WorldWideScience

Sample records for situ atr-ftir spectroscopy

  1. Determination of surface concentrations of individual molecule-layers used in nanoscale biosensors by in situ ATR-FTIR spectroscopy

    KAUST Repository

    Punzet, Manuel

    2012-01-01

    For the development of nanowire sensors for chemical and medical detection purposes, the optimal functionalization of the surface is a mandatory component. Quantitative ATR-FTIR spectroscopy was used in situ to investigate the step-by-step layer formation of typical functionalization protocols and to determine the respective molecule surface concentrations. BSA, anti-TNF-α and anti-PSA antibodies were bound via 3-(trimethoxy)butylsilyl aldehyde linkers to silicon-oxide surfaces in order to investigate surface functionalization of nanowires. Maximum determined surface concentrations were 7.17 × 10 -13 mol cm -2 for BSA, 1.7 × 10 -13 mol cm -2 for anti-TNF-α antibody, 6.1 × 10 -13 mol cm -2 for anti-PSA antibody, 3.88 × 10 -13 mol cm -2 for TNF-α and 7.0 × 10 -13 mol cm -2 for PSA. Furthermore we performed antibody-antigen binding experiments and determined the specific binding ratios. The maximum possible ratio of 2 was obtained at bulk concentrations of the antigen in the μg ml -1 range for TNF-α and PSA. © 2012 The Royal Society of Chemistry.

  2. Preliminary Discrimination of Butter Adulteration by ATR-FTIR Spectroscopy

    OpenAIRE

    Lucian Cuibus; Rubén Maggio; Vlad Mureșan; Zorița Diaconeasa; Oana Lelia Pop; Carmen Socaciu

    2015-01-01

    The Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR)  was applied for the discrimination of butter samples adulterated with solid fraction of palm oil. For FTIR fingerprinting of butter samples, with or without controlled additions of palm oil as adulterant was firstly obtained, using a Shimatsu Prestige 21 Spectrophotometer, including a horizontal diamond ATR accessory with reflection in the MIR region (3873-690) cm-1.The spiked butter samples including 0 level...

  3. Revisiting the Brønsted acid catalysed hydrolysis kinetics of polymeric carbohydrates in ionic liquids by in situ ATR-FTIR spectroscopy

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Riisager, Anders; Shunmugavel, Saravanamurugan

    2013-01-01

    A new versatile method to measure rates and determine activation energies for the Brønsted acid catalysed hydrolysis of cellulose and cellobiose (and other polymeric carbohydrates) in ionic liquids is demonstrated by following the C–O stretching band of the glycoside bond with in situ ATR......-FTIR. An activation energy in excellent agreement with the literature was determined for cellulose hydrolysis, whereas a distinctly lower activation energy was determined for cellobiose hydrolysis. The methodology also allowed to independently determine activation energies for the formation of 5-hydroxymethylfurfural...

  4. "In situ" observation of the role of chloride ion binding to monkey green sensitive visual pigment by ATR-FTIR spectroscopy.

    Science.gov (United States)

    Katayama, Kota; Furutani, Yuji; Iwaki, Masayo; Fukuda, Tetsuya; Imai, Hiroo; Kandori, Hideki

    2018-01-31

    Long-wavelength-sensitive (LWS) pigment possesses a chloride binding site in its protein moiety. The binding of chloride alters the absorption spectra of LWS; this is known as the chloride effect. Although the two amino acid substitutions of His197 and Lys200 influence the chloride effect, the molecular mechanism of chloride binding, which underlies the spectral tuning, has yet to be clarified. In this study, we applied ATR-FTIR spectroscopy to monkey green (MG) pigment to gain structural information of the chloride binding site. The results suggest that chloride binding stabilizes the β-sheet structure on the extracellular side loop with perturbation of the retinal polyene chain, promotes a hydrogen bonding exchange with the hydroxyl group of Tyr, and alters the protonation state of carboxylate. Combining with the results of the binding analyses of various anions (Br - , I - and NO 3 - ), our findings suggest that the anion binding pocket is organized for only Cl - (or Br - ) to stabilize conformation around the retinal chromophore, which is functionally relevant with absorbing long wavelength light.

  5. In-situ ATR-FTIR for characterization of thin biorelated polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Müller, M., E-mail: mamuller@ipfdd.de [Leibniz Institute of Polymer Research Dresden (IPF Dresden), Hohe Straße 6, 01069 Dresden (Germany); Technical University of Dresden (TUD), Department of Chemistry and Food Chemistry, 01062 Dresden (Germany); Torger, B. [Leibniz Institute of Polymer Research Dresden (IPF Dresden), Hohe Straße 6, 01069 Dresden (Germany); Technical University of Dresden (TUD), Department of Chemistry and Food Chemistry, 01062 Dresden (Germany); Bittrich, E. [Leibniz Institute of Polymer Research Dresden (IPF Dresden), Hohe Straße 6, 01069 Dresden (Germany); Kaul, E.; Ionov, L. [Leibniz Institute of Polymer Research Dresden (IPF Dresden), Hohe Straße 6, 01069 Dresden (Germany); Technical University of Dresden (TUD), Department of Chemistry and Food Chemistry, 01062 Dresden (Germany); Uhlmann, P. [Leibniz Institute of Polymer Research Dresden (IPF Dresden), Hohe Straße 6, 01069 Dresden (Germany); Stamm, M. [Leibniz Institute of Polymer Research Dresden (IPF Dresden), Hohe Straße 6, 01069 Dresden (Germany); Technical University of Dresden (TUD), Department of Chemistry and Food Chemistry, 01062 Dresden (Germany)

    2014-04-01

    We present and review in-situ-attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic data from thin biorelated polymer films useful for the modification and functionalization of polymer and inorganic materials and discuss their applications related to life sciences. A special ATR mirror attachment operated by the single-beam-sample-reference (SBSR) concept and housing a homebuilt thermostatable flow cell was used, which allows for appropriate background compensation and signal to noise ratio. ATR-FTIR data on the reactive deposition of dopamine on inorganic model surfaces are shown. Information on the structure and deposition pathway for such bioinspired melanin-like films is provided. ATR-FTIR data on thermosensitive polymer brushes of poly(N-isopropylacrylamide) (PNIPAAM) is then presented. The thermotropic hydration and hydrogen bonding behavior of PNIPAAM brush films is described. Finally, ATR-FTIR data on biorelated polyelectrolyte multilayers (PEM) are given together with details on PEM growth and detection. Applications of these latter films for biopassivation/activation and local drug delivery are addressed.

  6. Applications of diamond crystal ATR FTIR spectroscopy to the characterization of ambers.

    Science.gov (United States)

    Guiliano, Michel; Asia, Laurence; Onoratini, Gérard; Mille, Gilbert

    2007-08-01

    Diamond crystal ATR FTIR spectroscopy is a rapid technique with virtually no sample preparation which requires small sample amounts and showed potential in the study of ambers. FTIR spectra of ambers present discriminating patterns and can be used to distinguish amber from immature resins as copal, to determine local or Baltic origin of archaeological ambers and to detect most of the falsifications encountered in the amber commercialisation.

  7. Hydrogen-Deuterium exchange monitored by ATR-FTIR spectroscopy

    Science.gov (United States)

    Poe, Brent; Del Vecchio, Alessandro; Cestelli Guidi, Mariangela

    2016-04-01

    Measuring the extent of isotopic exchange is a common means for the determination of self-diffusion coefficients in any type of medium (gas, liquid, amorphous solid, crystalline solid). For rapidly diffusing species such as hydrogen in condensed phases, real time methods involving vibrational spectroscopy can be used by taking advantage of the large relative mass difference between 1H and 2H, resulting in large differences in the band positions of their vibrational modes. We demonstrate rapid isotopic exchange between D2O liquid and H2O vapor using ATR (attenuated total reflectance) in a FTIR spectrometer. Over the course of a few minutes several spectra were acquired of a D2O droplet mounted on a diamond crystal. The progressive exchange reaction between the liquid phase and H2O from the atmosphere was monitored by measuring the decreasing absorbance of the D-O-D bending and O-D stretching bands and the increasing absorbance of the D-O-H and H-O-H bending and O-H stretching bands as functions of time. Our results offer some intriguing insights into the structural characteristics of water as inferred by this exchange process.

  8. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    Science.gov (United States)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  9. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    Science.gov (United States)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  10. Analysis of European honeybee (Apis mellifera) wings using ATR-FTIR and Raman spectroscopy: A pilot study

    Czech Academy of Sciences Publication Activity Database

    Machovič, Vladimír; Lapčák, L.; Havelcová, Martina; Borecká, Lenka; Novotná, M.; Novotná, M.; Javůrková, I.; Langrová, I.; Hájková, Š.; Brožová, A.; Titěra, D.

    2017-01-01

    Roč. 48, č. 1 (2017), s. 22-29 ISSN 1211-3174 Institutional support: RVO:67985891 Keywords : honeybee wings * ATR-FTIR * Raman spectroscopy * protein * lipid * chitin Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry

  11. ATR-FTIR spectroscopy and chemometrics: An interesting tool to discriminate and characterize counterfeit medicines.

    Science.gov (United States)

    Custers, D; Cauwenbergh, T; Bothy, J L; Courselle, P; De Beer, J O; Apers, S; Deconinck, E

    2015-08-10

    Counterfeit medicines pose a huge threat to public health worldwide. High amounts of counterfeit pharmaceuticals enter the European market and therefore detection of these products is essential. Attenuated Total Reflection Fourier-Transform infrared spectroscopy (ATR-FTIR) might be useful for the screening of counterfeit medicines since it is easy to use and little sample preparation is required. Furthermore, this approach might be helpful to customs to obtain a first evaluation of suspected samples. This study proposes a combination of ATR-FTIR and chemometrics to discriminate and classify counterfeit medicines. A sample set, containing 209 samples in total, was analyzed using ATR-FTIR and the obtained spectra were used as fingerprints in the chemometric data-analysis which included Principal Component Analysis (PCA), k-Nearest Neighbours (k-NN), Classification and Regression Trees (CART) and Soft Independent Modelling of Class Analogy (SIMCA). First it was verified whether the mentioned techniques are capable to distinguish samples containing different active pharmaceutical ingredients (APIs). PCA showed a clear tendency of discrimination based on the API present; k-NN, CART and SIMCA were capable to create suitable prediction models based on the presence of different APIs. However k-NN performs the least while SIMCA performs the best. Secondly, it was tested whether these three models could be expanded to discriminate between genuine and counterfeit samples as well. k-NN was not able to make the desired discrimination and therefore it was not useful. CART performed better but also this model was less suited. SIMCA, on the other hand, resulted in a model with a 100% correct discrimination between genuine and counterfeit drugs. This study shows that chemometric analysis of ATR-FTIR fingerprints is a valuable tool to discriminate genuine from counterfeit samples and to classify counterfeit medicines. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Hydroxyl accessibility in wood by deuterium exchange and ATR-FTIR spectroscopy

    DEFF Research Database (Denmark)

    Tarmian, Asghar; Burgert, Ingo; Thybring, Emil Engelund

    2017-01-01

    The accessibility of wood hydroxyls to water is commonly studied by infrared spectroscopy after deuteration where water-interacting hydroxyls have their H exchanged for D. In this study, the hydroxyl accessibility is determined with ATR-FTIR spectroscopy after deuteration of specimens with liquid......2O. Several factors are examined to reveal the uncertainties involved in the accessibility determination. Despite the fact that specimens were able to interact with water vapour after deuteration and drying, producing a freshly cut surface just before measurement limited the effect of re...

  13. ATR-FTIR spectroscopy for the determination of Na4EDTA in detergent aqueous solutions.

    Science.gov (United States)

    Suárez, Leticia; García, Roberto; Riera, Francisco A; Diez, María A

    2013-10-15

    Fourier transform infrared spectroscopy in the attenuated total reflectance mode (ATR-FTIR) combined with partial last square (PLS) algorithms was used to design calibration and prediction models for a wide range of tetrasodium ethylenediaminetetraacetate (Na4EDTA) concentrations (0.1 to 28% w/w) in aqueous solutions. The spectra obtained using air and water as a background medium were tested for the best fit. The PLS models designed afforded a sufficient level of precision and accuracy to allow even very small amounts of Na4EDTA to be determined. A root mean square error of nearly 0.37 for the validation set was obtained. Over a concentration range below 5% w/w, the values estimated from a combination of ATR-FTIR spectroscopy and a PLS algorithm model were similar to those obtained from an HPLC analysis of NaFeEDTA complexes and subsequent detection by UV absorbance. However, the lowest detection limit for Na4EDTA concentrations afforded by this spectroscopic/chemometric method was 0.3% w/w. The PLS model was successfully used as a rapid and simple method to quantify Na4EDTA in aqueous solutions of industrial detergents as an alternative to HPLC-UV analysis which involves time-consuming dilution and complexation processes. © 2013 Elsevier B.V. All rights reserved.

  14. Characterization of poly(L-lactide/Propylene glycol) based polyurethane films using ATR-FTIR spectroscopy

    Science.gov (United States)

    Manap, Siti Munirah; Ahmad, Azizan; Anuar, Farah Hannan

    2016-11-01

    A polyurethane films consisting of PLLA, PPG and PLLA-PPG were prepared using solution casting method. Three types of polyurethane were prepared: PPLA:PMDI, PPG:PMDI and PLLA-PPG:PMDI in the presence of polymeric diphenylmethane diisocyanate (PMDI) as the coupling agent and catalyst, Sn(Oct)2. The aim of this research was to improve the physicals properties of PLLA and PPG homopolymers through copolymerization between the two polymers. The homopolymers and polyurethane films were characterized using ATR-FTIR spectroscopy. Chemical reaction between PLLA, PPG and PMDI before and after the reaction were confirmed by observing the shifting of wavenumber for the carbonyl and ether group. Other than that, the additional band for N-H after the reaction indicated that the reaction was successful.

  15. Application of ATR-FTIR spectroscopy in quantitative analysis of deuterium in basic solutions

    International Nuclear Information System (INIS)

    Heinze, S.; Vuillemin, B.; Heinze, S.; Giroux, P.

    1999-01-01

    A method to measure the deuterium concentration in basic solutions, using Attenuated Total Reflection Fourier Transformed Infrared Spectroscopy (ATR-FTIR) is described. Deuterium quantification is based on the O-D bond stretching peak. A calibration curve is drawn, representing the peak intensity versus the deuterium percentage in a neutral solution. No calibration curve can be obtained with basic solutions, because of the strong absorbance due to hydroxide ions. Thus, an acidification is necessary prior to the analysis of a basic solution. The deuterium content of this acid solution is then measured. As we know the dilution caused by the acid addition, we can calculate the deuterium content of the initial basic solution. The relative uncertainty of this method is + or - 2%. (authors)

  16. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation.

    Science.gov (United States)

    Rees, Catherine A; Provis, John L; Lukey, Grant C; van Deventer, Jannie S J

    2007-08-14

    The kinetics of geopolymer formation are monitored using a novel in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic technique. Reaction rates are determined from the intensity variation of the bands related to the geopolymer gel network and the unreacted fly ash particles. Comparison with deuterated geopolymer samples provides critical information regarding peak assignments. An initial induction (lag) period is observed to occur for hydroxide-activated geopolymers, followed by gel evolution according to an approximately linear reaction profile. The length of the lag period is reduced by increasing the concentration of NaOH. An increase in the rate of network formation also occurs with increasing NaOH concentration up to a maximum point, beyond which an increased NaOH concentration leads to a reduced rate of network formation. This trend is attributed to the competing effects of increased alkalinity and stronger ion pairing with an increase in NaOH concentration. In situ analysis also shows that the rate of fly ash dissolution is similar for all moderate- to high-alkali geopolymer slurries, which is attributed to the very highly water-deficient nature of these systems and is contrary to predictions from classical glass dissolution chemistry. This provides for the first time detailed kinetic information describing fly ash geopolymer formation kinetics.

  17. ATR-FTIR Spectroscopy Highlights the Problem of Distinguishing Between Exophiala dermatitidis and E. phaeomuriformis Using MALDI-TOF MS

    NARCIS (Netherlands)

    Ergin, C.; Gok, Y.; Baygu, Y.; Gumral, R.; Ozhak-Baysan, B.; Dogen, A.; Ogunc, D.; Ilkit, M.; Seyedmousavi, S.

    2016-01-01

    The present study compared two chemical-based methods, namely, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, to understand the misidentification of Exophiala

  18. Drying process of sodium alginate films studied by two-dimensional correlation ATR-FTIR spectroscopy.

    Science.gov (United States)

    Xiao, Qian; Gu, Xiaohong; Tan, Suo

    2014-12-01

    Drying process of aqueous sodium alginate solutions at 50°C was investigated by ATR-FTIR spectroscopy and two-dimensional correlation infrared spectroscopy. Two-dimensional asynchronous spectrum at 1,800-1,350 cm(-1) wavenumber could be resolved into five separate bands, which were assigned to O-H bending vibrations in water (around 1,645 cm(-1)), antisymmetric and symmetric stretching vibrations of free and hydrogen-bonded COO(-) groups of alginate (around 1,595, 1,412, 1,572 and 1,390 cm(-1), respectively). As the drying process progressed, absorbance bands at around 1,127 and 1,035 cm(-1) significantly shifted to lower wavenumbers (1120 and 1027cm(-1), respectively). Suggesting that oxygen atoms at the 2th and 3th position in the pyranose ring might have hydrogen bonded with water or alginate chains. Further analysis using 2D asynchronous correlation spectroscopy between 1800-1500 and 1200-960 cm(-1) wavenumber regions revealed the sequence of spectral changes during the drying process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Water content determination of superdisintegrants by means of ATR-FTIR spectroscopy.

