WorldWideScience

Sample records for situ bioremediation mass

  1. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  2. Efficacy monitoring of in situ fuel bioremediation

    International Nuclear Information System (INIS)

    Mueller, J.; Borchert, S.; Heard, C.

    1996-01-01

    The wide-scale, multiple-purpose use of fossil fuels throughout the industrialized world has resulted in the inadvertent contamination of myriad environments. Given the scope and magnitude of these environmental contamination problems, bioremediation often represents the only practical and economically feasible solution. This is especially true when depth of contamination, magnitude of the problem, and nature of contaminated material preclude other remedial actions, short of the no-response alternative. From the perspective, the effective, safe and scientifically valid use of in situ bioremediation technologies requires cost-efficient and effective implementation strategies in combination with unequivocal approaches for monitoring efficacy of performance. Accordingly, with support from the SERDP program, the authors are field-testing advanced in situ bioremediation strategies and new approaches in efficacy monitoring that employ techniques instable carbon and nitrogen isotope biogeochemistry. One field demonstration has been initiated at the NEX site in Port Hueneme, CA (US Navy's National Test Site). The objectives are: (1) to use stable isotopes as a biogeochemical monitoring tool for in situ bioremediation of refined petroleum (i.e., BTEX), and (2) to use vertical groundwater circulation technology to effect in situ chemical containment and enhanced in situ bioremediation

  3. In-situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    Hazen, T.C.; Looney, B.B.; Enzien, M.; Franck, M.M.; Fliermans, C.B.; Eddy, C.A.

    1993-01-01

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation

  4. Monitoring Genetic and Metabolic Potential for In-Site Bioremediation: Mass Spectrometry

    International Nuclear Information System (INIS)

    Buchanan, M.V.

    2000-01-01

    A number of DOE sites are contaminated with mixtures of dense non-aqueous phase liquids (DNAPLs) such as carbon tetrachloride, chloroform, perchloroethylene, and trichloroethylene. At many of these sites, in situ microbial bioremediation is an attractive strategy for cleanup, since it has the potential to degrade DNAPLs in situ without the need for pump-and-treat or soil removal procedures, and without producing toxic byproducts. A rapid screening method to determine broad range metabolic and genetic potential for contaminant degradation would greatly reduce the cost and time involved in assessment for in situ bioremediation, as well as for monitoring ongoing bioremediation treatment. The objective of this project was the development of mass-spectrometry-based methods to screen for genetic potential for both assessment and monitoring of in situ bioremediation of DNAPLs. These methods were designed to provide more robust and routine methods for DNA-based characterization of the genetic potential of subsurface microbes for degrading pollutants. Specifically, we sought to (1) Develop gene probes that yield information equivalent to conventional probes, but in a smaller size that is more amenable to mass spectrometric detection, (2) Pursue improvements to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) methodology in order to allow its more general application to gene probe detection, and (3) Increase the throughput of microbial characterization by integrating gene probe preparation, purification, and MALDI-MS analysis

  5. In Situ Bioremediation of Energetic Compounds in Groundwater

    Science.gov (United States)

    2012-05-01

    negligible. Thus, this project clearly shows that in situ bioremediation of explosives in groundwater using active-passive cosubstrate addition can...Arlington, NJ, offices), the National Research Council (NRC) Biotechnology Research Institute (Montreal, Canada) and the Environmental Technology...NDAB are unlikely to accumulate during in situ anaerobic bioremediation explosives using cheese whey as a cosubstrate. 7.4 ADEQUATE DISTRIBUTION OF

  6. Comparative Demonstration of Active and Semi-Passive In Situ Bioremediation Approaches for Perchlorate Impacted Groundwater: Active In Situ Bioremediation Demonstration

    Science.gov (United States)

    2013-04-01

    http://www.itrcweb.org/Documents/PERC-1.pdf • ITRC Perchlorate Team. 2008. Remediation Technologies for Perchlorate Contamination in Water and Soil ...pdf • Solutions EIS. 2006. Protocol for Enhanced In Situ Bioremediation Using Emulsified Vegetable Oil . Prepared for ESTCP. May 2006. • http...Air Force. 2007. Protocol for In Situ Bioremediation of Chlorinated Solvents Using Edible Oil . Prepared for AFCEC - Environmental Science Division

  7. In-situ bioremediation of TCE-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Travis, B.J. [Los Alamos National Lab., NM (United States); Rosenberg, N.D. [Lawrence Livermore National Lab., CA (United States)

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A barrier to wider use of in situ bioremediation technology is that results are often variable and difficult to predict. In situ bioremediation has shown some very notable and well publicized successes, but implementation of the technology is complex. An incomplete understanding of the effects of variable site characteristics and the lack of adequate tools to predict and measure success have made the design, control and validation of bioremediation more empirical than desired. The long-term objective of this project is to improve computational tools used to assess and optimize the expected performance of bioremediation at a site. An important component of the approach is the explicit inclusion of uncertainties and their effect on the end result. The authors have extended their biokinetics model to include microbial competition and predation processes. Predator species can feed on the microbial species that degrade contaminants, and the simulation studies show that species interactions must be considered when designing in situ bioremediation systems. In particular, the results for TCE indicate that protozoan grazing could reduce the amount of biodegradation by about 20%. These studies also indicate that the behavior of barrier systems can become complex due to predator grazing.

  8. In-Situ Bioremediation of Perchlorate in Groundwater and Soil

    OpenAIRE

    Jin, Liyan

    2012-01-01

    Historical, uncontrolled disposal practices have made perchlorate a significant threat to drinking water supplies in the United States. In-situ bioremediation (ISB) technologies are cost effective and provide an environmental friendly solution for treating contaminated groundwater and soil. In situ bioremediation was considered as an option for treatment of perchlorate in groundwater and soil in Lockheed Martin Corporation's Beaumont Site 2 (Beaumont, CA). Based on the perchlorate distribu...

  9. In-situ bioremediation at the French Limited Site

    International Nuclear Information System (INIS)

    Woodward, R.; Ramsden, D.

    1990-01-01

    In situ biodegradation of petrochemical wastes at the French Limited Superfund Site was stimulated by providing the appropriate pH, essential nutrients, oxygen, and substrate availability. Fourteen wastewater treatment parameters, plus toxicity, were monitored to document the program of bioremediation. Periodic, organic priority pollutant analysis of mixed liquor, settled sludges and subsoils provided data for kinetics interpretation and half life calculation. The half lives of thirteen PAH compounds ranged from 27 to 46 days, in contrast to the degradation rate, in months, reported for these compounds in LTUs. An ambitious air monitoring program measured fugitive emissions at lagoon side, fenceline, and from the lagoon surface by floating flux chamber. The amount of volatiles lost never exceeded 1/2 of the OSHA 8 hr TLV and it could be readily managed by adjusting the intensity and frequency of mixing and aeration. The demonstration confirmed the feasibility of in situ bioremediation and led to one of the first US EPA Record of Decisions to use bioremediation for cleanup of a large Superfund site. A consent Decree outlining the site remedial action program was signed by the PRP task group and published in the Federal Register. This represents a landmark project for in situ bioremediation and has established precedence for use of this technology at CERCLA and RCRA sites nationwide

  10. Cost effectiveness of in situ bioremediation at Savannah River

    International Nuclear Information System (INIS)

    Saaty, R.P.; Showalter, W.E.; Booth, S.R.

    1995-01-01

    In situ bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the Savannah River Integrated Demonstration is tricloroethylene (TCE) a volatile organic compound (VOC). A 384-day test run at Savannah River, sponsored by the US Department of Energy (DOE), Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In situ bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biological process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted airstream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given these data, the cost effectiveness of this new technology can be evaluated

  11. In Situ Bioremediation of Chlorinated Ethenes in Hydraulically-Tight Sediments: Challenges and Limitations

    Science.gov (United States)

    Zhang, M.; Yoshikawa, M.; Takeuchi, M.; Komai, T.

    2011-12-01

    Chlorinated ethenes, like perchloroethene (PCE) and trichloroethene (TCE), have been widely used by many industries, especially in developed countries like Japan. Because of their wide applications, lack of proper regulation, poor handing, storage and disposal practices in the past, chlorinated ethenes have become a type of the most prevalent contaminants for soils and groundwater pollution. For the sake of their degradability, bioremediation has been considered as a potentially cost-effective and environmentally friendly approach for cleanup of chlorinated ethenes in situ. In this presentation, we briefly overview the status of soil and groundwater pollution, the recent amendment of the Soil Contamination Countermeasures Act in Japan, comparison between the bioremediation and other techniques like pump and treat, and the mechanisms of reductive dechlorination, direct oxidation and co-metabolism of chlorinated ethenes. We then introduce and discuss some recent challenges and advancements in in-situ bioremediation including technologies for accelerating bio-degradation of chlorinated ethenes, technologies for assessing diffusive properties of dissolved hydrogen in hydraulically-tight soil samples, and combination of bioremediation with other techniques like electro-kinetic approach. Limiting factors that may cause incomplete remediation and/or ineffectiveness of bioremediation are examined from biochemical, geochemical and hydro-geological aspects. This study reconfirmed and illustrated that: 1) The key factor for an effective bioremediation is how to disperse a proper accelerating agent throughout the polluted strata, 2) The effective diffusion coefficient of dissolved hydrogen in geologic media is relatively big and is almost independent on their permeability, and 3) To effectively design and perform an accelerated bioremediation, a combination of natural migration with pressurized injection and/or other approaches, like electro-migration, for stimulating mass

  12. Laboratory-scale in situ bioremediation in heterogeneous porous media: biokinetics-limited scenario.

    Science.gov (United States)

    Song, Xin; Hong, Eunyoung; Seagren, Eric A

    2014-03-01

    Subsurface heterogeneities influence interfacial mass-transfer processes and affect the application of in situ bioremediation by impacting the availability of substrates to the microorganisms. However, for difficult-to-degrade compounds, and/or cases with inhibitory biodegradation conditions, slow biokinetics may also limit the overall bioremediation rate, or be as limiting as mass-transfer processes. In this work, a quantitative framework based on a set of dimensionless coefficients was used to capture the effects of the competing interfacial and biokinetic processes and define the overall rate-limiting process. An integrated numerical modeling and experimental approach was used to evaluate application of the quantitative framework for a scenario in which slow-biokinetics limited the overall bioremediation rate of a polycyclic aromatic hydrocarbon (naphthalene). Numerical modeling was conducted to simulate the groundwater flow and naphthalene transport and verify the system parameters, which were used in the quantitative framework application. The experiments examined the movement and biodegradation of naphthalene in a saturated, heterogeneous intermediate-scale flow cell with two layers of contrasting hydraulic conductivities. These experiments were conducted in two phases: Phase I, simulating an inhibited slow biodegradation; and Phase II, simulating an engineered bioremediation, with system perturbations selected to enhance the slow biodegradation rate. In Phase II, two engineered perturbations to the system were selected to examine their ability to enhance in situ biodegradation. In the first perturbation, nitrogen and phosphorus in excess of the required stoichiometric amounts were spiked into the influent solution to mimic a common remedial action taken in the field. The results showed that this perturbation had a moderate positive impact, consistent with slow biokinetics being the overall rate-limiting process. However, the second perturbation, which was to

  13. IPCS: An integrated process control system for enhanced in-situ bioremediation

    International Nuclear Information System (INIS)

    Huang, Y.F.; Wang, G.Q.; Huang, G.H.; Xiao, H.N.; Chakma, A.

    2008-01-01

    To date, there has been little or no research related to process control of subsurface remediation systems. In this study, a framework to develop an integrated process control system for improving remediation efficiencies and reducing operating costs was proposed based on physical and numerical models, stepwise cluster analysis, non-linear optimization and artificial neural networks. Process control for enhanced in-situ bioremediation was accomplished through incorporating the developed forecasters and optimizers with methods of genetic algorithm and neural networks modeling. Application of the proposed approach to a bioremediation process in a pilot-scale system indicated that it was effective in dynamic optimization and real-time process control of the sophisticated bioremediation systems. - A framework of process control system was developed to improve in-situ bioremediation efficiencies and reducing operating costs

  14. Modeling In Situ Bioremediation of Perchlorate-Contaminated Groundwater

    National Research Council Canada - National Science Library

    Secody, Roland E

    2007-01-01

    .... An innovative technology was recently developed which uses dual-screened treatment wells to mix an electron donor into perchlorate-contaminated groundwater in order to effect in situ bioremediation...

  15. Groundbreaking technology: in-situ anaerobic bioremediation for treatment of contaminated soil and groundwater

    International Nuclear Information System (INIS)

    Fernandes, K.A.

    2002-01-01

    Anaerobic in-situ bioremediation is a technique often used to cleanse contaminated soil and groundwater. 'Anaerobic in-situ bioremediation' is a phrase with distinct terms all having relevance in the application of this technique. Anaerobic implies the absence of dissolved oxygen, while 'in-situ' simply means that the environmental cleansing occurs with out removing, displacing, or significantly disturbing the specimen or surrounding area. 'Bioremediation' is a term used to describe the biological use of microbes or plants to detoxify the environment. In order to properly implement this complex process, one must have an understanding of microbiology, biochemistry, genetics, metabolic processes, and structure and function of natural microbial communities. (author)

  16. Engineered and subsequent intrinsic in situ bioremediation of a diesel fuel contaminated aquifer

    Science.gov (United States)

    Hunkeler, Daniel; Höhener, Patrick; Zeyer, Josef

    2002-12-01

    A diesel fuel contaminated aquifer in Menziken, Switzerland was treated for 4.5 years by injecting aerated groundwater, supplemented with KNO 3 and NH 4H 2PO 4 to stimulate indigenous populations of petroleum hydrocarbon (PHC) degrading microorganisms. After dissolved PHC concentrations had stabilized at a low level, engineered in situ bioremediation was terminated. The main objective of this study was to evaluate the efficacy of intrinsic in situ bioremediation as a follow-up measure to remove PHC remaining in the aquifer after terminating engineered in situ bioremediation. In the first 7 months of intrinsic in situ bioremediation, redox conditions in the source area became more reducing as indicated by lower concentrations of SO 42- and higher concentrations of Fe(II) and CH 4. In the core of the source area, strongly reducing conditions prevailed during the remaining study period (3 years) and dissolved PHC concentrations were higher than during engineered in situ bioremediation. This suggests that biodegradation in the core zone was limited by the availability of oxidants. In lateral zones of the source area, however, gradually more oxidized conditions were reestablished again, suggesting that PHC availability increasingly limited biodegradation. The total DIC production rate in the aquifer decreased within 2 years to about 25% of that during engineered in situ bioremediation and remained at that level. Stable carbon isotope analysis confirmed that the produced DIC mainly originated from PHC mineralization. The total rate of DIC and CH 4 production in the source area was more than 300 times larger than the rate of PHC elution. This indicates that biodegradation coupled to consumption of naturally occurring oxidants was an important process for removal of PHC which remained in the aquifer after terminating engineered measures.

  17. Enhanced ex-situ bioremediation of soil contaminated with ...

    African Journals Online (AJOL)

    contaminated soil. Thus, the objective of this study was to investigate the feasibility and effectiveness of using electrical biostimulation processes to enhance ex-situ bioremediation of soils contaminated with organic pollutants. The effect of ...

  18. In situ bioremediation under high saline conditions

    International Nuclear Information System (INIS)

    Bosshard, B.; Raumin, J.; Saurohan, B.

    1995-01-01

    An in situ bioremediation treatability study is in progress at the Salton Sea Test Base (SSTB) under the NAVY CLEAN 2 contract. The site is located in the vicinity of the Salon Sea with expected groundwater saline levels of up to 50,000 ppm. The site is contaminated with diesel, gasoline and fuel oils. The treatability study is assessing the use of indigenous heterotrophic bacteria to remediate petroleum hydrocarbons. Low levels of significant macro nutrients indicate that nutrient addition of metabolic nitrogen and Orthophosphate are necessary to promote the process, requiring unique nutrient addition schemes. Groundwater major ion chemistry indicates that precipitation of calcium phosphorus compounds may be stimulated by air-sparging operations and nutrient addition, which has mandated the remedial system to include pneumatic fracturing as an option. This presentation is tailored at an introductory level to in situ bioremediation technologies, with some emphasize on innovations in sparge air delivery, dissolved oxygen uptake rates, nutrient delivery, and pneumatic fracturing that should keep the expert's interest

  19. Pilot-scale feasibility of petroleum hydrocarbon-contaminated soil in situ bioremediation

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Walker, A.B.

    1995-01-01

    An environmental project was conducted to evaluate in situ bioremediation of petroleum hydrocarbon-contaminated soils on Kwajalein Island, a US Army Kwajalein Atoll base in the Republic of the Marshall Islands. Results of laboratory column studies determined that nutrient loadings stimulated biodegradation rates and that bioremediation of hydrocarbon-contaminated soils at Kwajalein was possible using indigenous microbes. The column studies were followed by an ∼10-month on-site demonstration at Kwajalein to further evaluate in situ bioremediation and to determine design and operating conditions necessary to optimize the process. The demonstration site contained low levels of total petroleum hydrocarbons (diesel fuel) in the soil near the ground surface, with concentrations increasing to ∼10,000 mg/kg in the soil near the groundwater. The demonstration utilized 12 in situ plots to evaluate the effects of various combinations of water, air, and nutrient additions on both the microbial population and the hydrocarbon concentration within the treatment plots as a function of depth from the ground surface

  20. Performance parameters for ex situ bioremediation systems

    International Nuclear Information System (INIS)

    Wade, D.R.

    1994-01-01

    The potential of biotechnology to reduce the concentration of undesirable hydrocarbons, i.e. gasoline and diesel fuel pollution, is very attractive due to its apparent benign nature and potentially low cost. When good industrial practices are used in the design, construction, and administration of the bioremediation system, the performance of the technology can be predicted and monitored. Some of the principles behind the design, construction, and operation of ex situ bioremediation systems and facilities are described. Biological considerations include creation of a favorable environment for hydrocarbon degrading bacteria in the soils, selection of bacteria, and bacterial byproducts. Chemical considerations include nutrient augmentation, oxygen availability, and the use of surfactants and dispersants. Physical considerations include soil textures and structures, soil temperatures, moisture content, and the use of bulking agents. Experience has shown that indigenous microbes will usually be sufficient to implement bioremediation of petroleum hydrocarbons if encouraged through the application of fertilizers. The introduction of additional carbon sources may be considered if rapid bioremediation rates are desired or if soil conditions are poor. Adjustments to a bioremediation system may be made to enhance the performance of the bacterial community by introducing bulking agents and external temperature sources. Surfactants may be helpful in promoting bacteria-hydrocarbon contact and may be particularly useful for mobilization of free-phase hydrocarbons. 7 refs

  1. Numerical simulations in support of the in situ bioremediation demonstration at Savannah River

    International Nuclear Information System (INIS)

    Travis, B.J.; Rosenberg, N.D.

    1994-06-01

    This report assesses the performance of the in situ bioremediation technology demonstrated at the Savannah River Integrated Demonstration (SRID) site in 1992--1993. The goal of the technology demonstration was to stimulate naturally occurring methanotrophic bacteria at the SRID site with injection of methane, air and air-phase nutrients (nitrogen and phosphate) such that significant amounts of the chlorinated solvent present in the subsurface would be degraded. Our approach is based on site-specific numerical simulations using the TRAMP computer code. In this report, we discuss the interactions among the physical and biochemical processes involved in in situ bioremediation. We also investigate improvements to technology performance, make predictions regarding the performance of this technology over long periods of time and at different sites, and compare in situ bioremediation with other remediation technologies

  2. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [University of Massachusetts, Amherst

    2012-11-28

    The goal of these projects was to develop molecule tools to tract the metabolic activity and physiological status of microorganisms during in situ uranium bioremediation. Such information is important in able to design improved bioremediation strategies. As summarized below, the research was highly successful with new strategies developed for estimating in situ rates of metabolism and diagnosing the physiological status of the predominant subsurface microorganisms. This is a first not only for groundwater bioremediation studies, but also for subsurface microbiology in general. The tools and approaches developed in these studies should be applicable to the study of microbial communities in a diversity of soils and sediments.

  3. In Situ Bioremediation of 1,4-Dioxane by Methane Oxidizing Bacteria in Coupled Anaerobic-Aerobic Zones

    Science.gov (United States)

    2016-02-11

    FINAL REPORT In Situ Bioremediation of 1,4-Dioxane by Methane Oxidizing Bacteria in Coupled Anaerobic-Aerobic Zones SERDP Project ER-2306...volatile organic compound (CVOCs), ethene and ethane in groundwater at Raritan Arsenal Area 18C after in situ bioremediation . 4 List of...aquifers, the bioremediation approach most commonly used for chlorinated solvents. The ability of methanotrophs to biodegrade 1,4-dioxane was

  4. In situ bioremediation using horizontal wells. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    In Situ Bioremediation (ISB) is the term used in this report for Gaseous Nutrient Injection for In Situ Bioremediation. This process (ISB) involves injection of air and nutrients (sparging and biostimulation) into the ground water and vacuum extraction to remove Volatile Organic Compounds (VOCs) from the vadose zone concomitant with biodegradation of the VOCs. This process is effective for remediation of soils and ground water contaminated with VOCs both above and below the water table. A full-scale demonstration of ISB was conducted as part of the Savannah River Integrated Demonstration: VOCs in Soils and Ground Water at Nonarid Sites. This demonstration was performed at the Savannah River Site from February 1992 to April 1993

  5. In situ bioremediation of chlorinated solvent with natural gas

    International Nuclear Information System (INIS)

    Rabold, D.E.

    1996-01-01

    A bioremediation system for the removal of chlorinated solvents from ground water and sediments is described. The system involves the the in-situ injection of natural gas (as a microbial nutrient) through an innovative configuration of horizontal wells

  6. An integrated numerical and physical modeling system for an enhanced in situ bioremediation process

    International Nuclear Information System (INIS)

    Huang, Y.F.; Huang, G.H.; Wang, G.Q.; Lin, Q.G.; Chakma, A.

    2006-01-01

    Groundwater contamination due to releases of petroleum products is a major environmental concern in many urban districts and industrial zones. Over the past years, a few studies were undertaken to address in situ bioremediation processes coupled with contaminant transport in two- or three-dimensional domains. However, they were concentrated on natural attenuation processes for petroleum contaminants or enhanced in situ bioremediation processes in laboratory columns. In this study, an integrated numerical and physical modeling system is developed for simulating an enhanced in situ biodegradation (EISB) process coupled with three-dimensional multiphase multicomponent flow and transport simulation in a multi-dimensional pilot-scale physical model. The designed pilot-scale physical model is effective in tackling natural attenuation and EISB processes for site remediation. The simulation results demonstrate that the developed system is effective in modeling the EISB process, and can thus be used for investigating the effects of various uncertainties. - An integrated modeling system was developed to enhance in situ bioremediation processes

  7. BIOREMEDIATION OF CONTAMINATED WASTE BY CADMIUM (Cd IN WATERS USING INDIGEN BACTERIUM WITH EX-SITU WAY

    Directory of Open Access Journals (Sweden)

    Titik Wijayanti

    2017-10-01

    Full Text Available The bioremediation technique for a contaminated liquid waste of heavy metals using indigenous bacteria is a convenient alternative to steps continues to be developed. The research aims to find out the effectiveness of an indigenous bacterial consortium in bioremediation of contaminated liquid waste by cadmium by ex-situ. Experiments were arranged in RAL made in ex-situ where a liquid waste industry was given five treatments, namely control and four indigenous bacterial consortia (A, D, E, and J obtained from the isolation of bacteria originating from cadmium-contaminated of waste in Pasuruan district. Furthermore conducted observations of BOD5, COD, d.o. and Cd for seven days to find out the effectiveness of bioremediation. The results showed the four indigenous bacteria consortia have the bioremediation ability to reduce levels of cadmium, BOD5, COD, and increasing levels of DO. Indigenous bacterial consortia D has the best ability of liquid industrial waste bioremediation by ex-situ. Indigenous bacterial consortia J has the best of capacity reduction levels of cadmium, then the other of indigenous bacterial consortia.

  8. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  9. Process, engineering and design aspects of contaminated soil bioremediation. Pt. 1 In situ treatments

    International Nuclear Information System (INIS)

    De Fraja Frangipane, E.; Andreottola, G.; Tatano, F.

    1995-01-01

    The present paper is an up-to-date overview of contaminated soil bioremediation techniques, which are analyzed in detail with regard to main process, engineering and design aspects. General biochemical/kinetic aspects of bioremediation of contaminated soil, and in situ treatments, are discussed in this part one

  10. Key Factors Controlling the Applicability and Efficiency of Bioremediation of Chlorinated Ethenes In Situ

    Science.gov (United States)

    Zhang, M.; Yoshikawa, M.; Takeuchi, M.; Komai, T.

    2012-12-01

    Bioremediation has been considered as one of environmentally friendly and cost effective approaches for cleaning up the sites polluted by organic contaminants, such as chlorinated ethenes. Although bioremediation, in its widest sense, is not new, and many researches have been performed on bioremediation of different kinds of pollutants, an effective design and implication of in situ bioremediation still remains a challenging problem because of the complexity. Many factors may affect the applicability and efficiency of bioremediation of chlorinated ethenes in situ, which include the type and concentration of contaminants, biological, geological and hydro-geological conditions of the site, physical and chemical characteristics of groundwater and soils to be treated, as well as the constraints in engineering. In this presentation, an overview together with a detailed discussion on each factor will be provided. The influences of individual factors are discussed using the data obtained or cited from different sites and experiments, and thus under different environmental conditions. The results of this study illustrated that 1) the establishment of microbial consortium is of crucial importance for a complete degradation of chlorinated ethenes, 2) in situ control of favorable conditions for increasing microbial activities for bio-degradation through a designed pathway is the key to success, 3) the focus of a successful remediation system is to design an effective delivery process that is capable of producing adequate amendment mixing of contaminant-degrading bacteria, appropriate concentrations of electron acceptors, electron donors, and microbial nutrients in the subsurface treatment area.

  11. In situ bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Skeen, R.S.; Roberson, K.R.; Workman, D.J.; Petersen, J.N.; Shouche, M.

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl 4 ), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl 4 , nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations

  12. Augmented In Situ Subsurface Bioremediation Process™BIO-REM, Inc. - Demonstration Bulletin

    Science.gov (United States)

    The Augmented In Situ Subsurface Bioremediation Process™ developed by BIO-REM, Inc., uses microaerophilic bacteria and micronutrients (H-10) and surface tension depressants/penetrants for the treatment of hydrocarbon contaminated soils and groundwater. The bacteria utilize hydroc...

  13. Biosurfactants during in situ bioremediation: factors that influence the production and challenges in evalution.

    Science.gov (United States)

    Decesaro, Andressa; Machado, Thaís Strieder; Cappellaro, Ângela Carolina; Reinehr, Christian Oliveira; Thomé, Antônio; Colla, Luciane Maria

    2017-09-01

    Research on the influence of biosurfactants on the efficiency of in situ bioremediation of contaminated soil is continuously growing. Despite the constant progress in understanding the mechanisms involved in the effects of biosurfactants, there are still many factors that are not sufficiently elucidated. There is a lack of research on autochthonous or exogenous microbial metabolism when biostimulation or bioaugmentation is carried out to produce biosurfactants at contaminated sites. In addition, studies on the application of techniques that measure the biosurfactants produced in situ are needed. This is important because, although the positive influence of biosurfactants is often reported, there are also studies where no effect or negative effects have been observed. This review aimed to examine some studies on factors that can improve the production of biosurfactants in soils during in situ bioremediation. Moreover, this work reviews the methodologies that can be used for measuring the production of these biocomposts. We reviewed studies on the potential of biosurfactants to improve the bioremediation of hydrocarbons, as well as the limitations of methods for the production of these biomolecules by microorganisms in soil.

  14. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil.

    Science.gov (United States)

    Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W

    2015-10-30

    Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. In situ closed-loop bioremediation: Rapid closure in a northern climate

    International Nuclear Information System (INIS)

    Weymann, D.F.; Hammerbeck, L.M.

    1995-01-01

    In situ closed-loop bioremediation was employed to achieve site closure at a former railyard in Minneapolis, Minnesota. Soil and groundwater were contaminated with gasoline. The closed-loop remediation system design incorporated three downgradient groundwater recovery wells and a low-pressure pipe infiltration gallery. Aboveground treatment of recovered groundwater was provided by a fixed-film bioreactor. The total reported benzene, toluene, ethylbenzene, and xylenes (BTEX)-removal efficiency of the bioreactor ranged from 98.8% to 100%. Concentrations of BTEX components in groundwater wells were reduced by 45% to 98%. The cleanup goals set by the Minnesota Pollution Control Agency were met within the first 6 months of treatment, and the remediation system was shut down after 20 months of operation. This project further demonstrates the effectiveness of reactor-based, closed-loop in situ bioremediation at sites with favorable conditions

  16. BIOREMEDIATION OF CONTAMINATED WASTE BY CADMIUM (Cd) IN WATERS USING INDIGEN BACTERIUM WITH EX-SITU WAY

    OpenAIRE

    Titik Wijayanti; Dinna Eka Graha Lestari

    2017-01-01

    The bioremediation technique for a contaminated liquid waste of heavy metals using indigenous bacteria is a convenient alternative to steps continues to be developed. The research aims to find out the effectiveness of an indigenous bacterial consortium in bioremediation of contaminated liquid waste by cadmium by ex-situ. Experiments were arranged in RAL made in ex-situ where a liquid waste industry was given five treatments, namely control and four indigenous bacterial consortia (A, D, E, and...

  17. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Daniel P., E-mail: daniel.cassidy@wmich.edu [Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008 (United States); Srivastava, Vipul J., E-mail: vipul.srivastava@ch2m.com [CH2M HILL, 125S Wacker, Ste 3000, Chicago, IL 60606 (United States); Dombrowski, Frank J., E-mail: frank.dombrowski@we-energies.com [We Energies, 333W Everett St., A231, Milwaukee, WI 53203 (United States); Lingle, James W., E-mail: jlingle@epri.com [Electric Power Research Institute (EPRI), 4927W Willow Road, Brown Deer, WI 53223 (United States)

    2015-10-30

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks.

  18. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    International Nuclear Information System (INIS)

    Cassidy, Daniel P.; Srivastava, Vipul J.; Dombrowski, Frank J.; Lingle, James W.

    2015-01-01

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks

  19. Ex-situ bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    Minier, M.R.

    1994-01-01

    The use of stress acclimated bacteria and nutrient supplements to enhance the biodegradation of petroleum contaminated soil can be a cost effective and reliable treatment technology to reduce organic contaminant levels to below established by local, state, and federal regulatory clean-up criteria. This paper will summarize the results of a field study in which 12,000 yds 3 of petroleum contaminated soil was successfully treated via ex-situ bioremediation and through management of macro and micronutrient concentrations, as well as, other site specific environmental factors that are essential for optimizing microbial growth

  20. In situ bioremediation: Cost effectiveness of a remediation technology field tested at the Savannah River

    International Nuclear Information System (INIS)

    Saaty, R.P.; Showalter, W.E.; Booth, S.R.

    1995-01-01

    In Situ Bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the SRID is the volatile organic compound (VOC), tricloroetylene(TCE). A 384 day test run at Savannah River, sponsored by the US Department of Energy, Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In Situ Bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biolgoical process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted air stream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given this data, the cost effectiveness of this new technology can be evaluated

  1. Enhancing in situ bioremediation with pneumatic fracturing

    International Nuclear Information System (INIS)

    Anderson, D.B.; Peyton, B.M.; Liskowitz, J.L.; Fitzgerald, C.; Schuring, J.R.

    1994-04-01

    A major technical obstacle affecting the application of in situ bioremediation is the effective distribution of nutrients to the subsurface media. Pneumatic fracturing can increase the permeability of subsurface formations through the injection of high pressure air to create horizontal fracture planes, thus enhancing macro-scale mass-transfer processes. Pneumatic fracturing technology was demonstrated at two field sites at Tinker Air Force Base, Oklahoma City, Oklahoma. Tests were performed to increase the permeability for more effective bioventing, and evaluated the potential to increase permeability and recovery of free product in low permeability soils consisting of fine grain silts, clays, and sedimentary rock. Pneumatic fracturing significantly improved formation permeability by enhancing secondary permeability and by promoting removal of excess soil moisture from the unsaturated zone. Postfracture airflows were 500% to 1,700% higher than prefracture airflows for specific fractured intervals in the formation. This corresponds to an average prefracturing permeability of 0.017 Darcy, increasing to an average of 0.32 Darcy after fracturing. Pneumatic fracturing also increased free-product recovery rates of number 2 fuel from an average of 587 L (155 gal) per month before fracturing to 1,647 L (435 gal) per month after fracturing

  2. In situ groundwater and sediment bioremediation: barriers and perspectives at European contaminated sites.

    Science.gov (United States)

    Majone, Mauro; Verdini, Roberta; Aulenta, Federico; Rossetti, Simona; Tandoi, Valter; Kalogerakis, Nicolas; Agathos, Spiros; Puig, Sebastià; Zanaroli, Giulio; Fava, Fabio

    2015-01-25

    This paper contains a critical examination of the current application of environmental biotechnologies in the field of bioremediation of contaminated groundwater and sediments. Based on analysis of conventional technologies applied in several European Countries and in the US, scientific, technical and administrative barriers and constraints which still need to be overcome for an improved exploitation of bioremediation are discussed. From this general survey, it is evident that in situ bioremediation is a highly promising and cost-effective technology for remediation of contaminated soil, groundwater and sediments. The wide metabolic diversity of microorganisms makes it applicable to an ever-increasing number of contaminants and contamination scenarios. On the other hand, in situ bioremediation is highly knowledge-intensive and its application requires a thorough understanding of the geochemistry, hydrogeology, microbiology and ecology of contaminated soils, groundwater and sediments, under both natural and engineered conditions. Hence, its potential still remains partially unexploited, largely because of a lack of general consensus and public concerns regarding the lack of effectiveness and control, poor reliability, and possible occurrence of side effects, for example accumulation of toxic metabolites and pathogens. Basic, applied and pre-normative research are all needed to overcome these barriers and make in situ bioremediation more reliable, robust and acceptable to the public, as well as economically more competitive. Research efforts should not be restricted to a deeper understanding of relevant microbial reactions, but also include their interactions with the large array of other relevant phenomena, as a function of the truly variable site-specific conditions. There is a need for a further development and application of advanced biomolecular tools for site investigation, as well as of advanced metabolic and kinetic modelling tools. These would allow a

  3. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF TNT-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the findings of the second evaluation of the J.R. Simplot Ex-situ Bioremediation Technology also known as the Simplot Anaerobic Bioremediation (SABRE™) process. This technology was developed by the J.R. Simplot Company to biologically degrade nitroaromatic...

  4. Combined in-situ and ex-situ bioremediation of petroleum hydrocarbon contaminated soils by closed-loop soil vapor extraction and air injection

    International Nuclear Information System (INIS)

    Hu, S.S.; Buckler, M.J.

    1993-01-01

    Treatment and restoration of petroleum hydrocarbon contaminated soils at a bulk petroleum above-ground storage tank (AST) site in Michigan is being conducted through in-situ and ex-situ closed-loop soil vapor extraction (SVE), soil vapor treatment, and treated air injection (AI) processes. The soil vapor extraction process applies a vacuum through the petroleum hydrocarbon affected soils in the ex-situ bio-remediation pile (bio-pile) and along the perimeter of excavated area (in-situ area) to remove the volatile or light petroleum hydrocarbons. This process also draws ambient air into the ex-situ bio-pile and in-situ vadose zone soil along the perimeter of excavated area to enhance biodegradation of light and heavy petroleum hydrocarbons in the soil. The extracted soil vapor is treated using a custom-designed air bio-remediation filter (bio-filter) to degrade the petroleum hydrocarbon compounds in the soil vapor extraction air streams. The treated air is then injected into a flush grade soil bed in the backfill area to perform final polishing of the air stream, and to form a closed-loop air flow with the soil vapor extraction perforated pipes along the perimeter of the excavated area

  5. Management of groundwater in-situ bioremediation system using reactive transport modelling under parametric uncertainty: field scale application

    Science.gov (United States)

    Verardo, E.; Atteia, O.; Rouvreau, L.

    2015-12-01

    In-situ bioremediation is a commonly used remediation technology to clean up the subsurface of petroleum-contaminated sites. Forecasting remedial performance (in terms of flux and mass reduction) is a challenge due to uncertainties associated with source properties and the uncertainties associated with contribution and efficiency of concentration reducing mechanisms. In this study, predictive uncertainty analysis of bio-remediation system efficiency is carried out with the null-space Monte Carlo (NSMC) method which combines the calibration solution-space parameters with the ensemble of null-space parameters, creating sets of calibration-constrained parameters for input to follow-on remedial efficiency. The first step in the NSMC methodology for uncertainty analysis is model calibration. The model calibration was conducted by matching simulated BTEX concentration to a total of 48 observations from historical data before implementation of treatment. Two different bio-remediation designs were then implemented in the calibrated model. The first consists in pumping/injection wells and the second in permeable barrier coupled with infiltration across slotted piping. The NSMC method was used to calculate 1000 calibration-constrained parameter sets for the two different models. Several variants of the method were implemented to investigate their effect on the efficiency of the NSMC method. The first variant implementation of the NSMC is based on a single calibrated model. In the second variant, models were calibrated from different initial parameter sets. NSMC calibration-constrained parameter sets were sampled from these different calibrated models. We demonstrate that in context of nonlinear model, second variant avoids to underestimate parameter uncertainty which may lead to a poor quantification of predictive uncertainty. Application of the proposed approach to manage bioremediation of groundwater in a real site shows that it is effective to provide support in

  6. Technical and Regulatory Requirements for Enhanced In Situ Bioremediation of Chlorinated Solvents in Groundwater

    National Research Council Canada - National Science Library

    1998-01-01

    Enhanced in situ bioremediation (EISB) of chlorinated solvents in groundwater involves the input of an organic carbon source, nutrients, electron acceptors, and/or microbial cultures to stimulate degradation...

  7. In-situ bioremediation: Or how to get nutrients to all the contaminated soil

    International Nuclear Information System (INIS)

    Jackson, D.S.; Scovazzo, P.

    1994-01-01

    Petroleum contamination is a pervasive environmental problem. Bioremediation is winning favor primarily because the soil may be treated on site and systems can be installed to operate without interfering with facility activities. Although bioremediation has been utilized for many years, its acceptance as a cost-effective approach is only now being realized. KEMRON applied in-situ bioremediation at a retired rail yard which had maintained a diesel locomotive refueling station supplied by two 20,000 gallon above ground storage tanks. Contamination originated from both spillage at the pumps and leaking fuel distribution lines. The contamination spread over a 3 acre area from the surface to a depth of up to 20 feet. Levels of diesel contamination found in the soil ranged from less than a 100 ppm to more than 25,000 ppm. The volume of soil which ultimately required treatment was more than 60,000 cubic yards. Several remedial options were examined including excavation and disposal. Excavation was rejected because it would have been cost prohibitive due to the random distribution of the contaminated soil. In-situ Bioremediation was selected as the only alternative which could successfully treat all the contaminated soils. This paper focuses on how KEMRON solved four major problems which would have prevented a successful remediation project. These problems were: soil compaction, random distribution of contaminated soils, potential free product, and extremely high levels of dissolved iron in the groundwater

  8. In situ vadose zone bioremediation of soil contaminated with nonvolatile hydrocarbons

    International Nuclear Information System (INIS)

    Hogg, D.S.; Burden, R.J.; Riddell, P.J.

    1992-01-01

    In situ bioremediation has been successfully carried out on petroleum hydrocarbon-contaminated soil at a decommissioned bulk storage terminal in New Zealand. The site soils were contaminated mainly with diesel fuel and spent oil at concentrations ranging up to 95,000 mg/kg of total recoverable petroleum hydrocarbons. The in situ remediation system combines an enhanced bioremediation with vapor extraction and is installed almost entirely below grade, thereby allowing above ground activities to continue unimpeded. Laboratory-scale feasibility testing indicated that although appreciable volatilization of low molecular weight components would occur initially, biodegradation would be the primary mechanism by which contaminated soil would be remediated. During the remedial design phase, preliminary field testing was conducted to evaluate the optimum spacing for extraction wells and inlet vents. A pilot-scale system was installed in a 15-m by 35-m area of the site in June 1989 and operated for approximately 1 year. Soil monitoring performed approximately every 3 months indicated an overall reduction in soil petroleum hydrocarbon concentrations of 87% for the period from June 1989 to May 1991

  9. Hydrodynamics of foam flows for in situ bioremediation of DNAPL-contaminated subsurface

    International Nuclear Information System (INIS)

    Bouillard, J.X.; Enzien, M.; Peters, R.W.; Frank, J.; Botto, R.E.; Cody, G.

    1995-01-01

    In situ remediation technologies such as (1) pump-and-treat, (2) soil vacuum extraction, (3) soil flushing/washing, and (4) bioremediation are being promoted for cleanup of contaminated sites. However, these technologies are limited by flow channeling of chemical treatment agents. Argonne National Laboratory (ANL), the Gas Research Institute, and the Institute of Gas Technology are collaboratively investigating a new bioremediation technology using foams. The ability of a foam to block pores and limit flow bypassing makes it ideal for DNAPL remediation. The hydrodynamics of gas/liquid foam flows differ significantly from the hydrodynamics of single and multiphase nonfoaming flows. This is illustrated using a multiphase flow hydrodynamic computer model and a two-dimensional flow visualization cell. A state-of-the-art, nonintrusive, three-dimensional magnetic resonance imaging technique was developed to visualize DNAPL mobilization in three dimensions. Mechanisms to be investigated are in situ DNAPL interactions with the foam, DNAPL emulsification, DNAPL scouring by the foam, and subsequent DNAPL mobilization/redeposition in the porous media

  10. Deploying in situ bioremediation at the Hanford Site

    International Nuclear Information System (INIS)

    Truex, M.J.; Johnson, C.D.; Newcomer, D.R.; Doremus, L.A.; Hooker, B.S.; Peyton, B.M.; Skeen, R.S.; Chilakapati, A.

    1994-11-01

    An innovative in-situ bioremediation technology was developed by Pacific Northwest Laboratory (PNL) to destroy nitrate and carbon tetrachloride (CC1 4 ) in the Hanford ground water. The goal of this in-situ treatment process is to stimulate native microorganisms to degrade nitrate and CCl 4 . Nutrient solutions are distributed in the contaminated aquifer to create a biological treatment zone. This technology is being demonstrated at the US Department of Energy's Hanford Site to provide the design, operating, and cost information needed to assess its effectiveness in contaminated ground water. The process design and field operations for demonstration of this technology are influenced by the physical, chemical, and microbiological properties observed at the site. A description of the technology is presented including the well network design, nutrient injection equipment, and means for controlling the hydraulics and microbial reactions of the treatment process

  11. Multi-Objective Optimization of an In situ Bioremediation Technology to Treat Perchlorate-Contaminated Groundwater

    Science.gov (United States)

    The presentation shows how a multi-objective optimization method is integrated into a transport simulator (MT3D) for estimating parameters and cost of in-situ bioremediation technology to treat perchlorate-contaminated groundwater.

  12. IRP, Aerobic Cometabolic In Situ Bioremediation Technology Guidance Manual and Screening Software User's Guide

    National Research Council Canada - National Science Library

    1998-01-01

    ...) have been documented. These compounds can pose a serious threat to human health or the environment. Aerobic cometabolic in situ bioremediation is an innovative technology being used for treatment of groundwater contaminated with CAHs, especially TCE...

  13. Selection of electron acceptors and strategies for in situ bioremediation

    International Nuclear Information System (INIS)

    Norris, R.D.

    1995-01-01

    The most critical aspect of designing in situ bioremediation systems is, typically, the selection and method of delivery of the electron acceptor. Nitrate, sulfate, and several forms of oxygen can be introduced, depending on the contaminants and the site conditions. Oxygen can be added as air, pure oxygen, hydrogen peroxide, or an oxygen release compound. Simplistic cost calculations can illustrate the advantages of some methods over others, providing technical requirements can be met

  14. In situ bioremediation for the Hanford carbon tetrachloride plume. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-04-01

    The 200 Area at Hanford (also called the Central Plateau) contains approximately 817 waste sites, 44 facilities to be demolished, and billions of gallons of contaminated groundwater resulting from chemical processing plants and associated waste facilities (e.g., waste tanks). From 1955 to 1973, carbon tetrachloride, nitrate, and other materials were discharged to subsurface liquid waste disposal facilities in the 200 Area. As much as 600,000 kilograms of carbon tetrachloride may have entered the soil column and a portion of this has contaminated the underlying aquifer. In Situ Bioremediation for the Hanford Carbon Tetrachloride Plume (ISB), which is the term used in this report for an in situ treatment process using indigenous micro-organisms with a computer based Accelerated Bioremediation Design Tool (ABDT), remediates groundwater contaminated with volatile organic compounds (VOCs) and nitrates under anaerobic conditions. ISB involves the injection of nutrients into the groundwater and subsequent extraction and re-injection of the groundwater to provide nutrient distribution in the aquifer

  15. Testing of in situ and ex situ bioremediation approaches for an oil-contaminated peat bog following a pipeline break

    International Nuclear Information System (INIS)

    Wilson, J.J.; Lee, D.W.; Yeske, B.M.; Kuipers, F.

    2000-01-01

    The feasibility of treating a 1985 pipeline spill of light Pembina Cardium crude oil at a bog near Violet Grove, Alberta was discussed. Pembina Pipeline Corporation arranged for a treatability test to be conducted on oil-contaminated sphagnum peat moss from the site to determine effective in situ or ex situ remediation options for the site. The test was used to evaluate the biodegradation potential of contaminants. Four tests were designed to simulate field different field treatment approaches and to collect critical data on toxicity and leachability of the peat moss. The tests included a bioslurry test, a soil microcosm test, an aerated water saturated peat column test, and a standard toxicity characteristic leachate potential test. The first three tests gave similar results of at least 74 per cent biodegradation of the residual crude oil on the peat solids and no residual toxicity as measured by the Microtox Assay. It was determined that both in situ bioremediation using an aerated water injection system or an ex situ landfarming approach would achieve required criteria and no fertilizers would be necessary to maintain active bioremediation. The new gas-liquid reactor (GLR) aeration technology used in these tests creates a constant supply of hyperoxygenated water prior to column injection. The continuous release of tiny air bubbles maximizes air surface area and increases the gas transfer rates. 3 tabs., 3 figs

  16. Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Dawn; Giloteaux, L.; Williams, Kenneth H.; Wrighton, Kelly C.; Wilkins, Michael J.; Thompson, Courtney A.; Roper, Thomas J.; Long, Philip E.; Lovley, Derek

    2013-07-28

    The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well-recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, acetate amendments initially promoted the growth of metal-reducing Geobacter species followed by the growth of sulfate-reducers, as previously observed. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater prior to the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the amoeboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity, and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.

  17. Application of microbial biomass and activity measures to assess in situ bioremediation of chlorinated solvents

    International Nuclear Information System (INIS)

    Phelps, T.J.; Herbes, S.E.; Palumbo, A.V.; Pfiffner, S.M.; Mackowski, R.; Ringelberg, D.; White, D.C.; Tennessee Univ., Knoxville, TN

    1993-01-01

    Evaluating the effectiveness of chlorinated solvent remediation in the subsurface can be a significant problem given uncertainties in estimating the total mass of contaminants present. If the remediation technique is a biological activity, information on the progress and success of the remediation may be gained by monitoring changes in the mass and activities of microbial populations. The in situ bioremediation demonstration at the US Department of Energy (DOE) Savannah River Site (SRS) is designed to test the effectiveness of methane injection for the stimulation of in sediments. Past studies have shown the potential for degradation by native microbial populations. The design and implementation of the SRS Integrated Demonstration is described in this volume. A control phase without treatment was followed by a phase withdrawing air. The next phase included vacuum extraction plus air injection into the lower horizontal well located below the water table. The next period included the injection of 1% methane in air followed by injection of 4% methane in air. Based on the literature, it was hypothesized that the injection of methane would stimulate methanotrophic populations and thus accelerate biological degradation of TCE. Measuring the success of bioremediation is a complex effort that includes monitoring of changes in microbial populations associated with TCE degradation. These monitoring efforts are described in this paper and in related papers in this volume

  18. In situ bioremediation strategies for oiled shoreline environments

    International Nuclear Information System (INIS)

    Lee, K.; Mora, S. de

    1999-01-01

    Despite advances in preventative measures, recent events have demonstrated that accidental oil spills at sea will still occur. While physical (e.g. booms and skimmers) and chemical (e.g. chemical dispersants) methods have been developed to recover and/or disperse oil spilled at sea, they are not 100% effective and are frequently limited by operational constraints attributed to sea state and/or nature of the contamination. As a result, oil spills frequently impact shoreline environments. In situ bioremediation, the addition of substances or modification of habitat at contaminated sites to accelerate natural biodegradation processes, is now recognised as an alternative spill response technology of the remediation of these sites. Recommended for use following the physical removal of bulk oil, this treatment strategy has an operational advantage in that it breaks down and/or removes the residual contamination in place. Laboratory experiments and field trials have demonstrated the feasibility and success of bioremediation strategies such as nutrient enrichment to enhance bacterial degradation of oil on cobble, sand beach and salt marsh environments. With improved knowledge of the factors that limit natural oil degradation rates, the feasibility of other strategies such as phytoremediation, enhanced oil-mineral fines interaction and the addition of oxygen or alternative electron acceptors are now being evaluated. Laboratory and field test protocols are being refined for the selection of effective bioremediation agents and methods of application. It is recommended that future operational guidelines include real time product efficacy test and environmental effects monitoring programs. Termination of treatment should be implemented when: 1) it is no longer effective; 2) the oil has degraded to acceptable biologically benign concentrations; or 3) toxicity due to the treatment is increasing. (Author)

  19. Ex situ bioremediation of oil-contaminated soil.

    Science.gov (United States)

    Lin, Ta-Chen; Pan, Po-Tsen; Cheng, Sheng-Shung

    2010-04-15

    An innovative bioprocess method, Systematic Environmental Molecular Bioremediation Technology (SEMBT) that combines bioaugmentation and biostimulation with a molecular monitoring microarray biochip, was developed as an integrated bioremediation technology to treat S- and T-series biopiles by using the landfarming operation and reseeding process to enhance the bioremediation efficiency. After 28 days of the bioremediation process, diesel oil (TPH(C10-C28)) and fuel oil (TPH(C10-C40)) were degraded up to approximately 70% and 63% respectively in the S-series biopiles. When the bioaugmentation and biostimulation were applied in the beginning of bioremediation, the microbial concentration increased from approximately 10(5) to 10(6) CFU/g dry soil along with the TPH biodegradation. Analysis of microbial diversity in the contaminated soils by microarray biochips revealed that Acinetobacter sp. and Pseudomonas aeruginosa were the predominant groups in indigenous consortia, while the augmented consortia were Gordonia alkanivorans and Rhodococcus erythropolis in both series of biopiles during bioremediation. Microbial respiration as influenced by the microbial activity reflected directly the active microbial population and indirectly the biodegradation of TPH. Field experimental results showed that the residual TPH concentration in the complex biopile was reduced to less than 500 mg TPH/kg dry soil. The above results demonstrated that the SEMBT technology is a feasible alternative to bioremediate the oil-contaminated soil. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  20. Field Implementation Plan for the In-Situ Bioremediation Treatability Study at the Technical Area-V Groundwater Area of Concern

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-31

    This Field Implementation Plan (FIP) was prepared by Sandia National Laboratories, New Mexico (SNL/NM) and provides instruction on conducting a series of in-situ bioremediation (ISB) tests as described in the Revised Treatability Study Work Plan for In-Situ Bioremediation at the Technical Area-V Groundwater Area of Concern, referred to as the Revised Work Plan in this FIP. The Treatability Study is designed to gravity inject an electron-donor substrate and bioaugmentation bacteria into groundwater via three injection wells to perform bioremediation of the constituents of concern (COCs), nitrate and trichloroethene (TCE), in the regions with the highest concentrations at the Technical Area-V Groundwater (TAVG) Area of Concern (AOC). The Treatability Study will evaluate the effectiveness of bioremediation solution delivery and COC treatment over time. This FIP is designed for SNL/NM work planning and management. It is not intended to be submitted for regulator’s approval. The technical details presented in this FIP are subject to change based on field conditions, availability of equipment and materials, feasibility, and inputs from Sandia personnel and Aboveground Injection System contractor.

  1. Field Implementation Plan for the In-Situ Bioremediation Treatability Study at the Technical Area-V Groundwater Area of Concern

    International Nuclear Information System (INIS)

    Li, Jun

    2016-01-01

    This Field Implementation Plan (FIP) was prepared by Sandia National Laboratories, New Mexico (SNL/NM) and provides instruction on conducting a series of in-situ bioremediation (ISB) tests as described in the Revised Treatability Study Work Plan for In-Situ Bioremediation at the Technical Area-V Groundwater Area of Concern, referred to as the Revised Work Plan in this FIP. The Treatability Study is designed to gravity inject an electron-donor substrate and bioaugmentation bacteria into groundwater via three injection wells to perform bioremediation of the constituents of concern (COCs), nitrate and trichloroethene (TCE), in the regions with the highest concentrations at the Technical Area-V Groundwater (TAVG) Area of Concern (AOC). The Treatability Study will evaluate the effectiveness of bioremediation solution delivery and COC treatment over time. This FIP is designed for SNL/NM work planning and management. It is not intended to be submitted for regulator's approval. The technical details presented in this FIP are subject to change based on field conditions, availability of equipment and materials, feasibility, and inputs from Sandia personnel and Aboveground Injection System contractor.

  2. Principles of Bioremediation Assessment

    Science.gov (United States)

    Madsen, E. L.

    2001-12-01

    Although microorganisms have successfully and spontaneously maintained the biosphere since its inception, industrialized societies now produce undesirable chemical compounds at rates that outpace naturally occurring microbial detoxification processes. This presentation provides an overview of both the complexities of contaminated sites and methodological limitations in environmental microbiology that impede the documentation of biodegradation processes in the field. An essential step toward attaining reliable bioremediation technologies is the development of criteria which prove that microorganisms in contaminated field sites are truly active in metabolizing contaminants of interest. These criteria, which rely upon genetic, biochemical, physiological, and ecological principles and apply to both in situ and ex situ bioremediation strategies include: (i) internal conservative tracers; (ii) added conservative tracers; (iii) added radioactive tracers; (iv) added isotopic tracers; (v) stable isotopic fractionation patterns; (vi) detection of intermediary metabolites; (vii) replicated field plots; (viii) microbial metabolic adaptation; (ix) molecular biological indicators; (x) gradients of coreactants and/or products; (xi) in situ rates of respiration; (xii) mass balances of contaminants, coreactants, and products; and (xiii) computer modeling that incorporates transport and reactive stoichiometries of electron donors and acceptors. The ideal goal is achieving a quantitative understanding of the geochemistry, hydrogeology, and physiology of complex real-world systems.

  3. Optimal design of an in-situ bioremediation system using support vector machine and particle swarm optimization

    Science.gov (United States)

    ch, Sudheer; Kumar, Deepak; Prasad, Ram Kailash; Mathur, Shashi

    2013-08-01

    A methodology based on support vector machine and particle swarm optimization techniques (SVM-PSO) was used in this study to determine an optimal pumping rate and well location to achieve an optimal cost of an in-situ bioremediation system. In the first stage of the two stage methodology suggested for optimal in-situ bioremediation design, the optimal number of wells and their locations was determined from preselected candidate well locations. The pumping rate and well location in the first stage were subsequently optimized in the second stage of the methodology. The highly nonlinear system of equations governing in-situ bioremediation comprises the equations of flow and solute transport coupled with relevant biodegradation kinetics. A finite difference model was developed to simulate the process of in-situ bioremediation using an Alternate-Direction Implicit technique. This developed model (BIOFDM) yields the spatial and temporal distribution of contaminant concentration for predefined initial and boundary conditions. BIOFDM was later validated by comparing the simulated results with those obtained using BIOPLUME III for the case study of Shieh and Peralta (2005). The results were found to be in close agreement. Moreover, since the solution of the highly nonlinear equation otherwise requires significant computational effort, the computational burden in this study was managed within a practical time frame by replacing the BIOFDM model with a trained SVM model. Support Vector Machine which generates fast solutions in real time was considered to be a universal function approximator in the study. Apart from reducing the computational burden, this technique generates a set of near optimal solutions (instead of a single optimal solution) and creates a re-usable data base that could be used to address many other management problems. Besides this, the search for an optimal pumping pattern was directed by a simple PSO technique and a penalty parameter approach was adopted

  4. Optimal design of an in-situ bioremediation system using support vector machine and particle swarm optimization.

    Science.gov (United States)

    ch, Sudheer; Kumar, Deepak; Prasad, Ram Kailash; Mathur, Shashi

    2013-08-01

    A methodology based on support vector machine and particle swarm optimization techniques (SVM-PSO) was used in this study to determine an optimal pumping rate and well location to achieve an optimal cost of an in-situ bioremediation system. In the first stage of the two stage methodology suggested for optimal in-situ bioremediation design, the optimal number of wells and their locations was determined from preselected candidate well locations. The pumping rate and well location in the first stage were subsequently optimized in the second stage of the methodology. The highly nonlinear system of equations governing in-situ bioremediation comprises the equations of flow and solute transport coupled with relevant biodegradation kinetics. A finite difference model was developed to simulate the process of in-situ bioremediation using an Alternate-Direction Implicit technique. This developed model (BIOFDM) yields the spatial and temporal distribution of contaminant concentration for predefined initial and boundary conditions. BIOFDM was later validated by comparing the simulated results with those obtained using BIOPLUME III for the case study of Shieh and Peralta (2005). The results were found to be in close agreement. Moreover, since the solution of the highly nonlinear equation otherwise requires significant computational effort, the computational burden in this study was managed within a practical time frame by replacing the BIOFDM model with a trained SVM model. Support Vector Machine which generates fast solutions in real time was considered to be a universal function approximator in the study. Apart from reducing the computational burden, this technique generates a set of near optimal solutions (instead of a single optimal solution) and creates a re-usable data base that could be used to address many other management problems. Besides this, the search for an optimal pumping pattern was directed by a simple PSO technique and a penalty parameter approach was adopted

  5. Test plan for in situ bioremediation demonstration of the Savannah River Integrated Demonstration Project DOE/OTD TTP No.: SR 0566-01. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.

    1991-09-18

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms will be simulated to degrade trichloroethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated zone. in situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work.

  6. Stakeholder acceptance analysis: In-well vapor stripping, in-situ bioremediation, gas membrane separation system (membrane separation)

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This document provides stakeholder evaluations on innovative technologies to be used in the remediation of volatile organic compounds from soils and ground water. The technologies evaluated are; in-well vapor stripping, in-situ bioremediation, and gas membrane separation

  7. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, M.; Wu, W.-M.; Wu, L.; He, Z.; Van Nostrand, J.D.; Deng, Y.; Luo, J.; Carley, J.; Ginder-Vogel, M.; Gentry, T.J.; Gu, B.; Watson, D.; Jardine, P.M.; Marsh, T.L.; Tiedje, J.M.; Hazen, T.C.; Criddle, C.S.; Zhou, J.

    2010-02-15

    A pilot-scale field test system with an inner loop nested within an outer loop was constructed for in situ U(VI) bioremediation at a US Department of Energy site, Oak Ridge, TN. The outer loop was used for hydrological protection of the inner loop where ethanol was injected for biostimulation of microorganisms for U(VI) reduction/immobilization. After 2 years of biostimulation with ethanol, U(VI) levels were reduced to below drinking water standard (<30 {micro}gl{sup -1}) in the inner loop monitoring wells. To elucidate the microbial community structure and functions under in situ uranium bioremediation conditions, we used a comprehensive functional gene array (GeoChip) to examine the microbial functional gene composition of the sediment samples collected from both inner and outer loop wells. Our study results showed that distinct microbial communities were established in the inner loop wells. Also, higher microbial functional gene number, diversity and abundance were observed in the inner loop wells than the outer loop wells. In addition, metal-reducing bacteria, such as Desulfovibrio, Geobacter, Anaeromyxobacter and Shewanella, and other bacteria, for example, Rhodopseudomonas and Pseudomonas, are highly abundant in the inner loop wells. Finally, the richness and abundance of microbial functional genes were highly correlated with the mean travel time of groundwater from the inner loop injection well, pH and sulfate concentration in groundwater. These results suggest that the indigenous microbial communities can be successfully stimulated for U bioremediation in the groundwater ecosystem, and their structure and performance can be manipulated or optimized by adjusting geochemical and hydrological conditions.

  8. Investigating the biogeochemical interactions involved in simultaneous TCE and Arsenic in situ bioremediation

    Science.gov (United States)

    Cook, E.; Troyer, E.; Keren, R.; Liu, T.; Alvarez-Cohen, L.

    2016-12-01

    The in situ bioremediation of contaminated sediment and groundwater is often focused on one toxin, even though many of these sites contain multiple contaminants. This reductionist approach neglects how other toxins may affect the biological and chemical conditions, or vice versa. Therefore, it is of high value to investigate the concurrent bioremediation of multiple contaminants while studying the microbial activities affected by biogeochemical factors. A prevalent example is the bioremediation of arsenic at sites co-contaminated with trichloroethene (TCE). The conditions used to promote a microbial community to dechlorinate TCE often has the adverse effect of inducing the release of previously sequestered arsenic. The overarching goal of our study is to simultaneously evaluate the bioremediation of arsenic and TCE. Although TCE bioremediation is a well-understood process, there is still a lack of thorough understanding of the conditions necessary for effective and stable arsenic bioremediation in the presence of TCE. The objective of this study is to promote bacterial activity that stimulates the precipitation of stable arsenic-bearing minerals while providing anaerobic, non-extreme conditions necessary for TCE dechlorination. To that end, endemic microbial communities were examined under various conditions to attempt successful sequestration of arsenic in addition to complete TCE dechlorination. Tested conditions included variations of substrates, carbon source, arsenate and sulfate concentrations, and the presence or absence of TCE. Initial arsenic-reducing enrichments were unable to achieve TCE dechlorination, probably due to low abundance of dechlorinating bacteria in the culture. However, favorable conditions for arsenic precipitation in the presence of TCE were eventually discovered. This study will contribute to the understanding of the key species in arsenic cycling, how they are affected by various concentrations of TCE, and how they interact with the key

  9. An evaluation of in-situ bioremediation processes

    International Nuclear Information System (INIS)

    Cole, L.L.; Rashidi, M.

