drift Tube Detectors at High Luminosities

    CERN Document Server

    Nowak, Sebastian

    The Large Hadron Collider (LHC) at the European Centre for Particle Physics, CERN, collides protons with an unprecedentedly high centre-of-mass energy and luminosity. The collision products are recorded and analysed by four big experiments, one of which is the ATLAS detector. For precise measurements of the properties of the Higgs-Boson and searches for new phenomena beyond the Standard Model, the LHC luminosity of $L=10^{34}cm^{-2}s^{-1}$ is planned to be increased by a factor of ten leading to the High Luminosity LHC (HL-LHC). In order to cope with the higher background and data rates, the LHC experiments need to be upgraded. In this thesis, studies for the upgrade of the ATLAS Muon Spectrometer are presented with respect to the read-out electronics of the Monitored Drift Tube (MDT) and the small-diameter Muon Drift Tube (sMDT) chambers and the Level-1 muon trigger. Due to the reduced tube diameter of sMDT chambers, background occupancy and space charge effects are suppressed by an order of magnitude compar...

  9. Non-Linear MDT Drift Gases like Ar/CO2

    CERN Document Server

    Aleksa, Martin

    1998-01-01

    Detailed measurements and simulations have been performed, investigating the properties of Ar/CO2 mixtures as a MDT drift gas. This note presents these measurements and compares them to other drift gases that have been simulated using GARFIELD, HEED and MAGBOLTZ.This note also describes systematic errors to be considered in the operation of precision drift chambers using such gases. In particular we analyze effects of background rate variations, gas-density changes, variations of the gas composition, autocalibration, magnetic field differences and non-concentricity of the wire. Their impact on the reconstructed muon momentum resolution was simulated with DICE/ATRECON.The different properties of linear and non-linear drift gases and their relative advantages and disadvantages are discussed in detail.

  10. Tracking chamber made of 15-mm mylar drift tubes

    Science.gov (United States)

    Kozhin, A.; Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Plotnikov, I.

    2017-05-01

    We are presenting a drift chamber composed from three layers of mylar drift tubes with outer diameter 15 mm. The pipe is made of strip of mylar film 125 micrometers thick covered with aluminium from the both sides. A strip of mylar is wrapped around the mandrel. Pipe is created by ultrasonic welding. A single drift tube is self-supported structure withstanding 350 g wire tension without supports and internal overpressure. About 400 such tubes were assembled. Design, quality control procedures of the drift tubes are described. Seven chambers were glued from these tubes of 560 mm length. Each chamber consists of 3 layers, 16 tubes per layer. Several chambers were tested with cosmic rays. Results of the tests, counting rate plateau and coordinate resolution are presented.

  11. Tracking chamber made of 15-mm mylar drift tubes

    International Nuclear Information System (INIS)

    Kozhin, A.; Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Plotnikov, I.

    2017-01-01

    We are presenting a drift chamber composed from three layers of mylar drift tubes with outer diameter 15 mm. The pipe is made of strip of mylar film 125 micrometers thick covered with aluminium from the both sides. A strip of mylar is wrapped around the mandrel. Pipe is created by ultrasonic welding. A single drift tube is self-supported structure withstanding 350 g wire tension without supports and internal overpressure. About 400 such tubes were assembled. Design, quality control procedures of the drift tubes are described. Seven chambers were glued from these tubes of 560 mm length. Each chamber consists of 3 layers, 16 tubes per layer. Several chambers were tested with cosmic rays. Results of the tests, counting rate plateau and coordinate resolution are presented.

  12. In Situ Observations and Sampling of Volcanic Emissions with Unmanned Aircraft: A NASA/UCR Case Study at Turrialba Volcano, Costa Rica

    Science.gov (United States)

    Pieri, David; Diaz, Jorge Andres; Bland, Geoffrey; Fladeland, Matthew; Madrigal, Yetty; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Realmuto, Vincent; Miles, Ted

    2011-01-01

    Burgeoning new technology in the design and development of robotic aircraft-unmanned aerial vehicles (UAVs)-presents unprecedented opportunities for the volcanology community to observe, measure, and sample eruption plumes and drifting volcanic clouds in situ. While manned aircraft can sample dilute parts of such emissions, demonstrated hazards to air breathing, and most particularly turbine, engines preclude penetration of the zones of highest ash concentrations. Such areas within plumes are often of highest interest with respect to boundary conditions of applicable mass-loading retrieval models, as well as Lagrangian, Eulerian, and hybrid transport models used by hazard responders to predict plume trajectories, particularly in the context of airborne hazards. Before the 2010 Ejyafyallajokull eruption in Iceland, ICAO zero-ash-tolerance rules were typically followed, particularly for relatively uncrowded Pacific Rim airspace, and over North and South America, where often diversion of aircraft around ash plumes and clouds was practical. The 2010 eruption in Iceland radically changed the paradigm, in that critical airspace over continental Europe and the United Kingdom were summarily shut by local civil aviation authorities and EURO CONTROL. A strong desire emerged for better real-time knowledge of ash cloud characteristics, particularly ash concentrations, and especially for validation of orbital multispectral imaging. UAV platforms appear to provide a viable adjunct, if not a primary source, of such in situ data for volcanic plumes and drifting volcanic clouds from explosive eruptions, with prompt and comprehensive application to aviation safety and to the basic science of volcanology. Current work is underway in Costa Rica at Turrialba volcano by the authors, with the goal of developing and testing new small, economical UAV platforms, with miniaturized instrument payloads, within a volcanic plume. We are underway with bi-monthly deployments of tethered SO2-sondes

  13. Microsecond-scale X-ray imaging with Controlled-Drift Detectors

    International Nuclear Information System (INIS)

    Castoldi, A.; Galimberti, A.; Guazzoni, C.; Rehak, P.; Strueder, L.

    2006-01-01

    The Controlled-Drift Detector is a fully-depleted silicon detector that allows 2-D position sensing and energy spectroscopy of X-rays in the range 0.5-20keV with excellent time resolution (few tens of μs) and limited readout channels. In this paper we review the Controlled-Drift Detector operating principle and we present the X-ray imaging and spectroscopic capabilities of Controlled Drift Detectors in microsecond-scale experiments and the more relevant applications fields

  14. Role of an encapsulating layer for reducing resistance drift in phase change random access memory

    Directory of Open Access Journals (Sweden)

    Bo Jin

    2014-12-01

    Full Text Available Phase change random access memory (PCRAM devices exhibit a steady increase in resistance in the amorphous phase upon aging and this resistance drift phenomenon directly affects the device reliability. A stress relaxation model is used here to study the effect of a device encapsulating layer material in addressing the resistance drift phenomenon in PCRAM. The resistance drift can be increased or decreased depending on the biaxial moduli of the phase change material (YPCM and the encapsulating layer material (YELM according to the stress relationship between them in the drift regime. The proposed model suggests that the resistance drift can be effectively reduced by selecting a proper material as an encapsulating layer. Moreover, our model explains that reducing the size of the phase change material (PCM while fully reset and reducing the amorphous/crystalline ratio in PCM help to improve the resistance drift, and thus opens an avenue for highly reliable multilevel PCRAM applications.

  15. Drift waves in a weakly ionized plasma

    DEFF Research Database (Denmark)

    Popovic, M.; Melchior, H.

    1968-01-01

    A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated.......A dispersion relation for low frequency drift waves in a weakly ionized plasma has been derived, and through numerical calculations the effect of collisions between the charged and the neutral particles is estimated....

  16. Fast non-explosive gases for drift chambers

    International Nuclear Information System (INIS)

    Green, D.; Haggerty, H.; Oshima, N.; Yamada, R.

    1988-05-01

    Typical gases which are stock at Fermilab are Ar:C 2 H 6 (50:50) and Ar:CO 2 (80:20). Argon:Ethane has the virtue of high gas gain and a saturated drift velocity. In fact, parametrizing the drift velocity as a function of electric field we find v/sub d/(E) = v/sub o/(1/minus/e/sup -E/E/o) with v/sub o/ ≅ 5.4 cm/μsec and E/sub o/ = 160 V/cm. However, safety considerations make this gas somewhat inconvenient. The addition of alcohol as quencher also raises the saturation field to, for example, E/sub o/ ≅ 500 V/cm for 1.5% added alcohol. This gas also tends to break up in a high-beam flux environment and leave carbon deposits. The addition of alcohol to avoid such aging often takes a unit cell out of saturation over its entire volume. Finally, for collider applications it is useful to exclude free protons from the gas in order to reduce the sensitivity to the sea of slow neutrons which are present in the collider environment. In contrast, Ar:CO 2 (80:20) is a gas with more moderate gas gain. The drift velocity at high field is v/sub d/(E > 1.5 kV/cm) ≅ 5.8 cm/μsec. For most field configurations this gas does not saturate, causing a long tail in the drift time distrubtion due to low field regions in the unit cell. The virtues of this gas mixture are that it is cheap, not flammable, and stable under high-beam flux. However as the Collider Upgrade progresses, we wish to find a gas which is faster than 5.0 cm/μsec since the time separation between collisions will at some point be less than drift time of 1μsec for drift distance of 5 cm. 3 refs., 5 figs

  17. Performance characteristics of CdTe drift ring detector

    Science.gov (United States)

    Alruhaili, A.; Sellin, P. J.; Lohstroh, A.; Veeramani, P.; Kazemi, S.; Veale, M. C.; Sawhney, K. J. S.; Kachkanov, V.

    2014-03-01

    CdTe and CdZnTe material is an excellent candidate for the fabrication of high energy X-ray spectroscopic detectors due to their good quantum efficiency and room temperature operation. The main material limitation is associated with the poor charge transport properties of holes. The motivation of this work is to investigate the performance characteristics of a detector fabricated with a drift ring geometry that is insensitive to the transport of holes. The performance of a prototype Ohmic CdTe drift ring detector fabricated by Acrorad with 3 drift rings is reported; measurements include room temperature current voltage characteristics (IV) and spectroscopic performance. The data shows that the energy resolution of the detector is limited by leakage current which is a combination of bulk and surface leakage currents. The energy resolution was studied as a function of incident X-ray position with an X-ray microbeam at the Diamond Light Source. Different ring biasing schemes were investigated and the results show that by increasing the lateral field (i.e. the bias gradient across the rings) the active area, evaluated by the detected count rate, increased significantly.

  18. Point vortex description of drift wave vortices: Dynamics and transport

    International Nuclear Information System (INIS)

    Kono, M.; Horton, W.

    1991-05-01

    Point-vortex description for drift wave vortices is formulated based on the Hasegawa-Mima equation to study elementary processes for the interactions of vortices as well as statistical properties like vortex diffusion. Dynamical properties of drift wave vortices known by numerical experiments are recovered. Furthermore a vortex diffusion model discussed by Horton based on numerical simulations is shown to be analytically obtained. A variety of phenomena arising from the short-range nature of the interaction force of point vortices are suggested. 12 refs., 10 figs

  19. Unsteady force estimation using a Lagrangian drift-volume approach

    Science.gov (United States)

    McPhaden, Cameron J.; Rival, David E.

    2018-04-01

    A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.

  20. The Effects of Unheated Sections on Moisture Transport in the Emplacement Drift

    International Nuclear Information System (INIS)

    G. Danko; D. Bahrami; J.T. Birkholzer

    2006-01-01

    A thermal-hydrologic natural-ventilation model is configured for simulating temperature, humidity, and condensate distributions in the coupled domains of the in-drift airspace and the near-field rockmass. Meaningful results are obtained from the model for a practical application in which the beneficial effects of unheated drift sections are analyzed. Sensitivity to the axial dispersion coefficient is also studied with the model

  1. Arctic surface temperatures from Metop AVHRR compared to in situ ocean and land data

    Directory of Open Access Journals (Sweden)

    G. Dybkjær

    2012-11-01

    Full Text Available The ice surface temperature (IST is an important boundary condition for both atmospheric and ocean and sea ice models and for coupled systems. An operational ice surface temperature product using satellite Metop AVHRR infra-red data was developed for MyOcean. The IST can be mapped in clear sky regions using a split window algorithm specially tuned for sea ice. Clear sky conditions prevail during spring in the Arctic, while persistent cloud cover limits data coverage during summer. The cloud covered regions are detected using the EUMETSAT cloud mask. The Metop IST compares to 2 m temperature at the Greenland ice cap Summit within STD error of 3.14 °C and to Arctic drifting buoy temperature data within STD error of 3.69 °C. A case study reveals that the in situ radiometer data versus satellite IST STD error can be much lower (0.73 °C and that the different in situ measurements complicate the validation. Differences and variability between Metop IST and in situ data are analysed and discussed. An inter-comparison of Metop IST, numerical weather prediction temperatures and in situ observation indicates large biases between the different quantities. Because of the scarcity of conventional surface temperature or surface air temperature data in the Arctic, the satellite IST data with its relatively good coverage can potentially add valuable information to model analysis for the Arctic atmosphere.

  2. Approximate Stokes Drift Profiles in Deep Water

    Science.gov (United States)

    Breivik, Øyvind; Janssen, Peter A. E. M.; Bidlot, Jean-Raymond

    2014-09-01

    A deep-water approximation to the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profile gives a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The alternative profile comes at no added numerical cost compared to the monochromatic profile.

  3. Nonlinear propagation of short wavelength drift-Alfven waves

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two-dim...

  4. Analysis of zonal flow bifurcations in 3D drift wave turbulence simulations

    International Nuclear Information System (INIS)

    Kammel, Andreas

    2012-01-01

    The main issue of experimental magnetic fusion devices lies with their inherently high turbulent transport, preventing long-term plasma confinement. A deeper understanding of the underlying transport processes is therefore desirable, especially in the high-gradient tokamak edge which marks the location of the drift wave regime as well as the outer boundary of the still badly understood high confinement mode. One of the most promising plasma features possibly connected to a complete bifurcation theory for the transition to this H-mode is found in large-scale phenomena capable of regulating radial transport through vortex shearing - i.e. zonal flows, linearly stable large-scale poloidal vector E x vector B-modes based on radial flux surface averages of the potential gradient generated through turbulent self-organization. Despite their relevance, few detailed turbulence studies of drift wave-based zonal flows have been undertaken, and none of them have explicitly targeted bifurcations - or, within a resistive sheared-slab environment, observed zonal flows at all. In this work, both analytical means and the two-fluid code NLET are used to analyze a reduced set of Hasegawa-Wakatani equations, describing a sheared collisional drift wave system without curvature. The characteristics of the drift waves themselves, as well as those of the drift wave-based zonal flows and their retroaction on the drift wave turbulence are examined. The single dimensionless parameter ρ s proposed in previous analytical models is examined numerically and shown to divide the drift wave scale into two transport regimes, the behavioral characteristics of which agree perfectly with theoretical expectations. This transport transition correlates with a transition from pure drift wave turbulence at low ρ s into the high-ρ s zonal flow regime. The associated threshold has been more clearly identified by tracing it back to a tipping of the ratio between a newly proposed frequency gradient length at

  5. Water-gas shift. An examination of Pt promoted MgO and tetragonal and monoclinic ZrO2 by in situ drifts

    International Nuclear Information System (INIS)

    Chenu, Emilie; Jacobs, Gary; Crawford, Adam C.; Keogh, Robert A.; Patterson, Patricia M.; Sparks, Dennis E.; Davis, Burtron H.