    Science.gov (United States)

    Szakonyi, G; Zelkó, R

    2012-04-07

    Water contents of superdisintegrant pharmaceutical excipients were determined by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy using simple linear regression. Water contents of the investigated three common superdisintegrants (crospovidone, croscarmellose sodium, sodium starch glycolate) varied over a wide range (0-24%, w/w). In the case of crospovidone three different samples from two manufacturers were examined in order to study the effects of different grades on the calibration curves. Water content determinations were based on strong absorption of water between 3700 and 2800 cm⁻¹, other spectral changes associated with the different compaction of samples on the ATR crystal using the same pressure were followed by the infrared region between 1510 and 1050 cm⁻¹. The calibration curves were constructed using the ratio of absorbance intensities in the two investigated regions. Using appropriate baseline correction the linearity of the calibration curves was maintained over the entire investigated water content regions and the effect of particle size on the calibration was not significant in the case of crospovidones from the same manufacturer. The described method enables the water content determination of powdered hygroscopic materials containing homogeneously distributed water. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. ATR-FTIR spectroscopy and quantitative multivariate analysis of paints and coating materials.

    Science.gov (United States)

    Hayes, Philippa Alice; Vahur, Signe; Leito, Ivo

    2014-12-10

    The applicability of ATR-FTIR spectroscopy with partial least squares (PLS) data analysis was evaluated for quantifying the components of mixtures of paint binding media and pigments, and alkyd resins. PLS methods were created using a number of standard mixtures. Validation and measurement uncertainty estimation was carried out. Binary, ternary and quaternary mixtures of several common binding media and pigments were quantified, with standard measurement uncertainties in most cases below 3g/100g. Classes of components - aromatic anhydrides and alcohols - used in alkyd resin synthesis were also successfully quantified, with standard uncertainties in the range of 2-3g/100g. This is a more demanding application because in alkyd resins aromatic anhydrides and alcohols have reacted to form a polyester, and are not present in their original forms. Once a PLS method has been calibrated, analysis time and cost are significantly reduced from typical quantitative methods such as GC/MS. This is beneficial in the case of routine analysis where the components are known. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. ATR-FTIR spectroscopy and quantitative multivariate analysis of paints and coating materials

    Science.gov (United States)

    Hayes, Philippa Alice; Vahur, Signe; Leito, Ivo

    2014-12-01

    The applicability of ATR-FTIR spectroscopy with partial least squares (PLS) data analysis was evaluated for quantifying the components of mixtures of paint binding media and pigments, and alkyd resins. PLS methods were created using a number of standard mixtures. Validation and measurement uncertainty estimation was carried out. Binary, ternary and quaternary mixtures of several common binding media and pigments were quantified, with standard measurement uncertainties in most cases below 3 g/100 g. Classes of components - aromatic anhydrides and alcohols - used in alkyd resin synthesis were also successfully quantified, with standard uncertainties in the range of 2-3 g/100 g. This is a more demanding application because in alkyd resins aromatic anhydrides and alcohols have reacted to form a polyester, and are not present in their original forms. Once a PLS method has been calibrated, analysis time and cost are significantly reduced from typical quantitative methods such as GC/MS. This is beneficial in the case of routine analysis where the components are known.

  2. The application of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the stratum corneum

    OpenAIRE

    Goh, C. F.; Craig, D. Q.; Hadgraft, J.; Lane, M. E.

    2017-01-01

    Drug permeation through the intercellular lipids, which pack around and between corneocytes, may be enhanced by increasing the thermodynamic activity of the active in a formulation. However, this may also result in unwanted drug crystallisation on and in the skin. In this work, we explore the combination of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the skin. Ex vivo permeation studies of saturated solutions of diclofenac sodium (DF Na) in two vehicl...

  3. ATR-FTIR Spectroscopy on intact dried leaves of sage (Salvia officinalis L. – chemotaxonomic discrimination and essential oil composition

    Directory of Open Access Journals (Sweden)

    Gudi, Gennadi

    2016-07-01

    Full Text Available Sage (Salvia officinalis L. is cultivated worldwide for its aromatic leaves which are used as herbal spice and for phytopharmaceutical applications. Fast analytical strategies for essential oil analysis, performed directly on plant material would reduce the delay between sampling and analytical results. This would enhance product quality by improving technical control of cultivation. The attenuated total reflectance Fourier transform infrared (ATR-FTIR spectroscopy method described here provides a reliable calibration model for quantification of essential oil components (EOC and its main constituents (e.g. -thujone and -thujone directly on dried, intact leaves of sage. Except for drying no further sample preparation is required for ATR-FTIR and the measurement time of less than 5 min per sample contrasts with the most common alternative of hydro-distillation followed by GC analysis which can take several hours per sample.

  4. Improving precursor adsorption characteristics in ATR-FTIR spectroscopy with a ZrO{sub 2} nanoparticle coating

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaeseo [Korea Research Institute of Standards and Science, Center for Vacuum Technology (Korea, Republic of); Mun, Jihun [University of Science and Technology, Department of Advanced Device Technology (Korea, Republic of); Shin, Jae-Soo; Kim, Jongho; Park, Hee Jung [Daejeon University, Department of Advanced Materials Engineering (Korea, Republic of); Kang, Sang-Woo, E-mail: swkang@kriss.re.kr [Korea Research Institute of Standards and Science, Center for Vacuum Technology (Korea, Republic of)

    2017-02-15

    Nanoparticles were applied to a crystal surface to increase its precursor adsorption efficiency in an attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrometer. Nanoparticles with varying dispersion stabilities were employed and the resulting precursor adsorption characteristics were assessed. The size of the nanoparticles was <100 nm (TEM). In order to vary the dispersion stability, ZrO{sub 2} nanoparticles were dispersed in aqueous solutions of different pH. The ZrO{sub 2} dispersion solutions were analyzed using scanning electron microscopy (SEM) while particle distribution measurements were analyzed using electrophoretic light scattering (ELS) and dynamic light scattering (DLS) techniques. ZrO{sub 2} nanoparticles dispersed in solutions of pH 3 and 11 exhibited the most stable zeta potentials (≥+30 or ≤−30 mV); these observations were confirmed by SEM analysis and particle distribution measurements. Hexamethyldisilazane (HMDS) was used as a precursor for ATR-FTIR spectroscopy. Consequently, when ZrO{sub 2} nanoparticle solutions with the best dispersion stabilities (pH 3 and 11) were applied to the adsorption crystal surface, the measurement efficiency of ATR-FTIR spectroscopy improved by ∼200 and 300%, respectively.

  5. Ageing of EUROBITUM bituminised radioactive waste: An ATR-FTIR spectroscopy study

    International Nuclear Information System (INIS)

    Valcke, E.; Rorif, F.; Smets, S.

    2009-01-01

    The extent of the physico-chemical processes of concern in the study of the acceptability of Eurobitum bituminised radioactive waste for underground disposal (water uptake by hygroscopic NaNO 3 - swelling - pressure build-up - NaNO 3 leaching) will depend on the degree of ageing of the bituminous matrix. In the work reported here, the ageing behaviour was studied by comparing the characteristics of 25 years old radioactive Eurobitum with those of 25 years old non-radioactive Eurobitum samples that were heated or gamma-irradiated in the presence or absence of oxygen. Chemical changes in the bitumen structure were followed in the mid-infrared region with Attenuated Total Reflectance Fourier Transform InfraRed Spectroscopy (ATR-FTIR) by measuring the evolution of the band heights at 1700 cm -1 (C=O functional groups) and 1600 cm -1 (C=C double bonds). Needle penetration depths and ring and ball softening points were determined for some samples. Oxidation of bitumen in the presence of oxygen results in a distinct increase of both the number of C=O and C=C functionalities, with a positive linear relationship existing between the two groups. The production of C=O functional groups seems to promote the generation of C=C double bonds. Heating at 130 deg. C is much more efficient than gamma irradiation at low to moderate dose rates (20-140 Gy/h) to oxidise the bitumen. As the oxygen concentration decreases, for instance by diffusion limitation deeper inside the bitumen, the number of C=O and C=C functionalities formed per unit of time decreases. A similar behaviour was observed for 25 years old radioactive Eurobitum. In absence of oxygen, gamma irradiation still results in a small increase of the number of C=O functional groups, probably by oxygen still adsorbed on the bitumen, and in a relatively higher amount of C=C double bonds. The surface layer (<5 cm) of 25 years old radioactive Eurobitum was heavily oxidised. The material had become very hard and brittle, and was

  6. The application of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the stratum corneum.

    Science.gov (United States)

    Goh, Choon Fu; Craig, Duncan Q M; Hadgraft, Jonathan; Lane, Majella E

    2017-02-01

    Drug permeation through the intercellular lipids, which pack around and between corneocytes, may be enhanced by increasing the thermodynamic activity of the active in a formulation. However, this may also result in unwanted drug crystallisation on and in the skin. In this work, we explore the combination of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the skin. Ex vivo permeation studies of saturated solutions of diclofenac sodium (DF Na) in two vehicles, propylene glycol (PG) and dimethyl sulphoxide (DMSO), were carried out in porcine ear skin. Tape stripping and ATR-FTIR spectroscopy were conducted simultaneously to collect spectral data as a function of skin depth. Multivariate data analysis was applied to visualise and categorise the spectral data in the region of interest (1700-1500cm -1 ) containing the carboxylate (COO - ) asymmetric stretching vibrations of DF Na. Spectral data showed the redshifts of the COO - asymmetric stretching vibrations for DF Na in the solution compared with solid drug. Similar shifts were evident following application of saturated solutions of DF Na to porcine skin samples. Multivariate data analysis categorised the spectral data based on the spectral differences and drug crystallisation was found to be confined to the upper layers of the skin. This proof-of-concept study highlights the utility of ATR-FTIR spectroscopy in combination with multivariate data analysis as a simple and rapid approach in the investigation of drug deposition in the skin. The approach described here will be extended to the study of other actives for topical application to the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy.

    Science.gov (United States)

    Chércoles Asensio, Ruth; San Andrés Moya, Margarita; de la Roja, José Manuel; Gómez, Marisa

    2009-12-01

    In the last few decades many new polymers have been synthesized that are now being used in cultural heritage conservation. The physical and chemical properties and the long-term behaviors of these new polymers are determined by the chemical composition of the starting materials used in their synthesis along with the nature of the substances added to facilitate their production. The practical applications of these polymers depend on their composition and form (foam, film, sheets, pressure-sensitive adhesives, heat-seal adhesives, etc.). Some materials are used in restoration works and others for the exhibition, storage and transport of works of art. In all cases, it is absolutely necessary to know their compositions. Furthermore, many different materials that are manufactured for other objectives are also used for conservation and restoration. The technical information about the materials provided by the manufacturer is usually incomplete, so it is necessary to analytically characterize such materials. FTIR spectrometry is widely used for polymer identification, and, more recently, ATR-FTIR has been shown to give excellent results. This paper reports the ATR-FTIR analysis of samples of polymeric materials used in the conservation of artworks. These samples were examined directly in the solid material without sample preparation.

  8. Fast and calibration free determination of first order reaction kinetics in API synthesis using in-situ ATR-FTIR.

    Science.gov (United States)

    Rehbein, Moritz C; Husmann, Sascha; Lechner, Christian; Kunick, Conrad; Scholl, Stephan

    2017-09-28

    In early stages of drug development only sparse amounts of the key substances are available, which is problematic for the determination of important process data like reaction kinetics. Therefore, it is important to perform experiments as economically as possible, especially in regards to limiting compounds. Here we demonstrate the use of a temperature step experiment enabling the determination of complete reaction kinetics in a single non-isothermal experiment. In contrast to the traditionally used HPLC, the method takes advantage of the high measuring rate and the low amount of labor involved in using in-situ ATR-FTIR to determine time-dependent concentration-equivalent data. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. In situ ATR FTIR studies of SO4 adsorption on goethite in the presence of copper ions.

    Science.gov (United States)

    Beattie, D A; Chapelet, J K; Gräfe, M; Skinner, W M; Smith, E

    2008-12-15

    Despite the existence of many single ion sorption studies on iron and aluminum oxides, fewer studies have been reported that describe cosorption reactions. In this work, we present an in situ ATR FTIR study of synergistic adsorption of sulfate (SO4) and copper (Cu) on goethite, which is representative of the minerals and ions present in mine wastes, acid sulfate soils, and other industrial and agricultural settings. Sulfate adsorption was studied as a function of varying pH, and as a function of increasing concentration in the absence and presence of Cu. The presence of Cu ions in solution had a complex effect on the ability of SO4 ions to be retained on the goethite surface with increasing pH, with complete desorption occurring near pH 7 and 9 in the absence and presence of Cu, respectively. In addition, Cu ions altered the balance of inner vs outer sphere adsorbed SO4. The solid phase partitioning of SO4 at pH 3 and pH 5 was elevated by the presence of Cu; in both cases Cu increased the affinity of SO4 for the goethite surface. Complementary ex situ sorption edge studies of Cu on goethite in the absence and presence of SO4 revealed that the Cu adsorption edge shifted to lower pH (6.3 --> 5.6) in the presence of SO4, consistent with a decrease of the electrostatic repulsion between the goethite surface and adsorbing Cu. Based on the ATR FTIR and bulk sorption data we surmise that the cosorption products of SO4 and Cu at the goethite-water interface were not in the nature of ternary complexes under the conditions studied here. This information is critical for the evaluation of the onset of surface precipitates of copper-hydroxy sulfates as a function of pH and solution concentration.

  10. Assessment of anti-inflammatory properties of extracts from Honeysuckle (Lonicera sp. L., Caprifoliaceae) by ATR-FTIR spectroscopy.

    Science.gov (United States)

    Nikzad-Langerodi, R; Ortmann, S; Pferschy-Wenzig, E M; Bochkov, V; Zhao, Y M; Miao, J H; Saukel, J; Ladurner, A; Heiss, E H; Dirsch, V M; Bauer, R; Atanasov, A G

    2017-12-01

    Inflammation is a hallmark of some of today's most life-threatening diseases such as arteriosclerosis, cancer, diabetes and Alzheimer's disease. Herbal medicines (HMs) are re-emerging resources in the fight against these conditions and for many of them, anti-inflammatory activity has been demonstrated. However, several aspects of HMs such as their multi-component character, natural variability and pharmacodynamic interactions (e.g. synergism) hamper identification of their bioactive constituents and thus the development of appropriate quality control (QC) workflows. In this study, we investigated the potential use of Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy as a tool to rapidly and non-destructively assess different anti-inflammatory properties of ethanolic extracts from various species of the Genus Lonicera (Caprifoliaceae). Reference measurements for multivariate calibration comprised in vitro bioactivity of crude extracts towards four key players of inflammation: Nitric oxide (NO), interleukin 8 (IL-8), peroxisome proliferator-activated receptor β/δ (PPAR β/δ), and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Multivariate analysis of variance (MANOVA) revealed a statistically significant, quantitative pattern-activity relationship between the extracts' ATR-FTIR spectra and their ability to modulate these targets in the corresponding cell models. Ensemble orthogonal partial least squares (OPLS) discriminant models were established for the identification of extracts exhibiting high and low activity with respect to their potential to suppress NO and IL-8 production. Predictions made on an independent test set revealed good generalizability of the models with overall sensitivity and specificity of 80% and 100%, respectively. Partial least squares (PLS) regression models were successfully established to predict the extracts' ability to suppress NO production and NF-κB activity with root mean

  11. Bacterial and abiotic decay in waterlogged archaeological Picea abies (L.) Karst studied by confocal Raman imaging and ATR-FTIR spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Nanna Bjerregaard; Gierlinger, Notburga; Thygesen, Lisbeth Garbrecht

    2015-01-01

    Waterlogged archaeological Norway spruce [Picea abies (L.) Karst] poles were studied by means of confocal Raman imaging (CRI) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) analysis to determine lignin and polysaccharide composition and distribution in the cell...

  12. Investigation of ATR-FTIR spectroscopy as an alternative to the Water Leach Free Acidity test for cellulose acetate-based film

    DEFF Research Database (Denmark)

    Johansen, Karin Bonde; Shashoua, Yvonne

    2005-01-01

    Cellulose acetate film loses acetate groups on ageing which results in the formation of damaging acetic acid. Water-Leach Free Acidity Test (WLFAT) is the definitive technique to quantify acidity, but requires 1g film and 26 hours. ATR-FTIR spectroscopy is a non-destructive, rapid technique which...

  13. Species identification of bloodstains by ATR-FTIR spectroscopy: the effects of bloodstain age and the deposition environment.