    1996-08-01

    Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology

  10. An evaluation of in-situ bioremediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Cole, L.L. [Prairie View A and M Univ., TX (United States); Rashidi, M. [Lawrence Livermore National Lab., CA (United States). Environmental Programs Directorate

    1996-08-01

    Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology.

  11. Microbes safely, effectively bioremediate oil field pits

    International Nuclear Information System (INIS)

    Shaw, B.; Block, C.S.; Mills, C.H.

    1995-01-01

    Natural and augmented bioremediation provides a safe, environmental, fast, and effective solution for removing hydrocarbon stains from soil. In 1992, Amoco sponsored a study with six bioremediation companies, which evaluated 14 different techniques. From this study, Amoco continued using Environmental Protection Co.'s (EPC) microbes for bioremediating more than 145 sites near Farmington, NM. EPC's microbes proved effective on various types of hydrocarbon molecules found in petroleum stained soils from heavy crude and paraffin to volatiles such as BTEX (benzene, toluene, ethylbenzene, xylene) compounds. Controlled laboratory tests have shown that these microbes can digest the hydrocarbon molecules with or without free oxygen present. It is believed that this adaptation gives these microbes their resilience. The paper describes the bioremediation process, environmental advantages, in situ and ex situ bioremediation, goals of bioremediation, temperature effects, time, cost, and example sites that were treated

  12. J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY FOR TREATMENT OF DINOSEB-CONTAMINATED SOILS - INNOVATIVE TECHNOLOGY REPORT

    Science.gov (United States)

    This report summarizes the findings of an evaluation of the J.R. Simplot Ex-Situ Bioremediation Technology on the degradation of dinoseb (2-set-butyl-4,6-dinitrophenol) an agricultural herbicide. This technology was developed by the J.R. Simplot Company (Simplot) to biologically ...

  13. Natural carriers in bioremediation: A review

    Directory of Open Access Journals (Sweden)

    Anna Dzionek

    2016-09-01

    Full Text Available Bioremediation of contaminated groundwater or soil is currently the cheapest and the least harmful method of removing xenobiotics from the environment. Immobilization of microorganisms capable of degrading specific contaminants significantly promotes bioremediation processes, reduces their costs, and also allows for the multiple use of biocatalysts. Among the developed methods of immobilization, adsorption on the surface is the most common method in bioremediation, due to the simplicity of the procedure and its non-toxicity. The choice of carrier is an essential element for successful bioremediation. It is also important to consider the type of process (in situ or ex situ, type of pollution, and properties of immobilized microorganisms. For these reasons, the article summarizes recent scientific reports about the use of natural carriers in bioremediation, including efficiency, the impact of the carrier on microorganisms and contamination, and the nature of the conducted research.

  14. Bioremediation: A natural solution

    International Nuclear Information System (INIS)

    Hicks, B.N.; Caplan, J.A.

    1993-01-01

    Bioremediation is an attractive remediation alternative because most full-scale bioremediation projects involve cost-effective contaminant treatment on-site. Recently, large scale bioremediation projects have included cleanups of ocean tanker spills, land-based chemical spills, and leaking chemical and petroleum storage tanks. Contaminated matrices have included beaches, soils, groundwater, surface waters (i.e., pits, ponds, lagoons), process waste streams and grease traps. Bioremediation is especially cost-effective when both soil and groundwater matrices are impacted because one remediation treatment system can be design to treat both media simultaneously in place. The primary advantages of in situ bioremediation include: on-site destruction of contaminants; accelerated cleanup time; minimal disruption to operations; lower remediation costs; and reduction of future liability

  15. Bioremediation in Germany: Markets, technologies, and leading companies

    International Nuclear Information System (INIS)

    Raphael, T.; Glass, D.J.

    1995-01-01

    Bioremediation has become an internationally accepted remediation tool. Commercial bioremediation activities take place in many European countries, but Germany and the Netherlands are the clear European leaders, with both having a long history of public and private sector activity in biological technologies. The German bioremediation market has been driven by government regulation, in particular the waste laws that apply to contaminated soils. The 1994 German market for bioremediation is estimated at $70 to 100 million (US $). There are at least 150 companies active in bioremediation in Germany, most of which practice bioremediation of hydrocarbon-contaminated soils, either in situ or ex situ. Because of their predominance in the current European market, German firms are well positioned to expand into those nations in the European Union (EU) currently lacking an environmental business infrastructure

  16. PROTOCOL FOR DETERMINING BIOAVAILABILITY AND BIOKINETICS OF ORGANIC POLLUTANTS IN DISPERSED, COMPACTED AND INTACT SOIL SYSTEMS TO ENHANCE IN SITU BIOREMEDIATION

    Science.gov (United States)

    The development of effective in situ and on-site bioremediation technologies can facilitate the cleanup of chemically-contaminated soil sites. Knowledge of biodegradation kinetics and bioavailability of organic pollutants can facilitate decisions on the efficacy of in situ and o...

  17. Bioremediation of oil contaminated soils

    International Nuclear Information System (INIS)

    Beeson, D.L.; Hogue, J.I.; Peterson, J.C.; Guerra, G.W.

    1994-01-01

    The Baldwin Waste Oil Site was an abandoned waste oil recycling facility located in Robstown, Nueces County, Texas. As part of their site assessment activities, the US Environmental Protection Agency (EPA) requested that the Ecology and Environment, Inc., Technical Assistance Team (TAT) investigate the feasibility of using in-situ bioremediation to remediate soils contaminated with oil and grease components, petroleum hydrocarbons, and volatile organic compounds. Bioremediation based on the land treatment concept was tested. The land treatment concept uses techniques to optimize indigenous microbial populations and bring them in contact with the contaminants. The study was designed to collect data upon which to base conclusions on the effectiveness of bioremediation, to demonstrate the effectiveness of bioremediation under field conditions, and to identify potential problems in implementing a full-scale project. Bioremediation effectiveness was monitored through total petroleum hydrocarbons (TPH) and Oil and Grease (O and G) analyses. Site specific treatment goals for the pilot project were concentrations of less than 1% for O and G and less than 10,000 mg/kg for TPH. Based on the reduction of TPH and O and G concentrations and the cost effectiveness of bioremediation based on the land treatment concept, full-scale in-situ bioremediation was initiated by the EPA at the Baldwin Waste Oil Site in February of 1993

  18. Ecotoxicological evaluation of in situ bioremediation of soils contaminated by the explosive 2,4,6-trinitrotoluene (TNT)

    International Nuclear Information System (INIS)

    Frische, Tobias

    2003-01-01

    The luminescent bacteria assay, using soil leachates, was the most sensitive toxicity indicator. - To evaluate the environmental relevance of in situ bioremediation of contaminated soils, effective and reliable monitoring approaches are of special importance. The presented study was conducted as part of a research project investigating in situ bioremediation of topsoils contaminated by the explosive 2,4,6-trinitrotoluene (TNT). Changes in soil toxicity within different experimental fields at a former ordnance factory were evaluated using a battery of five bioassays (plant growth, Collembola reproduction, soil respiration, luminescent bacteria acute toxicity and mutagenicity test) in combination to chemical contaminant analysis. Resulting data reveal clear differences in sensitivities between methods with the luminescent bacteria assay performed with soil leachates as most sensitive toxicity indicator. Complete test battery results are presented in so-called soil toxicity profiles to visualise and facilitate the interpretation of data. Both biological and chemical monitoring results indicate a reduction of soil toxicity within 17 months of remediation

  19. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    Foght, J.M.; Westlake, D.W.S.

    1992-01-01

    In-situ bioremediation of crude oil spills relies on either the indigenous microbes at the polluted site, whose degradative abilities are accelerated by adding such agents as fertilizers or dispersants, or on introducing pollutant-degrading microbes into the site (possibly accompanied by stimulatory chemicals). The bioremediation method to be used at a specific site must be selected to be suitable for that site and its environmental conditions. The basic components of bioremediation are outlined and the background information needed to understand the chemical and biological limitations of the technique are presented. Specifically, the microbial community, the crude oil substrate composition, and biological limiting factors are discussed. Generalized examples of bioremediation applications are illustrated. 10 refs

  20. In situ bioremediation (natural attenuation) at a gas plant waste site

    International Nuclear Information System (INIS)

    Ginn, J.S.; Sims, R.C.

    1995-01-01

    A former manufactured gas plant (MGP) waste site in New York was evaluated with regard to natural attenuation of polycyclic aromatic hydrocarbons (PAHs). Parent-compound concentrations of PAHs within an aquifer plume were observed to decrease with time subsequent to source removal of coal tar. Biotransformation-potential studies indicated that indigenous microorganisms in soil from the site were capable of degrading naphthalene and phenanthrene. A biochemical metabolite of phenanthrene degradation, 1-hydroxy-2-naphthoic acid (1H2NA), was tentatively characterized in coal-tar-contaminated soil from the site-based on liquid chromatographic retention time. Kinetic information was developed for the disappearance of phenanthrene and 1H2NA in nonspiked contaminated soil at the site. The Microtox trademark bioassay was used to evaluate toxicity trends in contaminated soil at the site. Results from the Microtox trademark indicated a decreasing trend in toxicity with respect to time in contaminated site soil. Research results were evaluated with regard to the National Research Council's guidelines for evaluating in situ bioremediation, and were used to enhance site characterization and monitoring information for evaluating the role of bioremediation as part of natural attenuation of PAHs at coal-tar-contaminated sites

  1. A demonstration of in situ bioremediation of CCL4 at the Hanford Site

    International Nuclear Information System (INIS)

    Hooker, B.S.; Skeen, R.S.; Truex, M.J.; Peyton, B.M.

    1994-11-01

    The United States Department of Energy's VOC-Arid Integrated Demonstration Program (VOC/Arid-ID) is developing an in situ bioremediation technology to meet the need for a cost-effective method to clean ground water contaminated with chlorinated solvents, nitrates, or other organic and inorganic contaminants. Currently, a field demonstration of the technology is being conducted at the Hanford site in southeastern Washington state. The goal of this demonstration is to stimulate native denitrifying microorganisms to destroy carbon tetrachloride and nitrate. Contaminants are destroyed by mixing an electron donor (acetate) and an electron acceptor (nitrate) into the aquifer, using a matrix of recirculation wells. This work also evaluates the effectiveness.of applying scale-up techniques developed in the petrochemical industry to bioremediation. The scale-up process is based on combining fluid mixing and transport predictions with numerical descriptions for biological transport and reaction kinetics. This paper focuses on the necessity of this design approach to select nutrient feeding strategies that limit biofouling while actively destroying contaminants

  2. Surfactant-aided recovery/in situ bioremediation for oil-contaminated sites

    International Nuclear Information System (INIS)

    Ducreaux, J.; Baviere, M.; Seabra, P.; Razakarisoa, O.; Shaefer, G.; Arnaud, C.

    1995-01-01

    Bioremediation has been the most commonly used method way for in situ cleaning of soils contaminated with low-volatility petroleum products such as diesel oil. However, whatever the process (bioventing, bioleaching, etc.), it is a time-consuming technique that may be efficiency limited by both accessibility and too high concentrations of contaminants. A currently developed process aims at quickly recovering part of the residual oil in the vadose and capillary zones by surfactant flushing, then activating in situ biodegradation of the remaining oil in the presence of the same or other surfactants. The process has been tested in laboratory columns and in an experimental pool, located at the Institut Franco-Allemand de Recherche sur l'Environnement (IFARE) in Strasbourg, France. Laboratory column studies were carried out to fit physico-chemical and hydraulic parameters of the process to the field conditions. The possibility of recovering more than 80% of the oil in the flushing step was shown. For the biodegradation step, forced aeration as a mode of oxygen supply, coupled with nutrient injection aided by surfactants, was tested

  3. Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects.

    Science.gov (United States)

    Azubuike, Christopher Chibueze; Chikere, Chioma Blaise; Okpokwasili, Gideon Chijioke

    2016-11-01

    Environmental pollution has been on the rise in the past few decades owing to increased human activities on energy reservoirs, unsafe agricultural practices and rapid industrialization. Amongst the pollutants that are of environmental and public health concerns due to their toxicities are: heavy metals, nuclear wastes, pesticides, green house gases, and hydrocarbons. Remediation of polluted sites using microbial process (bioremediation) has proven effective and reliable due to its eco-friendly features. Bioremediation can either be carried out ex situ or in situ, depending on several factors, which include but not limited to cost, site characteristics, type and concentration of pollutants. Generally, ex situ techniques apparently are more expensive compared to in situ techniques as a result of additional cost attributable to excavation. However, cost of on-site installation of equipment, and inability to effectively visualize and control the subsurface of polluted sites are of major concerns when carrying out in situ bioremediation. Therefore, choosing appropriate bioremediation technique, which will effectively reduce pollutant concentrations to an innocuous state, is crucial for a successful bioremediation project. Furthermore, the two major approaches to enhance bioremediation are biostimulation and bioaugmentation provided that environmental factors, which determine the success of bioremediation, are maintained at optimal range. This review provides more insight into the two major bioremediation techniques, their principles, advantages, limitations and prospects.

  4. Geology, hydrology, chemistry, and microbiology of the in situ bioremediation demonstration site

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Doremus, L.A.; Hall, S.H.; Truex, M.J.; Vermeul, V.R.; Engelman, R.E.

    1995-03-01

    This report summarizes characterization information on the geology, hydrology, microbiology, contaminant distribution, and ground-water chemistry to support demonstration of in situ bioremediation at the Hanford Site. The purpose of this information is to provide baseline conditions, including a conceptual model of the aquifer being utilized for in situ bioremediation. Data were collected from sampling and other characterization activities associated with three wells drilled in the upper part of the suprabasalt aquifer. Results of point-dilution tracer tests, conducted in the upper 9 m (30 ft) of the aquifer, showed that most ground-water flow occurs in the upper part of this zone, which is consistent with hydraulic test results and geologic and geophysical data. Other tracer test results indicated that natural ground-water flow velocity is equal to or less than about 0.03 m/d (0.1 ft/d). Laboratory hydraulic conductivity measurements, which represent the local distribution of vertical hydraulic conductivity, varied up to three orders of magnitude. Based on concentration data from both the vadose and saturated zone, it is suggested that most, if not all, of the carbon tetrachloride detected is representative of the aqueous phase. Concentrations of carbon tetrachloride, associated with a contaminant plume in the 200-West Area, ranged from approximately 500 to 3,800 μg/L in the aqueous phase and from approximately 10 to 290 μg/L in the solid phase at the demonstration site. Carbon tetrachloride gas was detected in the vadose zone, suggesting volatilization and subsequent upward migration from the saturated zone

  5. In situ bioremediation of a diesel fuel spill in northern Manitoba

    International Nuclear Information System (INIS)

    Hryhoruk, C.D.

    1994-01-01

    At a northern Manitoba airport, a site was contaminated with diesel fuel, which was confined within the unsaturated zone in silt and silty sand. A two-phase bioremediation process was designed and implemented in-situ in a pilot test. The first phase, ground surface spraying, involved mixing nutrients (ammonium-nitrogen and orthophosphate) with water in a tank and then spraying the mixture on the ground surface above the diesel plume. The second phase, a pump-cycle system, involved pumping groundwater from below the diesel plume into one of two tanks in series. The groundwater underwent both nutrient addition (weekly) and aeration in the tanks, then it was pumped into eight feeder wells which circumscribed an extraction well. Soil testing revealed that both remediation processes aided in increasing subsurface nutrient concentrations and the moisture content within the diesel plume. In addition, high total coliform counts were observed in both the silt and silty sand layers. This implied that conditions for suitable bioremediation can be developed in relatively fine-grained soil. Intermittent soil sampling at three locations over a 14-month period revealed that the diesel plume decreased in size by ca 30% and contaminant concentrations (diesel fuel) also decreased. Plume movement also occurred. The pump-cycle system remains operational. 67 refs., 77 figs., 9 tabs

  6. In situ bioremediation of a diesel fuel spill in northern Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Hryhoruk, C D

    1994-01-01

    At a northern Manitoba airport, a site was contaminated with diesel fuel, which was confined within the unsaturated zone in silt and silty sand. A two-phase bioremediation process was designed and implemented in-situ in a pilot test. The first phase, ground surface spraying, involved mixing nutrients (ammonium-nitrogen and orthophosphate) with water in a tank and then spraying the mixture on the ground surface above the diesel plume. The second phase, a pump-cycle system, involved pumping groundwater from below the diesel plume into one of two tanks in series. The groundwater underwent both nutrient addition (weekly) and aeration in the tanks, then it was pumped into eight feeder wells which circumscribed an extraction well. Soil testing revealed that both remediation processes aided in increasing subsurface nutrient concentrations and the moisture content within the diesel plume. In addition, high total coliform counts were observed in both the silt and silty sand layers. This implied that conditions for suitable bioremediation can be developed in relatively fine-grained soil. Intermittent soil sampling at three locations over a 14-month period revealed that the diesel plume decreased in size by ca 30% and contaminant concentrations (diesel fuel) also decreased. Plume movement also occurred. The pump-cycle system remains operational. 67 refs., 77 figs., 9 tabs.

  7. Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study

    Science.gov (United States)

    Kokkinaki, A.; Sleep, B. E.

    2011-12-01

    The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and

  8. Geochemical and microbiological characteristics during in situ chemical oxidation and in situ bioremediation at a diesel contaminated site.

    Science.gov (United States)

    Sutton, Nora B; Kalisz, Mariusz; Krupanek, Janusz; Marek, Jan; Grotenhuis, Tim; Smidt, Hauke; de Weert, Jasperien; Rijnaarts, Huub H M; van Gaans, Pauline; Keijzer, Thomas

    2014-02-18

    While in situ chemical oxidation with persulfate has seen wide commercial application, investigations into the impacts on groundwater characteristics, microbial communities and soil structure are limited. To better understand the interactions of persulfate with the subsurface and to determine the compatibility with further bioremediation, a pilot scale treatment at a diesel-contaminated location was performed consisting of two persulfate injection events followed by a single nutrient amendment. Groundwater parameters measured throughout the 225 day experiment showed a significant decrease in pH and an increase in dissolved diesel and organic carbon within the treatment area. Molecular analysis of the microbial community size (16S rRNA gene) and alkane degradation capacity (alkB gene) by qPCR indicated a significant, yet temporary impact; while gene copy numbers initially decreased 1-2 orders of magnitude, they returned to baseline levels within 3 months of the first injection for both targets. Analysis of soil samples with sequential extraction showed irreversible oxidation of metal sulfides, thereby changing subsurface mineralogy and potentially mobilizing Fe, Cu, Pb, and Zn. Together, these results give insight into persulfate application in terms of risks and effective coupling with bioremediation.

  9. In-situ bioremediation of a hydrocarbon-contaminated pond at Hall Beach, Northwest Territories

    International Nuclear Information System (INIS)

    Eno, R.; Rogers, J.; Heroux, J.; Reimer, K.

    1999-01-01

    The effectiveness of in-situ bioremediation as a means of cleaning up fuel spills in Arctic regions is demonstrated by a case study involving a former fuel tank farm site at Hall Beach, Northwest Territories. An in-situ treatment method, based on the theory of a completely mixed batch wastewater system, was used in this instance. The treatment centred around a commercial floating aerator, which was installed in the pond to provide oxygen. Pre-calculated amounts of nutrients in the form of ammonium chloride and sodium phosphate were also added. The treatment was repeated in the following thawing season to verify initial results. The study is still ongoing; analysis results of the samples collected during the second season are not yet available. However, initial results looked promising and were consistent with what would be expected of increased biological activity. 4 figs

  10. Assessing TCE source bioremediation by geostatistical analysis of a flux fence.

    Science.gov (United States)

    Cai, Zuansi; Wilson, Ryan D; Lerner, David N

    2012-01-01

    Mass discharge across transect planes is increasingly used as a metric for performance assessment of in situ groundwater remediation systems. Mass discharge estimates using concentrations measured in multilevel transects are often made by assuming a uniform flow field, and uncertainty contributions from spatial concentration and flow field variability are often overlooked. We extend our recently developed geostatistical approach to estimate mass discharge using transect data of concentration and hydraulic conductivity, so accounting for the spatial variability of both datasets. The magnitude and uncertainty of mass discharge were quantified by conditional simulation. An important benefit of the approach is that uncertainty is quantified as an integral part of the mass discharge estimate. We use this approach for performance assessment of a bioremediation experiment of a trichloroethene (TCE) source zone. Analyses of dissolved parent and daughter compounds demonstrated that the engineered bioremediation has elevated the degradation rate of TCE, resulting in a two-thirds reduction in the TCE mass discharge from the source zone. The biologically enhanced dissolution of TCE was not significant (~5%), and was less than expected. However, the discharges of the daughter products cis-1,2, dichloroethene (cDCE) and vinyl chloride (VC) increased, probably because of the rapid transformation of TCE from the source zone to the measurement transect. This suggests that enhancing the biodegradation of cDCE and VC will be crucial to successful engineered bioremediation of TCE source zones. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  11. Contamination-remedying technology based on biotechnology. ; Bioremediation. Biotechnology wo mochiita osen shufuku gijutsu. ; Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M [The Japan Research Institute, Ltd., Osaka (Japan)

    1993-08-01

    Bioremediation technology is outlined. The bioremediation technology is a contamination-remedying technology for the injurious chemical matter discharged in the environment to be made innocuous by utilizing the decomposing ability of microorganisms. That technology is characterized by its energywise economical performance, secondary waste which is not producible and remedy which is possible on site against the contamination. As a treatment system, that technology comprises solid phase bioremediation (The contaminated soil is purified in a soil treatment unit.), slurry phase bioremediation (The contaminated soil is made slurry and decomposed by microorganisms.) and in-situ bioremediation (The treatment is made by injecting nutrients and microorganisms underground.). As for how to use the microorganisms, there are two methods: One in which living groups of microorganisms are activated and the other in which microorganisms are artificially cultivated. As contaminants in the US, listed are organic solvent, wood preservative, high-molecular aromatic halide, agricultural chemical, military waste, heavy metal waste and radioactive waste. 11 refs., 5 figs., 1 tab.

  12. Applied bioremediation of hazardous, petroleum, and industrial wastes

    International Nuclear Information System (INIS)

    Ulm, D.J.; McGuire, P.N.; Lynch, E.R.

    1994-01-01

    Blasland and Bouck Engineers, P.C. (Blasland and Bouck) conducted a large-scale soil bioremediation pilot study at an inactive hazardous waste site in Upstate New York. Remediation of soils at the site is regulated in accordance with a Consent Order entered into with the New York State Department of Environmental Conservation. The chemicals of concern in soils at the site consist of a wide range of volatile and semi-volatile organic compounds including: trichloroethylene, methylene chloride, methanol, aniline, and N,N-dimethylaniline. The large-scale soil Bioremediation Pilot Study consisted of evaluating the effectiveness of two bioremediation techniques: ex-situ solid phase treatment of excavation soils; and in-situ solid phase treatment with soil mixing. The feasibility of bioremediation for soils at this site was evaluated in the field at pilot scale due to the generally high sensitivity of the technology's effectiveness and feasibility from site to site

  13. Getting results in bioremediation

    International Nuclear Information System (INIS)

    Konzuk, Julie

    2014-01-01

    Bioremediation can be a sustainable, low-cost solution for many contaminated sites, but it is important to know which sites are suitable and be aware of common pitfalls. Chlorinated solvents, lighter petroleum hydrocarbons, non-aqueous phase liquids have all be demonstrated to be readily biodegradable. However, the success of enhanced in situ bioremediation (EISB) depends on the successful growth and establishment of a viable, mature microbial community. Low or high pH groundwater, or high concentrations of some chemicals can inhibit microbial activity.

  14. A comparison of bioaugmentation and intrinsic in situ bioremediation of a PAH contaminated site

    International Nuclear Information System (INIS)

    Geddes, T.; Mortier, N.; Chaparian, M.

    1995-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most common environmental hazards, naturally occurring in petroleum and its by-products. They are encountered at nearly all UST sites, and present an impediment to the use of cost effective intrinsic in situ bioremediation due to their recalcitrant nature. Even bacteria isolated specifically for their ability to degrade PAHs in the laboratory have shown no significant degradative capabilities in the field. This is due to the unique balance that exists at every contaminated site between the microbial ecology, chemical, physical, and environmental factors. Therefore, bacteria indigenous to the site and acclimated to these environmental parameters should be well suited for use in bioaugmentation. Based on this assumption, a new and innovative approach to bioaugmentation has been developed which consists of a series of scientifically-sound, rational steps in the use of this technology. Initially, careful chemical and biological analyses of site samples are conducted using conventional analytical instrumentation and state-of-the-art microbiological, biochemical, and molecular biological techniques. Bacteria from site samples that demonstrate potential PAH degradative capability are isolated. The bacteria are then enriched in culture and re-introduced to the site with appropriate nutrients. Further, this approach encompasses the proposed guidelines for proving the efficacy of in situ bioremediation as set forth by the National Science Foundation. To demonstrate the effectiveness of this approach, data are presented here of a laboratory-scale trial of a PAH contaminated site

  15. Operations Support of Phase 2 Integrated Demonstration In Situ Bioremediation. Volume 1, Final report: Final report text data in tabular form, Disk 1

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-09-01

    This project was designed to demonstrate in situ bioremediation of ground water and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade trichlorethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated aquifer and adjacent vadose zone. The principle carbon/energy source nutrient used in this demonstration was methane (natural gas). In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency, safety, and public and regulatory acceptability. This report describes the preliminary results of the demonstration and provides conclusions only for those measures that the Bioremediation Technical Support Group felt were so overwhelmingly convincing that they do not require further analyses. Though this report is necessarily superficial it does intend to provide a basis for further evaluating the technology and for practitioners to immediately apply some parts of the technology.

  16. Introduction to In Situ Bioremediation of Groundwater

    Science.gov (United States)

    Bioremediation is an engineered technology that modifies environmental conditions (physical, chemical, biochemical, or microbiological) to encourage microorganisms to destroy or detoxify organic and inorganic contaminants in the environment.

  17. Bioremediation at a petroleum refinery

    International Nuclear Information System (INIS)

    Carson, A.W.; Jarvis, J.; Richardson, K.E.

    1994-01-01

    This paper presents a summary of three projects at the Mobil Refinery in Torrance, California where bioremediation technologies were successfully employed for the remediation of hydrocarbon contaminated soil. The three projects represent variations of implementation of bioremediation, both in-situ and ex-situ. Soil from all of the projects was considered non-hazardous designated waste under the California Code of Regulations, Title 23, section 2522. The projects were permitted and cleanup requirements were defined with the Los Angeles Regional Water Quality Control Board. In all of the projects, different methods were used for supplying water, oxygen, and nutrients to the hydrocarbon degrading bacteria to stimulate growth. The Stormwater Retention Basin Project utilized in-situ mechanical mixing of soils to supply solid nutrients and oxygen, and a self-propelled irrigation system to supply water. The Tank Farm Lake project used an in-situ active bioventing technology to introduce oxygen, moisture, and vapor phase nutrients. The Tank 1340X247 project was an ex-situ bioventing remediation project using a drip irrigation system to supply water and dissolved nutrients, and a vapor extraction system to provide oxygen

  18. Creosote-contaminated sites: their potential for bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J G; Chapman, P J; Pritchard, P H [US EPA Environmental Research Laboratory, Gulf Breeze, FL (USA)

    1989-10-01

    Coal tar creosote contamination is generally associated with surface soils, waters in treatment lagoons or evaporation areas, and groundwater contaminated with leachate from the above sources. The basic principle of bioremediation is to exploit the ability of microorganisms to catabolize a wide range of organic substrates. There are limitations which much be addressed if in situ bioremediation is to be successful: the pollutant must be in a chemical state conducive to microbial utilization, aeration and nutrient supplementation are essential elements of many in situ treatments, and there must be present an acclimated microbial population capable of degrading the pollutant. 35 refs., 3 tabs.

  19. Contaminants at DOE sites and their susceptibility to bioremediation

    International Nuclear Information System (INIS)

    Lenhard, R.J.; Skeen, R.S.; Brouns, T.M.

    1993-11-01

    Contaminants at DOE sites encompass a range of common industrial pollutants. However, the prevalence of contaminant mixtures including organics, metals, and radionuclides is relatively unique to DOE's facilities. Bioremediation has been shown to be effective for destruction of many of the organic pollutants. The technology also has promise for application to many of the metals and radionuclides; however, field demonstrations for these applications have not yet been attempted. Because of the complexity of biodegradation of even a single-compound class, little has been done to develop or demonstrate in situ bioremediation technologies for multicompound combinations. The current bioremediation demonstration on CCl 4 and nitrates within the VOC-Arid Integrated Demonstration is one the first efforts to address inorganic and organic co-contaminants simultaneously. Additional research, technology development, and field demonstrations are needed to evaluate the applicability of in situ bioremediation to DOE's most common contaminant mixtures

  20. Bioremediation of marine oil pollution

    International Nuclear Information System (INIS)

    Gutnick, D.L.

    1991-11-01

    An assessment is presented of the scientific and technological developments in the area of bioremediation and biodegradation of marine oil pollution. A number of allied technologies are also considered. The basic technology in bioremediation involves adding fertilizers to an oil spill to enhance the natural process of oil biodegradation. Bioremediation can be applied to open systems such as beach or land spills, or in closed and controlled environments such as storage containers, specially constructed or modified bioreactors, and cargo tanks. The major advantage of using closed environments is the opportunity to control the physical and nutritional parameters to optimize the rate of biodegradation. An evaluation of the state of the art of bioremediation in Canada is also included. Recommendations are made to involve the Canadian Transportation Development Centre in short-term research projects on bioremediation. These projects would include the use of a barge as a mobile bioreactor for the treatment of off-loaded oily waste products, the use of in-situ bioremediation to carry out extensive cleaning, degassing, and sludge remediation on board an oil tanker, and the use of a barge as a mobile bioreactor and facility for the bioremediation of bilges. 51 refs., 4 figs., 14 tabs

  1. Bioremediation of marine oil pollution

    Energy Technology Data Exchange (ETDEWEB)

    Gutnick, D L

    1991-11-01

    An assessment is presented of the scientific and technological developments in the area of bioremediation and biodegradation of marine oil pollution. A number of allied technologies are also considered. The basic technology in bioremediation involves adding fertilizers to an oil spill to enhance the natural process of oil biodegradation. Bioremediation can be applied to open systems such as beach or land spills, or in closed and controlled environments such as storage containers, specially constructed or modified bioreactors, and cargo tanks. The major advantage of using closed environments is the opportunity to control the physical and nutritional parameters to optimize the rate of biodegradation. An evaluation of the state of the art of bioremediation in Canada is also included. Recommendations are made to involve the Canadian Transportation Development Centre in short-term research projects on bioremediation. These projects would include the use of a barge as a mobile bioreactor for the treatment of off-loaded oily waste products, the use of in-situ bioremediation to carry out extensive cleaning, degassing, and sludge remediation on board an oil tanker, and the use of a barge as a mobile bioreactor and facility for the bioremediation of bilges. 51 refs., 4 figs., 14 tabs.

  2. Microbial bioremediation of Uranium: an overview

    International Nuclear Information System (INIS)

    Acharya, Celin

    2015-01-01

    Uranium contamination is a worldwide problem. Preventing uranium contamination in the environment is quite challenging and requires a thorough understanding of the microbiological, ecological and biogeochemical features of the contaminated sites. Bioremediation of uranium is largely dependent on reducing its bioavailability in the environment. In situ bioremediation of uranium by microbial processes has been shown to be effective for immobilizing uranium in contaminated sites. Such microbial processes are important components of biogeochemical cycles and regulate the mobility and fate of uranium in the environment. It is therefore vital to advance our understanding of the uranium-microbe interactions to develop suitable bioremediation strategies for uranium contaminated sites. This article focuses on the fundamental mechanisms adopted by various microbes to mitigate uranium toxicity which could be utilized for developing various approaches for uranium bioremediation. (author)

  3. Bioremediation of a crude oil polluted tropical rain forest soil ...

    African Journals Online (AJOL)

    These results suggest that Biostimulation with tilling (nutrient enhanced in-situ bioremediation) and or the combination ofBiostimulation and Bioaugumentation with indigenous hydrocarbon utilizers would be effective in the remediation of crude oil polluted tropical soils. Key Words: Bioremediation, Bioaugumentation, ...

  4. TECHNOLOGIES FOR BIOREMEDIATION OF SOILS CONTAMINATED WITH PETROLEUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Roxana Gabriela POPA

    2012-05-01

    Full Text Available Biological methods for remediation of soils is based on the degradation of pollutants due to activity of microorganisms (bacteria, fungi. Effectiveness of biological decontamination of soils depends on the following factors: biodegradation of pollutants, type of microorganisms used, choice of oxidant and nutrient and subject to clean up environmental characteristics. Ex situ techniques for bioremediation of soils polluted are: composting (static / mechanical agitation, land farming and biopiles. Techniques in situ bioremediation of soils polluted are: bioventingul, biospargingul and biostimulation – bioaugumentarea.

  5. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)--a field experiment.

    Science.gov (United States)

    Beškoski, Vladimir P; Gojgić-Cvijović, Gordana; Milić, Jelena; Ilić, Mila; Miletić, Srdjan; Solević, Tatjana; Vrvić, Miroslav M

    2011-03-01

    Mazut (heavy residual fuel oil)-polluted soil was exposed to bioremediation in an ex situ field-scale (600 m(3)) study. Re-inoculation was performed periodically with biomasses of microbial consortia isolated from the mazut-contaminated soil. Biostimulation was conducted by adding nutritional elements (N, P and K). The biopile (depth 0.4m) was comprised of mechanically mixed polluted soil with softwood sawdust and crude river sand. Aeration was improved by systematic mixing. The biopile was protected from direct external influences by a polyethylene cover. Part (10 m(3)) of the material prepared for bioremediation was set aside uninoculated, and maintained as an untreated control pile (CP). Biostimulation and re-inoculation with zymogenous microorganisms increased the number of hydrocarbon degraders after 50 d by more than 20 times in the treated soil. During the 5 months, the total petroleum hydrocarbon (TPH) content of the contaminated soil was reduced to 6% of the initial value, from 5.2 to 0.3 g kg(-1) dry matter, while TPH reduced to only 90% of the initial value in the CP. After 150 d there were 96%, 97% and 83% reductions for the aliphatic, aromatic, and nitrogen-sulphur-oxygen and asphaltene fractions, respectively. The isoprenoids, pristane and phytane, were more than 55% biodegraded, which indicated that they are not suitable biomarkers for following bioremediation. According to the available data, this is the first field-scale study of the bioremediation of mazut and mazut sediment-polluted soil, and the efficiency achieved was far above that described in the literature to date for heavy fuel oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Bioremediation of soils

    International Nuclear Information System (INIS)

    Woodward, D.

    1991-01-01

    Bioremediation of hydrocarbon contaminated soils has evolved from the refinery land treatment units of thirty years ago to the modern slurry reactors of today. Modifications in the process include engineering controls designed to prevent the migration of hydrocarbons into the unsaturated zone, the saturated zone and groundwater, and the atmosphere. Engineering innovations in the area of composting and bioaugmentation that have focused on further process control and the acceleration of the treatment process will form the basis for future improvements in bioremediation technology. Case studies for established methods that have survived this development process and continue to be used as cost effective biological treatments like engineered land farms, soil heap treatment and in situ treatment will be discussed

  7. Initial characterization of a highly contaminated high explosives outfall in preparation for in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Betty A. Strietelmeier; Patrick J. Coyne; Patricia A. Leonard; W. Lamar Miller; Jerry R. Brian

    1999-12-01

    In situ bioremediation is a viable, cost-effective treatment for environmental contamination of many kinds. The feasibility of using biological techniques to remediate soils contaminated with high explosives (HE) requires laboratory evaluation before proceeding to a larger scale field operation. Laboratory investigations have been conducted at pilot scale which indicate that an anaerobic process could be successful at reducing levels of HE, primarily HMX, RDX and TNT, in contaminated soils. A field demonstration project has been designed to create an anaerobic environment for the degradation of HE materials. The first step in this project, initial characterization of the test area, was conducted and is the subject of this report. The levels of HE compounds found in the samples from the test area were higher than the EPA Method 8330 was able to extract without subsequent re-precipitation; therefore, a new method was developed using a superior extractant system. The test area sampling design was relatively simple as one might expect in an initial characterization. A total of 60 samples were each removed to a depth of 4 inches using a 1 inch diameter corer. The samples were spaced at relatively even intervals across a 20 foot cross-section through the middle of four 7-foot-long adjacent plots which are designed to be a part of an in situ bioremediation experiment. Duplicate cores were taken from each location for HE extraction and analysis in order to demonstrate and measure the heterogeneity of the contamination. Each soil sample was air dried and ball-milled to provide a homogeneous solid for extraction and analysis. Several samples had large consolidated pieces of what appeared to be solid HE. These were not ball-milled due to safety concerns, but were dissolved and the solutions were analyzed. The new extraction method was superior in that results obtained for several of the contaminants were up to 20 times those obtained with the EPA extraction method. The

  8. Method for in situ or ex situ bioremediation of hexavalent chromium contaminated soils and/or groundwater

    Science.gov (United States)

    Turick, Charles E.; Apel, William W.

    1997-10-28

    A method of reducing the concentration of Cr(VI) in a liquid aqueous residue comprises the steps of providing anaerobic Cr(VI) reducing bacteria, mixing the liquid aqueous residue with a nutrient medium to form a mixture, and contacting the mixture with the anaerobic Cr(VI) reducing bacteria such that Cr(VI) is reduced to Cr(III). The anaerobic Cr(VI) reducing bacteria appear to be ubiquitous in soil and can be selected by collecting a soil sample, diluting the soil sample with a sterile diluent to form a diluted sample, mixing the diluted sample with an effective amount of a nutrient medium and an effective amount of Cr(VI) to form a mixture, and incubating the mixture in the substantial absence of oxygen such that growth of Cr(VI) sensitive microorganisms is inhibited and growth of the anaerobic Cr(VI) reducing bacteria is stimulated. A method of in situ bioremediation of Cr(VI) contaminated soil and/or groundwater is also disclosed.

  9. Evaluation of Long-term Performance of Enhanced Anaerobic Source Zone Bioremediation using mass flux

    Science.gov (United States)

    Haluska, A.; Cho, J.; Hatzinger, P.; Annable, M. D.

    2017-12-01

    Chlorinated ethene DNAPL source zones in groundwater act as potential long term sources of contamination as they dissolve yielding concentrations well above MCLs, posing an on-going public health risk. Enhanced bioremediation has been applied to treat many source zones with significant promise, but long-term sustainability of this technology has not been thoroughly assessed. This study evaluated the long-term effectiveness of enhanced anaerobic source zone bioremediation at chloroethene contaminated sites to determine if the treatment prevented contaminant rebound and removed NAPL from the source zone. Long-term performance was evaluated based on achieving MCL-based contaminant mass fluxes in parent compound concentrations during different monitoring periods. Groundwater concertation versus time data was compiled for 6-sites and post-remedial contaminant mass flux data was then measured using passive flux meters at wells both within and down-gradient of the source zone. Post-remedial mass flux data was then combined with pre-remedial water quality data to estimate pre-remedial mass flux. This information was used to characterize a DNAPL dissolution source strength function, such as the Power Law Model and the Equilibrium Stream tube model. The six-sites characterized for this study were (1) Former Charleston Air Force Base, Charleston, SC; (2) Dover Air Force Base, Dover, DE; (3) Treasure Island Naval Station, San Francisco, CA; (4) Former Raritan Arsenal, Edison, NJ; (5) Naval Air Station, Jacksonville, FL; and, (6) Former Naval Air Station, Alameda, CA. Contaminant mass fluxes decreased for all the sites by the end of the post-treatment monitoring period and rebound was limited within the source zone. Post remedial source strength function estimates suggest that decreases in contaminant mass flux will continue to occur at these sites, but a mass flux based on MCL levels may never be exceeded. Thus, site clean-up goals should be evaluated as order

  10. Entomoremediation - A Novel In-Situ Bioremediation Approach ...

    African Journals Online (AJOL)

    In this paper entomoremediation as a novel concept was critically projected as a bioremediation technique that needs to be harnessed in line with global realities of involving organisms like microorganisms and earthworms in soil decontamination. Entomoremediation is defined as a type of remediation in which insects are ...

  11. In situ aquifer bioremediation of organics including cyanide and carbon disulfide

    International Nuclear Information System (INIS)

    Abou-Rizk, J.A.M.; Leavitt, M.E.; Graves, D.A.

    1995-01-01

    Low levels (< 1 mg/L) of acetone, cyanide, phenol, naphthalene, 2-methylnaphthalene, and carbon disulfide from an inactive industrial landfill were found above background levels in a shallow aquifer at an eastern coastal site. In situ biodegradation was evaluated for treatment of these contaminants. Two soil samples and three groundwater samples were taken from the site for a laboratory bioassessment and a biotreatability test. The positive results of the bioassessment suggested moving forward with biotreatability testing. Biotreatability test results indicated suitable site conditions for bioremediation and that all the contaminants of concern at the site could be biodegraded to nondetect or very low levels (< 50 microg/L) with oxygen only; i.e., addition of nutrients was not required. Pilot-scale testing was undertaken on site to provide information for full-scale design, including oxygen requirements and air injection well spacing. This report describes the approach, the results, and their impact on the full-scale remediation system

  12. Site characterization for the in situ bioremediation of the vadose zone

    International Nuclear Information System (INIS)

    Montemagno, C.D.; Leo, A.; Craig, J.

    1993-01-01

    Studies were conducted to determine whether bioremediation can be used to treat a diesel fuel spill in the deep vadose zone (>30 m). After laboratory studies confirmed the ability of the natural population of organisms to degrade the diesel fuel, the technological issue of transporting the required mass of nutrients to the contaminated soils was addressed. Laboratory studies demonstrated that nutrient and oxygen transport can be enhanced by the addition of divalent cations to injected waters. This addition of minerals caused the observed hydraulic conductivity to be maintained at elevated levels that allowed the macronutrient nitrogen, provided as ammonium ion, to be more uniformly distributed to target soil domains

  13. Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Palmisano, Anna; Hazen, Terry

    2003-09-30

    This primer is intended for people interested in environmental problems of the U.S. Department of Energy (DOE) and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. The second edition of the primer incorporates recent findings by researchers in DOE's Natural and Accelerated Bioremediation Research (NABIR) Program. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on the physical-chemical environment, microbial communities, and nature of the contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through the addition of nutrients (biostimulation) or inoculation with microorganisms (bioaugmentation). Over the past few years, interest in bioremediation has increased. It has become clear that many organic contaminants such as hydrocarbon fuels can be degraded to relatively harmless products such as CO{sub 2} (the end result of the degradation process). Waste water managers and scientists have also found that microorganisms can interact with metals and convert them from one chemical form to another. Laboratory tests and ex situ bioremediation applications have shown that microorganisms can change the valence, or oxidation state, of some heavy metals (e.g., chromium and mercury) and radionuclides (e.g., uranium) by using them as electron acceptors. In some cases, the solubility of the altered species decreases and the contaminant is immobilized in situ, i.e., precipitated into

  14. Use of a mathematical model for prediction of optimum feeding strategies for in situ bioremediation

    International Nuclear Information System (INIS)

    Shouche, M.; Petersen, J.N.

    1992-05-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy (DOE) Hanford site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCL 4 ), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of the contaminated liquids directly to the environment, and remediation of the existing contaminated groundwaters may be required. In-situ bioremediation is one technology currently being developed at the Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCL 4 , nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on-going effort to develop effective in-situ remediation strategies through the use of predictive simulations. In particular, strategies for nutrient injection are developed which minimize biomass accumulation within the flow field and thus extend the life of injection wells

  15. Bioremediation of oil-contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Balba, T. [Conestoga-Rovers and Associates, Calgary, AB (Canada)

    2003-07-01

    One of the most prevalent contaminants in subsurface soil and groundwater are petroleum hydrocarbons. This paper presented bioremediation of petroleum hydrocarbons as one of the most promising treatment technologies. Petroleum hydrocarbons are categorized into four simple fractions: saturates, aromatics, resins, and asphaltenes. Bioremediation refers to the treatment process whereby contaminants are metabolized into less toxic or nontoxic compounds by naturally occurring organisms. The various strategies include: use of constitutive enzymes, enzyme induction, co-metabolism, transfer of plasmids coding for certain metabolic pathways, and production of biosurfactants to enhance bioavailability of hydrophobic compounds. Three case studies were presented: (1) bioremediation of heavy oils in soil at a locomotive maintenance yard in California, involving a multi-step laboratory treatability study followed by a field demonstration achieving up to 94 per cent removal of TPH in less than 16 weeks, (2) bioremediation of light oils in soil at an oil refinery in Germany where a dual process was applied (excavation and in-situ treatment), achieving an 84 per cent reduction within 24 weeks, and (3) bioremediation of oil-contaminated desert soil in Kuwait which involved landfarming, composting piles, and bioventing soil piles, achieving an 80 per cent reduction within 12 months. 7 refs., 1 tab., 3 figs.

  16. Two US EPA bioremediation field initiative studies: Evaluation of in-situ bioventing

    International Nuclear Information System (INIS)

    Sayles, G.D.; Brenner, R.C.; Hinchee, R.E.; Vogel, C.M.; Miller, R.N.

    1992-01-01

    Bioventing is the process of supplying oxygen in-situ to oxygen-deprived soil microbes by forcing air through contaminated soil at low air flow rates. Unlike soil venting or soil vacuum extraction technologies, bioventing attempts to stimulate biodegradative activity while minimizing stripping of volatile organics. The process destroys the toxic compounds in the ground. Bioventing technology is especially valuable for treating contaminated soils in areas where structures and utilities cannot be disturbed because the equipment needed (air injection/withdrawal wells, air blower, and soil gas monitoring wells) is relatively non-invasive. The US EPA Risk Reduction Engineering Laboratory, with resources from the US EPA Bioremediation Field Initiative, began two parallel 2-year field studies of in-situ of 1991 in collaboration with the US Air Force. The field sites are located at Eielson Air Force Base (AFB) near Fairbanks, Alaska, and Hill AFB near Salt Lake City, Utah. Each site has jet fuel JP-4 contaminated unsaturated soil where a spill has occurred in association with a fuel distribution network. With the pilot-scale experience gained in these studies and others, bioventing should be available in the very near future as an inexpensive, unobtrusive means of treating large quantities of organically contaminated soils. 5 figs

  17. Efficiency of consortium for in-situ bioremediation and CO2 evolution method of refines petroleum oil in microcosms study

    OpenAIRE

    Dutta, Shreyasri; Singh, Padma

    2017-01-01

    An in-situ bioremediation study was conducted in a laboratory by using mixed microbial consortium. An indigenous microbial consortium was developed by assemble of two Pseudomonas spp. and two Aspergillus spp. which were isolated from various oil contaminated sites of India. The laboratory feasibility study was conducted in a 225 m2 block. Six treatment options-Oil alone, Oil+Best remediater, Oil+Bacterial consortium, Oil+Fungal consortium, Oil+Mixed microbial consortium, Oil+Indigenous microf...

  18. Field test for treatment verification of an in-situ enhanced bioremediation study

    International Nuclear Information System (INIS)

    Taur, C.K.; Chang, S.C.

    1995-01-01

    Due to a leakage from a 12-inch pressurized diesel steel pipe four years ago, an area of approximately 30,000 square meters was contaminated. A pilot study applying the technology of in-situ enhanced bioremediation was conducted. In the study, a field test kit and on-site monitoring equipment were applied for site characterization and treatment verification. Physically, the enhanced bioremediation study consisted of an air extraction and air supply system, and a nutrition supply network. Certain consistent sampling methodology was employed. Progress was verified by daily monitoring and monthly verification. The objective of this study was to evaluate the capabilities of indigenous microorganisms to biodegrade the petroleum hydrocarbons with provision of oxygen and nutrients. Nine extraction wells and eight air sparging wells were installed. The air sparging wells injected the air into geoformation and the extraction wells provided the underground air circulation. The soil samples were obtained monthly for treatment verification by a Minuteman drilling machine with 2.5-foot-long hollow-stem augers. The samples were analyzed on site for TPH-diesel concentration by a field test kit manufactured by HNU-Hanby, Houston, Texas. The analytical results from the field test kit were compared with the results from an environmental laboratory. The TVPH concentrations of the air extracted from the vadose zone by a vacuum blower and the extraction wells were routinely monitored by a Foxboro FID and Cosmos XP-311A combustible air detector. The daily monitoring of TVPH concentrations provided the reliable data for assessing the remedial progress

  19. Simulation of in situ uranium bioremediation with slow-release organic amendment injection

    Science.gov (United States)

    Zhang, F.; Parker, J.; Ye, M.; Tang, G.; Wu, W.; Mehlhorn, T.; Gihring, T. M.; Schadt, C.; Watson, D. B.; Brooks, S. C.

    2010-12-01

    In situ bioremediation of a highly uranium-contaminated gravel aquifer with a slow-release electron donor (emulsified edible oil) has been investigated at the US DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) site in east Tennessee. Groundwater at the study location has pH ~6.7 and contains high concentrations of U (5-6 μM), sulfate (1.0-1.2) mM and Ca (3-4 mM). Diluted emulsified oil (20% solution) was injected into three injection wells within 1.5 hrs. Geochemical analysis of site groundwater demonstrated the sequential reduction of nitrate, Mn, Fe(III) and sulfate. The oil was degraded by indigenous microorganisms with acetate as a major product. Rapid removal of U(VI) from the aqueous phase occurred concurrently with acetate production and sulfate reduction. The field test data were analyzed using a reaction network with a kinetic model for lipid hydrolysis and glycerol fermentation and equilibrium reactions representing microbial reduction of sulfate, nitrate, iron, uranium, manganese and carbon dioxide based on the thermodynamic approach of Istok et al. (2010) using the parallelized HGC5 code. Model-simulated chemical concentrations and relative abundance of functional microbial populations are compared with field measurements. Application of the thermodynamically-based modeling approach instead of the widely used multi-Monod kinetic rate law to formulate bioreduction reactions substantially reduces the number of reaction parameters that need to be calibrated thus facilitating a more comprehensive representation of microbial community dynamics. The model developed through this study is expected to aid the design of future bioremediation strategies for the site.

  20. Initial assessment of intrinsic and assisted bioremediation potential for diesel fuel impacted soils at Eureka, NWT

    International Nuclear Information System (INIS)

    Wilson, J. J.; Yeske, B.; Lee, D.; Nahir, M.

    1999-01-01

    Two diesel fuel-impacted soil columns prepared to simulate in situ conditions for assessing intrinsic bioremediation were studied. The samples were from Eureka in the Northwest Territories. Two soil jars that were mixed periodically to simulate the ex situ land treatment bioremediation option, were also part of the treatability study. Results strongly suggest that bioremediation at Eureka is a viable option, although the slow rate of biodegradation and the short operating season will necessitate treatment over several years to achieve the remediation endpoint. The intrinsic bioremediation process can be accelerated using periodic addition of a water soluble nitrogen fertilizer, as shown by the nitrogen-amended soil column test. Ex situ bioremediation also appears to be possible judged by the response of the natural bacterial population to periodic mixing and oxygen uptake at 5 degrees C. The principal challenge will be to adequately mix the soil at the surface and to prevent it from drying out. The addition of organic bulking material may be required. 1 ref., 3 tabs., 4 figs

  1. Treatment of a mud pit by bioremediation.

    Science.gov (United States)

    Avdalović, Jelena; Đurić, Aleksandra; Miletić, Srdjan; Ilić, Mila; Milić, Jelena; Vrvić, Miroslav M

    2016-08-01

    The mud generated from oil and natural gas drilling, presents a considerable ecological problem. There are still insufficient remedies for the removal and minimization of these very stable emulsions. Existing technologies that are in use, more or less successfully, treat about 20% of generated waste drilling mud, while the rest is temporarily deposited in so-called mud pits. This study investigated in situ bioremediation of a mud pit. The bioremediation technology used in this case was based on the use of naturally occurring microorganisms, isolated from the contaminated site, which were capable of using the contaminating substances as nutrients. The bioremediation was stimulated through repeated inoculation with a zymogenous microbial consortium, along with mixing, watering and biostimulation. Application of these bioremediation techniques reduced the concentration of total petroleum hydrocarbons from 32.2 to 1.5 g kg(-1) (95% degradation) during six months of treatment. © The Author(s) 2016.

  2. Elucidating the fate of a mixed toluene, DHM, methanol, and i-propanol plume during in situ bioremediation

    Science.gov (United States)

    Verardo, E.; Atteia, O.; Prommer, H.

    2017-06-01

    Organic pollutants such as solvents or petroleum products are widespread contaminants in soil and groundwater systems. In-situ bioremediation is a commonly used remediation technology to clean up the subsurface to eliminate the risks of toxic substances to reach potential receptors in surface waters or drinking water wells. This study discusses the development of a subsurface model to analyse the performance of an actively operating field-scale enhanced bioremediation scheme. The study site was affected by a mixed toluene, dihydromyrcenol (DHM), methanol, and i-propanol plume. A high-resolution, time-series of data was used to constrain the model development and calibration. The analysis shows that the observed failure of the treatment system is linked to an inefficient oxygen injection pattern. Moreover, the model simulations also suggest that additional contaminant spillages have occurred in 2012. Those additional spillages and their associated additional oxygen demand resulted in a significant increase in contaminant fluxes that remained untreated. The study emphasises the important role that reactive transport modelling can play in data analyses and for enhancing remediation efficiency.

  3. In situ bioremediation: A network model of diffusion and flow in granular porous media

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, S.K.; Nilson, R.H.; Bradshaw, R.W.

    1997-04-01

    In situ bioremediation is a potentially expedient, permanent and cost- effective means of waste site decontamination. However, permeability reductions due to the transport and deposition of native fines or due to excessive microorganism populations may severely inhibit the injection of supplemental oxygen in the contamination zone. To help understand this phenomenon, we have developed a micro-mechanical network model of flow, diffusion and particle transport in granular porous materials. The model differs from most similar models in that the network is defined by particle positions in a numerically-generated particle array. The model is thus widely applicable to computing effective transport properties for both ordered and realistic random porous media. A laboratory-scale apparatus to measure permeability reductions has also been designed, built and tested.

  4. Ex-situ bioremediation of Brazilian soil contaminated with plasticizers process wastes

    Directory of Open Access Journals (Sweden)

    I. D. Ferreira

    2012-03-01

    Full Text Available The aim of this research was to evaluate the bioremediation of a soil contaminated with wastes from a plasticizers industry, located in São Paulo, Brazil. A 100-kg soil sample containing alcohols, adipates and phthalates was treated in an aerobic slurry-phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry (11gVSS kg-1 dry soil, during 120 days. The soil pH and temperature were not corrected during bioremediation; soil humidity was corrected weekly to maintain 40%. The biodegradation of the pollutants followed first-order kinetics; the removal efficiencies were above 61% and, among the analyzed plasticizers, adipate was removed to below the detection limit. Biological molecular analysis during bioremediation revealed a significant change in the dominant populations initially present in the reactor.

  5. Bioremediation of copper-contaminated soils by bacteria.

    Science.gov (United States)

    Cornu, Jean-Yves; Huguenot, David; Jézéquel, Karine; Lollier, Marc; Lebeau, Thierry

    2017-02-01

    Although copper (Cu) is an essential micronutrient for all living organisms, it can be toxic at low concentrations. Its beneficial effects are therefore only observed for a narrow range of concentrations. Anthropogenic activities such as fungicide spraying and mining have resulted in the Cu contamination of environmental compartments (soil, water and sediment) at levels sometimes exceeding the toxicity threshold. This review focuses on the bioremediation of copper-contaminated soils. The mechanisms by which microorganisms, and in particular bacteria, can mobilize or immobilize Cu in soils are described and the corresponding bioremediation strategies-of varying levels of maturity-are addressed: (i) bioleaching as a process for the ex situ recovery of Cu from Cu-bearing solids, (ii) bioimmobilization to limit the in situ leaching of Cu into groundwater and (iii) bioaugmentation-assisted phytoextraction as an innovative process for in situ enhancement of Cu removal from soil. For each application, the specific conditions required to achieve the desired effect and the practical methods for control of the microbial processes were specified.

  6. Effects of Triton X-100 and Quillaya Saponin on the ex situ bioremediation of a chronically polychlorobiphenyl-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Fava, F.; Di Gioia, D. [Bologna Univ. (Italy). Dept. of Applied Chemistry and Material Science

    1998-12-31

    The possibility of enhancing the ex situ bioremediation of a chronically polychlorinated biphenyl (PCB)-contaminated soil by using Triton X-100 or Quillaya Saponin, a synthetic and a biogenic surfactant, respectively, was studied. The soil, which contained about 350 mg/kg of PCBs and indigenous aerobic bacteria capable of growing on biphenyl or on monochlorobenzoic acids, was amended with inorganic nutrients and biphenyl, saturated with water and treated in aerobic batch slurry- and fixed-phase reactors. Triton X-100 and Quillays Saponin were added to the reactors at a final concentration of 10 g/l at the 42nd day of treatment, and at the 43rd and 100th day, respectively. Triton X-100 was not metabolised by the soil microflora and it exerted inhibitory effects on the indigenous bacteria. Quillaya Saponin, on the contrary, was readily metabolised by the soil microflora. Under slurry-phase conditions, Triton X-100 negatively influenced the soil bioremediation process by affecting the availability of the chlorobenzoic acid degrading indigenous bacteria, wheres Quillays Saponin slightly enhanced the biological degradation and dechlorination of the soil PCBs. In the fixed-phase reactors, where both the surfactant availability and the mixing of the soil were lower, Triton X-100 did not exert inhibitory effects on the soil biomass and enhanced significantly the soil PCB depletion, whereas Quillays Saponin did not influence the bioremediation process. (orig.)

  7. Environmental bioremediation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.N.; Tripathi, R.D. (eds.) [National Botanical Research Institute, Lucknow (India). Ecotoxicology and Bioremediation

    2007-07-01

    The rapid expansion and increasing sophistication of various industries in the past century has remarkably increased the amount and complexity of toxic waste effluents, which may be bioremediated by suitable plants and microbes, either natural occurring or tailor-made for the specific purpose. This technology is termed as bioremediation. Bioremediation is an eco- friendly, cost-effective and natural technology targeted to remove heavy metals, radionuclides, xenobiotic compounds, organic waste, pesticides etc. from contaminated sites or industrial discharges through biological means. Since this technology is used in in-situ conditions, it does not physically disturb the site unlike conventional methods i.e. chemical or mechanical methods. In this technology, higher plants or microbes are used alone or in combination for phytoextraction of heavy metals from metal contaminated sites. Through microbial interventions, either the metals are immobilized or mobilized through redox conversions at contaminated sites. If mobilized, metal accumulating plants are put in place to accumulate metals in their body. Thereafter, metal-loaded plants are harvested and incinerated to reduce the volume of waste and then disposed off as hazardous materials or used for recovery of precious metals, if possible. In case of immobilization, metals are no longer available to be toxic to organisms. (orig.)

  8. Non-radioactive disposal facility-bioremediation horizontal well installation project

    International Nuclear Information System (INIS)

    Kupar, J.; Hasek, M.

    1998-01-01

    The Sanitary Landfill Corrective Action Plan proposes a two pronged approach to remediation. The first part of the total remediation strategy is the placement of a RCRA style closure cap to provide source control of contaminants into the groundwater. The second part of the proposed remediation package is a phased approach primarily using an in situ bioremediation system for groundwater clean up of the Constituents of Concern (COCs) that exceed their proposed Alternate Concentration Limits (ACL). The phased in approach of groundwater clean up will involve operation of the in situ bioremediation system, followed by evaluation of the Phase 1 system and, if necessary, additional phased remediation strategies. This document presents pertinent information on operations, well locations, anticipated capture zones, monitoring strategies, observation wells and other information which will allow a decision on the acceptability of the remedial strategy as an interim corrective action prior to permit application approval. The proposed interim phase of the remediation program will position two horizontal bioremediation wells such that the respective zones of influence will intersect the migration path for the highest concentrations of each plume

  9. Bioremediation of soils and sediments containing PAHs and PCP using Daramend trademark

    International Nuclear Information System (INIS)

    Seech, A.; Burwell, S.; Marvan, I.

    1994-01-01

    A full-scale demonstration of Grace Dearborn's Daramend trademark for bioremediation of soil containing chlorinated phenols, PAHs and petroleum hydrocarbons is being conducted at an industrial wood treatment site in Ontario. A pilot-scale demonstration of Daramend for the clean-up of sediments contaminated with PAHs was also conducted. The full-scale demonstration, which includes bioremediation of approximately 4,500 m 3 of soil, was initiated at a wood preserving facility in Ontario, in the summer of 1993. The soil contains chlorinated phenols, PAHs and total petroleum hydrocarbons at concentrations of up to 700, 1,400 and 6,300 mg/kg respectively. Full-scale bioremediation at this site employs the same Daramend protocols and organic amendment treatments that were used at the pilot-scale phase where the PAH, total petroleum hydrocarbon, and pentachlorophenol concentrations were reduced to below the Canadian clean-up guidelines for industrial soils. In addition, the toxicity of the soil to earthworms was eliminated while the rate of seed germination was increased to that of an agricultural soil during the pilot scale demonstration phase. The ex-situ portion of the full-scale demonstration is currently being audited by the EPA under the SITE program. This paper will focus on the ex-situ work. The pilot-scale demonstration of sediment remediation consisted of ex-situ bioremediation of approximately 90 tonnes of PAH-contaminated sediment in a confined treatment area

  10. Potential for Methanosarcina to contribute to uranium reduction during acetate-promoted groundwater bioremediation

    DEFF Research Database (Denmark)

    Holmes, Dawn E; Orellana, Roberto; Giloteaux, Ludovic

    2018-01-01

    Previous studies of acetate-promoted bioremediation of uranium-contaminated aquifers focused on Geobacter because no other microorganisms that can couple the oxidation of acetate with U(VI) reduction had been detected in situ. Monitoring the levels of methyl CoM reductase subunit A (mcrA) transcr......Previous studies of acetate-promoted bioremediation of uranium-contaminated aquifers focused on Geobacter because no other microorganisms that can couple the oxidation of acetate with U(VI) reduction had been detected in situ. Monitoring the levels of methyl CoM reductase subunit A (mcr......(VI) reduction was observed in inactive controls. These results demonstrate that Methanosarcina species could play an important role in the long-term bioremediation of uranium-contaminated aquifers after depletion of Fe(III) oxides limits the growth of Geobacter species. The results also suggest...