    2005-01-01

    In situ DRIFTS measurements on unpromoted and Pt promoted MgO and ZrO 2 (both tetragonal and monoclinic) indicate that at high H 2 O/CO ratios, where the reaction rate has been reported to be zero order in H 2 O and first order in CO, the mechanism involved in the catalysis of water-gas shift is likely a surface formate mechanism, in agreement with Shido and Iwasawa. Pt was found to catalyze the removal of surface carbonates and to facilitate the generation of active OH groups relative to the unpromoted catalyst. Comparison with Pt/ceria revealed that the OH groups involved in the catalysis of magnesia and zirconia may be those of the bridging variety which occur at defect sites. That is, water dissociated over vacancies to produce bridging OH groups, as observed by infrared spectroscopy. The existence of such an adsorbed species is implied in the zero reaction order for water, where kinetics suggests that the surface should be saturated by an adsorbed water species. The lower extent of vacancy formation for magnesia and zirconia-based materials in comparison with ceria could explain a lower surface population of active bridging OH groups. CO was used as a probe molecule of the reduced centers, as it reacts with bridging OH groups to generate surface formates, a proposed WGS intermediate, and the decomposition of which is proposed to be the rate-limiting step. The trends in formate intensity by CO adsorption and CO conversion in WGS catalytic testing both followed the order: Pt/ceria>Pt/m-zirconia>Pt/t-zirconia>Pt/magnesia. In all cases, a normal kinetic isotope effect was observed in switching from H 2 O to D 2 O, consistent with a link between the rate-limiting step and the decomposition of surface formates, as noted previously by Shido and Iwasawa for Rh/ceria, MgO, and ZnO

  6. Drift mode in a bounded plasma having two-ion species

    International Nuclear Information System (INIS)

    Ahmad, Ali; Sajid, M.; Saleem, H.

    2008-01-01

    The drift wave is investigated in a two-ion species plasma in several different cases. The global drift mode is studied in a plasma bounded in a cylinder having Gaussian density profile corresponding to different poloidal wavenumbers. The frequency of the mode becomes a little larger when it is investigated without including the ion cyclotron wave dynamics. The effect of magnetic shear on the wave propagation along the density gradient is studied in a Cartesian geometry assuming absorbing boundary. It is found that the wave amplitude is reduced when two-ion species are present (with the same concentration) compared to pure electron-ion plasma

  7. Analytical drift-current threshold voltage model of long-channel double-gate MOSFETs

    International Nuclear Information System (INIS)

    Shih, Chun-Hsing; Wang, Jhong-Sheng

    2009-01-01

    This paper presents a new, physical threshold voltage model to solve the ambiguity in determining the threshold voltage of double-gate (DG) MOSFETs. To avoid the difficulties of the conventional 2ψ B model in nearly undoped DG MOSFETs, this study proposes to define the on–off switching based on the actual roles of the drift and diffusion components in the total drain current. The drift current strongly enhances beyond the threshold voltage, while the diffusion current plays a major role in the subthreshold. The threshold voltage is defined as the drift component that exceeds the diffusion counterpart. From the solutions of Poisson's equation, the drift and diffusion currents of DG MOSFETs are separately formulated to derive the analytical expressions of the threshold voltage and associated threshold current. This model provides a comprehensive description of the switching behavior of DG MOSFET devices, and offers a physical onset threshold current to determine the threshold voltage in practical extraction

  8. Search for the best timing strategy in high-precision drift chambers

    International Nuclear Information System (INIS)

    Va'vra, J.

    1983-06-01

    Computer simulated drift chamber pulses are used to investigate various possible timing strategies in the drift chambers. In particular, the leading edge, the multiple threshold and the flash ADC timing methods are compared. Although the presented method is general for any drift geometry, we concentrate our discussion on the jet chambers where the drift velocity is about 3 to 5 cm/μsec and the individual ionization clusters are not resolved due to a finite speed of our electronics

  9. Viscose kink and drift-kink modes in a tokamak

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Mikhajlovskij, A.B.

    1988-01-01

    Intristic kink modes in a tokamak are theoretically investigated taking account of longitudinal viscosity of ions and electrons and drift effect. It is marked that dispersion equation of investigated modes coinsides in form with that for ballooning modes. It is shown that five types of intrinsic kink instability may be distinguished in disregard of viscosity and drift effects. Effect of stabilizing quasiideal viscose kink and viscose resistive kink modes by finite Larmuir ion radius is investigated. A branch of viscose reclosure mode which instability is due to electron viscosity is pointed out. A series of other viscose and drift-kink tokamak modes is considered. Both general disperse equations of the above-mentioned kink instability varieties, taking account of viscose and drift ones, and disperse equations of separate branches are presented

  10. Early in-situ measurements program for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Wowak, W.E.

    1979-06-01

    The technical basis and description of measurements for the early in-situ measurements program at the WIPP are described and a proposed organizational structure is presented. Measurements are needed for verification of design predictions and also for a prelude to the main experiment program. The design verification measurements will be concentrated in the first shaft and the underground support and access areas. Early experiments will be concentrated in the test drifts on the storage horizons. Recommendations are made to DOE for appropriate division of responsibility among Bechtel, the technical support contractor, the instrumentation contractor, and Sandia

  11. Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma

    Energy Technology Data Exchange (ETDEWEB)

    Martines, E.; Zuin, M.; Cavazzana, R.; Antoni, V.; Serianni, G.; Spolaore, M.; Vianello, N. [Consorzio RFX, Padova (Italy); Adámek, J. [Institute of Plasma Physics AS CR, Prague (Czech Republic)

    2014-10-15

    A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved.

  12. Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma

    International Nuclear Information System (INIS)

    Martines, E.; Zuin, M.; Cavazzana, R.; Antoni, V.; Serianni, G.; Spolaore, M.; Vianello, N.; Adámek, J.

    2014-01-01

    A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved

  13. A drift free nernstian iridium oxide PH sensor

    NARCIS (Netherlands)

    Hendrikse, J.; Olthuis, Wouter; Bergveld, Piet

    1997-01-01

    A novel way of eliminating drift problems in metal oxide pH sensors is presented. The method employs a FET-structure under the electrode that uses the metal oxide as a gate contact. In addition to the enhanced drift properties, the new sensor has an almost ideal nernstian response. First a

  14. Abstraction of Drift-Scale Coupled Processes

    International Nuclear Information System (INIS)

    Francis, N.D.; Sassani, D.

    2000-01-01

    This Analysis/Model Report (AMR) describes an abstraction, for the performance assessment total system model, of the near-field host rock water chemistry and gas-phase composition. It also provides an abstracted process model analysis of potentially important differences in the thermal hydrologic (TH) variables used to describe the performance of a geologic repository obtained from models that include fully coupled reactive transport with thermal hydrology and those that include thermal hydrology alone. Specifically, the motivation of the process-level model comparison between fully coupled thermal-hydrologic-chemical (THC) and thermal-hydrologic-only (TH-only) is to provide the necessary justification as to why the in-drift thermodynamic environment and the near-field host rock percolation flux, the essential TH variables used to describe the performance of a geologic repository, can be obtained using a TH-only model and applied directly into a TSPA abstraction without recourse to a fully coupled reactive transport model. Abstraction as used in the context of this AMR refers to an extraction of essential data or information from the process-level model. The abstraction analysis reproduces and bounds the results of the underlying detailed process-level model. The primary purpose of this AMR is to abstract the results of the fully-coupled, THC model (CRWMS M andO 2000a) for effects on water and gas-phase composition adjacent to the drift wall (in the near-field host rock). It is assumed that drift wall fracture water and gas compositions may enter the emplacement drift before, during, and after the heating period. The heating period includes both the preclosure, in which the repository drifts are ventilated, and the postclosure periods, with backfill and drip shield emplacement at the time of repository closure. Although the preclosure period (50 years) is included in the process models, the postclosure performance assessment starts at the end of this initial period

  15. Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Virtual mode

    Science.gov (United States)

    Lapshin, Rostislav V.

    2016-08-01

    A method of distributed calibration of a probe microscope scanner is suggested. The main idea consists in a search for a net of local calibration coefficients (LCCs) in the process of automatic measurement of a standard surface, whereby each point of the movement space of the scanner can be characterized by a unique set of scale factors. Feature-oriented scanning (FOS) methodology is used as a basis for implementation of the distributed calibration permitting to exclude in situ the negative influence of thermal drift, creep and hysteresis on the obtained results. Possessing the calibration database enables correcting in one procedure all the spatial systematic distortions caused by nonlinearity, nonorthogonality and spurious crosstalk couplings of the microscope scanner piezomanipulators. To provide high precision of spatial measurements in nanometer range, the calibration is carried out using natural standards - constants of crystal lattice. One of the useful modes of the developed calibration method is a virtual mode. In the virtual mode, instead of measurement of a real surface of the standard, the calibration program makes a surface image ;measurement; of the standard, which was obtained earlier using conventional raster scanning. The application of the virtual mode permits simulation of the calibration process and detail analysis of raster distortions occurring in both conventional and counter surface scanning. Moreover, the mode allows to estimate the thermal drift and the creep velocities acting while surface scanning. Virtual calibration makes possible automatic characterization of a surface by the method of scanning probe microscopy (SPM).

  16. Estimated nation wide effects of pesticide spray drift on terrestrial habitats in the Netherlands

    NARCIS (Netherlands)

    Jong, de F.M.W.; Snoo, de G.R.; Zande, van de J.C.

    2008-01-01

    This study estimated the potential effects of pesticide drift on terrestrial ecosystems outside target areas, for the Dutch situation. A series of field trials was conducted to estimate the effects of drift on different species groups at different distances from a treated plot for different

  17. Three-dimensional simulation studies of 10 MeV, 352.2 MHz drift ...

    Indian Academy of Sciences (India)

    drift tube Linac was done by varying the gap to cell length (g/L) ratio using SUPERFISH ... diameter and stem diameter were taken to be the same to ease fabrication ... The effect on resonant frequency of the DTL, due to tuners, vacuum ports and post- ... the electric field and frequency, and is highly dependent on mesh size.

  18. Gigantic uphill drift of vacancies and self-interstitials in silicon

    International Nuclear Information System (INIS)

    Voronkov, V.V.; Falster, R.

    2009-01-01

    Point defect transport in a growing crystal includes a drift along the temperature gradient, G, at a velocity αG. It was not clear if the drift is negligible or strong in silicon crystal growth. It is now found that reported microdefect patterns in crystals grown with a temporarily halt provide a clear evidence in favour of a strong (even gigantic) drift of both kinds of intrinsic point defects. The drift coefficients α V (for vacancies) and α I (for self-interstitials) are deduced by fitting the simulating defect profiles to the observed location of halt-induced interstitial region immersed into a vacancy-type crystal.

  19. Evaluating the effects of herbicide drift on nontarget terrestrial plants: A case study with mesotrione.

    Science.gov (United States)

    Brain, Richard A; Perine, Jeff; Cooke, Catriona; Ellis, Clare Butler; Harrington, Paul; Lane, Andrew; O'Sullivan, Christine; Ledson, Mark

    2017-09-01

    Nature of exposure is a fundamental driver in nontarget terrestrial plant risk assessment for pesticides; consequently a novel study was designed to generate field-based drift exposure and evaluate corresponding biological effects of the herbicide mesotrione. The approach used a combination of US guideline drift reduction technology and vegetative vigor approaches. In each of 3 independent replicate spray application trials, 10 pots each of lettuce and tomato were placed at distances of 10, 20, 30, 40, and 50 ft (∼3, 6, 9, 12, and 15 m) from the downwind edge of the spray boom. Each application was conducted using a commercial 60-ft (18-m) boom sprayer fitted with TeeJet ® Technologies TTI110025 nozzles, with a nominal application rate of 0.2 lb a.i./A (224 g a.i./ha). The environmental conditions required by the protocol (air temperature 10-30 °C and wind perpendicular to the swath (±30°) blowing toward the plants at a mean wind speed of ≥10 mph [≥4.5 m/s] measured at 2.0 m above the ground) were met for each application. Following exposure, plants were transferred to a greenhouse for the 21-d vegetative vigor phase of the study. Symptoms of phytotoxicity and plant height were assessed at 7, 14, and 21 d after treatment. On completion of the 21-d after treatment assessment, all plants were harvested and dried in an oven to determine shoot dry weight. The biological data indicated that no statistically significant effects were observed at a distance of 30 ft (∼9 m) from mesotrione drift at wind speeds of ≥10 mph (10.9-12.4 mph); this endpoint (30 ft) is defined as the no observed effects distance (NOED). Environ Toxicol Chem 2017;36:2465-2475. © 2017 SETAC. © 2017 SETAC.

  20. Horonobe Underground Research Laboratory project. Plans of investigations during shaft and drift excavation (Construction of underground facilities: Phase II)

    International Nuclear Information System (INIS)

    2005-06-01

    Horonobe Underground Research Laboratory Project is planned for over 20 years to establish the scientific and technical basis for the underground disposal of high-level radioactive wastes in Japan. The investigations are conducted by JNC in three phases, from the surface (Phase I), during the construction of the underground facilities (Phase II), and using the facilities (Phase III). This report concerns the investigation plans for Phase II. During excavation of shafts and drifts, detailed geological and borehole investigation will be conducted and the geological model constructed in Phase I is evaluated and revised by newly acquired data of geophysical and geological environment. Detailed in-situ experiments, as well as the effects of shaft excavation, are also done to study long-term changes, rock properties, groundwater flow and chemistry to ensure the reliability of repository technology and establish safety assessment methodology. (S. Ohno)

  1. A new in situ model to study erosive enamel wear, a clinical pilot study.

    NARCIS (Netherlands)

    Ruben, J.L.; Truin, G.J.; Bronkhorst, E.M.; Huysmans, M.C.D.N.J.M.

    2017-01-01

    OBJECTIVES: To develop an in situ model for erosive wear research which allows for more clinically relevant exposure parameters than other in situ models and to show tooth site-specific erosive wear effect of an acid challenge of orange juice on enamel. METHODS: This pilot study included 6

  2. Drift orbits in the TMX and MFTF-B tandem mirrors

    International Nuclear Information System (INIS)

    Byers, J.A.