    Science.gov (United States)

    Lin, Hancheng; Zhang, Yinming; Wang, Qi; Li, Bing; Fan, Shuanliang; Wang, Zhenyuan

    2017-08-18

    In this study, we investigated the potential of attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy combined with advanced chemometrics for species identification of bloodstains similar to evidence obtained from real crime scenes. Two partial least squares-discriminant analysis classification models (a human-mammal-domestic fowl trilateral model and a species-specific model) were established. The models demonstrated complete separation among the three classes (human, mammal, and domestic fowl) and distinguished six species (human, rat, rabbit, dog, chicken, and duck). Validation was subsequently conducted to evaluate the robustness of these two models, which resulted in 100 and 94.2% accuracy; even human bloodstains placed in an outdoor environment for up to 107 days were successfully identified. Additionally, all bloodstains were positively identified as blood using the squared Euclidean cosine method by comparing the spectra with those of non-blood substances that had a similar appearance or easily produced false positives. These results demonstrate that ATR-FTIR spectroscopy combined with chemometrics can be a powerful tool for species identification of bloodstains.

  14. Dichroic ATR-FTIR spectroscopy on oriented α-helical poly( L-lysine) multilayered with polyanions

    Science.gov (United States)

    Müller, M.; Ouyang, W.; Keßler, B.

    2010-11-01

    The preparation and spectroscopic and microscopic characterization of oriented polyelectrolyte multilayers (PEM) interesting for defined nanostructured functional materials and surfaces are reviewed. Oriented PEM were generated by consecutively adsorbing α-helical poly( L-lysine) (PLL) and oppositely charged polyanions like poly(vinylsulfate) (PVS) or poly(styrene sulfonate) (PSS) at silicon substrates texturized by parallel nanoscopic surface grooves, respectively. Dichroic Attenuated Total Reflexion Fourier Transform Infrared (ATR-FTIR) spectroscopy was used to study the conformation and macromolecular order of stiff polyelectrolytes within PEM. High order parameters up to S = 0.82 ( S = 1 for high, S = 0 for low order) were obtained from the dichroic ratios of the Amide I and Amide II bands suggesting a significant alignment of charged α-helical polypeptides in PEM. For PEM consisting of PLL/polyanion the S values significantly increased with increasing molecular weight of PLL and with decreasing molecular weight of the polyanion. These spectroscopic findings were supported by SFM images on PEM-PLL/PVS with high molecular PLL and PEM-PLL/PSS with low molecular PSS, which both showed anisotropically oriented worm-like structures, while PEM-PLL/PVS with low molecular PLL and PEM-PLL/PSS with high molecular PSS showed no orientation features.

  15. Quality Control of Valerianae Radix by Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy.

    Science.gov (United States)

    Nikzad-Langerodi, Ramin; Arth, Katharina; Klatte-Asselmeyer, Valerie; Bressler, Sabine; Saukel, Johannes; Reznicek, Gottfried; Dobeš, Christoph

    2017-11-09

    (Acetoxy-)valerenic acid and total essential oil content are important quality attributes of pharmacy grade valerian root (Valerianae radix). Traditional analysis of these quantities is time-consuming and necessitates (harmful) solvents. Here we investigated an application of attenuated total reflection Fourier transform infrared spectroscopy for extractionless analysis of these quality attributes on a representative sample comprising 260 wild-crafted individuals covering the Central European taxonomic diversity of the Valeriana officinalis L. s. l. species aggregate with its three major ploidy cytotypes (i.e., di-, tetra- and octoploid). Calibration models were built by orthogonal partial least squares regression for quantitative analysis of (acetoxy-)valerenic acid and total essential oil content. For the latter, we propose a simplistic protocol involving apolar extraction followed by gas chromatography as a reference method for multivariate calibration in order to handle the analysis of samples taken from individual plants. We found good predictive ability of chemometric models for quantification of valerenic acid, acetoxyvalerenic acid, total sesquiterpenoid acid, and essential oil content with a root mean squared error of cross-validation of 0.064, 0.043, and 0.09 and root mean squared error of prediction of 0.066, 0.057, and 0.09 (% content), respectively. Orthogonal partial least squares discriminant analysis revealed good discriminability between the most productive phenotype (i.e., the octoploid cytotype) in terms of sesquiterpenoid acids, and the less productive ones (i.e., di- and tetraploid). All in all, our results demonstrate the application of attenuated total reflection Fourier transform infrared spectroscopy for rapid, extractionless estimation of the most important quality attributes of valerian root and minimally invasive identification of the most productive phenotype in terms of sesquiterpenoid acids. Georg Thieme Verlag KG Stuttgart · New

  16. Discrimination of Solanaceae taxa and quantification of scopolamine and hyoscyamine by ATR-FTIR spectroscopy.

    Science.gov (United States)

    Naumann, Annette; Kurtze, Lukas; Krähmer, Andrea; Hagels, Hansjoerg; Schulz, Hartwig

    2014-10-01

    Plant species of the Solanaceae family (nightshades) contain pharmacologically active anticholinergic tropane alkaloids, e.g., scopolamine and hyoscyamine. Tropane alkaloids are of special interest, either as active principles or as starting materials for semisynthetic production of other substances. For genetic evaluation, domestication, cultivation, harvest and post-harvest treatments, quantification of the individual active principles is necessary to monitor industrial processes and the resulting finished products. Up to now, frequently applied methods for quantification are based on high performance liquid chromatography and gas chromatography optionally combined with mass spectrometry. However, alternative analytical methods have the potential to replace the established standard methods partly. In this context, attenuated total reflection-Fourier transform infrared spectroscopy enabled chemotaxonomical classification of the Solanaceae Atropa belladonna, Datura stramonium, Hyoscyamus niger, Solanum dulcamara, and Duboisia in combination with cluster analysis. Also discrimination of genotypes within species was achieved to some extent. The most characteristic scopolamine bands could be identified in attenuated total reflection-Fourier transform infrared spectra of Solanaceae leaves, which allow a fast characterisation of plants with high scopolamine content. Applying a partial least square algorithm, very good calibration statistics were obtained for the prediction of the scopolamine content (residual prediction deviation = 7.67), and moderate prediction quality could be achieved for the hyoscyamine content (residual prediction deviation = 2.48). Georg Thieme Verlag KG Stuttgart · New York.

  17. Rapid detection of gelatin in dental materials using attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR)

    Science.gov (United States)

    Irfanita, N.; Jaswir, I.; Mirghani, M. E. S.; Sukmasari, S.; Ardini, Y. D.; Lestari, W.

    2017-08-01

    The presence of gelatin is not limited to food products but has also been found in pharmaceuticals. Most dental materials available in Malaysia are imported from other countries and might contain gelatin which is a protein derived either from porcine, bovine or other animal sources. Authentication of gelatin is crucial due to religious and health concerns. Therefore, this study aimed to detect gelatin in dental materials using ATR-FTIR. Forty two samples of dental material were purchased from dental suppliers and detection was done using ATR-FTIR. The spectrum from each sample was compared against standard bovine and porcine gelatin. Experimental dental paste containing bovine and porcine gelatin at concentrations of 5, 10, 15 and 20% were also prepared for quantification analysis. The results showed that gelatin was present in nine out of forty two samples of dental materials but the species of origin was not confirmed. Meanwhile, in the experimental bovine and porcine dental paste, it was seen that as the concentration increased, the intensity of the absorption of Amide group also increased. Thus, ATR-FTIR can be utilized as a reliable tool to detect gelatin in dental materials and other pharmaceuticals.

  18. Application of Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) Spectroscopy To Determine the Chlorogenic Acid Isomer Profile and Antioxidant Capacity of Coffee Beans.

    Science.gov (United States)

    Liang, Ningjian; Lu, Xiaonan; Hu, Yaxi; Kitts, David D

    2016-01-27

    The chlorogenic acid isomer profile and antioxidant activity of both green and roasted coffee beans are reported herein using ATR-FTIR spectroscopy combined with chemometric analyses. High-performance liquid chromatography (HPLC) quantified different chlorogenic acid isomer contents for reference, whereas ORAC, ABTS, and DPPH were used to determine the antioxidant activity of the same coffee bean extracts. FTIR spectral data and reference data of 42 coffee bean samples were processed to build optimized PLSR models, and 18 samples were used for external validation of constructed PLSR models. In total, six PLSR models were constructed for six chlorogenic acid isomers to predict content, with three PLSR models constructed to forecast the free radical scavenging activities, obtained using different chemical assays. In conclusion, FTIR spectroscopy, coupled with PLSR, serves as a reliable, nondestructive, and rapid analytical method to quantify chlorogenic acids and to assess different free radical-scavenging capacities in coffee beans.

  19. Prediction of peroxide value in omega-3 rich microalgae oil by ATR-FTIR spectroscopy combined with chemometrics.

    Science.gov (United States)

    Cebi, Nur; Yilmaz, Mustafa Tahsin; Sagdic, Osman; Yuce, Hande; Yelboga, Emrah

    2017-06-15

    Our work explored, for the first time, monitoring peroxide value (PV) of omega-3 rich algae oil using ATR-FTIR spectroscopic technique. The PV of the developed method was compared by that obtained by standard method of Association of Official Analytical Chemists (AOAC). In this study, peak area integration (PAI), Partial Least Squares Regression (PLSR), and Principal Component Regression (PCR) were used as the calibration techniques. PV obtained by the AOAC method and by FTIR-ATR technique were well correlated considering the peak area related to trans double bonds and chemometrics techniques of PLSR and PCR. Calibration model was established using the band with a peak point at 966cm -1 (990-940cm -1 ) related to CH out of plane deformation vibration of trans double bond. Algae oil oxidation could be successfully quantified using PAI, PLSR and PCR techniques. Additionally, hierarchical cluster analysis was performed and significant discrimination was observed coherently with oxidation process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Study in vitro of Er,Cr:YSGG laser effects in bone tissue by ATR-FTIR spectroscopy

    International Nuclear Information System (INIS)

    Benetti, Carolina

    2010-01-01

    Laser proves to be, more and more, an effective tool for helping health professionals, being intensively used in ophthalmological and odontological procedures. In particular, high-density, infrared emitting lasers have great potential in cutting mineralized biological hard tissues, given their high absorption by hydroxyapatite and water, these tissues' main components. In comparison to mechanical instruments, laser presents a series of advantages, namely, smaller damage to the remaining tissue and promotion of homeostatic effect, apart from making it possible to execute procedures in areas with difficult access. However, for an efficient and safe use of this technique, it is necessary to know the effects of the laser irradiation on the tissue. The Fourier transform infrared (FTIR) technique is heavily used in the study of organic materials, because apart from making it possible to identify the materials' components, it also allows to prepare a semi quantitative analysis. This work aims to establish the ATR-FTIR technique in the characterization of natural and irradiated osseous tissue, and to verify the possible chemical and structural changes caused by irradiation. Firstly, the best conditions for the obtainment of bone sample spectra were determined. Then, bone samples, irradiated with the Er,Cr:YSGG (2,78 μm) infrared emitting laser (adjusted with different energy densities) were analyzed alongside with natural bone samples. It has been verified that the technique is effective in the bone tissue characterization, and that it is possible to observe the chemical changes caused by the temperature rise due to laser irradiation. It has been observed a gradual organic material loss as the energy density goes up. These results are the first steps in testing the Er,Cr:YSGG laser efficacy as a cutting tool, a pivotal aspect of its consolidation in clinical procedures. (author)

  1. Shape-selected nanocrystals for in situ spectro-electrochemistry studies on structurally well defined surfaces under controlled electrolyte transport: A combined in situ ATR-FTIR/online DEMS investigation of CO electrooxidation on Pt

    Science.gov (United States)

    Jusys, Zenonas; Behm, R Jürgen

    2014-01-01

    Summary The suitability and potential of shape selected nanocrystals for in situ spectro-electrochemical and in particular spectro-electrocatalytic studies on structurally well defined electrodes under enforced and controlled electrolyte mass transport will be demonstrated, using Pt nanocrystals prepared by colloidal synthesis procedures and a flow cell set-up allowing simultaneous measurements of the Faradaic current, FTIR spectroscopy of adsorbed reaction intermediates and side products in an attenuated total reflection configuration (ATR-FTIRS) and differential electrochemical mass spectrometry (DEMS) measurements of volatile reaction products. Batches of shape-selected Pt nanocrystals with different shapes and hence different surface structures were prepared and structurally characterized by transmission electron microscopy (TEM) and electrochemical methods. The potential for in situ spectro-electrocatalytic studies is illustrated for COad oxidation on Pt nanocrystal surfaces, where we could separate contributions from two processes occurring simultaneously, oxidative COad removal and re-adsorption of (bi)sulfate anions, and reveal a distinct structure sensitivity in these processes and also in the structural implications of (bi)sulfate re-adsorption on the CO adlayer. PMID:24991511

  2. A Study of Electrochemical Reduction of Ethylene and PropyleneCarbonate Electrolytes on Graphite Using ATR-FTIR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Guorong V.; Yang, Hui; Blizanac, Berislav; Ross Jr.,Philip N.

    2005-05-12

    We present results testing the hypothesis that there is a different reaction pathway for the electrochemical reduction of PC versus EC-based electrolytes at graphite electrodes with LiPF6 as the salt in common. We examined the reduction products formed using ex-situ Fourier Transform Infrared (FTIR) spectroscopy in attenuated total reflection (ATR) geometry. The results show the pathway for reduction of PC leads nearly entirely to lithium carbonate as the solid product (and presumably ethylene gas as the co-product) while EC follows a path producing a mixture of organic and inorganic compounds. Possible explanations for the difference in reaction pathway are discussed.

  3. Chemical transitions of Areca semen during the thermal processing revealed by temperature-resolved ATR-FTIR spectroscopy and two-dimensional correlation analysis

    Science.gov (United States)

    Wang, Zhibiao; Wang, Xu; Pei, Wenxuan; Li, Sen; Sun, Suqin; Zhou, Qun; Chen, Jianbo

    2018-03-01

    Areca semen is a common herb used in traditional Chinese medicine, but alkaloids in this herb are categorized as Group I carcinogens by IARC. It has been proven that the stir-baking process can reduce alkaloids in Areca semen while keep the activity for promoting digestion. However, the changes of compositions other than alkaloids during the thermal processing are unclear. Understanding the thermal chemical transitions of Areca semen is necessary to explore the processing mechanisms and optimize the procedures. In this research, FTIR spectroscopy with a temperature-controlled ATR accessory is employed to study the heating process of Areca semen. Principal component analysis and two-dimensional correlation spectroscopy are used to interpret the spectra to reveal the chemical transitions of Areca semen in different temperature ranges. The loss of a few volatile compounds in the testa and sperm happens below 105 °C, while some esters in the sperm decreases above 105 °C. As the heating temperature is close to 210 °C, Areca semen begins to be scorched and the decomposition of many compounds can be observed. This research shows the potential of the temperature-resolved ATR-FTIR spectroscopy in exploring the chemical transitions of the thermal processing of herbal materials.

  4. Quantitative determination of polyphosphate in sediments using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and partial least squares regression.

    Science.gov (United States)

    Khoshmanesh, Aazam; Cook, Perran L M; Wood, Bayden R

    2012-08-21

    Phosphorus (P) is a major cause of eutrophication and subsequent loss of water quality in freshwater ecosystems. A major part of the flux of P to eutrophic lake sediments is organically bound or of biogenic origin. Despite the broad relevance of polyphosphate (Poly-P) in bioremediation and P release processes in the environment, its quantification is not yet well developed for sediment samples. Current methods possess significant disadvantages because of the difficulties associated with using a single extractant to extract a specific P compound without altering others. A fast and reliable method to estimate the quantitative contribution of microorganisms to sediment P release processes is needed, especially when an excessive P accumulation in the form of polyphosphate (Poly-P) occurs. Development of novel approaches for application of emerging spectroscopic techniques to complex environmental matrices such as sediments significantly contributes to the speciation models of P mobilization, biogeochemical nutrient cycling and development of nutrient models. In this study, for the first time Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy in combination with partial least squares (PLS) was used to quantify Poly-P in sediments. To reduce the high absorption matrix components in sediments such as silica, a physical extraction method was developed to separate sediment biological materials from abiotic particles. The aim was to achieve optimal separation of the biological materials from sediment abiotic particles with minimum chemical change in the sample matrix prior to ATR-FTIR analysis. Using a calibration set of 60 samples for the PLS prediction models in the Poly-P concentration range of 0-1 mg g(-1) d.w. (dry weight of sediment) (R(2) = 0.984 and root mean square error of prediction RMSEP = 0.041 at Factor-1) Poly-P could be detected at less than 50 μg g(-l) d.w. Using this technique, there is no solvent extraction or chemical

  5. Determination of trans Fat in Selected Fast Food Products and Hydrogenated Fats of India Using Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy.