  11. Evaluation of in-situ methanotrophic bioremediation for contaminated groundwater, St. Joseph, Michigan. Final report, January 1989-December 1989

    International Nuclear Information System (INIS)

    McCarty, P.L.; Semprini, L.; Dolan, M.E.; Harmon, T.C.; Just, S.

    1990-09-01

    A feasibility study of utilizing indigenous bacteria that use methane as a source of cell carbon and energy (methanotrophs) for in-situ bioremediation of groundwater contaminants at the St. Joseph site is summarized. The contaminants, compounds, can be biotransformed by methanotrophic bacteria, which are found in some locations of the site in adequate populations. The process involves stimulating the growth of native populations of methanotrophs by injecting water containing dissolved methane and oxygen into the aquifer. The stimulated population of methanotrophs in turn has the capability to degrade trichloroethylene, 1,2-cis-dichloroethylene, 1,2-trans-dichloroethylene, and vinyl chloride

  12. Genome-Based Models to Optimize In Situ Bioremediation of Uranium and Harvesting Electrical Energy from Waste Organic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R

    2012-12-28

    The goal of this research was to provide computational tools to predictively model the behavior of two microbial communities of direct relevance to Department of Energy interests: 1) the microbial community responsible for in situ bioremediation of uranium in contaminated subsurface environments; and 2) the microbial community capable of harvesting electricity from waste organic matter and renewable biomass. During this project the concept of microbial electrosynthesis, a novel form of artificial photosynthesis for the direct production of fuels and other organic commodities from carbon dioxide and water was also developed and research was expanded into this area as well.

  13. Performance Indicators for Uranium Bioremediation in the Subsurface: Basis and Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yabusaki, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2006-12-29

    The purpose of this letter report is to identify performance indicators for in situ engineered bioremediation of subsurface uranium (U) contamination. This report focuses on in situ treatment of groundwater by biostimulation of extant in situ microbial populations (see http://128.3.7.51/NABIR/generalinfo/primers_guides/03_NABIR_primer.pdf for background information on bioremediation of metals and radionuclides). The treatment process involves amendment of the subsurface with an electron donor such as acetate, lactate, ethanol or other organic compound such that in situ microorganisms mediate the reduction of U(VI) to U(IV). U(VI) precipitates as uraninite or other insoluble U phase. Uranium is thus immobilized in place by such processes and is subject to reoxidation that may remobilize the reduced uranium. Related processes include augmenting the extant subsurface microbial populations, addition of electron acceptors, and introduction of chemically reducing materials such as zero-valent Fe. While metrics for such processes may be similar to those for in situ biostimulation, these related processes are not directly in the scope of this letter report.

  14. Advances in speed and performance of on-site bioremediation

    International Nuclear Information System (INIS)

    Shearon, M.S.; Autry, A.R.; Archer, B.

    1991-01-01

    SafeSoil is a proprietary additive and ex-situ treatment process which mediates and enhances biodegradation of environmental pollutants. The additive itself contains natural surfactants, organic and inorganic nutrients, and enzymes (primarily oxygenases). The treatment is an ex-situ process involving excavation and stockpiling of contaminated soil, mixing of the excavated soil with the authors proprietary additive in a mixer, and then the placement of the treated soil in curing piles, during which time biodegradation is actively occurring. SafeSoil was proven effective at treating approximately 35,000 cubic yards of soil contaminated with gasoline, diesel fuel, kerosene, motor oil, and transmission fluid to below specified action levels (50 ppm for TFH, and five ppm for total BTEX) in a full-scale remedial action for the channel Gateway Development project at Marina del Rey, California, within 15 days for 70 to 75% of the soil mass treated. More time was required for successful bioremediation of some of the more recalcitrant (persistent) contaminants, principally longer chain aliphatic hydrocarbons

  15. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    Directory of Open Access Journals (Sweden)

    G. U. Chibuike

    2014-01-01

    Full Text Available Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.

  16. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p bioremediation.

  17. Bioremediation: is it the solution to reclamation of heavy oil contaminated soils in the Canadian climate?

    International Nuclear Information System (INIS)

    Goodman, R.; Nicholson, P.; Varga, M.; Boadi, D.; Yang, A.

    1997-01-01

    The issue of bioremediation of heavy oil contaminated soils in cold climates was discussed. No model of the bioremediation system for cold climates exists. Environmental groups use three environmental concepts as the basis to evaluate petroleum activities: (1) cradle to grave responsibility, (2) the precautionary principle, and (3) sustainable development. The reclamation of an abandoned petroleum production facility must meet stringent standards. Most sites are contaminated with weathered hydrocarbons, brine and other chemicals that have been used at the location. Bioremediation, either in-situ or ex-situ, is one of the lowest cost remediation techniques available and has been used extensively by the downstream petroleum industry in warm climates. However, there are many unresolved issues with the use of bioremediation in cold climates, for heavy or weathered crude oil products and in areas of clay or other low permeability. Some of these unresolved issues are highlighted

  18. Engineering Deinococcus geothermailis for Bioremediation of High-Temperature Radioactive Waste Environments

    International Nuclear Information System (INIS)

    Brim, Hassan; Venkateswaran, Amudhan; Kostandarithes, Heather M.; Fredrickson, Jim K.; Daly, Michael J.

    2003-01-01

    Deinococcus geothermalis is an extremely radiation-resistant thermophilic bacterium closely related to the mesophile Deinococcus radiodurans, which is being engineered for in situ bioremediation of radioactive wastes

  19. A multi-objective simulation-optimization model for in situ bioremediation of groundwater contamination: Application of bargaining theory

    Science.gov (United States)

    Raei, Ehsan; Nikoo, Mohammad Reza; Pourshahabi, Shokoufeh

    2017-08-01

    In the present study, a BIOPLUME III simulation model is coupled with a non-dominating sorting genetic algorithm (NSGA-II)-based model for optimal design of in situ groundwater bioremediation system, considering preferences of stakeholders. Ministry of Energy (MOE), Department of Environment (DOE), and National Disaster Management Organization (NDMO) are three stakeholders in the groundwater bioremediation problem in Iran. Based on the preferences of these stakeholders, the multi-objective optimization model tries to minimize: (1) cost; (2) sum of contaminant concentrations that violate standard; (3) contaminant plume fragmentation. The NSGA-II multi-objective optimization method gives Pareto-optimal solutions. A compromised solution is determined using fallback bargaining with impasse to achieve a consensus among the stakeholders. In this study, two different approaches are investigated and compared based on two different domains for locations of injection and extraction wells. At the first approach, a limited number of predefined locations is considered according to previous similar studies. At the second approach, all possible points in study area are investigated to find optimal locations, arrangement, and flow rate of injection and extraction wells. Involvement of the stakeholders, investigating all possible points instead of a limited number of locations for wells, and minimizing the contaminant plume fragmentation during bioremediation are new innovations in this research. Besides, the simulation period is divided into smaller time intervals for more efficient optimization. Image processing toolbox in MATLAB® software is utilized for calculation of the third objective function. In comparison with previous studies, cost is reduced using the proposed methodology. Dispersion of the contaminant plume is reduced in both presented approaches using the third objective function. Considering all possible points in the study area for determining the optimal locations

  20. DOE In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1993-01-01

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified

  1. Bioremediation of petroleum-contaminated soil

    International Nuclear Information System (INIS)

    Pearce, K.; Snyman, H.G.; Oellermann, R.A.; Gerber, A.

    1995-01-01

    A pilot-scale study was conducted to evaluate the application of land-farming techniques in bioremediating a soil highly contaminated with petroleum products. A commercial biosupplement, and one prepared with indigenous microorganisms from the contaminated soil, were tested. Application of either of the biosupplements, in addition to the control of pH, moisture, and oxygen levels, resulted in a 94% reduction of the initial total petroleum hydrocarbon concentration (TPHC) (32% mass/mass) over a 70-day period. Implementation of these findings at full scale to bioremediate highly weathered petroleum products showed an average reduction of 89% over 5.5 months. Target levels of 1,400 mg/kg soil were reached from an initial average TPHC concentration of 12,200 mg/kg soil

  2. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    Science.gov (United States)

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Challenging oil bioremediation at deep-sea hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    Alberto Scoma

    2016-08-01

    Full Text Available The Deepwater Horizon (DWH accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (biotechnology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons at deep-sea remain unanswered, as much as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil take up are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled-oil. The fate of solid alkanes (tar and that of hydrocarbons degradation rates was largely overlooked, as the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea, despite being present at hydrocarbon seeps at the Gulf of Mexico. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation.

  4. The use of vinasse as an amendment to ex-situ bioremediation of soil and groundwater contaminated with diesel oil

    Directory of Open Access Journals (Sweden)

    Adriano Pinto Mariano

    2009-08-01

    Full Text Available This work investigated the possibility of using vinasse as an amendment in ex-situ bioremediation processes. Groundwater and soil samples were collected at petrol stations. The soil bioremediation was simulated in Bartha biometer flasks, used to measure the microbial CO2 production, during 48 days, where vinasse was added at a concentration of 33 mL.Kg-1of soil. Biodegradation efficiency was also measured by quantifying the total petroleum hydrocarbons (TPH by gas chromatography. The groundwater bioremediation was carried out in laboratory experiments simulating aerated (bioreactors and not aerated (BOD flasks conditions. In both the cases, the concentration of vinasse was 5 % (v/v and different physicochemical parameters were evaluated during 20 days. Although an increase in the soil fertility and microbial population were obtained with the vinasse, it demonstrated not to be adequate to enhance the bioremediation efficiency of diesel oil contaminated soils. The addition of the vinasse in the contaminated groundwaters had negative effects on the biodegradation of the hydrocarbons, since vinasse, as a labile carbon source, was preferentially consumed.Este trabalho investigou a possibilidade de se usar a vinhaça como um agente estimulador de processos de biorremediação ex-situ. Amostras de água subterrânea e solo foram coletadas em três postos de combustíveis. A biorremediação do solo foi simulada em frascos de Bartha, usados para medir a produção de CO2, durante 48 dias, onde a vinhaça foi adicionada a uma concentração de 33 mL.Kg-1 de solo. A eficiência de biodegradação também foi medida pela quantificação de hidrocarbonetos totais de petróleo (TPH por cromatografia gasosa. A biorremediação da água subterrânea foi realizada em experimentos laboratoriais simulando condições aeradas (bioreatores e não aeradas (frascos de DBO. Em ambos os casos, a concentração de vinhaça foi de 5 % (v/v e diferentes parâmetros f

  5. Technical Basis for Assessing Uranium Bioremediation Performance

    International Nuclear Information System (INIS)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N'Guessan

    2008-01-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation

  6. Technical Basis for Assessing Uranium Bioremediation Performance

    Energy Technology Data Exchange (ETDEWEB)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  7. The development and application of engineered proteins for bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J. [ed.

    1995-09-26

    Clean up of the toxic legacy of the Cold War is projected to be the most expensive domestic project the nation has yet undertaken. Remediation of the Department of Energy and Department of Defense toxic waste sites alone are projected to cost {approximately}$1 trillion over a 20-30 year period. New, cost effective technologies are needed to attack this enormous problem. Los Alamos has put together a cross-divisional team of scientist to develop science based bioremediation technology to work toward this goal. In the team we have expertise in: (1) molecular, ecosystem and transport modeling; (2) genetic and protein engineering; (3) microbiology and microbial ecology; (4) structural biology; and (5) bioinorganic chemistry. This document summarizes talks at a workshop of different aspects of bioremediation technology including the following: Introducing novel function into a Heme enzyme: engineering by excavation; cytochrome P-450: ideal systems for bioremediation?; selection and development of bacterial strains for in situ remediation of cholorinated solvents; genetic analysis and preparation of toluene ortho-monooxygenase for field application in remediation of trichloroethylene; microbial ecology and diversity important to bioremediation; engineering haloalkane dehalogenase for bioremediation; enzymes for oxidative biodegradation; indigenous bacteria as hosts for engineered proteins; performance of indigenous bacterial, hosting engineered proteins in microbial communities.

  8. Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kun-Ching [Zachry Department of Civil Engineering, Texas A& M University, College Station, TX 77843-3136 (United States); Fuller, Mark E.; Hatzinger, Paul B. [CB& I Federal Services, Lawrenceville, NJ 08648 (United States); Chu, Kung-Hui, E-mail: kchu@civil.tamu.edu [Zachry Department of Civil Engineering, Texas A& M University, College Station, TX 77843-3136 (United States)

    2016-11-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a nitroamine explosive, is commonly detected in groundwater at military testing and training sites. The objective of this study was to characterize the microbial community capable of using nitrogen derived from the RDX or RDX intermediates during in situ bioremediation. Active groundwater microorganisms capable of utilizing nitro-, ring- or fully-labeled {sup 15}N-RDX as a nitrogen source were identified using stable isotope probing (SIP) in groundwater microcosms prepared from two wells in an aquifer previously amended with cheese whey to promote RDX biodegradation. A total of fifteen 16S rRNA gene sequences, clustered in Clostridia, β-Proteobacteria, and Spirochaetes, were derived from the {sup 15}N-labeled DNA fractions, suggesting the presence of metabolically active bacteria capable of using RDX and/or RDX intermediates as a nitrogen source. None of the derived sequences matched RDX-degrading cultures commonly studied in the laboratory, but some of these genera have previously been linked to RDX degradation in site groundwater via {sup 13}C-SIP. When additional cheese whey was added to the groundwater samples, 28 sequences grouped into Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria were identified. The data suggest that numerous bacteria are capable of incorporating N from ring- and nitro-groups in RDX during anaerobic bioremediation, and that some genera may be involved in both C and N incorporation from RDX. - Highlights: • Cheese whey addition resulted in 28 different clones associated with RDX degradation. • The 28 clones belong to Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria. • SIP identified 15 clones using RDX and/or its metabolites as a nitrogen source. • The clones clustered in Clostridia, β-Proteobacteria, and Spirochaetes.

  9. Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation

    International Nuclear Information System (INIS)

    Cho, Kun-Ching; Fuller, Mark E.; Hatzinger, Paul B.; Chu, Kung-Hui

    2016-01-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a nitroamine explosive, is commonly detected in groundwater at military testing and training sites. The objective of this study was to characterize the microbial community capable of using nitrogen derived from the RDX or RDX intermediates during in situ bioremediation. Active groundwater microorganisms capable of utilizing nitro-, ring- or fully-labeled "1"5N-RDX as a nitrogen source were identified using stable isotope probing (SIP) in groundwater microcosms prepared from two wells in an aquifer previously amended with cheese whey to promote RDX biodegradation. A total of fifteen 16S rRNA gene sequences, clustered in Clostridia, β-Proteobacteria, and Spirochaetes, were derived from the "1"5N-labeled DNA fractions, suggesting the presence of metabolically active bacteria capable of using RDX and/or RDX intermediates as a nitrogen source. None of the derived sequences matched RDX-degrading cultures commonly studied in the laboratory, but some of these genera have previously been linked to RDX degradation in site groundwater via "1"3C-SIP. When additional cheese whey was added to the groundwater samples, 28 sequences grouped into Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria were identified. The data suggest that numerous bacteria are capable of incorporating N from ring- and nitro-groups in RDX during anaerobic bioremediation, and that some genera may be involved in both C and N incorporation from RDX. - Highlights: • Cheese whey addition resulted in 28 different clones associated with RDX degradation. • The 28 clones belong to Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria. • SIP identified 15 clones using RDX and/or its metabolites as a nitrogen source. • The clones clustered in Clostridia, β-Proteobacteria, and Spirochaetes

  10. Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.; Chakraborty, Romy; Fleming, James M.; Gregory, Ingrid R.; Bowman, John P.; Jimenez, Luis; Zhang, Dai; Pfiffner, Susan M.; Brockman, Fred J.; Sayler, Gary S.

    2009-03-15

    Gene probe hybridization was used to determine distribution and expression of co-metabolic genes at a contaminated site as it underwent in situ methanotrophic bioremediation of trichloroethylene (TCE). The bioremediation strategies tested included a series of air, air:methane, and air:methane:nutrient pulses of the test plot using horizontal injection wells. During the test period, the levels of TCE reduced drastically in almost all test samples. Sediment core samples (n = 367) taken from 0 m (surface)-43 m depth were probed for gene coding for methanotrophic soluble methane monooxygenase (sMMO) and heterotrophic toluene dioxygenase (TOD), which are known to co-metabolize TCE. The same sediment samples were also probed for genes coding for methanol dehydrogenase (MDH) (catalyzing the oxidation of methanol to formaldehyde) to assess specifically changes in methylotrophic bacterial populations in the site. Gene hybridization results showed that the frequency of detection of sMMO genes were stimulated approximately 250% following 1% methane:air (v/v) injection. Subsequent injection of 4% methane:air (v/v) resulted in an 85% decline probably due to nutrient limitations, since addition of nutrients (gaseous nitrogen and phosphorus) thereafter caused an increase in the frequency of detection of sMMO genes. Detection of TOD genes declined during the process, and eventually they were non-detectable by the final treatment, suggesting that methanotrophs displaced the TOD gene containing heterotrophs. Active transcription of sMMO and TOD was evidenced by hybridization to mRNA. These analyses combined with results showing the concomitant decline in TCE concentrations, increases in chloride concentration and increases in methanotroph viable counts, provide multiple lines of evidence that TCE remediation was caused specifically by methanotrophs. Our results suggest that sMMO genes are responsible for most, if not all, of the observed biodegradation of TCE. This study

  11. Ex-situ bioremediation of U(VI from contaminated mine water using Acidithiobacillus ferrooxidans strains

    Directory of Open Access Journals (Sweden)

    Maria eRomero-Gonzalez

    2016-05-01

    Full Text Available The ex-situ bioremoval of U(VI from contaminated water using Acidithiobacillus ferrooxidans strain 8455 and 13538 was studied under a range of pH and uranium concentrations. The effect of pH on the growth of bacteria was evaluated across the range 1.5 – 4.5 pH units. The respiration rate of At. ferrooxidans at different U(VI concentrations was quantified as a measure of the rate of metabolic activity over time using an oxygen electrode. The biosorption process was quantified using a uranyl nitrate solution, U-spiked growth media and U-contaminated mine water. The results showed that both strains of At. ferrooxidans are able to remove U(VI from solution at pH 2.5 – 4.5, exhibiting a buffering capacity at pH 3.5. The respiration rate of the micro-organism was affected at U(VI concentration of 30 mg L-1. The kinetics of the sorption fitted a pseudo-first order equation, and depended on the concentration of U(VI. The KD obtained from the biosorption experiments indicated that strain 8455 is more efficient for the removal of U(VI. A bioreactor designed to treat a solution of 100 mg U(VI L-1 removed at least 50% of the U(VI in water. The study demonstrated that At. ferrooxidans can be used for the ex-situ bioremediation of U(VI contaminated mine water.

  12. Bioremediation without earth moving. Biologische Altlastensanierung ohne Erdaushub

    Energy Technology Data Exchange (ETDEWEB)

    Franz, B; Knapp, A; Mueller, D

    1992-05-01

    According to rough estimates, there are 70,000 sites in the pre-unification Federal Republic of Germany where contamination is suspected. Some 50 to 60% of the contaminated sites are suitable for bioremediation. The Bioux-S process permits in-situ cleanup without any need for complicated and expensive earth moving operations. The culture conditions of the aerobic microorganisms already present in the soil are improved by the introduction of pure oxygen and special nutrients. Such microorganisms are already ideally adapted to the contaminants present and utilise them partly as nutrients and partly to maintain their energy balance. The process has already been successfully used for bioremediation of refinery and gasworks as well as chemical production sites. (orig.).

  13. Hanford Site 100-N Area In Situ Bioremediation of UPR-100-N-17, Deep Petroleum Unplanned Release - 13245

    International Nuclear Information System (INIS)

    Saueressig, Daniel G.

    2013-01-01

    In 1965 and 1966, approximately 303 m 3 of Number 2 diesel fuel leaked from a pipeline used to support reactor operations at the Hanford Site's N Reactor. N Reactor was Hanford's longest operating reactor and served as the world's first dual purpose reactor for military and power production needs. The Interim Action Record of Decision for the 100-N Area identified in situ bioremediation as the preferred alternative to remediate the deep vadose zone contaminated by this release. A pilot project supplied oxygen into the vadose zone to stimulate microbial activity in the soil. The project monitored respiration rates as an indicator of active biodegradation. Based on pilot study results, a full-scale system is being constructed and installed to remediate the vadose zone contamination. (authors)

  14. Bioremediation of contaminated soil: Strategy and case histories

    International Nuclear Information System (INIS)

    Balba, M.T.; Ying, A.C.; McNeice, T.G.

    1991-01-01

    Microorganisms are capable of degrading many kinds of xenobiotic compounds and toxic chemicals. These microorganisms are ubiquitous in nature and there are numerous cases in which long-term contamination of soil and groundwater has been observed. The persistence of the contamination is usually caused by the inability of micro-organisms to metabolize these compounds under the prevailing environmental conditions. Two general reasons account for the failure of microbes to degrade pollutants in any environment: (1) inherent molecular recalcitrance of the contaminants and (2) environmental factors. The inherent molecular recalcitrance is usually associated with xenobiotic compounds where the chemical structure of the molecule is such that microbes and enzymes required for its catabolism have not evolved yet in nature. The environmental factors include a range of physicochemical conditions which influence microbial growth and activity. Biological remediation of contaminated sites can be accomplished using naturally-occurring microorganisms to treat the contaminants. Only particular groups of microorganisms are capable of decomposing specific compounds. The development of a bioremediation program for a specific contaminated soil system usually includes: thorough site/soil/waste characterization; treatability studies; and design and implementation of the bioremediation plan. The results of in situ and ex situ treatment programs involving the cleanup of petroleum hydrocarbon-contaminated soil will be discussed in detail. The paper will address key issues affecting the success of the bioremediation process such as nutrient transport, metal precipitation and potential soil clogging, microbial inoculation, etc

  15. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils

    NARCIS (Netherlands)

    Sutton, N.B.; Langenhoff, A.A.M.; Hidalgo Lasso, D.; Zaan, van der B.M.; Gaans, van P.; Maphosa, F.; Smidt, H.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in

  16. An investigation of the potential for in situ bioremediation of oil sands tailings

    International Nuclear Information System (INIS)

    Herman, D.C.; Costerton, J.W.; Fedorak, P.M.; Mackinnon, M.D.

    1993-01-01

    Oil sand tailings water has been shown to be acutely toxic to aquatic organisms. Naphthenic acids have been shown to be the primary source of this toxicity within oil sand tailings waste. The potential for in-situ bioremediation of oil sand tailings was investigated by determining the ability of indigenous bacteria to biodegrade naphthenic acids. A mixed bacterial culture enriched from oil sand tailings was found to be capable of growth on a commercially available naphthenic acid mixture. When sodium naphthenates (30 mg/l) were added to a minimal salts medium and inoculated with the mixed bacterial culture, gas chromatography revealed that many components of the naphthenic acid mixture were biodegraded within eight days of incubation. The same culture was also tested against the naphthenic acid fraction extracted directly from oil sand tailings. The tailings extract was diluted into the minimal salts medium in sealed flasks and inoculated with the enrichment culture. The production of CO 2 indicated microbial mineralization of components within the oil sands extract. Microtox analysis determined that microbial activity resulted in a reduction in the acute toxicity of the tailings extract. 5 refs., 3 figs

  17. In situ production of bio-surfactants: An alternative method for dispersing and bioremediating marine oil spills

    International Nuclear Information System (INIS)

    Josefsen, K.D.; Sveum, P.; Ramstad, P.; Markussen, S.; Folkvord, K.; Krigsvoll, K.; Aune, R.; Storroe, I.

    1995-01-01

    Some oil degrading bacteria are able to produce surfactants. These biosurfactants enhance dispersion of oil droplets into the water column. A large number of surfactant producing bacterial strains have been isolated from seawater samples collected at different sites around the world. Strains isolated from seawater samples collected in cold regions generally had better properties than strains isolated from warm seawater. Many of the isolated strains were able to disperse crude oils with a large variation of composition, as well as the water-in-emulsion (chocolate mousse) formed during weathering of crude oil in the sea. The results show that in situ application of surfactant producing bacteria can be a viable tool in future oil spill contingency, and that dispersion of oil may increase the biodegradation rate. Work is in progress to examine the use of such bacteria in the bioremediation of oil contaminated shorelines. 10 refs., 3 figs., 2 tabs

  18. Monitoring bioremediation of weathered diesel NAPL using oxygen depletion profiles

    International Nuclear Information System (INIS)

    Davis, G.B.; Johnston, C.D.; Patterson, B.M.; Barber, C.; Bennett, M.

    1995-01-01

    Semicontinuous logging of oxygen concentrations at multiple depths has been used to evaluate the progress of an in situ bioremediation trial at a site contaminated by weathered diesel nonaqueous-phase liquid (NAPL). The evaluation trial consisted of periodic addition of nutrients and aeration of a 100-m 2 trial plot. During the bioremediation trial, aeration was stopped periodically, and decreases in dissolved and gaseous oxygen concentrations were monitored using data loggers attached to in situ oxygen sensors placed at multiple depths above and within a thin NAPL-contaminated zone. Oxygen usage rate coefficients were determined by fitting zero- and first-order rate equations to the oxygen depletion curves. For nutrient-amended sites within the trial plot, estimates of oxygen usage rate coefficients were significantly higher than estimates from unamended sites. These rates also converted to NPL degradation rates, comparable to those achieved in previous studies, despite the high concentrations and weathered state of the NAPL at this test site

  19. Characterization of nano-bubbles as an oxygen carrier for in-situ bioremediation of organic pollutants in the subsurface

    Science.gov (United States)

    KIM, E.; Jung, J.; Kang, S.; Choi, Y.

    2016-12-01

    In-situ bioremediation using bubbles as an oxygen carrier has shown its applicability for aerobic biodegradation of organic pollutants in the subsurface. By recent progresses, generation of nano-sized bubbles is possible, which have enhanced oxygen transfer efficiencies due to their high interfacial area and stability. We are developing an in-situ bioremediation technique using nano-bubbles as an oxygen carrier. In this study, nano-bubbles were characterized for their size and oxygen supply capacity. Nano-bubbles were generated with pure oxygen and pure helium gas. The stable nano-bubbles suspended in water were sonicated to induce the bubbles to coalesce, making them to rise and be released out of the water. By removing the bubbles, the water volume was decreased by 0.006%. The gas released from the bubble suspension was collected to measure the amount of gas in the nano-bubbles. For sparingly soluble helium gas 17.9 mL/L was released from the bubble suspension, while for oxygen 46.2 mL/L was collected. For the oxygen nano-bubble suspension, it is likely that the release of dissolved oxygen (DO) contributed to the collected gas volume. After removing the oxygen nano-bubbles, 36.0 mg/L of DO was still present in water. Altogether, the oxygen nano-bubble suspension was estimated to have 66.2 mg/L of oxygen in a dissolved form and 25.6 mg/L as nano-bubbles. A high DO level in the water was possible because of their large Laplace pressure difference across the fluid interface. Applying Young-Laplace equation and ideal gas law, the bubble diameter was estimated to be approximately 10 nm, having an internal pressure of 323 atm. Considering the saturation DO of 8.26 mg/L for water in equilibrium with the atmosphere, the total oxygen content of 91.8 mg/L in the nano-bubble suspension suggests its great potential as an oxygen carrier. Studies are underway to verify the enhanced aerobic biodegradation of organic pollutants in soils by injecting nano-bubble suspensions.

  20. Soil bioremediation at CFB Trenton: evaluation of bioremediation processes

    International Nuclear Information System (INIS)

    Ouellette, L.; Cathum, S.; Avotins, J.; Kokars, V.; Cooper, D.

    1996-01-01

    Bioremediation processes and their application in the cleanup of contaminated soil, were discussed. The petroleum contaminated soil at CFB Trenton, was evaluated to determine which bioremediation process or combination of processes would be most effective. The following processes were considered: (1) white hot fungus, (2) Daramend proprietary process, (3) composting, (4) bioquest proprietary bioremediation processes, (5) Hobbs and Millar proprietary bioremediation process, and (6) farming. A brief summary of each of these options was included. The project was also used as an opportunity to train Latvian and Ukrainian specialists in Canadian field techniques and laboratory analyses. Preliminary data indicated that bioremediation is a viable method for treatment of contaminated soil. 18 refs., 3 figs

  1. Fast-track aquifer characterization and bioremediation of groundwater

    International Nuclear Information System (INIS)

    Owen, S.B.; Erskine, J.A.; Adkisson, C.

    1995-01-01

    A short duration step-drawdown pumping test has been used to characterize a highly permeable aquifer contaminated with petroleum hydrocarbons in support of an in situ, closed loop extraction and reinjection bioremediation system for groundwater. The short-term pumping test produces a manageable quantity of contaminated groundwater while yielding a range of values for transmissivity and specific yield parameters. This range of aquifer coefficients is used in an analytical model to estimate a range of groundwater extraction rates that provide a suitable radius of influence for the extraction and reinjection system. A multi-enzyme complex catalyzed bioremediation process has been used to aerobically degrade petroleum hydrocarbons. Enzymes, amino acids, and biosurfactants are supplied to the extracted groundwater to significantly speed up the degradation by naturally occurring bacteria. During the process, amino acids promote the rapid growth of the microbial population while enzymes and bacteria attach to hydrocarbons forming a transformation state complex that degrades to fatty acids, carbon dioxide, and water. This paper presents a case study of a fast-track bioremediation using pumping test data, analytical modeling, and an enzyme technology

  2. Hanford Site 100-N Area In Situ Bioremediation of UPR-100-N-17, Deep Petroleum Unplanned Release - 13245

    Energy Technology Data Exchange (ETDEWEB)

    Saueressig, Daniel G. [Washington Closure Hanford, 2620 Fermi, Richland, Washington, 99354 (United States)

    2013-07-01

    In 1965 and 1966, approximately 303 m{sup 3} of Number 2 diesel fuel leaked from a pipeline used to support reactor operations at the Hanford Site's N Reactor. N Reactor was Hanford's longest operating reactor and served as the world's first dual purpose reactor for military and power production needs. The Interim Action Record of Decision for the 100-N Area identified in situ bioremediation as the preferred alternative to remediate the deep vadose zone contaminated by this release. A pilot project supplied oxygen into the vadose zone to stimulate microbial activity in the soil. The project monitored respiration rates as an indicator of active biodegradation. Based on pilot study results, a full-scale system is being constructed and installed to remediate the vadose zone contamination. (authors)

  3. The use of bench- and field-scale data for design of an in situ carbon tetrachloride bioremediation system

    International Nuclear Information System (INIS)

    Peyton, B.M.; Truex, M.J.; Skeen, R.S.

    1995-04-01

    A suite of simulation models were developed as a design tool in support of an in situ bioremediation demonstration at the Hanford site in Washington state. The design tool, calibrated with field - and bench-scale data, was used to answer four field-scale system design questions: (1) What are the important reaction processes and kinetics? (2) How will biomass distribute in the aquifer in response to injected substrate? (3) What well configuration best ensures proper nutrient transport and process control? (4) What operating and monitoring strategy should be used to confirm effective remediation? This paper does not describe the design tool itself, but describes how the design tool was used to optimize field site design parameters such as well spacing, hydraulic control, contaminant destruction, and nutrient injection strategies

  4. In situ bioremediation of the saturated zone: It can be done

    International Nuclear Information System (INIS)

    Maher, A.; Kennel, N.D.; Jaworski, C.

    1994-01-01

    Bioremediation is being used to successfully reduce contaminant levels at a site located in central Iowa. At this site, indigenous microbial populations are being stimulated by the addition of nutrients and oxygen to degrade the contaminants of interest. The site is a former service station and an automobile repair facility. Gasoline and diesel fuel stored underground and/or dispensed through pumps leaked into the subsurface over a period of forty years. A site assessment revealed that significant adsorbed, dissolved, and phase separated contamination was present beneath the surface. A pump and treat system was installed in 1990 by others to treat the ground water contamination and achieve hydraulic control. Biotreatability studies indicated that bioremediation would be an effective remedial option for this site and in May 1992, the treatment system was retrofitted in order to expedite remediation. Microbial populations, ionic nutrient concentrations, physical, and contaminant data were evaluated over time to optimize treatment

  5. BTEX AND MTBE BIOREMEDIATION: BIONETS™ CONTAINING SOS, PM1 AND ISOLITE®

    Science.gov (United States)

    MTBE and BTEX (benzene, toluene, ethylbenzene, and xylenes) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in situ BioNets could bioremediate MTBE and BTEX contaminated groundwater. Seven BioNets w...

  6. Bioremediation of soil and groundwater contaminated with stoddard solvent and mop oil using the PetroClean bioremediation system

    International Nuclear Information System (INIS)

    Schmitt, E.K.; Lieberman, M.T.; Caplan, J.A.; Blaes, D.; Keating, P.; Richards, W.

    1991-01-01

    This paper reports that Environmental Science and Engineering Inc. (ESE) was contracted by a confidential industrial client to perform a three-phased project. Phase I involved characterizing the site and delineating the extent of subsurface contamination. Phase II included biofeasibility and pilot-scale evaluations, determining remedial requirements, and designing the full-scale treatment system. Phase III involved implementing and operating the designed in situ bioremediation system (i.e., PetroClean 4000) to achieve site closure

  7. Integrative analysis of Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation

    Directory of Open Access Journals (Sweden)

    D. Lovley

    2012-03-01

    Full Text Available Enhancing microbial U(VI reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI-reducing Geobacter predominated and U(VI was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB predominated and U(VI reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III was depleted whereas the SRB grow more slowly and reached dominance after 30–40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.

  8. Genetic engineering microbes for bioremediation/ biorecovery of uranium

    International Nuclear Information System (INIS)

    Apte, S.K.; Rao, A.S.; Appukuttan, D.; Nilgiriwala, K.S.; Acharya, C.

    2005-01-01

    Bioremediation (both bioremoval and biorecovery) of metals is considered a feasible, economic and eco-friendly alternative to chemical methods of metal extraction, particularly when the metal concentration is very low. Scanty distribution along with poor ore quality makes biomining of uranium an attractive preposition. Biosorption, bioprecipitation or bioaccumulation of uranium, aided by recombinant DNA technology, offer a promising technology for recovery of uranium from acidic or alkaline nuclear waste, tailings or from sea-water. Genetic engineering of bacteria, with a gene encoding an acid phosphatase, has yielded strains that can bioprecipitate uranium from very low concentrations at acidic-neutral pH, in a relatively short time. Organisms overproducing alkaline phosphatase have been selected for uranium precipitation from alkaline waste. Such abilities have now been transferred to the radioresistant microbe Deinococcus radiodurans to facilitate in situ bioremediation of nuclear waste, with some success. Sulfate-reducing bacteria are being characterized for bioremediation of uranium in tailings with the dual objective of uranium precipitation and reduction of sulfate to sulphide. Certain marine cyanobacteria have shown promise for uranium biosorption to extracellular polysaccharides, and intracellular accumulation involving metal sequestering metallothionin proteins. Future work is aimed at understanding the genetic basis of these abilities and to engineer them into suitable organisms subsequently. As photosynthetic, nitrogen-fixing microbes, which are considerably resistant to ionizing radiations, cyanobacteria hold considerable potential for bioremediation of nuclear waste. (author)

  9. Bioremediation of hydrocarbon polluted soil - Improvement of in situ bioremediation by bioaugmentation with endogenous and exogenous strains

    OpenAIRE

    Tarayre, Cédric

    2010-01-01

    Petroleum pollution has now become a real problem because hydrocarbons are persistent contaminants in soils and water. Contamination problems increase when ages of relevant facilities, such as oil storage tanks and pipelines, increase over time. The evolution of Legislation concerning soil pollution has led to the need of efficient techniques able to restore the polluted ground. Unfortunately, these techniques are expensive. Bioremediation of hydrocarbon polluted soils has been recognized as...

  10. Assessment on Bacteria in the Heavy Metal Bioremediation

    International Nuclear Information System (INIS)

    Mohamad Romizan Osman; Mohamad Romizan Osman; Azman Azid; Kamaruzzaman Yunus; Ahmad Dasuki Mustafa; Mohammad Azizi Amran; Fazureen Azaman; Zarizal Suhaili; Yahya Abu Bakar; Syahrir Farihan Mohamed Zainuddin

    2015-01-01

    The aim of this study was to identify and verify the potential bacteria as the bioremediation agent. It involved bacteria isolation, identification through Gram staining, analytical profile index (API) test and determine bioremediation activities by using inductively coupled plasma mass spectrometry (ICPMS). The soil and water sample were collected from downstream of Galing River, Kuantan Malaysia. Based on phenotypic identification and biochemical analysis, the bacteria present at the vicinity area are possibility of Myroides spp. and Micrococcus spp. These bacteria were proven as bioremediation agent based on the ICPMS result. The result 1 ppm of Zink (Zn), Lead (Pb), Arsenic (As), Selenium (Se), Cadmium (Cd), Manganese (Mn), and Indium (In) dwindled after the bacteria inoculated and incubated for seven days in mixture of base salt media (BSM) with the heavy metal elements. Therefore, this proves that the bacteria which are present at downstream of Galing River, Kuantan Malaysia are significant to help us in the bioremediation activity to decrease the heavy metal pollution in the environment. (author)

  11. Potential for Methanosarcina to contribute to uranium reduction during acetate-promoted groundwater bioremediation

    DEFF Research Database (Denmark)

    Holmes, Dawn E; Orellana, Roberto; Giloteaux, Ludovic

    2017-01-01

    Previous studies of in situ bioremediation of uranium-contaminated groundwater with acetate injections have focused on the role of Geobacter species in U(VI) reduction because of a lack of other abundant known U(VI)-reducing microorganisms. Monitoring the levels of methyl CoM reductase subunit...... an important role in the long-term bioremediation of uranium-contaminated aquifers after depletion of Fe(III) oxides limits the growth of Geobacter species. The results also suggest that Methanosarcina have the potential to influence uranium geochemistry in a diversity of anaerobic sedimentary environments....

  12. Reduction and immobilization of uranium in the subsurface: controls, mechanisms, and implications for in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Stylo, M. A.

    2015-07-01

    Decades of uranium (U) mining, milling and military use left a legacy of U contamination around the world. The radioactivity and chemical toxicity of U at contaminated sites pose an acute and long-term hazard to human health and the surrounding environment. In order to diminish the risk, in situ bioremediation methods, which contribute to contaminant immobilization, are proposed. Nevertheless, the reported prevalent formation of labile and non-crystalline U(IV) species as a result of microbial U(VI) reduction, in contrast to more stable and crystalline uraninite, undermines the effectiveness of the applied bioremediation. Therefore, a holistic understanding of the controls and mechanisms that govern the formation of non-crystalline U(IV) in the environment is at the core of this thesis. Presence of common groundwater solutes (sulfate, silicate and phosphate) were shown to induce the production of bacterial extracellular polymeric substances (biofilm matrix components), which in turn increases the formation of non-crystalline U(IV) as a result of microbial U reduction. In contrast, a field study suggested that non-crystalline U(IV) was a product of abiotic U reduction followed by the sequestration of U(IV) ions by the biofilm matrix. Those contrasting theories, motivated us to look for an indicator capable of differentiating between biotic and abiotic U reduction in the environment. Uranium isotope fractionation proved to be an excellent tool. Based on our results, the isotopic signature of biotic U reduction (accumulation of {sup 238}U in the reduced phase) is easily distinguishable from the abiotic U reduction signature (either no isotopic fractionation or fractionation in the opposite direction). When contrasted with U isotope signatures recorded in the sediments, the findings of this study indicated that biological activity contributed to the formation of many ancient and modern U(IV) deposits. Equipped with a tool capable of assessing the origin of the U

  13. Reduction and immobilization of uranium in the subsurface: controls, mechanisms, and implications for in situ bioremediation

    International Nuclear Information System (INIS)

    Stylo, M. A.

    2015-01-01

    Decades of uranium (U) mining, milling and military use left a legacy of U contamination around the world. The radioactivity and chemical toxicity of U at contaminated sites pose an acute and long-term hazard to human health and the surrounding environment. In order to diminish the risk, in situ bioremediation methods, which contribute to contaminant immobilization, are proposed. Nevertheless, the reported prevalent formation of labile and non-crystalline U(IV) species as a result of microbial U(VI) reduction, in contrast to more stable and crystalline uraninite, undermines the effectiveness of the applied bioremediation. Therefore, a holistic understanding of the controls and mechanisms that govern the formation of non-crystalline U(IV) in the environment is at the core of this thesis. Presence of common groundwater solutes (sulfate, silicate and phosphate) were shown to induce the production of bacterial extracellular polymeric substances (biofilm matrix components), which in turn increases the formation of non-crystalline U(IV) as a result of microbial U reduction. In contrast, a field study suggested that non-crystalline U(IV) was a product of abiotic U reduction followed by the sequestration of U(IV) ions by the biofilm matrix. Those contrasting theories, motivated us to look for an indicator capable of differentiating between biotic and abiotic U reduction in the environment. Uranium isotope fractionation proved to be an excellent tool. Based on our results, the isotopic signature of biotic U reduction (accumulation of 238 U in the reduced phase) is easily distinguishable from the abiotic U reduction signature (either no isotopic fractionation or fractionation in the opposite direction). When contrasted with U isotope signatures recorded in the sediments, the findings of this study indicated that biological activity contributed to the formation of many ancient and modern U(IV) deposits. Equipped with a tool capable of assessing the origin of the U(IV) product

  14. MICROBIAL ANALYSIS OF MTBE, BTEX BIOREMEDIATION: BIONETS CONTAINING PM1, SOS, ISOLITE.

    Science.gov (United States)

    MTBE and BTEX (benzene, toluene, ethylbenzene, and xylene) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in-situ BioNets could bioremediation MTBE and BTEX contaminated groundwater. Seven BioNets were ...

  15. MICROBIAL ANALYSIS OF MTBE, BTEX BIOREMEDIATION: BIONETS CONTAINING PM1, SOS, ISOLITE�

    Science.gov (United States)

    MTBE and BTEX (benzene, toluene, ethylbenzene, and xylene) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in-situ BioNets could bioremediate MTBE and BTEX contaminated groundwater. Seven BioNets were plac...

  16. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil

    NARCIS (Netherlands)

    Sutton, N.B.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton’s

  17. Bioremediation: Effective treatment of petroleum-fuel-contaminated soil, a common environmental problem at industrial and governmental agency sites

    International Nuclear Information System (INIS)

    Jolley, R.L.; Donaldson, T.L.; Siegrist, R.L.; Walker, J.F.; MacNeill, J.J.; Ott, D.W.; Machanoff, R.A.; Adler, H.I.; Phelps, T.J.

    1992-01-01

    Bioremediation methods are receiving increased attention for degradation of petroleum-fuel-hydrocarbon contamination in soils. An in situ bioremediation demonstration is being conducted on petroleum-fuel-contaminated soil at Kwajalein Island, a remote Pacific site. Bioreaction parameters studied include water, air, nutrient, and microorganism culture addition. This paper presents planning and design aspects of the demonstration that is scheduled to be completed in 1993

  18. Cometabolic bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-15

    Cometabolic bioremediation is probably the most under appreciated bioremediation strategy currently available. Cometabolism strategies stimulate only indigenous microbes with the ability to degrade the contaminant and cosubstrate e.g. methane, propane, toluene and others. This highly targeted stimulation insures that only those microbes that can degrade the contaminant are targeted, thus reducing amendment costs, well and formation plugging, etc. Cometabolic bioremediation has been used on some of the most recalcitrant contaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine, etc. Methanotrophs have been demonstrated to produce methane monooxygense, an oxidase that can degrade over 300 compounds. Cometabolic bioremediation also has the advantage of being able to degrade contaminants to trace concentrations, since the biodegrader is not dependent on the contaminant for carbon or energy. Increasingly we are finding that in order to protect human health and the environment that we must remediate to lower and lower concentrations, especially for compounds like endocrine disrupters, thus cometabolism may be the best and maybe the only possibility that we have to bioremediate some contaminants.

  19. In-Situ Air Sparaing: Engineering and Design

    Science.gov (United States)

    2008-01-31

    removal (Adams and Reddy 2000). The potential for remediation of less volatile LNAPLs (e.g., diesel or fuel oils) is less promising, relying more on...pure nitrogen, or nitrous oxide) may enhance the speed at which bioremediation proceeds or alter the conditions under which it occurs. The USDOE Sa...region below the water table is directly related to in- situ bioremediation . IAS can be an alternative to other means of introducing oxygen into the

  20. TECHNOLOGIES FOR BIOREMEDIATION OF SOILS CONTAMINATED WITH PETROLEUM PRODUCTS

    OpenAIRE

    Roxana Gabriela POPA

    2012-01-01

    Biological methods for remediation of soils is based on the degradation of pollutants due to activity of microorganisms (bacteria, fungi). Effectiveness of biological decontamination of soils depends on the following factors: biodegradation of pollutants, type of microorganisms used, choice of oxidant and nutrient and subject to clean up environmental characteristics. Ex situ techniques for bioremediation of soils polluted are: composting (static / mechanical agitation), land farming and biop...

  1. Fuzzy systems modeling of in situ bioremediation of chlorinatedsolve n ts

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris; Hazen, Terry C.

    2001-09-05

    A large-scale vadose zone-groundwater bioremediationdemonstration was conducted at the Savannah River Site (SRS) by injectingseveral types of gases (ambient air, methane, and nitrous oxide andtriethyl phosphate mixtures) through a horizontal well in the groundwaterat a 175 ft depth. Simultaneously, soil gas was extracted through aparallel horizontal well in the vadose zone at a 80 ft depth Monitoringrevealed a wide range of spatial and temporal variations ofconcentrations of VOCs, enzymes, and biomass in groundwater and vadosezone monitoring boreholes over the field site. One of the powerful modernapproaches to analyze uncertain and imprecise data chemical data is basedon the use of methods of fuzzy systems modeling. Using fuzzy modeling weanalyzed the spatio-temporal TCE and PCE concentrations and methanotrophdensities in groundwater to assess the effectiveness of differentcampaigns of air stripping and bioremediation, and to determine the fuzzyrelationship between these compounds. Our analysis revealed some detailsabout the processes involved in remediation, which were not identified inthe previous studies of the SRS demonstration. We also identified somefuture directions for using fuzzy systems modeling, such as theevaluation of the mass balance of the vadose zone - groundwater system,and the development of fuzzy-ruled methods for optimization of managingremediation activities, predictions, and risk assessment.

  2. Bioremediation of chlorinated solvents and diesel soils

    International Nuclear Information System (INIS)

    Huismann, S.S.; Peterson, M.A.; Jardine, R.J.

    1995-01-01

    The US Army, in a cooperative effort with the Tennessee Valley Authority (TVA) and its cooperator, ENSR, performed an innovative enhanced bioremediation project at Fort Gillem in Atlanta, Georgia. The objective of the project was to remediate six hundred cubic yards of soil affected by a mixture of chlorinated compounds and petroleum hydrocarbons which posed a threat to uppermost groundwater and private drinking water wells. ENSR completed a demonstration project to measure the effects of bioremediation on both chlorinated compounds (primarily TCE) and petroleum hydrocarbons (number-sign 2 diesel). Contaminated soil was placed on top of a bermed polyethylene liner to construct an ex-situ biovault. Nutrients were added to the soil as it was loaded onto the liner. Contaminated soil was also used to construct a control vault. A methane barrier cover was placed over both piles. The cover was designed to prevent short circuiting of induced airflow in and around the enhanced pile, and to prevent the release of fugitive emissions from either pile

  3. Influence of a precepitator on bioremedial processes

    Directory of Open Access Journals (Sweden)

    Nježić Zvonko B.

    2010-01-01

    Full Text Available Natural environment represents a dynamic bioreactor with numerous chemical, biochemical and microbiological processes through which harmful materials are destroyed, so that living organisms and human beings are not endanger. Controlled anthropogenic actions can assist the natural ecosystem to become an efficient bioremedial unit and to reduce the level of effluents produced in the biotechnological transformations during massive food production. In this study, a monitoring system for the chemical oxygen demand (COD and the heavy metal levels in water was established, followed by construction and building of a precipitator in order to prevent discharging of sludge. The results contribute to the hypothesis of existence of in situ bioremedial processes in the observed ecosystem. The significant influence of the precipitator on the decrease of pollution was demonstrated: a decrease of both the COD value and the heavy metal levels downstream from the precipitator for about 15%. Therefore it can be concluded that the precipitator significantly contributes to the ecosystem by the reduction of pollutant level.

  4. A review on slurry bioreactors for bioremediation of soils and sediments

    Directory of Open Access Journals (Sweden)

    Poggi-Varaldo Héctor M

    2008-02-01

    Full Text Available Abstract The aim of this work is to present a critical review on slurry bioreactors (SB and their application to bioremediation of soils and sediments polluted with recalcitrant and toxic compounds. The scope of the review encompasses the following subjects: (i process fundamentals of SB and analysis of advantages and disadvantages; (ii the most recent applications of SB to laboratory scale and commercial scale soil bioremediation, with a focus on pesticides, explosives, polynuclear aromatic hydrocarbons, and chlorinated organic pollutants; (iii trends on the use of surfactants to improve availability of contaminants and supplementation with degradable carbon sources to enhance cometabolism of pollutants; (iv recent findings on the utilization of electron acceptors other than oxygen; (v bioaugmentation and advances made on characterization of microbial communities of SB; (vi developments on ecotoxicity assays aimed at evaluating bioremediation efficiency of the process. From this review it can be concluded that SB is an effective ad situ and ex situ technology that can be used for bioremediation of problematic sites, such as those characterized by soils with high contents of clay and organic matter, by pollutants that are recalcitrant, toxic, and display hysteretic behavior, or when bioremediation should be accomplished in short times under the pressure and monitoring of environmental agencies and regulators. SB technology allows for the convenient manipulation and control of several environmental parameters that could lead to enhanced and faster treatment of polluted soils: nutrient N, P and organic carbon source (biostimulation, inocula (bioaugmentation, increased availability of pollutants by use of surfactants or inducing biosurfactant production inside the SB, etc. An interesting emerging area is the use of SB with simultaneous electron acceptors, which has demonstrated its usefulness for the bioremediation of soils polluted with

  5. A review on slurry bioreactors for bioremediation of soils and sediments.

    Science.gov (United States)

    Robles-González, Ireri V; Fava, Fabio; Poggi-Varaldo, Héctor M

    2008-02-29

    The aim of this work is to present a critical review on slurry bioreactors (SB) and their application to bioremediation of soils and sediments polluted with recalcitrant and toxic compounds. The scope of the review encompasses the following subjects: (i) process fundamentals of SB and analysis of advantages and disadvantages; (ii) the most recent applications of SB to laboratory scale and commercial scale soil bioremediation, with a focus on pesticides, explosives, polynuclear aromatic hydrocarbons, and chlorinated organic pollutants; (iii) trends on the use of surfactants to improve availability of contaminants and supplementation with degradable carbon sources to enhance cometabolism of pollutants; (iv) recent findings on the utilization of electron acceptors other than oxygen; (v) bioaugmentation and advances made on characterization of microbial communities of SB; (vi) developments on ecotoxicity assays aimed at evaluating bioremediation efficiency of the process.From this review it can be concluded that SB is an effective ad situ and ex situ technology that can be used for bioremediation of problematic sites, such as those characterized by soils with high contents of clay and organic matter, by pollutants that are recalcitrant, toxic, and display hysteretic behavior, or when bioremediation should be accomplished in short times under the pressure and monitoring of environmental agencies and regulators. SB technology allows for the convenient manipulation and control of several environmental parameters that could lead to enhanced and faster treatment of polluted soils: nutrient N, P and organic carbon source (biostimulation), inocula (bioaugmentation), increased availability of pollutants by use of surfactants or inducing biosurfactant production inside the SB, etc. An interesting emerging area is the use of SB with simultaneous electron acceptors, which has demonstrated its usefulness for the bioremediation of soils polluted with hydrocarbons and some

  6. Effectiveness of bioremediation for the Prestige fuel spill : a summary of case studies

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, J.R. [Oviedo Univ., Asturias (Spain); Gonzalez-Rojas, E.; Pelaez, A.I.; Sanchez, J [Oviedo Univ., Asturias (Spain). Inst. de Biotecnologia de Asturias; Garcia-Martinez, M.J.; Llamas, J.F. [Univ. Polictenica de Madrid, Madrid (Spain). Laboratorio de Estratigrafia Biomolecular

    2006-07-01

    This paper described novel bioremediation strategies used to remediate coastal areas in Spain impacted by the Prestige fuel oil spill in 2002. The bioremediation techniques were applied after hot pressurized water washing was used to remove hydrocarbons adhering to shorelines and rocks. Bioremediation strategies included monitored natural attenuation as well as accelerating biodegradation by stimulating indigenous populations through the addition of exogenous microbial populations. The sites selected for bioremediation were rocky shorelines of heterogenous granitic sediments with grain sizes ranging from sands to huge boulders; limestone-sandstone pebbles and cobbles; and fuel-coated limestone cliffs. Total surface area covered by the fuel was determined through the use of image analysis calculations. A statistical measurement of the fuel layer thickness was calculated by averaging the weights of multiple-fuel sampling increments. Bioremediation products included the use of oleophilic fertilizers; a biodegradable surfactant; and a microbial seeding agent. Determinations of saturate, aromatic, resins, and asphaltene (SARA) were performed using maltenes extraction and liquid chromatography. Microbial plating and selective enrichment with fuel as the sole carbon source were used to monitor the evolution of microbial populations in a variety of experiments. It was concluded that the biostimulation technique enhanced the efficiency of the in situ oleophilic fertilizers. 17 refs., 2 tabs., 6 figs.

  7. Effectiveness of bioremediation for the Prestige fuel spill : a summary of case studies

    International Nuclear Information System (INIS)

    Gallego, J.R.; Gonzalez-Rojas, E.; Pelaez, A.I.; Sanchez, J; Garcia-Martinez, M.J.; Llamas, J.F.

    2006-01-01

    This paper described novel bioremediation strategies used to remediate coastal areas in Spain impacted by the Prestige fuel oil spill in 2002. The bioremediation techniques were applied after hot pressurized water washing was used to remove hydrocarbons adhering to shorelines and rocks. Bioremediation strategies included monitored natural attenuation as well as accelerating biodegradation by stimulating indigenous populations through the addition of exogenous microbial populations. The sites selected for bioremediation were rocky shorelines of heterogenous granitic sediments with grain sizes ranging from sands to huge boulders; limestone-sandstone pebbles and cobbles; and fuel-coated limestone cliffs. Total surface area covered by the fuel was determined through the use of image analysis calculations. A statistical measurement of the fuel layer thickness was calculated by averaging the weights of multiple-fuel sampling increments. Bioremediation products included the use of oleophilic fertilizers; a biodegradable surfactant; and a microbial seeding agent. Determinations of saturate, aromatic, resins, and asphaltene (SARA) were performed using maltenes extraction and liquid chromatography. Microbial plating and selective enrichment with fuel as the sole carbon source were used to monitor the evolution of microbial populations in a variety of experiments. It was concluded that the biostimulation technique enhanced the efficiency of the in situ oleophilic fertilizers. 17 refs., 2 tabs., 6 figs

  8. Bioremediation of soil and water: application to chemical and nuclear pollutions

    International Nuclear Information System (INIS)

    Vavasseur, Alain

    2014-06-01

    Bioremediation is a branch of biotechnology that uses natural or diverted biological mechanisms to address environmental problems. The biological agents can be simple organic molecules, such as DNA or antibodies, or live or dead organisms (bacteria, microalgae, fungi, higher algae and plants). Phyto-remediation refers more specifically to using plants to decontaminate polluted soil, water, or air. Unlike organic pollutants such as PCBs1, TNT2, TCE3, which can be metabolized by soil microorganisms and plant roots, radionuclides - like most heavy metals - cannot be degraded. Thus, bioremediation strategies for radionuclides will consist into: - stabilization/mineralization to reduce their bioavailability through a change in their redox state; - for soil, their extraction using the plant nutrition mechanisms; - for polluted solutions, their extraction using the 'cation traps' properties of plant cell walls. Compared to physicochemical methods conventionally used to decontaminate soils but which lead to a sharp decline in fertility and productivity, bioremediation is considered a friendly environmental technology. An important advantage of this technique is its cost, much lower than traditional remediation techniques. By cons, bioremediation cannot be applied in an emergency, because processing times are spread over several years - even decades - depending on the degree of pollution. Therefore current research focuses on optimizing the processing time. We present in this paper several examples of in situ bioremediation of heavy metals and radionuclides, and we discuss in conclusion the negative and positive aspects of this technique. (author)

  9. Degradability of n-alkanes during ex situ natural bioremediation of soil contaminated by heavy residual fuel oil (mazut

    Directory of Open Access Journals (Sweden)

    Ali Ramadan Mohamed Muftah

    2013-01-01

    Full Text Available It is well known that during biodegradation of oil in natural geological conditions, or oil pollutants in the environment, a degradation of hydrocarbons occurs according to the well defined sequence. For example, the major changes during the degradation process of n-alkanes occur in the second, slight and third, moderate level (on the biodegradation scale from 1 to 10. According to previous research, in the fourth, heavy level, when intensive changes of phenanthrene and its methyl isomers begin, n-alkanes have already been completely removed. In this paper, the ex situ natural bioremediation (unstimulated bioremediation, without addition of biomass, nutrient substances and biosurfactant of soil contaminated with heavy residual fuel oil (mazut was conducted during the period of 6 months. Low abundance of n-alkanes in the fraction of total saturated hydrocarbons in the initial sample (identification was possible only after concentration by urea adduction technique showed that the investigated oil pollutant was at the boundary between the third and the fourth biodegradation level. During the experiment, an intense degradation of phenanthrene and its methyl-, dimethyl-and trimethyl-isomers was not followed by the removal of the remaining n-alkanes. The abundance of n-alkanes remained at the initial low level, even at end of the experiment when the pollutant reached one of the highest biodegradation levels. These results showed that the unstimulated biodegradation of some hydrocarbons, despite of their high biodegradability, do not proceed completely to the end, even at final degradation stages. In the condition of the reduced availability of some hydrocarbons, microorganisms tend to opt for less biodegradable but more accessible hydrocarbons.

  10. Bioremediation and detoxification of hydrocarbon pollutants in soil

    International Nuclear Information System (INIS)

    Wang, Xiao Ping.

    1991-01-01

    As a cleanup alterative, the bioremediation potential of soil, contaminated by spills of three medium petroleum distillates, jet fuel heating oil (No. 2 fuel oil) and diesel fuel was evaluated in controlled-temperature laboratory soil columns and in outdoor lysimeters. Solvent extraction followed by gas chromatography (GC) was used routinely for analysis of fuel residues. Occasionally, class separation and GC-mass spectrometry (GC-MS) were also used in residue characterization. The decrease in toxic residues was evaluated by Microtox and Ames tests. Seed germination and plant growth bioassays were also performed. Persistence and toxicity of the fuels increased in the order of jet fuel < heating oil < diesel fuel. Bioremediation consisting of liming, fertilization and tilling decreased the half-lives of the pollutants in soil by a factor of 2-3. Biodegradation was faster at 27C than at 17 or 37C, but hydrocarbon concentration and soil quality had only modest influence on biodegradation rates and did not preclude successful bioremediation of these contaminated soils within one growing season. Microbial activity measurements by the fluorescein diacetate hydrolysis assay confirmed that microbial activity was the principal force in hydrocarbon elimination. Bioremediation was highly effective in eliminating also the polycyclic aromatic components of diesel fuel. The bioremediation and detoxification of fuel-contaminated soil was corroborated by Microtox, Ames and plant growth bioassays

  11. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mouser, P.J.; N' Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J.; Long, P.E.; Lovley, D.R.

    2009-04-01

    The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological status of Geobacter species in subsurface environments during bioremediation. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes.

  12. Evaluating intrinsic bioremediation at five sour gas processing facilities in Alberta

    International Nuclear Information System (INIS)

    Armstrong, J. E.; Moore, B. J.; Sevigny, J. H.; Forrester, P. I.

    1997-01-01

    Mass attenuation through intrinsic bioremediation of the aromatic hydrocarbons benzene, toluene, ethylbenzene and xylene (BTEX) was studied at four facilities in Alberta. The objective of the study was to assess whether intrinsic bioremediation could attenuate BTEX-contaminated groundwater plumes at the four sites. The depletion of electron acceptors, and the enriched metabolic byproducts within the BTEX plumes indicate that BTEX biodegradation is occurring at all four sites. Bacterial plate counts were generally higher at three of the sites and lower at one site. At the three sites microcosm experiments indicated aerobic biodegradation, while anaerobic biodegradation was observed at only two sites after four to five months incubation. Theoretical estimates of the biodegradation potential were calculated for each site with intrinsic bioremediation appearing to have bioremediation potential at three of the sites. 13 refs., 4 tabs., 4 figs

  13. Biodegradation and bioremediation

    DEFF Research Database (Denmark)

    Albrechtsen, H.-J.

    1996-01-01

    Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994......Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994...

  14. Oil bioremediation processes in Brazilian marine environments : laboratory simulations

    International Nuclear Information System (INIS)

    Souza, E.S.; Triguis, J.A.