    1982-01-01

    Drift orbits for the TMX and MFTF-B tandem-mirror designs are followed by using a long-thin expansion of the drift equations. Unexpected asymmetries in the field-line curvatures in the yin-yang end-mirror traps, caused by the transition coils between the solenoid and the yin-yang, result in an elliptical distortion of the drift surface with a/b=1.5 at most, a perhaps tolerable deviation from omnigenity. Yushmanov-trapped particles are no worse than the bulk hot particles. Finite-beta plasma fields, coupled to the asymmetric curvature, produce sizeable banana orbits with widths comparable to the plasma radius, but these orbits are possible for only a few of the particles. Details of the transition through resonance in the solenoid are shown, including the banana shapes of the drift surfaces and the disruption of the surface in the stochastic regime. The orbits in the original design for the A-cell of MFTF-B are the most extreme; in the vacuum fields they all have an extended peanut shape that finally closes only at about 3m. This shape is strongly non-omnigenous and suggests a hollow plasma-density profile. Finite-beta B vectorxnablaB drifts can help to minimize the radial extent of these orbits, but the strength of the vacuum curvatures makes omnigenity only marginally possible. Including B vectorxnablaphi drifts makes omnigenity even more unlikely for the ions, for which the B vectorxnablaB and B vectorxnablaphi drifts are of opposite sign, and conversely helps to omnigenize the drift surfaces of the ECRH 200-keV electrons. It is argued that not every class of particles can have good, i.e. near-omnigenous drifts, regardless of the ability of phi(r) to adjust to limit the radial extent of the orbits. This lack of omnigenity leaves one with no theoretical base for describing the MHD equilibrium in the original designs, but a new magnetic field design for MFTF-B A-cell has apparently completely restored omnigenous orbits. (author)

  3. Longevity of Emplacement Drift Ground Support Materials, Rev. 01

    International Nuclear Information System (INIS)

    David H. Tang

    2000-01-01

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for the selection of materials for ground support that will function throughout the preclosure period of a potential repository at Yucca Mountain. The Development Plan (DP) for this analysis is given in Longevity of Emplacement Drift Ground Support Materials (CRWMS M and O 1999a). The objective of this analysis is to update the previous analysis (CRWMS M and O 2000a) to account for related changes in the Ground Control System Description Document (CRWMS M and O 2000b), the Monitored Geologic Repository Project Description Document (CRWMS M and O 1999b), and in environmental conditions, and to provide updated information on candidate ground support materials. Candidate materials for ground support are carbon steel and cement grout. Steel is mainly used for steel sets, lagging, channel, rock bolts, and wire mesh. Cement grout is only considered in the case of grouted rock bolts. Candidate materials for the emplacement drift invert are carbon steel and crushed rock ballast. Materials are evaluated for the repository emplacement drift environment based on the updated thermal loading condition and waste package design. The analysis consists of the following tasks: (1) Identify factors affecting the longevity of ground support materials for use in emplacement drifts; (2) Review existing documents concerning the behavior of candidate ground support materials during the preclosure period; (3) Evaluate impacts of temperature and radiation effects on mechanical and thermal properties of steel. Assess corrosion potential of steel at emplacement drift environment; (4) Evaluate factors affecting longevity of cement grouts for fully grouted rock bolt system. Provide updated information on cement grout mix design for fully grouted rock bolt system; and (5) Evaluate longevity of materials for the emplacement drift invert

  4. Effects of spray drift of glyphosate on nontarget terrestrial plants-A critical review.

    Science.gov (United States)

    Cederlund, Harald

    2017-11-01

    Glyphosate is a widely used broad-spectrum postemergent herbicide used for weed control in both agricultural and nonagricultural settings. Spray drift of glyphosate can pose a risk to nontarget terrestrial plants and plant communities outside the intended area of application, but the lack of a well-established predicted-no-effect drift rate makes properly assessing such risk difficult. For this reason, a literature review and meta-analysis was carried out with the aim to determine the level of drift that is likely to cause harm to plants and to explore what spray-reducing targets would be sufficiently protective. No-observed-adverse effect rates, lowest-observed-adverse effect rates, and effect rates giving 10, 25, and 50% effects were extracted from a total of 39 different publications. The data were combined per species, and species sensitivity distributions were constructed and fitted with a log-logistic model to assess protectiveness. No systematic differences were detected between the responses of monocotyledons or dicotyledons, but wild plants were found to be generally less sensitive to glyphosate drift than domesticated plants. The results indicate that restricting spray drift to a level below 5 g a.e./ha would protect approximately 95% of all higher plant species against minor adverse effects of glyphosate drift and that rates below 1 to 2 g a.e./ha would be almost completely protective. No studies were encountered that evaluated effects of spray drift against nonvascular plants, and therefore, the conclusions are only valid for vascular plants. Environ Toxicol Chem 2017;36:2879-2886. © 2017 SETAC. © 2017 SETAC.

  5. Principle and applications of Controlled-Drift Detectors

    International Nuclear Information System (INIS)

    Castoldi, A.; Guazzoni, C.; Hartmann, R.; Strueder, L.

    2007-01-01

    The Controlled-Drift Detector is a fully depleted silicon detector that allows 2D position sensing and energy spectroscopy of X-rays in the range 0.5-30 keV with imaging capability up to 100 kframe/s, event timing of few ns and limited readout channels. In this paper we review the Controlled-Drift Detector operating principle and we present its applications in X-ray absorption imaging and in Compton electrons tracking

  6. Analysis of the SPS Long Term Orbit Drifts

    Energy Technology Data Exchange (ETDEWEB)

    Velotti, Francesco [CERN; Bracco, Chiara [CERN; Cornelis, Karel [CERN; Drøsdal, Lene [CERN; Fraser, Matthew [CERN; Gianfelice-Wendt, Eliana [Fermilab; Goddard, Brennan [CERN; Kain, Verena [CERN; Meddahi, Malika [CERN

    2016-06-01

    The Super Proton Synchrotron (SPS) is the last accelerator in the Large Hadron Collider (LHC) injector chain, and has to deliver the two high-intensity 450 GeV proton beams to the LHC. The transport from SPS to LHC is done through the two Transfer Lines (TL), TI2 and TI8, for Beam 1 (B1) and Beam 2 (B2) respectively. During the first LHC operation period Run 1, a long term drift of the SPS orbit was observed, causing changes in the LHC injection due to the resulting changes in the TL trajectories. This translated into longer LHC turnaround because of the necessity to periodically correct the TL trajectories in order to preserve the beam quality at injection into the LHC. Different sources for the SPS orbit drifts have been investigated: each of them can account only partially for the total orbit drift observed. In this paper, the possible sources of such drift are described, together with the simulated and measured effect they cause. Possible solutions and countermeasures are also discussed.

  7. Position reconstruction in drift chambers operated with Xe, $CO_{2}$ (15\\%)

    CERN Document Server

    Adler, C; Appelshäuser, H; Bielcikova, J; Blume, C; Braun-Munzinger, P; Bucher, D; Busch, O; Catanescu, V; Ciobanu, M; Daues, H W; Emschermann, D; Fateev, O V; Foka, P; Garabatos, C; Gunji, T; Herrmann, N; Inuzuka, M; Ivanov, M; Kislov, E; Lindenstruth, V; Lippmann, C; Ludolphs, W; Mahmoud, T; Petracek, V; Petrovici, M; Radomski, S; Rusanov, I; Sandoval, A; Santo, R; Schicker, R; Schwarz, K; Simon, R S; Smykov, L P; Soltveit, H K; Stachel, J; Stelzer, H; Tsiledakis, G; Vulpescu, B; Wessels, J P; Windelband, B; Yurevich, V; Zanevsky, Yu; Zaudtke, O

    2005-01-01

    We present measurements of position and angular resolution of drift chambers operated with a Xe, CO2 (15%) mixture. The results are compared to Monte Carlo simulations and important systematic effects - in particular the dispersive nature of the absorption of transition radiation and non-linearities - are discussed. The measurements were carried out with prototype drift chambers of the ALICE Transition Radiation Detector, but our findings can be generalized to other drift chambers with similar geometry, where the electron drift is perpendicular to the wire planes.

  8. Drift motions of small-scale irregularities in the high-latitude F region: An experimental comparison with plasma drift motions

    International Nuclear Information System (INIS)

    Ruohoniemi, J.M.; Greenwald, R.A.; Baker, K.B.; Villain, J.P.; McCready, M.A.

    1987-01-01

    On the evening of January 6, 1986, coordinated observations were carried out with the Johns Hopkins University Applied Physics Laboratory HF coherent scatter radar at Goose Bay, Labrador, and the SRI International incoherent scatter radar at Sondre Stromfjord, Greenland. The common field of view comprised a section of high-latitude F region ionosphere centered on the great circle plane between the radar sites. Over a 40-min period, the HF radar observed strong backscatter from small-scale (13.9 m) field-aligned irregularities. The bulk line-of-sight drift velocity of the irregularities is deduced from the backscatter data. The returns collected simultaneously with the incoherent scatter radar are processed for estimates of the mean line-of-sight ion velocity. Approximately 100 distinct comparisons are possible between the two sets of velocity estimates. Reversals exceeding 1,000 m/s are present in both. In this paper, the authors demonstrate a correspondence between the measured irregularity and ion drifts that is consistent with the supposition that the motion of the irregularities is dominated by convective drift of the ambient plasma. This indicates that the small-scale irregularities detected by HF radars in the high-latitude F region can serve as tracers of ionospheric convective drift

  9. In-situ burning: NIST studies

    International Nuclear Information System (INIS)

    Evans, D.D.

    1992-01-01

    In-situ burning of spilled oil has distinct advantages over other countermeasures. It offers the potential to convert rapidly large quantities of oil into its primary combustion products, carbon dioxide and water, with a small percentage of other unburned and residue byproducts. Because the oil is converted to gaseous products of combustion by burning, the need for physical collection, storage, and transport of recovered fluids is reduced to the few percent of the original spill volume that remains as residue after burning. Burning oil spills produces a visible smoke plume containing smoke particulate and other products of combustion which may persist for many kilometers from the burn. This fact gives rise to public health concerns, related to the chemical content of the smoke plume and the downwind deposition of particulate, which need to be answered. In 1985, a joint Minerals Management Service (MMS) and Environment Canada (EC) in-situ burning research program was begun at the National Institute of Standards and Technology (NIST). This research program was designed to study the burning of large crude oil spills on water and how this burning would affect air quality by quantifying the products of combustion and developing methods to predict the downwind smoke particulate deposition. To understand the important features of in-situ burning, it is necessary to perform both laboratory and mesoscale experiments. Finally, actual burns of spilled oil at sea will be necessary to evaluate the method at the anticipated scale of actual response operations. In this research program there is a continuing interaction between findings from measurements on small fire experiments performed in the controlled laboratory environments of NIST and the Fire Research Institute (FRI) in Japan, and large fire experiments at facilities like the USCG Fire Safety and Test Detachment in Mobile, Alabama where outdoor liquid fuel burns in large pans are possible

  10. Psychometric Consequences of Subpopulation Item Parameter Drift

    Science.gov (United States)

    Huggins-Manley, Anne Corinne

    2017-01-01

    This study defines subpopulation item parameter drift (SIPD) as a change in item parameters over time that is dependent on subpopulations of examinees, and hypothesizes that the presence of SIPD in anchor items is associated with bias and/or lack of invariance in three psychometric outcomes. Results show that SIPD in anchor items is associated…

  11. A chopper-stabilized long pulse integrator with low drift

    International Nuclear Information System (INIS)

    Wei Yongqing; Xie Jikang; Wan Baonian; Shen Biao

    2006-01-01

    A chopper-stabilized integrator for tokamak with a digital signal processing unit to dynamically suppress the primary drift factors of analog integrator, has been designed. Long pulse integrations with low drift have been obtained with this apparatus in experiments. (authors)

  12. Beam test of a large area silicon drift detector

    International Nuclear Information System (INIS)

    Castoldi, A.; Chinnici, S.; Gatti, E.; Longoni, A.; Palma, F.; Sampietro, M.; Rehak, P.; Ballocchi, G.; Kemmer, J.; Holl, P.; Cox, P.T.; Giacomelli, P.; Vacchi, A.

    1992-01-01

    The results from the tests of the first large area (4 x 4 cm 2 ) planar silicon drift detector prototype in a pion beam are reported. The measured position resolution in the drift direction is (σ=40 ± 10)μm

  13. YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT EAST-WEST DRIFT SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    1999-06-08

    The purpose of this analysis is to systematically identify and evaluate hazards related to the design of the Yucca Mountain Project Exploratory Studies Facility (ESF) East-West Cross Drift. This analysis builds upon prior ESF System Safety Analyses and incorporates TS Main Drift scenarios, where applicable, into the East-West Drift scenarios. This System Safety Analysis (SSA) focuses on the personnel safety and health hazards associated with the engineered design of the East-West Drift. The analysis also evaluates other aspects of the East-West Drift, including purchased equipment (e.g., scientific mapping platform) or Systems/Structures/Components (SSCs) and out-of-tolerance conditions. In addition to recommending design mitigation features, the analysis identifies the potential need for procedures, training, or Job Safety Analyses (JSAs). The inclusion of this information in the SSA is intended to assist the organization(s) (e.g., constructor, Safety and Health, design) responsible for these aspects of the East-West Drift in evaluating personnel hazards and augment the information developed by these organizations. The SSA is an integral part of the systems engineering process, whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach is used which incorporates operating experiences and recommendations from vendors, the constructor and the operating contractor. The risk assessment in this analysis characterizes the scenarios associated with East-West Drift SSCs in terms of relative risk and includes recommendations for mitigating all identified hazards. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into SSC designs. (2) Add safety features and capabilities to existing designs. (3) Develop procedures and conduct training to increase worker awareness of potential hazards, reduce exposure to hazards, and inform personnel of the

  14. Modeling and optimizing of the random atomic spin gyroscope drift based on the atomic spin gyroscope

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Wei; Lv, Lin, E-mail: lvlinlch1990@163.com; Liu, Baiqi [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China)

    2014-11-15

    In order to improve the atom spin gyroscope's operational accuracy and compensate the random error caused by the nonlinear and weak-stability characteristic of the random atomic spin gyroscope (ASG) drift, the hybrid random drift error model based on autoregressive (AR) and genetic programming (GP) + genetic algorithm (GA) technique is established. The time series of random ASG drift is taken as the study object. The time series of random ASG drift is acquired by analyzing and preprocessing the measured data of ASG. The linear section model is established based on AR technique. After that, the nonlinear section model is built based on GP technique and GA is used to optimize the coefficients of the mathematic expression acquired by GP in order to obtain a more accurate model. The simulation result indicates that this hybrid model can effectively reflect the characteristics of the ASG's random drift. The square error of the ASG's random drift is reduced by 92.40%. Comparing with the AR technique and the GP + GA technique, the random drift is reduced by 9.34% and 5.06%, respectively. The hybrid modeling method can effectively compensate the ASG's random drift and improve the stability of the system.

  15. Study of redshifted H I from the epoch of reionization with drift scan

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sourabh; Sethi, Shiv K.; Subrahmanyan, Ravi; Shankar, N. Udaya; Dwarakanath, K. S.; Deshpande, Avinash A. [Raman Research Institute, Bangalore (India); Bernardi, Gianni [Square Kilometre Array South Africa (SKA SA), 3rd Floor, The Park, Park Road, Pinelands 7405 (South Africa); Bowman, Judd D. [Arizona State University, Tempe, AZ85281 (United States); Briggs, Frank; Gaensler, Bryan M. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), 44 Rosehill Street, Redfern, NSW 2016 (Australia); Cappallo, Roger J.; Corey, Brian E.; Goeke, Robert F. [MIT Haystack Observatory, Westford, MA 01886 (United States); Emrich, David [Curtin University, Perth (Australia); Greenhill, Lincoln J.; Kasper, Justin C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hazelton, Bryna J. [University of Washington, Seattle, WA 98195 (United States); Hewitt, Jacqueline N. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-241, Cambridge, MA 02139 (United States); Johnston-Hollitt, Melanie [Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); Kaplan, David L., E-mail: sourabh@rri.res.in, E-mail: sethi@rri.res.in [University of Wisconsin-Milwaukee, Milwaukee, WI 53201 (United States); and others

    2014-09-20

    Detection of the epoch of reionization (EoR) in the redshifted 21 cm line is a challenging task. Here, we formulate the detection of the EoR signal using the drift scan strategy. This method potentially has better instrumental stability compared to the case where a single patch of sky is tracked. We demonstrate that the correlation time between measured visibilities could extend up to 1-2 hr for an interferometer array such as the Murchison Widefield Array, which has a wide primary beam. We estimate the EoR power based on a cross-correlation of visibilities over time and show that the drift scan strategy is capable of detecting the EoR signal with a signal to noise that is comparable/better compared to the tracking case. We also estimate the visibility correlation for a set of bright point sources and argue that the statistical inhomogeneity of bright point sources might allow their separation from the EoR signal.