    Science.gov (United States)

    Khan, Mohd Umar; Hassan, Mohammad Fahimul; Rauf, Abdul

    2017-01-01

    This paper reports the application of a simple and rapid method for the determination of trans fatty acid (TFA) content in some of the selected Indian fast food products and hydrogenated fats using Fourier transform infrared (FTIR) spectroscopy in conjunction with second derivative procedure. FTIR spectroscopy has been successfully applied to trans measurement using the absorbance bands at or near 966 cm -1 in the FTIR spectra. It was found from the analysis that TFA content of fast food product was ranging from 1.57% to 3.83% of the total fat while for hydrogenated fats, comparatively large quantity of TFA was detected in the range of 3.31% to 4.73%. Since GC-FID is most widely used method for the determination of fatty acid (FA) composition, this method was used for the sake of comparison. Value of regression coefficient was found very close to one (0.99503) with standard deviation of 0.10247 showing a good agreement between GC-FID and proposed ATR-FTIR method.

  6. Estimation of the age of human bloodstains under the simulated indoor and outdoor crime scene conditions by ATR-FTIR spectroscopy.

    Science.gov (United States)

    Lin, Hancheng; Zhang, Yinming; Wang, Qi; Li, Bing; Huang, Ping; Wang, Zhenyuan

    2017-10-16

    Estimation of the age of human bloodstains is of great importance in forensic practices, but it is a challenging task because of the lack of a well-accepted, reliable, and established method. Here, the attenuated total reflection (ATR)-Fourier transform infrared (FTIR) technique combined with advanced chemometric methods was utilized to determine the age of indoor and outdoor bloodstains up to 107 days. The bloodstain storage conditions mimicked crime scene scenarios as closely as possible. Two partial least squares regression models-indoor and outdoor models with 7-85 days-exhibited good performance for external validation, with low values of predictive root mean squared error (5.83 and 4.77) and high R 2 values (0.94 and 0.96) and residual predictive deviation (4.08 and 5.14), respectively. Two partial least squares-discriminant analysis classification models were built and demonstrated excellent distinction between fresh (age ≤1 d) and older (age >1 d) bloodstains, which is highly valuable for forensic investigations. These findings demonstrate that ATR-FTIR spectroscopy coupled with advanced chemometric methods can be employed as a rapid and non-destructive tool for age estimation of bloodstains in real-world forensic investigation.

  7. Degradation patterns of natural and synthetic textiles on a soil surface during summer and winter seasons studied using ATR-FTIR spectroscopy

    Science.gov (United States)

    Ueland, Maiken; Howes, Johanna M.; Forbes, Shari L.; Stuart, Barbara H.

    2017-10-01

    obtained using ATR-FTIR spectroscopy, and has provided insight into textile degradation processes relevant to a soil environment.

  8. Investigation of the hydrophobic and hydrophilic interactions in polymer - water systems by ATR FTIR and Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Schmidt, Pavel; Dybal, Jiří; Trchová, Miroslava

    2006-01-01

    Roč. 42, č. 2 (2006), s. 278-283 ISSN 0924-2031. [International Conference on Advanced Vibrational Spectroscopy /3./. Delavan, 14.08.2005-19.08.2005] R&D Projects: GA ČR GA203/05/0425; GA AV ČR IAA4050208 Institutional research plan: CEZ:AV0Z40500505 Keywords : infrared and Raman spectra * polymers with amide groups * amide model compounds Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.880, year: 2006

  9. Rapid Quantification of Methamphetamine: Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Chemometrics

    Science.gov (United States)

    Hughes, Juanita; Ayoko, Godwin; Collett, Simon; Golding, Gary

    2013-01-01

    In Australia and increasingly worldwide, methamphetamine is one of the most commonly seized drugs analysed by forensic chemists. The current well-established GC/MS methods used to identify and quantify methamphetamine are lengthy, expensive processes, but often rapid analysis is requested by undercover police leading to an interest in developing this new analytical technique. Ninety six illicit drug seizures containing methamphetamine (0.1%–78.6%) were analysed using Fourier Transform Infrared Spectroscopy with an Attenuated Total Reflectance attachment and Chemometrics. Two Partial Least Squares models were developed, one using the principal Infrared Spectroscopy peaks of methamphetamine and the other a Hierarchical Partial Least Squares model. Both of these models were refined to choose the variables that were most closely associated with the methamphetamine % vector. Both of the models were excellent, with the principal peaks in the Partial Least Squares model having Root Mean Square Error of Prediction 3.8, R2 0.9779 and lower limit of quantification 7% methamphetamine. The Hierarchical Partial Least Squares model had lower limit of quantification 0.3% methamphetamine, Root Mean Square Error of Prediction 5.2 and R2 0.9637. Such models offer rapid and effective methods for screening illicit drug samples to determine the percentage of methamphetamine they contain. PMID:23936058

  10. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis.

    Science.gov (United States)

    Gok, Seher; Severcan, Mete; Goormaghtigh, Erik; Kandemir, Irfan; Severcan, Feride

    2015-03-01

    Botanical origin of the nectar predominantly affects the chemical composition of honey. Analytical techniques used for reliable honey authentication are mostly time consuming and expensive. Additionally, they cannot provide 100% efficiency in accurate authentication. Therefore, alternatives for the determination of floral origin of honey need to be developed. This study aims to discriminate characteristic Anatolian honey samples from different botanical origins based on the differences in their molecular content, rather than giving numerical information about the constituents of samples. Another scope of the study is to differentiate inauthentic honey samples from the natural ones precisely. All samples were tested via unsupervised pattern recognition procedures like hierarchical clustering and Principal Component Analysis (PCA). Discrimination of sample groups was achieved successfully with hierarchical clustering over the spectral range of 1800-750 cm(-1) which suggests a good predictive capability of Fourier Transform Infrared (FTIR) spectroscopy and chemometry for the determination of honey floral source. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Is it possible to find presence of lactose in pharmaceuticals? - Preliminary studies by ATR-FTIR spectroscopy and chemometrics

    Science.gov (United States)

    Banas, A.; Banas, K.; Kalaiselvi, S. M. P.; Pawlicki, B.; Kwiatek, W. M.; Breese, M. B. H.

    2017-01-01

    Lactose and saccharose have the same molecular formula; however, the arrangement of their atoms is different. A major difference between lactose and saccharose with regard to digestion and processing is that it is not uncommon for individuals to be lactose intolerant (around two thirds of the population has a limited ability to digest lactose after infancy), but it is rather unlikely to be saccharose intolerant. The pharmaceutical industry uses lactose and saccharose as inactive ingredients of drugs to help form tablets because of their excellent compressibility properties. Some patients with severe lactose intolerance may experience symptoms of many allergic reactions after taking medicine that contains this substance. People who are specifically "allergic" to lactose (not just lactose intolerant) should not use tablets containing this ingredient. Fourier Transform Infrared (FTIR) spectroscopy has a unique chemical fingerprinting capability and plays a significant important role in the identification and characterization of analyzed samples and hence has been widely used in pharmaceutical science. However, a typical FTIR spectrum collected from tablets contains a myriad of valuable information hidden in a family of tiny peaks. Powerful multivariate spectral data processing can transform FTIR spectroscopy into an ideal tool for high volume, rapid screening and characterization of even minor tablet components. In this paper a method for distinction between FTIR spectra collected for tablets with or without lactose is presented. The results seem to indicate that the success of identifying one component in FTIR spectra collected for pharmaceutical composition (that is tablet) is largely dependent on the choice of the chemometric technique applied.

  12. Measuring Heterogeneous Reaction Rates with ATR-FTIR Spectroscopy to Evaluate Chemical Fates in an Atmospheric Environment: A Physical Chemistry and Environmental Chemistry Laboratory Experiment

    Science.gov (United States)

    Roberts, Jason E.; Zeng, Guang; Maron, Marta K.; Mach, Mindy; Dwebi, Iman; Liu, Yong

    2016-01-01

    This paper reports an undergraduate laboratory experiment to measure heterogeneous liquid/gas reaction kinetics (ozone-oleic acid and ozone-phenothrin) using a flow reactor coupled to an attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometer. The experiment is specially designed for an upper-level undergraduate Physical…

  13. Application of ATR-FTIR Spectroscopy to Compare the Cell Materials of Wood Decay Fungi with Wood Mould Fungi

    Directory of Open Access Journals (Sweden)

    Barun Shankar Gupta

    2015-01-01

    Full Text Available Wood fungi create vast damage among standing trees and all types of wood materials. The objectives of this study are to (a characterize the cell materials of two major wood decay fungi (Basidiomycota, namely, Trametes versicolor and Postia placenta, and (b compare the cell materials of decay fungi with four wood mould fungi (Ascomycota, namely, Aureobasidium pullulans, Alternaria alternata, Cladosporium cladosporioides, and Ulocladium atrum. Fourier transform infrared (FTIR spectroscopy is used to characterize the microbial cellular materials. The results showed that the IR bands for the fatty acid at ∼2900 cm−1 were different for the two-decay-fungi genre. Postia placenta shows more absorbance peaks at the fatty acid region. Band ratio indices for amide I and amide II from protein amino acids were higher for the mould fungi (Ascomycota than the decay fungi (Basidiomycota. Similarly, the band ratio index calculated for the protein end methyl group was found to be higher for the mould fungi than the decay fungi. Mould fungi along with the decay fungi demonstrated a positive correlation (R2=0.75 between amide I and amide II indices. The three-component multivariate, principal component analysis showed a strong correlation of amide and protein band indices.

  14. Preponderance of Bioactive Medicinal Compounds and ATR-FTIR Spectroscopy of Coriander and Mustard Floral Honey from Apis mellifera

    Directory of Open Access Journals (Sweden)

    Ishan Ullah Khan

    2017-11-01

    Full Text Available The physicochemical, total phenolics, flavonoids, and antioxidant activity were evaluated for biochemical characterization of coriander and mustard floral honey. The total phenolics, flavonoids and antioxidant activity were analyzed using UV-VIS spectrophotometer. Fourier transform infrared spectroscopy (FT-IR was used to evaluate the chemical characteristic of coriander and mustard floral honey. The total phenolics content was ranged from 294 to 462 mg gallic acid equivalent kg-1 of honey. The total flavonoid content was ranged from 43 to 53 mg quercetin equivalent kg-1 of honey. Antioxidant activity results were expressed as inhibitory concentration (IC50 value ranged from 4.58 to 5.54 mg mL-1. FT-IR spectra showed the presence of alcohols, carboxylic acids, esters, ethers, phenols, and amines in both floral honey samples. This study discovered that coriander floral honey is more affluent than mustard floral honey in nutritional as well as medicinal aspects. At a glance the processing of honey by heating did not affect the phenolics, flavonoid, and antioxidants of honey; even processed honey contains higher phenols and antioxidants. The FT-IR spectra showed the similarity in both kinds of honey refers to chemical constituents. This study will help the researcher and honey consumer to find out the higher bioactive medicinal compounds containing honey.

  15. ATR-FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance

    Directory of Open Access Journals (Sweden)

    Rachid eLahlali

    2014-12-01

    Full Text Available With climate change, pea will be more frequently subjected to heat stress in semi-arid regions like Saskatchewan during flowering. The pollen germination percentage of two pea cultivars was reduced by heat stress (36°C with an important decrease in cultivar ‘CDC Golden’ compared to ‘CDC Sage’. Lipids, protein and other pollen coat compositions of whole intact pollen grains of both pea cultivars were investigated using mid infrared (mid-IR Attenuated Total Reflectance (ATR-Fourier Transform Infrared (FTIR spectroscopy. Curve-fitting of ATR absorbance spectra in the protein region enabled estimation and comparison of different protein secondary structures between the two cultivars. CDC Sage had relatively greater amounts of α-helical structures (48.6-43.6%; band at 1654 cm-1 and smaller amounts of β-sheets (41.3-46% than CDC Golden. The CDC Golden had higher amounts of β-sheets (46.3-51.7% compared to α-helical structures (35.3-36.2%. Further, heat stress resulted in prominent changes in the symmetrical and asymmetrical CH2 bands from lipid acyl chain, ester carbonyl band, and carbohydrate region. The intensity of asymmetric and symmetric CH2 vibration of heat stressed CDC Golden was reduced considerably in comparison to the control and the decrease was higher compared to CDC sage. In addition, CDC Golden showed an increase in intensity at the oxidative band of 3015 cm-1. These results reveal that the whole pollen grains of both pea cultivars responded differently to heat stress. The tolerance of CDC Sage to heat stress (expressed as pollen germination percentage may be due to its protein richness with α-helical structures which would protect against the destructive effects of dehydration due to heat stress. The low pollen germination percentage of CDC Golden after heat stress may be also due to its sensitivity to lipid changes due to heat stress.

  16. ATR-FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance.

    Science.gov (United States)

    Lahlali, Rachid; Jiang, Yunfei; Kumar, Saroj; Karunakaran, Chithra; Liu, Xia; Borondics, Ferenc; Hallin, Emil; Bueckert, Rosalind

    2014-01-01

    With climate change, pea will be more frequently subjected to heat stress in semi-arid regions like Saskatchewan during flowering. The pollen germination percentage of two pea cultivars was reduced by heat stress (36°C) with an important decrease in cultivar 'CDC Golden' compared to 'CDC Sage.' Lipids, protein and other pollen coat compositions of whole intact pollen grains of both pea cultivars were investigated using mid infrared (mid-IR) attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. Curve fitting of ATR absorbance spectra in the protein region enabled estimation and comparison of different protein secondary structures between the two cultivars. CDC Sage had relatively greater amounts of α-helical structures (48.6-43.6%; band at 1654 cm(-1)) and smaller amounts of β-sheets (41.3-46%) than CDC Golden. The CDC Golden had higher amounts of β-sheets (46.3-51.7%) compared to α-helical structures (35.3-36.2%). Further, heat stress resulted in prominent changes in the symmetrical and asymmetrical CH2 bands from lipid acyl chain, ester carbonyl band, and carbohydrate region. The intensity of asymmetric and symmetric CH2 vibration of heat stressed CDC Golden was reduced considerably in comparison to the control and the decrease was higher compared to CDC Sage. In addition, CDC Golden showed an increase in intensity at the oxidative band of 3015 cm(-1). These results reveal that the whole pollen grains of both pea cultivars responded differently to heat stress. The tolerance of CDC Sage to heat stress (expressed as pollen germination percentage) may be due to its protein richness with α-helical structures which would protect against the destructive effects of dehydration due to heat stress. The low pollen germination percentage of CDC Golden after heat stress may be also due to its sensitivity to lipid changes due to heat stress.

  17. Efficacy of metformin in human single hair fibre by ATR-FTIR spectroscopy coupled with statistical analysis.

    Science.gov (United States)

    Sundaramoorthi, Kamatchi; Sethu, Gunasekaran; Ethirajulu, Sailatha; Raja Marthandam, Pavithra

    2017-03-20

    Diabetes mellitus is chronic metabolic disorder, resulting from insulin deficiency, characterized by hyperglycemia altered metabolism of carbohydrates, proteins and lipids and an increased risk of vascular complications. There are different classes of anti-diabetic drugs in allopathic system of medicine. Metformin (dimethyl biguanide) is a blood glucose lowering agent used in the treatment of non-insulin dependent diabetes mellitus. Almost in all diseases the blood serves as the primary metabolic transport system in the body. Its composition is the preferred indicator with respect to the pathophysiological condition of the patient. Instead of analyzing blood to diagnose diabetes, hair could be used to detect diabetes using FTIR-ATR technique. The most important components of hair are fibrous proteins (keratins), melanins, glycogen, and lipids. Hair follicles are located 3-4mm below the surface of the skin and are surrounded by rich blood capillary system. In the present study, ten diabetic subjects were considered to evaluate the efficacy of metformin hydrochloride for the treatment of diabetes mellitus using FTIR-ATR spectroscopy. The spectra of diabetic hair fibre samples have been recorded in the mid infrared region of 4000-450cm -1 . The hair samples of the diabetic subjects before medication were taken as pre-treatment samples. The hair samples of diabetic subjects referred to medication with metformin for a period of three month were taken as post-treatment sample. Some remarkable spectral differences were elucidated between pre- and post-treatment hair fibre samples. A comparative study on the FTIR-ATR hair spectra of patients (pre- and post-treatment) along with the healthy subjects has been made. The absorption values of some of the specific bands of biomolecules present in the hair samples viz., protein, lipids and glucose for both the pre- and post-treatment subjects are noted. It was observed that, these biomarkers are significantly different between

  18. Evaluation of FT-NIR and ATR-FTIR spectroscopy techniques for determination of minor odd- and branched-chain saturated and trans unsaturated milk fatty acids.

    Science.gov (United States)

    Stefanov, Ivan; Baeten, Vincent; Abbas, Ouissam; Vlaeminck, Bruno; De Baets, Bernard; Fievez, Veerle

    2013-04-10

    Determination of nutritionally important trans MUFA, CLA, and OBCFA milk fatty acids (often present in amounts lower than 1.0 g/100 g of total fat) using fast and nondestructive analytical methods would enhance their use as diagnostic tools in dairy herd and human health management. Here, PLS regression using ATR/FTIR spectra indicated potential for determination of trans-11 C18:1 and trans-12 C18:1 (Rcv² ≥ 0.80), and trans-9 C18:1 in very minor concentration (Rcv² > 0.82), as well as anteiso C15:0 (Rcv² = 0.57) and iso C17:0 (Rcv² = 0.61). Furthermore, the main cis-9,trans-11 CLA isomer was predicted well despite the high trans MUFA concentration. Differentiation between the CLA and the trans MUFA signals was evident (based on specific cis/trans bands), and branched-chain saturated fatty acid methyl esters revealed specific iso and anteiso ATR/FTIR absorbance bands. None of the minor FA PLS results with FT-NIR showed interesting potential, except satisfactory predictions for trans-9 C18:1 and cis-9,trans-11 CLA. Overall, ATR/FTIR resulted in better calibrations and provided more specific information for determination of minor milk fatty acids.