    2003-01-01

    Bioremediation methods have been used in Brazil to remediate contaminated soils from refinery residues. In particular, bioremediation is a process that can reduce the amount of oil that reaches shorelines, by enhancing natural biodegradation. This presentation presents the results of a laboratory study in which seawater contaminated with light crude oil was bioremediated in a period of 28 days using NPK fertilizer. Whole oil gas chromatography and gas chromatography-mass spectrometry analyses of the hydrocarbon fractions were used to determine the extent of oil biodegradation. It was determined that natural degradation occurred in the first 4 days, and mostly through the evaporation of light end n-alkanes. Biodegradation of n-alkanes was found to be most effective after 7 days, and no changes were observed in the relative abundance of steranes and triterpanes. It appears that the addition of NPK nutrient reduces the biodegradation potential of polyaromatic compounds. Seawater samples were also measured to determine the efficiency of bioremediation. The use of NPK fertilizer resulted in higher toxicity after 14 days probably due to the creation of metabolites as polyaromatic compounds biodegrade. Non toxic levels were found to be reestablished after 28 days of bioremediation. 16 refs., 4 tabs., 6 figs

  15. MICROBIAL ANALYSIS OF MTBE, BTEX BIOREMEDIATION: BIONETS(TM) CONTAINING PM1, SOS, ISOLITE (R)

    Science.gov (United States)

    MTBE and BTEX (benzene, toluene, ethylbenzene, and xylene) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in-situ BioNets could bioremediation MTBE and BTEX contaminated groundwater. Seven BioNets were ...

  16. The Chemistry and Flow Dynamics of Molecular Biological Tools Used to Confirm In Situ Bioremediation of Benzene, TBA, and MTBE

    Science.gov (United States)

    North, K. P.; Mackay, D. M.; Scow, K. M.

    2010-12-01

    In situ bioremediation has typically been confirmed by collecting sediment and groundwater samples to directly demonstrate a degradation process in a laboratory microcosm. However, recent advances in molecular biological tools present options for demonstrating degradation processes with field-based tools that are less time-consuming. We have been investigating the capability of some of these molecular biological tools to evaluate in situ biodegradation of tert-butyl alcohol (TBA), methyl tert-butyl ether (MTBE), and benzene at two field sites in California. At both sites, we have deployed Bio-Traps® (“traps”), made of Bio-Sep® beads in slotted PVC pipe, which provide ideal environments for microbial colonization. Stable Isotope Probing can be accomplished by sorbing the13C-labeled organic contaminant of concern onto Bio-Sep® beads (“baiting”); incorporation of 13C into the biomass collected by the trap would indicate that the microbial community was capable of degrading the labeled compound. In addition, we examined the chemistry and flow dynamics of these traps and present those results here. We performed a field experiment and a lab experiment to, in part, define the rate that different baits leached off various traps. At a TBA- and MTBE-contaminated site at Vandenberg AFB, Lompoc, CA, the TBA-dominant plume was effectively treated by recirculation/oxygenation of groundwater, decreasing TBA and MTBE concentrations to detection limits along predicted flowpaths created by two pairs of recirculation wells. We used the generated aerobic treatment zone to deploy traps baited with 13C-labeled MTBE or TBA in a novel, ex situ experimental setup. The groundwater flow extracted from the aerobic treatment zone was split through several chambers, each containing a trap and monitoring of influent and effluent. The chamber effluent was measured throughout a six-week deployment and analyzed for both TBA and MTBE; the majority of mass leached from the baited traps did

  17. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil.

    Science.gov (United States)

    Sutton, Nora B; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-02-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Development of the integrated in situ Lasagna process

    International Nuclear Information System (INIS)

    Ho, S.; Athmer, C.; Sheridan, P.

    1995-01-01

    Contamination in deep, low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in uniform delivery of treatment reagents have rendered existing in-situ methods such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites

  19. Literature review and assessment of various approaches to bioremediation of oil and associated hydrocarbons in soil and groundwater

    International Nuclear Information System (INIS)

    1993-08-01

    A study was conducted of available techniques for the biological treatment of oil and associated hydrocarbon contamination in soil and groundwater. The study involved a detailed literature search and review, as well as discussions with the users and developers of a number of the bioremediation techniques assessed. The result is a compendium of selected state-of-the-art bioremediation technologies which can serve to guide the selection process for treatment technology for a particular site subject to remediation. Background is provided on the various classes of sites on which petroleum-related contamination could occur, and the nature of contaminants typical of such sites. The mechanisms of hydrocarbon biodegradation are outlined along with various approaches to bioremediation such as in-situ, on-site, bioreactors, landfarming, composting, and physical/chemical treatments. Field trials required to characterize the site and provide an indication of the suitability of bioremediation and the most appropriate bioremediation approach are described. Commercially available bioremediation technologies are briefly discussed. A number of the bioremedial techniques reviewed are compared to more conventional treatment processes in terms of such criteria as operating cost, effectiveness, advantages, risks, applicability, equipment and manpower requirements, and considerations regarding usage in Canadian conditions. 15 figs., 17 tabs

  20. Literature review and assessment of various approaches to bioremediation of oil and associated hydrocarbons in soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    A study was conducted of available techniques for the biological treatment of oil and associated hydrocarbon contamination in soil and groundwater. The study involved a detailed literature search and review, as well as discussions with the users and developers of a number of the bioremediation techniques assessed. The result is a compendium of selected state-of-the-art bioremediation technologies which can serve to guide the selection process for treatment technology for a particular site subject to remediation. Background is provided on the various classes of sites on which petroleum-related contamination could occur, and the nature of contaminants typical of such sites. The mechanisms of hydrocarbon biodegradation are outlined along with various approaches to bioremediation such as in-situ, on-site, bioreactors, landfarming, composting, and physical/chemical treatments. Field trials required to characterize the site and provide an indication of the suitability of bioremediation and the most appropriate bioremediation approach are described. Commercially available bioremediation technologies are briefly discussed. A number of the bioremedial techniques reviewed are compared to more conventional treatment processes in terms of such criteria as operating cost, effectiveness, advantages, risks, applicability, equipment and manpower requirements, and considerations regarding usage in Canadian conditions. 15 figs., 17 tabs.

  1. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  2. Electron transport chains in organohalide-respiring bacteria and bioremediation implications.

    Science.gov (United States)

    Wang, Shanquan; Qiu, Lan; Liu, Xiaowei; Xu, Guofang; Siegert, Michael; Lu, Qihong; Juneau, Philippe; Yu, Ling; Liang, Dawei; He, Zhili; Qiu, Rongliang

    2018-04-06

    In situ remediation employing organohalide-respiring bacteria represents a promising solution for cleanup of persistent organohalide pollutants. The organohalide-respiring bacteria conserve energy by utilizing H 2 or organic compounds as electron donors and organohalides as electron acceptors. Reductive dehalogenase (RDase), a terminal reductase of the electron transport chain in organohalide-respiring bacteria, is the key enzyme that catalyzes halogen removal. Accumulating experimental evidence thus far suggests that there are distinct models for respiratory electron transfer in organohalide-respirers of different lineages, e.g., Dehalococcoides, Dehalobacter, Desulfitobacterium and Sulfurospirillum. In this review, to connect the knowledge in organohalide-respiratory electron transport chains to bioremediation applications, we first comprehensively review molecular components and their organization, together with energetics of the organohalide-respiratory electron transport chains, as well as recent elucidation of intramolecular electron shuttling and halogen elimination mechanisms of RDases. We then highlight the implications of organohalide-respiratory electron transport chains in stimulated bioremediation. In addition, major challenges and further developments toward understanding the organohalide-respiratory electron transport chains and their bioremediation applications are identified and discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Engineered in situ bioremediation of a petroleum hydrocarbon-contaminated aquifer: assessment of mineralization based on alkalinity, inorganic carbon and stable carbon isotope balances

    Science.gov (United States)

    Hunkeler, Daniel; Höhener, Patrick; Bernasconi, Stefano; Zeyer, Josef

    1999-04-01

    A concept is proposed to assess in situ petroleum hydrocarbon mineralization by combining data on oxidant consumption, production of reduced species, CH 4, alkalinity and dissolved inorganic carbon (DIC) with measurements of stable isotope ratios. The concept was applied to a diesel fuel contaminated aquifer in Menziken, Switzerland, which was treated by engineered in situ bioremediation. In the contaminated aquifer, added oxidants (O 2 and NO 3-) were consumed, elevated concentrations of Fe(II), Mn(II), CH 4, alkalinity and DIC were detected and the DIC was generally depleted in 13C compared to the background. The DIC production was larger than expected based on the consumption of dissolved oxidants and the production of reduced species. Stable carbon isotope balances revealed that the DIC production in the aquifer originated mainly from microbial petroleum hydrocarbon mineralization, and that geochemical reactions such as carbonate dissolution produced little DIC. This suggests that petroleum hydrocarbon mineralization can be underestimated if it is determined based on concentrations of dissolved oxidants and reduced species.

  4. In situ bioremediation of petroleum hydrocarbons and chlorinated hydrocarbons: Three case studies

    International Nuclear Information System (INIS)

    Bost, R.C.; Perry, R.G.; Barber, T.

    1997-01-01

    In situ biodegradation of organic contaminants is one of the most cost-effective means of site remediation. This method has proven successful in soils, ground water, and slurries. Bacteria capable of degrading organic contaminants within an aquifer include many species from a wide spectrum of genera, e.g. Pseudomonas, Corynebacterium, Bacillus, etc. In most cases, a mixture of bacterial strains is required to completely oxidize a complex organic contaminant. Each strain of an organism may target a specific compound, working together with other organisms to ultimately degrade each intermediate until complete degradation, also known as mineralization, occurs. One or more of the following mechanisms are utilized by bacteria for organic chemical degradation: (1) aerobic, (2) anaerobic, and (3) co-metabolic. During aerobic oxidation of organic chemicals, bacteria utilize the pollutant as an electron and hydrogen source and oxygen acts as the electron and hydrogen acceptor, resulting in water. As the bacterial enzymes cleave the compound, oxidized products are produced along with energy for the reaction to proceed. This is the most rapid and widely utilized mechanism. Dehalogenation occurs under aerobic, or perhaps more often, under anoxic conditions. This process occurs in the presence of alternate electron acceptors and replaces chlorine with hydrogen. The mechanism of co-metabolism can be aerobic or anaerobic, but is more often aerobic. This process requires a separate energy source for the bacterial cell because the pollutant is not utilized as an energy source. The role of bioremediation in site remediation is demonstrated below by three case studies: (1) a refinery, (2) a municipal landfill and (3) a pesticide formulation plant

  5. Large Scale Bioremediation of Petroleum Hydrocarbon Contaminated Waste at Various Installations of ONGC. India: Case Studies

    OpenAIRE

    Mandal, Ajoy Kumar; Sarma, Priyangshu Manab; Jeyaseelan, C Paul; Channashettar, Veeranna A; Singh, Bina; Agnihotri, Anil; Lal, Banwari; Datta, Jayati

    2014-01-01

    In situ and ex situ bioremediation of oil contaminated effluent pits, sludge pits, oil spilled land and tank bottom, and effluent treatment plant (ETP) oily sludge was carried out at Ankleshwar, Mehsana, Assam and Cauvery Asset of Oil and Natural Gas Corporation Limited (ONGC), India. The types of contaminant were heavy paraffinic, asphaltic and light crude oil and emulsified oily sludge /contaminated soil. An indigenous microbial consortium was developed by assembling four species of bacteri...

  6. Biostimulation of indigenous microbial community for bioremediation of petroleum refinery sludge.

    Directory of Open Access Journals (Sweden)

    Jayeeta Sarkar

    2016-09-01

    Full Text Available Nutrient deficiency severely impairs the catabolic activity of indigenous microorganisms in hydrocarbon rich environments (HREs and limits the rate of intrinsic bioremediation. The present study aimed to characterize the microbial community in refinery waste and evaluate the scope for biostimulation based in situ bioremediation. Samples recovered from the wastewater lagoon of Guwahati refinery revealed a hydrocarbon enriched high total petroleum hydrocarbon (TPH, oxygen-, moisture-limited, reducing environment. Intrinsic biodegradation ability of the indigenous microorganisms was enhanced significantly (>80% reduction in TPH by 90 days with nitrate amendment. Preferred utilization of both higher- (>C30 and middle- chain (C20-30 length hydrocarbons were evident from GC-MS analysis. Denaturing gradient gel electrophoresis (DGGE and community level physiological profiling (CLPP analyses indicated distinct shift in community’s composition and metabolic abilities following nitrogen (N amendment. High throughput deep sequencing of 16S rRNA gene showed that the native community was mainly composed of hydrocarbon degrading, syntrophic, methanogenic, nitrate/iron/sulfur reducing facultative anaerobic bacteria and archaebacteria, affiliated to γ- and δ-Proteobacteria and Euryarchaeota respectively. Genes for aerobic and anaerobic alkane metabolism (alkB and bssA, methanogenesis (mcrA, denitrification (nirS and narG and N2 fixation (nifH were detected. Concomitant to hydrocarbon degradation, lowering of dissolve O2 and increase in oxidation-reduction potential (ORP marked with an enrichment of N2 fixing, nitrate reducing aerobic/facultative anaerobic members e.g., Azovibrio, Pseudoxanthomonas and Commamonadaceae members was evident in N amended microcosm. This study highlighted that indigenous community of refinery sludge was intrinsically diverse, yet appreciable rate of in situ bioremediation could be achieved by supplying adequate N sources.

  7. Biostimulation of Indigenous Microbial Community for Bioremediation of Petroleum Refinery Sludge

    Science.gov (United States)

    Sarkar, Jayeeta; Kazy, Sufia K.; Gupta, Abhishek; Dutta, Avishek; Mohapatra, Balaram; Roy, Ajoy; Bera, Paramita; Mitra, Adinpunya; Sar, Pinaki

    2016-01-01

    Nutrient deficiency severely impairs the catabolic activity of indigenous microorganisms in hydrocarbon rich environments (HREs) and limits the rate of intrinsic bioremediation. The present study aimed to characterize the microbial community in refinery waste and evaluate the scope for biostimulation based in situ bioremediation. Samples recovered from the wastewater lagoon of Guwahati refinery revealed a hydrocarbon enriched [high total petroleum hydrocarbon (TPH)], oxygen-, moisture-limited, reducing environment. Intrinsic biodegradation ability of the indigenous microorganisms was enhanced significantly (>80% reduction in TPH by 90 days) with nitrate amendment. Preferred utilization of both higher- (>C30) and middle- chain (C20-30) length hydrocarbons were evident from GC-MS analysis. Denaturing gradient gel electrophoresis and community level physiological profiling analyses indicated distinct shift in community’s composition and metabolic abilities following nitrogen (N) amendment. High throughput deep sequencing of 16S rRNA gene showed that the native community was mainly composed of hydrocarbon degrading, syntrophic, methanogenic, nitrate/iron/sulfur reducing facultative anaerobic bacteria and archaebacteria, affiliated to γ- and δ-Proteobacteria and Euryarchaeota respectively. Genes for aerobic and anaerobic alkane metabolism (alkB and bssA), methanogenesis (mcrA), denitrification (nirS and narG) and N2 fixation (nifH) were detected. Concomitant to hydrocarbon degradation, lowering of dissolve O2 and increase in oxidation-reduction potential (ORP) marked with an enrichment of N2 fixing, nitrate reducing aerobic/facultative anaerobic members [e.g., Azovibrio, Pseudoxanthomonas and Comamonadaceae members] was evident in N amended microcosm. This study highlighted that indigenous community of refinery sludge was intrinsically diverse, yet appreciable rate of in situ bioremediation could be achieved by supplying adequate N sources. PMID:27708623

  8. Risk-based approach for bioremediation of fuel hydrocarbons at a major airport

    International Nuclear Information System (INIS)

    Wiedemeier, T.H.; Guest, P.R.; Blicker, B.R.

    1994-01-01

    This paper describes a risk-based approach for bioremediation of fuel-hydrocarbon-contaminated soil and ground water at a major airport in Colorado. In situ bioremediation pilot testing, natural attenuation modeling, and full-scale remedial action planning and implementation for soil and ground water contamination has conducted at four airport fuel farms. The sources of fuel contamination were leaking underground storage tanks (USTs) or pipelines transporting Jet A fuel and aviation gasoline. Continuing sources of contamination were present in several small cells of free-phase product and in fuel residuals trapped within the capillary fringe at depths 15 to 20 feet below ground surface. Bioventing pilot tests were conducted to assess the feasibility of using this technology to remediate contaminated soils. The pilot tests included measurement of initial soil gas chemistry at the site, determination of subsurface permeability, and in situ respiration tests to determine fuel biodegradation rates. A product recovery test was also conducted. ES designed and installed four full-scale bioventing systems to remediate the long-term sources of continuing fuel contamination. Benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH) were detected in ground water at concentrations slightly above regulatory guidelines

  9. An enhanced aerobic bioremediation system at a central production facility -- system design and data analysis

    International Nuclear Information System (INIS)

    Chiang, C.; Petkovsky, P.; Beltz, M.; Rouse, S.; Boyd, T.; Newell, C.; McHugh, T.

    1993-01-01

    A successful field demonstration of the enhanced in-situ aerobic bioremediation with remarkable results took place during the period of August 1, 1991 through year-end 1992 at a central production facility in Michigan. The in-situ soil logging and groundwater sampling by the cone penetrometer/porous probe system provided a real-time definition of the groundwater flow ''channel'' and a clear delineation of the plume extent. That facilitated the design of the closed-loop bioremediation system, consisting of two downgradient pumping wells to completely capture the plume and two pairs of bi-level injection wells located upgradient of the plume. The purged groundwater from the two pumping wells after amending with dissolved oxygen is directly reinjected to the two pairs of upgradient bi-level injection wells. In addition, the performance of the system is monitored by 17 multilevel piezometers. Each piezometer consists of four vertical sampling levels, providing a total of 68 sampling points to fully define the three-dimensional characteristics of the BTEX and DO plumes. Based on a hydrograph analysis of the groundwater data, the closed-loop bioremediation system has been operating properly. In addition, a particle tracking analysis showed groundwater flowlines converge to the pumping wells demonstrating the effectiveness of the plume capture. The trend analysis showed a consistent decline of BTEX concentrations at all of the 68 sampling points

  10. Multiple-reflection time-of-flight mass spectrometry for in situ applications

    International Nuclear Information System (INIS)

    Dickel, T.; Plaß, W.R.; Lang, J.; Ebert, J.; Geissel, H.; Haettner, E.; Jesch, C.; Lippert, W.; Petrick, M.; Scheidenberger, C.; Yavor, M.I.

    2013-01-01

    Highlights: • MR-TOF-MS: huge potential in chemistry, medicine, space science, homeland security. • Compact MR-TOF-MS (length ∼30 cm) with very high mass resolving powers (10 5 ). • Combination of high resolving power (>10 5 ), mobility, API for in situ measurements. • Envisaged applications of mobile MR-TOF-MS. -- Abstract: Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼10 5 ) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>10 5 ), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed

  11. Multiple-reflection time-of-flight mass spectrometry for in situ applications

    Energy Technology Data Exchange (ETDEWEB)

    Dickel, T., E-mail: t.dickel@gsi.de [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Plaß, W.R. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Lang, J.; Ebert, J. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); Geissel, H.; Haettner, E. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Jesch, C.; Lippert, W.; Petrick, M. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); Scheidenberger, C. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Yavor, M.I. [Institute for Analytical Instrumentation, Russian Academy of Sciences, 190103 St. Petersburg (Russian Federation)

    2013-12-15

    Highlights: • MR-TOF-MS: huge potential in chemistry, medicine, space science, homeland security. • Compact MR-TOF-MS (length ∼30 cm) with very high mass resolving powers (10{sup 5}). • Combination of high resolving power (>10{sup 5}), mobility, API for in situ measurements. • Envisaged applications of mobile MR-TOF-MS. -- Abstract: Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼10{sup 5}) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>10{sup 5}), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed.

  12. Two Pilot Plant Reactors Designed for the In Situ Bioremediation of Chlorobenzene-contaminated Ground Water: Hydrogeological and Chemical Characteristics and Bacterial Consortia

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Carsten, E-mail: vogt@umb.ufz.de; Alfreider, Albin [UFZ Centre for Environmental Research, Department of Environmental Microbiology (Germany); Lorbeer, Helmut [University of Technology Dresden, Institute of Waste Management and Contaminated Site Treatment (Germany); Ahlheim, Joerg; Feist, Bernd [UFZ Centre for Environmental Research, Department of Industrial and Mining Landscapes (Germany); Boehme, Olaf [GFE GmbH Halle (Germany); Weiss, Holger [UFZ Centre for Environmental Research, Department of Industrial and Mining Landscapes (Germany); Babel, Wolfgang; Wuensche, Lothar [UFZ Centre for Environmental Research, Department of Environmental Microbiology (Germany)

    2002-05-15

    The SAFIRA in situ pilot plant in Bitterfeld, Saxonia-Anhalt, Germany, currently serves as the test site for eight different in situ approaches to remediate anoxic chlorobenzene (CB)-contaminated ground water. Two reactors, both filled with original lignite-containing aquifer material, are designed for the microbiological in situ remediation of the ground water by the indigenous microbial consortia. In this study, the hydrogeological, chemical and microbiological conditions of the in flowing ground water and reactor filling material are presented,in order to establish the scientific basis for the start of the bioremediation process itself. The reactors were put into operation in June 1999. In the following, inflow CB concentrations in the ground water varied between 22 and 33 mg L{sup -1}; a chemical steady state for CB in both reactors was reached after 210 till 260 days operation time. The sediments were colonized by high numbers of aerobic, iron-reducing and denitrifying bacteria, as determined after 244 and 285 days of operation time. Furthermore, aerobic CB-degrading bacteria were detected in all reactor zones. Comparative sequence analysis of16S rDNA gene clone libraries suggest the dominance of Proteobacteria (Comamonadaceae, Alcaligenaceae, Gallionella group, Acidithiobacillus) and members of the class of low G+C gram-positive bacteria in the reactor sediments. In the inflowing ground water, sequences with phylogenetic affiliation to sulfate-reducing bacteria and sequences not affiliated with the known phyla of Bacteria, were found.

  13. Two Pilot Plant Reactors Designed for the In Situ Bioremediation of Chlorobenzene-contaminated Ground Water: Hydrogeological and Chemical Characteristics and Bacterial Consortia

    International Nuclear Information System (INIS)

    Vogt, Carsten; Alfreider, Albin; Lorbeer, Helmut; Ahlheim, Joerg; Feist, Bernd; Boehme, Olaf; Weiss, Holger; Babel, Wolfgang; Wuensche, Lothar

    2002-01-01

    The SAFIRA in situ pilot plant in Bitterfeld, Saxonia-Anhalt, Germany, currently serves as the test site for eight different in situ approaches to remediate anoxic chlorobenzene (CB)-contaminated ground water. Two reactors, both filled with original lignite-containing aquifer material, are designed for the microbiological in situ remediation of the ground water by the indigenous microbial consortia. In this study, the hydrogeological, chemical and microbiological conditions of the in flowing ground water and reactor filling material are presented,in order to establish the scientific basis for the start of the bioremediation process itself. The reactors were put into operation in June 1999. In the following, inflow CB concentrations in the ground water varied between 22 and 33 mg L -1 ; a chemical steady state for CB in both reactors was reached after 210 till 260 days operation time. The sediments were colonized by high numbers of aerobic, iron-reducing and denitrifying bacteria, as determined after 244 and 285 days of operation time. Furthermore, aerobic CB-degrading bacteria were detected in all reactor zones. Comparative sequence analysis of16S rDNA gene clone libraries suggest the dominance of Proteobacteria (Comamonadaceae, Alcaligenaceae, Gallionella group, Acidithiobacillus) and members of the class of low G+C gram-positive bacteria in the reactor sediments. In the inflowing ground water, sequences with phylogenetic affiliation to sulfate-reducing bacteria and sequences not affiliated with the known phyla of Bacteria, were found

  14. Bioremediation of fossil fuel contaminated soils

    International Nuclear Information System (INIS)

    Atlas, R.M.

    1991-01-01

    Bioremediation involves the use of microorganisms and their biodegradative capacity to remove pollutants. The byproducts of effective bioremediation, such as water and carbon dioxide, are nontoxic and can be accommodated without harm to the environment and living organisms. This paper reports that using bioremediation to remove pollutants has many advantages. This method is cheap, whereas physical methods for decontaminating the environment are extraordinarily expensive. Neither government nor private industry can afford the cost to clean up physically the nation's known toxic waste sites. Therefore, a renewed interest in bioremediation has developed. Whereas current technologies call for moving large quantities of toxic waste and its associated contaminated soil to incinerators, bioremediation can be done on site and requires simple equipment that is readily available. Bioremediation, though, is not the solution for all environmental pollution problems. Like other technologies, bioremediation has limitations

  15. Bioremediation of ground water contaminants at a uranium mill tailings site

    International Nuclear Information System (INIS)

    Barton, L.L.; Nuttall, H.E.; Thomson, B.M.; Lutze, W.

    1995-01-01

    Ground water contaminated with uranium from milling operations must be remediated to reduce the migration of soluble toxic compounds. At the mill tailings site near Tuba City, Arizona (USA) the approach is to employ bioremediation for in situ immobilization of uranium by bacterial reduction of uranyl, U(VI), compounds to uraninite, U(IV). In this initial phase of remediation, details are provided to indicate the magnitude of the contamination problem and to present preliminary evidence supporting the proposition that bacterial immobilization of uranium is possible. Additionally, consideration is given to contaminating cations and anions that may be at toxic levels in ground water at this uranium mill tailing site and detoxification strategies using bacteria are addressed. A model concept is employed so that results obtained at the Tuba City site could contribute to bioremediation of ground water at other uranium mill tailings sites

  16. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    OpenAIRE

    Chibuike, G. U.; Obiora, S. C.

    2014-01-01

    Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for...

  17. Patterns of intrinsic bioremediation at two U.S. Air Force bases

    International Nuclear Information System (INIS)

    Wiedemeier, T.H.; Swanson, M.A.; Wilson, J.T.; Kampbell, D.H.

    1995-01-01

    Intrinsic bioremediation of benzene, toluene, ethylbenzene, and xylenes (BTEX) occurs when indigenous microorganisms work to reduce the total mass of contamination in the subsurface without the addition of nutrients. A conservative tracer, such as trimethylbenzene, found commingled with the contaminant plume can be used to distinguish between attenuation caused by dispersion, dilution from recharge, volatilization, and sorption and attenuation caused by biodegradation. Patterns of intrinsic bioremediation can vary markedly from site to site depending on governing physical, biological, and chemical processes. Intrinsic bioremediation causes measurable changes in groundwater chemistry. Specifically, concentrations of contaminants, dissolved oxygen, nitrate, ferrous iron, sulfate, and methane in groundwater change both temporally and spatially as biodegradation proceeds Operations at Hill Air Force Base (AFB) and Patrick AFB resulted in fuel-hydrocarbon contamination of soil and groundwater. In both cases, trimethylbenzene data confirm that dissolved BTEX is biodegrading. Geochemical evidence from the Hill AFB site suggests that aerobic respiration, denitrification, iron reduction, sulfate reduction, and methanogenesis all are contributing to intrinsic bioremediation of dissolved BTEX. Sulfate reduction is the dominant biodegradation mechanism at this site. Geochemical evidence from Patrick AFB suggests that aerobic respiration, iron reduction, and methanogenesis are contributing to intrinsic bioremediation of dissolved BTEX. Methanogenesis is the dominant biodegradation mechanism at this site

  18. Use of thermophilic bacteria for bioremediation of petroleum contaminants

    International Nuclear Information System (INIS)

    Al-Maghrabi, I.M.A.; Bin Aqil, A.O.; Chaalal, O.; Islam, M.R.

    1999-01-01

    Several strains of thermophilic bacteria were isolated from the environment of the United Arab Emirates. These bacteria show extraordinary resistance to heat and have their maximum growth rate around 60--80 C. This article investigates the potential of using these facultative bacteria for both in situ and ex situ bioremediation of petroleum contaminants. In a series of batch experiments, bacterial growth was observed using a computer image analyzer following a recently developed technique. These experiments showed clearly that the growth rate is enhanced in the presence of crude oil. This is coupled with a rapid degradation of the crude oil. These bacteria were found to be ideal for breaking down long-chain organic molecules at a temperature of 40 C, which is the typical ambient temperature of the Persian Gulf region. The same strains of bacteria are also capable of surviving in the presence of the saline environment that can prevail in both sea water and reservoir connate water. This observation prompted further investigation into the applicability of the bacteria in microbial enhanced oil recovery. In the United Arab Emirates, the reservoirs are typically at a temperature of around 85 C. Finally, the performance of the bacteria is tested in a newly developed bioreactor that uses continuous aeration through a transverse slotted pipe. This reactor also uses mixing without damaging the filamentous bacteria. In this process, the mechanisms of bioremediation are identified

  19. Arctic bioremediation

    International Nuclear Information System (INIS)

    Lidell, B.V.; Smallbeck, D.R.; Ramert, P.C.

    1991-01-01

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. Enhancing the biological degradation of hydrocarbon (bioremediation) by adding nutrients to the spill area has been demonstrated to be an effective cleanup tool in more temperate locations. However, this technique has never been considered for restoration in the Arctic because the process of microbial degradation of hydrocarbon in this area is very slow. The short growing season and apparent lack of nutrients in the gravel pads were thought to be detrimental to using bioremediation to cleanup Arctic oil spills. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes

  20. Mathematical modeling of the integrated process of mercury bioremediation in the industrial bioreactor

    OpenAIRE

    Głuszcz, Paweł; Petera, Jerzy; Ledakowicz, Stanisław

    2010-01-01

    The mathematical model of the integrated process of mercury contaminated wastewater bioremediation in a fixed-bed industrial bioreactor is presented. An activated carbon packing in the bioreactor plays the role of an adsorbent for ionic mercury and at the same time of a carrier material for immobilization of mercury-reducing bacteria. The model includes three basic stages of the bioremediation process: mass transfer in the liquid phase, adsorption of mercury onto activated carbon and ionic me...

  1. In silico Analysis for Laccase-mediated Bioremediation of the Emerging Pharmaceutical Pollutants

    Directory of Open Access Journals (Sweden)

    Anjali Singh

    2015-12-01

    Full Text Available Laccases, a copper oxidase enzyme, has been employed for bioremediation of anthropogenic pollutants in the recent past. Laccase has a broad range of substrate specificity which offers the prospect for screening in numerable xenobiotics. The present study was aimed to use protein-ligand docking as a tool for prediction of biodegradation of selected pharmaceutical pollutants. A comparative study was also done to determine the binding efficacy of bacterial and fungal laccase for those selected pollutants. The laccase-pollutant docking was carried out using HEX software. The docking scores of bacterial and fungal laccase for predefined pollutants were comparable to ABTS, a substrate for laccase, which suggested that laccase might be able to degrade emerging pharmaceutical pollutants. The docking analysis approach can be useful in prediction of binding competence of pharmaceutical pollutants with laccase for in situ laccase-mediated bioremediation.

  2. An evaluation of bioremediation of oiled sediments buried within a mudflat environment

    International Nuclear Information System (INIS)

    Swannell, R. P. J.; Mitchell, D. J.; Jones, D. M.; Willis, A. L.; Lee, K.

    1997-01-01

    An investigation was carried out to determine the potential of bioremediation to treat an oil-contaminated shoreline sediment in the southwest of England. The specific objective was to determine whether periodic additions of inorganic nitrate and phosphate could be used to enhance the biodegradation rate of weathered and emulsified Arabian Light crude oil-contaminated sediment stranded on the beach at a depth of about 15 cm. To measure the potential for successful treatment, changes in the chemical composition and concentration of residual hydrocarbons, microbial carbon dioxide production rates in situ and in the hydrocarbon-degrading microbial community, were monitored. Results showed that regular additions of inorganic nutrients significantly enhanced the rate of oil biodegradation in comparison with unfertilized oil sediments, indicating that bioremediation could be successful in treating buried oil in aerobic fine sediments.17 refs., 4 tabs., 4 figs

  3. Biosurfactant-enhanced soil bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Kosaric, N.; Lu, G.; Velikonja, J. [Univ. of Western Ontario, London, Ontario (Canada)

    1995-12-01

    Bioremediation of soil contaminated with organic chemicals is a viable alternative method for clean-up and remedy of hazardous waste sites. The final objective in this approach is to convert the parent toxicant into a readily biodegradable product which is harmless to human health and/or the environment. Biodegradation of hydrocarbons in soil can also efficiently be enhanced by addition or in-situ production of biosufactants. It was generally observed that the degradation time was shortened and particularly the adaptation time for the microbes. More data from our laboratories showed that chlorinated aromatic compounds, such as 2,4-dichlorophenol, a herbicide Metolachlor, as well as naphthalene are degraded faster and more completely when selected biosurfactants are added to the soil. More recent data demonstrated an enhanced biodegradation of heavy hydrocarbons in petrochemical sludges, and in contaminated oil when biosurfactants were present or were added prior to the biodegradation process.

  4. Arctic bioremediation

    International Nuclear Information System (INIS)

    Liddell, B.V.; Smallbeck, D.R.; Ramert, P.C.

    1991-01-01

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes. Discussed are the results of a laboratory bioremediation study which simulated microbial degradation of hydrocarbon under arctic conditions

  5. Multiple-reflection time-of-flight mass spectrometry for in situ applications

    Science.gov (United States)

    Dickel, T.; Plaß, W. R.; Lang, J.; Ebert, J.; Geissel, H.; Haettner, E.; Jesch, C.; Lippert, W.; Petrick, M.; Scheidenberger, C.; Yavor, M. I.

    2013-12-01

    Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼105) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>105), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed.

  6. Bioremediation protocols

    National Research Council Canada - National Science Library

    Sheehan, David

    1997-01-01

    ... . . .. .. . . . .. . . .. . . . . . .. . . . . . .. . . . .. . .. . . . . . . .. . . . .., . .. . . . . *... *.. . . . . . . .. . .. . . . . . . . .. .. .. . . . . . v IX PART I. OVERVIEW ., .,... . ,.. .. . . . . . . .. .. . . ., 7 1 Uses Emer of Bacteria Colleran in Bioremediation...

  7. Bioclogging Effects Relevant to In-Situ Bioremediation of Organic Contaminants

    Science.gov (United States)

    Bielefeldt, A. R.; Illangasekare, T.

    2002-05-01

    environments. The implications of ignoring bioclogging effects of the magnitude measured in the experimental systems when predicting contaminant plumes in the subsurface will be illustrated using simple models that incorporate biokinetics and hydrodynamic effects. The models will show the importance of including bioclogging effects when designing enhanced in-situ bioremediation systems.

  8. Postremediation bioremediation

    International Nuclear Information System (INIS)

    Brown, R.A.; Hicks, P.M.; Hicks, R.J.; Leahy, M.C.

    1995-01-01

    In applying remediation technology, an important question is when to stop operations. Conventional wisdom states that each site has a limit of treatability. Beyond a point, the site conditions limit access to residual contaminants and, therefore, treatment effectiveness. In the treatment of petroleum hydrocarbons, the issue in ceasing remedial operations is not what is the limit of treatment, but what should be the limit of effort. Because hydrocarbons are inherently biodegradable, there is a point in remediation where natural or intrinsic bioremediation is adequate to complete the remedial process. This point is reached when the rate of residual carbon release is the limiting factor, not the rate of oxygen or nutrient supply. At such a point, the rate and degree of remediation is the same whether an active system is being applied or whether nothing is being actively done. This paper presents data from several bioremediation projects where active remediation was terminated above the desired closure levels. These site data illustrate that intrinsic bioremediation is as effective in site closure as continued active remediation

  9. Quantifying Temporal Autocorrelations for the Expression of Geobacter species mRNA Gene Transcripts at Variable Ammonium Levels during in situ U(VI) Bioremediation

    Science.gov (United States)

    Mouser, P. J.

    2010-12-01

    In order to develop decision-making tools for the prediction and optimization of subsurface bioremediation strategies, we must be able to link the molecular-scale activity of microorganisms involved in remediation processes with biogeochemical processes observed at the field-scale. This requires the ability to quantify changes in the in situ metabolic condition of dominant microbes and associate these changes to fluctuations in nutrient levels throughout the bioremediation process. It also necessitates a need to understand the spatiotemporal variability of the molecular-scale information to develop meaningful parameters and constraint ranges in complex bio-physio-chemical models. The expression of three Geobacter species genes (ammonium transporter (amtB), nitrogen fixation (nifD), and a housekeeping gene (recA)) were tracked at two monitoring locations that differed significantly in ammonium (NH4+) concentrations during a field-scale experiment where acetate was injected into the subsurface to simulate Geobacteraceae in a uranium-contaminated aquifer. Analysis of amtB and nifD mRNA transcript levels indicated that NH4+ was the primary form of fixed nitrogen during bioremediation. Overall expression levels of amtB were on average 8-fold higher at NH4+ concentrations of 300 μM or more than at lower NH4+ levels (average 60 μM). The degree of temporal correlation in Geobacter species mRNA expression levels was calculated at both locations using autocorrelation methods that describe the relationship between sample semi-variance and time lag. At the monitoring location with lower NH4+, a temporal correlation lag of 8 days was observed for both amtB and nifD transcript patterns. At the location where higher NH4+ levels were observed, no discernable temporal correlation lag above the sampling frequency (approximately every 2 days) was observed for amtB or nifD transcript fluctuations. Autocorrelation trends in recA expression levels at both locations indicated that

  10. Effectiveness of bioremediation in reducing toxicity in oiled intertidal sediments

    International Nuclear Information System (INIS)

    Lee, K.; Tremblay, G.H.

    1995-01-01

    A 123-day field study was conducted with in situ enclosures to compare the effectiveness of bioremediation strategies based in inorganic and organic fertilizer additions to accelerate the biodegradation rates and reduce the toxicity of Venture trademark condensate stranded within sand-beach sediments. Comparison of the two fertilizer formulations with identical nitrogen and phosphorus concentrations showed that the organic fertilizer stimulated bacterial productivity within the oiled sediments to the greatest extent. However, detailed chemical analysis indicated that inorganic fertilizer additions were the most effective in enhancing condensate biodegradation rates. The Microtox reg-sign Solid-Phase Test (SPT) bioassay was determined to be sensitive to Venture Condensate in laboratory tests. Subsequent application of this procedure to oiled sediment in the field showed a reduction in sediment toxicity over time. However, the Microtox reg-sign bioassay procedure did not identify significant reductions in sediment toxicity following bioremediation treatment. An observed increase in toxicity following periodic additions of the organic fertilizer was attributed to rapid biodegradation rates of the fertilizer, which resulted in the production of toxic metabolic products

  11. In situ biorestauratie van een met olie verontreinigde bodem: Resultaten van het onderzoek in ongestoorde grondkolommen

    NARCIS (Netherlands)

    Scheuter AJ; Berg R van den; LBG

    1996-01-01

    Column experiments were carried out for the project "in situ bioremediation of an oil-polluted subsoil". The experiments were aimed at examining the possibility of remediating soil in situ with the help of microorganisms. The six undisturbed columns were filled at a location contaminated with petrol

  12. In situ pilot test for bioremediation of energetic compound-contaminated soil at a former military demolition range site.

    Science.gov (United States)

    Jugnia, Louis B; Manno, Dominic; Drouin, Karine; Hendry, Meghan

    2018-05-04

    Bioremediation was performed in situ at a former military range site to assess the performance of native bacteria in degrading hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitrotoluene (2,4-DNT). The fate of these pollutants in soil and soil pore water was investigated as influenced by waste glycerol amendment to the soil. Following waste glycerol application, there was an accumulation of organic carbon that promoted microbial activity, converting organic carbon into acetate and propionate, which are intermediate compounds in anaerobic processes. This augmentation of anaerobic activity strongly correlated to a noticeable reduction in RDX concentrations in the amended soil. Changes in concentrations of RDX in pore water were similar to those observed in the soil suggesting that RDX leaching from the soil matrix, and treatment with waste glycerol, contributed to the enhanced removal of RDX from the water and soil. This was not the case with 2,4-DNT, which was neither found in pore water nor affected by the waste glycerol treatment. Results from saturated conditions and Synthetic Precipitation Leaching Procedure testing, to investigate the environmental fate of 2,4-DNT, indicated that 2,4-DNT found on site was relatively inert and was likely to remain in its current state on the site.

  13. Bioremediation protocols

    National Research Council Canada - National Science Library

    Sheehan, David

    1997-01-01

    ..., .. . . . . .. ,. . . .. . . . . . . . .. . . . . .. . . .. . .. 3 2 Granular Nina Sludge Christiansen, Consortia lndra for Bioremediation, M. Mathrani, and Birgitte K. Ahring . 23 PART II PROTOCOLS...

  14. Bioremediation of diesel from a rocky shoreline in an arid tropical climate.

    Science.gov (United States)

    Guerin, Turlough F

    2015-10-15

    A non invasive sampling and remediation strategy was developed and implemented at shoreline contaminated with spilt diesel. To treat the contamination, in a practical, cost-effective, and safe manner (to personnel working on the stockpiles and their ship loading activity), a non-invasive sampling and remediation strategy was designed and implemented since the location and nature of the impacted geology (rock fill) and sediment, precluded conventional ex-situ and any in-situ treatment where drilling is required. A bioremediation process using surfactant, and added N & P and increased aeration, increased the degradation rate allowing the site owner to meet their regulatory obligations. Petroleum hydrocarbons decreased from saturation concentrations to less than detectable amounts at the completion of treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Integration of pneumatic fracturing with bioremediation from the enhanced removal of BTX from low permeability gasoline-contaminated soils

    International Nuclear Information System (INIS)

    Venkatraman, S.N.; Kosson, D.S.; Schuring, J.R.; Boland, T.M.

    1995-01-01

    A pilot-scale evaluation of the integrated pneumatic fracturing and bioremediation system was carried out to demonstrate the enhanced removal of BTX from a gasoline contaminated, low permeability soil formation. The fracturing enhanced subsurface permeability by an average of over 36 times, and established an extended bioremediation zone supporting aerobic, denitrifying and methanogenic populations. Subsurface amendment injections consisting of phosphate and nitrogen were made periodically over a 50-week period to stimulate microbial activity. Results indicate that 79% of the soil-phase BTX was removed during the field test, with over 85% of the mass removed attributable to bioremediation

  16. In-situ remediation of TCE by ERD in clay tills. Feasibility and performance of full-scale application insights gained through an integrated investigative approach for 2 sites

    OpenAIRE

    Broholm, Mette Martina; Damgaard, Ida; Chambon, Julie Claire Claudia; Manoli, Gabriele; Pade, Dorte Moon; Christiansen, Camilla Maymann; Binning, Philip John; Westergaard, Claus; Tsitonaki, Aikaterini; Christophersen, Mette; Kerrn-Jespersen, Henriette; Bjerg, Poul Løgstrup

    2012-01-01

    Background/Objectives. Remediation of trichloroethene (TCE) in clay and other low permeabil-ity geologic media, where groundwater flow occurs preferentially in higher permeability sand lenses or fractures, is a significant challenge. At older sites, much of the contaminant mass is pre-sent as a sorbed phase in the matrix due to matrix diffusion. The principal challenge for in situ remediation in clay is to achieve effective contact between contaminant and bioremediation addi-tives (e.g., orga...

  17. Bioremediation case study: Fuel-contaminated soil cleanup in the Marshall Islands

    International Nuclear Information System (INIS)

    Machanoff, R.

    1992-01-01

    Using microbes to degrade fuels in contaminated soils is becoming increasingly more attractive as an approach to environmental restoration. Removing contamination by traditional methods is costly, does not always eliminate the problem, and often just moves it somewhere else. Biodegradation of contaminants can often be accomplished in situ, resulting in the actual destruction of the contaminants by microbial conversion to harmless by-products. Bioremediation is not applicable to all forms of environmental contamination but has been demonstrated to be particularly effective on petroleum hydrocarbon based fuels. Bioremediation can offer a cost-effective means for site cleanup, particularly where challenging logistical considerations have to be factored into cleanup projects. Logistical considerations have made bioremediation the method of choice for the decontamination of fuel-containing soils on Kwajalein Island, Republic of the Marshall Islands. Kwajalein is located more than 2,100 miles west of Hawaii in the southernmost part of the North Pacific. The site of a major missile range of the Strategic Defense Command (SDC), Kwajalein has been the center of US defense activities for almost 50 years. The island is part of a typical coral atoll and is only 2.5 miles long and 0.5 miles wide. Mission-related activities over the past 5 decades have resulted in about 10% of the island being contaminated with diesel, gasoline, and jet fuels. SDC has executed an agreement with the Department of Energy for the Hazardous Waste Remedial Actions Program (HAZWRAP), a division of Martin Marietta Energy Systems, Inc., to assist the US Army Kwajalein Atoll (USAKA) in the management of the Base restoration activities on Kwajalein Atoll. HAZWRAP initiated sampling and feasibility studies to determine whether bioremediation was a viable choice for site cleanup at USAKA

  18. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    Science.gov (United States)

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  19. Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation.

    Science.gov (United States)

    Sun, Weimin; Li, Jiwei; Jiang, Lei; Sun, Zhilei; Fu, Meiyan; Peng, Xiaotong

    2015-10-01

    Successful bioremediation of oil pollution is based on a comprehensive understanding of the in situ physicochemical conditions and indigenous microbial communities as well as the interaction between microorganisms and geochemical variables. Nineteen oil-contaminated soil samples and five uncontaminated controls were taken from six major oilfields across different geoclimatic regions in China to investigate the spatial distribution of the microbial ecosystem. Microbial community analysis revealed remarkable variation in microbial diversity between oil-contaminated soils taken from different oilfields. Canonical correspondence analysis (CCA) further demonstrated that a suite of in situ geochemical parameters, including soil moisture and sulfate concentrations, were among the factors that influenced the overall microbial community structure and composition. Phylogenetic analysis indicated that the vast majority of sequences were related to the genera Arthrobacter, Dietzia, Pseudomonas, Rhodococcus, and Marinobacter, many of which contain known oil-degrading or oil-emulsifying species. Remarkably, a number of archaeal genera including Halalkalicoccus, Natronomonas, Haloterrigena, and Natrinema were found in relatively high abundance in some of the oil-contaminated soil samples, indicating that these Euryarchaeota may play an important ecological role in some oil-contaminated soils. This study offers a direct and reliable reference of the diversity of the microbial community in various oil-contaminated soils and may influence strategies for in situ bioremediation of oil pollution.

  20. Treatability testing of intrinsic bioremediation, biostimulation, and bioaugmentation of diesel-oil contaminated soil at 5 degrees C

    International Nuclear Information System (INIS)

    Wilson, J. J.

    1997-01-01

    The likely success of in-situ bioremediation on diesel-contaminated soil was studied at 5 degrees C under four conditions of soil amendments. The four conditions were: (1) intrinsic bioremediation where the soil received only water, (2) biostimulation with one application of slow-release fertilizer, (3) bioaugmentation with one application of fertilizer and a cold-adapted hydrocarbon-degrading bacterial culture, and (4) surfactant enhanced bioavailability, where the soil received one application of fertilizer and treatment with a biodegradable surfactant solution. All tests showed significant reduction in diesel range under aerobic conditions after a 40-day incubation. The intrinsic control (No.1) was least effective, with 66 per cent of extractable hydrocarbons (TEH) at 5 degrees C. The biostimulated soil (No.2) was most effective, allowing a reduction in TEH of 86 per cent. The bioaugmented soil and surfactant treated soil allowed TEH reduction of about 75 per cent. Based on these results, biostimulation with slow-release fertilizer will be implemented as the most cost-effective means of bioremediation, combined with appropriate monitoring of results. 2 refs., 3 tabs., 4 figs

  1. Bioremediation of petroleum contaminated soil

    International Nuclear Information System (INIS)

    Autry, A.R.; Ellis, G.M.

    1992-01-01

    This paper reports on bioremediation, which offers a cost-competitive, effective remediation alternative for soil contaminated with petroleum products. These technologies involve using microorganisms to biologically degrade organic constituents in contaminated soil. All bioremediation applications must mitigate various environmental rate limiting factors so that the biodegradation rates for petroleum hydrocarbons are optimized in field-relevant situations. Traditional bioremediation applications include landfarming, bioreactors, and composting. A more recent bioremediation application that has proven successful involves excavation of contaminated soil. The process involves the placement of the soils into a powerscreen, where it is screened to remove rocks and larger debris. The screened soil is then conveyed to a ribbon blender, where it is mixed in batch with nutrient solution containing nitrogen, phosphorus, water, and surfactants. Each mixed soil batch is then placed in a curing pile, where it remains undisturbed for the remainder of the treatment process, during which time biodegradation by naturally occurring microorganisms, utilizing biochemical pathways mediated by enzymes, will occur

  2. Bioremediation--Why doesn't it work sometimes?

    International Nuclear Information System (INIS)

    Block, R.; Stroo, H.; Swett, G.H.

    1993-01-01

    Biological treatment has rapidly become the technology of choice for remediation of soils contaminated by petroleum constituents. Since the mid-1980s, bioremediation has been used at more than 100 locations to cost-effectively remediate hundreds of thousands of cubic yards of contaminated soil. However, despite the excellent track record of bioremediation, during the past few years bioremediation was not successful at several sites. The same type of contaminated soils has been treated successfully at numerous other sites. The treatment process was the same, but bioremediation was not effective. Testing identified other sites where bioremediation was unsuccessful for remediating petroleum constituents, and the factors that contributed to the failures were explored in greater depth. This article outlines a quick and inexpensive screening technique that allows one to determine whether bioremediation is practical and also provides an assessment of the time and cost factors. It involves four steps: (1) Site study; (2) Regulatory analysis; (3) Biological screening; (4) Treatability testing. The methodology can be reduced to a set of decision trees to simplify the screening process

  3. Lindane Bioremediation Capability of Bacteria Associated with the Demosponge Hymeniacidon perlevis

    Directory of Open Access Journals (Sweden)

    Stabili Loredana

    2017-04-01

    Full Text Available Lindane is an organochlorine pesticide belonging to persistent organic pollutants (POPs that has been widely used to treat agricultural pests. It is of particular concern because of its toxicity, persistence and tendency to bioaccumulate in terrestrial and aquatic ecosystems. In this context, we assessed the role of bacteria associated with the sponge Hymeniacidon perlevis in lindane degradation. Seven bacteria isolates were characterized and identified. These isolates showed a remarkable capacity to utilize lindane as a sole carbon source leading to a percentage of residual lindane ranging from 3% to 13% after 12 days of incubation with the pesticide. The lindane metabolite, 1,3–6-pentachloro-cyclohexene, was identified as result of lindane degradation and determined by gas chromatography–mass spectrometry (GC–MS. The bacteria capable of lindane degradation were identified on the basis of the phenotypic characterization by morphological, biochemical and cultural tests, completed with 16S rDNA sequence analysis, and assigned to Mameliella phaeodactyli, Pseudovibrio ascidiaceicola, Oceanicaulis stylophorae, Ruegeria atlantica and to three new uncharacterized species. The results obtained are a prelude to the development of future strategies for the in situ bioremediation of lindane.

  4. Insight in the PCB-degrading functional community in long-term contaminated soil under bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Petric, Ines; Hrsak, Dubravka; Udikovic-Kolic, Nikolina [Ruder Boskovic Inst., Division for Marine and Environmental Research, Zagreb (Croatia); Fingler, Sanja [Inst. for Medical Research and Occupational Health, Zagreb (Croatia); Bru, David; Martin-Laurent, Fabrice [INRA, Univ. der Bourgogne, Soil and Environmental Microbiology, Dijon (France)

    2011-02-15

    A small-scale bioremediation assay was developed in order to get insight into the functioning of a polychlorinated biphenyl (PCB) degrading community during the time course of bioremediation treatment of a contaminated soil. The study was conducted with the aim to better understand the key mechanisms involved in PCB-removal from soils. Materials and methods Two bioremediation strategies were applied in the assay: (a) biostimulation (addition of carvone as inducer of biphenyl pathway, soya lecithin for improving PCB bioavailability, and xylose as supplemental carbon source) and (b) bioaugmentation with selected seed cultures TSZ7 or Rhodococcus sp. Z6 originating from the transformer station soil and showing substantial PCB-degrading activity. Functional PCB-degrading community was investigated by using molecular-based approaches (sequencing, qPCR) targeting bphA and bphC genes, coding key enzymes of the upper biphenyl pathway, in soil DNA extracts. In addition, kinetics of PCBs removal during the bioremediation treatment was determined using gas chromatography mass spectrometry analyses. Results and discussion bphA-based phylogeny revealed that bioremediation affected the structure of the PCB-degrading community in soils, with Rhodococcus-like bacterial populations developing as dominant members. Tracking of this population further indicated that applied bioremediation treatments led to its enrichment within the PCB-degrading community. The abundance of the PCB-degrading community, estimated by quantifying the copy number of bphA and bphC genes, revealed that it represented up to 0.3% of the total bacterial community. All bioremediation treatments were shown to enhance PCB reduction in soils, with approximately 40% of total PCBs being removed during a 1-year period. The faster PCB reduction achieved in bioaugmented soils suggested an important role of the seed cultures in bioremediation processes. Conclusions The PCBs degrading community was modified in response to

  5. Microseism Induced by Transient Release of In Situ Stress During Deep Rock Mass Excavation by Blasting

    Science.gov (United States)

    Yang, Jianhua; Lu, Wenbo; Chen, Ming; Yan, Peng; Zhou, Chuangbing

    2013-07-01

    During deep rock mass excavation with the method of drill and blast, accompanying the secession of rock fragments and the formation of a new free surface, in situ stress on this boundary is suddenly released within several milliseconds, which is termed the transient release of in situ stress. In this process, enormous strain energy around the excavation face is instantly released in the form of kinetic energy and it inevitably induces microseismic events in surrounding rock masses. Thus, blasting excavation-induced microseismic vibrations in high-stress rock masses are attributed to the combined action of explosion and the transient release of in situ stress. The intensity of stress release-induced microseisms, which depends mainly on the magnitude of the in situ stress and the dimension of the excavation face, is comparable to that of explosion-induced vibrations. With the methods of time-energy density analysis, amplitude spectrum analysis, and finite impulse response (FIR) digital filter, microseismic vibrations induced by the transient release of in situ stress were identified and separated from recorded microseismic signals during a blast of deep rock masses in the Pubugou Hydropower Station. The results show that the low-frequency component in the microseismic records results mainly from the transient release of in situ stress, while the high-frequency component originates primarily from explosion. In addition, a numerical simulation was conducted to demonstrate the occurrence of microseismic events by the transient release of in situ stress, and the results seem to have confirmed fairly well the separated vibrations from microseismic records.

  6. In situ diesel fuel bioremediation: A case history

    International Nuclear Information System (INIS)

    Rhodes, D.K.; Burke, G.K.; Smith, N.; Clark, D.

    1995-01-01

    As a result of a ruptured fuel line, the study site had diesel fuel soil contamination and free product more than 2 ft (0.75 m) thick on the groundwater surface. Diesel fuel, which is composed of a high percentage of nonvolatile compounds, has proven difficult to remediate using conventional extraction remediation techniques. A number of remedial alternatives were reviewed, and the patented in situ biodegradation BioSparge SM technology was selected for the site and performed under license by a specialty contractor. BioSparge SM is a field-proven closed-loop (no vapor emissions) system that supplies a continuous, steady supply of oxygen, moisture, and additional heat to enhance microorganism activity. The system injects an enriched airstream beneath the groundwater surface elevation and/or within the contaminant plume and removes residual vapors from vadose zone soil within and above the contaminant plume. The technology has no air discharge, which is critical in areas where strict air discharge regulations apply. The focus of this paper is the viability of in situ biodegradation as an effective remediation alternative for reducing nonvolatile petroleum products

  7. Bioremediation of contaminated sites

    International Nuclear Information System (INIS)

    Schneider, C.

    1996-01-01

    By volatilizing aromatic compounds through aeration, landfarming is a recognized approach to the bioremediation of hydrocarbon contaminated soil. With this method, the soil is cultivated and aided with fertilizer amendment to provide a nutrient source for the microbial population involved in the degradation of hydrocarbons. The effectiveness of bioremediation will depend on several factors, including topographic features, soil properties, and biochemistry. Since bioremediation is inhibited by anaerobic conditions, sites that are sloped or have trenches to collect runoff water are preferable. As for soil properties, the percentage of sand should not be too high, but aeration is essential to avoid anaerobic conditions. Addition of straw is generally beneficial, and fertilizers with nitrogen, phosphorous and potassium will help degrading hydrocarbons. Temperature, pH, and salt content are also important factors since they facilitate microbial activity. 3 refs

  8. Microbial dynamics during and after in situ chemical oxidation of chlorinated solvents

    NARCIS (Netherlands)

    Sutton, N.B.; Atashgahi, S.; Wal, van der J.; Wijn, G.; Grotenhuis, J.T.C.; Smidt, H.; Rijnaarts, H.

    2015-01-01

    In situ chemical oxidation (ISCO) followed by a bioremediation step is increasingly being considered as an effective biphasic technology. Information on the impact of chemical oxidants on organohalide respiring bacteria (OHRB), however, is largely lacking. Therefore, we used quantitative PCR (qPCR)

  9. Kinetic modelling of a diesel-polluted clayey soil bioremediation process

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Engracia Lacasa; Merlo, Elena Moliterni [Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla La Mancha, 13071 Ciudad Real (Spain); Mayor, Lourdes Rodríguez [National Institute for Hydrogen Research, C/Fernando el Santo, 13500 Puertollano (Spain); Camacho, José Villaseñor, E-mail: jose.villasenor@uclm.es [Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla La Mancha, 13071 Ciudad Real (Spain)

    2016-07-01

    A mathematical model is proposed to describe a diesel-polluted clayey soil bioremediation process. The reaction system under study was considered a completely mixed closed batch reactor, which initially contacted a soil matrix polluted with diesel hydrocarbons, an aqueous liquid-specific culture medium and a microbial inoculation. The model coupled the mass transfer phenomena and the distribution of hydrocarbons among four phases (solid, S; water, A; non-aqueous liquid, NAPL; and air, V) with Monod kinetics. In the first step, the model simulating abiotic conditions was used to estimate only the mass transfer coefficients. In the second step, the model including both mass transfer and biodegradation phenomena was used to estimate the biological kinetic and stoichiometric parameters. In both situations, the model predictions were validated with experimental data that corresponded to previous research by the same authors. A correct fit between the model predictions and the experimental data was observed because the modelling curves captured the major trends for the diesel distribution in each phase. The model parameters were compared to different previously reported values found in the literature. Pearson correlation coefficients were used to show the reproducibility level of the model. - Highlights: • A mathematical model is proposed to describe a soil bioremediation process. • The model couples mass transfer phenomena among phases with biodegradation. • Model predictions were validated with previous data reported by the authors. • A correct fit and correlation coefficients were observed.

  10. Kinetic modelling of a diesel-polluted clayey soil bioremediation process

    International Nuclear Information System (INIS)

    Fernández, Engracia Lacasa; Merlo, Elena Moliterni; Mayor, Lourdes Rodríguez; Camacho, José Villaseñor

    2016-01-01

    A mathematical model is proposed to describe a diesel-polluted clayey soil bioremediation process. The reaction system under study was considered a completely mixed closed batch reactor, which initially contacted a soil matrix polluted with diesel hydrocarbons, an aqueous liquid-specific culture medium and a microbial inoculation. The model coupled the mass transfer phenomena and the distribution of hydrocarbons among four phases (solid, S; water, A; non-aqueous liquid, NAPL; and air, V) with Monod kinetics. In the first step, the model simulating abiotic conditions was used to estimate only the mass transfer coefficients. In the second step, the model including both mass transfer and biodegradation phenomena was used to estimate the biological kinetic and stoichiometric parameters. In both situations, the model predictions were validated with experimental data that corresponded to previous research by the same authors. A correct fit between the model predictions and the experimental data was observed because the modelling curves captured the major trends for the diesel distribution in each phase. The model parameters were compared to different previously reported values found in the literature. Pearson correlation coefficients were used to show the reproducibility level of the model. - Highlights: • A mathematical model is proposed to describe a soil bioremediation process. • The model couples mass transfer phenomena among phases with biodegradation. • Model predictions were validated with previous data reported by the authors. • A correct fit and correlation coefficients were observed.

  11. Bioremediation potential of the Sava river water polluted by oil refinery wastewater

    International Nuclear Information System (INIS)

    Jaksic, B.; Matavulj, M.; Vukic, Lj.; Radnovic, D.

    2002-01-01

    Microbial enumeration is a screening-level tool which can be used to evaluate in-situ response of water microorganisms to petroleum hydrocarbon contamination as well as for evaluating enhanced bioremediation potential of petroleum hydrocarbon contamination. In this investigations the increase between 17- and 44-fold of number of heterotrophs in hydrocarbon contaminated the Sava River water when compared with the no contaminated river water have been recorded. The significant increase of number of facultative oligotrophs in the river Sava water downstream of wastewater discharge (between 70- and almost 100-fold higher number) direct to the conclusion that oligotrophic bacteria (adapted to the environments with low amount of easy-to-degrade nutrients, oligocarbophilic microorganisms) could be better indicator of water bioremediation potential than number of heterotrophic (THR) bacteria. Quantitative composition of heterotrophic, facultative oligotrophic, crude oil degrading, and other physiological groups of bacteria, being, as a rule, higher in samples taken downstream of the waste-water discharge, testify about high biodegradative potential of the River Sava microbial community, if the oil refinery wastewater is taken into consideration. (author)

  12. Bioremediation of soils containing petroleum hydrocarbons, chlorinated phenols, and polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Seech, A.; Burwell, S.; Marvan, I.

    1994-01-01

    Bench-scale treatability investigations, pilot-scale and full-scale bioremediation projects were conducted to evaluate Daramend trademark bioremediation of soils containing petroleum hydrocarbons, heavy oils, paraffins, chlorinated phenols and polycyclic aromatic hydrocarbons (PAHs). Bench-scale investigations were conducted using glass microcosms. Pilot-scale and full-scale demonstrations were conducted at industrial sites and included treatment of excavated soils and sediments in on-site cells constructed using synthetic liners and covered by steel/polyethylene structures as well as in-situ treatment. A total of approximately 5,000 tons of soil was treated. The soil treatment included organic soil amendments, specialized tillage/aeration apparatus, and strict control of soil moisture. The amendments are composed of naturally-occurring organic materials prepared to soil-specific particle size distributions, nutrient profiles, and nutrient-release kinetics. Bench-scale work indicated that in refinery soil containing high concentrations of heavy oils, extractable hydrocarbon concentrations could be rapidly reduced to industrial clean-up criteria, and that the hydrocarbons were fully mineralized with release of CO 2

  13. In-situ treatment of hydrocarbons contamination through enhanced bio-remediation and two phase extraction system

    International Nuclear Information System (INIS)

    Aglietto, I.; Brunero Bronzin, M.