  16. Ionospheric drift measurements: Skymap points selection

    Czech Academy of Sciences Publication Activity Database

    Kouba, Daniel; Boška, Josef; Galkin, I. A.; Santolík, Ondřej; Šauli, Petra

    2008-01-01

    Roč. 43, č. 1 (2008), RS1S90/1-RS1S90/11 ISSN 0048-6604 R&D Projects: GA ČR GA205/06/1619; GA ČR GA205/06/1267; GA AV ČR IAA300420504 Grant - others:GA MŠk(CZ) OC 296; MIERS(XE) COST 296 Institutional research plan: CEZ:AV0Z30420517 Keywords : digisonde drift measurement * plasma drift * radio sounding * ionosphere * Doppler shift * skymap processing Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.092, year: 2008 http://www.agu.org/pubs/crossref/2008/2007RS003633.shtml

  17. Longevity of Emplacement Drift Ground Support Materials

    International Nuclear Information System (INIS)

    D.H.Tang

    2001-01-01

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for the selection of materials for ground support that will function throughout the preclosure period of a potential repository at Yucca Mountain. REV 01 ICN 01 of this analysis is developed in accordance with AP-3.10Q, Analyses and Models, Revision 2, ICN 4, and prepared in accordance with the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M and O 2001a). The objective of this analysis is to update the previous analysis (CRWMS M and O 2000a) to account for related changes in the Ground Control System Description Document (CRWMS M and O 2000b), the Monitored Geologic Repository Project Description Document, which is included in the Requirements and Criteria for Implementing a Repository Design that can be Operated Over a Range of Thermal Modes (BSC 2001), input information, and in environmental conditions, and to provide updated information on candidate ground support materials. Candidate materials for ground support are carbon steel and cement grout. Steel is mainly used for steel sets, lagging, channel, rock bolts, and wire mesh. Cement grout is only considered in the case of grouted rock bolts. Candidate materials for the emplacement drift invert are carbon steel and granular natural material. Materials are evaluated for the repository emplacement drift environment based on the updated thermal loading condition and waste package design. The analysis consists of the following tasks: (1) Identify factors affecting the longevity of ground support materials for use in emplacement drifts. (2) Review existing documents concerning the behavior of candidate ground support materials during the preclosure period. (3) Evaluate impacts of temperature and radiation effects on mechanical and thermal properties of steel. Assess corrosion potential of steel at emplacement drift environment. (4

  18. Simulations of drift waves in 3D magnetic configurations

    International Nuclear Information System (INIS)

    Jost, G.

    2000-06-01

    Drift waves are commonly held responsible for anomalous transport in tokamak configurations and in particular for the anomalously high heat loss. The next generation of stellarators on the other hand are hoped to be characterized by a much smaller neo-classical transport and by particle confinement close to that of tokamaks. There is nevertheless a strong interest in the stellarator community to study the properties of drift waves in 3D magnetic configurations. To serve this interest we have developed the first global gyrokinetic code, EUTERPE, aimed at the investigation of linear drift wave stability in general toroidal geometry. The physical model assumes electrostatic waves and adiabatic electrons. EUTERPE is a particle-in-cell (PIC) code in which the gyrokinetic Poisson equation is discretized with the finite element method defined in the PEST -1 system of magnetic coordinates. The magnetic geometry is provided by the magnetohydrodynamic (MHD) equilibrium code VMEC. The complete 3D model has been successfully validated in toroidal axisymmetric and straight helical geometries and has permitted the first simulation of unstable global ITG driven modes in non-axisymmetric toroidal configurations. As a first application, two configurations have been studied, the Quasi-Axially symmetric Stellarator with three fields periods (QAS3) currently one system under consideration at the Princeton Plasma Physics Laboratory and the Helically Symmetric experiment (HSX) which has recently started operation at the University of Wisconsin. QAS3 is characterized by a tokamak-Iike field in the outer part of the torus. In this structure the drift waves are mainly affected by the magnetic shear and barely by the shape of the plasma. Also, the results are very close to those obtained for a tokamak. On the other hand, results for the HSX configuration, which is characterized by a dominant helical magnetic field, show a clear 3D effect, namely a strong toroidal variation of the drift wave

  19. Tapping with intentional drift

    NARCIS (Netherlands)

    Vardy, A.N.; Daffertshofer, A.; Beek, P.J.

    2009-01-01

    When tapping a desired frequency, subjects tend to drift away from this target frequency. This compromises the estimate of the correlation between inter-tap intervals (ITIs) as predicted by the two-level model of Wing and Kristofferson which consists of an internal timer ('clock') and motor delays.

  20. Measurement of Spray Drift with a Specifically Designed Lidar System.

    Science.gov (United States)

    Gregorio, Eduard; Torrent, Xavier; Planas de Martí, Santiago; Solanelles, Francesc; Sanz, Ricardo; Rocadenbosch, Francesc; Masip, Joan; Ribes-Dasi, Manel; Rosell-Polo, Joan R

    2016-04-08

    Field measurements of spray drift are usually carried out by passive collectors and tracers. However, these methods are labour- and time-intensive and only provide point- and time-integrated measurements. Unlike these methods, the light detection and ranging (lidar) technique allows real-time measurements, obtaining information with temporal and spatial resolution. Recently, the authors have developed the first eye-safe lidar system specifically designed for spray drift monitoring. This prototype is based on a 1534 nm erbium-doped glass laser and an 80 mm diameter telescope, has scanning capability, and is easily transportable. This paper presents the results of the first experimental campaign carried out with this instrument. High coefficients of determination (R² > 0.85) were observed by comparing lidar measurements of the spray drift with those obtained by horizontal collectors. Furthermore, the lidar system allowed an assessment of the drift reduction potential (DRP) when comparing low-drift nozzles with standard ones, resulting in a DRP of 57% (preliminary result) for the tested nozzles. The lidar system was also used for monitoring the evolution of the spray flux over the canopy and to generate 2-D images of these plumes. The developed instrument is an advantageous alternative to passive collectors and opens the possibility of new methods for field measurement of spray drift.

  1. Incremental learning of concept drift in nonstationary environments.

    Science.gov (United States)

    Elwell, Ryan; Polikar, Robi

    2011-10-01

    We introduce an ensemble of classifiers-based approach for incremental learning of concept drift, characterized by nonstationary environments (NSEs), where the underlying data distributions change over time. The proposed algorithm, named Learn(++). NSE, learns from consecutive batches of data without making any assumptions on the nature or rate of drift; it can learn from such environments that experience constant or variable rate of drift, addition or deletion of concept classes, as well as cyclical drift. The algorithm learns incrementally, as other members of the Learn(++) family of algorithms, that is, without requiring access to previously seen data. Learn(++). NSE trains one new classifier for each batch of data it receives, and combines these classifiers using a dynamically weighted majority voting. The novelty of the approach is in determining the voting weights, based on each classifier's time-adjusted accuracy on current and past environments. This approach allows the algorithm to recognize, and act accordingly, to the changes in underlying data distributions, as well as to a possible reoccurrence of an earlier distribution. We evaluate the algorithm on several synthetic datasets designed to simulate a variety of nonstationary environments, as well as a real-world weather prediction dataset. Comparisons with several other approaches are also included. Results indicate that Learn(++). NSE can track the changing environments very closely, regardless of the type of concept drift. To allow future use, comparison and benchmarking by interested researchers, we also release our data used in this paper. © 2011 IEEE

  2. Pulsar bi-drifting: implications for polar cap geometry

    Science.gov (United States)

    Wright, Geoff; Weltevrede, Patrick

    2017-01-01

    For many years it has been considered puzzling how pulsar radio emission, supposedly created by a circulating carousel of sub-beams, can produce the drift bands demonstrated by PSR J0815+0939, and more recently PSR B1839-04, which simultaneously drifts in opposing directions. Here, we suggest that the carousels of these pulsars, and hence their beams, are not circular but elliptical with axes tilted with respect to the fiducial plane. We show that certain relatively unusual lines of sight can cause bi-drifting to be observed, and a simulation of the two known exemplars is presented. Although bi-drifting is rare, non-circular beams may be common among pulsars and reveal themselves by having profile centroids displaced from the fiducial plane identified by polarization position angle swings. They may also result in profiles with asymmetric- and frequency-dependent component evolution. It is further suggested that the carousels may change their tilt by specific amounts and later reverse them. This may occur suddenly, accompanying a mode change (e.g. PSR B0943+10), or more gradually and short lived as in `flare' pulsars (e.g. PSR B1859+07). A range of pulsar behaviour (e.g. the shifting drift patterns of PSRs B0818-41 and B0826-34) may also be the result of non-circular carousels with varying orientation. The underlying nature of these carousels - whether they are exclusively generated by polar cap physics or driven by magnetospheric effects - is briefly discussed.

  3. Unstable universal drift eigenmodes in toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chen, L.

    1980-01-01

    The eigenmode equation describing ballooning collisionless drift instabilities is analyzed both analytically and numerically. A new branch of eigenmodes, which corresponds to quasi-bound states due to toroidal coupling effects such as ion delB drifts, is shown to be destabilized by electron Landau damping for typical tokamak parameters. This branch cannot be understood by the strong coupling approximation. However, the slab-like (Pearlstein--Berk-type) branch is found to remain stable and experience enhanced shear damping

  4. Spatial mode structures of electrostatic drift waves in a collisional cylindrical helicon plasma

    DEFF Research Database (Denmark)

    Schröder, C.; Grulke, O.; Klinger, T.

    2004-01-01

    In a cylindrical helicon plasma, mode structures of coherent drift waves are studied in the poloidal plane, the plane perpendicular to the ambient magnetic field. The mode structures rotate with a constant angular velocity in the direction of the electron diamagnetic drift and show significant...... radial bending. The experimental observations are compared with numerical solutions of a linear nonlocal cylindrical model for drift waves [ Ellis , Plasma Phys. 22, 113 (1980) ]. In the numerical model, a transition to bended mode structures is found if the plasma collisionality is increased....... This finding proves that the experimentally observed bended mode structures are the result of high electron collisionality. (C) 2004 American Institute of Physics....

  5. Body ownership and agency: task-dependent effects of the virtual hand illusion on proprioceptive drift.

    Science.gov (United States)

    Shibuya, Satoshi; Unenaka, Satoshi; Ohki, Yukari

    2017-01-01

    Body ownership and agency are fundamental to self-consciousness. These bodily experiences have been intensively investigated using the rubber hand illusion, wherein participants perceive a fake hand as their own. After presentation of the illusion, the position of the participant's hand then shifts toward the location of the fake hand (proprioceptive drift). However, it remains controversial whether proprioceptive drift is able to provide an objective measurement of body ownership, and whether agency also affects drift. Using the virtual hand illusion (VHI), the current study examined the effects of body ownership and agency on proprioceptive drift, with three different visuo-motor tasks. Twenty healthy adults (29.6 ± 9.2 years old) completed VH manipulations using their right hand under a 2 × 2 factorial design (active vs. passive manipulation, and congruent vs. incongruent virtual hand). Prior to and after VH manipulation, three different tasks were performed to assess proprioceptive drift, in which participants were unable to see their real hands. The effects of the VHI on proprioceptive drift were task-dependent. When participants were required to judge the position of their right hand using a ruler, or by reaching toward a visual target, both body ownership and agency modulated proprioceptive drift. Comparatively, when participants aligned both hands, drift was influenced by ownership but not agency. These results suggest that body ownership and agency might differentially modulate various body representations in the brain.

  6. Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries

    Science.gov (United States)

    Wang, Dong; Zhao, Yang; Yang, Fangfang; Tsui, Kwok-Leung

    2017-09-01

    Brownian motion with adaptive drift has attracted much attention in prognostics because its first hitting time is highly relevant to remaining useful life prediction and it follows the inverse Gaussian distribution. Besides linear degradation modeling, nonlinear-drifted Brownian motion has been developed to model nonlinear degradation. Moreover, the first hitting time distribution of the nonlinear-drifted Brownian motion has been approximated by time-space transformation. In the previous studies, the drift coefficient is the only hidden state used in state space modeling of the nonlinear-drifted Brownian motion. Besides the drift coefficient, parameters of a nonlinear function used in the nonlinear-drifted Brownian motion should be treated as additional hidden states of state space modeling to make the nonlinear-drifted Brownian motion more flexible. In this paper, a prognostic method based on nonlinear-drifted Brownian motion with multiple hidden states is proposed and then it is applied to predict remaining useful life of rechargeable batteries. 26 sets of rechargeable battery degradation samples are analyzed to validate the effectiveness of the proposed prognostic method. Moreover, some comparisons with a standard particle filter based prognostic method, a spherical cubature particle filter based prognostic method and two classic Bayesian prognostic methods are conducted to highlight the superiority of the proposed prognostic method. Results show that the proposed prognostic method has lower average prediction errors than the particle filter based prognostic methods and the classic Bayesian prognostic methods for battery remaining useful life prediction.

  7. Cathode readout with stripped resistive drift tubes

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Kekelidze, G.D.; Novikov, E.A.; Peshekhonov, V.D.; Shafranov, M.D.; Zhiltsov, V.E.

    1995-01-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with a carbon layer with a resistivity of 0.5, 30 and 70 kΩ/□. Both the anode wire and the cathode strip signals were detected to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented. (orig.)

  8. Cathode readout with stripped resistive drift tubes

    Science.gov (United States)

    Bychkov, V. N.; Kekelidze, G. D.; Novikov, E. A.; Peshekhonov, V. D.; Shafranov, M. D.; Zhiltsov, V. E.

    1995-12-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with a carbon layer with a resistivity of 0.5, 30 and 70 kΩ/□. Both the anode wire and the cathode strip signals were detected to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented.

  9. Post-midnight equatorial irregularity distributions and vertical drift velocity variations during solstices

    Science.gov (United States)

    Su, S.-Y.; Liu, C. H.; Chao, C.-K.

    2018-04-01

    Longitudinal distributions of post-midnight equatorial ionospheric irregularity occurrences observed by ROCSAT-1 (1st satellite of the Republic of China) during moderate to high solar activity years in two solstices are studied with respect to the vertical drift velocity and density variations. The post-midnight irregularity distributions are found to be similar to the well-documented pre-midnight ones, but are different from some published distributions taken during solar minimum years. Even though the post-midnight ionosphere is sinking in general, longitudes of frequent positive vertical drift and high density seems to coincide with the longitudes of high irregularity occurrences. Large scatters found in the vertical drift velocity and density around the dip equator in different ROCSAT-1 orbits indicate the existence of large and frequent variations in the vertical drift velocity and density that seem to be able to provide sufficient perturbations for the Rayleigh-Taylor (RT) instability to cause the irregularity occurrences. The need of seeding agents such as gravity waves from atmospheric convective clouds to initiate the Rayleigh-Taylor instability may not be necessary.

  10. Inland drift sand landscapes

    NARCIS (Netherlands)

    Fanta, J.; Siepel, H.

    2010-01-01

    Man has had a complex relationship with inland drift sands through the ages. For some centuries these landscapes were seen as a threat to society, especially agriculture and housing. At present we conserve these landscapes as important Natura 2000 priority habitats. In this book you may find these

  11. Low frequency fluid drift turbulence in magnetised plasmas

    International Nuclear Information System (INIS)

    Scott, B.

    2001-03-01

    We start with the first principles of fluid dynamics and classical electrodynamics and then find the regime in which we can reduce to quasineutral dynamics, which also implicitly underlies MHD. Then, we find the limits under which we can specialise to the MHD model as a subset, first of two fluid dynamics, then of the fluid drift dynamics that results when the motions are not vigorous enough to compress the magnetic field. In Chapters 4 and 5 we find the basic character of small disturbances in this system. Chapters 6 through 9 treat various aspects of fluid drift turbulence, also called drift wave turbulence, moving from a simple consideration of the underlying nonlinear dynamics, to some methods by which one can diagnose computations to find out what is going on, and then to the nonlinear instability which is the hallmark of this physics, and then to the interactions with large scale sheared flows. Chapter 10 introduces interchange turbulence, which is the plasma analog of the buoyant convection well known from fluid dynamics. Chapters 11 through 13 treat electromagnetic drift wave turbulence in closed magnetic field geometry, starting with a simplified model treating only the electron pressure and then introducing the electron and ion temperatures. Chapter 14 treats the basic characteristics of the transport that results from fluid drift turbulence, as this is quite different from the kinetic diffusion, such as heat conduction, that is more familiar. Appendices A and B treat the details of the numerical methods and models of magnetic field geometry necessary to treat all but the simplest cases. For this subject is dominated by nonlinear physics and therefore numerical computation. Computations therefore form an integral part of its study right from the beginning. Citations to the literature are not intended to be comprehensive but to serve as starting points for further reading, a section for which is included in every chapter. Much of this work is very new, and

  12. Steam reforming of methanol over oxide decorated nanoporous gold catalysts: a combined in situ FTIR and flow reactor study.