  19. Formation of assemblies comprising Ru-polypyridine complexes and CdSe nanocrystals studied by ATR-FTIR spectroscopy and DFT modeling.

    Science.gov (United States)

    Koposov, Alexey Y; Cardolaccia, Thomas; Albert, Victor; Badaeva, Ekaterina; Kilina, Svetlana; Meyer, Thomas J; Tretiak, Sergei; Sykora, Milan

    2011-07-05

    The interaction between CdSe nanocrystals (NCs) passivated with trioctylphosphine oxide (TOPO) ligands and a series of Ru-polypyridine complexes-[Ru(bpy)(3)](PF(6))(2) (1), [Ru(bpy)(2)(mcb)](PF(6))(2) (2), [Ru(bpy)(mcb)(2)](BarF)(2) (3), and [Ru(tpby)(2)(dcb)](PF(6))(2) (4) (where bpy = 2,2'-bipyridine, mcb = 4-carboxy-4'-methyl-2,2'-bipyridine, tbpy = 4,4'-di-tert-butyl-2,2'-bipyridine; dcb = 4,4'-dicarboxy-2,2'-bipyridine, and BarF = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate)-was studied by attenuated total reflectance FTIR (ATR-FTIR) and modeled using density functional theory (DFT). ATR-FTIR studies reveal that when the solid film of NCs is exposed to an acetonitrile solution of 2, 3, or 4, the complexes chemically bind to the NC surface through their carboxylic acid groups, replacing TOPO ligands. The corresponding spectral changes are observed on a time scale of minutes. In the case of 2, the FTIR spectral changes clearly show that the complex adsorption is associated with a loss of proton from the carboxylic acid group. In the case of 3 and 4, deprotonation of the anchoring group is also detected, while the second, "spectrator" carboxylic acid group remains protonated. The observed energy difference between the symmetric, ν(s), and asymmetric, ν(as), stretch of the deprotonated carboxylic acid group suggests that the complexes are bound to the NC surface via a bridging mode. The results of DFT modeling are consistent with the experiment, showing that for the deprotonated carboxylic acid group the coupling to two Cd atoms via a bridging mode is the energetically most favorable mode of attachment for all nonequivalent NC surface sites and that the attachment of the protonated carboxylic acid is thermodynamically significantly less favorable. © 2011 American Chemical Society

  20. Combining Mass Spectrometry and ATR-FTIR Spectroscopy to Study Phase, Diffusion and Composition of Secondary Organic Aerosol from the Ozonolysis of α-pinene

    Science.gov (United States)

    Perraud, V. M.; Finlayson-Pitts, B. J.; Waring-Kidd, C.

    2014-12-01

    Secondary organic aerosol (SOA) is ubiquitous in the atmosphere and composes a large fraction of the total aerosol budget. Recent reports from field measurements and laboratory studies show that some SOA particles are better represented by a semi-solid low viscosity tar-like material rather than a ideal liquid often assumed in regional and global models. Characterizing the phase of SOA is crucial to understanding how particles interact with trace gases and how it ultimately impacts their growth and evolution in the atmosphere. We report here laboratory studies carried out in the unique UCI large-volume, slow-flow, aerosol flow reactor. Particles from the ozonolysis of a-pinene were formed at various relative humidities (RH from pattern provided insights into changes in phase/viscosity of the SOA as a function of relative humidity. In addition, attenuated total reflectance FTIR and mass spectrometry measurements provided information on simultaneous changes on composition. Application of ATR-FTIR combined with PTR-MS provided additional data on the volatility of the SOA at room temperature and diffusion coefficients of two key components pinonaldehyde and acetic acid present in the SOA. Implication for modeling the growth and ultimately the lifetime of SOA in the atmosphere will be discussed.

  1. Conservation of Moroccan manuscript papers aged 150, 200 and 800 years. Analysis by infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and scanning electron microscopy energy dispersive spectrometry (SEM-EDS).

    Science.gov (United States)

    Hajji, Latifa; Boukir, Abdellatif; Assouik, Jamal; Lakhiari, Hamid; Kerbal, Abdelali; Doumenq, Pierre; Mille, Gilbert; De Carvalho, Maria Luisa

    2015-02-05

    The preservation of manuscripts and archive materials is a serious problem for librarians and restorers. Paper manuscript is subjected to numerous degradation factors affecting their conservation state. This research represents an attempt to evaluate the conservation restoration process applied in Moroccan libraries, especially the alkaline treatment for strengthening weakened paper. In this study, we focused on six samples of degraded and restored paper taken from three different Moroccan manuscripts aged 150, 200 and 800 years. In addition, the Japanese paper used in restoration has been characterized. A modern paper was also analyzed as reference. A three-step analytical methodology based on infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and scanning electron microscopy coupled to energy dispersive spectrometry (SEM-EDS) analysis was developed before and after restoration in order to determine the effect of the consolidation treatment on the paper structure. The results obtained by XRD and ATR-FTIR disclosed the presence of barium sulfate (BaSO4) in all restored paper manuscripts. The presence of calcium carbonate (CaCO3) in all considered samples was confirmed by FTIR spectroscopy. The application of de-acidification treatment causes significant changes connected with the increase of intensity mostly in the region 1426 cm(-1), assigned to the asymmetric and symmetric CO stretching mode of calcite, indicating the effectiveness of de-acidification procedure proved by the rise of the alkaline reserve content allowing the long term preservation of paper. Observations performed by SEM magnify the typical paper morphology and the structure of fibbers, highlighting the effect of the restoration process, manifested by the reduction of impurities. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Structural effects of insulin-loading into HII mesophases monitored by electron paramagnetic resonance (EPR), small angle X-ray spectroscopy (SAXS), and attenuated total reflection Fourier transform spectroscopy (ATR-FTIR).

    Science.gov (United States)

    Mishraki, Tehila; Ottaviani, Maria Francesca; Shames, Alexander I; Aserin, Abraham; Garti, Nissim

    2011-06-30

    Insulin entrapment within a monoolein-based reverse hexagonal (H(II)) mesophase was investigated under temperature-dependent conditions at acidic (pH 3) and basic (pH 8) conditions. Studying the structure of the host H(II) system and the interactions of insulin under temperature-dependent conditions has great impact on the enhancement of its thermal stabilization and controlled release for the purposes of transdermal delivery. Small angle X-ray spectroscopy (SAXS) measurements show that pH variation and/or insulin entrapment preserve the hexagonal structure and do not influence the lattice parameter. Attenuated total reflection Fourier transform spectroscopy (ATR-FTIR) spectra indicate that, although insulin interacts with hydroxyl groups of GMO in the interface region, it is not affected by pH variations. Hence different microenvironments within the H(II) mesophase were monitored by a computer-aided electron paramagnetic resonance (EPR) analysis using 5-doxylstearic acid (5-DSA) as a pH-dependent probe. The microviscosity, micropolarity, order of systems, and distribution of the probes in different microenvironments were influenced by three factors: temperature, pH, and insulin solubilization. When the temperature is increased, microviscosity and order parameters decreased at both pH 3 and 8, presenting different decrease trends. It was found that, at pH 3, the protein perturbs the lipid structure while "pushing aside" the un-ionized 5-DSA probe to fit into the narrow water cylinders. At the interface region (pH 8), the probe was distributed in two differently structured environments that significantly modifies by increasing temperature. Insulin loading within the H(II) mesophase decreased the order and microviscosity of both the microenvironments and increased their micropolarity. Finally, the EPR analysis also provides information about the unfolding/denaturation of insulin within the channel at high temperatures.

  3. ATR-FTIR measurements of albumin and fibrinogen adsorption: Inert versus calcium phosphate ceramics.

    Science.gov (United States)

    Boix, Marcel; Eslava, Salvador; Costa Machado, Gil; Gosselin, Emmanuel; Ni, Na; Saiz, Eduardo; De Coninck, Joël

    2015-11-01

    Arthritis, bone fracture, bone tumors and other musculoskeletal diseases affect millions of people across the world. Nowadays, inert and bioactive ceramics are used as bone substitutes or for bone regeneration. Their bioactivity is very much dictated by the way proteins adsorb on their surface. In this work, we compared the adsorption of albumin and fibrinogen on inert and calcium phosphates ceramics (CaPs) using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to follow in situ protein adsorption on these materials. To this effect, we developed a sol-gel technique to control the surface chemistry of an ATR-FTIR detector. Hydroxyapatite adsorbed more albumin and β-tricalcium phosphate adsorbed more fibrinogen. Biphasic calcium phosphate presented the lowest adsorption among CaP for both proteins, illustrating the effect of surface heterogeneities. Inert ceramics adsorbed a lower amount of both proteins compared with bioactive ceramics. A significant change was observed in the conformation of the adsorbed protein versus the surface chemistry. Hydroxyapatite produced a larger loss of α-helix structure on albumin and biphasic calcium phosphate reduced β-sheet percentage on fibrinogen. Inert ceramics produced large α-helix loss on albumin and presented weak interaction with fibrinogen. Zirconia did not adsorb albumin and titanium dioxide promoted huge denaturalization of fibrinogen. © 2015 Wiley Periodicals, Inc.

  4. Application of attenuated total reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) in MIR range coupled with chemometrics for detection of pig body fat in pure ghee (heat clarified milk fat)

    Science.gov (United States)

    Upadhyay, Neelam; Jaiswal, Pranita; Jha, Shyam Narayan

    2018-02-01

    Pure ghee is superior to other fats and oils due to the presence of bioactive lipids and its rich flavor. Adulteration of ghee with cheaper fats and oils is a prevalent fraudulent practice. ATR-FTIR spectroscopy was coupled with chemometrics for the purpose of detection of presence of pig body fat in pure ghee. Pure mixed ghee was spiked with pig body fat @ 3, 4, 5, 10, 15% level. The spectra of pure (ghee and pig body fat) along with the spiked samples was taken in MIR from 4000 to 500 cm-1. Some wavenumber ranges were selected on the basis of differences in the spectra obtained. Separate clusters of the samples were obtained by employing principal component analysis at 5% level of significance on the selected wavenumber range. Probable class membership was predicted by applying SIMCA approach. Approximately, 90% of the samples classified into their respective class and pure ghee and pig body fat never misclassified themselves. The value of R2 was >0.99 for both calibration and validation sets using partial least square method. The study concluded that spiking of pig body fat in pure ghee can be detected even at a level of 3%.

  5. [Relationship between PMI and ATR-FTIR Spectral Changes in Swine Costal Cartilages and Ribs].

    Science.gov (United States)

    Yao, Yao; Wang, Qi; Jing, Xiao-li; Li, Bing; Zhang, Yin-ming; Wang, Zhi-jun; Li, Cheng-zhi; Lin, Han-cheng; Zhang, Ji; Huang, Ping; Wang, Zhen-yuan

    2016-02-01

    To analyze postmortem chemical changes in Landrace costal cartilages and ribs using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and to provide a novel technique for estimation of postmortem interval (PMI). The swines were sacrificed by hemorrhage and their costal cartilages and ribs were kept in 20 degrees C. The chemical analysis of the costal cartilages and ribs were performed using ATR-FTIR every 72 h. The correlation between the certain spectral parameters and PMI was also analyzed. The time-dependent changes of costal cartilages were more significant than ribs. There were no obvious changes for the main absorbance bands position, and some absorbance band ratios showed time-dependent changes and significant correlations with the PMI. ATR-FTIR has the ability to analyze postmortem chemical changes of the swine costal cartilages and ribs, and it can be a new method to estimate PMI based on spectroscopy.

  6. Use of ATR-FTIR spectroscopy coupled with chemometrics for the authentication of avocado oil in ternary mixtures with sunflower and soybean oils.

    Science.gov (United States)

    Jiménez-Sotelo, Paola; Hernández-Martínez, Maylet; Osorio-Revilla, Guillermo; Meza-Márquez, Ofelia Gabriela; García-Ochoa, Felipe; Gallardo-Velázquez, Tzayhrí

    2016-07-01

    Avocado oil is a high-value and nutraceutical oil whose authentication is very important since the addition of low-cost oils could lower its beneficial properties. Mid-FTIR spectroscopy combined with chemometrics was used to detect and quantify adulteration of avocado oil with sunflower and soybean oils in a ternary mixture. Thirty-seven laboratory-prepared adulterated samples and 20 pure avocado oil samples were evaluated. The adulterated oil amount ranged from 2% to 50% (w/w) in avocado oil. A soft independent modelling class analogy (SIMCA) model was developed to discriminate between pure and adulterated samples. The model showed recognition and rejection rate of 100% and proper classification in external validation. A partial least square (PLS) algorithm was used to estimate the percentage of adulteration. The PLS model showed values of R(2) > 0.9961, standard errors of calibration (SEC) in the range of 0.3963-0.7881, standard errors of prediction (SEP estimated) between 0.6483 and 0.9707, and good prediction performances in external validation. The results showed that mid-FTIR spectroscopy could be an accurate and reliable technique for qualitative and quantitative analysis of avocado oil in ternary mixtures.

  7. Investigation on Crude and High-Temperature Heated Coffee Oil by ATR-FTIR Spectroscopy along with Antioxidant and Antimicrobial Properties.

    Science.gov (United States)

    Raba, Diana Nicoleta; Poiana, Mariana-Atena; Borozan, Aurica Breica; Stef, Marius; Radu, Florina; Popa, Mirela-Viorica

    2015-01-01

    The coffee oil has a promising potential to be used in food industry, but an efficient use, especially in products that required high-temperature heating, depends on its chemical composition and the changes induced by processing. Since there is little information on this topic, the aim of our study was to investigate the crude green and roasted coffee oil (GCO, RCO) and heated (HGCO, HRCO) for 1 h at 200°C, by Fourier Transform Infrared (FTIR) spectroscopy and in terms of antioxidant and antimicrobial properties. The results of FTIR spectroscopy revealed that no statistically significant differences (one-way ANOVA, p>0.05) in the oxidative status of GCO and RCO were found. The coffee oils heating induced significant spectral changes in the regions 3100-3600 cm(-1), 2800-3050 cm(-1) and 1680-1780 cm(-1) proved by the differences in the absorbance ratios A 3009 cm(-1)/A 2922 cm(-1), A 3009 cm(-1)/A 2853 cm(-1), A 3009 cm(-1)/A 1744 cm(-1), A 1744 cm(-1)/A 2922 cm(-1). These alterations were related to the reduction of the unsaturation degree due to primary and secondary oxidation processes of the lipid fraction. The radical scavenging ability of oils investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay revealed that the IC50 value of GCO was significantly lower than of RCO (p0.05). Also, HGCO and HRCO showed significantly different inhibitory potential related to the control (p<0.05). The heating induced statistically significant decreases in the effectiveness of coffee oils against the tested bacteria. GCO proved to be the most effective among investigated coffee oils against the tested bacteria.

  8. Investigation on Crude and High-Temperature Heated Coffee Oil by ATR-FTIR Spectroscopy along with Antioxidant and Antimicrobial Properties.

    Directory of Open Access Journals (Sweden)

    Diana Nicoleta Raba

    Full Text Available The coffee oil has a promising potential to be used in food industry, but an efficient use, especially in products that required high-temperature heating, depends on its chemical composition and the changes induced by processing. Since there is little information on this topic, the aim of our study was to investigate the crude green and roasted coffee oil (GCO, RCO and heated (HGCO, HRCO for 1 h at 200°C, by Fourier Transform Infrared (FTIR spectroscopy and in terms of antioxidant and antimicrobial properties. The results of FTIR spectroscopy revealed that no statistically significant differences (one-way ANOVA, p>0.05 in the oxidative status of GCO and RCO were found. The coffee oils heating induced significant spectral changes in the regions 3100-3600 cm(-1, 2800-3050 cm(-1 and 1680-1780 cm(-1 proved by the differences in the absorbance ratios A 3009 cm(-1/A 2922 cm(-1, A 3009 cm(-1/A 2853 cm(-1, A 3009 cm(-1/A 1744 cm(-1, A 1744 cm(-1/A 2922 cm(-1. These alterations were related to the reduction of the unsaturation degree due to primary and secondary oxidation processes of the lipid fraction. The radical scavenging ability of oils investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH assay revealed that the IC50 value of GCO was significantly lower than of RCO (p0.05. Also, HGCO and HRCO showed significantly different inhibitory potential related to the control (p<0.05. The heating induced statistically significant decreases in the effectiveness of coffee oils against the tested bacteria. GCO proved to be the most effective among investigated coffee oils against the tested bacteria.