    2005-01-01

    It happens frequently to find industrial site affected by contamination of subsoil and groundwater with consequent presence of free phase product floating on the water table. The remediation technologies in this case shall be properly selected and coordinated in a way that the interactions between each activities will help to decontaminate the site. The case study deals with an industrial site located near Turin, in Italy, of about 50 hectares of extension where has been found an area of about 4000 square meters with contamination of subsoil and groundwater. The compounds with higher concentrations are petroleum hydrocarbons found both in soil and in groundwater. Another big problem is represented by the presence of a layer of free product floating on the water table with a maximum measured thickness of 70 cm; this situation can be considered in fact one of the major difficulty in management of selected remediation technologies because the complete recover of the free phase is a priority for any kind of remediation system to apply subsequently. The present work is based upon the selection and implementation of a multiple treatment for definitive remediation of subsoil and groundwater. Free product recovery has been faced with a two-phase extraction technology, then for the remediation of subsoil we implemented a bio-venting system to improve biodegradation processes and finally for groundwater treatment we apply an enhanced in situ bio-remediation injecting oxygen release compounds directly into the aquifer. To reach these choices we have to pass through a complex activity of investigation of the site made up of more than 40 sampling point, 8 monitoring wells, about 140 analysis on subsoil samples and 10 on groundwater samples and one well used for an aquifer test. The preliminary design of the remediation system was therefore based on an extensive site characterization that included geological and geochemical, microbiological and hydrological data, together with

  14. Diffusion Study on Dissolved Hydrogen toward Effective Bioremediation of Chlorinated Ethenes in Aquitards

    Science.gov (United States)

    Yoshikawa, M.; Zhang, M.; Takeuchi, M.; Komai, T.

    2010-12-01

    In Japan, the demand for in-situ remediation of contaminated sediments is expected to increase in the future due to the recent amendment of Soil Contamination Countermeasures Act. The Japanese law requires remediating not only contaminated groundwater but also contaminated sediments including those in aquitards. In-situ remediation of contaminated aquitards has been a challenging issue and bioremediation is considered to be one of the effective techniques. In microbial degradation of chrolinated ethenes such as tetrachloroethene and trichloroethene under anaerobic environments, dissolved hydrogen plays an important role. The dechlorinating microbes utilize hydrogen and chlorinated ethenes as an electron donor and an electron accepter, respectively. The size of hydrogen molecule is extremely small and the diffusion rate of dissolved hydrogen in an aquitard would be the key factor that controls the process of microbial dechlorination. However, the diffusion behavior of dissolved hydrogen in subsurface sediments remains unclear. The purposes of this study are to develop a practically utilizable test apparatus, carry out a series of dissolved hydrogen diffusion tests on representative samples, and illustrate the applicability of bioremediation in aquitards. A completely leak-free apparatus was developed by using aluminum alloy and gas tight rubber. This apparatus is capable of testing specimens with a diameter as large as 100 mm by a length from 5 mm to 10 mm, depending on the maximum grain size within a test specimen. Preliminary tests have been performed with glass beads as an ideal material, commercially available kaolin clay, and core samples taken from a polluted site containing clay minerals. The effective diffusion coefficients of these samples were all on the order of 10E-10 m2/s, though their coefficients of permeability varied between the orders of 10E-2 and 10E-7 cm/s. These results showed that there was no obvious relationship between the effective

  15. Use of bioremediation and treatment of wetland for remediation of the accidental crude-oil spill of July 16, 2000 at the Petrobras Refinery Refinaria Presidente Getulio Vargas (REPAR), Araucaria, PR, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Millette, D. [Hydrogeo Plus Inc., Montreal, PQ (Canada); Falkiewicz, F.; Zamberlan, E. [Petrobras-REPAR, Araucaria (Brazil); Campos Carvalho, F.J.P. de [Universidade Federal do Parana, Curifiba (Brazil). Dept. de Solos; Neto, A.C.B.; Caicedo, N.O.L.; Motta Marques, D. [Universidad Federal do Rio Grande do Sul, Porto Alegre (Brazil). Instituto de pesquisas hidraulicas; Linhares, M. [Petrobras, Rio de Janeiro (Brazil)

    2003-07-01

    On July 16, 2000, a pipeline supplying oil to the PETROBRAS refinery Refinaria Presidente Getulio Vargas-REPAR, located in Araucaria, Brazil, ruptured. The resulting oil spill involved approximately 4 million litres of crude oil. Workers managed to retain a vast quantity of oil within a two-kilometre area called Ponto O. The banks and floodplain of a small stream, the Arroio Saldanha, were contaminated, as well as the soil of four small wetlands. The authors presented an overview of the remediation program implemented. They focused on the soil bioremediation and treatment of wetland programs. Some of the remediation technologies used were: in situ bioremediation, injection and recovery trenches, and treatment of wetland in the vicinity of the discharge. Most of the free product from the sector adjacent to the spill site seems to have been removed by the recovery trenches. The preliminary data obtained from soil monitoring points to the efficiency of in situ bioremediation. Wetland vegetation was successfully restored and hydrocarbons appear to have been removed from the groundwater. 2 figs.

  16. Bioremediation of Bunker C

    International Nuclear Information System (INIS)

    Emery, D.D.

    1992-01-01

    In the states of Washington and Oregon, the highest priority for waste management is now given to recycling, reuse and permanent solutions as opposed to landfill disposal. Bioremediation is recognized as a treatment of choice over other technologies that do not provide permanent solutions. From a business point of view, it is usually the most cost-effective. Bioremediation works extremely well for most common hydrocarbons including aviation fuel, heating oil and diesel oil. Bunker C, a high boiling point distillate, is the most recalcitrant hydrocarbon for treatment and is the topic of this paper. Bunker C lives up to its reputation of being a very recalcitrant hydrocarbon to biodegrade. The authors have demonstrated, however, that the soil matrix standards at industrial sites in Washington and Oregon can be achieved using new bioremediation techniques. These techniques are necessary over those typically used to biodegrade jet fuel, heating oil and diesel oil. These extra steps have been developed for our own use in our treatability laboratory

  17. Bioremediation of bunker C

    International Nuclear Information System (INIS)

    Emery, D.D.

    1992-01-01

    Bioremediation works extremely well for most common hydrocarbons including aviation fuel, heating oil and diesel oil. Bunker C, a high boiling point distillate, is the most recalcitrant hydrocarbon for treatment and is the topic of this paper. Bioremediation, Inc. has had an opportunity to perform two projects involving soil contaminated with bunker C. One was at a bulk terminal site which involved predominantly diesel, but also had bunker C contamination; the other was a paper-mill site which had exclusively bunker C contamination. This paper will address the authors' experiences at the paper-mill site. Bunker C lives up to its reputation of being a very recalcitrant hydrocarbon to biodegrade. They have demonstrated, however, that the soil matrix standards at industrial sites in Washington and Oregon can be achieved using new bioremediation techniques. These techniques are necessary over those typically used to biodegrade jet fuel, heating oil and diesel oil. These extra steps, as discussed later, have been developed for their own use in their treatability laboratory

  18. Soil and brownfield bioremediation.

    Science.gov (United States)

    Megharaj, Mallavarapu; Naidu, Ravi

    2017-09-01

    Soil contamination with petroleum hydrocarbons, persistent organic pollutants, halogenated organic chemicals and toxic metal(loid)s is a serious global problem affecting the human and ecological health. Over the past half-century, the technological and industrial advancements have led to the creation of a large number of brownfields, most of these located in the centre of dense cities all over the world. Restoring these sites and regeneration of urban areas in a sustainable way for beneficial uses is a key priority for all industrialized nations. Bioremediation is considered a safe economical, efficient and sustainable technology for restoring the contaminated sites. This brief review presents an overview of bioremediation technologies in the context of sustainability, their applications and limitations in the reclamation of contaminated sites with an emphasis on brownfields. Also, the use of integrated approaches using the combination of chemical oxidation and bioremediation for persistent organic pollutants is discussed. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Bioremediation, regulatory agencies and public acceptance of this technology

    International Nuclear Information System (INIS)

    Westlake, D. W. S.

    1997-01-01

    The technology of bioremediation, i.e. the utilization of microorganisms to degrade environmental pollutants, the dangers and consequences inherent in the large-scale use of microbial organisms in such processes, and the role of regulatory agencies in the utilization and exploitation of bioremediation technologies, were discussed. Factors influencing public acceptance of bioremediation as a satisfactory tool for cleaning up the environment vis-a-vis other existing and potential rehabilitation techniques were also reviewed. The ambiguity of regulatory agencies in the matter of bioremediation was noted. For example, there are many regulatory hurdles relative to the testing, use and approval of transgenic microorganisms for use in bioremediation. On the other hand, the use and release of engineered plants is considered merely another form of hybrid and their endorsement is proceeding rapidly. With regard to public acceptance, the author considered bioremediation technology as too recent, with not enough successful applications to attract public attention. Although the evidence suggests that bioremediation is environmentally safe, the efficacy, reliability and predictability of the various technologies have yet to be demonstrated. 25 refs

  20. DNAPL Bioremediation-RTDF. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    None

    2002-01-01

    The Bioremediation Working Group of the Remediation Technologies Development Forum is a consortium including General Electric, Beak International, Ciba-Geigy, Dow, DuPont, ICI Americas, Novartis, Zeneca, DOE, the U.S. Air Force and the EPA. Each partner in the consortium brings expertise as well as resources to conduct studies on the effectiveness of bioremediation in degrading contaminants in soil. Reactive Transport in Three Dimensions (RT3D) software is based on the premise that bioremediation processes can be designed and controlled like other chemical processes and is now being using for natural attenuation evaluation at several government and industrial chlorinated ethenes contaminated sites. Users simply enter the site-specific information to simulate the contaminant plume in the ground water and can then evaluate various bioremediation options

  1. Addendum to the Principles And Practices Manual. Loading Rates and Impacts of Substrate Delivery for Enhanced Anaerobic Bioremediation

    Science.gov (United States)

    2010-01-01

    attenuation MSDS material safety data sheet NAVFAC ESC Naval Facilities Engineering Command/Engineering Services Center NDMA N-nitrosodimethylamine...compounds (ER-1607, ER-200425, and ER- 201028). N-nitrosodimethylamine ( NDMA ) is used with propellants and is a carcinogen and emerging groundwater...contaminant at a number of DoD and DOE facilities. NDMA may be amendable to enhanced in situ bioremediation (Szecsody et al., 2009; Hatzinger et al., 2008

  2. Using a Consensus Conference to Characterize Regulatory Concerns Regarding Bioremediation of Radionuclides and Heavy Metals in Mixed Waste at DOE Sites

    International Nuclear Information System (INIS)

    Denise Lach; Stephanie Sanford

    2006-01-01

    A consensus workshop was developed and convened with ten state regulators to characterize concerns regarding emerging bioremediation technology to be used to clean-up radionuclides and heavy metals in mixed wastes at US DOE sites. Two questions were explored: integrated questions: (1) What impact does participation in a consensus workshop have on the knowledge, attitudes, and practices of state regulators regarding bioremediation technology? (2) How effective is a consensus workshop as a strategy for eliciting and articulating regulators concerns regarding the use of bioremediation to clean up radionuclides and heavy metals in mixed wastes at U.S. Department of Energy Sites around the county? State regulators met together for five days over two months to learn about bioremediation technology and develop a consensus report of their recommendations regarding state regulatory concerns. In summary we found that panel members: quickly grasped the science related to bioremediation and were able to effectively interact with scientists working on complicated issues related to the development and implementation of the technology; are generally accepting of in situ bioremediation, but concerned about costs, implementation (e.g., institutional controls), and long-term effectiveness of the technology; are concerned equally about technological and implementation issues; and believed that the consensus workshop approach to learning about bioremediation was appropriate and useful. Finally, regulators wanted decision makers at US DOE to know they are willing to work with DOE regarding innovative approaches to clean-up at their sites, and consider a strong relationship between states and the DOE as critical to any effective clean-up. They do not want perceive themselves to be and do not want others to perceive them as barriers to successful clean-up at their sites

  3. In situ air sparging for bioremediation of groundwater and soils

    International Nuclear Information System (INIS)

    Lord, D.; Lei, J.; Chapdelaine, M.C.; Sansregret, J.L.; Cyr, B.

    1995-01-01

    Activities at a former petroleum products depot resulted in the hydrocarbon contamination of soil and groundwater over a 30,000-m 2 area. Site remediation activities consisted of three phases: site-specific characterization and treatability study, pilot-scale testing, and full-scale bioremediation. During Phase 1, a series of site/soil/waste characterizations was undertaken to ascertain the degree of site contamination and to determine soil physical/chemical and microbiological characteristics. Treatability studies were carried out to simulate an air sparging process in laboratory-scale columns. Results indicated 42% mineral oil and grease removal and 94% benzene, toluene, ethylbenzene, and xylenes (BTEX) removal over an 8-week period. The removal rate was higher in the unsaturated zone than in the saturated zone. Phase 2 involved pilot-scale testing over a 550-m 2 area. The radius of influence of the air sparge points was evaluated through measurements of dissolved oxygen concentrations in the groundwater and of groundwater mounding. A full-scale air sparging system (Phase 3) was installed on site and has been operational since early 1994. Physical/chemical and microbiological parameters, and contaminants were analyzed to evaluate the system performance

  4. Petroleum biodegradation and oil spill bioremediation

    International Nuclear Information System (INIS)

    Atlas, R.M.

    1995-01-01

    Hydrocarbon-utilizing microorganisms are ubiquitously distributed in the marine environment following oil spills. These microorganisms naturally biodegrade numerous contaminating petroleum hydrocarbons, thereby cleansing the oceans of oil pullutants. Bioremediation, which is accomplished by adding exogenous microbial populations or stimulating indigenous ones, attempts to raise the rates of degradation found naturally to significantly higher rates. Seeding with oil degraders has not been demonstrated to be effective, but addition of nitrogenous fertilizers has been shown to increase rates of petroleum biodegradation. In the case of the Exxon Valdez spill, the largest and most thoroughly studied application of bioremediation, the application of fertilizer (slow release or oleophilic) increased rates of biodegradation 3-5 times. Because of the patchiness of oil, an internally conserved compound, hopane, was critical for demonstrating the efficacy of bioremediation. Multiple regression models showed that the effectiveness of bioremediation depended upon the amount of nitrogen delivered, the concentration of oil, and time. (author)

  5. Bioremediation of marine oil pollution

    Energy Technology Data Exchange (ETDEWEB)

    Gutnick, D L

    1991-01-01

    This report presents an assessment of the scientific and technological developments in the area of bioremediation and biodegradation of marine oil pollution, as well as a number of allied technologies. Many of the topics discussed are presented in a summary of a workshop on bioremediation of marine oil pollution. The summary includes an overview of the formal presentations as well as the results of the working groups.

  6. [Bioremediation of oil-polluted soils: using the [13C]/[12C] ratio to characterize microbial products of oil hydrocarbon biodegradation].

    Science.gov (United States)

    Ziakun, A M; Brodskiĭ, E S; Baskunov, B P; Zakharchenko, V N; Peshenko, V P; Filonov, A E; Vetrova, A A; Ivanova, A A; Boronin, A M

    2014-01-01

    We compared data on the extent of bioremediation in soils polluted with oil. The data were obtained using conventional methods of hydrocarbon determination: extraction gas chromatography-mass spectrometry, extraction IR spectroscopy, and extraction gravimetry. Due to differences in the relative abundances of the stable carbon isotopes (13C/12C) in oil and in soil organic matter, these ratios could be used as natural isotopic labels of either substance. Extraction gravimetry in combination with characteristics of the carbon isotope composition of organic products in the soil before and after bioremediation was shown to be the most informative approach to an evaluation of soil bioremediation. At present, it is the only method enabling quantification of the total petroleum hydrocarbons in oil-polluted soil, as well as of the amounts of hydrocarbons remaining after bioremediation and those microbially transformed into organic products and biomass.

  7. Eliciting Public Attitudes Regarding Bioremediation Cleanup Technologies: Lessons Learned from a Consensus Workshop in Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Denise Lach, Principle Investigator; Stephanie Sanford, Co-P.I.

    2003-03-01

    . Objectives of the research included: (1) defining the range of concerns of the public toward different bioremediation strategies and long-term stewardship; (2) creating materials and delivery methods that address bioremediation issues; and (3) assessing the effectiveness of the consensus workshop in identifying concerns about bioremediation and involving the public in a dialogue about their use. After a brief description of the Idaho workshop, we discuss the range of concerns articulated by the participants about bioremediation, discuss the materials and delivery methods used to communicate information about bioremediation, and assess the effectiveness of the consensus workshop. In summary we found that panel members in general: understood complex technical issues, especially when given enough time in a facilitated discussion with experts; are generally accepting of in situ bioremediation, but concerned about costs, safety, and effectiveness of the technology; are concerned equally about technology and decision processes; and liked the consensus workshop approach to learning about bioremediation.

  8. Eliciting Public Attitudes Regarding Bioremediation Cleanup Technologies: Lessons Learned from a Consensus Workshop in Idaho

    International Nuclear Information System (INIS)

    Denise Lach, Principle Investigator; Stephanie Sanford, Co-P.I.

    2003-01-01

    ) defining the range of concerns of the public toward different bioremediation strategies and long-term stewardship; (2) creating materials and delivery methods that address bioremediation issues; and (3) assessing the effectiveness of the consensus workshop in identifying concerns about bioremediation and involving the public in a dialogue about their use. After a brief description of the Idaho workshop, we discuss the range of concerns articulated by the participants about bioremediation, discuss the materials and delivery methods used to communicate information about bioremediation, and assess the effectiveness of the consensus workshop. In summary we found that panel members in general: understood complex technical issues, especially when given enough time in a facilitated discussion with experts; are generally accepting of in situ bioremediation, but concerned about costs, safety, and effectiveness of the technology; are concerned equally about technology and decision processes; and liked the consensus workshop approach to learning about bioremediation

  9. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.

    Science.gov (United States)

    Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-03-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

  10. Office of Technology Development integrated program for development of in situ remediation technologies

    International Nuclear Information System (INIS)

    Peterson, M.

    1992-08-01

    The Department of Energy's Office of Technology Development has instituted an integrated program focused on development of in situ remediation technologies. The development of in situ remediation technologies will focus on five problem groups: buried waste, contaminated soils, contaminated groundwater, containerized wastes and underground detonation sites. The contaminants that will be included in the development program are volatile and non volatile organics, radionuclides, inorganics and highly explosive materials as well as mixtures of these contaminants. The In Situ Remediation Integrated Program (ISR IP) has defined the fiscal year 1993 research and development technology areas for focusing activities, and they are described in this paper. These R ampersand D topical areas include: nonbiological in situ treatment, in situ bioremediation, electrokinetics, and in situ containment

  11. Soil mesocosm studies on atrazine bioremediation.

    Science.gov (United States)

    Sagarkar, Sneha; Nousiainen, Aura; Shaligram, Shraddha; Björklöf, Katarina; Lindström, Kristina; Jørgensen, Kirsten S; Kapley, Atya

    2014-06-15

    Accumulation of pesticides in the environment causes serious issues of contamination and toxicity. Bioremediation is an ecologically sound method to manage soil pollution, but the bottleneck here, is the successful scale-up of lab-scale experiments to field applications. This study demonstrates pilot-scale bioremediation in tropical soil using atrazine as model pollutant. Mimicking field conditions, three different bioremediation strategies for atrazine degradation were explored. 100 kg soil mesocosms were set-up, with or without atrazine application history. Natural attenuation and enhanced bioremediation were tested, where augmentation with an atrazine degrading consortium demonstrated best pollutant removal. 90% atrazine degradation was observed in six days in soil previously exposed to atrazine, while soil without history of atrazine use, needed 15 days to remove the same amount of amended atrazine. The bacterial consortium comprised of 3 novel bacterial strains with different genetic atrazine degrading potential. The progress of bioremediation was monitored by measuring the levels of atrazine and its intermediate, cyanuric acid. Genes from the atrazine degradation pathway, namely, atzA, atzB, atzD, trzN and trzD were quantified in all mesocosms for 60 days. The highest abundance of all target genes was observed on the 6th day of treatment. trzD was observed in the bioaugmented mesocosms only. The bacterial community profile in all mesocosms was monitored by LH-PCR over a period of two months. Results indicate that the communities changed rapidly after inoculation, but there was no drastic change in microbial community profile after 1 month. Results indicated that efficient bioremediation of atrazine using a microbial consortium could be successfully up-scaled to pilot scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Case study: Bioremediation in the Aleutian Islands

    International Nuclear Information System (INIS)

    Steward, K.J.; Laford, H.D.

    1995-01-01

    This case study describes the design, construction, and operation of a bioremediation pile on Adak Island, which is located in the Aleutian Island chain. Approximately 1,900 m 3 of petroleum-contaminated soil were placed in the bioremediation pile. The natural bioremediation process was enhanced by an oxygen and nutrient addition system to stimulate microbial activity. Despite the harsh weather on the island, after the first 6 months of operation, laboratory analyses of soil samples indicated a significant (80%) reduction in diesel concentrations

  13. Intrinsic bioremediation of landfills interim report

    International Nuclear Information System (INIS)

    Brigmon, R.L.; Fliermans, C.B.

    1997-01-01

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP)

  14. Intrinsic bioremediation of landfills interim report

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L. [Westinghouse Savannah River Company, Aiken, SC (United States); Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  15. In-situ treatment of a mixed hydrocarbon plume through enhanced bio-remediation and a PRB system

    International Nuclear Information System (INIS)

    Aglietto, I.; Bargoni, G.; Bretti, L.L.

    2005-01-01

    (especially aerobic biodegradation), whereas fully-chlorinated compounds are only biodegradable via reductive pathways. Therefore, a mixed plume of both types of contaminants requires a combined approach with the application of different treatment technologies. The remediation strategy elaborated combines an enhanced bio-remediation of the hot spots with a permeable reactive barrier (PRB) in a funnel and gate configuration for the down-gradient plume containment. Pilot tests were carried out in order to assess the efficiency and feasibility of such technologies in the site of interest. The enhanced bio-remediation is going to be carried out by means of injections of hydrogen release compounds (HRC) and oxygen release compounds (ORC) for the biodegradation of chlorinated solvents and petroleum hydrocarbons respectively. A pilot test was conducted to determine the degradation rates of the different contaminants. The pilot test was monitored with a periodic sampling and analysis of the groundwater and with a continuous monitoring of the physical-chemical parameters (temperature, pH, conductivity, redox potential and dissolved oxygen) in the monitoring wells placed immediately down-gradient of the injection points. The tests showed the possibility to use the enhanced bio-remediation with the double aim to reduce the hot spot concentrations, in order to lower the contaminant load on the PRB, and to control the lateral spreading of the plume in the side regions. Permeable reactive barriers are passive groundwater treatment systems that are able to decontaminate groundwater as it flows through a permeable treatment medium under natural gradients. The main advantage of this technology over ex-situ and other in-situ groundwater remediation approaches is the reduced operation- and maintenance costs. For the permeable reactive barrier, a funnel and gate configuration was selected. This system uses low permeability materials (funnel) to direct groundwater towards a permeable treatment

  16. In-situ treatment of a mixed hydrocarbon plume through enhanced bio-remediation and a PRB system

    Energy Technology Data Exchange (ETDEWEB)

    Aglietto, I.; Bargoni, G.; Bretti, L.L. [Studio aglietto s.r.l. (Italy)

    2005-07-01

    (especially aerobic biodegradation), whereas fully-chlorinated compounds are only biodegradable via reductive pathways. Therefore, a mixed plume of both types of contaminants requires a combined approach with the application of different treatment technologies. The remediation strategy elaborated combines an enhanced bio-remediation of the hot spots with a permeable reactive barrier (PRB) in a funnel and gate configuration for the down-gradient plume containment. Pilot tests were carried out in order to assess the efficiency and feasibility of such technologies in the site of interest. The enhanced bio-remediation is going to be carried out by means of injections of hydrogen release compounds (HRC) and oxygen release compounds (ORC) for the biodegradation of chlorinated solvents and petroleum hydrocarbons respectively. A pilot test was conducted to determine the degradation rates of the different contaminants. The pilot test was monitored with a periodic sampling and analysis of the groundwater and with a continuous monitoring of the physical-chemical parameters (temperature, pH, conductivity, redox potential and dissolved oxygen) in the monitoring wells placed immediately down-gradient of the injection points. The tests showed the possibility to use the enhanced bio-remediation with the double aim to reduce the hot spot concentrations, in order to lower the contaminant load on the PRB, and to control the lateral spreading of the plume in the side regions. Permeable reactive barriers are passive groundwater treatment systems that are able to decontaminate groundwater as it flows through a permeable treatment medium under natural gradients. The main advantage of this technology over ex-situ and other in-situ groundwater remediation approaches is the reduced operation- and maintenance costs. For the permeable reactive barrier, a funnel and gate configuration was selected. This system uses low permeability materials (funnel) to direct groundwater towards a permeable treatment

  17. Transformation of a petroleum pollutant during soil bioremediation experiments

    Directory of Open Access Journals (Sweden)

    B. JOVANCICEVIC

    2008-05-01

    Full Text Available The experiment of ex situ soil bioremediation was performed at the locality of the Oil Refinery in Pančevo (alluvial formation of the Danube River, Serbia polluted with an oil type pollutant. The experiments of biostimulation, bioventilation and reinoculation of an autochthonous microbial consortium were performed during the six-month period (May–November 2006. The changes in the quantity and composition of the pollutant, or the bioremediation effect, were monitored by analysis of the samples of the polluted soil taken in time spans of two weeks. In this way, from the beginning until the end of the experiment, 12 samples were collected and marked as P1–P12 (Pančevo 1–Pančevo 12. The results obtained showed that more significant changes in the composition of the oil pollutant occurred only during the last phases of the experiment (P8–P12. The activity of microorganisms was reflected in the increase of the quantity of polar oil fractions, mainly fatty acid fractions. In this way, the quantity of total eluate increased, and the quantity of the insoluble residue was reduced to a minimum, whereby the oil pollutant was transformed to a form that could be removed more efficiently and more completely from the soil, as a segment of the environment.

  18. Comparison of Natural and Engineered Chlorophenol Bioremediation Enzymes

    Science.gov (United States)

    2015-02-26

    herein addresses the urgent need to incorporate biological strategies into environmental restoration efforts ( bioremediation ) that focus on the catalytic... Bioremediation Enzymes The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 dehaloperoxidase, bioremediation , halophenol, Amphitrite ornata, marine

  19. Cleaning up with genomics: applying molecular biology to bioremediation.

    Science.gov (United States)

    Lovley, Derek R

    2003-10-01

    Bioremediation has the potential to restore contaminated environments inexpensively yet effectively, but a lack of information about the factors controlling the growth and metabolism of microorganisms in polluted environments often limits its implementation. However, rapid advances in the understanding of bioremediation are on the horizon. Researchers now have the ability to culture microorganisms that are important in bioremediation and can evaluate their physiology using a combination of genome-enabled experimental and modelling techniques. In addition, new environmental genomic techniques offer the possibility for similar studies on as-yet-uncultured organisms. Combining models that can predict the activity of microorganisms that are involved in bioremediation with existing geochemical and hydrological models should transform bioremediation from a largely empirical practice into a science.

  20. Emerging technologies in bioremediation: constraints and opportunities.

    Science.gov (United States)

    Rayu, Smriti; Karpouzas, Dimitrios G; Singh, Brajesh K

    2012-11-01

    Intensive industrialisation, inadequate disposal, large-scale manufacturing activities and leaks of organic compounds have resulted in long-term persistent sources of contamination of soil and groundwater. This is a major environmental, policy and health issue because of adverse effects of contaminants on humans and ecosystems. Current technologies for remediation of contaminated sites include chemical and physical remediation, incineration and bioremediation. With recent advancements, bioremediation offers an environmentally friendly, economically viable and socially acceptable option to remove contaminants from the environment. Three main approaches of bioremediation include use of microbes, plants and enzymatic remediation. All three approaches have been used with some success but are limited by various confounding factors. In this paper, we provide a brief overview on the approaches, their limitations and highlights emerging technologies that have potential to revolutionise the enzymatic and plant-based bioremediation approaches.

  1. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  2. In Situ Remediation Integrated Program. In situ physical/chemical treatment technologies for remediation of contaminated sites: Applicability, developing status, and research needs

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Gates, D.D.; West, O.R.; Liang, L.; Donaldson, T.L.; Webb, O.F.; Corder, S.L.; Dickerson, K.S.

    1994-06-01

    The U.S. Department of Energy (DOE) In Situ Remediation Integrated Program (ISR IP) was established in June 1991 to facilitate the development and implementation of in situ remediation technologies for environmental restoration within the DOE complex. Within the ISR IP, four subareas of research have been identified: (1) in situ containment, (2) in situ physical/chemical treatment (ISPCT), (3) in situ bioremediation, and (4) subsurface manipulation/electrokinetics. Although set out as individual focus areas, these four are interrelated, and successful developments in one will often necessitate successful developments in another. In situ remediation technologies are increasingly being sought for environmental restoration due to the potential advantages that in situ technologies can offer as opposed to more traditional ex situ technologies. These advantages include limited site disruption, lower cost, reduced worker exposure, and treatment at depth under structures. While in situ remediation technologies can offer great advantages, many technology gaps exist in their application. This document presents an overview of ISPCT technologies and describes their applicability to DOE-complex needs, their development status, and relevant ongoing research. It also highlights research needs that the ISR IP should consider when making funding decisions

  3. Endophytic microorganisms--promising applications in bioremediation of greenhouse gases.

    Science.gov (United States)

    Stępniewska, Z; Kuźniar, A

    2013-11-01

    Bioremediation is a technique that uses microbial metabolism to remove pollutants. Various techniques and strategies of bioremediation (e.g., phytoremediation enhanced by endophytic microorganisms, rhizoremediation) can mainly be used to remove hazardous waste from the biosphere. During the last decade, this specific technique has emerged as a potential cleanup tool only for metal pollutants. This situation has changed recently as a possibility has appeared for bioremediation of other pollutants, for instance, volatile organic compounds, crude oils, and radionuclides. The mechanisms of bioremediation depend on the mobility, solubility, degradability, and bioavailability of contaminants. Biodegradation of pollutions is associated with microbial growth and metabolism, i.e., factors that have an impact on the process. Moreover, these factors have a great influence on degradation. As a result, recognition of natural microbial processes is indispensable for understanding the mechanisms of effective bioremediation. In this review, we have emphasized the occurrence of endophytic microorganisms and colonization of plants by endophytes. In addition, the role of enhanced bioremediation by endophytic bacteria and especially of phytoremediation is presented.

  4. Arctic bioremediation -- A case study

    International Nuclear Information System (INIS)

    Smallbeck, D.R.; Ramert, P.C.; Liddell, B.V.

    1994-01-01

    This paper discusses the use of bioremediation as an effective method to clean up diesel-range hydrocarbon spills in northern latitudes. The results of a laboratory study of microbial degradation of hydrocarbons under simulated arctic conditions showed that bioremediation can be effective in cold climates and led to the implementation of a large-scale field program. The results of 3 years of field testing have led to a significant reduction in diesel-range hydrocarbon concentrations in the contaminated area

  5. Microbial hydrocarbon degradation - bioremediation of oil spills

    Energy Technology Data Exchange (ETDEWEB)

    Atlas, R M [Louisville Univ., KY (United States). Dept. of Biology

    1991-01-01

    Bioremediation has become a major method employed in restoration of oil-polluted environments that makes use of natural microbial biodegradative activities. Bioremediation of petroleum pollutants overcomes the factors limiting rates of microbial hydrocarbon biodegradation. Often this involves using the enzymatic capabilities of the indigenous hydrocarbon-degrading microbial populations and modifying environmental factors, particularly concentrations of molecular oxygen, fixed forms of nitrogen and phosphate to achieve enhanced rates of hydrocarbon biodegradation. Biodegradation of oily sludges and bioremediation of oil-contaminated sites has been achieved by oxygen addition-e.g. by tilling soils in landfarming and by adding hydrogen peroxide or pumping oxygen into oiled aquifers along with addition of nitrogen- and phosphorous-containing fertilizers. The success of seeding oil spills with microbial preparations is ambiguous. Successful bioremediation of a major marine oil spill has been achieved based upon addition of nitrogen and phosphorus fertilizers. (author).

  6. The Laser Ablation Ion Funnel: Sampling for in situ Mass Spectrometry on Mars

    Science.gov (United States)

    Johnson, Paul V.; Hodyss, Robert; Tang, Keqi; Brinckerhoff, William B.; Smith, Richard D.

    2011-01-01

    A considerable investment has been made by NASA and other space agencies to develop instrumentation suitable for in situ analytical investigation of extra terrestrial bodies including various mass spectrometers (time-of-flight, quadrupole ion trap, quadrupole mass filters, etc.). However, the front-end sample handling that is needed to collect and prepare samples for interrogation by such instrumentation remains underdeveloped. Here we describe a novel approach tailored to the exploration of Mars where ions are created in the ambient atmosphere via laser ablation and then efficiently transported into a mass spectrometer for in situ analysis using an electrodynamic ion funnel. This concept would enable elemental and isotopic analysis of geological samples with the analysis of desorbed organic material a possibility as well. Such an instrument would be suitable for inclusion on all potential missions currently being considered such as the Mid-Range Rover, the Astrobiology Field Laboratory, and Mars Sample Return (i.e., as a sample pre-selection triage instrument), among others.

  7. Bioremediation of soil polluted with crude oil and its derivatives: Microorganisms, degradation pathways, technologies

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2012-01-01

    Full Text Available The contamination of soil and water with petroleum and its products occurs due to accidental spills during exploitation, transport, processing, storing and use. In order to control the environmental risks caused by petroleum products a variety of techniques based on physical, chemical and biological methods have been used. Biological methods are considered to have a comparative advantage as cost effective and environmentally friendly technologies. Bioremediation, defined as the use of biological systems to destroy and reduce the concentrations of hazardous waste from contaminated sites, is an evolving technology for the removal and degradation of petroleum hydrocarbons as well as industrial solvents, phenols and pesticides. Microorganisms are the main bioremediation agents due to their diverse metabolic capacities. In order to enhance the rate of pollutant degradation the technology optimizes the conditions for the growth of microorganisms present in soil by aeration, nutrient addition and, if necessary, by adding separately prepared microorganisms cultures. The other factors that influence the efficiency of process are temperature, humidity, presence of surfactants, soil pH, mineral composition, content of organic substance of soil as well as type and concentration of contaminant. This paper presents a review of our ex situ bioremediation procedures successfully implemented on the industrial level. This technology was used for treatment of soils contaminated by crude oil and its derivatives originated from refinery as well as soils polluted with oil fuel and transformer oil.

  8. Bioremediating silty soil contaminated by phenanthrene, pyrene ...

    African Journals Online (AJOL)

    ... followed in the order of their increasing molecular weight. The synergy of the bacterial isolates and the biosurfactant produced from B. vulgaris agrowaste could be used in environmental bioremediation of PAHs even in silty soil. Keywords: Benz(a)anthracene, benzo(a)pyrene, bioremediation, biosurfactant, Beta vulgaris, ...

  9. States' attitudes on the use of bioremediation

    International Nuclear Information System (INIS)

    Devine, K.; Graham, L.L.

    1995-01-01

    Results from a telephone survey of state government program coordinators and representatives from companies performing full-scale bioremediation shows differences among states in the use and degree of acceptance of bioremediation for environmental cleanup. The survey also found that states vary in the potential future direction of regulatory activity concerning bioremediation. The survey focused primarily on underground storage tank (UST) cleanups. Diminishing state UST cleanup funds have provided the impetus for many states to consider alternative cost-effective measures in order to continue with cleanups. In recent years, more than 30 states have either implemented programs that consider the cost-effectiveness of various cleanup measures, or are considering adoption of programs that are founded on risk-based corrective action. Less than a dozen states were considered as having made significant strides in innovative technology utilization. Forums whereby state groups can exchange ideas and experiences associated with the practical application of bioremediation will facilitate this nationwide movement towards cost-effective cleanup

  10. Predicting bioremediation of hydrocarbons: Laboratory to field scale

    International Nuclear Information System (INIS)

    Diplock, E.E.; Mardlin, D.P.; Killham, K.S.; Paton, G.I.

    2009-01-01

    There are strong drivers to increasingly adopt bioremediation as an effective technique for risk reduction of hydrocarbon impacted soils. Researchers often rely solely on chemical data to assess bioremediation efficiently, without making use of the numerous biological techniques for assessing microbial performance. Where used, laboratory experiments must be effectively extrapolated to the field scale. The aim of this research was to test laboratory derived data and move to the field scale. In this research, the remediation of over thirty hydrocarbon sites was studied in the laboratory using a range of analytical techniques. At elevated concentrations, the rate of degradation was best described by respiration and the total hydrocarbon concentration in soil. The number of bacterial degraders and heterotrophs as well as quantification of the bioavailable fraction allowed an estimation of how bioremediation would progress. The response of microbial biosensors proved a useful predictor of bioremediation in the absence of other microbial data. Field-scale trials on average took three times as long to reach the same endpoint as the laboratory trial. It is essential that practitioners justify the nature and frequency of sampling when managing remediation projects and estimations can be made using laboratory derived data. The value of bioremediation will be realised when those that practice the technology can offer transparent lines of evidence to explain their decisions. - Detailed biological, chemical and physical characterisation reduces uncertainty in predicting bioremediation.

  11. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    Lynn, J.

    2001-01-01

    The conversion of oil to environmentally benign chemicals such as water and carbon dioxide by 'hydrocarbon-eating' bacteria is described. The emphasis is on a new process to selectively increase the population of 'oil eating' bacteria, a development that became the foundation for the second-generation bioremediation accelerator, Inipol EAP-22. Second-generation bioremediation products focus on providing nitrogen and phosphorus, chemicals that are not present in crude oil in readily available form, but are essential for the synthesis of proteins, nucleic acids, phospholipids and the energy metabolism of the bacteria. Providing these chemicals in the proper amounts encourages the preferential growth of oil-degrading microbes already present in the local biomass, thus overcoming the major limiting factor for biodegradation. These second-generation bioremediation products also have strong oleophilic properties engineered into them, to assure that the nutrients essential for the bacteria are in contact with the oil. The first major test for second-generation bioremediation accelerators came with the clean-up of the oil spill from the Exxon Valdez, a disaster that contaminated more than 120 kilometres of Alaskan beaches along the shores of Prince William Sound. The Inipol EAP-22 successfully held the nutrients in contact with the oil for the duration of the treatment period, despite constant exposure to the washing action of the surf and occasional heavy rainstorms. Today, the accelerator is routinely used in cleaning up all types of ordinary spills including diesel fuel spills along railway right-of-ways, truck yards and refinery sludge. Conditions under which the application of the accelerator is likely to be most successful are described

  12. Review of in situ derivatization techniques for enhanced bioanalysis using liquid chromatography with mass spectrometry.

    Science.gov (United States)

    Baghdady, Yehia Z; Schug, Kevin A

    2016-01-01

    Accurate and specific analysis of target molecules in complex biological matrices remains a significant challenge, especially when ultra-trace detection limits are required. Liquid chromatography with mass spectrometry is often the method of choice for bioanalysis. Conventional sample preparation and clean-up methods prior to the analysis of biological fluids such as liquid-liquid extraction, solid-phase extraction, or protein precipitation are time-consuming, tedious, and can negatively affect target recovery and detection sensitivity. An alternative or complementary strategy is the use of an off-line or on-line in situ derivatization technique. In situ derivatization can be incorporated to directly derivatize target analytes in their native biological matrices, without any prior sample clean-up methods, to substitute or even enhance the extraction and preconcentration efficiency of these traditional sample preparation methods. Designed appropriately, it can reduce the number of sample preparation steps necessary prior to analysis. Moreover, in situ derivatization can be used to enhance the performance of the developed liquid chromatography with mass spectrometry-based bioanalysis methods regarding stability, chromatographic separation, selectivity, and ionization efficiency. This review presents an overview of the commonly used in situ derivatization techniques coupled to liquid chromatography with mass spectrometry-based bioanalysis to guide and to stimulate future research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Engineering Deinococcus radiodurans R1 for bioremediation of non radioactive and radioactive wastes facilitated by comparative genomics with Cupriavidus metallidurans CH34

    International Nuclear Information System (INIS)

    Badri, Hanene; Sghaier, Haitham; Barkallah, Insaf; Ben Salem, Issam; Wafa; Essouiss, Imen; Saied, Nadia; Saidi, M.; Gatri, Faten; Gatri, Maher; Boadabous, Abdellatifs; Leys, Natalie

    2009-01-01

    Deinococcus radiodurans R1 is a poly-extremophile for which a system of genetic transformation and manipulation has been developed and it is being engineered for in situ bioremediation of wastes particularly for cleanup of radioactive waste sites. In this study, additional attempts have been made to evaluate ''bioremediation determinants'' in the genome of D. radiodurans using a comparative-genomic approach with Cupriavidus metallidurans CH34, a multiple metal resistant bacterium. This resulted in the delineation of a set of ORFs that are common or peculiar to C. metallidurans and D. radiodurans. We identified 12 ORFs related to multidrug resistance efflux pumps as a special feature of C. metallidurans compared to D. radiodurans, which is the subject of further experimental work

  14. Bioremediation of hydrocarbon contaminated surface water, groundwater, and soils

    International Nuclear Information System (INIS)

    Piotrowski, M.R.

    1991-01-01

    Bioremediation is currently receiving considerable attention as a remediation option for sites contaminated with hazardous organic compounds. There is an enormous amount of interest in bioremediation, and numerous journals now publish research articles concerning some aspect of the remediation approach. A review of the literature indicates that two basic forms of bioremediation are currently being practiced: the microbiological approach and the microbial ecology approach. Each form has its advocates and detractors, and the microbiological approach is generally advocated by most of the firms that practice bioremediation. In this paper, the merits and disadvantages of these forms are reviewed and a conceptual approach is presented for assessing which form may be most useful for a particular contaminant situation. I conclude that the microbial ecology form of bioremediation may be the most useful for the majority of contaminant situations, and I will present two case histories in support of this hypothesis

  15. Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, M.J.; VerBerkmoes, N.C.; Williams, K.H.; Callister, S.J.; Mouser, P.J.; Elifantz, H.; N' Guessan, A.L.; Thomas, B.C.; Nicora, C.D.; Shah, M.B.; Lipton, M.S.; Lovley, D.R.; Hettich, R.L.; Long, P.E.; Banfield, J.F.; Abraham, P.

    2009-08-01

    Implementation of uranium bioremediation requires methods for monitoring the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here, we report a proteomics-based approach for simultaneously documenting the strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO, aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching liquid chromatography-tandem mass spectrometry spectra to peptides predicted from seven isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and Geobacter bemidjiensis-like strains and later possible emergence of M21 and G. bemidjiensis-like strains more closely related to Geobacter lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-coenzyme A and pyruvate for central metabolism, while abundant peptides matching tricarboxylic acid cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics-independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.

  16. Bioremediation of oil-contaminated soils: A recipe for success

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbach, S.A.

    1995-12-31

    Bioremediation of land crude oil and lube oil spills is an effective and economical option. Other options include road spreading (where permitted), thermal desorption, and off-site disposal. The challenge for environment and operations managers is to select the best approach for each remediation site. Costs and liability for off-site disposal are ever increasing. Kerr-McGee`s extensive field research in eastern and western Texas provides the data to support bioremediation as a legitimate and valid option. Both practical and economical bioremediation as a legitimate and valid option. Both practical and economical, bioremediation also offers a lower risk of, for example, Superfund clean-up exposure than off-site disposal.

  17. Chemometric assessment of enhanced bioremediation of oil contaminated soils

    DEFF Research Database (Denmark)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H.

    2013-01-01

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting...... relative removal of isoprenoids (e.g. norpristane, pristane and phytane). It is concluded that the CHEMSIC method is a valuable tool for assessing bioremediation efficiency....

  18. Summary performance assessment of in situ remediation technologies demonstrated at Savannah River

    International Nuclear Information System (INIS)

    Rosenberg, N.D.; Robinson, B.A.; Birdsell, K.H.; Travis, B.J.

    1994-06-01

    The Office of Technology Development (OTD) in the Department of Energy's (DOE) Office of Environmental Restoration and Waste Management is investigating new technologies for ''better, faster, cheaper, safer'' environmental remediation. A program at DOE's Savannah River site was designed to demonstrate innovative technologies for the remediation of volatile organic compounds (VOCs) at nonarid sites. Two remediation technologies, in situ air stripping and in situ bioremediation--both using horizontal wells, were demonstrated at the site between 1990--1993. This brief report summarizes the conclusions from three separate modeling studies on the performance of these technologies

  19. DEVELOPMENT OF BIOAVAILABILITY AND BIOKINETICS DETERMINATION METHODS FOR ORGANIC POLLUTANTS IN SOIL TO ENHANCE IN-SITU AND ON-SITE BIOREMEDIATION

    Science.gov (United States)

    Determination of biodegradation rates of organics in soil slurry and compacted soil systems is essential for evaluating the efficacy of bioremediation for treatment of contaminated soils. In this paper, a systematic protocol has been developed for evaluating bioknetic and transp...

  20. Bioremediation of diesel invert mud residues : annual report (1993-94)

    International Nuclear Information System (INIS)

    Aasen, A.K.; Bertram, H.L.; Chalupa, D.; Florence, L.Z.; Goski, B.C.; Guo, I.; Johnson, R.L.; Li, X.M.; Lofthaug, D.G.; McNabb, D.H.; Nguyen, H.V.; Norton, R.; Storey, J.; Xu, J.G.; Yeung, P.Y.; Danielson, R.M.

    1996-01-01

    Results achieved during 1993-1994 in a study of bioremediation of hydrocarbon and brine contaminated topsoil in a field-based bio-reactor at a gas processing plant in Nevis, Alberta were reviewed. Both laboratory and pilot field scale operations were conducted to study diesel invert mud residues (DIMR). DIMR was the second of three wastes studied. The other two were crude oil contaminated topsoil and flare pit sludge. Of the three wastes, DIMR had the highest concentration of hydrocarbons (mostly light ends with a significant portion of volatile compounds), and the highest level of soluble salts (mainly NaCl). Three treatments were tested in the field bio-reactor: (1) aggregation, (2) tillage, and (3) aeration. Salts were readily removed from the DIMR by leaching prior to the initiation of bioremediation. Aggregation did not produce large improvements in salt leaching. Tillage had a large impact on hydrocarbon reduction rate, while the effects of aggregation and aeration were not significant. Significant amounts of hydrocarbons were lost due to volatilization. Aerated cells lost about 10 per cent and non-aerated cells about 5 per cent of their total hydrocarbon pool. The fate of hydrocarbons from DIMR undergoing bioremediation was studied using the mass balance approach. Results showed that the aerated and non-aerated treatments had a significant effect on the ultimate fate of the hydrocarbons and on the amount of original hydrocarbon content that could be accounted for. 31 refs., 21 tabs., 39 figs

  1. Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides.

    Science.gov (United States)

    Peng, Weihua; Li, Xiaomin; Song, Jingxiang; Jiang, Wei; Liu, Yingying; Fan, Wenhong

    2018-04-01

    Bioremediation using microorganisms is a promising technique to remediate soil contaminated with heavy metals. In this study, Rhodobacter sphaeroides was used to bioremediate soils contaminated with cadmium (Cd) and zinc (Zn). The study found that the treatment reduced the overall bioavailable fractions (e.g., exchangeable and carbonate bound phases) of Cd and Zn. More stable fractions (e.g., Fe-Mn oxide, organic bound, and residual phases (only for Zn)) increased after bioremediation. A wheat seedling experiment revealed that the phytoavailability of Cd was reduced after bioremediation using R. sphaeroides. After bioremediation, the exchangeable phases of Cd and Zn in soil were reduced by as much as 30.7% and 100.0%, respectively; the Cd levels in wheat leaf and root were reduced by as much as 62.3% and 47.2%, respectively. However, when the soils were contaminated with very high levels of Cd and Zn (Cd 54.97-65.33 mg kg -1 ; Zn 813.4-964.8 mg kg -1 ), bioremediation effects were not clear. The study also found that R. sphaeroides bioremediation in soil can enhance the Zn/Cd ratio in the harvested wheat leaf and root overall. This indicates potentially favorable application in agronomic practice and biofortification. Although remediation efficiency in highly contaminated soil was not significant, R. sphaeroides may be potentially and practically applied to the bioremediation of soils co-contaminated by Cd and Zn. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. perspectives of bioremediation as a panacea for ecological pollution

    African Journals Online (AJOL)

    Global Journal

    the area of contaminated land and water by heavy metals and petroleum hydrocarbon has ... KEYWORDS: Bioremediation, environmental pollution, phytoremediation, rhizosphere, ..... Biotechnology and bioremediation: successes and.

  3. Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites

    International Nuclear Information System (INIS)

    Frick, C. M.; Farrell, R. E.; Germida, J. J.

    1999-01-01

    Literature on examples of phytoremediation techniques used in the in-situ remediation of soils contaminated by petroleum hydrocarbons is reviewed. The review includes discussion of the key mechanisms involved in each case, benefits, limitations and costs compared to alternative approaches, including natural attenuation, engineering and bioremediation. Review of the literature led to the conclusion that phytoremediation is an effective method for degrading and containing petroleum hydrocarbons in soil, and confirmed the ability of plants to transfer volatile petroleum hydrocarbons, such as napthalene, from the soil to the atmosphere via transpiration. The primary loss mechanism for the degradation of petroleum hydrocarbons appears to be microorganisms in the rhizosphere of plants. The available information also suggests that plants may degrade petroleum hydrocarbons directly, although the indirect role played by plants is far more common. These roles include supplying root exudates for microbial use, releasing root-associated enzymes that degrade contaminants in the soil, and altering soil to promote phytoremediation. BTEX compounds are most easily amenable to phytoremediation; large and lipophilic compounds such as four or five-ring polyaromatic hydrocarbons are more difficult to remediate. The limited information available suggests that phytoremediation is slightly less expensive than bioremediation, and several order of magnitude less than engineering techniques. In general, phytoremediation is faster than natural attenuation, but typically slower than engineering and bioremediation. On the other hand, it is less disruptive to the site than ex-situ engineering and bioremediation that involve excavation efforts. Phytoremediation is most effective with shallow contamination. Preliminary screenings indicate that there are several plant species, native and introduced, that may be used with some success for phytoremediation in the Prairie and Boreal Plains ecozones

  4. Contemporary enzyme based technologies for bioremediation: A review.

    Science.gov (United States)

    Sharma, Babita; Dangi, Arun Kumar; Shukla, Pratyoosh

    2018-03-15

    The persistent disposal of xenobiotic compounds like insecticides, pesticides, fertilizers, plastics and other hydrocarbon containing substances is the major source of environmental pollution which needs to be eliminated. Many contemporary remediation methods such as physical, chemical and biological are currently being used, but they are not sufficient to clean the environment. The enzyme based bioremediation is an easy, quick, eco-friendly and socially acceptable approach used for the bioremediation of these recalcitrant xenobiotic compounds from the natural environment. Several microbial enzymes with bioremediation capability have been isolated and characterized from different natural sources, but less production of such enzymes is a limiting their further exploitation. The genetic engineering approach has the potential to get large amount of recombinant enzymes. Along with this, enzyme immobilization techniques can boost the half-life, stability and activity of enzymes at a significant level. Recently, nanozymes may offer the potential bioremediation ability towards a broad range of pollutants. In the present review, we have described a brief overview of the microbial enzymes, different enzymes techniques (genetic engineering and immobilization of enzymes) and nanozymes involved in bioremediation of toxic, carcinogenic and hazardous environmental pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. An overview of the bioremediation of inorganic contaminants

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Gorby, Y.A.

    1995-01-01

    Bioremediation, or the biological treatment of wastes, usually is associated with the remediation of organic contaminants. Similarly, there is an increasing body of literature and expertise in applying biological systems to assist in the bioremediation of soils, sediments, and water contaminated with inorganic compounds including metals, radionuclides, nitrates, and cyanides. Inorganic compounds can be toxic both to humans and to organisms used to remediate these contaminants. However, in contrast to organic contaminants, most inorganic contaminants cannot be degraded, but must be remediated by altering their transport properties. Immobilization, mobilization, or transformation of inorganic contaminants via bioaccumulation, biosorption, oxidation, reduction, methylation, demethylation, metal-organic complexation, ligand degradation, and phytoremediation are the various processes applied in the bioremediation of inorganic compounds. This paper briefly describes these processes, referring to other contributors in this book as examples when possible, and summarize the factors that must be considered when choosing bioremediation as a cleanup technology for inorganics. Understanding the current state of knowledge as well as the limitations for bioremediation of inorganic compounds will assist in identifying and implementing successful remediation strategies at sites containing inorganic contaminants. 79 refs

  6. Cost effectiveness studies of environmental technologies: Volume 1

    International Nuclear Information System (INIS)

    Silva, E.M.; Booth, S.R.

    1994-02-01

    This paper examines cost effectiveness studies of environmental technologies including the following: (1) In Situ Air Stripping, (2) Surface Towed Ordinance Locator System, (3) Ditch Witch Horizontal Boring Technology, (4) Direct Sampling Ion Trap Mass Spectrometer, (5) In Situ Vitrification, (6) Site Characterization and Analysis Penetrometer System, (7) In Situ Bioremediation, and (8) SEAMIST Membrane System Technology

  7. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  8. Ex situ bioremediation of mineral oil in soils: Aerated pile treatment. Final report

    International Nuclear Information System (INIS)

    Graves, D.

    1998-04-01

    Under a contract with Southern Company Services, a pilot-scale evaluation of mineral oil biodegradation was conducted at Plant Mitchell. The evaluation consisted of two demonstrations to examine land treatment and aerated pile treatment of soil contaminated with the mineral insulating oil used in electrical transformers. Treatment of mineral oil contaminated soil is problematic in the State of Georgia and throughout the US because current practice is to excavate and landfill the contaminated soil. In many cases, the cost associated with these activities far exceeds the environmental risk of mineral oil in soil. This project was designed to evaluate the performance of bioremediation for the treatment of mineral oil in soil. Testing was carried out in a demonstration facility prepared by Georgia Power Company. The facility consisted of 12 independent treatment cells constructed on a concrete pad and covered with a roof

  9. Rapid characterization of agglomerate aerosols by in situ mass-mobility measurements.

    Science.gov (United States)

    Scheckman, Jacob H; McMurry, Peter H; Pratsinis, Sotiris E

    2009-07-21

    Transport and physical/chemical properties of nanoparticle agglomerates depend on primary particle size and agglomerate structure (size, fractal dimension, and dynamic shape factor). This research reports on in situ techniques for measuring such properties. Nanoparticle agglomerates of silica were generated by oxidizing hexamethyldisiloxane in a methane/oxygen diffusion flame. Upon leaving the flame, agglomerates of known electrical mobility size were selected with a differential mobility analyzer (DMA), and their mass was measured with an aerosol particle mass analyzer (APM), resulting in their mass fractal dimension, D(f), and dynamic shape factor, chi. Scanning and transmission electron microscopy (SEM/TEM) images were used to determine primary particle diameter and to qualitatively investigate agglomerate morphology. The DMA-APM measurements were reproducible within 5%, as determined by multiple measurements on different days under the same flame conditions. The effects of flame process variables (oxygen flow rate and mass production rate) on particle characteristics (D(f), and chi) were determined. All generated particles were fractal-like agglomerates with average primary particle diameters of 12-93 nm and D(f) = 1.7-2.4. Increasing the oxygen flow rate decreased primary particle size and D(f), while it increased chi. Increasing the production rate increased the agglomerate and primary particle sizes, and decreased chi without affecting D(f). The effects of oxygen flow rate and particle production rate on primary particle size reported here are in agreement with ex situ measurements in the literature, while the effect of process variables on agglomerate shape (chi) is demonstrated for the first time to our knowledge.

  10. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Ripp, S.; Nivens, D.E.; Ahn, Y.; Werner, C.; Jarrell, J. IV; Easter, J.P.; Cox, C.D.; Burlage, R.S.; Sayler, G.S.

    2000-03-01

    Pseudomonas fluorescens HK44 represents the first genetically engineered microorganism approved for field testing in the United States for bioremediation purposes. Strain HK44 harbors an introduced lux gene fused within a naphthalene degradative pathway, thereby allowing this recombinant microbe to bioluminescent as it degrades specific polyaromatic hydrocarbons such as naphthalene. The bioremediation process can therefore be monitored by the detection of light. P. fluorescens HK44 was inoculated into the vadose zone of intermediate-scale, semicontained soil lysimeters contaminated with naphthalene, anthracene, and phenanthrene, and the population dynamics were followed over an approximate 2-year period in order to assess the long-term efficacy of using strain HK44 for monitoring and controlling bioremediation processes. Results showed that P. fluorescens HK44 was capable of surviving initial inoculation into both hydrocarbon contaminated and uncontaminated soils and was recoverable from these soils 660 days post inoculation. It was also demonstrated that strain HK44 was capable of generating bioluminescence in response to soil hydrocarbon bioavailability. Bioluminescence approaching 166,000 counts/s was detected in fiber optic-based biosensor devices responding to volatile polyaromatic hydrocarbons, while a portable photomultiplier module detected bioluminescence at an average of 4300 counts/s directly from soil-borne HK44 cells within localized treatment areas. The utilization of lux-based bioreporter microorganisms therefore promises to be a viable option for in situ determination of environmental contaminant bioavailability and biodegradation process monitoring and control.

  11. Bioremediation of petroleum-contaminated soil: A Review

    Science.gov (United States)

    Yuniati, M. D.

    2018-02-01

    Petroleum is the major source of energy for various industries and daily life. Releasing petroleum into the environment whether accidentally or due to human activities is a main cause of soil pollution. Soil contaminated with petroleum has a serious hazard to human health and causes environmental problems as well. Petroleum pollutants, mainly hydrocarbon, are classified as priority pollutants. The application of microorganisms or microbial processes to remove or degrade contaminants from soil is called bioremediation. This microbiological decontamination is claimed to be an efficient, economic and versatile alternative to physicochemical treatment. This article presents an overview about bioremediation of petroleum-contaminated soil. It also includes an explanation about the types of bioremediation technologies as well as the processes.

  12. Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation.

    Directory of Open Access Journals (Sweden)

    Maria eGenovese

    2014-04-01

    Full Text Available The purpose of present study was the simulation of an oil spill accompanied by burial of significant amount of petroleum hydrocarbons (PHs in coastal sediments. Approximately 1,000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace fuel oil (6,500 ppm. The rapid consumption of oxygen by aerobic heterotrophs created highly reduced conditions in the sediments with subsequent recession of biodegradation rates. As follows, after three months of ageing, the anaerobic sediments did not exhibit any significant levels of biodegradation and more than 80% of added Bunker C fuel oil remained buried. Anaerobic microbial community exhibited a strong enrichment in sulfate-reducing PHs-degrading and PHs-associated Deltaproteobacteria. As an effective bioremediation strategy to clean up these contaminated sediments, we applied a Modular Slurry System (MSS allowing the containment of sediments and their physical-chemical treatment, e.g. aeration. Aeration for three months has increased the removal of main PHs contaminants up to 98%. As revealed by CARD-FISH, qPCR and 16S rRNA gene clone library analyses, addition of Bunker C fuel oil initially affected the activity of autochthonous aerobic obligate marine hydrocarbonoclastic bacteria (OMHCB, and after one month more than the third of microbial population was represented by Alcanivorax-, Cycloclasticus- and Marinobacter-related organisms. In the end of the experiment, the microbial community composition has returned to a status typically observed in pristine marine ecosystems with no detectable OMHCB present. Eco-toxicological bioassay revealed that the toxicity of sediments after treatment was substantially decreased. Thus, our studies demonstrated that petroleum-contaminated anaerobic marine sediments could efficiently be cleaned through an in situ oxygenation which stimulates their self-cleaning potential due to reawakening of allochtonous aerobic OMHCB.

  13. Bioremediation a promising technology for nuclear waste treatment

    International Nuclear Information System (INIS)

    Subba Rao, T.

    2015-01-01

    Microbes play a primordial role in completing various elemental cycles namely carbon, nitrogen, sulfur, which are necessary for sustainability of planet Earth. This natural capability of microbes is employed to transform manmade compounds to their elemental forms. Redeployment of microbes for specific tasks needs a re-engineering of microbial metabolism to accelerate transformation. The most widely used approach is genetic modification but this approach has resulted into grievous failures due to inability of genetically modified organism to survive in natural environment. Consequently, development of new approach towards bioremediation was conceptualized, where desired metabolic capability were achieved using consortia of microorganisms having complementary metabolism. Of late, the potential of biofilm communities for bioremediation processes has been realized since it has many advantages over whole cells, used as biocatalysts. Naturally immobilized microbial biofilms exclude the necessity of cell-immobilization as biofilm cells are already embedded in self-produced exopolymers. Moreover, biofilm-mediated bioremediation offers a proficient and safer alternative to planktonic cells-mediated bioremediation because cells in a biofilm are more robust to toxic materials present in the waste as they are embedded in the matrix that provides a physical barrier. This presentation will highlight the importance of planktonic and sessile bacteria in bioremediation of a few nuclear waste compounds. (author)

  14. Bioremediation: Application of slow-release fertilizers on low-energy shorelines

    International Nuclear Information System (INIS)

    Lee, K.; Tremblay, G.H.; Levy, E.M.