    Science.gov (United States)

    Shi, J; Mahr, C; Murshed, M M; Gesing, T M; Rosenauer, A; Bäumer, M; Wittstock, A

    2017-03-29

    Methanol as a green and renewable resource can be used to generate hydrogen by reforming, i.e., its catalytic oxidation with water. In combination with a fuel cell this hydrogen can be converted into electrical energy, a favorable concept, in particular for mobile applications. Its realization requires the development of novel types of structured catalysts, applicable in small scale reactor designs. Here, three different types of such catalysts were investigated for the steam reforming of methanol (SRM). Oxides such as TiO 2 and CeO 2 and mixtures thereof (Ce 1 Ti 2 O x ) were deposited inside a bulk nanoporous gold (npAu) material using wet chemical impregnation procedures. Transmission electron and scanning electron microscopy reveal oxide nanoparticles (1-2 nm in size) abundantly covering the strongly curved surface of the nanoporous gold host (ligaments and pores on the order of 40 nm in size). These catalysts were investigated in a laboratory scaled flow reactor. First conversion of methanol was detected at 200 °C. The measured turn over frequency at 300 °C of the CeO x /npAu catalyst was 0.06 s -1 . Parallel investigation by in situ infrared spectroscopy (DRIFTS) reveals that the activation of water and the formation of OH ads are the key to the activity/selectivity of the catalysts. While all catalysts generate sufficient OH ads to prevent complete dehydrogenation of methanol to CO, only the most active catalysts (e.g., CeO x /npAu) show direct reaction with formic acid and its decomposition to CO 2 and H 2 . The combination of flow reactor studies and in operando DRIFTS, thus, opens the door to further development of this type of catalyst.

  13. Dφ vertex drift chamber construction and test results

    International Nuclear Information System (INIS)

    Clark, A.R.; Goozen, F.; Grudberg, P.; Klopfenstein, C.; Kerth, L.T.; Loken, S.C.; Oltman, E.; Strovink, M.; Trippe, T.G.

    1991-05-01

    A jet-cell based vertex chamber has been built for the D OE experiment at Fermilab and operated in a test beam there. Low drift velocity and diffusion properties were achieved using CO 2 (95%)-ethane(5%) at atmospheric pressure. The drift velocity is found to be consistent with [9.74+8.68(|E|-1.25)] μm/nsec where E is the electric field strength in (kV/cm < |E| z 1.6 kV/cm.) An intrinsic spatial resolution of 60 μm or better for drift distances greater than 2 mm is measured. The track pair efficiency is estimated to be better than 90% for separations greater than 630 μm. 8 refs., 6 figs., 1 tab

  14. Drift velocity of free electrons in liquid argon

    International Nuclear Information System (INIS)

    Walkowiak, W.

    2000-01-01

    A measurement of the drift velocity of free electrons in liquid argon has been performed. Free electrons have been produced by photoelectric effect using laser light in a so-called 'laser chamber'. The results on the drift velocity v d are given as a function of the electric field strength in the range 0.5 kV/cm≤|E|≤12.6 kV/cm and the temperature in the range 87 K≤T≤94 K. A global parametrization of v d (|E|,T) has been fitted to the data. A temperature dependence of the electron drift velocity is observed, with a mean value of Δv d /(ΔT v d )=(-1.72±0.08)%/K in the range of 87-94 K

  15. The drift chamber system of the MEG experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Malte, E-mail: malte.hildebrandt@psi.c [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2010-11-01

    The MEG experiment searches for the lepton flavour violating decay {mu}{yields}e{gamma} and is aiming for a sensitivity of 10{sup -13} in the branching ratio in order to probe new physics beyond the standard model. The experiment is located at the Paul Scherrer Institut (PSI) in Switzerland, where one of the world's most intensive surface muon beams is located. Physics data taking started in September 2008. The drift chamber system is part of the innovative positron spectrometer of the MEG experiment and consists of 16 drift chamber modules. The system is designed to ensure precision measurement of 52.8 MeV/c positrons. Design, construction, geometrical alignment and performance of the drift chamber system are presented.

  16. Assessing the extent and effects of herbicide drift into Danish hedgerows

    DEFF Research Database (Denmark)

    Pedersen, Marianne Bruus; Andersen, H. V.; Strandberg, M. T.

    Very low dosages of herbicides are known to cause effects on bird cherry (Prunus avium) and hawthorn (Crataegus monogyna). It is not yet known whether other hedgerow trees and shrubs are equally sensitive to herbicide drift, to which extent spray drift into hedges and other habitats close to fiel...... were assessed. Metsulfuron methyl effects on Sambucus nigra (elder) and Sorbus intermedia were studied in separate experiments and will include second year effects. Methods and preliminary results are presented and discussed in relation to pesticide regulation....

  17. Nonlinear drift waves in a dusty plasma with sheared flows

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, J. [K.U. Leuven (Belgium). Center for Plasma Astrophysics; Shukla, R.K. [Ruhr-Univ. Bochum (Germany). Inst. fuer Theoretische Physik IV

    2002-01-01

    Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented.

  18. Nonlinear drift waves in a dusty plasma with sheared flows

    International Nuclear Information System (INIS)

    Vranjes, J.; Shukla, R.K.

    2002-01-01

    Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented

  19. High pressure gas scintillation drift chambers with wave-shifter fiber readout

    International Nuclear Information System (INIS)

    Parsons, A.; Edberg, T.K.; Sadoulet, B.; Weiss, S.; Wilkerson, J.; Hurley, K.; Lin, R.P.

    1990-01-01

    The authors present results from a prototype high pressure xenon gas scintillation drift chamber using a novel wave-shifter fiber readout scheme. They have measured the primary scintillation light yield to be one photon per 76 ± 12 eV deposited energy. They present initial results of our chamber for the two-interaction separation (< 4 mm in the drift direction, ∼ 7 mm orthogonal to the drift); for the position resolution (< 400 μm rms in the plane orthogonal to the drift direction); and for the energy resolution (ΔE/E < 6% FWHM at 122 keV)

  20. Three-dimensional simulation studies of 10 MeV, 352.2 MHz drift ...

    Indian Academy of Sciences (India)

    It is proposed to build a drift tube Linac (DTL) at Raja Ramanna Centre for Advanced Technology, Indore, India, that will form a part of the future Spallation Neutron Source. This DTL will accelerate 30 mA H-ion beam from 3 MeV to 10 MeV. The DTL is designed to operate at 352.2 MHz with a maximum duty cycle of 3%.

  1. Autocalibration of high precision drift tubes

    International Nuclear Information System (INIS)

    Bacci, C.; Bini, C.; Ciapetti, G.; De Zorzi, G.; Gauzzi, P.; Lacava, F.; Nisati, A.; Pontecorvo, L.; Rosati, S.; Veneziano, S.; Cambiaghi, M.; Casellotti, G.; Conta, C.; Fraternali, M.; Lanza, A.; Livan, M.; Polesello, G.; Rimoldi, A.; Vercesi, V.

    1997-01-01

    We present the results on MDT (monitored drift tubes) autocalibration studies obtained from the analysis of the data collected in Summer 1995 on the H8B Muon Test Beam. In particular we studied the possibility of autocalibration of the MDT using four or three layers of tubes, and we compared the calibration obtained using a precise external tracker with the output of the autocalibration procedure. Results show the feasibility of autocalibration with four and three tubes and the good accuracy of the autocalibration procedure. (orig.)

  2. Controlling qubit drift by recycling error correction syndromes

    Science.gov (United States)

    Blume-Kohout, Robin

    2015-03-01

    Physical qubits are susceptible to systematic drift, above and beyond the stochastic Markovian noise that motivates quantum error correction. This parameter drift must be compensated - if it is ignored, error rates will rise to intolerable levels - but compensation requires knowing the parameters' current value, which appears to require halting experimental work to recalibrate (e.g. via quantum tomography). Fortunately, this is untrue. I show how to perform on-the-fly recalibration on the physical qubits in an error correcting code, using only information from the error correction syndromes. The algorithm for detecting and compensating drift is very simple - yet, remarkably, when used to compensate Brownian drift in the qubit Hamiltonian, it achieves a stabilized error rate very close to the theoretical lower bound. Against 1/f noise, it is less effective only because 1/f noise is (like white noise) dominated by high-frequency fluctuations that are uncompensatable. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  3. Y chromosome diversity, human expansion, drift, and cultural evolution.

    Science.gov (United States)

    Chiaroni, Jacques; Underhill, Peter A; Cavalli-Sforza, Luca L

    2009-12-01

    The relative importance of the roles of adaptation and chance in determining genetic diversity and evolution has received attention in the last 50 years, but our understanding is still incomplete. All statements about the relative effects of evolutionary factors, especially drift, need confirmation by strong demographic observations, some of which are easier to obtain in a species like ours. Earlier quantitative studies on a variety of data have shown that the amount of genetic differentiation in living human populations indicates that the role of positive (or directional) selection is modest. We observe geographic peculiarities with some Y chromosome mutants, most probably due to a drift-related phenomenon called the surfing effect. We also compare the overall genetic diversity in Y chromosome DNA data with that of other chromosomes and their expectations under drift and natural selection, as well as the rate of fall of diversity within populations known as the serial founder effect during the recent "Out of Africa" expansion of modern humans to the whole world. All these observations are difficult to explain without accepting a major relative role for drift in the course of human expansions. The increasing role of human creativity and the fast diffusion of inventions seem to have favored cultural solutions for many of the problems encountered in the expansion. We suggest that cultural evolution has been subrogating biologic evolution in providing natural selection advantages and reducing our dependence on genetic mutations, especially in the last phase of transition from food collection to food production.

  4. Guiding center drift equations

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1979-03-01

    The quations for particle guiding center drift orbits are given in a new magnetic coordinate system. This form of the equations not only separates the fast motion along the lines from the slow motion across, but also requires less information about the magnetic field than many other formulations of the problem

  5. Analysis of equatorial plasma bubble zonal drift velocities in the Pacific sector by imaging techniques

    Directory of Open Access Journals (Sweden)

    D. Yao

    2007-03-01

    Full Text Available Using 1024 nights of data from 2002–2005 taken by the Cornell Narrow Field Imager (CNFI, we examine equatorial plasma bubble (EPB zonal drift velocity characteristics. CNFI is located at the Maui Space Surveillance Site on the Haleakala Volcano (geographic: 20.71° N, 203.83° E; geomagnetic: 21.03° N, 271.84° E on the island of Maui, Hawaii. The imager is set up to view in a magnetic field-aligned geometry in order to maximize its resolution. We calculate the zonal drift velocities using two methods: a correlation routine and an EPB west-wall intensity gradient tracking routine. These two methods yield sizeable differences in the evenings, suggesting strong pre-local midnight EPB development. An analysis of the drift velocities is also performed based on the three influencing factors of season, geomagnetic activity, and solar activity. In general, our data match published trends and drift characteristics from past studies. However, we find that the drift magnitudes are much lower than results from other imagers at similar latitude sectors but at different longitude sectors, suggesting that zonal drift velocities have a longitudinal dependence.

  6. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Report is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The DST THC Model is used solely for the validation of the THC

  7. Using different drift gases to change separation factors (alpha) in ion mobility spectrometry

    Science.gov (United States)

    Asbury; Hill

    2000-02-01

    The use of different drift gases to alter separation factors (alpha) in ion mobility spectrometry has been demonstrated. The mobility of a series of low molecular weight compounds and three small peptides was determined in four different drift gases. The drift gases chosen were helium, argon, nitrogen, and carbon dioxide. These drift gases provide a range of polarizabilities and molecular weights. In all instances, the compounds showed the greatest mobility in helium and the lowest mobility in carbon dioxide; however the percentage change of mobility for each compound was different, effectively changing the alpha value. The alpha value changes were primarily due to differences in drift gas polarizability but were also influenced by the mass of the drift gas. In addition, gas-phase ion radii were calculated in each of the different drift gases. These radii were then plotted against drift gas polarizability producing linear plots with r2 values greater than 0.99. The intercept of these plots provides the gas-phase radius of an ion in a nonpolarizing environment, whereas the slope is indicative of the magnitude of the ion's mobility change related to polarizability. It therefore, should be possible to separate any two compounds that have different slopes with the appropriate drift gas.

  8. Early Winter Sea Ice Dynamics in the Ross Sea from In Situ and Satellite Observations

    Science.gov (United States)

    Maksym, T.; Ackley, S. F.; Stammerjohn, S. E.; Tison, J. L.; Hoeppner, K.

    2017-12-01

    The Ross Sea sea ice cover is one of the few regions of the cryosphere that have been expanding in recent decades. However, 2017 saw a significantly delayed autumn ice advance and record low early winter sea ice extent. Understanding the causes and impacts of this variability has been hampered by a lack of in situ observations. A winter cruise into the Ross Sea in April-June 2017 provided some of the only in situ winter observations of sea ice processes in this region in almost 20 years. We present a first look at data from arrays of drifting buoys deployed in the ice pack and outflow from these polynyas, supplemented by a suite of high-resolution synthetic aperture radar (SAR) data. Additional observations included high-resolution sonar imagery of ice deformation features from an autonomous underwater vehicle, shipboard visual observations of sea ice properties, and in situ measurements of snow and thickness and structural properties. These data show that the delay in ice advance led to a thin, highly dynamic sea ice pack, with substantial ice production and export from the Ross Ice Shelf and Terra Nova Bay polynyas. Despite these high rates of ice production, the pack ice remained thin due to rapid export and northward drift. Compared to the only prior winter observations made in 1995 and 1998, the ice was thinner, with less ridging and snow cover, reflecting a younger ice cover. Granular ice was less prevalent than in these prior cruises, particularly in the outer pack, likely due to less snow ice formation and less pancake ice formation at the advancing ice edge. Despite rapid basal ice growth, the buoy data suggest that deformation may be the dominant mechanism for sea ice thickening in the pack once an initial ice cover forms.

  9. Electroluminescent drift chamber with 16 μm spatial resolution

    International Nuclear Information System (INIS)

    Baskakov, V.I.; Dolgoshein, V.A.; Lebedenko, V.N.

    1978-01-01

    Studied are the characteristics of the dft electroluminscent chamber of an original design. For insuring high spatial resolution, the chamber has been filled with xenon to a pressure of 20 atm, which substantially decreases the electron diffusion during drift. Located at the end of the drift gap is an anode wire, 50 μm in dia. A strong electric field available near the thin wire causes electroluminescence of the electrons. The signal is localized within a small volume and contribution of the luminescence time in the total duration of a signal is small. In this case no electron multiplication occurs at all and, consequently, no space charge of positive ions takes place, which makes it possible to operate at very high loadings (2x10 6 particle/s). The characteristics of the chamber are measured in a beam of the Serpukhov accelerator. Use has been made of a model comprising two chambers, 5 mm thick, located successively along the beam with the effective area being 40x40 mm. The studies and analysis performed reveal that the drift electroluminescent chamber operates reliably in the wide range of the working gas pressure at an intensity of the incident particles up to 10 5 particle/s. The best resolution is obtained at a pressure of 20 atm and it equals 16 μm

  10. Using Institutional Theory To Reframe Research on Academic Drift.

    Science.gov (United States)

    Morphew, Christopher C.; Huisman, Jeroen

    2002-01-01

    Examines patterns of academic drift (a drift toward the structure and norms typical of more prestigious universities) in multiple higher education systems and tests the concept of "isomorphism in organizational fields" as discussed in institutional theory. Argues that the theoretical framework provided by institutional theory presents a useful…

  11. Approximation of the characteristics of ion drift in parent gas

    Energy Technology Data Exchange (ETDEWEB)

    Golyatina, R. I.; Maiorov, S. A., E-mail: mayorov-sa@mail.ru [Russian Academy of Science, Prokhorov General Physics Institute (Russian Federation)

    2017-01-15

    The drift velocities of noble-gas and mercury ions in a constant homogeneous electric field are calculated using Monte Carlo simulations. The ion mobility is analyzed as a function of the field strength and gas temperature. The fitting parameters for calculating the drift velocity by the Frost formula at gas temperatures of 4.2, 77, 300, 1000, and 2000 K are obtained. A general approximate formula for the drift velocity as a function of the reduced field and gas temperature is derived.