  9. Investigation on Crude and High-Temperature Heated Coffee Oil by ATR-FTIR Spectroscopy along with Antioxidant and Antimicrobial Properties

    Science.gov (United States)

    Raba, Diana Nicoleta; Poiana, Mariana-Atena; Borozan, Aurica Breica; Stef, Marius; Radu, Florina; Popa, Mirela-Viorica

    2015-01-01

    The coffee oil has a promising potential to be used in food industry, but an efficient use, especially in products that required high-temperature heating, depends on its chemical composition and the changes induced by processing. Since there is little information on this topic, the aim of our study was to investigate the crude green and roasted coffee oil (GCO, RCO) and heated (HGCO, HRCO) for 1 h at 200°C, by Fourier Transform Infrared (FTIR) spectroscopy and in terms of antioxidant and antimicrobial properties. The results of FTIR spectroscopy revealed that no statistically significant differences (one-way ANOVA, p>0.05) in the oxidative status of GCO and RCO were found. The coffee oils heating induced significant spectral changes in the regions 3100–3600 cm–1, 2800–3050 cm–1 and 1680–1780 cm–1 proved by the differences in the absorbance ratios A 3009 cm−1/A 2922 cm−1, A 3009 cm−1/A 2853 cm−1, A 3009 cm−1/A 1744 cm−1, A 1744 cm−1/A 2922 cm−1. These alterations were related to the reduction of the unsaturation degree due to primary and secondary oxidation processes of the lipid fraction. The radical scavenging ability of oils investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay revealed that the IC50 value of GCO was significantly lower than of RCO (poils were lower than those of heated samples. The antioxidant activity of oils was attributed to both antioxidant compounds with free-radical scavenging capacity and to lipids oxidation products generated by heating. In the first 6 h of incubation, the inhibitory activity of crude oils against E. coli and E. faecalis was not significantly different to the control (p>0.05). Also, HGCO and HRCO showed significantly different inhibitory potential related to the control (pheating induced statistically significant decreases in the effectiveness of coffee oils against the tested bacteria. GCO proved to be the most effective among investigated coffee oils against the tested bacteria. PMID

  10. ATR-FTIR for rapid detection and quantification of counterfeit medicines

    OpenAIRE

    Ogwu, John; Lawson, Graham; Tanna, Sangeeta

    2015-01-01

    From therapeutic to lifestyle medicines, the counterfeiting of medicines has been on the rise in recent times [1]. Estimates indicate that about 10% of medicines worldwide are counterfeits with much higher figures in developing countries [2]. Currently, the rapid screening of medicines is a challenge leaving many patients at risk [1]. This study considered the potential use of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) for rapid quantitative analysis of ta...

  11. Human papillomavirus detection using PCR and ATR-FTIR for cervical cancer screening

    Science.gov (United States)

    Rymsza, Taciana; Ribeiro, Eliane Aline; de Carvalho, Luis Felipe das Chagas e. Silva; Bhattacharjee, Tanmoy; de Azevedo Canevari, Renata

    2018-05-01

    The human papillomavirus (HPV) genital infection is considered one of the most common sexually transmitted diseases worldwide, and has been associated with cervical cancer. The objective of this study was to investigate the efficacy of the diagnostic methods: polymerase chain reaction (PCR) and Fourier transform infrared (FTIR) equipped with an ATR (Attenuated Total Reflectance) unit (Pike Tech) spectroscopy, to diagnose HPV infection in women undergoing gynecological examination. Seventeen patients (41.46%) of the 41 patients analyzed were diagnosed with exophytic/condyloma acuminate lesions by clinical analysis, 29 patients (70.7%) (G1 group) of the 41 patients, showed positive result for HPV cell injury by oncotic colpocitology and 12 patients (29.3%) (G2 group), presented negative result for cellular lesion and absence of clinical HPV lesion. Four samples were obtained per patient, which were submitted oncotic colpocitology analysis (Papanicolau staining, two samples), PCR (one sample) and ATR-FTIR analysis (one sample). L1 gene was amplified by PCR technique with specific GP5+/GP6+ and MY09/MY11 primers. PCR results were uniformly positive for presence of HPV in all analyzed samples. Multivariate analysis of ATR-FTIR spectra suggests no significant biochemical changes between groups and no clustering formed, concurring with results of PCR. This study suggests that PCR and ATR-FTIR are highly sensitive technique for HPV detection.

  12. Quantification of minerals from ATR-FTIR spectra with spectral interferences using the MRC method

    Science.gov (United States)

    Bosch-Reig, Francisco; Gimeno-Adelantado, José Vicente; Bosch-Mossi, Francisco; Doménech-Carbó, Antonio

    2017-06-01

    A method for quantifying the individual components of mineral samples based on attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR) is described, extending the constant ratio (CR) method to analytes absorbing in a common range of wavenumbers. Absorbance values in the spectral region where the analytes absorb relative to the absorbance of an internal standard absorbing at a wavenumber where the analytes do not absorb, permits the quantification of N analytes using measurements at N fixed wavenumbers. The method was tested for mixtures of albite, orthoclase, kaolin and quartz.

  13. UV?Vis and ATR?FTIR spectroscopic investigations of postmortem interval based on the changes in rabbit plasma

    OpenAIRE

    Wang, Qi; He, Haijun; Li, Bing; Lin, Hancheng; Zhang, Yinming; Zhang, Ji; Wang, Zhenyuan

    2017-01-01

    Estimating PMI is of great importance in forensic investigations. Although many methods are used to estimate the PMI, a few investigations focus on the postmortem redistribution. In this study, ultraviolet?visible (UV?Vis) measurement combined with visual inspection indicated a regular diffusion of hemoglobin into plasma after death showing the redistribution of postmortem components in blood. Thereafter, attenuated total reflection?Fourier transform infrared (ATR?FTIR) spectroscopy was used ...

  14. Classification of Edible Oils Based on ATR-FTIR Spectral Information During a Long Heating Treatment.

    Science.gov (United States)

    Mahboubifar, Marjan; Hemmateenejad, Bahram; Yousefinejad, Saeed

    2017-03-01

    Identification of oil type and its QC are important concerns in food control laboratories. Classifying edible oils that have not been used (i.e., unheated) with the aid of vibrational spectroscopy has previously been reported. However, the classification of used (i.e., heat-treated) oils needs special attention. The effect of long heating times on the classification of four kinds of edible oils (canola, corn, frying, and sunflower) based on attenuated total reflectance (ATR)-FTIR spectra was surveyed. The sampling was done on the oils during a 36 h heating process (at 170°C). The ATR-FTIR spectra of the samples were collected in the range of 4000-550 cm-1. Interval extended canonical variates analysis (ECVA), as a variable selection and classification tool, was used to determine the best intervals during the heating procedure for classification. Principal component analysis discriminate analysis, partial least-squares discriminate analysis, and ECVA were performed on the selected intervals and on the total heating time. The effect of autoscaling and mean-centering, as data preprocessing methods, was also investigated. The ECVA method resulted in the best performances for classification, with a 94% cross-validated nonerror rate (one misclassification) for the heating process times of 24-27 and 33-36 h.

  15. The Use of ATR-FTIR in Conjunction with Thermal Analysis Methods for Efficient Identification of Polymer Samples: A Qualitative Multiinstrument Instrumental Analysis Laboratory Experiment

    Science.gov (United States)

    Dickson-Karn, Nicole M.

    2017-01-01

    A multi-instrument approach has been applied to the efficient identification of polymers in an upper-division undergraduate instrumental analysis laboratory course. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) is used in conjunction with differential scanning calorimetry (DSC) to identify 18 polymer samples and…

  16. pH Dependence and protein selectivity of poly(ethyleneimine)/poly(acrylic acid) multilayers studied by in situ ATR-FTIR spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Muller, M.; Kessler, B.; Houbenov, N.; Bohatá, Karolína; Pientka, Zbyněk; Brynda, Eduard

    2006-01-01

    Roč. 7, č. 4 (2006), s. 1285-1294 ISSN 1525-7797 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyelectrolyte multilayers * self-assembled monolayers * globular protein s Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.664, year: 2006

  17. UV-Vis and ATR-FTIR spectroscopic investigations of postmortem interval based on the changes in rabbit plasma.

    Science.gov (United States)

    Wang, Qi; He, Haijun; Li, Bing; Lin, Hancheng; Zhang, Yinming; Zhang, Ji; Wang, Zhenyuan

    2017-01-01

    Estimating PMI is of great importance in forensic investigations. Although many methods are used to estimate the PMI, a few investigations focus on the postmortem redistribution. In this study, ultraviolet-visible (UV-Vis) measurement combined with visual inspection indicated a regular diffusion of hemoglobin into plasma after death showing the redistribution of postmortem components in blood. Thereafter, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy was used to confirm the variations caused by this phenomenon. First, full-spectrum partial least-squares (PLS) and genetic algorithm combined with PLS (GA-PLS) models were constructed to predict the PMI. The performance of GA-PLS model was better than that of full-spectrum PLS model based on its root mean square error (RMSE) of cross-validation of 3.46 h (R2 = 0.95) and the RMSE of prediction of 3.46 h (R2 = 0.94). The investigation on the similarity of spectra between blood plasma and formed elements also supported the role of redistribution of components in spectral changes in postmortem plasma. These results demonstrated that ATR-FTIR spectroscopy coupled with the advanced mathematical methods could serve as a convenient and reliable tool to study the redistribution of postmortem components and estimate the PMI.

  18. Rapid and Simultaneous Prediction of Eight Diesel Quality Parameters through ATR-FTIR Analysis

    Science.gov (United States)

    Hatanaka, Rafael Rodrigues; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2018-01-01

    Quality assessment of diesel fuel is highly necessary for society, but the costs and time spent are very high while using standard methods. Therefore, this study aimed to develop an analytical method capable of simultaneously determining eight diesel quality parameters (density; flash point; total sulfur content; distillation temperatures at 10% (T10), 50% (T50), and 85% (T85) recovery; cetane index; and biodiesel content) through attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and the multivariate regression method, partial least square (PLS). For this purpose, the quality parameters of 409 samples were determined using standard methods, and their spectra were acquired in ranges of 4000–650 cm−1. The use of the multivariate filters, generalized least squares weighting (GLSW) and orthogonal signal correction (OSC), was evaluated to improve the signal-to-noise ratio of the models. Likewise, four variable selection approaches were tested: manual exclusion, forward interval PLS (FiPLS), backward interval PLS (BiPLS), and genetic algorithm (GA). The multivariate filters and variables selection algorithms generated more fitted and accurate PLS models. According to the validation, the FTIR/PLS models presented accuracy comparable to the reference methods and, therefore, the proposed method can be applied in the diesel routine monitoring to significantly reduce costs and analysis time. PMID:29629209

  19. Rapid and Simultaneous Prediction of Eight Diesel Quality Parameters through ATR-FTIR Analysis

    Directory of Open Access Journals (Sweden)

    Maurilio Gustavo Nespeca

    2018-01-01

    Full Text Available Quality assessment of diesel fuel is highly necessary for society, but the costs and time spent are very high while using standard methods. Therefore, this study aimed to develop an analytical method capable of simultaneously determining eight diesel quality parameters (density; flash point; total sulfur content; distillation temperatures at 10% (T10, 50% (T50, and 85% (T85 recovery; cetane index; and biodiesel content through attenuated total reflection Fourier transform infrared (ATR-FTIR spectroscopy and the multivariate regression method, partial least square (PLS. For this purpose, the quality parameters of 409 samples were determined using standard methods, and their spectra were acquired in ranges of 4000–650 cm−1. The use of the multivariate filters, generalized least squares weighting (GLSW and orthogonal signal correction (OSC, was evaluated to improve the signal-to-noise ratio of the models. Likewise, four variable selection approaches were tested: manual exclusion, forward interval PLS (FiPLS, backward interval PLS (BiPLS, and genetic algorithm (GA. The multivariate filters and variables selection algorithms generated more fitted and accurate PLS models. According to the validation, the FTIR/PLS models presented accuracy comparable to the reference methods and, therefore, the proposed method can be applied in the diesel routine monitoring to significantly reduce costs and analysis time.

  20. Rapid and Simultaneous Prediction of Eight Diesel Quality Parameters through ATR-FTIR Analysis.

    Science.gov (United States)

    Nespeca, Maurilio Gustavo; Hatanaka, Rafael Rodrigues; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2018-01-01

    Quality assessment of diesel fuel is highly necessary for society, but the costs and time spent are very high while using standard methods. Therefore, this study aimed to develop an analytical method capable of simultaneously determining eight diesel quality parameters (density; flash point; total sulfur content; distillation temperatures at 10% (T10), 50% (T50), and 85% (T85) recovery; cetane index; and biodiesel content) through attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and the multivariate regression method, partial least square (PLS). For this purpose, the quality parameters of 409 samples were determined using standard methods, and their spectra were acquired in ranges of 4000-650 cm -1 . The use of the multivariate filters, generalized least squares weighting (GLSW) and orthogonal signal correction (OSC), was evaluated to improve the signal-to-noise ratio of the models. Likewise, four variable selection approaches were tested: manual exclusion, forward interval PLS (FiPLS), backward interval PLS (BiPLS), and genetic algorithm (GA). The multivariate filters and variables selection algorithms generated more fitted and accurate PLS models. According to the validation, the FTIR/PLS models presented accuracy comparable to the reference methods and, therefore, the proposed method can be applied in the diesel routine monitoring to significantly reduce costs and analysis time.

  1. Cocaine profiling: Implementation of a predictive model by ATR-FTIR coupled with chemometrics in forensic chemistry.

    Science.gov (United States)

    Materazzi, Stefano; Gregori, Adolfo; Ripani, Luigi; Apriceno, Azzurra; Risoluti, Roberta

    2017-05-01

    In this study, a strategy based on Infrared Spectroscopy with Fourier Transformed and Attenuated Total Reflectance associated with chemometrics (ATR-FTIR) is proposed to identify the chemical "fingerprint" of cocaine samples. To this end, standard mixtures of cocaine and cuttings at differents ratio were investigated in order to develop a multivariate classification model to simultaneously predict the composition of the samples and to obtain a profile of adulteration of cocaine seizures. In addition, the application of a Partial Least Squares (PLS) and Principal Component Regression (PCR) calibration approaches were found to be a useful tool to predict the content of cocaine, caffeine, procaine, lidocaine and phenacetin in drug seizures. The achieved results on real confiscated samples, in cooperation with the Italian Scientific Investigation Department (Carabinieri-RIS) of Rome, allow to consider ATR-FTIR followed to chemometrics as a promising forensic tool in such situations involving profile comparisons and supporting forensic investigations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Formation of carboxy- and amide-terminated alkyl monolayers on silicon(111) investigated by ATR-FTIR, XPS, and X-ray scattering: Construction of photoswitchable surfaces

    DEFF Research Database (Denmark)

    Rück-Braun, Karola; Petersen, Michael Åxman; Michalik, Fabian

    2013-01-01

    -FTIR and XPS studies of the fulgimide samples revealed closely covered amide-terminated SAMs. Reversible photoswitching of the headgroup was read out by applying XPS, ATR-FTIR, and difference absorption spectra in the mid-IR. In XPS, we observed a reversible breathing of the amide/imide C1s and N1s signals......We have prepared high-quality, densely packed, self-assembled monolayers (SAMs) of carboxy-terminated alkyl chains on Si(111). The samples were made by thermal grafting of methyl undec-10-enoate under an inert atmosphere and subsequent cleavage of the ester functionality to disclose the carboxylic...... zigzag-like substitution pattern for the ester- and carboxy-terminated monolayer. Hydrolysis of the remaining H-Si(111) bonds at the surface furnished HO-Si(111) groups according to XPS and attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) studies. The amide-terminated alkyl...

  3. The use of ATR-FTIR imaging to study coated oil capsules

    NARCIS (Netherlands)

    Heussen, P.C.M.; Dalen, van G.; Nootenboom, P.; Smit, I.; Duynhoven, van J.P.M.

    2012-01-01

    Fourier transform infrared (FTIR) spectroscopic imaging using a large Internal Reflection Element (IRE), also called Attenuated Total Reflection (ATR) crystal, can be used for the identification and localisation of chemical compounds in solid food products. In this study ATR-FTIR imaging, by means

  4. Formulation and drug-content assay of microencapsulated antisense oligonucleotide to NF-κB using ATR-FTIR

    International Nuclear Information System (INIS)

    Siwale, Rodney; Meadows, Fred; Mody, Vicky V; Shah, Samit

    2013-01-01

    Antisense oligonucleotide to NF-κB sequence: 5′-GGA AAC ACA TCC TCC ATG-3′, was microencapsulated in an albumin matrix by the method of spray drying TM . Spectral analysis was performed on varying drug loading formulations of both drugs by mid-IR attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An out of plane O–H bending vibration at 948 cm −1 , unique to both the native and microencapsulated drugs was identified. The calculated peak areas corresponded to the drug loadings in the microsphere formulations. A standard curve could then be used to determine the drug content of an unknown microsphere formulation. Accuracy and precision were determined to be comparable to other analytical techniques such as HPLC. (paper)

  5. Glycation in human fingernail clippings using ATR-FTIR spectrometry, a new marker for the diagnosis and monitoring of diabetes mellitus.