    1993-01-01

    In situ biodegradation, the activation of microbial processes capable of destroying contaminants where they are found in the environment, is a biological process that responds rapidly to changing environmental factors. Accordingly, in situ sediment enclosures were used to test the efficacy of selected nutrient formulations to enhance the biodegradation of a waxy crude oil in a low-energy shoreline environment. The addition of soluble inorganic fertilizers (ammonium nitrate and triple superphosphate) and slow-release nutrient formulations (sulfur-coated urea) stimulated microbial activity and prolonged the period of oil degradation, despite a decline in seasonal temperatures. Low temperatures reduced the permeability of the coating on the slow-release fertilizers, effectively suppressing nutrient release. Of the nutrient formulations evaluated, the authors recommend the application of granular slow-release fertilizers (such as sulfur-coated urea) when the overlying water temperatures are above 15 degrees C, and the application of soluble inorganic fertilizers (such as ammonium nitrate) at lower temperatures. Comprehensive analysis of the experimental results indicate that application protocols for bioremediation (form and type of fertilizer or type and frequency of application), be specifically tailored to account for differences in environmental parameters (including oil characteristics) at each contaminated site

  15. Polyhydroxyalkanoate as a slow-release carbon source for in situ bioremediation of contaminated aquifers: From laboratory investigation to pilot-scale testing in the field.

    Science.gov (United States)

    Pierro, Lucia; Matturro, Bruna; Rossetti, Simona; Sagliaschi, Marco; Sucato, Salvatore; Alesi, Eduard; Bartsch, Ernst; Arjmand, Firoozeh; Papini, Marco Petrangeli

    2017-07-25

    A pilot-scale study aiming to evaluate the potential use of poly-3-hydroxy-butyrate (PHB) as an electron donor source for in situ bioremediation of chlorinated hydrocarbons in groundwater was conducted. Compared with commercially available electron donors, PHB offers a restricted fermentation pathway (i.e., through acetic acid and molecular hydrogen) by avoiding the formation of any residual carbon that could potentially spoil groundwater quality. The pilot study was carried out at an industrial site in Italy, heavily contaminated by different chlorinated aliphatic hydrocarbons (CAHs). Prior to field testing, PHB was experimentally verified as a suitable electron donor for biological reductive dechlorination processes at the investigated site by microcosm studies carried out on site aquifer material and measuring the quantitative transformation of detected CAHs to ethene. Owing to the complex geological characteristics of the aquifer, the use of a groundwater circulation well (GCW) was identified as a potential strategy to enable effective delivery and distribution of electron donors in less permeable layers and to mobilise contaminants. A 3-screened, 30-m-deep GCW coupled with an external treatment unit was installed at the site. The effect of PHB fermentation products on the in situ reductive dechlorination processes were evaluated by quantitative real-time polymerase chain reaction (qPCR). The results from the first 4 months of operation clearly demonstrated that the PHB fermentation products were effectively delivered to the aquifer and positively influenced the biological dechlorination activity. Indeed, an increased abundance of Dehalococcoides mccartyi (up to 6.6 fold) and reduced CAH concentrations at the installed monitoring wells were observed. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Bioremediation of zirconium from aqueous solution by coriolus versicolor: process optimization

    International Nuclear Information System (INIS)

    Amin, M.; Bhatti, H. N.; Sadaf, S.

    2013-01-01

    In the present study the potential of live mycelia of Coriolus versicolor was explored for the removal of zirconium from simulated aqueous solution. Optimum experimental parameters for the bioremediation of zirconium using C. versicolor biomass have been investigated by studying the effect of mycelia dose, concentration of zirconium, contact time and temperature. The isothermal studies indicated that the ongoing bioremediation process was exothermic in nature and obeyed Langmuir adsorption isotherm model. The Gibbs free energy (ΔG), entropy (ΔS) and enthalpy (ΔH) of bioremediation were also determined. The result showed that bioremediation of zirconium by live C. versicolor was feasible and spontaneous at room temperature. The equilibrium data verified the involvement of chemisorption during the bioremediation. The kinetic data indicated the operation of pseudo-second order process during the biosorption of zirconium from aqueous solution. Maximum bioremediation capacity (110.75 mg/g) of C. versicolor was observed under optimum operational conditions: pH 4.5, biomass dose 0.05 mg/100 mL, contact time 6 h and temperature 30 degree C. The results showed that C. versicolor could be used for bioremediation of heavy metal ions from aqueous systems. (author)

  17. Bioremediation of contaminated surface water by immobilized Micrococcus roseus.

    Science.gov (United States)

    Li, H; Li, P; Hua, T; Zhang, Y; Xiong, X; Gong, Z

    2005-08-01

    The problems caused by contaminated surface water have gradually become more serious in recent years. Although various remediation technologies were investigated, unfortunately, no efficient method was developed. In this paper, a new bioremediation technology was studied using Micrococcus roseus, which was immobilized in porous spherical beads by an improved polyvinyl alcohol (PVA) - sodium alginate (SA) embedding method. The experimental results indicated that COD removal rate could reach 64.7 % within 72 hours when immobilized M. roseus beads were used, which was ten times as high as that of free cells. The optimum inoculation rate of immobilized M. roseus beads was 10 % (mass percent of the beads in water sample, g g(-1)). Suitable aeration was proved necessary to enhance the bioremediation process. The immobilized cells had an excellent tolerance to pH and temperature changes, and were also more resistant to heavy metal stress compared with free cells. The immobilized M. roseus beads had an excellent regeneration capacity and could be reused after 180-day continuous usage. The Scanning Electronic Microscope (SEM) analysis showed that the bead microstructure was suitable for M. roseus growth, however, some defect structures should still be improved.

  18. MTBE IN SITU BIODEGRADATION IN BIONETS USING ISOLITE, PM1, SLOW RELEASING OXYGEN AND AIR IN INDIAN COUNTRY

    Science.gov (United States)

    Methyl tert-Butyl Ether (MTBE), a gasoline additive, is a persistent, foul tasting chemical and more mobile in ground water than BTEX. Our objective was to determine if biologically active in situ Bionets could bioremediate MTBE. Seven Bionets, most containing 3 fractures each,...

  19. Evaluation of microbial systems for bioremediation of petroleum ...

    African Journals Online (AJOL)

    Bioremediation of phenolic compounds has been recognized as a potential solution for the disposal of phenolic compounds due to its scale ability, cost effectiveness and simplicity. The two species of Pseudomonas, P. aeruginosa and P. fluorescence were studied for their bioremediation potential on Refinery effluent with ...

  20. U.S. bioremediation market: Yesterday, today, and tomorrow

    International Nuclear Information System (INIS)

    Devine, K.

    1995-01-01

    The use of bioremediation for full-scale cleanup has increased dramatically throughout the past 10 years. This growth in activity is expected to continue through the year 2000. It is estimated that fewer than 10 companies offered field-level bioremedial services prior to 1985. Although the market today still is dominated by a small number of companies, the total number of firms claiming to offer services and/or products for bioremediation purposes has grown to over 1,000. It is estimated that aggregate bioremediation revenues for 1994 through 2000 will equal $2 to $3 billion (1994 dollars). This revenue will be generated in the initial part of this 7-year period primarily from underground storage cleanup, with revenues from hazardous waste sites becoming an increasingly important factor by accounting for the majority of revenues in the latter years. Market opportunities exist in technology development and implementation including biosparging, centralized treatment facilities for petroleum-contaminated soils, biofilters, and improvements in the cost-effectiveness of the technology

  1. Treatment of petroleum hydrocarbon polluted environment through bioremediation: a review.

    Science.gov (United States)

    Singh, Kriti; Chandra, Subhash

    2014-01-01

    Bioremediation play key role in the treatment of petroleum hydrocarbon contaminated environment. Exposure of petroleum hydrocarbon into the environment occurs either due to human activities or accidentally and cause environmental pollution. Petroleum hydrocarbon cause many toxic compounds which are potent immunotoxicants and carcinogenic to human being. Remedial methods for the treatment of petroleum contaminated environment include various physiochemical and biological methods. Due to the negative consequences caused by the physiochemical methods, the bioremediation technology is widely adapted and considered as one of the best technology for the treatment of petroleum contaminated environment. Bioremediation utilizes the natural ability of microorganism to degrade the hazardous compound into simpler and non hazardous form. This paper provides a review on the role of bioremediation in the treatment of petroleum contaminated environment, discuss various hazardous effects of petroleum hydrocarbon, various factors influencing biodegradation, role of various enzymes in biodegradation and genetic engineering in bioremediation.

  2. Phospholipid anaysis of extant microbiota for monitoring in situ bioremediation effectiveness

    International Nuclear Information System (INIS)

    Pinkart, H.C.; Ringelberg, D.B.; Stair, J.O.; Sutton, S.D..; Pfiffner, S.M.; White, D.C.

    1995-01-01

    Two sites undergoing bioremediation were studied using the signature lipid biomarker (SLB) technique. This technique isolates microbial lipid moieties specifically related to viable biomass and to both prokaryotic and eukaryotic biosynthetic pathways. The first site was a South Pacific atoll heavily contaminated with petroleum hydrocarbons. The second site was a mine waste reclamation area. The SLB technique was applied to quantitate directly the viable biomass, community structure, and nutritional/physiological status of the microbiota in the soils and subsurface sediments of these sites. All depths sampled at the Kwajalein Atoll site showed an increase in biomass that correlated with the co-addition of air, water, and nutrients. Monoenoic fatty acids increased in abundance with the nutrient amendment, which suggested an increase in gram-negative bacterial population. Ratios of specific phospholipid fatty acids indicative of nutritional stress decreased with the nutrient amendment. Samples taken from the mine reclamation site showed increases in total microbial biomass and in Thiobacillus biomass in the plots treated with lime and bactericide, especially when a cover soil was added. The plot treated with bactericide and buffered lime without the cover soil showed some decrease in Thiobacillus numbers, but was still slightly higher than that observed in the control plots

  3. Bioremediation of soil heavily contaminated with crude oil and its products: composition of the microbial consortium

    Directory of Open Access Journals (Sweden)

    JELENA S. MILIĆ

    2009-04-01

    Full Text Available Bioremediation, a process that utilizes the capability of microorganism to degrade toxic waste, is emerging as a promising technology for the treatment of soil and groundwater contamination. The technology is very effective in dealing with petroleum hydrocarbon contamination. The aim of this study was to examine the composition of the microbial consortium during the ex situ experiment of bioremediation of soil heavily contaminated with crude oil and its products from the Oil Refinery Pančevo, Serbia. After a 5.5-month experiment with biostimulation and bioventilation, the concentration of the total petroleum hydrocarbons (TPH had been reduced from 29.80 to 3.29 g/kg (89 %. In soil, the dominant microorganism population comprised Gram-positive bacteria from actinomycete-Nocardia group. The microorganisms which decompose hydrocarbons were the dominant microbial population at the end of the process, with a share of more than 80 % (range 107 CFU/g. On the basis of the results, it was concluded that a stable microbial community had been formed after initial fluctuations.

  4. Guidelines for the Bioremediation of Oil-Contaminated Salt Marshes

    Science.gov (United States)

    This document includes a review and critique of the literature and theories pertinent to oil biodegradation and nutrient dynamics and provides examples of bioremediation options and case studies of oil bioremediation in coastal wetland environments.

  5. Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils.

    Science.gov (United States)

    Sharma, Jitendra K; Gautam, Ravindra K; Nanekar, Sneha V; Weber, Roland; Singh, Brajesh K; Singh, Sanjeev K; Juwarkar, Asha A

    2018-06-01

    In recent years, microbial degradation and bioremediation approaches of polychlorinated biphenyls (PCBs) have been studied extensively considering their toxicity, carcinogenicity and persistency potential in the environment. In this direction, different catabolic enzymes have been identified and reported for biodegradation of different PCB congeners along with optimization of biological processes. A genome analysis of PCB-degrading bacteria has led in an improved understanding of their metabolic potential and adaptation to stressful conditions. However, many stones in this area are left unturned. For example, the role and diversity of uncultivable microbes in PCB degradation are still not fully understood. Improved knowledge and understanding on this front will open up new avenues for improved bioremediation technologies which will bring economic, environmental and societal benefits. This article highlights on recent advances in bioremediation of PCBs in soil. It is demonstrated that bioremediation is the most effective and innovative technology which includes biostimulation, bioaugmentation, phytoremediation and rhizoremediation and acts as a model solution for pollution abatement. More recently, transgenic plants and genetically modified microorganisms have proved to be revolutionary in the bioremediation of PCBs. Additionally, other important aspects such as pretreatment using chemical/physical agents for enhanced biodegradation are also addressed. Efforts have been made to identify challenges, research gaps and necessary approaches which in future, can be harnessed for successful use of bioremediation under field conditions. Emphases have been given on the quality/efficiency of bioremediation technology and its related cost which determines its ultimate acceptability.

  6. Electrolysis-driven bioremediation of crude oil-contaminated marine sediments.

    Science.gov (United States)

    Bellagamba, Marco; Cruz Viggi, Carolina; Ademollo, Nicoletta; Rossetti, Simona; Aulenta, Federico

    2017-09-25

    Bioremediation is an effective technology to tackle crude oil spill disasters, which takes advantage of the capacity of naturally occurring microorganisms to degrade petroleum hydrocarbons under a range of environmental conditions. The enzymatic process of breaking down oil is usually more rapid in the presence of oxygen. However, in contaminated sediments, oxygen levels are typically too low to sustain the rapid and complete biodegradation of buried hydrocarbons. Here, we explored the possibility to electrochemically manipulate the redox potential of a crude oil-contaminated marine sediment in order to establish, in situ, conditions that are conducive to contaminants biodegradation by autochthonous microbial communities. The proposed approach is based on the exploitation of low-voltage (2V) seawater electrolysis to drive oxygen generation (while minimizing chlorine evolution) on Dimensionally Stable Anodes (DSA) placed within the contaminated sediment. Results, based on a laboratory scale setup with chronically polluted sediments spiked with crude oil, showed an increased redox potential and a decreased pH in the vicinity of the anode of 'electrified' treatments, consistent with the occurrence of oxygen generation. Accordingly, hydrocarbons biodegradation was substantially accelerated (up to 3-times) compared to 'non-electrified' controls, while sulfate reduction was severely inhibited. Intermittent application of electrolysis proved to be an effective strategy to minimize the energy requirements of the process, without adversely affecting degradation performance. Taken as a whole, this study suggests that electrolysis-driven bioremediation could be a sustainable technology for the management of contaminated sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999; TOPICAL

    International Nuclear Information System (INIS)

    Hazen, Terry C.

    2000-01-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs

  8. Bioremediation evaluation of surface soils contaminated with organic compounds

    International Nuclear Information System (INIS)

    Tezak, J.; Miller, J.A.; Lawrence, A.W.; Keffer, R.E.; Weightman, R.; Hayes, T.D.

    1994-01-01

    This paper presents background information on bioremediation; information on biotechnologies that have been proven in other industries and that may be applicable to the natural gas industry; a protocol for assessing the feasibility of bioremediation; and, some preliminary results on some soils that were evaluated using the protocol. Background information related to natural gas production and processing sites and chemicals that are typically used are presented because both are important preliminary feasibility screening criteria. Applications of bioremediation to sites with similar chemicals such as refineries, wood treating plants, and former manufactured gas plants (MGP's) have been used for approximately 30 years, however bioremediation is not widely used to treat wellhead sites or natural gas production and processing sites. Examples of applications of bioremediation to non-natural gas industry sites are presented and the similarities, primarily chemical, are presented. The GRI developed an Accelerated Biotreatability Protocol for former MGP sites and it is currently being modified for application to the Exploration and Production (E and P) industry. The Accelerated Treatability Protocol is a decision-making framework to evaluate the potential full-scale biological treatment options. Preliminary results from some soils collected and evaluated using the protocol are presented

  9. Systems biology approach to bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.

    2012-06-01

    Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ‘black box’.

  10. Respons of archaeal communities in beach sediments to spilled oil and bioremediation.

    NARCIS (Netherlands)

    Roling, W.F.M.; Couo de Brito, I.R.; Swannell, R.P.J.; Head, I.M.

    2004-01-01

    While the contribution of Bacteria to bioremediation of oil-contaminated shorelines is well established, the response of Archaea to spilled oil and bioremediation treatments is unknown. The relationship between archaeal community structure and oil spill bioremediation was examined in laboratory

  11. Bioremediation techniques applied to aqueous media contaminated with mercury.

    Science.gov (United States)

    Velásquez-Riaño, Möritz; Benavides-Otaya, Holman D

    2016-12-01

    In recent years, the environmental and human health impacts of mercury contamination have driven the search for alternative, eco-efficient techniques different from the traditional physicochemical methods for treating this metal. One of these alternative processes is bioremediation. A comprehensive analysis of the different variables that can affect this process is presented. It focuses on determining the effectiveness of different techniques of bioremediation, with a specific consideration of three variables: the removal percentage, time needed for bioremediation and initial concentration of mercury to be treated in an aqueous medium.

  12. Molecular analysis of phosphate limitation in Geobacteraceae during the bioremediation of a uranium-contaminated aquifer

    Energy Technology Data Exchange (ETDEWEB)

    N' Guessan, L.A.; Elifantz, H.; Nevin, K.P.; Mouser, P.J.; Methe, B.; Woodard, T. L.; Manley, K.; Williams, K. H.; Wilkins, M. J.; Larsen, J.T.; Long, P. E.; Lovley, D. R.

    2009-09-01

    Nutrient limitation is an environmental stress that may reduce the effectiveness of bioremediation strategies, especially when the contaminants are organic compounds or when organic compounds are added to promote microbial activities such as metal reduction. Genes indicative of phosphate-limitation were identified via microarray analysis of chemostat cultures of Geobacter sulfureducens. This analysis revealed that genes in the pst-pho operon, which is associated with a high affinity phosphate uptake system in other microorganisms, had significantly higher transcript abundance under phosphate-limiting conditions, with the genes pstB and phoU the most up-regulated. Quantitative PCR analysis of pstB and phoU transcript levels in G. sulfurreducens grown in chemostats demonstrated that the expression of these genes increased when phosphate was removed from the culture medium. Transcripts of pstB and phoU within the subsurface Geobacter species predominating during an in situ uranium bioremediation field experiment were more abundant than in chemostat cultures of G. sulfurreducens that were not limited for phosphate. Addition of phosphate to incubations of subsurface sediments did not stimulate dissimilatory metal reduction. The added phosphate was rapidly adsorbed onto the sediments. The results demonstrate that Geobacter species can effectively reduce U(VI) even when experiencing suboptimal phosphate concentrations and that increasing phosphate availability with phosphate additions is difficult to achieve due to the high reactivity of this compound. This transcript-based approach developed for diagnosing phosphate limitation should be applicable to assessing the potential need for additional phosphate in other bioremediation processes.

  13. Evaluation of bio-remediation technologies for PAHs contaminated soils

    International Nuclear Information System (INIS)

    Garcia Frutos, F.J.; Diaz, J.; Rodriguez, V.; Escolano, O.; Garcia, S.; Perez, R.; Martinez, R.; Oromendia, R.

    2005-01-01

    Natural attenuation is a new concept related to polluted soil remediation. Can be understood like an 'in situ' bio-remediation process with low technical intervention. This low intervention may be in order to follow the behaviour of pollutants 'monitored natural attenuation' or include an optimisation process to improve biological remediation. The use of this technology is a fact for light hydrocarbon polluted soil, but few is known about the behaviour of polycyclic aromatic hydrocarbons (PAHs) in this process. PAHs are more recalcitrant to bio-remediation due to their physic-chemical characteristics, mainly hydrophobicity and electrochemical stability. PAHs are a kind of pollutants widely distributed in the environment, not only in the proximity of the source. This linked to the characteristics of some of them related to toxicity and mutagenicity implies its inclusion as target compounds from an environmental point of view. Their low availability, solubility and the strong tendency to bind to soil particle, especially to the organic phase affect PAHs biological mineralisation. So, if the pollutant is not available to microorganisms it can not be bio-degraded. Bioavailability can be assessed form several but complementary points of view: physico-chemical and biological. First including the term availability and the second to point out the capacity of soil microorganisms to mineralize PAHs. Availability and Bio-degradability must be determined, as well as the presence and activity of specific degraders among the soil organisms, once settled these points is necessary to study the biological requirements to optimise biodegradation kinetics of these compounds. In this work we present a study carried out on a soil, contaminated by PAHs, the study includes three main topics: bioavailability assessment (both term availability and bio-degradability), bio-remediation assessment, once optimised conditions for natural attenuation and finally a simulation of the

  14. MUTAGENICITY OF PAH-CONTAMINATED SOILS DURING BIOREMEDIATION

    Science.gov (United States)

    Bioremediation of contaminated soils is considered an effective method for reducing potential health hazards. Although it is assumed that (bio)remediation is a detoxifying process, degradation products of compounds such as polycyclic aromatic compounds (PACs) can be more toxic th...

  15. Orbitrap mass analyser for in situ characterisation of planetary environments: Performance evaluation of a laboratory prototype

    Science.gov (United States)

    Briois, Christelle; Thissen, Roland; Thirkell, Laurent; Aradj, Kenzi; Bouabdellah, Abdel; Boukrara, Amirouche; Carrasco, Nathalie; Chalumeau, Gilles; Chapelon, Olivier; Colin, Fabrice; Coll, Patrice; Cottin, Hervé; Engrand, Cécile; Grand, Noel; Lebreton, Jean-Pierre; Orthous-Daunay, François-Régis; Pennanech, Cyril; Szopa, Cyril; Vuitton, Véronique; Zapf, Pascal; Makarov, Alexander

    2016-10-01

    For decades of space exploration, mass spectrometry has proven to be a reliable instrumentation for the characterisation of the nature and energy of ionic and neutral, atomic and molecular species in the interplanetary medium and upper planetary atmospheres. It has been used as well to analyse the chemical composition of planetary and small bodies environments. The chemical complexity of these environments calls for the need to develop a new generation of mass spectrometers with significantly increased mass resolving power. The recently developed OrbitrapTM mass analyser at ultra-high resolution shows promising adaptability to space instrumentation, offering improved performances for in situ measurements. In this article, we report on our project named ;Cosmorbitrap; aiming at demonstrating the adaptability of the Orbitrap technology for in situ space exploration. We present the prototype that was developed in the laboratory for demonstration of both technical feasibility and analytical capabilities. A set of samples containing elements with masses ranging from 9 to 208 u has been used to evaluate the performance of the analyser, in terms of mass resolving power (reaching 474,000 at m/z 9) and ability to discriminate between isobaric interferences, accuracy of mass measurement (below 15 ppm) and determination of relative isotopic abundances (below 5%) of various samples. We observe a good agreement between the results obtained with the prototype and those of a commercial instrument. As the background pressure is a key parameter for in situ exploration of atmosphere planetary bodies, we study the effect of background gas on the performance of the Cosmorbitrap prototype, showing an upper limit for N2 in our set-up at 10-8 mbar. The results demonstrate the strong potential to adapt this technology to space exploration.

  16. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge.

    Science.gov (United States)

    Gu, Tingyue; Rastegar, Seyed Omid; Mousavi, Seyyed Mohammad; Li, Ming; Zhou, Minghua

    2018-08-01

    Bioleaching has been successfully used in commercial metal mining for decades. It uses microbes to biosolubilize metal-containing inorganic compounds such as metal oxides and sulfides. There is a growing interest in using bioleaching for bioremediation of solid wastes by removing heavy metals from ash and sewage sludge. This review presents the state of the art in bioleaching research for recovery of metals and bioremediation of solid wastes. Various process parameters such as reaction time, pH, temperature, mass transfer rate, nutrient requirement, pulp density and particle size are discussed. Selections of more effective microbes are assessed. Pretreatment methods that enhance bioleaching are also discussed. Critical issues in bioreactor scale-up are analyzed. The potential impact of advances in biofilm and microbiome is explained. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Monitoring for bioremediation efficacy: The marrow marsh experience

    International Nuclear Information System (INIS)

    Nadeau, R.; Singhvi, R.; Ryabik, J.; Lin, Yihua; Syslo, J.

    1993-01-01

    The US Environmental Protection Agency's Environmental Response Team analyzed samples taken from Marrow Marsh, Galveston Bay, Texas, to assess the efficacy of a bioremediation effort in the marsh following the Apex barges spill on July 28, 1990. Samples from the marsh had been collected over a 96-hour period following the first application of the bioremediation agent and then 25 days after the second application, which occurred 8 days after the first. Results of sample analyses to evaluate changes in the chemical characteristics of spilled oil failed to show evidence of oil degradation during the 96 hours after the initial treatment, but did show evidence of degradation 25 days after the second treatment-although differences between samples from treated and untreated sites were not evident. Because control areas had not been maintained after the second application, contamination by the bioremediation agent of previously untreated (control) areas may have occurred, perhaps negating the possibility of detecting differences between treated and control areas. Better preparedness to implement bioremediation and conduct monitoring might have increased the effectiveness of the monitoring effort

  18. Bioremediation potential of diesel-contaminated Libyan soil.

    Science.gov (United States)

    Koshlaf, Eman; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Taha, Mohamed; Haleyur, Nagalakshmi; Makadia, Tanvi H; Morrison, Paul D; Ball, Andrew S

    2016-11-01

    Bioremediation is a broadly applied environmentally friendly and economical treatment for the clean-up of sites contaminated by petroleum hydrocarbons. However, the application of this technology to contaminated soil in Libya has not been fully exploited. In this study, the efficacy of different bioremediation processes (necrophytoremediation using pea straw, bioaugmentation and a combination of both treatments) together with natural attenuation were assessed in diesel contaminated Libyan soils. The addition of pea straw was found to be the best bioremediation treatment for cleaning up diesel contaminated Libyan soil after 12 weeks. The greatest TPH degradation, 96.1% (18,239.6mgkg(-1)) and 95% (17,991.14mgkg(-1)) were obtained when the soil was amended with pea straw alone and in combination with a hydrocarbonoclastic consortium respectively. In contrast, natural attenuation resulted in a significantly lower TPH reduction of 76% (14,444.5mgkg(-1)). The presence of pea straw also led to a significant increased recovery of hydrocarbon degraders; 5.7log CFU g(-1) dry soil, compared to 4.4log CFUg(-1) dry soil for the untreated (natural attenuation) soil. DGGE and Illumina 16S metagenomic analyses confirm shifts in bacterial communities compared with original soil after 12 weeks incubation. In addition, metagenomic analysis showed that original soil contained hydrocarbon degraders (e.g. Pseudoxanthomonas spp. and Alcanivorax spp.). However, they require a biostimulant (in this case pea straw) to become active. This study is the first to report successful oil bioremediation with pea straw in Libya. It demonstrates the effectiveness of pea straw in enhancing bioremediation of the diesel-contaminated Libyan soil. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Bioremediation effectiveness following the Exxon Valdez spill

    International Nuclear Information System (INIS)

    Bragg, J.R.; Prince, R.G.; Harner, E.J.; Atlas, R.M.

    1993-01-01

    Statistical analyses of changes in the composition of oil residues remaining on beaches following the Exxon Valdez oil spill in Prince William Sound have demonstrated that bioremediation was effective in accelerating oil removal. Extensive data were obtained in a joint bioremediation monitoring program conducted during the summer of 1990 by the US Environmental Protection Agency (EPA), the State of Alaska, and Exxon. Composition changes in the oil relative to hopane, a trace oil component very resistant to biodegradation, provided the basis for accurately determining rates and extent of biodegradation. Results show that on fertilized beaches the rate of oil biodegradation was from three to more than five times faster than on adjacent, unfertilized control beaches. Further, most hydrocarbon components of the oil were biodegraded simultaneously, although at different rates. On one beach studied, about 60 percent of the total hydrocarbons detectable by gas chromatograph and 45 percent of the total PAH were biodegraded in three months. Bioremediation effectiveness was determined to depend primarily on the amount of nitrogen fertilizer delivered to the sediment per unit of oil present, time, and the extent of oil degradation prior to fertilizer application. The results suggest ways to improve future bioremediation application strategies and monitoring

  20. Development of a biomarker for Geobacter activity and strain composition: Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, M.J.; Callister, S.J.; Miletto, M.; Williams, K.H.; Nicora, C.D.; Lovley, D.R.; Long, P.E.; Lipton, M.S.

    2010-02-15

    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

  1. Evaluation of integrated biotreatment processes for in situ application

    International Nuclear Information System (INIS)

    Maher, A.; Lamptey, J.C.; Kennel, N.D.

    1994-01-01

    Petroleum hydrocarbon contamination of soils and groundwater associated with Underground Storage Tanks (UST) and aboveground fuel spills has become the focus of many bioremediation efforts. Two case studies in the application of in situ bioremediation to degrade petroleum hydrocarbons are presented. Site A has a history of fuel-handling practices associated with bulk petroleum storage and railroad yard activities. The majority of the hydrocarbon contamination appeared to be the result of past surface spills. Pre-treatment investigation indicated the presence of both volatile and semi- or non-volatile hydrocarbons in the soil. About 3,000 cubic yards of highly contaminated soils was excavated and is being treated in 2, lined, closed loop treatment cells. Groundwater is treated in situ with addition of nutritional cofactors and oxygen introduced through 3 infiltration galleries that are placed 6 feet deep and are each 100 feet in length. Groundwater is also recovered from 3 extraction wells placed 80 to 100 feet from each other, and subsequently treated in a bioreactor. Site B has a history of leaking underground gasoline storage tanks and spills from aboveground diesel fuel associated with county maintenance shed activities. One hundred cubic yards of soil contaminated with diesel components were excavated and treated aboveground in a lined cell. Gasoline contaminated groundwater and soil is being treated in situ by the addition of nutritional cofactors and oxygen through an infiltration gallery 4 feet below surface. The groundwater is recovered from an extraction gallery 92.5 feet down gradient of the infiltration gallery. Nutritional cofactors are introduced on a daily basis with on-site controls. Hydrocarbon reduction, up to 76%, was observed within 3 months of treatment startup in monitoring wells

  2. Electrokinetically Emplaced Amendments for Enhanced Bioremediation of Chlorinated Solvents in Clay: a Pilot Field Test

    Science.gov (United States)

    O'Carroll, D. M.; Inglis, A.; Head, N.; Chowdhury, A. I.; Garcia, A. N.; Reynolds, D. A.; Hogberg, D.; Edwards, E.; Lomheim, L.; Austrins, L. M.; Hayman, J.; Auger, M.; Sidebottom, A.; Eimers, J.; Gerhard, J.

    2017-12-01

    Bioremediation is an increasingly popular treatment technology for contaminated sites due to the proven success of biostimulation and bioaugmentation. However, bioremediation, along with other in-situ remediation technologies, faces limitations due to challenges with amendment delivery in low permeability media. Studies have suggested that electrokinetics (EK) can enhance the delivery of amendments in low permeability soils, such as clay. A pilot field trial was conducted to evaluate the potential for electrokinetics to support anaerobic dechlorination in clay by improving the transport of lactate and microorganisms. The study was performed on a former chlorinated solvent production facility in Ontario, Canada. Five transect cells were set up within the contaminated clay test area. Different amendments were injected in three of these cells to test various remediation strategies under the influence of EK. The other two cells were used as controls, one with EK applied and the other with no EK. This study focuses on the cell that applied electrokinetics for lactate emplacement followed by bioremediation (EK-Bio). This cell had an initial single injection of KB-1 bioaugmentation culture (SiREM, Canada) followed by injection of sodium lactate as a biostimulant while direct current was applied for 45 days between two electrodes 3 m apart. EK can enhance lactate migration by electromigration, while microorganisms have the potential to be influenced by electroosmosis of the bulk fluid or by electrophoresis of the charged bacteria themselves. All monitoring well locations in the EK-Bio cell exhibited evidence of successful lactate delivery corresponding to an increase in dissolved organic carbon. Reduction in chlorinated volatile organic compound (cVOC) concentrations, in particular 1,2-dichloroethane (1,2-DCA), were evident in monitoring locations coinciding with significant lactate breakthrough. Further investigation into the influence of EK-Bio on the abundance and

  3. IN SITU BIOREMEDIATION OF TRICHLOROETHYLENE USING BURKHOLDERIA CEPACIA G4 PR1: ANALYSIS OF MICROBIAL ECOLOGY PARAMETERS FOR RISK ASSESSMENT (RESEARCH BRIEF)

    Science.gov (United States)

    The introduction of bacteria into aquifers for bioremediation purposes requires monitoring of the persistence and activity of microbial populations for efficacy and risk assessment purposes. Burkholderia cepacia G4 PR1 constitutively expresses a toluene ortho-monooxygenase (tom) ...

  4. Techniques for assessing the performance of in situ bioreduction and immobilization of metals and radionuclides in contaminated subsurface environments

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, P.M.; Watson, D.B.; Blake, D.A.; Beard, L.P.; Brooks, S.C.; Carley, J.M.; Criddle, C.S.; Doll, W.E.; Fields, M.W.; Fendorf, S.E.; Geesey, G.G.; Ginder-Vogel, M.; Hubbard, S.S.; Istok, J.D.; Kelly, S.; Kemner, K.M.; Peacock, A.D.; Spalding, B.P.; White, D.C.; Wolf, A.; Wu, W.; Zhou, J.

    2004-11-14

    Department of Energy (DOE) facilities within the weapons complex face a daunting challenge of remediating huge below inventories of legacy radioactive and toxic metal waste. More often than not, the scope of the problem is massive, particularly in the high recharge, humid regions east of the Mississippi river, where the off-site migration of contaminants continues to plague soil water, groundwater, and surface water sources. As of 2002, contaminated sites are closing rapidly and many remediation strategies have chosen to leave contaminants in-place. In situ barriers, surface caps, and bioremediation are often the remedial strategies of chose. By choosing to leave contaminants in-place, we must accept the fact that the contaminants will continue to interact with subsurface and surface media. Contaminant interactions with the geosphere are complex and investigating long term changes and interactive processes is imperative to verifying risks. We must be able to understand the consequences of our action or inaction. The focus of this manuscript is to describe recent technical developments for assessing the performance of in situ bioremediation and immobilization of subsurface metals and radionuclides. Research within DOE's NABIR and EMSP programs has been investigating the possibility of using subsurface microorganisms to convert redox sensitive toxic metals and radionuclides (e.g. Cr, U, Tc, Co) into a less soluble, less mobile forms. Much of the research is motivated by the likelihood that subsurface metal-reducing bacteria can be stimulated to effectively alter the redox state of metals and radionuclides so that they are immobilized in situ for long time periods. The approach is difficult, however, since subsurface media and waste constituents are complex with competing electron acceptors and hydrogeological conditions making biostimulation a challenge. Performance assessment of in situ biostimulation strategies is also difficult and typically requires detailed

  5. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity

    Science.gov (United States)

    Chibwe, Leah; Geier, Mitra C.; Nakamura, Jun; Tanguay, Robert L.; Aitken, Michael D.; Simonich, Staci L. Massey

    2015-01-01

    The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (pre-bioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (post-bioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, post-bioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental to xicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, post-bioremediation (p bioremediation (p bioremediation. The increased toxicity measured post-bioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase post-bioremediation. However, the increased toxicity measured post-bioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded. PMID:26200254

  6. Combination of aquifer thermal energy storage and enhanced bioremediation

    NARCIS (Netherlands)

    Ni, Zhuobiao; Gaans, van Pauline; Rijnaarts, Huub; Grotenhuis, Tim

    2018-01-01

    Interest in the combination concept of aquifer thermal energy storage (ATES) and enhanced bioremediation has recently risen due to the demand for both renewable energy technology and sustainable groundwater management in urban areas. However, the impact of enhanced bioremediation on ATES is not

  7. In Situ SIMS and IR Spectroscopy of Well-Defined Surfaces Prepared by Soft Landing of Mass-Selected Ions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia

    2014-06-16

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.

  8. Bioremediation Potential of Terrestrial Fuel Spills †

    OpenAIRE

    Song, Hong-Gyu; Wang, Xiaoping; Bartha, Richard

    1990-01-01

    A bioremediation treatment that consisted of liming, fertilization, and tilling was evaluated on the laboratory scale for its effectiveness in cleaning up a sand, a loam, and a clay loam contaminated at 50 to 135 mg g of soil−1 by gasoline, jet fuel, heating oil, diesel oil, or bunker C. Experimental variables included incubation temperatures of 17, 27, and 37°C; no treatment; bioremediation treatment; and poisoned evaporation controls. Hydrocarbon residues were determined by quantitative gas...

  9. Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Bollag, J.M. [Penn State University, University Park, PA (USA). Soil Biochemical Lab.

    2003-07-01

    Biosurfactants are surface-active compounds synthesized by it wide variety of micro-organisms. They are molecules that have both hydrophobic and hydrophilic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures - lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs) can be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released to the environment its a result of spillage of oil and byproducts of coal treatment processes. The low water solubility of PAHs limits their availability to microorganisms, which is a potential problem for bioremediation of PAH-contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of PAHs has potential applications in bioremediation.

  10. Integrated electrochemical treatment systems for facilitating the bioremediation of oil spill contaminated soil.

    Science.gov (United States)

    Cheng, Ying; Wang, Liang; Faustorilla, Vilma; Megharaj, Mallavarapu; Naidu, Ravi; Chen, Zuliang

    2017-05-01

    Bioremediation plays an important role in oil spill management and bio-electrochemical treatment systems are supposed to represent a new technology for both effective remediation and energy recovery. Diesel removal rate increased by four times in microbial fuel cells (MFCs) since the electrode served as an electron acceptor, and high power density (29.05 W m -3 ) at current density 72.38 A m -3 was achieved using diesel (v/v 1%) as the sole substrate. As revealed by Scanning electron microscope images, carbon fibres in the anode electrode were covered with biofilm and the bacterial colloids which build the link between carbon fibres and enhance electron transmission. Trace metabolites produced during the anaerobic biodegradation were identified by gas chromatography-mass spectrometry. These metabolites may act as emulsifying agents that benefit oil dispersion and play a vital role in bioremediation of oil spills in field applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    Science.gov (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Extremophilic Microfactories: Applications in Metal and Radionuclide Bioremediation

    Directory of Open Access Journals (Sweden)

    Catarina R. Marques

    2018-06-01

    Full Text Available Metals and radionuclides (M&Rs are a worldwide concern claiming for resilient, efficient, and sustainable clean-up measures aligned with environmental protection goals and global change constraints. The unique defense mechanisms of extremophilic bacteria and archaea have been proving usefulness towards M&Rs bioremediation. Hence, extremophiles can be viewed as microfactories capable of providing specific and controlled services (i.e., genetic/metabolic mechanisms and/or products (e.g., biomolecules for that purpose. However, the natural physiological plasticity of such extremophilic microfactories can be further explored to nourish different hallmarks of M&R bioremediation, which are scantly approached in the literature and were never integrated. Therefore, this review not only briefly describes major valuable extremophilic pathways for M&R bioremediation, as it highlights the advances, challenges and gaps from the interplay of ‘omics’ and biological engineering to improve extremophilic microfactories performance for M&R clean-up. Microfactories’ potentialities are also envisaged to close the M&R bioremediation processes and shift the classical idea of never ‘getting rid’ of M&Rs into making them ‘the belle of the ball’ through bio-recycling and bio-recovering techniques.

  13. Bioremediation of soils contaminated by hydrocarbons at the coastal zone of “Punta Majagua”.

    Directory of Open Access Journals (Sweden)

    Jelvys Bermúdez Acosta

    2012-03-01

    Full Text Available The purpose of this research was to describe and assess the main results in the process of bioremediation of 479 m3 of petroleum residuals spilled on the soil and restrained into four deposits of fuel on the coastal zone of “Punta Majagua”, Cienfuegos. The volume of hydrocarbons spilled and contained into the tanks was determined by means of their previous mixture with fertile ground in a ratio of 3/1. The hydrocarbons were disposed in a bioremediation area of 115 m X 75m built in situ. In turn 54, 5 m3 of BIOIL - FC were applied, which were fermented in an industrial bioreactor of 12000 L. An initial sampling was carried out registering values of total hydrocarbons (HTP higher than 41880 mg/kg, with high concentrations of Saturated hydrocarbons, aromatics, resins, asphaltens (SARA. Three subsequent samples were taken with a sampling interval of 0, 45, 90 and 120 days of the application. An average concentration of 1884.57 mg/kg of total hydrocarbons was obtained at 120 days with an average removal rate of 94.8%, moreover values of 94.6%, 90.78%, 86.99% y 79.9% of SARA were respectively reported.

  14. Multi-objective optimization of in-situ bioremediation of groundwater using a hybrid metaheuristic technique based on differential evolution, genetic algorithms and simulated annealing

    Directory of Open Access Journals (Sweden)

    Kumar Deepak

    2015-12-01

    Full Text Available Groundwater contamination due to leakage of gasoline is one of the several causes which affect the groundwater environment by polluting it. In the past few years, In-situ bioremediation has attracted researchers because of its ability to remediate the contaminant at its site with low cost of remediation. This paper proposed the use of a new hybrid algorithm to optimize a multi-objective function which includes the cost of remediation as the first objective and residual contaminant at the end of the remediation period as the second objective. The hybrid algorithm was formed by combining the methods of Differential Evolution, Genetic Algorithms and Simulated Annealing. Support Vector Machines (SVM was used as a virtual simulator for biodegradation of contaminants in the groundwater flow. The results obtained from the hybrid algorithm were compared with Differential Evolution (DE, Non Dominated Sorting Genetic Algorithm (NSGA II and Simulated Annealing (SA. It was found that the proposed hybrid algorithm was capable of providing the best solution. Fuzzy logic was used to find the best compromising solution and finally a pumping rate strategy for groundwater remediation was presented for the best compromising solution. The results show that the cost incurred for the best compromising solution is intermediate between the highest and lowest cost incurred for other non-dominated solutions.

  15. Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation.

    Science.gov (United States)

    Shen, Weihang; Zhu, Nengwu; Cui, Jiaying; Wang, Huajin; Dang, Zhi; Wu, Pingxiao; Luo, Yidan; Shi, Chaohong

    2016-02-01

    A series of toxicity bioassays was conducted to monitor the ecotoxicity of soils in the different phases of bioremediation. Artificially oil-contaminated soil was inoculated with a petroleum hydrocarbon-degrading bacterial consortium containing Burkholderia cepacia GS3C, Sphingomonas GY2B and Pandoraea pnomenusa GP3B strains adapted to crude oil. Soil ecotoxicity in different phases of bioremediation was examined by monitoring total petroleum hydrocarbons, soil enzyme activities, phytotoxicity (inhibition of seed germination and plant growth), malonaldehyde content, superoxide dismutase activity and bacterial luminescence. Although the total petroleum hydrocarbon (TPH) concentration in soil was reduced by 64.4%, forty days after bioremediation, the phytotoxicity and Photobacterium phosphoreum ecotoxicity test results indicated an initial increase in ecotoxicity, suggesting the formation of intermediate metabolites characterized by high toxicity and low bioavailability during bioremediation. The ecotoxicity values are a more valid indicator for evaluating the effectiveness of bioremediation techniques compared with only using the total petroleum hydrocarbon concentrations. Among all of the potential indicators that could be used to evaluate the effectiveness of bioremediation techniques, soil enzyme activities, phytotoxicity (inhibition of plant height, shoot weight and root fresh weight), malonaldehyde content, superoxide dismutase activity and luminescence of P. phosphoreum were the most sensitive. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A geometric construction of traveling waves in a bioremediation model

    NARCIS (Netherlands)

    Beck, M.A.; Doelman, A.; Kaper, T.J.

    2006-01-01

    Bioremediation is a promising technique for cleaning contaminated soil. We study an idealized bioremediation model involving a substrate (contaminant to be removed), electron acceptor (added nutrient), and microorganisms in a one-dimensional soil column. Using geometric singular perturbation theory,

  17. Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings

    International Nuclear Information System (INIS)

    Chaillan, F.; Chaineau, C.H.; Point, V.; Saliot, A.; Oudot, J.

    2006-01-01

    Oily drill cuttings and a soil contaminated with weathered crude oils were treated by enhanced biodegradation under tropical conditions in industrial scaled experiments. Oil contaminants were characterized by gas chromatography and mass spectrometry. This allowed for the identification of a mixture of two crude oils in the contaminated soil. After 12 months of bioremediation process, the removal of hydrocarbons reached by biodegradation an extent of 60% although nutrient amendment with elevated concentration of N-urea had highly detrimental effects on the hydrocarbon degrading fungal populations due to the production of toxic concentration of ammonia gas by nitrification. The saturated hydrocarbons were extensively assimilated, though n-alkanes were not completely removed. Aromatic hydrocarbons were less degraded than saturated whereas resin and asphaltene fractions were, surprisingly, partly assimilated. In laboratory conditions, the residual hydrocarbons in the field-treated materials were 15-20% further degraded when metabolic byproducts resulting from biodegradation were diluted or removed. - Bioremediation of oil-polluted soils can be impaired if urea is used as nitrogen source, and metabolic byproducts can limit biodegradation rates in industrial scaled experiments

  18. The Interplay of In Situ Stress Ratio and Transverse Isotropy in the Rock Mass on Prestressed Concrete-Lined Pressure Tunnels

    Science.gov (United States)

    Simanjuntak, T. D. Y. F.; Marence, M.; Schleiss, A. J.; Mynett, A. E.

    2016-11-01

    This paper presents the mechanical and hydraulic behaviour of passively prestressed concrete-lined pressure tunnels embedded in elastic transversely isotropic rocks subjected to non-uniform in situ stresses. Two cases are distinguished based on whether the in situ vertical stress in the rock mass is higher, or lower than the in situ horizontal stress. A two-dimensional finite element model was used to study the influence of dip angle, α, and horizontal-to-vertical stress ratio, k, on the bearing capacity of prestressed concrete-lined pressure tunnels. The study reveals that the in situ stress ratio and the orientation of stratifications in the rock mass significantly affect the load sharing between the rock mass and the lining. The distribution of stresses and deformations as a result of tunnel construction processes exhibits a symmetrical pattern for tunnels embedded in a rock mass with either horizontal or vertical stratification planes, whereas it demonstrates an unsymmetrical pattern for tunnels embedded in a rock mass with inclined stratification planes. The results obtained for a specific value α with coefficient k are identical to that for α + 90° with coefficient 1/ k by rotating the tunnel axis by 90°. The maximum internal water pressure was determined by offsetting the prestress-induced hoop strains at the final lining intrados against the seepage-induced hoop strains. As well as assessing the internal water pressure, this approach is capable of identifying potential locations where longitudinal cracks may occur in the final lining.

  19. Final Report for Project ''Role of Metal Bioavailability in In Situ Bioremediation of Metal and Organic Co-Contaminated Sites''; FINAL

    International Nuclear Information System (INIS)

    Raina M. Maier

    2002-01-01

    A large proportion of hazardous waste sites are co-contaminated with organics and various metals. Such co-contaminated sites are difficult to bioremediate due to the nature of the mixed contaminants. Specifically, the presence of a co-contaminating metal imposes increased stress on indigenous populations already impacted by organic contaminant stress. The overall objective of this research is to investigate the effect of varying metal bioavailability on microbial populations and biodegradation of organics to allow a better understanding of how optimize remediation of co-contaminated sites. The hypothesis for this project is that metal bioavailability is not directly correlated with metal stress imposed on microbial populations that are degrading organics in soil and that further understanding of the relationship between metal bioavailability and metal stress is required for successful treatment of sites contaminated with mixtures of organics and metals. The specific objectives to be addressed to accomplish this goal are: (1) To determine the influence of metal bioavailability in soil microcosms co-contaminated with organics and metals on degradation of the organic contaminants and on mechanisms of metal resistance and (2) To determine the efficacy of different bioremediation strategies for co-contaminated soils based on metal bioavailability

  20. Bioremediation of nanomaterials

    Science.gov (United States)

    Chen, Frank Fanqing; Keasling, Jay D; Tang, Yinjie J

    2013-05-14

    The present invention provides a method comprising the use of microorganisms for nanotoxicity study and bioremediation. In some embodiment, the microorganisms are bacterial organisms such as Gram negative bacteria, which are used as model organisms to study the nanotoxicity of the fullerene compounds: E. coli W3110, a human related enterobacterium and Shewanella oneidensis MR-1, an environmentally important bacterium with versatile metabolism.

  1. BIOREMEDIATION OF A PETROLEUM-HYDROCARBON

    African Journals Online (AJOL)

    ES OBE

    under field conditions in the bioremediation of a petroleum- hydrocarbon polluted ... an accelerated biodegradation of petroleum hydrocarbons in a polluted agricultural soil ..... 12) Jackson, M.L. Soil chemical analysis. ... biological assay. 3 rd.

  2. Evaluating bioremediation: distinguishing fact from fiction.

    Science.gov (United States)

    Shannon, M J; Unterman, R

    1993-01-01

    Bioremediation options encompass diverse types of biochemical mechanisms that may lead to a target's mineralization, partial transformation, humification, or altered redox state (e.g. for metallic elements). Because these various mechanisms produce alternative fates of the targeted pollutants, it is often necessary to use diverse evaluation criteria to qualify a successful bioremediation. Too often target depletion from a treated matrix can be mistakenly ascribed to biological activity when in fact the depletion is caused by abiotic losses (e.g. volatilization, leaching, and stripping). Thus, effective, and therefore convincing, evaluation requires that experimental and engineering designs anticipate all possible routes of target depletion and that these routes be carefully monitored.

  3. bioremediation of some environmental pollutants by the biological activity of fungi

    International Nuclear Information System (INIS)

    Ali, G.A.M.

    2006-01-01

    Sharkia governorate is an important area of egypt because it include an important places, economically and scientifically as 10th of Ramadan City which is the biggest industrial City and the nuclear reactor of the Egyptian Atomic Energy Authority (EAEA). so that this study was conducted for isolation of some fungal bioremediators of the famous pollutants as some of heavy metals Mn +2 and Co +2 and some of the polycyclic aromatic hydrocarbons (PAHs)as textile direct dyes (orange,pink,red and black) regarding the aim of this study, which was conducted for isolation of some fungal bioremediators and study the bioremediation efficiency in the most suitable conditions for a success to attain bioremediation process of some dangerous heavy metals and / or toxic, carcinogenic and mutagenic textile dyes, in addition to the biological pathways for the uptake of heavy metals and dyes accumulation and/or degradation and after finishing this study, it can be concluded that; the fungal microfolora of each polluted sites is best bioremediators for these sites

  4. Bioremediation of a pesticide polluted soil: Case DDT

    International Nuclear Information System (INIS)

    Betancur Corredor, Bibiana; Pino, Nancy; Penuela, Gustavo A; Cardona Gallo, Santiago

    2013-01-01

    1,1,1-trichloro-2,2 bis (p-chlorophenyl) ethane (DDT) has been used since the Second World War to control insect-borne diseases in humans and domestic animals. The use of these organochlorine insecticides has been banned in most countries because of its persistence in the environment, biomagnification and potential susceptibility to toxicity to higher animals. Bioremediation involves the use of microorganisms to degrade organic contaminants in the environment, transforming them into simpler and less dangerous, even harmless compounds. This decontamination strategy has low costs, and wide public acceptance, also it can take place on the site. Compared to other methods, bioremediation is a more promising and less expensive to eliminate contaminants in soil and water. In soil, compounds such as DDT, chlorinated biphenyls can be partially biodegraded by a group of aerobic bacteria that cometabolize the contaminant. The bioavailability of pollutants may be enhanced by treating the soil in the presence of contaminant mobilizing agents such as surfactants. In this review we discuss the different strategies for bioremediation of soil contaminated with DDT, including mechanisms and degradation pathways. The application of these techniques in contaminated soil is also described. This review also discusses which is the best strategy for bioremediation of DDT.

  5. Impact of bacterial activity on turnover of insoluble hydrophobic substrates (phenanthrene and pyrene)—Model simulations for prediction of bioremediation success

    DEFF Research Database (Denmark)

    Rein, Arno; Adam, Iris K.U.; Miltner, Anja

    2016-01-01

    Many attempts for bioremediation of polycyclic aromatic hydrocarbon (PAH) contaminated sites failed in the past, but the reasons for this failure are not well understood. Here we apply and improve a model for integrated assessment of mass transfer, biodegradation and residual concentrations...

  6. In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests

    International Nuclear Information System (INIS)

    Smith, R.L.; Howes, B.L.; Garabedian, S.P.

    1991-01-01

    Methane oxidation was measured in an unconfined sand and gravel aquifer (Cape Cod, Mass.) by using in situ natural-gradient tracer tests at both a pristine, oxygenated site and an anoxic, sewage-contaminated site. The tracer sites were equipped with multilevel sampling devices to create target grids of sampling points; the injectate was prepared with groundwater from the tracer site to maintain the same geochemical conditions. Methane oxidation was calculated from breakthrough curves of methane relative to halide and inert gas (hexafluoroethane) tracers and was confirmed by the appearance of 13 C-enriched carbon dioxide in experiments in which 13 C-enriched methane was used as the tracer. A V max for methane oxidation could be calculated when the methane concentration was sufficiently high to result in zero-order kinetics throughout the entire transport interval. Methane breakthrough curves could be simulated by modifying a one-dimensional advection-dispersion transport model to include a Michaelis-Menten-based consumption term for methane oxidation. The K m values for methane oxidation that gave the best match for the breakthrough curve peaks were 6.0 and 9.0 μM for the uncontaminated and contaminated sites, respectively. Natural-gradient tracer tests are a promising approach for assessing microbial processes and for testing in situ bioremediation potential in groundwater systems

  7. Bioremediation of petroleum hydrocarbon contaminated soils using soil vapor extraction: Case study

    International Nuclear Information System (INIS)

    Roth, R.J.; Peterson, R.M.

    1994-01-01

    Soils contaminated with petroleum hydrocarbons are being remediated in situ at a site in Lakewood, New Jersey by bioremediation in conjunction with soil vapor extractions (SVE) and nutrient addition. The contaminants were from hydraulic oils which leaked from subsurface hydraulic lifts, waste oil from leaking underground storage tanks (USTs), an aboveground storage tank, and motor oil from a leaking UST. The oils contaminated subsurface soils at the site to a depth of 25 feet. Approximately 900 cubic yards of soil were contaminated. Soil sample analyses showed total petroleum hydrocarbon (TPH) concentrations up to 31,500 ppm. The design of the remedial system utilized the results of a treatability study which showed that TPH degrading microorganisms, when supplied with oxygen and nutrients, affected a 14% reduction in TPH in 30 days. A SVE system was installed which used three wells, each installed to a depth of 25 feet below grade. The SVE system was operated to achieve an extracted air flow of approximately 20 to 30 scfm from each well. Bioremediation of the TPH was monitored by measuring CO 2 and O 2 concentrations at the wellheads and vapor monitoring probes. After four months of remediation, CO 2 concentrations were at a minimum, at which point the subsurface soils were sampled and analyzed for TPH. The soil analyses showed a removal of TPH by biodegradation of up to 99.8% after four months of remediation

  8. A nutrient injection scheme for in situ bio-remediation.

    Science.gov (United States)

    Lin, C H; Kuo, M C Tom; Su, C Y; Liang, K F; Han, Y L

    2012-01-01

    Geological layers often have different hydraulic conductivities. This paper presents an innovative design for delivering aqueous substrates and nutrients to various stratified layers at desired rates during in-situ bio-stimulation. The new delivery system consists of intermittent porous tubes connected in series with impermeable polyethylene tubes that run horizontally in each stratified layer of a contaminated aquifer. Results of the tracer test indicated that the distribution of tritium through each porous tube was fairly uniform. A mathematical model was also developed to calculate the distribution of water flow through each porous tube. By controlling the permeability and the length of porous tubes placed in stratified layers, the new design provides a means to selectively deliver nutrients to various layers at desired rates according to aquifer heterogeneity.

  9. Recent Trend on Bioremediation of Polluted Salty Soils and Waters Using Haloarchaea

    OpenAIRE

    Aracil-Gisbert, Sonia; Torregrosa-Crespo, Javier; Martínez-Espinosa, Rosa María

    2018-01-01

    Pollution of soils, sediments, and groundwater is a matter of concern at global level. Industrial waste effluents have damaged several environments; thus, pollutant removal has become a priority worldwide. Currently, bioremediation has emerged as an effective solution for these problems, and, indeed, the use of haloarchaea in bioremediation has been tested successfully. A bibliographic review is here presented to show the recent advances in bioremediation of polluted soil and wastewater using...

  10. Physical modeling of shoreline bioremediation: Continuous flow mesoscale basins

    International Nuclear Information System (INIS)

    Sveum, P.; Ramstad, S.; Faksness, L.G.; Bech, C.; Johansen, B.

    1995-01-01

    This paper describes the design and use of continuous flow basin beach models in the study of bioremediation processes, and gives some results from an experiment designed to study the effects of different strategies for adding fertilizers. The continuous flow experimental basin system simulates an open system with natural tidal variation, wave action, and continuous supply and exchange of seawater. Biodegradation and bioremediation processes can thus be tested close to natural conditions. Results obtained using the models show a significant enhancement of biodegradation of oil in a sediment treated with an organic nutrient source, increased nutrient level in the interstitial water, and sediment microbial activity. These physical models gives biologically significant results, and can be used to simulate biodegradation and bioremediation in natural systems

  11. Use of molecular techniques in bioremediation.

    Science.gov (United States)

    Płaza, G; Ulfig, K; Hazen, T C; Brigmon, R L

    2001-01-01

    In a practical sense, biotechnology is concerned with the production of commercial products generated by biological processes. More formally, biotechnology may be defined as "the application of scientific and engineering principles to the processing of material by biological agents to provide goods and services" (Cantor, 2000). From a historical perspective, biotechnology dates back to the time when yeast was first used for beer or wine fermentation, and bacteria were used to make yogurt. In 1972, the birth of recombinant DNA technology moved biotechnology to new heights and led to the establishment of a new industry. Progress in biotechnology has been truly remarkable. Within four years of the discovery of recombinant DNA technology, genetically modified organisms (GMOs) were making human insulin, interferon, and human growth hormone. Now, recombinant DNA technology and its products--GMOs are widely used in environmental biotechnology (Glick and Pasternak, 1988; Cowan, 2000). Bioremediation is one of the most rapidly growing areas of environmental biotechnology. Use of bioremediation for environmental clean up is popular due to low costs and its public acceptability. Indeed, bioremediation stands to benefit greatly and advance even more rapidly with the adoption of molecular techniques developed originally for other areas of biotechnology. The 1990s was the decade of molecular microbial ecology (time of using molecular techniques in environmental biotechnology). Adoption of these molecular techniques made scientists realize that microbial populations in the natural environments are much more diverse than previously thought using traditional culture methods. Using molecular ecological methods, such as direct DNA isolation from environmental samples, denaturing gradient gel electrophoresis (DGGE), PCR methods, nucleic acid hybridization etc., we can now study microbial consortia relevant to pollutant degradation in the environment. These techniques promise to

  12. Bioremediation of a diesel fuel contaminated aquifer: simulation studies in laboratory aquifer columns

    Science.gov (United States)

    Hess, A.; Höhener, P.; Hunkeler, D.; Zeyer, J.

    1996-08-01

    The in situ bioremediation of aquifers contaminated with petroleum hydrocarbons is commonly based on the infiltration of groundwater supplemented with oxidants (e.g., O 2, NO 3-) and nutrients (e.g., NH 4+, PO 43-). These additions stimulate the microbial activity in the aquifer and several field studies describing the resulting processes have been published. However, due to the heterogeneity of the subsurface and due to the limited number of observation wells usually available, these field data do not offer a sufficient spatial and temporal resolution. In this study, flow-through columns of 47-cm length equipped with 17 sampling ports were filled with homogeneously contaminated aquifer material from a diesel fuel contaminated in situ bioremediation site. The columns were operated over 96 days at 12°C with artificial groundwater supplemented with O 2, NO 3- and PO 43-. Concentration profiles of O 2, NO 3-, NO 2-, dissolved inorganic and organic carbon (DIC and DOC, respectively), protein, microbial cells and total residual hydrocarbons were measured. Within the first 12 cm, corresponding to a mean groundwater residence time of < 3.6 h, a steep O 2 decrease from 4.6 to < 0.3 mg l -1, denitrification, a production of DIC and DOC, high microbial cell numbers and a high removal of hydrocarbons were observed. Within a distance of 24 to 40.5 cm from the infiltration, O 2 was below 0.1 mg l -1 and a denitrifying activity was found. In the presence and in the absence of O 2, n-alkanes were preferentially degraded compared to branched alkanes. The results demonstrate that: (1) infiltration of aerobic groundwater into columns filled with aquifer material contaminated with hydrocarbons leads to a rapid depletion of O 2; (2) O 2 and NO 3- can serve as oxidants for the mineralization of hydrocarbons; and (3) the modelling of redox processes in aquifers has to consider denitrifying activity in presence of O 2.

  13. Effort to improve coupled in situ chemical oxidation with bioremediation: a review of optimization strategies

    NARCIS (Netherlands)

    Sutton, N.B.; Grotenhuis, J.T.C.; Langenhoff, A.A.M.; Rijnaarts, H.H.M.

    2011-01-01

    Purpose - In order to provide highly effective yet relatively inexpensive strategies for the remediation of recalcitrant organic contaminants, research has focused on in situ treatment technologies. Recent investigation has shown that coupling two common treatments-in situ chemical oxidation (ISCO)

  14. Bioremediation: Effectiveness in reducing the ecological impact

    International Nuclear Information System (INIS)

    Scholten, M.C.T.