  12. Spectroscopic measurements with a silicon drift detector having a continuous implanted drift cathode-voltage divider

    CERN Document Server

    Bonvicini, V; D'Acunto, L; Franck, D; Gregorio, A; Pihet, P; Rashevsky, A; Vacchi, A; Vinogradov, L I; Zampa, N

    2000-01-01

    A silicon drift detector (SDD) prototype where the drift electrode also plays the role of a high-voltage divider has been realised and characterised for spectroscopic applications at near-room temperatures. Among the advantages of this design, is the absence of metal on the sensitive surface which makes this detector interesting for soft X-rays. The detector prototype has a large sensitive area (2x130 mm sup 2) and the charge is collected by two anodes (butterfly-like detector). The energy resolution of a such a detector has been investigated at near-room temperatures using a commercial, hybrid, low-noise charge-sensitive preamplifier. The results obtained for the X-ray lines from sup 5 sup 5 Fe and sup 2 sup 4 sup 1 Am are presented.

  13. Kinetic theory of drift waves

    International Nuclear Information System (INIS)

    Vlad, G.

    1988-01-01

    The linear stability of the electrostatic drift waves in slab geometry has been studied analytically and numerically. The effects of magnetic field with shear, of the finite Larmor radius, of an electron streaming, of a temperature gradient and of collisions have been retained. The analytical solution has been obtained using the matched asymptotic expansion technique, and an expression for the critical streaming parameter has been derived. Finally, assuming that the transport in the Reversed Field Pinches is dominated by this instability, a scaling law for the temperature in such machine is derived

  14. Modeling of Drift Effects on Solar Tower Concentrated Flux Distributions

    Directory of Open Access Journals (Sweden)

    Luis O. Lara-Cerecedo

    2016-01-01

    Full Text Available A novel modeling tool for calculation of central receiver concentrated flux distributions is presented, which takes into account drift effects. This tool is based on a drift model that includes different geometrical error sources in a rigorous manner and on a simple analytic approximation for the individual flux distribution of a heliostat. The model is applied to a group of heliostats of a real field to obtain the resulting flux distribution and its variation along the day. The distributions differ strongly from those obtained assuming the ideal case without drift or a case with a Gaussian tracking error function. The time evolution of peak flux is also calculated to demonstrate the capabilities of the model. The evolution of this parameter also shows strong differences in comparison to the case without drift.

  15. Diffusion and drift of charges in semiconductor detectors

    International Nuclear Information System (INIS)

    Meidinger, N.

    1991-01-01

    For this analysis, a fully depleteable pn-CCD (a novel, energy and local resolution semiconductor using the drift chamber principle) has been tested for verification at different temperatures, photon energies, and drift times, including theoretical calculations. Experimental results are in good agreement with calculated data, and deviations (≤11%) have been understood to an extent that proposals can be made for improving the accuracy. Charge splitting has been found to be reduced in the case of reduced charge collecting areas, i.e. for example at lower temperatures, or with shorter drift times. This effect is also reduced in the case of larger charge collecting areas (pixels). With the given topology of the cell structure, the charge splitting can be much more strongly suppressed as compared to other X-ray CCD design types. (orig.) [de

  16. Perturbed GUE Minor Process and Warren's Process with Drifts

    Science.gov (United States)

    Ferrari, Patrik L.; Frings, René

    2014-01-01

    We consider the minor process of (Hermitian) matrix diffusions with constant diagonal drifts. At any given time, this process is determinantal and we provide an explicit expression for its correlation kernel. This is a measure on the Gelfand-Tsetlin pattern that also appears in a generalization of Warren's process (Electron. J. Probab. 12:573-590, 2007), in which Brownian motions have level-dependent drifts. Finally, we show that this process arises in a diffusion scaling limit from an interacting particle system in the anisotropic KPZ class in 2+1 dimensions introduced in Borodin and Ferrari (Commun. Math. Phys., 2008). Our results generalize the known results for the zero drift situation.

  17. Advanced numerical studies of the neutralized drift compression of intense ion beam pulses

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2007-10-01

    Full Text Available Longitudinal bunch compression of intense ion beams for warm dense matter and heavy ion fusion applications occurs by imposing an axial velocity tilt onto an ion beam across the acceleration gap of a linear induction accelerator, and subsequently allowing the beam to drift through plasma in order to neutralize its space-charge and current as the pulse compresses. The detailed physics and implications of acceleration gap effects and focusing aberration on optimum longitudinal compression are quantitatively reviewed using particle-in-cell simulations, showing their dependence on many system parameters. Finite-size gap effects are shown to result in compression reduction, due to an increase in the effective longitudinal temperature imparted to the beam, and a decrease in intended fractional tilt. Sensitivity of the focal plane quality to initial longitudinal beam temperature is explored, where slower particles are shown to experience increased levels of focusing aberration compared to faster particles. A plateau effect in axial compression is shown to occur for larger initial pulse lengths, where the increases in focusing aberration over the longer drift lengths involved dominate the increases in relative compression, indicating a trade-off between current compression and pulse duration. The dependence on intended fractional tilt is also discussed and agrees well with theory. A balance between longer initial pulse lengths and larger tilts is suggested, since both increase the current compression, but have opposite effects on the final pulse length, drift length, and amount of longitudinal focusing aberration. Quantitative examples are outlined that explore the sensitive dependence of compression on the initial kinetic energy and thermal distribution of the beam particles. Simultaneous transverse and longitudinal current density compression can be achieved in the laboratory using a strong final-focus solenoid, and simulations addressing the effects

  18. Continuously live image processor for drift chamber track segment triggering

    International Nuclear Information System (INIS)

    Berenyi, A.; Chen, H.K.; Dao, K.

    1999-01-01

    The first portion of the BaBar experiment Level 1 Drift Chamber Trigger pipeline is the Track Segment Finder (TSF). Using a novel method incorporating both occupancy and drift-time information, the TSF system continually searches for segments in the supercells of the full 7104-wire Drift Chamber hit image at 3.7 MHz. The TSF was constructed to operate in a potentially high beam-background environment while achieving high segment-finding efficiency, deadtime-free operation, a spatial resolution of 5 simulated physics events

  19. A Pascalian lateral drift sensor

    International Nuclear Information System (INIS)

    Jansen, H.

    2016-01-01

    A novel concept of a layer-wise produced semiconductor sensor for precise particle tracking is proposed herein. In contrast to common semiconductor sensors, local regions with increased doping concentration deep in the bulk termed charge guides increase the lateral drift of free charges on their way to the read-out electrode. This lateral drift enables charge sharing independent of the incident position of the traversing particle. With a regular grid of charge guides the lateral charge distribution resembles a normalised Pascal's triangle for particles that are stopped in depths lower than the depth of the first layer of the charge guides. For minimum ionising particles a sum of binomial distributions describes the lateral charge distribution. This concept decouples the achievable sensor resolution from the pitch size as the characteristic length is replaced by the lateral distance of the charge guides.

  20. ATLAS Muon Drift Tube Electronics

    CERN Document Server

    Arai, Y; Beretta, M; Boterenbrood, H; Brandenburg, G W; Ceradini, F; Chapman, J W; Dai, T; Ferretti, C; Fries, T; Gregory, J; Guimarães da Costa, J; Harder, S; Hazen, E; Huth, J; Jansweijer, P P M; Kirsch, L E; König, A C; Lanza, A; Mikenberg, G; Oliver, J; Posch, C; Richter, R; Riegler, W; Spiriti, E; Taylor, F E; Vermeulen, J; Wadsworth, B; Wijnen, T A M

    2008-01-01

    This paper describes the electronics used for the ATLAS monitored drift tube (MDT) chambers. These chambers are the main component of the precision tracking system in the ATLAS muon spectrometer. The MDT detector system consists of 1,150 chambers containing a total of 354,000 drift tubes. It is capable of measuring the sagitta of muon tracks to an accuracy of 60 microns, which corresponds to a momentum accuracy of about 10% at pT = 1 TeV. The design and performance of the MDT readout electronics as well as the electronics for controlling, monitoring and powering the detector will be discussed. These electronics have been extensively tested under simulated running conditions and have undergone radiation testing certifying them for more than 10 years of LHC operation. They are now installed on the ATLAS detector and are operating during cosmic ray commissioning runs.

  1. A Pascalian lateral drift sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, H., E-mail: hendrik.jansen@desy.de

    2016-09-21

    A novel concept of a layer-wise produced semiconductor sensor for precise particle tracking is proposed herein. In contrast to common semiconductor sensors, local regions with increased doping concentration deep in the bulk termed charge guides increase the lateral drift of free charges on their way to the read-out electrode. This lateral drift enables charge sharing independent of the incident position of the traversing particle. With a regular grid of charge guides the lateral charge distribution resembles a normalised Pascal's triangle for particles that are stopped in depths lower than the depth of the first layer of the charge guides. For minimum ionising particles a sum of binomial distributions describes the lateral charge distribution. This concept decouples the achievable sensor resolution from the pitch size as the characteristic length is replaced by the lateral distance of the charge guides.

  2. Drift estimation from a simple field theory

    International Nuclear Information System (INIS)

    Mendes, F. M.; Figueiredo, A.

    2008-01-01

    Given the outcome of a Wiener process, what can be said about the drift and diffusion coefficients? If the process is stationary, these coefficients are related to the mean and variance of the position displacements distribution. However, if either drift or diffusion are time-dependent, very little can be said unless some assumption about that dependency is made. In Bayesian statistics, this should be translated into some specific prior probability. We use Bayes rule to estimate these coefficients from a single trajectory. This defines a simple, and analytically tractable, field theory.

  3. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... polarity, i.e. a pair of electrostatic convective cells....

  4. Desorption of hydrogen from magnesium hydride: in-situ electron diffraction study

    International Nuclear Information System (INIS)

    Paik, B.; Jones, I.P.; Walton, A.; Mann, V.; Book, D.; Harris, I.R.

    2009-01-01

    The dynamics of a phase change has been studied where electron beam in Transmission Electron Microscope (TEM) has been used to transform MgH 2 into magnesium. A combination of in-situ Electron Diffraction (ED) and an in-situ Electron Energy Loss Spectroscopy (EELS) study under ED mode describes the phase transformation in terms of, respectively, change in the crystal structure and Plasmon energy shift. The orientation relation [001] MgH2 //[-2110] Mg and (-110) MgH2 //(0001) Mg , obtained from the ED study, has been used to propose a model for the movements of magnesium atoms in the structural change to describe the dynamics of the process. The in-situ EELS study has been compared with the existing H-desorption model. The study aims to describe the sorption dynamics of hydrogen in MgH 2 which is a base material for a number of promising hydrogen storage systems. (author)

  5. Occipitocervical fusion – An epidemiological drift experienced in an Irish tertiary spinal referral center: Twenty-year follow-up study

    Directory of Open Access Journals (Sweden)

    Nadim Tarazi

    2017-01-01

    Conclusion: We noticed a clear epidemiological drift in the cervical spine pathologies requiring OCF during the first and second decade of study period with an increase in prevalence of pathological fractures secondary to metastatic disease. In addition, a drop in rheumatoid cervical disease requiring OCF has been noted.

  6. Temperature effects on drift of suspended single-domain particles induced by the Magnus force

    Science.gov (United States)

    Denisov, S. I.; Lyutyy, T. V.; Reva, V. V.; Yermolenko, A. S.

    2018-03-01

    We study the temperature dependence of the drift velocity of single-domain ferromagnetic particles induced by the Magnus force in a dilute suspension. A set of stochastic equations describing the translational and rotational dynamics of particles is derived, and the particle drift velocity that depends on components of the average particle magnetization is introduced. The Fokker-Planck equation for the probability density of magnetization orientations is solved analytically in the limit of strong thermal fluctuations for both the planar rotor and general models. Using these solutions, we calculate the drift velocity and show that the out-of-plane fluctuations of magnetization, which are not accounted for in the planar rotor model, play an important role. In the general case of arbitrary fluctuations, we investigate the temperature dependence of the drift velocity by numerically simulating a set of effective stochastic differential equations for the magnetization dynamics.

  7. Drift tubes of Linac 2

    CERN Multimedia

    Photographic Service

    1977-01-01

    Being redied for installation, those at the right are for tank 1, those on the left for tank 2. Contrary to Linac 1, which had drift-tubes supported on stems, here the tubes are suspended, for better mechanical stability.

  8. Interception and retention of simulated cooling tower drift by vegetation

    International Nuclear Information System (INIS)

    Taylor, F.G. Jr.; Parr, P.D.

    1978-01-01

    A key issue concerning environmental impacts from cooling tower operation is the interception of drift by vegetation and the efficiency of plants in retaining the residue scavenged from the atmosphere. Chromated drift water, typical of the cooling towers of the Department of Energy's uranium enrichment facilities at Oak Ridge, Tennessee, was prepared using radio-labelled chromium. A portable aerosol generator was used to produce a spectrum of droplets with diameters (100 to 1300 μ) characteristic of cooling towers using state-of-the-art drift eliminators. Efficiency of interception by foliage varied according to leaf morphology with yellow poplar seedlings intercepting 72% of the deposition mass in contrast to 45% by loblolly pine and 24% by fescue grass. Retention patterns of intercepted deposition consisted of a short-time component (0 to 3 days) and a long-time component (3 to 63 days). Retention times, estimated from the regression equation of the long component, indicated that drift contamination from any deposition event may persist from between 8 and 12 weeks. In field situations adjacent to cooling towers, the average annual concentration of drift on vegetation at any distance remains relatively constant, with losses from weathering being compensated by chronic deposition

  9. Operational SAR-based sea ice drift monitoring over the Baltic Sea

    Directory of Open Access Journals (Sweden)

    J. Karvonen

    2012-07-01

    Full Text Available An algorithm for computing ice drift from pairs of synthetic aperture radar (SAR images covering a common area has been developed at FMI. The algorithm has been developed based on the C-band SAR data over the Baltic Sea. It is based on phase correlation in two scales (coarse and fine with some additional constraints. The algorithm has been running operationally in the Baltic Sea from the beginning of 2011, using Radarsat-1 ScanSAR wide mode and Envisat ASAR wide swath mode data. The resulting ice drift fields are publicly available as part of the MyOcean EC project. The SAR-based ice drift vectors have been compared to the drift vectors from drifter buoys in the Baltic Sea during the first operational season, and also these validation results are shown in this paper. Also some navigationally useful sea ice quantities, which can be derived from ice drift vector fields, are presented.