    Science.gov (United States)

    Coopman, Renaat; Van de Vyver, Thijs; Kishabongo, Antoine Sadiki; Katchunga, Philippe; Van Aken, Elisabeth H; Cikomola, Justin; Monteyne, Tinne; Speeckaert, Marijn M; Delanghe, Joris R

    2017-01-01

    Although HbA1c is a good diagnostic tool for diabetes, the precarity of the health system and the costs limit the use of this biomarker in developing countries. Fingernail clippings contain ±85% of keratins, which are prone to glycation. Nail keratin glycation may reflect the average glycemia over the last months. We explored if attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) can be used as a non-invasive tool for assessing glycation in diabetes. Using ATR-FTIR spectroscopy, glycation and deglycation experiments with fructosamine 3-kinase allowed to identify the spectrum that corresponds with keratin glycation in fingernail clippings. Clippings of 105 healthy subjects and 127 diabetics were subjected to the standardized ATR-FTIR spectroscopy method. In vitro glycation resulted in an increased absorption at 1047cm -1 . Following enzymatic deglycation, this peak diminished significantly, proving that the AUC between 970 and 1140cm -1 corresponded with glycated proteins. Within-run CV of the assay was 3%. Storage of nail clippings at 37°C for 2weeks did not significantly change results. In diabetics, glycated nail protein concentrations (median: 1.51μmol/g protein, IQR: 1.37-1.85μmol/g protein) were significantly higher than in the controls (median: 1.19μmol/g protein, IQR: 1.09-1.26μmol/g protein) (p<0.0001). ROC analysis yielded an AUC of 0.92 at a cut-off point of 1.28μmol/g nail (specificity: 82%; sensitivity: 90%). No correlation was observed between the glycated nail protein concentrations and HbA1c. Protein glycation analysis in fingernails with ATR-FTIR spectroscopy could be an alternative affordable technique for diagnosing and monitoring diabetes. As the test does not consume reagents, and the preanalytical phase is extremely robust, the test could be particularly useful in developing countries. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. ATR-FTIR and Raman spectroscopic investigation of the electroporation-mediated transdermal delivery of a nanocarrier system containing an antitumour drug.

    Science.gov (United States)

    Balázs, Boglárka; Sipos, Péter; Danciu, Corina; Avram, Stefana; Soica, Codruta; Dehelean, Cristina; Varju, Gábor; Erős, Gábor; Budai-Szűcs, Mária; Berkó, Szilvia; Csányi, Erzsébet

    2016-01-01

    The aim of the present work was the optimization of the transdermal delivery of a lyotropic liquid crystal genistein-based formulation (LLC-GEN). LLC was chosen as medium in view of the poor solubility of GEN in water. Membrane diffusion and penetration studies were carried out with a Franz diffusion cell, through a synthetic membrane in vitro, a chick chorioallantoic membrane ex ovo, and ex vivo excised human epidermis. Thereafter, LLC-GEN was combined with electroporation (EP) to enhance the transdermal drug delivery. The synergistic effect of EP was verified by in vivo ATR-FTIR and ex vivo Raman spectroscopy on hairless mouse skin.

  7. Combined study of biphasic and zero-order release formulations with dissolution tests and ATR-FTIR spectroscopic imaging.

    Science.gov (United States)

    Wray, Patrick; Li, Jing; Li, Ling Qiao; Kazarian, Sergei G

    2014-07-01

    In this study of multi-layer tablets, the dissolution of biphasic and zero-order release formulations has been studied primarily using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic imaging as well as UV-Vis detection of dissolved drug in the effluent stream and USP dissolution testing. Bilayer tablets, containing the excipients microcrystalline cellulose (MCC) and glucose, were used for biphasic release with nicotinamide and buflomedil as model drugs. ATR-FTIR spectroscopic imaging showed the changing component distributions during dissolution. Further experiments studied monolithic and barrier-layered tablets containing hydroxypropyl methylcellulose, MCC and buflomedil dissolving in a USP I apparatus. These data were compared with UV-Vis dissolution profiles obtained online with the ATR flow-through cell. ATR-FTIR imaging data of the biphasic formulations demonstrated that the drug release was affected by excipient ratios and effects such as interference between tablet sections. Tablets placed in the ATR-FTIR flow-through cell exhibited zero-order UV-Vis dissolution profile data at high flow rates, similar to barrier-layered formulations studied using the USP I apparatus. ATR-FTIR spectroscopic imaging provided information regarding the dissolution mechanisms in multi-layer tablets which could assist formulation development. The ability to relate data from USP dissolution tests with that from the ATR-FTIR flow-through cell could help spectroscopic imaging complement dissolution methods used in the industry. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Mebendazole crystal forms in tablet formulations. An ATR-FTIR/chemometrics approach to polymorph assignment.

    Science.gov (United States)

    Calvo, Natalia L; Kaufman, Teodoro S; Maggio, Rubén M

    2016-04-15

    Structural polymorphism of active pharmaceutical ingredients (API) is a relevant concern for the modern pharmaceutical industry, since different polymorphic forms may display dissimilar properties, critically affecting the performance of the corresponding drug products. Mebendazole (MEB) is a widely used broad spectrum anthelmintic drug of the benzimidazole class, which exhibits structural polymorphism (Forms A-C). Form C, which displays the best pharmaceutical profile, is the recommended one for clinical use. The polymorphs of MEB were prepared and characterized by spectroscopic, calorimetric and microscopic means. The polymorphs were employed to develop a suitable chemometrics-assisted sample display model based on the first two principal components of their ATR-FTIR spectra in the 4000-600 cm(-1) region. The model was internally and externally validated employing the leave-one-out procedure and an external validation set, respectively. Its suitability for revealing the polymorphic identity of MEB in tablets was successfully assessed analyzing commercial tablets under different physical forms (whole, powdered, dried, sieved and aged). It was concluded that the ATR-FTIR/PCA (principal component analysis) association is a fast, efficient and non-destructive technique for assigning the solid-state forms of MEB in its drug products, with minimum sample pre-treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. In situ probing of surface hydrides on hydrogenated amorphous silicon using attenuated total reflection infrared spectroscopy

    CERN Document Server

    Kessels, W M M; Sanden, M C M; Aydil, E S

    2002-01-01

    An in situ method based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is presented for detecting surface silicon hydrides on plasma deposited hydrogenated amorphous silicon (a-Si:H) films and for determining their surface concentrations. Surface silicon hydrides are desorbed by exposing the a-Si:H films to low energy ions from a low density Ar plasma and by comparing the infrared spectrum before and after this low energy ion bombardment, the absorptions by surface hydrides can sensitively be separated from absorptions by bulk hydrides incorporated into the film. An experimental comparison with other methods that utilize isotope exchange of the surface hydrogen with deuterium showed good agreement and the advantages and disadvantages of the different methods are discussed. Furthermore, the determination of the composition of the surface hydrogen bondings on the basis of the literature data on hydrogenated crystalline silicon surfaces is presented, and quantification of the h...

  10. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) in the discrimination of normal and oral cancer blood plasma

    Science.gov (United States)

    Pachaiappan, Rekha; Prakasarao, Aruna; Singaravelu, Ganesan

    2017-02-01

    Oral cancer is the most frequent type of cancer that occurs with 75000 to 80000 new cases reported every year in India. The carcinogens from tobacco and related products are the main cause for the oral cancer. ATR-FTIR method is label free, fast and cost-effective diagnostic method would allow for rapid diagnostic results in earlier stages by the minimal chemical changes occur in the biological metabolites available in the blood plasma. The present study reports the use of ATR-FTIR data with advanced statistical model (LDA-ANN) in the diagnosis of oral cancer from normal with better accuracy. The infrared spectra were acquired on ATR-FTIR Jasco spectrophotometer at 4 cm-1 resolution, 30 scans, in the 1800-900 cm-1 spectral range. Each sample had 5 spectra recorded from each blood plasma sample. The spectral data were routed through the multilayer perception of artificial neural network to evaluate for the statistical efficacy. Among the spectral data it was found that amide II (1486 cm-1) and lipid (1526 cm-1) affords about 90 % in the discrimination between groups using LDA. These preliminary results indicate that ATR-FTIR is useful to differentiate normal subject from oral cancer patients using blood plasma.

  11. Enantioselective skin permeation of ibuprofen enantiomers: mechanistic insights from ATR-FTIR and CLSM studies based on synthetic enantiomers as naphthalimide fluorescent probes.

    Science.gov (United States)

    Che, Qi-en; Quan, Peng; Mu, Mao; Zhang, Xinfu; Zhao, Hanqing; Zhang, Yu; You, Song; Xiao, Yi; Fang, Liang

    2014-10-01

    The aim of this study was to investigate the mechanisms of different skin permeability of ibuprofen racemate and enantiomers. The percutaneous permeation of ibuprofen racemate and enantiomers through rabbit normal skin and damaged skin (without stratum corneum [SC]) was investigated in vitro using side-by-side diffusion cells. With the melting temperature-membrane transport model, the flux ratio of enantiomer/racemate was calculated from their thermodynamic properties obtained by differential scanning calorimetry. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) study was performed to evaluate the interaction between the enantiomers and the SC. New fluorescent probes were designed and utilized in confocal laser scanning microscopy (CLSM) study for visualization of the enantioselective permeation of the enantiomers through the intact rabbit skin. The flux of (S)-ibuprofen through normal skin was significantly higher than that of (RS)-ibuprofen and (R)-ibuprofen (p skin, there was no significant difference (p > 0.05). The predicted flux ratio of (S)-ibuprofen/(RS)-ibuprofen (2.50) was in close agreement with the experimentally determined ratio (2.48). These results were supported by ATR-FTIR and CLSM studies that indicated that a chiral environment of the skin led to the enantioselective permeation of enantiomers. The chiral nature of the SC and the different physicochemical properties of the enantiomers should be taken into account in the assessment of different skin permeability of the racemate and enantiomers. The synthetic fluorescent probes used in this study could visualize the enantioselective permeation of the chiral compounds across the skin.

  12. The degradation potential of PET bottles in the marine environment: An ATR-FTIR based approach

    Science.gov (United States)

    Ioakeimidis, C.; Fotopoulou, K. N.; Karapanagioti, H. K.; Geraga, M.; Zeri, C.; Papathanassiou, E.; Galgani, F.; Papatheodorou, G.

    2016-03-01

    The dominance and persistence of plastic debris in the marine environment are well documented. No information exists in respect to their lifespan in the marine environment. Nevertheless, the degradation potential of plastic litter items remains a critical issue for marine litter research. In the present study, polyethylene terephthalate bottles (PETs) collected from the submarine environment were characterized using ATR-FTIR in respect to their degradation potential attributed to environmental conditions. A temporal indication was used as indicative to the years of presence of the PETs in the environment as debris. PETs seem to remain robust for approximately fifteen years. Afterwards, a significant decrease of the native functional groups was recorded; some even disappear; or new-not typical for PETs-are created. At a later stage, using the PET time series collected from the Saronikos Gulf (Aegean Sea-E. Mediterranean), it was possible to date bottles that were collected from the bottom of the Ionian Sea (W. Greece). It is the first time that such a study has been conducted with samples that were actually degraded in the marine environment.

  13. Computer analysis of ATR-FTIR spectra of paint samples for forensic purposes

    Science.gov (United States)

    Szafarska, Małgorzata; Woźniakiewicz, Michał; Pilch, Mariusz; Zięba-Palus, Janina; Kościelniak, Paweł

    2009-04-01

    A method of subtraction and normalization of IR spectra (MSN-IR) was developed and successfully applied to extract mathematically the pure paint spectrum from the spectrum of paint coat on different bases, both acquired by the Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) technique. The method consists of several stages encompassing several normalization and subtraction processes. The similarity of the spectrum obtained with the reference spectrum was estimated by means of the normalized Manhattan distance. The utility and performance of the method proposed were tested by examination of five different paints sprayed on plastic (polyester) foil and on fabric materials (cotton). It was found that the numerical algorithm applied is able - in contrast to other mathematical approaches conventionally used for the same aim - to reconstruct a pure paint IR spectrum effectively without a loss of chemical information provided. The approach allows the physical separation of a paint from a base to be avoided, hence a time and work-load of analysis to be considerably reduced. The results obtained prove that the method can be considered as a useful tool which can be applied to forensic purposes.

  14. Analysis of the HDO content in heavy water by ATR-FTIR

    International Nuclear Information System (INIS)

    Jong-Goo Kim; Yang-Soon Park; Yeong-Keong Ha; Kyuseok Song

    2011-01-01

    The applicability of ATR-FTIR for the determination of the HDO content in heavy water (D 2 O) was investigated. Two groups of calibration standard solutions, of low contents (0-1 n% H 2 O in heavy water) and of higher contents (0-10 n% H 2 O in heavy water) were prepared by adding properly calculated amount of H 2 O to D 2 O by weight. The absorbances at 3400 cm -1 (υ, O-H) against the calibration standards were measured five times using two kinds of interchangeable IREs (1 bound and 9 bound reflections). And four calibration curves were obtained by linear least square fit of the measured absorbances for the four different measurement conditions, which are (1) for low contents group using 1 bound reflection, (2) for low contents group using 9 bound reflections, (3) for higher contents group using 1 bound reflection, (4) for higher contents group using 9 bound reflections. Determined contents (c 0 ) of each calibration standards for the four measurement conditions were obtained by the calibration curves and compared to the calculated contents (c cal ). The uncertainty sources were considered when the HDO in heavy water is determined according to the procedure of this work. The uncertainties u(c 0 ) of the determined contents (c 0 ) for the four different measurement conditions were calculated. (author)

  15. A Catalytic Path for Electrolyte Reduction in Lithium-Ion Cells Revealed by in Situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Shi, Feifei

    2015-03-11

    © 2015 American Chemical Society. Although controlling the interfacial chemistry of electrodes in Li-ion batteries (LIBs) is crucial for maintaining the reversibility, electrolyte decomposition has not been fully understood. In this study, electrolyte decomposition on model electrode surfaces (Au and Sn) was investigated by in situ attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Simultaneously obtained ATR-FTIR spectra and cyclic voltammetry measurements show that lithium ethylene dicarbonate and lithium propionate form on the Au electrode at 0.6 V, whereas diethyl 2,5-dioxahexane dicarboxylate and lithium propionate form on the Sn electrode surface at 1.25 V. A noncatalytic reduction path on the Au surface and a catalytic reduction path on the Sn surface are introduced to explain the surface dependence of the overpotential and product selectivity. This represents a new concept for explaining electrolyte reactions on the anode of LIBs. The present investigation shows that catalysis plays a dominant role in the electrolyte decomposition process and has important implications in electrode surface modification and electrolyte recipe selection, which are critical factors for enhancing the efficiency, durability, and reliability of LIBs.

  16. Influence of mineral characteristics on the retention of low molecular weight organic compounds: a batch sorption-desorption and ATR-FTIR study.

    Science.gov (United States)

    Yeasmin, Sabina; Singh, Balwant; Kookana, Rai S; Farrell, Mark; Sparks, Donald L; Johnston, Cliff T

    2014-10-15

    Batch experiments were conducted to evaluate the sorption-desorption behaviour of (14)C-labelled carboxylic acids (citric and oxalic) and amino acids (glutamic, alanine, phenylalanine and lysine) on pure minerals (kaolinite, illite, montmorillonite, ferrihydrite and goethite). The sorption experiments were complemented by ATR-FTIR spectroscopy to gain possible mechanistic insight into the organic acids-mineral interactions. In terms of charge, the organic solutes ranged from strongly negative (i.e., citric) to positively charged solutes (i.e., lysine); similarly the mineral phases also ranged from positively to negatively charged surfaces. In general, sorption of anionic carboxylic and glutamic acids was higher compared to the other compounds (except lysine). Cationic lysine showed a stronger affinity to permanently charged phyllosilicates than Fe oxides. The sorption of alanine and phenylalanine was consistently low for all minerals, with relatively higher sorption and lower desorption of phenylalanine than alanine. Overall, the role of carboxylic functional groups for the sorption and retention of these carboxylic and amino acids on Fe oxides (and kaolinite) and of amino group on 2:1 phyllosilicates was noticeable. Mineral properties (surface chemistry, specific surface area), chemistry of the organic compounds (pKa value, functional groups) and the equilibrium pH of the system together controlled the differences in sorption-desorption patterns. The results of this study aid to understand the effects of mineralogical and chemical factors that affect naturally occurring low molecular weight organic compounds sorption under field conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Investigation of the permeation of model formulations and a commercial ibuprofen formulation in Carbosil and human skin using ATR-FTIR and multivariate spectral analysis.

    Science.gov (United States)

    Russeau, Wanessa; Mitchell, John; Tetteh, John; Lane, Majella E; Hadgraft, Jonathan

    2009-06-05

    The purpose of the present study was to use attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and target factor analysis (TFA) to investigate the permeation of model drugs and formulation components through Carbosil membrane and human skin. Diffusion studies of saturated solutions in 50:50 water/ethanol of methyl paraben (MP), ibuprofen (IBU) and caffeine (CF) were performed on Carbosil membrane. The spectroscopic data were analysed by target factor analysis, and evolution profiles of the signal for each component (i.e. the drug, water, ethanol and membrane) over time were obtained. Results showed that the data were successfully deconvoluted as correlations between factors from the data and reference spectra of the components, were above 0.8 in all cases. Good reproducibility over three runs for the evolution profiles was obtained. From the evolution profiles it was observed that water diffused better through the Carbosil membrane than ethanol, confirming the hydrophilic properties of the Carbosil membrane used. IBU diffused slower compared with MP and CF. The evolution profile of CF was very similar to that of water, probably because of the high solubility of CF in water, indicating that both compounds are diffusing concurrently. The second part of the work involved a study of the evolution profiles of the components of a commercial topical gel containing 5% (w/w) of ibuprofen as it permeated through human skin. Although the system was much more complex, data were still successfully deconvoluted and the different components of the formulation identified except for benzyl alcohol which might be attributed to the low concentrations of benzyl alcohol used in topical formulations.