    1992-01-01

    Bioremediation becomes an important technique in oil spill combat programmes. The purpose is to shorten the exposure time of biota to oil compounds, in order to reduce long term environmental effects. Although bioremediation products have the advantage of stimulating the natural capacity to degrade oil, there are some limitations to be considered. Application as a technique for first emergency actions following an oil spill is not effective, and can therefore be no alternative for dispersion or mechanical removal of floating or freshly stranded oil slicks. Acute toxic effects are related to the short term exposure to unweathered oils. An immediate removal of oil is necessary to reduce the extent of the environmental impact of an oil spill. Physical processes (transport, dilution and evaporation) are determining the initial fate of environmentally released oil. Biodegradation only becomes important as a process of removing oil in the next phase. It is the only effective way to further reduce the concentration of oil that is left in (intertidal) coastal areas. Bioremediation thus reduces the duration of the environmental impact of an oil spill. This is especially important in ecosystems with a low recovery potential (e.g., salt marshes, rocky shores). The experimental evaluation of bioremediation products is mainly based on the capacity to reduce fresh oil and the acute toxicity of the product itself, rather than on the capacity to enhance the further reduction of weathered oil and the toxicological consequences of higher release rates of intermediate metabolites produced during the biotransformation processes

  15. Implications of Bioremediation of Polycyclic Aromatic Hydrocarbon-Contaminated Soils for Human Health and Cancer Risk

    Energy Technology Data Exchange (ETDEWEB)

    Davie-Martin, Cleo L. [Department; Department; Stratton, Kelly G. [Pacific Northwest; Teeguarden, Justin G. [Pacific Northwest; Waters, Katrina M. [Pacific Northwest; Simonich, Staci L. Massey [Department; Department

    2017-08-09

    Background: Bioremediation uses microorganisms to degrade polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. Its success is largely evaluated through targeted analysis of PAH concentrations in soil and cancer risk (exposure) estimates. However, bioremediation often fails to significantly degrade the most carcinogenic PAHs and can initiate formation of more polar metabolites, some of which may be more toxic. Objectives: We aimed to investigate whether the cancer risk associated with PAH-contaminated soils was reduced post-bioremediation and to identify the most effective bioremediation strategies for degrading the carcinogenic and high molecular weight (≥MW302) PAHs. Methods: Pre- and post-bioremediation concentrations of eight B2 group carcinogenic PAHs in soils were collated from the literature and used to calculate excess lifetime cancer risks (ELCR) for adult populations exposed via non-dietary ingestion, per current U.S. Environmental Protection Agency (USEPA) recommendations. Due to the nature of the collated data (reported as mean concentrations ± standard deviations pre- and post-bioremediation), we used simulation methods to reconstruct the datasets and enable statistical comparison of ELCR values pre- and post-bioremediation. Additionally, we measured MW302 PAHs in a contaminated soil prior to and following treatment in an aerobic bioreactor and examined their contributions to cancer risk. Results: 120 of 158 treated soils (76%) exhibited a statistically significant reduction in cancer risk following bioremediation; however, 67% (106/158) of soils had post-bioremediation ELCR values over 10 fold higher than the USEPA health-based ‘acceptable’ risk level. Composting treatments were most effective at biodegrading PAHs in soils and reducing the ELCR. MW302 PAHs were not significantly degraded during bioremediation and dibenzo(a,l)pyrene, alone, contributed an additional 35% to the cancer risk associated with the eight B2 group PAHs in the

  16. Bioremediation of oil on shoreline environments: development of techniques and guidelines

    International Nuclear Information System (INIS)

    Lee, K.; Merlin, F.X.

    1999-01-01

    Over the last 20 years, the development of operational procedures to accelerate the natural biodegradation rates of oil spilled on shoreline environments has been the focus of numerous research programs. As a result, bioremediation has been demonstrated to be an effective oil spill countermeasure for use in cobble, sand beach, salt marsh, and mudflat environments. Today, studies are directed towards improving the efficacy and evaluating the ecological impacts of available bioremediation agents and/or procedures. This review describes the latest developments in bioremediation strategies and their key success factors. (author)

  17. Electromigration of Contaminated Soil by Electro-Bioremediation Technique

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Shaylinda, M. Z. N.; Azim, M. A. M.

    2016-07-01

    Soil contamination with heavy metals poses major environmental and human health problems. This problem needs an efficient method and affordable technological solution such as electro-bioremediation technique. The electro-bioremediation technique used in this study is the combination of bacteria and electrokinetic process. The aim of this study is to investigate the effectiveness of Pseudomonas putida bacteria as a biodegradation agent to remediate contaminated soil. 5 kg of kaolin soil was spiked with 5 g of zinc oxide. During this process, the anode reservoir was filled with Pseudomonas putida while the cathode was filled with distilled water for 5 days at 50 V of electrical gradient. The X-Ray Fluorescent (XRF) test indicated that there was a significant reduction of zinc concentration for the soil near the anode with 89% percentage removal. The bacteria count is high near the anode which is 1.3x107 cfu/gww whereas the bacteria count at the middle and near the cathode was 5.0x106 cfu/gww and 8.0x106 cfu/gww respectively. The migration of ions to the opposite charge of electrodes during the electrokinetic process resulted from the reduction of zinc. The results obtained proved that the electro-bioremediation reduced the level of contaminants in the soil sample. Thus, the electro-bioremediation technique has the potential to be used in the treatment of contaminated soil.

  18. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides.

    Science.gov (United States)

    Li, Xiaomin; Peng, Weihua; Jia, Yingying; Lu, Lin; Fan, Wenhong

    2016-08-01

    Bioremediation with microorganisms is a promising technique for heavy metal contaminated soil. Rhodobacter sphaeroides was previously isolated from oil field injection water and used for bioremediation of lead (Pb) contaminated soil in the present study. Based on the investigation of the optimum culturing conditions and the tolerance to Pb, we employed the microorganism for the remediation of Pb contaminated soil simulated at different contamination levels. It was found that the optimum temperature, pH, and inoculum size for R. sphaeroides is 30-35 °C, 7, and 2 × 10(8) mL(-1), respectively. Rhodobacter sphaeroides did not remove the Pb from soil but did change its speciation. During the bioremediation process, more available fractions were transformed to less accessible and inert fractions; in particular, the exchangeable phase was dramatically decreased while the residual phase was substantially increased. A wheat seedling growing experiment showed that Pb phytoavailability was reduced in amended soils. Results inferred that the main mechanism by which R. sphaeroides treats Pb contaminated soil is the precipitation formation of inert compounds, including lead sulfate and lead sulfide. Although the Pb bioremediation efficiency on wheat was not very high (14.78% root and 24.01% in leaf), R. sphaeroides remains a promising alternative for Pb remediation in contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Analysis of displacement and strain data for the determination of the in-situ deformability of rock masses

    International Nuclear Information System (INIS)

    de la Cruz, R.V.; Karfakis, M.; Kim, K.

    1981-01-01

    The in-situ deformability of a highly jointed basalt rock mass was determined by two distinctly different methods: one, by the NX-borehole jack method where the displacements of opposing curved platens were related to the applied hydraulic pressures, and; two, by the modified Goodman jack method where the tangential strains on the borehole walls were related to the induced tangential stresses. The modulus obtained by the modified Goodman jack method were much higher than those obtained by the NX-borehole jack method. To explain the discrepancy, the influence of fractures and test variables such as depth, orientation, hole number and applied pressure on the calculated modulus of the rock mass were analyzed by factorial analysis and it was found that the orientations and depths of measurement has statistically significant effects. The in-situ deformability values obtained by non-linear regression analysis were also found comparable with other measurements and empirically predicted values for the basalt rock mass

  20. Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids.

    Science.gov (United States)

    Nikolopoulou, M; Pasadakis, N; Norf, H; Kalogerakis, N

    2013-12-15

    Mediterranean coastal regions are particularly exposed to oil pollution due to extensive industrialization, urbanization and transport of crude and refined oil to and from refineries. Bioremediation of contaminated beach sand through landfarming is both simple and cost-effective to implement compared to other treatment technologies. The purpose of the present study was to investigate the effect of alternative nutrients on biodegradation of crude oil contaminated beach sand in an effort to reduce the time required for bioremediation employing only indigenous hydrocarbon degraders. A natural sandy soil was collected from Agios Onoufrios beach (Chania, Greece) and was contaminated with weathered crude oil. The indigenous microbial population in the contaminated sand was tested alone (control treatment) or in combination with inorganic nutrients (KNO3 and K2HPO4) to investigate their effects on oil biodegradation rates. In addition, the ability of biosurfactants (rhamnolipids), in the presence of organic nutrients (uric acid and lecithin), to further stimulate biodegradation was investigated in laboratory microcosms over a 45-day period. Biodegradation was tracked by GC/MS analysis of aliphatic and polycyclic aromatic hydrocarbons components and the measured concentrations were corrected for abiotic removal by hopane normalizations. It was found that the saturated fraction of the residual oil is degraded more extensively than the aromatic fraction and the bacterial growth after an incubation period of approximately 3 weeks was much greater from the bacterial growth in the control. The results show that the treatments with inorganic or organic nutrients are equally effective over almost 30 days where C12-C35n-alkanes were degraded more than 97% and polyaromatic hydrocarbons with two or three rings were degraded more than 95% within 45 days. The results clearly show that the addition of nutrients to contaminated beach sand significantly enhanced the activity of

  1. Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil.

    Science.gov (United States)

    Teng, Ying; Luo, Yongming; Ping, Lifeng; Zou, Dexun; Li, Zhengao; Christie, Peter

    2010-04-01

    Carbon supplementation, soil moisture and soil aeration are believed to enhance in situ bioremediation of PAH-contaminated soils by stimulating the growth of indigenous microorganisms. However, the effects of added carbon and nitrogen together with soil moisture and soil aeration on the dissipation of PAHs and on associated microbial counts have yet to be fully assessed. In this study the effects on bioremediation of carbon source, carbon-to-nitrogen ratio, soil moisture and aeration on an aged PAH-contaminated agricultural soil were studied in microcosms over a 90-day period. Additions of starch, glucose and sodium succinate increased soil bacterial and fungal counts and accelerated the dissipation of phenanthrene and benzo(a)pyrene in soil. Decreases in phenanthrene and benzo(a)pyrene concentrations were effective in soil supplemented with glucose and sodium succinate (both 0.2 g C kg(-1) dry soil) and starch (1.0 g C kg(-1) dry soil). The bioremediation effect at a C/N ratio of 10:1 was significantly higher (P Soil microbial counts and PAH dissipation were lower in the submerged soil but soil aeration increased bacterial and fungal counts, enhanced indigenous microbial metabolic activities, and accelerated the natural degradation of phenanthrene and benzo(a)pyrene. The results suggest that optimizing carbon source, C/N ratio, soil moisture and aeration conditions may be a feasible remediation strategy in certain PAH contaminated soils with large active microbial populations.

  2. Bioremediation of oil polluted beaches - a feasibility study. Bioremediering av olje paa strand

    Energy Technology Data Exchange (ETDEWEB)

    Sveum, P

    1991-09-01

    Bioremediation of oil polluted beaches is considered and should be an alternative to conventional clean-up procedures. Use of non-genetic manipulated bacterias are not expected to be of any risk to human or environment. Caution should be taken during use of some products containing opportunistic bacterias. 115 refs., 5 figs., 3 tabs.

  3. Application of radioisotope induced EDXRF in bioremediation studies

    International Nuclear Information System (INIS)

    Joseph, D.; Choudhury, R.K.; Acharya, C.; Narasimha, A.; Apte, S.K.

    2010-01-01

    Bioremediation is an emerging technology that employs the use of certain microbes for the clean up of heavy metals/radionuclides contaminated environments. Progress in this field is however handicapped by limited knowledge of the biological processes involved in microbial metal uptake, translocation, tolerance and microbe-metal interactions. Therefore a better understanding of the basic biological processes involved in cell/soil/contaminant interactions would allow further optimization of bioremediation technologies. Advanced analytical techniques have proven to be instrumental in understanding the metal microbe interactions. It is important that in bioremediation studies, the analytical procedures used for elemental determination in cells should be fast, cheap, non-destructive, with easy, sample preparation, good sensitivity and accuracy. The present paper demonstrates the utility of Energy Dispersive X-ray Fluorescence Spectroscopy in detection of uranium and tellurium associated with the microbial cells. This technique was found to be convenient and suitable for such metal microbial interactive studies

  4. [Effects and Biological Response on Bioremediation of Petroleum Contaminated Soil].

    Science.gov (United States)

    Yang, Qian; Wu, Man-li; Nie, Mai-qian; Wang, Ting-ting; Zhang, Ming-hui

    2015-05-01

    Bioaugmentation and biostimulation were used to remediate petroleum-contaminated soil which were collected from Zichang city in North of Shaanxi. The optimal bioremediation method was obtained by determining the total petroleum hydrocarbon(TPH) using the infrared spectroscopy. During the bioremediation, number of degrading strains, TPH catabolic genes, and soil microbial community diversity were determined by Most Probable Number (MPN), polymerase chain reaction (PCR) combined agarose electrophoresis, and PCR-denaturing gradient electrophoresis (DGGE). The results in different treatments showed different biodegradation effects towards total petroleum hydrocarbon (TPH). Biostimulation by adding N and P to soils achieved the best degradation effects towards TPH, and the bioaugmentation was achieved by inoculating strain SZ-1 to soils. Further analysis indicated the positive correlation between catabolic genes and TPH removal efficiency. During the bioremediation, the number of TPH and alkanes degrading strains was higher than the number of aromatic degrading strains. The results of PCR-DGGE showed microbial inoculums could enhance microbial community functional diversity. These results contribute to understand the ecologically microbial effects during the bioremediation of petroleum-polluted soil.

  5. In Situ Remediation Integrated Program: FY 1994 program summary

    International Nuclear Information System (INIS)

    1995-04-01

    The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials

  6. In Situ Remediation Integrated Program: FY 1994 program summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials.

  7. Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation.

    Science.gov (United States)

    Chen, Ku-Fan; Kao, Chih-Ming; Chen, Chiu-Wen; Surampalli, Rao Y; Lee, Mu-Sheng

    2010-01-01

    In the first phase of this study, the effectiveness of intrinsic bioremediation on the containment of petroleum hydrocarbons was evaluated at a gasoline spill site. Evidences of the occurrence of intrinsic bioremediation within the BTEX (benzene, toluene, ethylbenzene, and xylenes) plume included (1) decreased BTEX concentrations; (2) depletion of dissolved oxygen (DO), nitrate, and sulfate; (3) production of dissolved ferrous iron, methane, and CO2; (4) deceased pH and redox potential; and (5) increased methanogens, total heterotrophs, and total anaerobes, especially within the highly contaminated areas. In the second phase of this study, enhanced aerobic bioremediation process was applied at site to enhance the BTEX decay rates. Air was injected into the subsurface near the mid-plume area to biostimulate the naturally occurring microorganisms for BTEX biodegradation. Field results showed that enhanced bioremediation process caused the change of BTEX removal mechanisms from anaerobic biodegradation inside the plume to aerobic biodegradation. This variation could be confirmed by the following field observations inside the plume due to the enhanced aerobic bioremediation process: (1) increased in DO, CO2, redox potential, nitrate, and sulfate, (2) decreased in dissolved ferrous iron, sulfide, and methane, (3) increased total heterotrophs and decreased total anaerobes. Field results also showed that the percentage of total BTEX removal increased from 92% to 99%, and the calculated total BTEX first-order natural attenuation rates increased from 0.0092% to 0.0188% per day, respectively, after the application of enhanced bioremediation system from the spill area to the downgradient area (located approximately 300 m from the source area).

  8. Geochemical and Microbiological Characteristics during in Situ Chemical Oxidation and in Situ Bioremediation at a Diesel Contaminated Site

    NARCIS (Netherlands)

    Sutton, N.B.; Kalisz, M.; Krupanek, J.; Marek, J.; Grotenhuis, J.T.C.; Smidt, H.; Weert, de J.; Rijnaarts, H.H.M.; Gaans, van P.; Keijzer, T.

    2014-01-01

    While in situ chemical oxidation with persulfate has seen wide commercial application, investigations into the impacts on groundwater characteristics, microbial communities and soil structure are limited. To better understand the interactions of persulfate with the subsurface and to determine the

  9. Impact of In Situ Stress Distribution Characteristics on Jointed Surrounding Rock Mass Stability of an Underground Cavern near a Hillslope Surface

    Directory of Open Access Journals (Sweden)

    Bangxiang Li

    2017-01-01

    Full Text Available In this paper, a series of numerical simulations are performed to analyze the in situ stress distribution characteristics of the rock mass near different slope angles hillslope surfaces, which are subjected to the vertical gravity stress and different horizontal lateral stresses and the influence which the in situ stress distribution characteristics of 45° hillslope to the integral stability of surrounding rock mass when an underground cavern is excavated considering three different horizontal distances from the underground cavern to the slope surface. It can be concluded from the numerical results that different slope angles and horizontal lateral stresses have a strong impact on the in situ stress distribution and the integral surrounding rock mass stability of the underground cavern when the horizontal distance from the underground cavern to the slope surface is approximately 100 m to 200 m. The relevant results would provide some important constructive suggestions to the engineering site selection and optimization of large-scale underground caverns in hydropower stations.

  10. Bioremediation of metals and radionuclides: What it is and How itWorks

    Energy Technology Data Exchange (ETDEWEB)

    McCullough, J.; Hazen, Terry; Benson, Sally

    1999-01-01

    This primer is intended for people interested in DOE environmental problems and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on physical environment, microbial communities, and nature of contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through inoculation with microorganisms (bioaugmentation) or the addition of nutrients (biostimulation).

  11. Monitoring bioremediation of atrazine in soil microcosms using molecular tools

    International Nuclear Information System (INIS)

    Sagarkar, Sneha; Mukherjee, Shinjini; Nousiainen, Aura; Björklöf, Katarina; Purohit, Hemant J.; Jørgensen, Kirsten S.; Kapley, Atya

    2013-01-01

    Molecular tools in microbial community analysis give access to information on catabolic potential and diversity of microbes. Applied in bioremediation, they could provide a new dimension to improve pollution control. This concept has been demonstrated in the study using atrazine as model pollutant. Bioremediation of the herbicide, atrazine, was analyzed in microcosm studies by bioaugmentation, biostimulation and natural attenuation. Genes from the atrazine degrading pathway atzA/B/C/D/E/F, trzN, and trzD were monitored during the course of treatment and results demonstrated variation in atzC, trzD and trzN genes with time. Change in copy number of trzN gene under different treatment processes was demonstrated by real-time PCR. The amplified trzN gene was cloned and sequence data showed homology to genes reported in Arthrobacter and Nocardioides. Results demonstrate that specific target genes can be monitored, quantified and correlated to degradation analysis which would help in predicting the outcome of any bioremediation strategy. - Highlights: ► Degradation of herbicide, atrazine. ► Comparison of bioremediation via bioaugmentation, biostimulation and natural attenuation. ► Gene profile analysis in all treatments. ► Variation in trzN gene numbers correlated to degradation efficiency. ► Cloning and sequence analysis of trzN gene demonstrates very high homology to reported gene. - This study demonstrates the use of molecular tools in bioremediation to monitor and track target genes; correlates the results with degradation and thereby predicts the efficiency of treatment.

  12. Enhanced bioremediation of lead-contaminated soil by Solanum nigrum L. with Mucor circinelloides.

    Science.gov (United States)

    Sun, Liqun; Cao, Xiufeng; Li, Min; Zhang, Xu; Li, Xinxin; Cui, Zhaojie

    2017-04-01

    Strain selected from mine tailings in Anshan for Pb bioremediation was characterized at the genetic level by internal transcribed spacer (ITS) sequencing. Results revealed that the strain belongs to Mucor circinelloides. Bioremediation of lead-contaminated soil was conducted using Solanum nigrum L. combined with M. circinelloides. The removal efficacy was in the order microbial/phytoremediation > phytoremediation > microbial remediation > control. The bioremediation rates were 58.6, 47.2, and 40.2% in microbial/phytoremediation, microbial remediation, and phytoremediation groups, respectively. Inoculating soil with M. circinelloides enhanced Pb removal and S. nigrum L. growth. The bioaccumulation factor (BF, 1.43), enrichment factor (EF, 1.56), and translocation factor (TF, 1.35) were higher than unit, suggesting an efficient ability of S. nigrum L. in Pb bioremediation. Soil fertility was increased after bioremediation according to change in enzyme activities. The results indicated that inoculating S. nigrum L. with M. circinelloides enhanced its efficiency for phytoremediation of soil contaminated with Pb.

  13. Bioremediation of Toxic Heavy Metals: A Patent Review.

    Science.gov (United States)

    Verma, Neelam; Sharma, Rajni

    2017-01-01

    The global industrialization is fulfilling the demands of modern population at the cost of environmental exposure to various contaminants including heavy metals. These heavy metals affect water and soil quality. Moreover, these enter into the food chain and exhibit their lethal effects on the human health even when present at slightly higher concentration than required for normal metabolism. To the worst of their part, the heavy metals may become carcinogenic. Henceforth, the efficient removal of heavy metals is the demand of sustainable development. Remedy: Bioremediation is the 'green' imperative technique for the heavy metal removal without creating secondary metabolites in the ecosystem. The metabolic potential of several bacterial, algal, fungal as well as plant species has the efficiency to exterminate the heavy metals from the contaminated sites. Different strategies like bioaccumulation, biosorption, biotransformation, rhizofilteration, bioextraction and volatilization are employed for removal of heavy metals by the biological species. Bioremediation approach is presenting a splendid alternate for conventional expensive and inefficient methods for the heavy metal removal. The patents granted on the bioremediation of toxic heavy metals are summarized in the present manuscript which supported the applicability of bioremediation technique at commercial scale. However, the implementation of the present information and advanced research are mandatory to further explore the concealed potential of biological species to resume the originality of the environment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Soil bioremediation approaches for petroleum hydrocarbon polluted environments

    Directory of Open Access Journals (Sweden)

    Eman Koshlaf

    2017-01-01

    Full Text Available Increasing industrialisation, continued population growth and heavy demand and reliance on petrochemical products have led to unprecedented economic growth and development. However, inevitably this dependence on fossil fuels has resulted in serious environmental issues over recent decades. The eco-toxicity and the potential health implications that petroleum hydrocarbons pose for both environmental and human health have led to increased interest in developing environmental biotechnology-based methodologies to detoxify environments impacted by petrogenic compounds. Different approaches have been applied for remediating polluted sites with petroleum derivatives. Bioremediation represents an environmentally sustainable and economical emerging technology for maximizing the metabolism of organic pollutants and minimizing the ecological effects of oil spills. Bioremediation relies on microbial metabolic activities in the presence of optimal ecological factors and necessary nutrients to transform organic pollutants such as petrogenic hydrocarbons. Although, biodegradation often takes longer than traditional remediation methods, the complete degradation of the contaminant is often accomplished. Hydrocarbon biodegradation in soil is determined by a number of environmental and biological factors varying from site to site such as the pH of the soil, temperature, oxygen availability and nutrient content, the growth and survival of hydrocarbon-degrading microbes and bioavailability of pollutants to microbial attack. In this review we have attempted to broaden the perspectives of scientists working in bioremediation. We focus on the most common bioremediation technologies currently used for soil remediation and the mechanisms underlying the degradation of petrogenic hydrocarbons by microorganisms.

  15. Natural and accelerated bioremediation research program plan

    International Nuclear Information System (INIS)

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE's Office of Environmental Management (EM). The program builds on OHER's tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER's and Office of Energy Research's (OER's) commitment to supporting DOE's environmental management mission and the belief that bioremediation is an important part of the solution to DOE's environmental problems

  16. Development of combinatorial bacteria for metal and radionuclide bioremediation

    International Nuclear Information System (INIS)

    A. C. Matin

    2006-01-01

    The grant concerned chromate [Cr(VI)] bioremediation and it was our aim from the outset to construct individual bacterial strains capable of improved bioremediation of multiple pollutants and to identify the enzymes suited to this end. Bacteria with superior capacity to remediate multiple pollutants can be an asset for the cleanup of DOE sites as they contain mixed waste. I describe below the progress made during the period of the current grant, providing appropriate context

  17. Development of combinatorial bacteria for metal and radionuclide bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    A. C. Matin, Ph. D.

    2006-06-15

    The grant concerned chromate [Cr(VI)] bioremediation and it was our aim from the outset to construct individual bacterial strains capable of improved bioremediation of multiple pollutants and to identify the enzymes suited to this end. Bacteria with superior capacity to remediate multiple pollutants can be an asset for the cleanup of DOE sites as they contain mixed waste. I describe below the progress made during the period of the current grant, providing appropriate context.

  18. Practical Bioremediation Course – Laboratory Exercises on Biodegradation of Cationic Surfactant

    Directory of Open Access Journals (Sweden)

    Tomislav Ivankovic

    2015-02-01

    Full Text Available 0 From the perspective of the lab exercises leader and teaching assistant for the Bioremediation course, it was very difficult to design and conduct a set of exercises that would fit the course curriculum and satisfactorily demonstrate bioremediation basics through practical laboratory work. Thus, Bioremediation course students designed the experiment with the help of the teaching assistant; a simulation of possible bioremediation of “Jarun” lake in Zagreb, Croatia, if contaminated with cationic surfactant. The experiment nicely showed how natural bioremediation differs from engineered bioremediation and the levels of success between different types of engineered bioremediation. The laboratory exercises were designed to be interesting and the results perceivable to the students.  Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory safety section of the ASM Curriculum Recommendations: Introductory Course in Microbiology and the Guidelines for Biosafety in Teaching Laboratories, available at www.asm.org. The Editors of JMBE recommend that adopters of the protocols included in this article follow a minimum of Biosafety Level 2 practices. Normal 0 21 false false false HR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Cambria","serif"; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  19. Sanitary landfill in situ bioremediation optimization test. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    This work was performed as part of a corrective action plan for the Savannah River Site Sanitary Landfill. This work was performed for the Westinghouse Savannah River Company Environmental Restoration Department as part of final implementation of a groundwater remediation system for the SRS Sanitary Landfill. Primary regulatory surveillance was provided by the South Carolina Department of Health and Environmental Control and the US Environmental Protection Agency (Region IV). The characterization, monitoring and remediation systems in the program generally consisted of a combination of innovative and baseline methods to allow comparison and evaluation. The results of these studies will be used to provide input for the full-scale groundwater remediation system for the SRS Sanitary Landfill. This report summarizes the performance of the Sanitary Landfill In Situ Optimization Test data, an evaluation of applicability, conclusions, recommendations, and related information for implementation of this remediation technology at the SRS Sanitary Landfill

  20. In Situ Immobilization of Uranium in Structured Porous Media via Biomineralization at the Fracture/Matrix Interface – Subproject to Co-PI Eric E. Roden

    Energy Technology Data Exchange (ETDEWEB)

    Eric E. Roden

    2007-11-02

    Although the biogeochemical processes underlying in situ bioremediation technologies are increasingly well understood, field-scale heterogeneity (both physical and biogeochemical) remains a major obstacle to successful field-scale implementation. In particular, slow release of contamination from low-permeability regions (primarily by diffusive/dispersive mass transfer) can hinder the effectiveness of remediation. The research described in this report was conducted in conjunction with a project entitled “In Situ Immobilization of Uranium in Structured Porous Media via Biomineralization at the Fracture/Matrix Interface”, which was funded through the Field Research element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. Timothy Scheibe (Pacific Northwest National Laboratory) was the overall PI/PD for the project, which included Scott Brooks (Oak Ridge National Laboratory) and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The overall goal of the project was to evaluate strategies that target bioremediation at interfaces between high- and low-permeability regions of an aquifer in order to minimize the rate of contaminant transfer into high-permeability/high fluid flow zones. The research was conducted at the Area 2 site of the Field Research Center (FRC) at Oak Ridge National Laboratory (ORNL). Area 2 is a shallow pathway for migration of contaminated groundwater to seeps in the upper reach of Bear Creek at ORNL, mainly through a ca. 1 m thick layer of gravel located 4-5 m below the ground surface. Hydrological tracer studies indicate that the gravel layer receives input of uranium from both upstream sources and from diffusive mass transfer out of highly contaminated fill and saprolite materials above and below the gravel layer. We sought to test the hypothesis that injection of electron donor into

  1. An application of adaption-innovation theory to bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, L.J. [World Trade Centre, Melbourne, Victoria (Australia); Guerin, T.F. [Minenco Bioremediation Services, Bundoora, Victoria (Australia)

    1995-12-31

    This paper provides a discussion of the potential application of the Kirton Adaption-Innovation Inventory (KAI) for assessing the adaptive-innovative cognitive style of individuals and organizations within the bioremediation industry. Human-resource and line managers, or other individuals responsible for staff evaluation, selection, and project planning, should consider using the KAI to assist them in selecting individuals for specific roles requiring either an innovative or adaptive style. The KAI, a measure for assessing adaption-innovation at the individual employee level, is introduced and its potential value in the bioremediation industry is discussed.

  2. No. 6 fuel oil bioremediation in fractured bedrock

    International Nuclear Information System (INIS)

    Kovacs, A.L.; Landsman, M.C.

    1995-01-01

    No. 6 fuel oil was released from underground storage vessels that were installed in 1968 at a prominent university in Washington, DC. Initial remedial efforts consisted of excavating contaminated soil and saprolite to bedrock. Bioremediation and free-product recovery were chosen as the most feasible alternatives to the remediation of residual impacts. A biolechate field consisting of a gravel bed covered by plastic sheeting with oxygen and nutrient distribution piping was constructed in the excavated pit. The leachate field was reconstructed following installation of anew tank field to serve as a permanent structure. The long-term in situ microbial degradation portion of the project was developed to reduce total petroleum hydrocarbon (TPH) levels in both the groundwater and the impact zone. A biotreatability bench study has shown a viable microbial population in the subsurface that may be adapted to degrade No. 6 fuel oil. A 1-month-long pilot study, consisting of full-scale nutrient augmentation and air sparging, was implemented. Results from air and water monitoring indicate that stimulation of microbial activity in the vadose and saturated zones is occurring. The bench-scale and field pilot studies indicate a reasonable chance for project success

  3. Model test study on propagation law of plane stress wave in jointed rock mass under different in-situ stresses

    Science.gov (United States)

    Dong, Qian

    2017-12-01

    The study of propagation law of plane stress wave in jointed rock mass under in-situ stress has important significance for safety excavation of underground rock mass engineering. A model test of the blasting stress waves propagating in the intact rock and jointed rock mass under different in-situ stresses was carried out, and the influencing factors on the propagation law, such as the scale of static loads and the number of joints were studied respectively. The results show that the transmission coefficient of intact rock is larger than that of jointed rock mass under the same loading condition. With the increase of confining pressure, the transmission coefficients of intact rock and jointed rock mass both show an trend of increasing first and then decreasing, and the variation of transmission coefficients in intact rock is smaller than that of jointed rock mass. Transmission coefficient of jointed rock mass decreases with the increase of the number of joints under the same loading condition, when the confining pressure is relatively small, the reduction of transmission coefficients decreases with the increasing of the number of joints, and the variation law of the reduction of transmission coefficients is contrary when the confining pressure is large.

  4. In Situ Immobilization of Uranium in Structured Porous Media via Biomineralization at the Fracture/Matrix Interface - Subproject to Co-PI Eric E. Roden. Final report

    International Nuclear Information System (INIS)

    Roden, Eric E.

    2007-01-01

    Although the biogeochemical processes underlying in situ bioremediation technologies are increasingly well understood, field-scale heterogeneity (both physical and biogeochemical) remains a major obstacle to successful field-scale implementation. In particular, slow release of contamination from low-permeability regions (primarily by diffusive/dispersive mass transfer) can hinder the effectiveness of remediation. The research described in this report was conducted in conjunction with a project entitled ''In Situ Immobilization of Uranium in Structured Porous Media via Biomineralization at the Fracture/Matrix Interface'', which was funded through the Field Research element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. Timothy Scheibe (Pacific Northwest National Laboratory) was the overall PI/PD for the project, which included Scott Brooks (Oak Ridge National Laboratory) and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The overall goal of the project was to evaluate strategies that target bioremediation at interfaces between high- and low-permeability regions of an aquifer in order to minimize the rate of contaminant transfer into high-permeability/high fluid flow zones. The research was conducted at the Area 2 site of the Field Research Center (FRC) at Oak Ridge National Laboratory (ORNL). Area 2 is a shallow pathway for migration of contaminated groundwater to seeps in the upper reach of Bear Creek at ORNL, mainly through a ca. 1 m thick layer of gravel located 4-5 m below the ground surface. Hydrological tracer studies indicate that the gravel layer receives input of uranium from both upstream sources and from diffusive mass transfer out of highly contaminated fill and saprolite materials above and below the gravel layer. We sought to test the hypothesis that injection of electron donor into this

  5. Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis

    Science.gov (United States)

    2014-09-01

    ER-200717) Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis...N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data...8 2.1.2 The Geophysical Signatures of Bioremediation ......................................... 8 2.2 PRIOR

  6. Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil.

    Science.gov (United States)

    Lin, Xin; Li, Xiaojun; Sun, Tieheng; Li, Peijun; Zhou, Qixing; Sun, Lina; Hu, Xiaojun

    2009-10-01

    In the process of bioremediation in the soil contaminated by different oil concentrations, the changes in the microbial numbers (bacteria and fungi) and the enzyme (catalase (CAT), polyphenol oxidase (PPO) and lipase) activities were evaluated over a 2-year period. The results showed that the microbial numbers after 2-year bioremediation were one to ten times higher than those in the initial. The changes in the bacterial and the fungal populations were different during the bioremediation, and the highest microbial numbers for bacteria and fungi were 5.51 x 10(9) CFU g(-1) dry soil in treatment 3 (10,000 mg kg(-1)) in the initial and 5.54 x 10(5) CFU g(-1) dry soil in treatment 5 (50,000 mg kg(-1)) after the 2-year bioremediation period, respectively. The CAT and PPO activities in the contaminated soil decreased with increasing oil concentration, while the lipase activity increased. The activities of CAT and PPO improved after the bioremediation, but lipase activity was on the contrary. The CAT activity was more sensible to the oil than others, and could be alternative to monitor the bioremediation process.

  7. Compost bioremediation of hydrocarbon-contaminated soil ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... The use of composting in bioremediation has received little attention (Potter et al., ..... Counts of microorganisms in the compost during composting. Values are means of three ..... chlorinated pesticides. J. Water Poll. Cont. Fed.

  8. Effects of biosurfactant production by indigenous soil microorganisms on bioremediation of a co-contaminated soil in batch experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, F.; Mulligan, C.N. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering

    2007-07-01

    The challenge of remediating soils that are contaminated with both hydrocarbon compounds and metals was discussed, with particular reference to an in-situ bioremediation technique that was developed in the 1970s to deal with contaminated soils. The technique involves a two-stage process where water with added oxygen and nutrients is applied onto and injected into a contaminated area to stimulate the indigenous microbial populations in the soil. In addition to using organic pollutants as their carbon source, microorganisms can facilitate the removal of metals from the soil matrix and attenuate the toxicity of certain metals. Extraction wells placed downstream of the contaminated soils are used to remove and treat the water to eliminate any mobilized contaminants. This paper presented the results of batch experiments that evaluated the feasibility of biosurfactant production for the purpose of bioremediating a soil contaminated with aged petroleum hydrocarbons and heavy metals. The first phase of the study examined the growth of the native microbial population and the biodegradation of petroleum hydrocarbons, the production of biosurfactant and the mobilization of the total petroleum hydrocarbons (TPH) and metals into the aqueous phase. Biodegradation of petroleum hydrocarbons was observed in both soil and soil amended with nitrogen and phosphorous. However, the nutrient-amended soil had higher biodegradation of petroleum hydrocarbons, where 36 per cent of TPH was degraded by the end of the 50 day experiment, compared to 15 per cent for the non-amended soils. The concentration of biosurfactants in the same period increased 3 times their critical micelle concentration. It was concluded that biosurfactant production enhances the bioremediation of co-contaminated soils. 36 refs., 1 tab., 8 figs.

  9. Bioremediation of cyanotoxins.

    Science.gov (United States)

    Edwards, Christine; Lawton, Linda A

    2009-01-01

    Cyanobacteria are a diverse group of mainly aquatic microorganisms which occur globally. Eutrophication (nutrient enrichment) of water bodies, often as a result of human activities, results in prolific grow of cyanobacteria that develop into a thick scum or bloom. Many of these blooms are toxic due to the production of hepatotoxins (microcystins and cylindrospermopsin) and/or neurotoxins (saxitoxins and anatoxins) posing a serious health hazard to humans and animals. The presence of these cyanotoxins is of particular concern in drinking water supplies where conventional water treatment often fails to eliminate them. Hence, there is significant interest in water treatment strategies that ensure the removal of cyanotoxins, with the exploitation of microbes being on such possible approach. As naturally occurring compounds it is assumed that these toxins are readily biodegraded. Furthermore, there is no significant evidence of their accumulation in the environment and their relative stable under a wide range of physico-chemical conditions, suggests biodegradation is the main route for their natural removal from the environment. Microcystins, as the most commonly occurring toxins, have been the most widely studied and hence form the main focus here. The review provides an overview of research into the biodegradation of cyanotoxin, including evidence for natural bioremediation, screening and isolation of toxin biodegrading bacteria, genetic and biochemical elucidation of a degradation pathway along with attempts to harness them for bioremediation through bioactive water treatment processes.

  10. Natural and accelerated bioremediation research program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE`s Office of Environmental Management (EM). The program builds on OHER`s tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER`s and Office of Energy Research`s (OER`s) commitment to supporting DOE`s environmental management mission and the belief that bioremediation is an important part of the solution to DOE`s environmental problems.

  11. Bioremediation capacity, nutritional value and biorefining of macroalga Saccharina latissima

    DEFF Research Database (Denmark)

    Silva Marinho, Goncalo

    Macroalgae have the ability to assimilate and convert waste nutrients (N and P) into valuable biomass. In this context, they have been extensively studied for their bioremediation potential for integrated multi-trophic aquaculture (IMTA). With a global aquaculture production of 23.8 million tonnes...... attention as sustainable feedstock for biorefinery. Nevertheless, macroalgae resources are still very little explored in western countries. The aim of this study was fulfilled by the investigation of the bioremediation potential of the macroalga Saccharina latissima cultivated at a reference site (control...... two growing seasons enhanced the biomass yield and thus value, but not the bioremediation capacity. Harvest time had a significant impact in overall chemical composition, while cultivation site did not generally result in marked differences. The growth of epiphytic organisms from July to November...

  12. In Situ Remediation Integrated Program: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed

  13. In Situ Remediation Integrated Program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  14. Integrating Electrokinetic and Bioremediation Process for Treating Oil Contaminated Low Permeability Soil

    Science.gov (United States)

    Ramadan, Bimastyaji Surya; Effendi, Agus Jatnika; Helmy, Qomarudin

    2018-02-01

    Traditional oil mining activities always ignores environmental regulation which may cause contamination in soil and environment. Crude oil contamination in low-permeability soil complicates recovery process because it requires substantial energy for excavating and crushing the soil. Electrokinetic technology can be used as an alternative technology to treat contaminated soil and improve bioremediation process (biostimulation) through transfer of ions and nutrient that support microorganism growth. This study was conducted using a combination of electrokinetic and bioremediation processes. Result shows that the application of electrokinetic and bioremediation in low permeability soils can provide hydrocarbon removal efficiency up to 46,3% in 7 days operation. The highest amount of microorganism can be found in 3-days operation, which is 2x108 CFU/ml using surfactant as flushing fluid for solubilizing hydrocarbon molecules. Enhancing bioremediation using electrokinetic process is very potential to recover oil contaminated low permeability soil in the future.

  15. Time-Dependent Damage Investigation of Rock Mass in an In Situ Experimental Tunnel

    Science.gov (United States)

    Jiang, Quan; Cui, Jie; Chen, Jing

    2012-01-01

    In underground tunnels or caverns, time-dependent deformation or failure of rock mass, such as extending cracks, gradual rock falls, etc., are a costly irritant and a major safety concern if the time-dependent damage of surrounding rock is serious. To understand the damage evolution of rock mass in underground engineering, an in situ experimental testing was carried out in a large belowground tunnel with a scale of 28.5 m in width, 21 m in height and 352 m in length. The time-dependent damage of rock mass was detected in succession by an ultrasonic wave test after excavation. The testing results showed that the time-dependent damage of rock mass could last a long time, i.e., nearly 30 days. Regression analysis of damage factors defined by wave velocity, resulted in the time-dependent evolutional damage equation of rock mass, which corresponded with logarithmic format. A damage viscoelastic-plastic model was developed to describe the exposed time-dependent deterioration of rock mass by field test, such as convergence of time-dependent damage, deterioration of elastic modules and logarithmic format of damage factor. Furthermore, the remedial measures for damaged surrounding rock were discussed based on the measured results and the conception of damage compensation, which provides new clues for underground engineering design.

  16. GENOTOXICITY OF BIOREMEDIATED SOILS FROM THE REILLY TARSITE, ST. LOUIS PARK, MINNESOTA

    Science.gov (United States)

    An in vitro approach was used to measure the genotoxicity of creosote-contaminated soil before and after four bioremediation processes. The soil was taken from the Reilly Tar site, a closed Superfund site in Saint Louis Park, Minnesota. The creosote soil was bioremediated in bios...

  17. Strategy for implementing a bioremediation project

    International Nuclear Information System (INIS)

    Memood, T.; Malik, S.A.; Kazmi, S.A.R.; Alam, T.

    2005-01-01

    Biodegradation, is the partial simplification or complete destruction of the molecular structure of environmental pollutants by physiological reactions catalyzed by microorganisms, by applying chemical and physiological assays to laboratory incubations of flasks containing pure culture of microorganism, mixed cultures or environmental. whereas Bioremediation is the intentional use of biodegradation process to eliminate environmental pollutants from sites where they have been released either intentionally or inadvertently, as documented most readily in laboratory assays to eliminate or reduce the concentration of environmental pollutants in field sites to levels that acceptable to site owners or Regulatory Agencies. The poster highlights the demonstration, how the diverse techniques derived from the Science of microbial contaminants from field sites., which is inherently multidisciplinary Bioremediation integrate the approaches, protocols, strategies and analysis from Microbiology, Molecular Biology, Hydrology, Soil Science, Physiology and Analytical Chemistry. (author)

  18. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils

    International Nuclear Information System (INIS)

    Margesin, R.

    2000-01-01

    The environmental contamination by organic pollutants is a widespread problem in all climates. The most widely distributed pollution can be attributed to oil contamination. Bioremediation methods can provide efficient, inexpensive and environmentally safe cleanup tools. The role of cold-adapted microorganisms for the bioremediation of experimentally and chronically oil-contaminated Alpine soils was evaluated in the studies described. The results demonstrated that there is a considerable potential for oil bioremediation in Alpine soils. Oil biodegradation can be significantly enhanced by biostimulation (inorganic nutrient supply), but a complete oil elimination is not possible by employing biological decontamination alone. (Author)

  19. Developments in Bioremediation of Soils and Sediments Pollutedwith Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.; Tabak, Henry H.

    2007-03-15

    Bioremediation of metals and radionuclides has had manyfield tests, demonstrations, and full-scale implementations in recentyears. Field research in this area has occurred for many different metalsand radionuclides using a wide array of strategies. These strategies canbe generally characterized in six major categories: biotransformation,bioaccumulation/bisorption, biodegradation of chelators, volatilization,treatment trains, and natural attenuation. For all field applicationsthere are a number of critical biogeochemical issues that most beaddressed for the successful field application. Monitoring andcharacterization parameters that are enabling to bioremediation of metalsand radionuclides are presented here. For each of the strategies a casestudy is presented to demonstrate a field application that uses thisstrategy.

  20. The Effects of Subsurface Bioremediation on Soil Structure, Colloid Formation, and Contaminant Transport

    Science.gov (United States)

    Wang, Y.; Liang, X.; Zhuang, J.; Radosevich, M.

    2016-12-01

    Anaerobic bioremediation is widely applied to create anaerobic subsurface conditions designed to stimulate microorganisms that degrade organic contaminants and immobilize toxic metals in situ. Anaerobic conditions that accompany such techniques also promotes microbially mediated Fe(III)-oxide mineral reduction. The reduction of Fe(III) could potentially cause soil structure breakdown, formation of clay colloids, and alternation of soil surface chemical properties. These processes could then affect bioremediation and the migration of contaminants. Column experiments were conducted to investigate the impact of anaerobic bioreduction on soil structure, hydraulic properties, colloid formation, and transport of three tracers (bromide, DFBA, and silica shelled silver nanoparticles). Columns packed with inoculated water stable soil aggregates were placed in anaerobic glovebox, and artificial groundwater media was pumped into the columns to simulate anaerobic bioreduction process for four weeks. Decent amount of soluble Fe(II) accompanied by colloids were detected in the effluent from bioreduction columns a week after initiation of bioreduction treatment, which demonstrated bioreduction of Fe(III) and formation of colloids. Transport experiments were performed in the columns before and after bioreduction process to assess the changes of hydraulic and surface chemical properties through bioreduction treatment. Earlier breakthrough of bromide and DFBA after treatment indicated alterations in flow paths (formation of preferential flow paths). Less dispersion of bromide and DFBA, and less tailing of DFBA after treatment implied breakdown of soil aggregates. Dramatically enhanced transport and early breakthrough of silica shelled silver nanoparticles after treatment supported the above conclusion of alterations in flow paths, and indicated changes of soil surface chemical properties.

  1. Integrating Electrokinetic and Bioremediation Process for Treating Oil Contaminated Low Permeability Soil

    Directory of Open Access Journals (Sweden)

    Surya Ramadan Bimastyaji

    2018-01-01

    Full Text Available Traditional oil mining activities always ignores environmental regulation which may cause contamination in soil and environment. Crude oil contamination in low-permeability soil complicates recovery process because it requires substantial energy for excavating and crushing the soil. Electrokinetic technology can be used as an alternative technology to treat contaminated soil and improve bioremediation process (biostimulation through transfer of ions and nutrient that support microorganism growth. This study was conducted using a combination of electrokinetic and bioremediation processes. Result shows that the application of electrokinetic and bioremediation in low permeability soils can provide hydrocarbon removal efficiency up to 46,3% in 7 days operation. The highest amount of microorganism can be found in 3-days operation, which is 2x108 CFU/ml using surfactant as flushing fluid for solubilizing hydrocarbon molecules. Enhancing bioremediation using electrokinetic process is very potential to recover oil contaminated low permeability soil in the future.

  2. Bioremediation of waste under ocean acidification: Reviewing the role of Mytilus edulis.

    Science.gov (United States)

    Broszeit, Stefanie; Hattam, Caroline; Beaumont, Nicola

    2016-02-15

    Waste bioremediation is a key regulating ecosystem service, removing wastes from ecosystems through storage, burial and recycling. The bivalve Mytilus edulis is an important contributor to this service, and is used in managing eutrophic waters. Studies show that they are affected by changes in pH due to ocean acidification, reducing their growth. This is forecasted to lead to reductions in M. edulis biomass of up to 50% by 2100. Growth reduction will negatively affect the filtering capacity of each individual, potentially leading to a decrease in bioremediation of waste. This paper critically reviews the current state of knowledge of bioremediation of waste carried out by M. edulis, and the current knowledge of the resultant effect of ocean acidification on this key service. We show that the effects of ocean acidification on waste bioremediation could be a major issue and pave the way for empirical studies of the topic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Legal and social concerns to the development of bioremediation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bilyard, G.R.; McCabe, G.H.; White, K.A.; Gajewski, S.W.; Hendrickson, P.L.; Jaksch, J.A.; Kirwan-Taylor, H.A.; McKinney, M.D.

    1996-09-01

    The social and legal framework within which bioremediation technologies must be researched, developed, and deployed in the US are discussed in this report. Discussions focus on policies, laws and regulations, intellectual property, technology transfer, and stakeholder concerns. These discussions are intended to help program managers, scientists and engineers understand the social and legal framework within which they work, and be cognizant of relevant issues that must be navigated during bioremediation technology research, development, and deployment activities. While this report focuses on the legal and social environment within which the DOE operates, the laws, regulations and social processes could apply to DoD and other sites nationwide. This report identifies specific issues related to bioremediation technologies, including those involving the use of plants; native, naturally occurring microbes; non-native, naturally occurring microbes; genetically engineered organisms; and microbial products (e.g., enzymes, surfactants, chelating compounds). It considers issues that fall within the following general categories: US biotechnology policy and the regulation of field releases of organisms; US environmental laws and waste cleanup regulations; intellectual property and patenting issues; technology transfer procedures for commercializing technology developed through government-funded research; stakeholder concerns about bioremediation proposals; and methods for assuring public involvement in technology development and deployment.

  4. Legal and social concerns to the development of bioremediation technologies

    International Nuclear Information System (INIS)

    Bilyard, G.R.; McCabe, G.H.; White, K.A.; Gajewski, S.W.; Hendrickson, P.L.; Jaksch, J.A.; Kirwan-Taylor, H.A.; McKinney, M.D.

    1996-09-01

    The social and legal framework within which bioremediation technologies must be researched, developed, and deployed in the US are discussed in this report. Discussions focus on policies, laws and regulations, intellectual property, technology transfer, and stakeholder concerns. These discussions are intended to help program managers, scientists and engineers understand the social and legal framework within which they work, and be cognizant of relevant issues that must be navigated during bioremediation technology research, development, and deployment activities. While this report focuses on the legal and social environment within which the DOE operates, the laws, regulations and social processes could apply to DoD and other sites nationwide. This report identifies specific issues related to bioremediation technologies, including those involving the use of plants; native, naturally occurring microbes; non-native, naturally occurring microbes; genetically engineered organisms; and microbial products (e.g., enzymes, surfactants, chelating compounds). It considers issues that fall within the following general categories: US biotechnology policy and the regulation of field releases of organisms; US environmental laws and waste cleanup regulations; intellectual property and patenting issues; technology transfer procedures for commercializing technology developed through government-funded research; stakeholder concerns about bioremediation proposals; and methods for assuring public involvement in technology development and deployment

  5. In Situ Immobilization of Uranium in Structured Porous Media via Biomineralization at the Fracture/Matrix Interface

    International Nuclear Information System (INIS)

    Scheibe, Timothy D.

    2006-01-01

    Although the biogeochemical processes underlying key bioremediation technologies are increasingly well understood, field-scale heterogeneity (both physical and biogeochemical) remains a major obstacle to successful field-scale implementation. In particular, slow release of contamination from low-permeability regions (primarily by diffusive/dispersive mass transfer) can hinder the effectiveness of remediation. This research aims to evaluate strategies that target bioremediation efforts at interfaces between high- and low-permeability regions of an aquifer in order to minimize the rate of contaminant transfer into high-permeability (high-flux) zones, and thereby reduce ultimate contaminant delivery to environmental receptors

  6. Design Of Bioremediation Systems For Groundwater (Aerobic and Anaerobic Plus Representative Case Studies)

    Science.gov (United States)

    The attached presentation discusses the fundamentals of bioremediation in the subsurface. The basics of aerobic, cometabolic, and anaerobic bioremediation are presented. Case studies from the Delaware Sand & Gravel Superfund Site, Dover Cometabolic Research Project and the SABR...

  7. Fungal degradation of pesticides - construction of microbial consortia for bioremediation

    DEFF Research Database (Denmark)

    Ellegaard-Jensen, Lea

    in groundwater contamination. New technologies are therefore needed for cleaning up contaminated soil and water resources. This PhD was part of the project entitled Microbial Remediation of Contaminated Soil and Water Resources (MIRESOWA) where the overall aim is to develop new technologies for bioremediation...... of pesticide contaminated soil and water. The objectives of this PhD were to investigate fungal degradation of pesticides and following to construct microbial consortia for bioremediation. In Manuscript I the fungal degradation of the phenylurea herbicide diuron was studied. Isolates of soil fungi of the genus...... slightly enhanced BAM distribution. From this work it is evident that the fungal-bacterial consortium is capable of enhancing BAM-degradation in unsaturated systems, and may therefore be a promising application for soil bioremediation. In Manuscript III two- and three-member consortia were constructed...

  8. Bioremediation Kinetics of Pharmaceutical Industrial Effluent

    Directory of Open Access Journals (Sweden)

    M. Šabić

    2015-05-01

    Full Text Available In recent years, concerns about the occurrence and fate of pharmaceuticals that could be present in water and wastewater has gained increasing attention. With the public’s enhanced awareness of eco-safety, environmentally benign methods based on microorganisms have become more accepted methods of removing pollutants from aquatic systems. This study investigates bioremediation of pharmaceutical wastewater from pharmaceutical company Pliva Hrvatska d.o.o., using activated sludge and bioaugmented activated sludge with isolated mixed bacterial culture. The experiments were conducted in a batch reactor in submerged conditions, at initial concentration of organic matter in pharmaceutical wastewater, expressed as COD, 5.01 g dm–3 and different initial concentrations of activated sludge, which ranged from 1.16 to 3.54 g dm–3. During the experiments, the COD, pH, concentrations of dissolved oxygen and biomass were monitored. Microscopic analyses were performed to monitor the quality of activated sludge. Before starting with the bioremediation in the batch reactor, toxicity of the pharmaceutical wastewater was determined by toxicity test using bacteria Vibrio fischeri. The obtained results showed that the effective concentration of the pharmaceutical wastewater was EC50 = 17 % and toxicity impact index was TII50 = 5.9, meaning that the untreated pharmaceutical industrial effluent must not be discharged into the environment before treatment. The results of the pharmaceutical wastewater bioremediation process in the batch reactor are presented in Table 1. The ratio γXv ⁄ γX maintained high values throughout all experiments and ranged from 0.90 and 0.95, suggesting that the concentrations of biomass remained unchanged during the experiments. The important kinetic parameters required for performance of the biological removal process, namely μmax, Ks, Ki, Y and kd were calculated from batch experiments (Table 2. Figs. 1 and 2 show the experimental

  9. Towards Molecular Characterization of Mineral-Organic Matter Interface Using In Situ Liquid Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Zhu, Z.; Yu, X. Y.

    2017-12-01

    Organo-Mineral-Microbe interactions in terrestrial ecosystems are of great interest. Quite a few models have been developed through extensive efforts in this field. However, predictions from current models are far from being accurate, and many debates still exist. One of the major reasons is that most experimental data generated from bulk analysis, and the information of molecular dynamics occurring at mineral-organic matter interface is rare. Such information has been difficult to obtain, due to lack of suitable in situ analysis tools. Recently, we have developed in situ liquid secondary ion mass spectrometry (SIMS) at Pacific Northwest National Laboratory1, and it has shown promise to provide both elemental and molecular information at vacuum-liquid and solid-liquid interfaces.2 In this presentation, we demonstrate that in situ liquid SIMS can provide critical molecular information at solid substrate-live biofilm interface.3 Shewanella oneidensis is used as a model micro-organism and silicon nitride as a model mineral surface. Of particular interest, biologically relevant water clusters have been first observed in the living biofilms. Characteristic fragments of biofilm matrix components such as proteins, polysaccharides, and lipids can be molecularly examined. Furthermore, characteristic fatty acids (e.g., palmitic acid), quinolone signal, and riboflavin fragments were found to respond after the biofilm is treated with Cr(VI), leading to biofilm dispersal. Significant changes in water clusters and quorum sensing signals indicative of intercellular communication in the aqueous environment were observed, suggesting that they might result in fatty acid synthesis and inhibition of riboflavin production. The Cr(VI) reduction seems to follow the Mtr pathway leading to Cr(III) formation. Our approach potentially opens a new avenue for in-situ understanding of mineral-organo or mineral-microbe interfaces using in situ liquid SIMS and super resolution fluorescence

  10. Development of an aerobic/anaerobic process for in-situ-rehabilitation of a mostly with mineral oil contaminated location. Final report; Entwicklung eines aeroben/anaeroben Verfahrens zur `In situ-Sanierung` eines vorwiegend mineraloelkontaminierten Altlaststandortes. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, C; Winsel, E; Wartenberg, G

    1994-12-31

    - A location contaminated with mineral oil was tested for the possibility of a bioremediation; - the microbiological tests showed, that there is both an aerobiotic and an optional anaerobic autochthonous pollutants degrading microflora but only the activation of the aerobiotic germs was possible by both suitable nutrients and test conditions; - in degrading tests with a high concentration of pollutants a degradation was possible by addition of different nutrients. Within a week a degradation of about 70% was shown. In areas of lower concentration the possible degradation was smaller. - An in-situ-rehabilitation by a hydraulic supply of the soil microorganisms was not possible because of the anisotropic conditions at the location in a depth of 5-10 m; - an in-situ-rehabilitation with both soil air aspiration and aeration, for the supply of the soil microorganisms too, is even possible at anisotropic soil conditions; - now there is knowledge about both a variable filtration and tubing for an optimal adaptation for the bioremediation to the damage; - apparatus were developped for in-situ-rehabilitation for small and medium locations, useable for biological processes too; - there is a wide utilization of the aeration apparatus is because of the careful environmental use. (orig.) [Deutsch] - Ein Mineraloel-kontaminierter Altlaststandort wurde im Hinblick auf eine moegliche biologische Sanierung untersucht. - Die mikrobiologischen Untersuchungen ergaben, dass eine aerobe und fakultativ anaerobe autochthone schadstoffabbauende Mikroflora vorhanden ist, aber nur der aeroben Keime durch geeignete Naehrstoffe und Versuchsbedingungen aktivierbar waren. - In Abbauuntersuchungen durch Zusatz unterschiedlicher Naehrsalze konnte bei hoher Schadstoffkonzentration schon nach 1 Woche ein Abbau > 70% erreicht werden. In niederen Konzentrationsbereichen war die Schadstoffabbaupotenz wesentlich geringer. - Die anisotropen Verhaeltnisse am Standort in 5-10m Tiefe liessen eine In-situ

  11. Bioremediation of soil contaminated crude oil by Agaricomycetes.

    Science.gov (United States)

    Mohammadi-Sichani, M Maryam; Assadi, M Mazaheri; Farazmand, A; Kianirad, M; Ahadi, A M; Ghahderijani, H Hadian

    2017-01-01

    One of the most important environmental problems is the decontamination of petroleum hydrocarbons polluted soil, particularly in the oil-rich country. Bioremediation is the most effective way to remove these pollutants in the soil. Spent mushroom compost has great ability to decompose lignin-like pollution. The purpose of this study was the bioremediation of soil contaminated with crude oil by an Agaricomycetes . Soil sample amended with spent mushroom compost into 3%, 5% and 10% (w/w) with or without fertilizer. Ecotoxicity germination test was conducted with Lipidium sativa . The amplified fragment (18 s rDNA) sequence of this mushroom confirmed that the strain belonged to Pleurotus ostreatus species with complete homology (100% identity). All tests experiment sets were effective at supporting the degradation of petroleum hydrocarbons contaminated soil after three months. Petroleum contaminated soil amended with Spent mushroom compost 10% and fertilizer removed 64.7% of total petroleum hydrocarbons compared control. The germination index (%) in ecotoxicity tests ranged from 60.4 to 93.8%. This showed that the petroleum hydrocarbons contaminated soil amended with 10% Spent mushroom compost had higher bioremediation ability and reduced soil toxicity in less than three months.

  12. Immobilization of bacteria isolated from the mining areas on polymeric supports for bioremediation

    International Nuclear Information System (INIS)

    Romdhane, Marwa

    2011-01-01

    Today pollution is an important environmental problem. Many bacteria have the ability to degrade several types of pollutants in various media (soil, water and air) are used in bioremediation. The present work is to study bacterial diversity colonizing contaminated soil from a mining site in the region of Gafsa and Sfax phosphogypsum and evaluate their potential in bioremediation. Three bacterial strains were selected based on the presence of pigments. These strains have been studied for their tolerances of strontium. Selected strains, was assessed for its bioremediation potential to confirm his use in the biodeppolution processes.

  13. Laser Time-of-Flight Mass Spectrometry for Future In Situ Planetary Missions

    Science.gov (United States)

    Getty, S. A.; Brinckerhoff, W. B.; Cornish, T.; Ecelberger, S. A.; Li, X.; Floyd, M. A. Merrill; Chanover, N.; Uckert, K.; Voelz, D.; Xiao, X.; hide

    2012-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) is a versatile, low-complexity instrument class that holds significant promise for future landed in situ planetary missions that emphasize compositional analysis of surface materials. Here we describe a 5kg-class instrument that is capable of detecting and analyzing a variety of analytes directly from rock or ice samples. Through laboratory studies of a suite of representative samples, we show that detection and analysis of key mineral composition, small organics, and particularly, higher molecular weight organics are well suited to this instrument design. A mass range exceeding 100,000 Da has recently been demonstrated. We describe recent efforts in instrument prototype development and future directions that will enhance our analytical capabilities targeting organic mixtures on primitive and icy bodies. We present results on a series of standards, simulated mixtures, and meteoritic samples.

  14. Observation on the biodegradation and bioremediation potential of methyl t-butyl ether

    International Nuclear Information System (INIS)

    Salanitro, J.; Wisniewski, H.; McAllister, P.

    1995-01-01

    There have been few reports documenting evidence for the biodegradation of the fuel oxygenate alkyl ether, methyl t-butyl ether (MTBE) in groundwater, soils, and biosludges. Partial (or complete) microbial breakdown of MTBE has been observed in an anaerobic subsoil, a river sediment under methanogenic conditions, a cyclohexane-degrading bacterial consortium and a pure culture of the methylotroph, Methylisnus trichosporium OB3b. An aerobic bacterial enrichment (BC-1) isolated from an industrial transient (non-accumulating) metabolic intermediate. The studies suggest that MTBE is cleaved by BC-1 to TBA which is then metabolized via isopropanol and acetone. There is little information on the occurrence of indigenous MTBE-degraders in groundwater, soils and activated sludges. Preliminary evidence has been obtained, however, from a marketing terminal groundwater site that naturally-occurring MTBE-degraders are present in some monitoring wells. Microcosm experiments with groundwater from this aquifer show that MTBE is aerobically degraded (no TBA formed) with a first-order decay rate (0.31/day) similar to BTEX. Also, MTBE did not inhibit the intrinsic biodegradation potential of BTEX in groundwater microcosms. In summary, the data presented indicate that MTBE biodegradation has been observed in some environmental media. Further work is needed to assess the feasibility of using indigenous or derived aerobic and anaerobic MTBE-degrading cultures for treating fuel ethers in groundwaters or wastewater with in-situ or ex-situ bioremediation technologies

  15. Bioremediation case studies: Abstracts. Final report

    International Nuclear Information System (INIS)

    Devine, K.

    1992-03-01

    The report contains abstracts of 132 case studies of bioremediation technology applied to hazardous waste clean-up. It was prepared to compile bioremediation studies in a variety of locations and treating diverse contaminants, most of which were previously undocumented. All data are based on vendor-supplied information and there was no opportunity to independently confirm its accuracy. These 132 case studies, from 10 different biotechnology companies, provide users with reference information about on-going and/or completed field applications and studies. About two-thirds of the cases were at full-scale clean-up level with the remainder at pilot or laboratory scale. In 74 percent of the cases, soil was at least one of the media treated. Soil alone accounts for 46 percent of the cases. Petroleum-related wastes account for the largest contaminant with 82 cases. Thirty-one states are represented in the case studies

  16. In-situ bioremediation of contaminated soils from Rodna mining areas from Bistrița-Năsăud county

    Directory of Open Access Journals (Sweden)

    Cornel Negrusier

    2016-11-01

    Full Text Available Soil ecosystems contaminated with heavy metals can cause significant damages to the environment and human health due to the mobility and solubility capacity of the contaminants. This research was carried out to set up a suitable bioremediation scheme for cleaning up the soil from the mining sites of Anieș and Glod Valley from Bistrița-Năsăud county. Based on the investigations that have been made (soil colour, pH, organic content of the soil, plant inventory phytoremediation seemed to be the most effective and environmentally-friendly method that could be used to neutralize or remove heavy metals from the soil.