  10. SOFC anode reduction studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    The Solid Oxide Fuel Cell (SOFC) is a promising part of future energy approaches due to a relatively high energy conversion efficiency and low environmental pollution. SOFCs are typically composed of ceramic materials which are highly complex at the nanoscale. TEM is routinely applied ex situ...... for studying these nanoscale structures, but only few SOFC studies have applied in situ TEM to observe the ceramic nanostructures in a reactive gas environment at elevated temperatures. The present contribution focuses on the reduction of an SOFC anode which is a necessary process to form the catalytically...... active Ni surface before operating the fuel cells. The reduction process was followed in the TEM while exposing a NiO/YSZ (YSZ = Y2O3-stabilized ZrO2) model anode to H2 at T = 250-1000⁰C. Pure NiO was used in reference experiments. Previous studies have shown that the reduction of pure Ni...

  11. The launching and propagation of drift waves in a steady-state plasma

    International Nuclear Information System (INIS)

    Sandeman, J.; Elliott, J.A.; Sutcliffe, M.; Rusbridge, M.G.

    1992-01-01

    The UMIST linear quadrupole GOLUX is a steady-state device in which hydrogen plasma is continuously injected axially, at one end, from an external duoplasmatron source. The electron temperature in the drift wave region is about 1 eV, and the density about 10 15 m -3 . Self-excited intrinsic drift modes are observed in the shared flux region of GOLUX, forming a broad band between 30 and 50 kHz. Drift waves may also be launched into the system, by passing an AC current through the plasma between the two flag antennae. These coherent launched waves present a powerful means of studying drift wave phenomena. We obtain information about the launched wave by detecting both density and potential fluctuations, using a small cylindrical Langmuir probe and lock-in amplifier techniques. Scanning the probe in the longitudinal (z) direction yields the spatial variation of amplitude and phase with respect to the launching signal; the ratio of the wave potential, extrapolated back to the probe, to the launching current gives the launching impedance, a measure of the effectiveness of the launching process. (author) 5 refs., 6 figs

  12. Eelgrass re-establishment in shallow estuaries is affected by drifting macroalgae

    DEFF Research Database (Denmark)

    Canal-Verges, Paula; Potthoff, M.; Hansen, F. T.

    2014-01-01

    surface sediment. Furthermore, drifting macroalgae ballistically damage eelgrass beds and increase seedling mortality. The frequency and impact of drifting macroalgae in Odense Fjord was evaluated with an agent-based model. The aims of this model were to understand and predict the mobility...... resuspension in bare bottoms and on rooted vegetation due to ballistic impacts in areas affected by algae drift. (C) 2013 Elsevier B.V. All rights reserved....

  13. Pulsar magnetic alignment. The drifting subpulses

    International Nuclear Information System (INIS)

    Jones, P.B.

    1977-01-01

    According to Ruderman and Sutherland (Ap.J.;196:51 (1975)) the subpulse drift observed in certain pulsars is a consequence of the circulation around the magnetic axis of electron-positron discharges occurring within an acceleration region near the polar cap. The predicted period of circulation P 3 is of the correct order of magnitude, but the sense of circulation and therefore the direction of subpulse drift is not consistent with indirect evidence, from observed integrated pulse widths, on the variation with pulsar age of the angle between the spin and magnetic axes. It is shown that this problem is resolved by a model of the acceleration electric field based on space charge limited ion flow. (author)

  14. Contaminants as habitat disturbers: PAH-driven drift by Andean paramo stream insects.

    Science.gov (United States)

    Araújo, Cristiano V M; Moreira-Santos, Matilde; Sousa, José P; Ochoa-Herrera, Valeria; Encalada, Andrea C; Ribeiro, Rui

    2014-10-01

    Contaminants can behave as toxicants, when toxic effects are observed in organisms, as well as habitat disturbers and fragmentors, by triggering avoidance responses and generating less- or uninhabited zones. Drift by stream insects has long been considered a mechanism to avoid contamination by moving to most favorable habitats. Given that exploration and transportation of crude oil represent a threat for surrounding ecosystems, the key goal of the present study was to assess the ability of autochthonous groups of aquatic insects from the Ecuadorian paramo streams to avoid by drift different concentrations of polycyclic aromatic hydrocarbons (PAH) contained in the soluble fraction of locally transported crude oil. In the laboratory, different groups of insects were exposed to PAH for 12h. Three different assays, which varied in taxa and origin of the organisms, concentrations of PAH (0.6-38.8µgL(-1)), and environment settings (different levels of refuge and flow) were performed. For Anomalocosmoecus palugillensis (Limnephilidae), drift was a major cause of population decline in low concentration treatments but at higher concentrations mortality dominated. PAH was highly lethal, even at lower concentrations, for Chironomidae, Grypopterygidae (Claudioperla sp.) and Hydrobiosidae (Atopsyche sp.), and, therefore, no conclusion about drift can be drawn for these insects. Contamination by PAH showed to be a threat for benthic aquatic insects from Ecuadorian paramo streams as it can cause a population decline due to avoidance by drift and mortality. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Generalized space-charge limited current and virtual cathode behaviors in one-dimensional drift space

    International Nuclear Information System (INIS)

    Yang, Zhanfeng; Liu, Guozhi; Shao, Hao; Chen, Changhua; Sun, Jun

    2013-01-01

    This paper reports the space-charge limited current (SLC) and virtual cathode behaviors in one-dimensional grounded drift space. A simple general analytical solution and an approximate solution for the planar diode are given. Through a semi-analytical method, a general solution for SLC in one-dimensional drift space is obtained. The behaviors of virtual cathode in the drift space, including dominant frequency, electron transit time, position, and transmitted current, are yielded analytically. The relationship between the frequency of the virtual cathode oscillation and the injected current presented may explain previously reported numerical works. Results are significant in facilitating estimations and further analytical studies

  16. Solitary drift waves in the presence of magnetic shear

    International Nuclear Information System (INIS)

    Meiss, J.D.; Horton, W.

    1982-07-01

    The two-component fluid equations describing electron drift and ion acoustic waves in a nonuniform magnetized plasma are shown to possess nonlinear two-dimensional solitary wave solutions. In the presence of magnetic shear, radiative shear damping is exponentially small in L/sub s//L/sub n/ for solitary drift waves, in contrast to linear waves

  17. Observation and analysis of pellet material del B drift on MAST

    Energy Technology Data Exchange (ETDEWEB)

    Garzotti, L. [EURATOM, Culham Sci Ctr, Abingdon, Oxon England; Baylor, Larry R [ORNL; Kochi, F. [Austrian Academy of Sciences, Vienna, Austria; Pegourie, B. [CEA Cadarache, St. Paul lex Durance, France; Valovic, M [EURATOM, Culham Sci Ctr, Abingdon, Oxon England; Axon, K. B. [EURATOM, Culham Sci Ctr, Abingdon, Oxon England; Dowling, J. [EURATOM, Culham Sci Ctr, Abingdon, Oxon England; Guri, C. [EURATOM, Culham Sci Ctr, Abingdon, Oxon England; Maddison, G. P. [EURATOM, Culham Sci Ctr, Abingdon, Oxon England; Nehme, H. [CEA Cadarache, St. Paul lex Durance, France; O' Gorman, T. [EURATOM, Culham Sci Ctr, Abingdon, Oxon England; Patel, A. [EURATOM, Culham Sci Ctr, Abingdon, Oxon England; Price, M. [EURATOM, Culham Sci Ctr, Abingdon, Oxon England; Scannell, R. [EURATOM, Culham Sci Ctr, Abingdon, Oxon England; Walsh, M. [EURATOM, Culham Sci Ctr, Abingdon, Oxon England

    2010-01-01

    Pellet material deposited in a tokamak plasma experiences a drift towards the low field side of the torus induced by the magnetic field gradient. Plasma fuelling in ITER relies on the beneficial effect of this drift to increase the pellet deposition depth and fuelling efficiency. It is therefore important to analyse this phenomenon in present machines to improve the understanding of the del B induced drift and the accuracy of the predictions for ITER. This paper presents a detailed analysis of pellet material drift in MAST pellet injection experiments based on the unique diagnostic capabilities available on this machine and compares the observations with predictions of state-of-the-art ablation and deposition codes.

  18. Curvature-induced electrostatic drift modes in a toroidal plasma

    International Nuclear Information System (INIS)

    Venema, M.

    1985-01-01

    This thesis deals with a number of problems in the theory of linear stability of a hot, fully ionized plasma immersed in a strong magnetic field. The most widely used system to magnetically confine a plasma is the tokamak. This is a toroidal, current carrying device with a strong, externally imposed, magnetic field. The author discusses the linear theory of unstable, low-frequency waves in the gradient region, restricted to electrostatic waves. In that case the resulting radial fluxes of particles and energy are due to electric cross-field drifts. In the presence of magnetic fluctuations and small-scale reconnection phenomena, radial transport could also be predominantly along field lines. At present, it is not clear which of the two mechanisms is the dominant feature of the observed anomalous transport. First, the author introduces the theory of drift waves in toroidal geometry. Next, the electrostratic drift modes in toroidal geometry (weakly collisional regime), the equations for low-frequency waves in the strongly collisional regime and the electrostatic drift modes (strongly collisional regime) are discussed. (Auth.)

  19. Final Design and Installation of the ''In Situ'' test at GRIMSEL

    International Nuclear Information System (INIS)

    Fuentes-Cantillana, J. L.; Garcia-Sineriz, J. L.

    1998-01-01

    The aim of the FEBEX project (Full-Scale Engineered Barriers Experiment) is the study of the near-field for a repository of high-level radioactive waste (HLW) in crystalline rock. The experiment has three major parts: 1) an in situ test, in natural conditions and at full scale; 2) a mack-up test, at almost full scale, and 3) a set of experimental laboratory tests, to complement the information from the two large-scale tests. The experiment is based on the Spanish reference concept for crystalline rock, in which the waste canisters are placed in horizontal drifts surrounded by a clay formed from highly-compacted bentonite blocks. The complete project, with about seven years of duration (1994-2001), has been divided into four sequential stages, defined by the main features of each stage of the two large-scale tests. This report is part of the pre-operational stage (1994-1996). (Author)

  20. In-Drift Precipitates/Salts Model

    International Nuclear Information System (INIS)

    P. Mariner

    2004-01-01

    This report documents the development and validation of the in-drift precipitates/salts (IDPS) model. The IDPS model is a geochemical model designed to predict the postclosure effects of evaporation and deliquescence on the chemical composition of water within the Engineered Barrier System (EBS) in support of the Total System Performance Assessment for the License Application (TSPA-LA). Application of the model in support of TSPA-LA is documented in ''Engineered Barrier System: Physical and Chemical Environment Model'' (BSC 2004 [DIRS 169860]). Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration (BSC 2004 [DIRS 171156]) is the technical work plan (TWP) for this report. It called for a revision of the previous version of the report (BSC 2004 [DIRS 167734]) to achieve greater transparency, readability, data traceability, and report integration. The intended use of the IDPS model is to estimate and tabulate, within an appropriate level of confidence, the effects of evaporation, deliquescence, and potential environmental conditions on the pH, ionic strength, and chemical compositions of water and minerals on the drip shield or other location within the drift during the postclosure period. Specifically, the intended use is as follows: (1) To estimate, within an appropriate level of confidence, the effects of evaporation and deliquescence on the presence and composition of water occurring within the repository during the postclosure period (i.e., effects on pH, ionic strength, deliquescence relative humidity, total concentrations of dissolved components in the system Na-K-H-Mg-Ca-Al-Cl-F-NO 3 -SO 4 -Br-CO 3 -SiO 2 -CO 2 -O 2 -H 2 O, and concentrations of the following aqueous species that potentially affect acid neutralizing capacity: HCO 3 - , CO 3 2- , OH - , H + , HSO 4 - , Ca 2+ , Mg 2+ , CaHCO 3 + , MgHCO 3 + , HSiO 3 - , and MgOH + ); (2) To estimate, within an appropriate level of confidence, mineral

  1. Mechanical structure of the TOPAZ barrel drift chamber

    International Nuclear Information System (INIS)

    Morimoto, T.; Maruyama, K.; Okuno, H.

    1987-07-01

    A Barrel Drift Chamber (BDC) is constructed for the TOPAZ experiment at TRISTAN, KEK. The BDC has a cylindrical shape with dimensions of 325.2 cm in inner diameter, 347.2 cm in outer diameter and 500 cm long. It consists of 1232 drift tubes made of conductive plastic cathodes, which are staggered in four layers. In this report, a design of the mechanical structure and construction procedures are described in detail. (author)

  2. A Full Front End Chain for Drift Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Chiarello, G. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Università del Salento, Lecce (Italy); Corvaglia, A.; Grancagnolo, F. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Panareo, M. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Università del Salento, Lecce (Italy); Pepino, A., E-mail: aurora.pepino@le.infn.it [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Università del Salento, Lecce (Italy); Primiceri, P. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Tassielli, G. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Fermilab, Batavia, Illinois (United States); Università Marconi, Roma (Italy)

    2014-03-01

    We developed a high performance full chain for drift chamber signals processing. The Front End electronics is a multistage amplifier board based on high performance commercial devices. In addition a fast readout algorithm for Cluster Counting and Timing purposes has been implemented on a Xilinx-Virtex 4 core FPGA. The algorithm analyzes and stores data coming from a Helium based drift tube and represents the outcome of balancing between efficiency and high speed performance.

  3. Effects of binge drinking and hangover on response selection sub-processes-a study using EEG and drift diffusion modeling.

    Science.gov (United States)

    Stock, Ann-Kathrin; Hoffmann, Sven; Beste, Christian

    2017-09-01

    Effects of binge drinking on cognitive control and response selection are increasingly recognized in research on alcohol (ethanol) effects. Yet, little is known about how those processes are modulated by hangover effects. Given that acute intoxication and hangover seem to be characterized by partly divergent effects and mechanisms, further research on this topic is needed. In the current study, we hence investigated this with a special focus on potentially differential effects of alcohol intoxication and subsequent hangover on sub-processes involved in the decision to select a response. We do so combining drift diffusion modeling of behavioral data with neurophysiological (EEG) data. Opposed to common sense, the results do not show an impairment of all assessed measures. Instead, they show specific effects of high dose alcohol intoxication and hangover on selective drift diffusion model and EEG parameters (as compared to a sober state). While the acute intoxication induced by binge-drinking decreased the drift rate, it was increased by the subsequent hangover, indicating more efficient information accumulation during hangover. Further, the non-decisional processes of information encoding decreased with intoxication, but not during hangover. These effects were reflected in modulations of the N2, P1 and N1 event-related potentials, which reflect conflict monitoring, perceptual gating and attentional selection processes, respectively. As regards the functional neuroanatomical architecture, the anterior cingulate cortex (ACC) as well as occipital networks seem to be modulated. Even though alcohol is known to have broad neurobiological effects, its effects on cognitive processes are rather specific. © 2016 Society for the Study of Addiction.

  4. Monitored Drift Chambers in the ATLAS Detector

    CERN Multimedia

    Herten, G

    Monitored Drift Chambers (MDT) are used in the ATLAS Detector to measure the momentum of high energy muons. They consist of drift tubes, which are filled with an Ar-CO2 gas mixture at 3 bar gas pressure. About 1200 drift chambers are required for ATLAS. They are up to 6 m long. Nevertheless the position of every wire needs to be known with a precision of 20 µm within a chamber. In addition, optical alignment sensors are required to measure the relative position of adjacent chambers with a precision of 30µm. This gigantic task seems impossible at first instance. Indeed it took many years of R&D to invent the right tools and methods before the first chamber could be built according to specifications. Today, at the time when 50% of the chambers have been produced, we are confident that the goal for ATLAS can be reached. The mechanical precision of the chambers could be verified with the x-ray tomograph at CERN. This ingenious device, developed for the MDT system, is able to measure the wire position insid...

  5. Hydrogeology and ground-water flow of the drift and Platteville aquifer system, St Louis Park, Minnesota

    Science.gov (United States)

    Lindgren, R.J.