  17. New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-22

    Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amended with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability tests on the monomeric tetravalent uranium (U(IV)) produced by bioremediation are needed in order to assess the efficacy of acetate-stimulation bioremediation.

  18. Bioremediation of textile effluent using Phanerochaete chrysosporium

    African Journals Online (AJOL)

    Bioremediation of textile effluent using Phanerochaete chrysosporium. ... African Journal of Biotechnology. Journal Home · ABOUT THIS ... The discharge of these waste residues into the environment eventually poison, damage or affect one or ...

  19. Bioremediation of crude oil spills in marine and terrestrial environments

    International Nuclear Information System (INIS)

    Prince, R.C.

    1995-01-01

    Bioremediation can be a safe and effective tool for dealing with crude oil spills, as demonstrated during the cleanup following the Exxon Valdez spill in Alaska. Crude oil has also been spilled on land, and bioremediation is a promising option for land spills too. Nevertheless, there are still areas where understanding of the phenomenon is rather incomplete. Research groups around the world are addressing these problems, and this symposium provides an excellent overview of some of this work

  20. Bioremediation: Hope/Hype for Environmental Cleanup (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Ecology Dept.

    2007-07-18

    Summer Lecture Series 2007: Terry Hazen, Senior Staff Scientists and Head of the LBNL Ecology Department, discusses when it's best to resort to engineered bioremediation of contaminated sites, and when it's best to rely on natural attenuation. Recent advances have greatly broadened the potential applications for bioremediation. At the same time, scientists' knowledge of biogeochemical processes has advanced and they can better gauge how quickly and completely contaminants can be degraded without human intervention.

  1. Earthworm-assisted bioremediation of petroleum hydrocarbon ...

    African Journals Online (AJOL)

    Ameh

    The use of earthworms (Eudrilus eugenia) for vermi-assisted bioremediation of petroleum hydrocarbon contaminated mechanic workshop soils ... not always result in complete neutrali- zation of pollutants (Yerushalmi et al., 2003). ..... Screening of biofouling activity in marine bacterial isolate from ship hull. Int. J. Environ. Sci.

  2. Structural basis for expanding the application of bioligand in metal bioremediation: A review.

    Science.gov (United States)

    Sharma, Virbala; Pant, Deepak

    2018-03-01

    Bioligands (BL) present in plant and microbes are primarily responsible for their use in metal decontamination. Both primary (proteins and amino acid) and secondary (proliferated) response in the form of BL is possible in plants and microbes toward metal bioremediation. Structure of these BL have specific requirement for preferential binding towards a particular metal in biomass. The aim of this review is to explore various templates from BL (as metal host) for the metal detoxification/decontamination and associated bioremediation. Mechanistic explanation for bioremediation may involve the various processes like: (i) electron transfer; (ii) translocation; and (iii) coordination number variation. HSAB (hard and soft acid and base) concept can act as guiding principle for many such processes. It is possible to investigate various structural homolog of BL (similar to secondary response in living stage) for the possible improvement in bioremediation process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Intrinsic bioremediation of BTEX in a cold temperature environment

    International Nuclear Information System (INIS)

    Johns, C.; Biggar, K.; Foght, J.; Mullick, A.

    1999-01-01

    Investigation of Intrinsic bioremediation technology at cold temperature sites contaminated with BTEX (benzene, toluene, ethyl benzene, xylene) is discussed. Site investigation at each of the sites was carried out to delineate stratigraphy, hydrogeology, microbiological setting, level of contamination and geochemical conditions. Preferred conditions for viable sites were found to include minimal risk of contaminants coming into contact with receptors, low hydraulic gradient, and the presence of adequate nutrients and terminal electron acceptors (TEAs). Enumeration of contaminant degrading microorganisms was completed through the Most Probable Number (MPN) technique indicating viable populations of aerobic petroleum degrading, nitrogen reducing and iron reducing bacteria. The effects of cold temperatures on the rate and extent of substrate utilization was studied in the laboratory, Results to date indicate that the sites under consideration are suitable candidates for intrinsic bioremediation and that significant rates of biodegradation are possible at low temperatures. If risk analysis proves to be favorable, the intrinsic bioremediation methodology is likely to provide an effective and affordable solution. 16 refs., 3 tabs., 3 figs

  4. Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process.

    Science.gov (United States)

    Molina-Barahona, L; Vega-Loyo, L; Guerrero, M; Ramírez, S; Romero, I; Vega-Jarquín, C; Albores, A

    2005-02-01

    Evaluation of contaminated sites is usually performed by chemical analysis of pollutants in soil. This is not enough either to evaluate the environmental risk of contaminated soil nor to evaluate the efficiency of soil cleanup techniques. Information on the bioavailability of complex mixtures of xenobiotics and degradation products cannot be totally provided by chemical analytical data, but results from bioassays can integrate the effects of pollutants in complex mixtures. In the preservation of human health and environment quality, it is important to assess the ecotoxicological effects of contaminated soils to obtain a better evaluation of the healthiness of this system. The monitoring of a diesel-contaminated soil and the evaluation of a bioremediation technique conducted on a microcosm scale were performed by a battery of ecotoxicological tests including phytotoxicity, Daphnia magna, and nematode assays. In this study we biostimulated the native microflora of soil contaminated with diesel by adding nutrients and crop residue (corn straw) as a bulking agent and as a source of microorganisms and nutrients; in addition, moisture was adjusted to enhance diesel removal. The bioremediation process efficiency was evaluated directly by an innovative, simple phytotoxicity test system and the diesel extracts by Daphnia magna and nematode assays. Contaminated soil samples were revealed to have toxic effects on seed germination, seedling growth, and Daphnia survival. After biostimulation, the diesel concentration was reduced by 50.6%, and the soil samples showed a significant reduction in phytotoxicity (9%-15%) and Daphnia assays (3-fold), confirming the effectiveness of the bioremediation process. Results from our microcosm study suggest that in addition to the evaluation of the bioremediation processes efficiency, toxicity testing is different with organisms representative of diverse phylogenic levels. The integration of analytical, toxicological and bioremediation data

  5. Germination and initial growth of Campomanesia xanthocarpa O. Berg. (Myrtaceae, in petroleum-contaminated soil and bioremediated soil

    Directory of Open Access Journals (Sweden)

    AM. Gogosz

    Full Text Available In 2000 there was an oil spill at the Getúlio Vargas Refinery (REPAR in Paraná. Nearly five years after contamination and the use of bioremediation, a study was carried out to identify the effects of the contaminated soil and the bioremediated soil on the germination and initial growth of C. xanthocarpa. The experiment was established with soil from REPAR, with three treatment groups: contaminated soil (C, bioremediated soil (B and uncontaminated soil (U; with five repetitions of 50 seeds each. There was no significant difference in the percentage of germination and the speed of germination index. The production of total biomass (30 - 60 days and shoot biomass (60 days was greater in the bioremediated soil compared to the other treatments. The averages for the root biomass were lower in the contaminated soil than in the bioremediated soil. The shoot length and the total length of the seedling in the contaminated soil and uncontaminated soil were lower than in the bioremediated soil.

  6. Biosurfactant-enhanced bioremediation of hydrophobic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Makkar, R.S. [Inst. of Microbial Technology, Chandigarh (India)

    2010-01-15

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and - philic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures-lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs), crude on sludge, and pesticides call be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released into the environment as a result of oil spillage and by-products of coal treatment processes. The low water solubility of these compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential hioremediation applications.

  7. Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation.

    Science.gov (United States)

    Garg, Nidhi; Lata, Pushp; Jit, Simran; Sangwan, Naseer; Singh, Amit Kumar; Dwivedi, Vatsala; Niharika, Neha; Kaur, Jasvinder; Saxena, Anjali; Dua, Ankita; Nayyar, Namita; Kohli, Puneet; Geueke, Birgit; Kunz, Petra; Rentsch, Daniel; Holliger, Christof; Kohler, Hans-Peter E; Lal, Rup

    2016-06-01

    Hexachlorocyclohexane (HCH) contaminated soils were treated for a period of up to 64 days in situ (HCH dumpsite, Lucknow) and ex situ (University of Delhi) in line with three bioremediation approaches. The first approach, biostimulation, involved addition of ammonium phosphate and molasses, while the second approach, bioaugmentation, involved addition of a microbial consortium consisting of a group of HCH-degrading sphingomonads that were isolated from HCH contaminated sites. The third approach involved a combination of biostimulation and bioaugmentation. The efficiency of the consortium was investigated in laboratory scale experiments, in a pot scale study, and in a full-scale field trial. It turned out that the approach of combining biostimulation and bioaugmentation was most effective in achieving reduction in the levels of α- and β-HCH and that the application of a bacterial consortium as compared to the action of a single HCH-degrading bacterial strain was more successful. Although further degradation of β- and δ-tetrachlorocyclohexane-1,4-diol, the terminal metabolites of β- and δ-HCH, respectively, did not occur by the strains comprising the consortium, these metabolites turned out to be less toxic than the parental HCH isomers.

  8. Quantitative Framework and Management Expectation Tool for the Selection of Bioremediation Approaches at Chlorinated Solvent Sites

    Science.gov (United States)

    2015-03-19

    Bioremediation Approaches at Chlorinated Solvent Sites March 19, 2015 SERDP & ESTCP Webinar Series (#11) SERDP & ESTCP Webinar Series Welcome and...Expectation Tool for the Selection of Bioremediation Approaches at Chlorinated Solvent Sites Ms. Carmen Lebrón, Independent Consultant (20 minutes + Q&A) Dr...ESTCP Webinar Series Quantitative Framework and Management Expectation Tool for the Selection of Bioremediation Approaches at Chlorinated

  9. Bioremediation efficacy in Marrow Marsh following the Apex oil spill, Galveston Bay, Texas

    International Nuclear Information System (INIS)

    Nadeau, R.; Singhvi, R.; Ryabik, J.; Lin, Yihua; Syslo, J.

    1992-01-01

    Samples taken from Marrow Marsh in Galveston Bay, Texas were taken to assess the efficacy of the August 5, 1990 bioremediation treatment in the marsh following the Apex barges oil spill on July 28, 1990. The bioremediation treatment combined a lyophilized bacterial mixture and a nutrient mix containing phosphorus and nitrogen. Samples from the marsh had been collected over a 96 h period from both treated and untreated oiled sites. Oil fingerprinting, fatty acid analysis, polynuclear aromatic hydrocarbons analysis, and total petroleum hydrocarbons analysis were performed to evaluate changes in the chemical characteristics of spilled oil. Results of analyses, although not statistically reliable, failed to support the occurrence of any definite chemical alteration in the spilled oil that could be attributed to the bioremediation treatment. The relatively short sampling period and the number of samples taken, however, may have been insufficient to document the efficacy of the overall bioremediation effect. 13 refs., 6 figs., 4 tabs

  10. In situ determination of a rock mass modulus using a high resolution tiltmeter

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, B.; Husein Malkawi, A.I. [University of Jordan, Amman (Jordan); Blum, P.A. [Universite Pierre et Marie Curie, 75 - Paris (France)

    1996-04-01

    A very sensitive, compact tiltmeter made of melted silica, developed for the measurement of small deformations of various civil engineering structures, was described. The instrument is capable of giving a continuous record and was used to establish a new approach to directly evaluating the in situ average elastic rock mass modulus. Such information is important in decision making during the design stages of large civil engineering works, such as dams, nuclear plant facilities, and underground structures. Five tiltmeters were installed on the facades of the Louvre in Paris to study the deformation induced by internal structural work and by the impact of the Paris metro traffic movement. The data was used to determine displacement using the Boussinesq equation. Results were consistent with typical elastic rock-mass modulus for the rock found in the museum`s foundations. 13 refs., 1 tab., 10 figs.

  11. Distribution of hydrocarbon-degrading bacteria in the soil environment and their contribution to bioremediation.

    Science.gov (United States)

    Fukuhara, Yuki; Horii, Sachie; Matsuno, Toshihide; Matsumiya, Yoshiki; Mukai, Masaki; Kubo, Motoki

    2013-05-01

    A real-time PCR quantification method for indigenous hydrocarbon-degrading bacteria (HDB) carrying the alkB gene in the soil environment was developed to investigate their distribution in soil. The detection limit of indigenous HDB by the method was 1 × 10(6) cells/g-soil. The indigenous HDB were widely distributed throughout the soil environment and ranged from 3.7 × 10(7) to 5.0 × 10(8) cells/g-soil, and the ratio to total bacteria was 0.1-4.3 %. The dynamics of total bacteria, indigenous HDB, and Rhodococcus erythropolis NDKK6 (carrying alkB R2) during bioremediation were analyzed. During bioremediation with an inorganic nutrient treatment, the numbers of these bacteria were slightly increased. The numbers of HDB (both indigenous bacteria and strain NDKK6) were gradually decreased from the middle stage of bioremediation. Meanwhile, the numbers of these bacteria were highly increased and were maintained during bioremediation with an organic nutrient. The organic treatment led to activation of not only the soil bacteria but also the HDB, so an efficient bioremediation was carried out.

  12. In situ vadose zone remediation of petroleum-contaminated soils

    International Nuclear Information System (INIS)

    Greacen, J.R.; Finkel, D.J.

    1991-01-01

    This paper discusses a pilot-scale system treating vadose zone soils contaminated with petroleum products constructed and operated at a former petroleum bulk storage terminal in New England. A site investigation following decommissioning activities identified more than 100,000 yds of soil at the site contaminated by both No. 2 fuel oil and gasoline. Soil cleanup criteria of 50 ppm TPH and 0.25 ppm BTEX were established. A pilot-scale treatment unit with dimensions of 125 ft x 125 ft x 6 ft was constructed to evaluate the potential for in situ treatment of vadose zone soils. Contaminant levels in pilot cell soils ranged from 0 to 5,250 ppm TPH and 0.0 to 4.2 ppm BTEX. Two soil treatment methods n the pilot system were implemented; venting to treat the lighter petroleum fractions and bioremediation to treat the nonvolatile petroleum constituents. Seven soil gas probes were installed to monitor pressure and soil gas vapor concentrations in the subsurface. Changes in soil gas oxygen and carbon dioxide concentrations were used as an indirect measure of enhanced bioremediation of pilot cell soils. After operating the system for a period of 2.5 months, soil BTEX concentrations were reduced to concentrations below the remediation criteria for the site

  13. Bioremediation of hydrocarbon-contaminated soils: are treatability and ecotoxicity endpoints related?

    International Nuclear Information System (INIS)

    Visser, S.

    1999-01-01

    To determine if there is a relationship between biotreatability and ecotoxicity endpoints in a wide range of hydrocarbon-contaminated soils, including medium and heavy crude oil-contaminated flare pit wastes and lubrication oil contaminated soil, research was conducted. Each test material was analyzed for pH, water repellency, electrical conductivity, available N and P, total extractable hydrocarbons, oil and grease, and toxicity to seedling emergence, root elongation in barley, lettuce and canola, earthworm survival and luminescent bacteria (Microtox), prior to, and following three months of bioremediation in the laboratory. By monitoring soil respiration, progress of the bioremediation process and determination of a treatment endpoint were assessed. The time required to attain a treatment endpoint under laboratory conditions can range from 30 days to 100 days depending on the concentration of hydrocarbons and degree of weathering. Most flare pits are biotreatable, averaging a loss of 25-30% of hydrocarbons during bioremediation. Once a treatment endpoint is achieved, residual hydrocarbons contents almost always exceeds Alberta Tier I criteria for mineral oil and grease. As a result of bioremediation treatments, hydrophobicity is often reduced from severe to low. Many flare pit materials are still moderately to extremely toxic after reaching a treatment endpoint. (Abstract only)

  14. The Environmental Issues of DDT Pollution and Bioremediation: a Multidisciplinary Review.

    Science.gov (United States)

    Mansouri, Ahlem; Cregut, Mickael; Abbes, Chiraz; Durand, Marie-Jose; Landoulsi, Ahmed; Thouand, Gerald

    2017-01-01

    DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane) is probably the best known and most useful organochlorine insecticide in the world which was used since 1945 for agricultural purposes and also for vector-borne disease control such as malaria since 1955, until its banishment in most countries by the Stockholm convention for ecologic considerations. However, the World Health Organization allowed its reintroduction only for control of vector-borne diseases in some tropical countries in 2006. Due to its physicochemical properties and specially its persistence related with a half-life up to 30 years, DDT linked to several health and social problems which are due to its accumulation in the environment and its biomagnification properties in living organisms. This manuscript compiles a multidisciplinary review to evaluate primarily (i) the worldwide contamination of DDT and (ii) its (eco) toxicological impact onto living organisms. Secondly, several ways for DDT bioremediation from contaminated environment are discussed. For this, reports on DDT biodegradation capabilities by microorganisms and ways to enhance bioremediation strategies to remove DDT are presented. The different existing strategies for DDT bioremediation are evaluated with their efficiencies and limitations to struggle efficiently this contaminant. Finally, rising new approaches and technological bottlenecks to promote DDT bioremediation are discussed.

  15. In Situ Warming and Soil Venting to Enhance the Biodegradation of JP-4 in Cold Climates: A Critical Study and Analysis

    Science.gov (United States)

    1995-12-01

    1178-1180 (1991). Atlas , Ronald M. and Richard Bartha . Microbial Ecology : Fundamentals and Applications. 3d ed. Redwood City CA: The Benjamin/Cummings...technique called bioventing. In cold climates, in situ bioremediation is limited to the summer when soil temperatures are sufficient to support microbial ...actively warmed the soil -- warm water circulation and heat tape; the other passively warmed the plot with insulatory covers. Microbial respiration (02

  16. Monitoring and interpreting bioremediation effectiveness

    International Nuclear Information System (INIS)

    Bragg, J.R.; Prince, R.C.; Harner, J.; Atlas, R.M.

    1993-01-01

    Following the Exxon Valdez oil spill in 1989, extensive research was conducted by the US Environments Protection Agency and Exxon to develop and implement bioremediation techniques for oil spill cleanup. A key challenge of this program was to develop effective methods for monitoring and interpreting bioremediation effectiveness on extremely heterogenous intertidal shorelines. Fertilizers were applied to shorelines at concentrations known to be safe, and effectiveness achieved in acceleration biodegradation of oil residues was measure using several techniques. This paper describes the most definitive method identified, which monitors biodegradation loss by measuring changes in ratios of hydrocarbons to hopane, a cycloalkane present in the oil that showed no measurable degradation. Rates of loss measured by the hopane ratio method have high levels of statistical confidence, and show that the fertilizer addition stimulated biodegradation rates as much a fivefold. Multiple regression analyses of data show that fertilizer addition of nitrogen in interstitial pore water per unit of oil load was the most important parameter affecting biodegradation rate, and results suggest that monitoring nitrogen concentrations in the subsurface pore water is preferred technique for determining fertilizer dosage and reapplication frequency

  17. Potential use of cyanobacterial species in bioremediation of ...

    African Journals Online (AJOL)

    Potential use of cyanobacterial species in bioremediation of industrial effluents. ... African Journal of Biotechnology ... Abstract. This study investigated the potential degradation of industrial effluents by environmental species of cyanobacteria.

  18. Bioremediation potential of Lentinus subnudus in decontaminating ...

    African Journals Online (AJOL)

    Prof. Ogunji

    in bioremediation of crude oil polluted soil amended with plantain peels. Keywords: ... accepted as a method for treating contaminated soil. This technology takes advantage of the .... (0.03mg/l), Chromium (0.025mg/l), Cadmium. (1.28mg/l) ...

  19. Mineral transformation and biomass accumulation associated with uranium bioremediation at Rifle, Colorado.

    Science.gov (United States)

    Li, Li; Steefel, Carl I; Williams, Kenneth H; Wilkins, Michael J; Hubbard, Susan S

    2009-07-15

    Injection of organic carbon into the subsurface as an electron donor for bioremediation of redox-sensitive contaminants like uranium often leads to mineral transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation efficacy. This work combines reactive transport modeling with a column experiment and field measurements to understand the biogeochemical processes and to quantify the biomass and mineral transformation/accumulation during a bioremediation experiment at a uranium contaminated site near Rifle, Colorado. We use the reactive transport model CrunchFlow to explicitly simulate microbial community dynamics of iron and sulfate reducers, and their impacts on reaction rates. The column experiment shows clear evidence of mineral precipitation, primarily in the form of calcite and iron monosulfide. At the field scale, reactive transport simulations suggest that the biogeochemical reactions occur mostly close to the injection wells where acetate concentrations are highest, with mineral precipitate and biomass accumulation reaching as high as 1.5% of the pore space. This work shows that reactive transport modeling coupled with field data can bean effective tool for quantitative estimation of mineral transformation and biomass accumulation, thus improving the design of bioremediation strategies.

  20. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant

    International Nuclear Information System (INIS)

    Rahman, K.S.M.; Banat, I.M.; Thahira, J.; Thayumanavan, T.; Lakshmanaperumalsamy, P.

    2002-01-01

    The aim of the present study was to find methods for enhancing rates of hydrocarbon biodegradation in gasoline contaminated soil by ex situ bioremediation. Red soil (RS) was treated with gasoline-spilled soil (GS) from a gasoline station and different combinations of amendments were prepared using (i) mixed bacterial consortium (MC), (ii) poultry litter (PL), (iii) coir pith (CP) and (iv) rhamnolipid biosurfactant (BS) produced by Pseudomonas sp. DS10-129. The study was conducted for a period of 90 days during which bacterial growth, hydrocarbon degradation and growth parameters of Phaseolus aureus RoxB including seed germination, chlorophyll content, shoot and root length were measured. Approximately 67% and 78% of the hydrocarbons were effectively degraded within 60 days in soil samples amended with RS + GS + MC + PL + CP + BS at 0.1% and 1%. Maximum percentage of seed germination, shoot length, root length and chlorophyll content in P. aureus were recorded after 60 days in the above amendments. Further incubation to 90 days did not exhibit significant improvements. Statistical analysis using analysis of variance (ANOVA) and Duncan's multiple range test (DMRT) revealed that the level of amendments, incubation time and combination of amendments significantly influenced bacterial growth, hydrocarbon degradation, seed germination and chlorophyll content at a 1% probability level. All tested additives MC, PL, CP and rhamnolipid BS had significant positive effects on the bioremediation of GS. (author)

  1. Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays

    DEFF Research Database (Denmark)

    Muchie, Mammo; Akpor, OB

    2010-01-01

    Akpor OB and Muchie M. (2010). Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays, Vol. 5(21), pp. 3222–3230......Akpor OB and Muchie M. (2010). Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays, Vol. 5(21), pp. 3222–3230...

  2. Bioremediation of treated wood with fungi

    Science.gov (United States)

    Barbara L. Illman; Vina W. Yang

    2006-01-01

    The authors have developed technologies for fungal bioremediation of waste wood treated with oilborne or metal-based preservatives. The technologies are based on specially formulated inoculum of wood-decay fungi, obtained through strain selection to obtain preservative-tolerant fungi. This waste management approach provides a product with reduced wood volume and the...

  3. Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.

    Science.gov (United States)

    Sivaperumal, P; Kamala, K; Rajaram, R

    Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes. © 2017 Elsevier Inc. All rights reserved.

  4. Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in situ Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Piens, Dominique` Y.; Kelly, Stephen T.; Harder, Tristan; Petters, Markus D.; O' Brien, Rachel; Wang, Bingbing; Teske, Ken; Dowell, Pat; Laskin, Alexander; Gilles, Mary K.

    2016-04-18

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental composition of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state determined for 158 particles broadly agreed with those of the humidified particles, indicating the potential to infer the atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicron atmospheric particles.

  5. In-situ remediation of TCE by ERD in clay tills. Feasibility and performance of full-scale application insights gained through an integrated investigative approach for 2 sites

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Damgaard, Ida; Chambon, Julie Claire Claudia

    -scale applications of ERD in clay tills were investigated in a research project in-cluding 2 sites in Denmark undergoing remediation since 2006. Site remediation approach. At the Sortebrovej site an emulsified oil donor (EOS) and a bio-augmentation culture (KB1®) with specific degraders Dehalococcoides were injected......Background/Objectives. Remediation of trichloroethene (TCE) in clay and other low permeabil-ity geologic media, where groundwater flow occurs preferentially in higher permeability sand lenses or fractures, is a significant challenge. At older sites, much of the contaminant mass is pre......-sent as a sorbed phase in the matrix due to matrix diffusion. The principal challenge for in situ remediation in clay is to achieve effective contact between contaminant and bioremediation addi-tives (e.g., organic electron donors and bioaugmentation cultures). The feasibility and perfor-mance of full...

  6. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil.

    Science.gov (United States)

    Wu, Manli; Ye, Xiqiong; Chen, Kaili; Li, Wei; Yuan, Jing; Jiang, Xin

    2017-04-01

    A laboratory study was conducted to evaluate the impact of bioaugmentation plus biostimulation (BR, added both nutrients and bacterial consortia), and natural attenuation (NA) on hydrocarbon degradation efficiency and microflora characterization during remediation of a freshly contaminated soil. After 112 days of remediation, the initial level of total petroleum hydrocarbon (TPH) (61,000 mg/kg soil) was reduced by 4.5% and 5.0% in the NA and BR treatments, respectively. Bioremediation did not significantly enhance TPH biodegradation compared to natural attenuation. The degradation of the aliphatic fraction was the most active with the degradation rate of 30.3 and 28.7 mg/kg/day by the NA and BR treatments, respectively. Soil microbial activities and counts in soil were generally greater for bioremediation than for natural attenuation. MiSeq sequencing indicated that the diversity and structure of microbial communities were affected greatly by bioremediation. In response to bioremediation treatment, Promicromonospora, Pseudomonas, Microcella, Mycobacterium, Alkanibacter, and Altererythrobacter became dominant genera in the soil. The result indicated that combining bioaugmentation with biostimulation did not improve TPH degradation, but soil microbial activities and structure of microbial communities are sensitive to bioremediation in short-term and heavily oil-contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Efficacy of bacterial bioremediation: Demonstration of complete incorporation of hydrocarbons into membrane phospholipids from Rhodococcus hydrocarbon degrading bacteria by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, R.P.; Blumer, E.N.; Emmett, M.R.; Marshall, A.G.

    2000-02-01

    The authors present a method and example to establish complete incorporation of hydrocarbons into membrane phospholipids of putatively bioremediative bacteria. Bacteria are grown on minimal media containing a specified carbon source, either natural abundance or enriched. After extraction (but no other prior separation) of the membrane lipids, electrospray ionization yields a negative-ion FT-ICR mass spectrum containing prominent phospholipid parent ions. If {sup 13}C-enriched hydrocarbon incorporation is complete, then the mass of the parent ion will increase by n Da, in which n is the number of its constituent carbon atoms; moreover, the {sup 13}C isotopic distribution pattern will be reversed. The identities of the constituent fatty acids and polar headgroup are obtained by collisional dissociation (MS/MS), and their extent of {sup 13}C incorporation determined individually. The method is demonstrated for Rhodococcus rhodochrous (ATCC No. 53968), for which all 44 carbons of a representative phosphatidylinositol are shown to derive from the hydrocarbon source. Interestingly, although only C{sub 16} and C{sub 18} alkanes are provided in the growth medium, the bacteria synthesize uniformly enriched C16:0 and C19:0 fatty acids.

  8. Bioremediation of a PAH-contaminated gasworks site with the Ebiox vacuum heap system

    International Nuclear Information System (INIS)

    Eiermann, D.R.; Bolliger, R.

    1995-01-01

    A former gasworks site in the industrial city of Winterthur, Switzerland, was extremely contaminated with polycyclic aromatic hydrocarbons (PAHs); benzene, toluene, ethylbenzene, and xylenes (BTEX); phenols; ammonia; and mineral oils. Three vacuum heaps, with a total volume of 10,500 m 3 of contaminated soil, were bioremediated during 1993/94. Separating excavated soil material into different soil qualities was of particular importance because of the pathway definition of the specific soil material. Excavation of contamination took longer than 10 months, delivering continuously different contaminated soil-type material for bioremediation. Conditioning and subsequent biostimulation of the large soil volumes were the prerequisites for most advanced milieu optimization. The degradation results demonstrated the potential for successful application of bioremediation on former industrial sites. PAH-concentration reductions ranged from 75 to 83% for the soil values and from 87 to 98% for the elution values. Soil and elution target qualities were met within 6 to 12 months, depending on initial PAH-concentration and soil structure. The achieved target quality for the bioremediated soil allowed subsequent reuse as high-value backfill material for the ongoing building project

  9. Subtask 1.16-Slow-Release Bioremediation Accelerators

    International Nuclear Information System (INIS)

    Marc D. Kurz; Edwin S. Olson

    2006-01-01

    Low-cost methods are needed to enhance various bioremediation technologies, from natural attenuation to heavily engineered remediation of subsurface hydrocarbon contamination. Many subsurface sites have insufficient quantities of nitrogen and phosphorus, resulting in poor bioactivity and increased remediation time and costs. The addition of conventional fertilizers can improve bioactivity, but often the nutrients dissolve quickly and migrate away from the contaminant zone before being utilized by the microbes. Through this project, conducted by the Energy and Environmental Research Center, polymers were developed that slowly release nitrogen and phosphorus into the subsurface. Conceptually, these polymers are designed to adhere to soil particles in the subsurface contamination zone where they slowly degrade and release nutrients over longer periods of time compared to conventional fertilizer applications. Tests conducted during this study indicate that some of the developed polymers have excellent potential to satisfy the microbial requirements for enhanced bioremediation

  10. Subtask 1.16-Slow-Release Bioremediation Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Marc D. Kurz; Edwin S. Olson

    2006-07-31

    Low-cost methods are needed to enhance various bioremediation technologies, from natural attenuation to heavily engineered remediation of subsurface hydrocarbon contamination. Many subsurface sites have insufficient quantities of nitrogen and phosphorus, resulting in poor bioactivity and increased remediation time and costs. The addition of conventional fertilizers can improve bioactivity, but often the nutrients dissolve quickly and migrate away from the contaminant zone before being utilized by the microbes. Through this project, conducted by the Energy & Environmental Research Center, polymers were developed that slowly release nitrogen and phosphorus into the subsurface. Conceptually, these polymers are designed to adhere to soil particles in the subsurface contamination zone where they slowly degrade and release nutrients over longer periods of time compared to conventional fertilizer applications. Tests conducted during this study indicate that some of the developed polymers have excellent potential to satisfy the microbial requirements for enhanced bioremediation.

  11. Characterization of weathered petroleum hydrocarbons during a landfarming bioremediation study

    Directory of Open Access Journals (Sweden)

    Maletić Snežana

    2012-01-01

    Full Text Available Landfarming bioremediation was performed over 2 years on soil heavily polluted with weathered oil and oil derivatives: 23200 mg kg-1 of mineral oil, 35300 mg kg-1 total hydrocarbons, and 8.65 mg kg-1 of total PAHs. During the experiment, mineral oil, total hydrocarbon and PAH concentrations decreased by approximately 53%, 27% and 72%, respectively. A GC/MS-Scan was used to identify the crude oil components that persist after bioremediation treatment of contaminated soil and the metabolites generated during this process. The data shows that in weathered-hydrocarbons contaminated soil, the number of initially detected compounds after the bioremediation process further decreased over a 2 year period, and at the same time several new compounds were observed at the end of experiment. Higher persistence was also shown for heavier n-alkanes and branched alkanes, which could be detected over a longer period of time. The analysis highlights the importance of n-alkanes, their substituted derivatives and polycyclic aromatic hydrocarbons as the most significant pollutants.

  12. A case study of the intrinsic bioremediation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Barker, G.W.; Raterman, K.T.; Fisher, J.B.; Corgan, J.M. [and others

    1995-12-31

    Condensate liquids have been found to contaminate soil and groundwater at two gas production sites in the Denver Basin operated by Amoco Production Co. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate endpoint to support a no-intervention decision. Groundwater monitoring and analysis of soil cores suggest that intrinsic bioremediation is occurring at these sites by multiple pathways including aerobic oxidation, Fe{sup 3+} reduction, and sulfate reduction. In laboratory experiments the addition of gas condensate hydrocarbons to saturated soil from the gas production site stimulated sulfate reduction under anaerobic and oxygen-limiting conditions, and nitrate and Fe{sup 3+} reduction under oxygen-limiting conditions, compared to biotic controls that lacked hydrocarbon and sterile controls. The sulfate reduction corresponded to a reduction in the amount of toluene relative to other hydrocarbons. These results confirmed that subsurface soils at the gas production site have the potential for intrinsic bioremediation of hydrocarbons.

  13. Bioremediation of Petroleum and Radiological Contaminated Soils at the Savannah River Site: Laboratory to Field Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    BRIGMON, ROBINL.

    2004-06-07

    In the process of Savannah River Site (SRS) operations limited amounts of waste are generated containing petroleum, and radiological contaminated soils. Currently, this combination of radiological and petroleum contaminated waste does not have an immediate disposal route and is being stored in low activity vaults. SRS developed and implemented a successful plan for clean up of the petroleum portion of the soils in situ using simple, inexpensive, bioreactor technology. Treatment in a bioreactor removes the petroleum contamination from the soil without spreading radiological contamination to the environment. This bioreactor uses the bioventing process and bioaugmentation or the addition of the select hydrocarbon degrading bacteria. Oxygen is usually the initial rate-limiting factor in the biodegradation of petroleum hydrocarbons. Using the bioventing process allowed control of the supply of nutrients and moisture based on petroleum contamination concentrations and soil type. The results of this work have proven to be a safe and cost-effective means of cleaning up low level radiological and petroleum-contaminated soil. Many of the other elements of the bioreactor design were developed or enhanced during the demonstration of a ''biopile'' to treat the soils beneath a Polish oil refinery's waste disposal lagoons. Aerobic microorganisms were isolated from the aged refinery's acidic sludge contaminated with polycyclic aromatic hydrocarbons (PAHs). Twelve hydrocarbon-degrading bacteria were isolated from the sludge. The predominant PAH degraders were tentatively identified as Achromobacter, Pseudomonas Burkholderia, and Sphingomonas spp. Several Ralstonia spp were also isolated that produce biosurfactants. Biosurfactants can enhance bioremediation by increasing the bioavailability of hydrophobic contaminants including hydrocarbons. The results indicated that the diversity of acid-tolerant PAH-degrading microorganisms in acidic oil wastes may

  14. In-Situ Chemical Oxidation

    Science.gov (United States)

    2006-08-01

    wells at a bioremediation field site (Weisner et al., 1996). Colloidal clay particles mobilized during injec- tion have resulted in permeability losses...phase material. Nevertheless, O3 was readily delivered and transported through unsaturated porous media where phenanthrene and diesel range...tion, but is not currently a well-developed technology. Bioremediation : Sequencing oxidation and reduction reactions may be achieved through

  15. Bioremediation of petroleum refinery effluent by Planococcus ...

    African Journals Online (AJOL)

    In the present investigation, Planococcus halophilus was screened for hydrocarbon degradation and bioremediation of refinery effluent. The test organism, P. halophilus, showed the capability to utilize kerosene as carbon source in minimal medium. Biological treatment of the refinery effluent with P. halophilus reduced the ...

  16. Assisted bioremediation tests on three natural soils contaminated with benzene

    Directory of Open Access Journals (Sweden)

    Maria Manuela Carvalho

    2015-07-01

    Full Text Available Bioremediation is an attractive and useful method of remediation of soils contaminated with petroleum hydrocarbons because it is simple to maintain, applicable in large areas, is economic and enables an effective destruction of the contaminant. Usually, the autochthone microorganisms have no ability to degrade these compounds, and otherwise, the contaminated sites have inappropriate environmental conditions for microorganism’s development. These problems can be overcome by assisted bioremediation (bioaugmentation and/or biostimulation. In this study the assisted bioremediation capacity on the rehabilitation of three natural sub-soils (granite, limestone and schist contaminated with benzene was evaluated. Two different types of assisted bioremediation were used: without and with ventilation (bioventing. The bioaugmentation was held by inoculating the soil with a consortium of microorganisms collected from the protection area of crude oil storage tanks in a refinery. In unventilated trials, biostimulation was accomplished by the addition of a nutrient mineral media, while in bioventing oxygen was also added. The tests were carried out at controlled temperature of 25 ºC in stainless steel columns where the moist soil contaminated with benzene (200 mg per kg of soil occupied about 40% of the column’s volume. The processes were daily monitored in discontinued mode. Benzene concentration in the gas phase was quantified by gas chromatography (GC-FID, oxygen and carbon dioxide concentrations were monitored by respirometry. The results revealed that the three contaminated soils were remediated using both technologies, nevertheless, the bioventing showed faster rates. With this work it was proved that respirometric analysis is an appropriate instrument for monitoring the biological activity.

  17. Contributions of biosurfactants to natural or induced bioremediation.

    Science.gov (United States)

    Lawniczak, Lukasz; Marecik, Roman; Chrzanowski, Lukasz

    2013-03-01

    The number of studies dedicated to evaluating the influence of biosurfactants on bioremediation efficiency is constantly growing. Although significant progress regarding the explanation of mechanisms behind biosurfactant-induced effects could be observed, there are still many factors which are not sufficiently elucidated. This corresponds to the fact that although positive influence of biosurfactants is often reported, there are also numerous cases where no or negative effect was observed. This review summarizes the recent finding in the field of biosurfactant-amended bioremediation, focusing mainly on a critical approach towards potential limitations and causes of failure while investigating the effects of biosurfactants on the efficiency of biodegradation and phytoextraction processes. It also provides a summary of successive steps, which should be taken into consideration when designing biosurfactant-related treatment processes.

  18. Biodegradation and Bioremediation of Petroleum Pollutants in Soil

    Energy Technology Data Exchange (ETDEWEB)

    Huesemann, Michael H.

    2004-08-02

    During bioremediation, petroleum hydrocarbons are converted by naturally occurring or indigenous soil microorganisms to carbon dioxide, water, bacterial cells (biomass), and humic materials. Numerous factors are known to affect both the rate and the extent of hydrocarbon biodegradation in contaminated soils. These include soil properties such as moisture content, aeration, nutrient status, pH, and temperature as well as waste characteristics such as the concentration and molecular structure of hydrocarbon compounds or classes, the presence of inhibitors and cometabolic substrates, and the degree of contaminant sequestration which often leads to serious bioavailability limitations, particularly in aged soils. It is the objective of this chapter to outline a strategy for optimizing the hydrocarbon bioremediation process by adjusting the various operational parameters so that none of them become a limiting factor during treatment.

  19. Bioremediation of Polycyclic Aromatic Hydrocarbon contaminated ...

    African Journals Online (AJOL)

    This study investigates the effect of lead and chromium on the rate of bioremediation of polycyclic aromatic hydrocarbon (PAH) contaminated clay soil. Naphthalene was used as a target PAH. The soil was sterilized by heating at 120oC for one hour. 100g of the soil was contaminated with lead, chromium, nickel and mercury ...

  20. Identities of epilithic hydrocarbon-utilizing diazotrophic bacteria from the Arabian Gulf Coasts, and their potential for oil bioremediation without nitrogen supplementation.

    Science.gov (United States)

    Radwan, Samir; Mahmoud, Huda; Khanafer, Majida; Al-Habib, Aamar; Al-Hasan, Redha

    2010-08-01

    Gravel particles from four sites along the Arabian Gulf coast in autumn, winter, and spring were naturally colonized with microbial consortia containing between 7 and 400 × 10(2) cm(-2) of cultivable oil-utilizing bacteria. The 16S rRNA gene sequences of 70 representatives of oil-utilizing bacteria revealed that they were predominantly affiliated with the Gammaproteobacteria and the Actinobacteria. The Gammaproteobacteria comprised among others, the genera Pseudomonas, Pseudoalteromonas, Shewanella, Marinobacter, Psychrobacter, Idiomarina, Alcanivorax, Cobetia, and others. Actinobacteria comprised the genera Dietzia, Kocuria, Isoptericola, Rhodococcus, Microbacterium, and others. In autumn, Firmicutes members were isolated from bay and nonbay stations while Alphaproteobacteria were detected only during winter from Anjefa bay station. Fingerprinting by denaturing gradient gel electrophoresis of amplified 16S rRNA genes of whole microbial consortia confirmed the culture-based bacterial diversities in the various epilithons in various sites and seasons. Most of the representative oil-utilizing bacteria isolated from the epilithons were diazotrophic and could attenuate oil also in nitrogen-rich (7.9-62%) and nitrogen-free (4-54%) cultures, which, makes the microbial consortia suitable for oil bioremediation in situ, without need for nitrogen supplementation. This was confirmed in bench-scale experiments in which unfertilized oily seawater was bioremediated by epilithon-coated gravel particles.

  1. Bioremediation of Zn, Cu, Mg and Pb in Fresh Domestic Sewage by Brevibacterium sp

    International Nuclear Information System (INIS)

    Ojoawo, S. O.; Rao, C. V.; Goveas, L. C.

    2016-01-01

    The study applied an isolated Brevibacterium sp. (MTCC 10313) for bioremediation of Zn, Cu, Mg and Pb in domestic sewage. Batch culture experiments were performed on both the fresh and stale sewage samples with glucose supplementation of 1-8g/l. Nutrient broth medium was prepared, sterilized and p H adjusted to 6.5-6.8. 1% of the Brevibacteria sp. stock was inoculated into the broth and maintained at 370C for 24 hours in shaker incubator at 120 rpm. Another 1% of fresh grown sub-culture of broth was inoculated into supplemented and sterilized samples. Optical Density was taken at 600nm, growth monitored over 12 days, cultured samples denatured with TCA and centrifuged, supernatants filtered and analyzed with AAS, Settled pellets oven dried, subjected to SEM analysis for morphology and constituents determination. Fresh sewage samples permitted bacterial growth and facilitated bioremediation of Zn, Cu and Mg through metal uptake and bioabsoption by Brevibacteria sp. This effectively reduced concentration of heavy metals, with treatment efficiency order Cu>Zn>Mg, and respective removal percentages of 77, 63 and 55. The optimum glucose concentration for effective bioremediation found as 2g/l for Zn and Cu, and 8g/l for Mg. Pb was resistant to bioremediation with Brevibacteria sp. Stale sewage produced inhibitory substances preventing adequate growth of bacterium with no bioremediation. Bioremediation with Brevibacteria sp. is found effective in removal of micro-units of Zn, Cu and Mg from domestic sewage. As a readily available low-cost agent, it is recommended for large- scale application on those metals while Pb should be further subjected to advanced treatments.

  2. [Ecological characteristics of phytoplankton in Suining tributary under bio-remediation].

    Science.gov (United States)

    Liu, Dongyan; Zhao, Jianfu; Zhang, Yalei; Ma, Limin

    2005-04-01

    Based on the analyses of phytoplankton community in the treated and untreated reaches of Suining tributary of Suzhou River, this paper studied the effects of bio-remediation on phytoplankton. As the result of the remediation, the density and Chl-a content of phytoplankton in treated reach were greatly declined, while the species number and Shannon-Wiener diversity index ascended obviously. The percentage of Chlorophyta and Baeillariophyta ascended, and some species indicating medium-and oligo-pollution were found. All of these illustrated that bio-remediation engineering might significantly benefit to the improvement of phytoplankton community structure and water quality.

  3. Walking softly : using bioremediation to reclaim sites leaves a smaller footprint than traditional dig-and-dump technologies

    Energy Technology Data Exchange (ETDEWEB)

    Collison, M.

    2006-10-15

    Recent developments in the bioremediation industry in Alberta were outlined. The market for bioremediation services in the United States alone is estimated to hit $1 billion by 2010 and has become a staple of the U.S. Environmental Protection Agency's emergency management practices in the event of an oil spill. Alberta Environment has recently updated its policies and guidance documents on contaminated sites management, and is planning a manual that will include best bioremediation practices. Advances in the science and technology of bioremediation and a rise in environmental awareness have contributed to the sector's growth in recent years. In the past, oil companies in Alberta typically reclaimed sites by digging up contaminated soil and trucking it to landfills. Recent techniques developed by industry and bioremediation experts now mean that soil profiles can remain undisturbed, and biological treatment amendments are often introduced into the fractures to destroy contaminants where they lie. The National Research Council's Biotechnology Research Institute (NRC-BRI) is now conducting research to identify and profile unknown micro-organisms to improve conditions for the breakdown of toxins. Bioremediation techniques are also being used in urban redevelopment. It was concluded that while the environmental industry is regulatory-driven, many oil and mining companies are deciding to invest in remediation instead of waiting until a later date. A list of new bioremediation partnerships with industry, government and municipalities was also provided. 2 figs.

  4. Walking softly : using bioremediation to reclaim sites leaves a smaller footprint than traditional dig-and-dump technologies

    International Nuclear Information System (INIS)

    Collison, M.

    2006-01-01

    Recent developments in the bioremediation industry in Alberta were outlined. The market for bioremediation services in the United States alone is estimated to hit $1 billion by 2010 and has become a staple of the U.S. Environmental Protection Agency's emergency management practices in the event of an oil spill. Alberta Environment has recently updated its policies and guidance documents on contaminated sites management, and is planning a manual that will include best bioremediation practices. Advances in the science and technology of bioremediation and a rise in environmental awareness have contributed to the sector's growth in recent years. In the past, oil companies in Alberta typically reclaimed sites by digging up contaminated soil and trucking it to landfills. Recent techniques developed by industry and bioremediation experts now mean that soil profiles can remain undisturbed, and biological treatment amendments are often introduced into the fractures to destroy contaminants where they lie. The National Research Council's Biotechnology Research Institute (NRC-BRI) is now conducting research to identify and profile unknown micro-organisms to improve conditions for the breakdown of toxins. Bioremediation techniques are also being used in urban redevelopment. It was concluded that while the environmental industry is regulatory-driven, many oil and mining companies are deciding to invest in remediation instead of waiting until a later date. A list of new bioremediation partnerships with industry, government and municipalities was also provided. 2 figs

  5. Geochemical indicators of intrinsic bioremediation

    International Nuclear Information System (INIS)

    Borden, R.C.; Gomez, C.A.; Becker, M.T.

    1995-01-01

    A detailed field investigation has been completed at a gasoline-contaminated aquifer near Rocky Point, NC, to examine possible indicators of intrinsic bioremediation and identify factors that may significantly influence the rae and extent of bioremediation. The dissolved plume of benzene, toluene, ethylbenzene, and xylene (BTEX) in ground water is naturally degrading. Toluene and o-xylene are most rapidly degraded followed by m-, p-xylene, and benzene. Ethylbenzene appears to degrade very slowly under anaerobic conditions present in the center of the plume. The rate and extent of biodegradation appears to be strongly influenced by the type and quantity of electron acceptors present in the aquifer. At the upgradient edge of the plume, nitrate, ferric iron, and oxygen are used as terminal electron acceptors during hydrocarbon biodegradation. The equivalent of 40 to 50 mg/l of hydrocarbon is degraded based on the increase in dissolved CO 2 relative to background ground water. Immediately downgradient of the source area, sulfate and iron are the dominant electron acceptors. Toluene and o-xylene are rapidly removed in this region. Once the available oxygen, nitrate, and sulfate are consumed, biodegradation is limited and appears to be controlled by mixing and aerobic biodegradation at the plume fringes

  6. The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: a systematic review.

    Science.gov (United States)

    de Alencar, Feliphe Lacerda Souza; Navoni, Julio Alejandro; do Amaral, Viviane Souza

    2017-07-01

    Metal pollution is a current environmental issue as a consequence of unregulated anthropic activiy. A wide range of bioremediation strategies have been successfully implemented to recover contaminated areas. Among them, bacterial bioremediation stands out as a promising tool to confront these types of concerns. This study aimed to compare and discuss worldwide scientific evolution of bacterial potential for metal bioremediation in aquatic ecosystems. The study consisted of a systematic review, elaborated through a conceptual hypothesis model, during the period from 2000 to 2016, using PubMed, MEDLINE, and SciELO databases as data resources. The countries with the largest number of reports included in this work were India and the USA. Industrial wastewater discharge was the main subject associated to metal contamination/pollution and where bacterial bioremediations have mostly been applied. Biosorption is the main bioremediation mechanism described. Bacterial adaptation to metal presence was discussed in all the selected studies, and chromium was the most researched bioremedied substrate. Gram-negative Pseudomonas aeruginosas and the Gram-positive Bacillus subtilis bacteria were microorganisms with the greatest applicability for metal bioremediation. Most reports involved the study of genes and/or proteins related to metal metabolism and/or resistence, and Chromobacterium violaceum was the most studied. The present work shows the relevance of metal bacterial bioremediation through the high number of studies aimed at understanding the microbiological mechanisms involved. Moreover, the developed processes applied in removal and/or reducing the resulting environmental metal contaminant/pollutant load have become a current and increasingly biotechnological issue for recovering impacted areas.

  7. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    International Nuclear Information System (INIS)

    Lombard, K.H.

    1994-01-01

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays

  8. Assessment of natural hydrocarbon bioremediation at two gas condensate production sites

    International Nuclear Information System (INIS)

    Barker, G.W.; Raterman, K.T.; Fisher, J.B.; Corgan, J.M.; Trent, G.L.; Brown, D.R.; Sublette, K.L.

    1995-01-01

    Condensate liquids are present in soil and groundwater at two gas production sites in the Denver-Julesburg Basin operated by Amoco. These sites have been closely monitored since July 1993 to determine whether intrinsic aerobic or anaerobic bioremediation of hydrocarbons occurs at a sufficient rate and to an adequate endpoint to support a no-intervention decision. Groundwater monitoring and analysis of soil cores strongly suggest that intrinsic bioremediation is occurring at these sites by multiple pathways, including aerobic oxidation, Fe(III) reduction, and sulfate reduction

  9. Bacterial biofilms and quorum sensing: fidelity in bioremediation technology.

    Science.gov (United States)

    Mangwani, Neelam; Kumari, Supriya; Das, Surajit

    Increased contamination of the environment with toxic pollutants has paved the way for efficient strategies which can be implemented for environmental restoration. The major problem with conventional methods used for cleaning of pollutants is inefficiency and high economic costs. Bioremediation is a growing technology having advanced potential of cleaning pollutants. Biofilm formed by various micro-organisms potentially provide a suitable microenvironment for efficient bioremediation processes. High cell density and stress resistance properties of the biofilm environment provide opportunities for efficient metabolism of number of hydrophobic and toxic compounds. Bacterial biofilm formation is often regulated by quorum sensing (QS) which is a population density-based cell-cell communication process via signaling molecules. Numerous signaling molecules such as acyl homoserine lactones, peptides, autoinducer-2, diffusion signaling factors, and α-hydroxyketones have been studied in bacteria. Genetic alteration of QS machinery can be useful to modulate vital characters valuable for environmental applications such as biofilm formation, biosurfactant production, exopolysaccharide synthesis, horizontal gene transfer, catabolic gene expression, motility, and chemotaxis. These qualities are imperative for bacteria during degradation or detoxification of any pollutant. QS signals can be used for the fabrication of engineered biofilms with enhanced degradation kinetics. This review discusses the connection between QS and biofilm formation by bacteria in relation to bioremediation technology.

  10. Chemometric assessment of enhanced bioremediation of oil contaminated soils.

    Science.gov (United States)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H

    2013-06-15

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting, and addition of nitrogen and phosphorous, molasses, hydrogen peroxide, and a surfactant (Tween 80). Total petroleum hydrocarbon (TPH) concentrations and CHEMometric analysis of Selected Ion Chromatograms (SIC) termed CHEMSIC method of petroleum biomarkers including terpanes, regular, diaromatic and triaromatic steranes were used for determining the level and type of hydrocarbon contamination. The same methods were used to study oil weathering of 2 to 6 ring polycyclic aromatic compounds (PACs). Results demonstrated that bacterial enrichment and addition of nutrients were most efficient with 50% to 62% removal of TPH. Furthermore, the CHEMSIC results demonstrated that the bacterial enrichment was more efficient in degradation of n-alkanes and low molecular weight PACs as well as alkylated PACs (e.g. C₃-C₄ naphthalenes, C₂ phenanthrenes and C₂-C₃ dibenzothiophenes), while nutrient addition led to a larger relative removal of isoprenoids (e.g. norpristane, pristane and phytane). It is concluded that the CHEMSIC method is a valuable tool for assessing bioremediation efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. The Kwajalein bioremediation demonstration: Final technical report

    International Nuclear Information System (INIS)

    Walker, J.R. Jr.; Walker, A.B.

    1994-12-01

    The US Army Kwajalein Atoll (USAKA) Base, located in the Republic of the Marshall Islands (RMI) in the east-central Pacific Ocean, has significant petroleum hydrocarbon contamination resulting from years of military activities. Because of its remoteness, the lack of on-site sophisticated remediation or waste disposal facilities, the amenability of petroleum hydrocarbons to biodegradation, and the year-round temperature favorable for microbial activity, USAKA requested, through the Hazardous Waste Remedial Actions Program (HAZWRAP), that a project be conducted to evaluate the feasibility of using bioremediation for environmental restoration of contaminated sites within the atoll. The project was conducted in four distinct phases: (1) initial site characterization and on-site biotreatability studies, (2) selection of the demonstration area and collection of soil columns, (3) laboratory column biotreatability studies, and (4) an on-site bioremediation demonstration. The results of phases (1) and (3) have been detailed in previous reports. This report summarizes the results of phases (1) and (3) and presents phases (2) and (4) in detail

  12. Metagenomic applications in environmental monitoring and bioremediation.

    Science.gov (United States)

    Techtmann, Stephen M; Hazen, Terry C

    2016-10-01

    With the rapid advances in sequencing technology, the cost of sequencing has dramatically dropped and the scale of sequencing projects has increased accordingly. This has provided the opportunity for the routine use of sequencing techniques in the monitoring of environmental microbes. While metagenomic applications have been routinely applied to better understand the ecology and diversity of microbes, their use in environmental monitoring and bioremediation is increasingly common. In this review we seek to provide an overview of some of the metagenomic techniques used in environmental systems biology, addressing their application and limitation. We will also provide several recent examples of the application of metagenomics to bioremediation. We discuss examples where microbial communities have been used to predict the presence and extent of contamination, examples of how metagenomics can be used to characterize the process of natural attenuation by unculturable microbes, as well as examples detailing the use of metagenomics to understand the impact of biostimulation on microbial communities.

  13. Desorption and bioremediation of hydrocarbon contaminated soils

    International Nuclear Information System (INIS)

    Gray, M.R.

    1998-01-01

    A study was conducted in which the extent and pattern of contaminant biodegradation during bioremediation of four industrially-contaminated soils were examined to determine which factors control the ultimate extent of biodegradation and which limit the success of biological treatment. It was noted that although bioremediation is inexpensive and has low environmental impact, it often fails to completely remove the hydrocarbons in soils because of the complex interactions between contaminants, the soil environment, and the active microorganisms. In this study, the competency of the microorganisms in the soil to degrade the contaminants was examined. The equilibrium partitioning of the contaminants between the soil and the aqueous phase was also examined along with the transport of contaminants out of soil particles. The role of diffusion of compounds in the soil and the importance of direct contact between microorganisms and the hydrocarbons was determined. Methods for selecting suitable sites for biological treatment were also described

  14. In situ measurement of the mass concentration of flame-synthesized nanoparticles using quartz-crystal microbalance

    International Nuclear Information System (INIS)

    Hevroni, A; Golan, H; Fialkov, A; Tsionsky, V; Markovich, G; Cheskis, S; Rahinov, I

    2011-01-01

    A novel in situ method for measurement of mass concentration of nanoparticles (NPs) formed in flames is proposed. In this method, the deposition rate of NPs collected by a molecular beam sampling system is measured by quartz-crystal microbalance (QCM). It is the only existing method which allows direct measurement of NP mass concentration profiles in flames. The feasibility of the method was demonstrated by studying iron oxide NP formation in low-pressure methane/oxygen/nitrogen flames doped with iron pentacarbonyl. The system was tested under fuel-lean and fuel-rich flame conditions. Good agreement between measured QCM deposition rates and their estimations obtained by the transmission electron microscopy analysis of samples collected from the molecular beam has been demonstrated. The sensitivity of the method is comparable to that of particle mass spectrometry (PMS). Combination of the QCM technique with PMS and/or optical measurements can provide new qualitative information which is important for elucidation of the mechanisms governing the NP flame synthesis

  15. Modelling tools for assessing bioremediation performance and risk of chlorinated solvents in clay tills

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia

    design are challenging. This thesis presents the development and application of analytical and numerical models to improve our understanding of transport and degradation processes in clay tills, which is crucial for assessing bioremediation performance and risk to groundwater. A set of modelling tools...... to groundwater and bioremediation performance in low-permeability media....

  16. Importance of soil-water relation in assessment endpoint in bioremediated soils: Plant growth and soil physical properties

    International Nuclear Information System (INIS)

    Li, X.; Sawatsky, N.

    1995-01-01

    Much effort has been focused on defining the end-point of bioremediated soils by chemical analysis (Alberta Tier 1 or CCME Guideline for Contaminated Soils) or toxicity tests. However, these tests do not completely assess the soil quality, or the capability of soil to support plant growth after bioremediation. This study compared barley (Hordeum vulgare) growth on: (i) non-contaminated, agricultural topsoil, (2) oil-contaminated soil (4% total extractable hydrocarbons, or TEH), and (3) oil-contaminated soil treated by bioremediation (< 2% TEH). Soil physical properties including water retention, water uptake, and water repellence were measured. The results indicated that the growth of barley was significantly reduced by oil-contamination of agricultural topsoil. Furthermore, bioremediation did not improve the barley yield. The lack of effects from bioremediation was attributed to development of water repellence in hydrocarbon contaminated soils. There seemed to be a critical water content around 18% to 20% in contaminated soils. Above this value the water uptake by contaminated soil was near that of the agricultural topsoil. For lower water contents, there was a strong divergence in sorptivity between contaminated and agricultural topsoil. For these soils, water availability was likely the single most important parameter controlling plant growth. This parameter should be considered in assessing endpoint of bioremediation for hydrocarbon contaminated soils

  17. Trace Metal Bioremediation: Assessment of Model Components from Laboratory and Field Studies to Identify Critical Variables

    International Nuclear Information System (INIS)

    Peter Jaffe; Herschel Rabitz

    2003-01-01

    The objective of this project was to gain an insight into the modeling support needed for the understanding, design, and operation of trace metal/radionuclide bioremediation. To achieve this objective, a workshop was convened to discuss the elements such a model should contain. A ''protomodel'' was developed, based on the recommendations of the workshop, and was used to perform sensitivity analysis as well as some preliminary simulations in support for bioremediation test experiments at UMTRA sites. To simulate the numerous biogeochemical processes that will occur during the bioremediation of uranium contaminated aquifers, a time-dependent one-dimensional reactive transport model has been developed. The model consists of a set of coupled, steady state mass balance equations, accounting for advection, diffusion, dispersion, and a kinetic formulation of the transformations affecting an organic substrate, electron acceptors, corresponding reduced species, and uranium. This set of equations is solved numerically, using a finite element scheme. The redox conditions of the domain are characterized by estimating the pE, based on the concentrations of the dominant terminal electron acceptor and its corresponding reduced specie. This pE and the concentrations of relevant species are passed to a modified version of MINTEQA2, which calculates the speciation and solubilities of the species of interest. Kinetics of abiotic reactions are described as being proportional to the difference between the actual and equilibrium concentration. A global uncertainty assessment, determined by Random Sampling High Dimensional Model Representation (RS-HDMR), was performed to attain a phenomenological understanding of the origins of output variability and to suggest input parameter refinements as well as to provide guidance for field experiments to improve the quality of the model predictions. Results indicated that for the usually high nitrate contents found ate many DOE sites, overall

  18. Bioremediation of petroleum products impacted freshwater using ...

    African Journals Online (AJOL)

    Bioremediation seeks to degrade or decompose toxic pollutants in the environment into less harmful ones using organisms. This is achieved when the organisms metabolize the pollutants for cellular growth. Algae grow naturally in puddles, drainages and on wet soils and could constitute a nuisance when they cause ...

  19. Bioremediation for coal-fired power stations using macroalgae.

    Science.gov (United States)

    Roberts, David A; Paul, Nicholas A; Bird, Michael I; de Nys, Rocky

    2015-04-15

    Macroalgae are a productive resource that can be cultured in metal-contaminated waste water for bioremediation but there have been no demonstrations of this biotechnology integrated with industry. Coal-fired power production is a water-limited industry that requires novel approaches to waste water treatment and recycling. In this study, a freshwater macroalga (genus Oedogonium) was cultivated in contaminated ash water amended with flue gas (containing 20% CO₂) at an Australian coal-fired power station. The continuous process of macroalgal growth and intracellular metal sequestration reduced the concentrations of all metals in the treated ash water. Predictive modelling shows that the power station could feasibly achieve zero discharge of most regulated metals (Al, As, Cd, Cr, Cu, Ni, and Zn) in waste water by using the ash water dam for bioremediation with algal cultivation ponds rather than storage of ash water. Slow pyrolysis of the cultivated algae immobilised the accumulated metals in a recalcitrant C-rich biochar. While the algal biochar had higher total metal concentrations than the algae feedstock, the biochar had very low concentrations of leachable metals and therefore has potential for use as an ameliorant for low-fertility soils. This study demonstrates a bioremediation technology at a large scale for a water-limited industry that could be implemented at new or existing power stations, or during the decommissioning of older power stations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Application of Tools to Measure PCB Microbial Dechlorination and Flux into Water During In-situ Treatment of Sediments

    Science.gov (United States)

    2011-08-01

    removal of sulfur. The copper treated extract was passed through a 3% deactivated silica gel column using hexane ( pesticide grade) as the eluting...the addition of microorganisms and/or chemicals to the sediments to initiate or enhance bioremediation . In situ solidification/stabilization...and a floc contact area. The detail settings are shown in Table 1……………………………………...……...87 Figure 6.5: Using Lick et al. (1996) experiment data to