    1995-01-01

    Three aquifers and two confining units have been delineated within the drift underlying the area near the site of a former coal-tar distillation and wood-preserving plant in St. Louis Park, Minnesota. The hydrogeologic units of the drift, in descending order, are the upper drift aquifer, the upper drift confining unit, the middle drift aquifer, the lower drift confining unit. and the lower drift aquifer. A contamination plume consisting of coal-tar derivatives exists in the drift aquifers and in the Platteville aquifer underlying the southern part of the plant site and areas to the south and east of the plant site.

  6. ABSTRACTION OF DRIFT SEEPAGE

    International Nuclear Information System (INIS)

    Wilson, Michael L.

    2001-01-01

    Drift seepage refers to flow of liquid water into repository emplacement drifts, where it can potentially contribute to degradation of the engineered systems and release and transport of radionuclides within the drifts. Because of these important effects, seepage into emplacement drifts is listed as a ''principal factor for the postclosure safety case'' in the screening criteria for grading of data in Attachment 1 of AP-3.15Q, Rev. 2, ''Managing Technical Product Inputs''. Abstraction refers to distillation of the essential components of a process model into a form suitable for use in total-system performance assessment (TSPA). Thus, the purpose of this analysis/model is to put the information generated by the seepage process modeling in a form appropriate for use in the TSPA for the Site Recommendation. This report also supports the Unsaturated-Zone Flow and Transport Process Model Report. The scope of the work is discussed below. This analysis/model is governed by the ''Technical Work Plan for Unsaturated Zone Flow and Transport Process Model Report'' (CRWMS MandO 2000a). Details of this activity are in Addendum A of the technical work plan. The original Work Direction and Planning Document is included as Attachment 7 of Addendum A. Note that the Work Direction and Planning Document contains tasks identified for both Performance Assessment Operations (PAO) and Natural Environment Program Operations (NEPO). Only the PAO tasks are documented here. The planning for the NEPO activities is now in Addendum D of the same technical work plan and the work is documented in a separate report (CRWMS MandO 2000b). The Project has been reorganized since the document was written. The responsible organizations in the new structure are the Performance Assessment Department and the Unsaturated Zone Department, respectively. The work plan for the seepage abstraction calls for determining an appropriate abstraction methodology, determining uncertainties in seepage, and providing

  7. Development of an approach to correcting MicroPEM baseline drift.

    Science.gov (United States)

    Zhang, Ting; Chillrud, Steven N; Pitiranggon, Masha; Ross, James; Ji, Junfeng; Yan, Beizhan

    2018-07-01

    Fine particulate matter (PM 2.5 ) is associated with various adverse health outcomes. The MicroPEM (RTI, NC), a miniaturized real-time portable particulate sensor with an integrated filter for collecting particles, has been widely used for personal PM 2.5 exposure assessment. Five-day deployments were targeted on a total of 142 deployments (personal or residential) to obtain real-time PM 2.5 levels from children living in New York City and Baltimore. Among these 142 deployments, 79 applied high-efficiency particulate air (HEPA) filters in the field at the beginning and end of each deployment to adjust the zero level of the nephelometer. However, unacceptable baseline drift was observed in a large fraction (> 40%) of acquisitions in this study even after HEPA correction. This drift issue has been observed in several other studies as well. The purpose of the present study is to develop an algorithm to correct the baseline drift in MicroPEM based on central site ambient data during inactive time periods. A running baseline & gravimetric correction (RBGC) method was developed based on the comparison of MicroPEM readings during inactive periods to ambient PM 2.5 levels provided by fixed monitoring sites and the gravimetric weight of PM 2.5 collected on the MicroPEM filters. The results after RBGC correction were compared with those using HEPA approach and gravimetric correction alone. Seven pairs of duplicate acquisitions were used to validate the RBGC method. The percentages of acquisitions with baseline drift problems were 42%, 53% and 10% for raw, HEPA corrected, and RBGC corrected data, respectively. Pearson correlation analysis of duplicates showed an increase in the coefficient of determination from 0.75 for raw data to 0.97 after RBGC correction. In addition, the slope of the regression line increased from 0.60 for raw data to 1.00 after RBGC correction. The RBGC approach corrected the baseline drift issue associated with MicroPEM data. The algorithm developed

  8. Phenomena associated with magma expansion into a drift

    International Nuclear Information System (INIS)

    Gaffney, E.S.

    2002-01-01

    One of the significant threats to the proposed Yucca Mountain nuclear waste repository has been identified as the possibility of intersection of the underground structure by a basaltic intrusion. Based on the geology of the region, it is assumed that such an intrusion would consist of an alkali basalt similar to the nearby Lathrop Wells cone, which has been dated at about 78 ka. The threat of radioactive release may be either from eruption through the surface above the repository of basalt that had been contaminated or from migration through ground water of radionucleides released as a result of damage to waste packages that interact with the magma. As part of our study of these threats, we are analyzing the phenomena associated with magma expansion into drifts in tuff. The early phenomena of the encounter of volatile-rich basaltic magma with a drift are discussed here.

  9. ATLAS Muon Drift Tube Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Y [KEK, High Energy Accelerator Research Organisation, Tsukuba (Japan); Ball, B; Chapman, J W; Dai, T; Ferretti, C; Gregory, J [University of Michigan, Department of Physics, Ann Arbor, MI (United States); Beretta, M [INFN Laboratori Nazionali di Frascati, Frascati (Italy); Boterenbrood, H; Jansweijer, P P M [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Brandenburg, G W; Fries, T; Costa, J Guimaraes da; Harder, S; Huth, J [Harvard University, Laboratory for Particle Physics and Cosmology, Cambridge, MA (United States); Ceradini, F [INFN Roma Tre and Universita Roma Tre, Dipartimento di Fisica, Roma (Italy); Hazen, E [Boston University, Physics Department, Boston, MA (United States); Kirsch, L E [Brandeis University, Department of Physics, Waltham, MA (United States); Koenig, A C [Radboud University Nijmegen/Nikhef, Dept. of Exp. High Energy Physics, Nijmegen (Netherlands); Lanza, A [INFN Pavia, Pavia (Italy); Mikenberg, G [Weizmann Institute of Science, Department of Particle Physics, Rehovot (Israel)], E-mail: brandenburg@physics.harvard.edu (and others)

    2008-09-15

    This paper describes the electronics used for the ATLAS monitored drift tube (MDT) chambers. These chambers are the main component of the precision tracking system in the ATLAS muon spectrometer. The MDT detector system consists of 1,150 chambers containing a total of 354,000 drift tubes. It is capable of measuring the sagitta of muon tracks to an accuracy of 60 {mu}m, which corresponds to a momentum accuracy of about 10% at p{sub T}= 1 TeV. The design and performance of the MDT readout electronics as well as the electronics for controlling, monitoring and powering the detector will be discussed. These electronics have been extensively tested under simulated running conditions and have undergone radiation testing certifying them for more than 10 years of LHC operation. They are now installed on the ATLAS detector and are operating during cosmic ray commissioning runs.

  10. A beam test of a prototype of the BESIII drift chamber in magnetic field

    International Nuclear Information System (INIS)

    Liu, J.B.; Qin, Z.H.; Wu, L.H.; Chen, C.; Zhuang, B.A.; Chen, Y.B.; Jin, Y.; Liu, R.G.; Ma, X.Y.; Ma, Y.Y.; Tang, X.; Wang, L.; Xu, M.H.; Zhang, G.F.; Zhu, M.X.; Zhu, Q.M.

    2006-01-01

    A prototype of the BESIII drift chamber was tested with He/C 3 H 8 (60/40) gas mixture in a 1T magnetic field at the π-2 beam line of KEK 12GeV PS. The drift distance-time relationship was extracted for various conditions. The performance of the chamber, such as the spatial resolution, the dE/dx resolution and the cell efficiency, was studied in detail. The dE/dx was measured as a function of βγ to calculate the particle separation power. Based on the test results, the operating voltage of the BESIII drift chamber is optimized to be 2200V, resulting in a spatial resolution better than 110μm, a cell efficiency over 98%, a dE/dx resolution better than 5% and the 3σπ/K separation at a momentum exceeding 700MeV/c. These results confirm the validation of the physics design of the BESIII drift chamber

  11. New developments on silicon drift detectors

    International Nuclear Information System (INIS)

    Rashevsky, A.

    1996-01-01

    In the frame of the project to develop large-area linear drift detectors few prototypes have been designed and produced. the function of these prototypes is to allow the evaluation of the solutions chosen for the geometry of the on-board electrodes and the production process. On these prototypes it is studied the static characteristics and measured time of-flight and charge collection injecting charges with an IR laser source. It is report the results from one of the prototypes

  12. Drifting algae and fish: Implications of tropical Sargassum invasion due to ocean warming in western Japan

    Science.gov (United States)

    Yamasaki, Mami; Aono, Mikina; Ogawa, Naoto; Tanaka, Koichiro; Imoto, Zenji; Nakamura, Yohei

    2014-06-01

    Evidence is accumulating that the invasion and extinction of habitat-forming seaweed species alters coastal community structure and ecological services, but their effects on the pelagic environment have been largely ignored. Thus, we examined the seasonal occurrence patterns of indigenous temperate and invasive tropical drifting algae and associated fish species every month for 2 years (2009-2011) in western Japan (Tosa Bay), where a rapid shift from temperate to tropical Sargassum species has been occurring in the coastal area since the late 1980s due to rising seawater temperatures. Of the 19 Sargassum species (31.6%) in drifting algae, we found that six were tropical species, whereas a study in the early 1980s found only one tropical species among 12 species (8.3%), thereby suggesting an increase in the proportion of tropical Sargassum species in drifting algae during the last 30 years. Drifting temperate algae were abundantly present from late winter to summer, whereas tropical algal clumps occurred primarily during summer. In the warm season, fish assemblages did not differ significantly between drifting temperate and tropical algae, suggesting the low host-algal specificity of most fishes. We also found that yellowtail juveniles frequently aggregated with drifting temperate algae from late winter to spring when drifting tropical algae were unavailable. Local fishermen collect these juveniles for use as aquaculture seed stock; therefore, the occurrence of drifting temperate algae in early spring is important for local fisheries. These results suggest that the further extinction of temperate Sargassum spp. may have negative impacts on the pelagic ecosystem and associated regional fisheries.

  13. A drift chamber system for a toroidal detector

    International Nuclear Information System (INIS)

    Barbosa, F.J.; Christo, S.; Cuevas, C.; Doolittle, G.; Doughty, D.C.; Hutton, C.; Joyce, D.; Mecking, B.A.; Mestayer, M.D.; Niczyporuk, B.; O'Meara, J.E.; Tilles, D.; Tuzel, W.; Yegneswaran, A.

    1992-01-01

    We present design details for drift chambers to be used in the CLAS detector at CEBAF. Novel features include nonparallel endplates fabricated from composite materials, a gas mixture which includes helium to reduce multiple scattering, low wire tension, and a hexagonal cell layout. Magnetic field strength in the active region ranges from 0 to 2 T, and wire length varies from 10 to 300 cm. We discuss specific construction details for the outer drift chambers. (orig.)

  14. A drift chamber system for a toroidal detector

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, F.J.; Christo, S.; Cuevas, C.; Doolittle, G.; Doughty, D.C.; Hutton, C.; Joyce, D.; Mecking, B.A.; Mestayer, M.D.; Niczyporuk, B.; O' Meara, J.E.; Tilles, D.; Tuzel, W.; Yegneswaran, A. (CEBAF, Newport News, VA (United States))

    1992-12-01

    We present design details for drift chambers to be used in the CLAS detector at CEBAF. Novel features include nonparallel endplates fabricated from composite materials, a gas mixture which includes helium to reduce multiple scattering, low wire tension, and a hexagonal cell layout. Magnetic field strength in the active region ranges from 0 to 2 T, and wire length varies from 10 to 300 cm. We discuss specific construction details for the outer drift chambers. (orig.).

  15. Measurements of the drift velocity using a small gas chamber for monitoring of the CMS muon system

    CERN Document Server

    Frangenheim, J

    This diploma thesis presents measurements of the drift velocity of electrons in gas. A small gas detector (VDC1 ) is used. This chamber is intended for measurement and monitoring of the drift velocity in the gas of the muon chambers of the gas detector system in the barrel area of the CMS-detector2 at the European Research Center for Particle Physics CERN near Geneva. The drift velocity is, together with the drift time, a key parameter for measurements with drift chambers. The aim of this thesis is to perform test measurements to determine parameters of the chamber and also to estimate systematic errors. Beside the drift velocity, further parameters of the gas like the pressure and the temperature are measured and accounted for. For the further work with the VDCs, analysis software has been created which is used for the analysis of the measurements. Parallel to this work, necessary improvements, e.g. for the high voltage robustness, were also implemented and tested. In addition, studies and test measurements ...

  16. Silicon Drift Detectors development for position sensing

    International Nuclear Information System (INIS)

    Castoldi, A.; Guazzoni, C.; Hartmann, R.; Strueder, L.

    2007-01-01

    Novel Silicon Drift Detectors (SDDs) with multi-linear architecture specifically intended for 2D position sensing and imaging applications are presented and their achievable spatial, energy and time resolution are discussed. The capability of providing a fast timing of the interaction with nanosecond time resolution is a new available feature that allows operating the drift detector in continuous readout mode for coincidence imaging applications either with an external trigger or in self-timing. The application of SDDs with multi-linear architecture to Compton electrons' tracking within a single silicon layer and the achieved experimental results will be discussed

  17. Thermal-wave balancing flow sensor with low-drift power feedback

    NARCIS (Netherlands)

    Dijkstra, Marcel; Lammerink, Theodorus S.J.; Pjetri, O.; de Boer, Meint J.; Berenschot, Johan W.; Wiegerink, Remco J.; Elwenspoek, Michael Curt

    2014-01-01

    A control system using a low-drift power-feedback signal was implemented applying thermal waves, giving a sensor output independent of resistance drift and thermo-electric offset voltages on interface wires. Kelvin-contact sensing and power control is used on heater resistors, thereby inhibiting the

  18. Near-drift thermal analysis including combined modes of conduction, convection, and radiation

    International Nuclear Information System (INIS)

    Ho, C.K.; Francis, N.D.

    1995-01-01

    The performance of waste packages containing high-level nuclear wastes at underground repositories such as the potential repository at Yucca Mountain, Nevada, depends, in part, on the thermodynamic environment immediately surrounding the buried waste packages. For example, degradation of the waste packages can be caused by corrosive and microbial processes, which are influenced by both the relative humidity and temperature within the emplacement drifts. In this paper, the effects of conduction, convection, and radiation are investigated for a heat-generating waste package in an empty-drift. Simulations explicitly modeling radiation from the waste package to the drift wall are compared simulations using only conduction. Temperatures, relative humidities, and vapor mass fractions are compared at various locations within the drift. In addition, the effects of convection on relative humidity and moisture distribution within the drift are presented

  19. Characteristic parameters of drift chambers calculation; Calculo de los parametros caracteristicos de camaras de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I; Martinez-Laso, L

    1989-07-01

    We present here the methods we used to analyse the characteristic parameters of drift chambers. The algorithms to calculate the electric potential in any point for any drift chamber geometry are presented. We include the description of the programs used to calculate the electric field, the drift paths, the drift velocity and the drift time. The results and the errors are discussed. (Author) 7 refs.

  20. Cathode Readout with Stripped Resistive Drift Tubes

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Kekelidze, G.D.; Novikov, E.A.; Peshekhonov, V.D.; Shafranov, M.D.; Zhil'tsov, V.E.

    1994-01-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with carbon layer of resistivity 0.5, 30 and 70 k Ohm/sq. The gas mixture used was Ar/CH 4 . Both the anode wire and cathode signals were detected in order to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented. 7 refs., 11 figs., 1 tab