  18. ATR-FTIR as a potential tool for controlling high quality vinegar categories

    DEFF Research Database (Denmark)

    Ríos-Reina, Rocío; Callejón, Raquel M.; Oliver-Pozo, Celia

    2017-01-01

    Characterization of wine vinegars qualified with a Protected Designation of Origin (PDO) is crucial to certify their quality and authenticity. Spectroscopic techniques as Fourier transform mid infrared spectroscopy (FTIR) with Attenuated Total Reflectance (ATR) has been applied to investigate its...... potential as a rapid, cost-effective and non-destructive tool for characterizing different categories of high-quality vinegars. Spectra from 67 wine vinegars belonging to the PDOs “Vinagre de Jerez” and “Vinagre Condado de Huelva”, including their different established categories, were analyzed in the 4000...

  19. Characterization of postmortem biochemical changes in rabbit plasma using ATR-FTIR combined with chemometrics: A preliminary study

    Science.gov (United States)

    Zhang, Ji; Li, Bing; Wang, Qi; Li, Chengzhi; Zhang, Yinming; Lin, Hancheng; Wang, Zhenyuan

    2017-02-01

    Postmortem interval (PMI) determination is one of the most challenging tasks in forensic medicine due to a lack of accurate and reliable methods. It is especially difficult for late PMI determination. Although many attempts with various types of body fluids based on chemical methods have been made to solve this problem, few investigations are focused on blood samples. In this study, we employed an attenuated total reflection (ATR)-Fourier transform infrared (FTIR) technique coupled with principle component analysis (PCA) to monitor biochemical changes in rabbit plasma with increasing PMI. Partial least square (PLS) model was used based on the spectral data for PMI prediction in an independent sample set. Our results revealed that postmortem chemical changes in compositions of the plasma were time-dependent, and various components including proteins, lipids and nucleic acids contributed to the discrimination of the samples at different time points. A satisfactory prediction within 48 h postmortem was performed by the combined PLS model with a good fitting between actual and predicted PMI of 0.984 and with an error of ± 1.92 h. In consideration of the simplicity and portability of ATR-FTIR, our preliminary study provides an experimental and theoretical basis for application of this technique in forensic practice.

  20. Reprocessability of PHB in extrusion: ATR-FTIR, tensile tests and thermal studies

    Directory of Open Access Journals (Sweden)

    Leonardo Fábio Rivas

    Full Text Available Abstract Mechanical recycling of biodegradable plastics has to be encouraged, since the consumption of energy and raw materials can be reduced towards a sustainable development in plastics materials. In this study, the evolution of thermal and mechanical properties, as well as structural changes of poly(hydroxybutyrate (PHB up to three extrusion cycles were investigated. Results indicated a significant reduction in mechanical properties already at the second extrusion cycle, with a reduction above 50% in the third cycle. An increase in the crystallinity index was observed due to chemicrystallization process during degradation by chain scission. On the other hand, significant changes in the chemical structure or in thermal stability of PHB cannot be detected by Fourier transform infrared spectroscopy (FTIR and thermogravimetric analyses (TGA, respectively.

  1. Ablation of burned skin with ultra-short pulses laser to promote healing: evaluation by optical coherence tomography, histology, μATR-FTIR and Nonlinear Microscopy

    International Nuclear Information System (INIS)

    Santos, Moises Oliveira dos

    2012-01-01

    Burns cause changes in the anatomical structure of the skin associated with trauma. The severity of the burn injury is divided into first, second and third-degree burns. The third-degree burns have been a major focus of research in search of more conservative treatments and faster results in repair for a functional and cosmetically acceptable. The conventional treatment is the use of topical natural or synthetic skin graft. An alternative therapy is the laser ablation process for burned tissue necrosis removal due to the no mechanical contact, fast application and access to difficult areas. The purpose of this study is to evaluate the feasibility of using high intensity femtosecond lasers as an adjunct treatment of burned patients. For this study, 65 Wistar rats were divided into groups of five animals: healthy skin, burned skin, two types of treatment (surgical debridement or femtosecond laser ablation) and four different times in the healing process monitoring. Three regions of the back of the animals were exposed to steam source causing third-degree burn. On the third day after the burn, one of the regions was ablated with high intensity ultrashort laser pulses (λ = 785 nm, 90 fs, 2 kHz and 10 μJ/ pulse), the other received surgical debridement, and the last was considered the burn control. The regions were analyzed by optical coherence tomography (OCT), histology, attenuated total reflectance infrared spectroscopy using Fourier transform (μ-ATR-FTIR), two-photon excitation fluorescence microscopy (TPEFM) and second harmonic generation technique (SHG) on days 3, 5, 7 and 14 pos-treatments. The results showed that with the laser irradiation conditions used it was possible to remove debris from third degree burn. The techniques used to characterize the tissue allowed to verify that all treatments promoted wound healing. On the fourteenth day, the regeneration curve showed that the attenuation coefficient of laser ablated tissue converges to the values of

  2. Cyclohexane photo-catalytic oxidation on TiO2, an in situ ATR-FTIR mechanistic and kinetic study

    OpenAIRE

    Almeida, A.R.

    2010-01-01

    Chemical processes are generally operated at elevated temperatures and pressures, and energy intensive separations are usually necessary. This thesis focuses on the production of cyclohexanone, which is an intermediate of high commercial importance as a result of its use in nylon-6 and nylon-6,6 production. Using TiO2 based photo-catalysis is a promising alternative to the inefficient commercial process of cyclohexanone production, producing cyclohexanone very selectively at ambient condition...

  3. Cyclohexane photo-catalytic oxidation on TiO2, an in situ ATR-FTIR mechanistic and kinetic study

    NARCIS (Netherlands)

    Almeida, A.R.

    2010-01-01

    Chemical processes are generally operated at elevated temperatures and pressures, and energy intensive separations are usually necessary. This thesis focuses on the production of cyclohexanone, which is an intermediate of high commercial importance as a result of its use in nylon-6 and nylon-6,6

  4. Quantification of pure refined olive oil adulterant in extra virgin olive oil using diamond cell atr-ftir spectroscopy

    International Nuclear Information System (INIS)

    Kandhro, A.A.; Saleem, R.; Laghari, A.H.; Sultana, R.

    2014-01-01

    The present study depicts spectroscopic method development to deliver a rapid, simple and reproducible quantification of pure refined olive oil (PROO) adulterant in extra virgin olive oil (EVOO) using partial least square (PLS) regression (statistical parameter). Single bounce attenuated total reflectance (SB-ATR) Fourier transform infrared (FTIR) was choice in the developed method. Blended standards of PROO and EVOO were obtained by their weight by weight percentage and the values were used to construct calibration curves for quantification. The optimum regression values (i.e. >0.99) were achieved using the combined frequencies of 3105-2761, 1838-1687, and 1482-440 cm-1 with regression coefficients (R2) 0.99718 and achieved residual mean square error of calibration (RMSEC) 1.40% w/w. To determine the suitability of developed method principal component spectra (PCS) diagnostic was also used. The results of the present study prove that the developed methods reported in preceding studies can be good option for more rapid and accurate determination of PROO adulteration in EVOO. (author)

  5. Investigation on the adsorption characteristics of sodium benzoate and taurine on gold nanoparticle film by ATR-FTIR spectroscopy

    Science.gov (United States)

    Kumar, Naveen; Thomas, S.; Tokas, R. B.; Kshirsagar, R. J.

    2014-01-01

    Fourier transform infrared (FTIR) spectroscopic studies of sodium benzoate and taurine adsorbed on gold nanoparticle (AuNp) film on silanised glass slides have been studied by attenuated total reflection technique (ATR). The surface morphology of the AuNp films has been measured by Atomic Force Microscopy. The ATR spectra of sodium benzoate and taurine deposited on AuNp film are compared with ATR spectra of their powdered bulk samples. A new red-shifted band appeared along with the symmetric and asymmetric stretches of carboxylate group of sodium benzoate leading to a broadening of the above peaks. Similar behavior is also seen in the case of symmetric and asymmetric stretches of sulphonate group of taurine. The results indicate presence of both chemisorbed and physisorbed layers of both sodium benzoate and taurine on the AuNp film with bottom layer chemically bound to AuNp through carboxylate and sulphonate groups respectively.

  6. ATR-FTIR Based Pre and Post Formulation Compatibility Studies for the Design of Niosomal Drug Delivery System Containing Nonionic Amphiphiles and Chondroprotective Drug

    International Nuclear Information System (INIS)

    Khan, M.I.; Madni, A.; Ahmad, S.; Rehmanand, M.; Mahmood, M.A.; Khan, A.

    2015-01-01

    Pharmaceutical compatibility studies are considered as the most important and first screening stage during development of pharmaceutical drug product. Attenuated total reflectance/fourier transform infrared (ATR-FTIR) is one of the techniques currently available to pharmaceutical scientists for investigating the compatibilities between active drug and inactive pharmaceutical ingredients. The present study was designed to assess the interaction among different niosomes forming components i.e nonionic amphiphiles and chondroprotective/antiinflamatory drug Diacerein by ATR-FTIR method. Physical mixtures and niosomes were prepared by physical mixing and thin film hydration method, respectively. The individual niosomal components, physical mixtures as well as niosomal formulations were analyzed. The spectra of Diacerein showed characteristic peaks at 3300 cm/sup -1/(-COOH) and 760 cm/sup -1/(msubstituted benzene), Span 60 at 2916 cm/sup -1/(-OH), Span 80 at 1740 cm/sup -1/(5- membered ring), Span 85 at 1643 cm/sup -1/(ketone with 5-membered ring), Tween 20 at 1734 cm/sup 1/ (5-membered ring) and Tween 80 at 3488 cm/sup -1/(-OH). The characteristic peaks of Diacerein were present in niosomal formulations with slight shift at 3355-3379 cm/sup -1/(-COOH) and 760-770 cm/sup -1/(m-substituted benzene). This work suggested no significant interaction in characteristic peaks of Diacerein after combining with nonionic surfactants as physical mixtures and niosomal formulations which proposed potential for niosomes to encapsulate diacerein in their micro vicinity. (author)

  7. Partitioning behavior of silica-coated nanoparticles in aqueous micellar two-phase systems: evidence for an adsorption-driven mechanism from QCM-D and ATR-FTIR measurements.

    Science.gov (United States)

    Fischer, Ingo; Morhardt, Christian; Heissler, Stefan; Franzreb, Matthias

    2012-11-13

    Quartz crystal microbalance with dissipation (QCM-D), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and total organic carbon detection (TOC) are employed to examine the cause of the differences in the partitioning of silica-coated nanoparticles in an aqueous micellar two-phase system based on nonionic surfactant Eumulgin ES. The particles partition into the micelle-rich phase at pH 3 and into the micelle-poor phase at pH 7. Our results clearly show that the nonionic surfactants are adsorbed to the silica surface at pH 3. Above the critical temperature, a stable surfactant bilayer forms on the silica surface. At pH 7, the surfactants do not adsorb to the particle surface; a surfactant-loaded particle is therefore drawn to the micelle-rich phase but otherwise repelled from it. These results suggest that the partitioning in aqueous micellar two-phase systems is mainly driven by hydrogen bonds formed between the surfactants and the component to be partitioned.

  8. Ablation of burned skin with ultra-short pulses laser to promote healing: evaluation by optical coherence tomography, histology, {mu}ATR-FTIR and Nonlinear Microscopy; Ablacao de pele queimada com laser de pulsos ultra-curtos para promocao da cicatrizacao: avaliacao por tomografia por coerencia optica, histologia, {mu}ATR-FTIR e microscopia nao-linear

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Moises Oliveira dos

    2012-07-01

    Burns cause changes in the anatomical structure of the skin associated with trauma. The severity of the burn injury is divided into first, second and third-degree burns. The third-degree burns have been a major focus of research in search of more conservative treatments and faster results in repair for a functional and cosmetically acceptable. The conventional treatment is the use of topical natural or synthetic skin graft. An alternative therapy is the laser ablation process for burned tissue necrosis removal due to the no mechanical contact, fast application and access to difficult areas. The purpose of this study is to evaluate the feasibility of using high intensity femtosecond lasers as an adjunct treatment of burned patients. For this study, 65 Wistar rats were divided into groups of five animals: healthy skin, burned skin, two types of treatment (surgical debridement or femtosecond laser ablation) and four different times in the healing process monitoring. Three regions of the back of the animals were exposed to steam source causing third-degree burn. On the third day after the burn, one of the regions was ablated with high intensity ultrashort laser pulses ({lambda} = 785 nm, 90 fs, 2 kHz and 10 {mu}J/ pulse), the other received surgical debridement, and the last was considered the burn control. The regions were analyzed by optical coherence tomography (OCT), histology, attenuated total reflectance infrared spectroscopy using Fourier transform ({mu}-ATR-FTIR), two-photon excitation fluorescence microscopy (TPEFM) and second harmonic generation technique (SHG) on days 3, 5, 7 and 14 pos-treatments. The results showed that with the laser irradiation conditions used it was possible to remove debris from third degree burn. The techniques used to characterize the tissue allowed to verify that all treatments promoted wound healing. On the fourteenth day, the regeneration curve showed that the attenuation coefficient of laser ablated tissue converges to the values

  9. Interaction of Zn(II) with hematite nanoparticles and microparticles: Part 2. ATR-FTIR and EXAFS study of the aqueous Zn(II)/oxalate/hematite ternary system.

    Science.gov (United States)

    Ha, Juyoung; Trainor, Thomas P; Farges, François; Brown, Gordon E

    2009-05-19

    Sorption of Zn(II) to hematite nanoparticles (HN) (av diam=10.5 nm) and microparticles (HM) (av diam=550 nm) was studied in the presence of oxalate anions (Ox2-(aq)) in aqueous solutions as a function of total Zn(II)(aq) to total Ox2-(aq) concentration ratio (R=[Zn(II)(aq)]tot/[Ox2-(aq)]tot) at pH 5.5. Zn(II) uptake is similar in extent for both the Zn(II)/Ox/HN and Zn(II)/Ox/HM ternary systems and the Zn(II)/HN binary system at [Zn(II)(aq)](tot)system than for the Zn(II)/Ox/HM ternary and the Zn(II)/HN and Zn(II)/HM binary systems at [Zn(II)(aq)]tot>4 mM. In contrast, Zn(II) uptake for the Zn(II)/HM binary system is a factor of 2 greater than that for the Zn(II)/Ox/HM and Zn(II)/Ox/HN ternary systems and the Zn(II)/HN binary system at [Zn(II)(aq)]totternary system at both R values examined (0.16 and 0.68), attenuated total reflectance Fourier transform infrared (ATR-FTIR) results are consistent with the presence of inner-sphere oxalate complexes and outer-sphere ZnOx(aq) complexes, and/or type A ternary complexes. In addition, extended X-ray absorption fine structure (EXAFS) spectroscopic results suggest that type A ternary surface complexes (i.e., >O2-Zn-Ox) are present. In the Zn(II)/Ox/HN ternary system at R=0.15, ATR-FTIR results indicate the presence of inner-sphere oxalate and outer-sphere ZnOx(aq) complexes; the EXAFS results provide no evidence for inner-sphere Zn(II) complexes or type A ternary complexes. In contrast, ATR-FTIR results for the Zn/Ox/HN sample with R = 0.68 are consistent with a ZnOx(s)-like surface precipitate and possibly type B ternary surface complexes (i.e., >O2-Ox-Zn). EXAFS results are also consistent with the presence of ZnOx(s)-like precipitates. We ascribe the observed increase of Zn(II)(aq) uptake in the Zn(II)/Ox/HN ternary system at [Zn(II)(aq)]tot>or=4 mM relative to the Zn(II)/Ox/HM ternary system to formation of a ZnOx(s)-like precipitate at the hematite nanoparticle/water interface.

  10. New organic single crystal of (benzylthio)acetic acid: Synthesis, crystal structure, spectroscopic (ATR-FTIR, 1H and 13C NMR) and thermal characterization

    Science.gov (United States)

    Sienkiewicz-Gromiuk, Justyna; Tarasiuk, Bogdan; Mazur, Liliana

    2016-04-01

    (Benzylthio)acetic acid (Hbta) was synthesized with 78% yield from benzyl chloride and thiourea as substrates. Well-shaped crystals of Hbta were grown by slow solvent evaporation technique from pure methanol. The compound was investigated by single-crystal X-ray and powder diffraction techniques and was also characterized by other analytical methods, like ATR-FTIR, 1H and 13C NMR and TG/DSC. The acid molecule adopts bent conformation in the solid state. The crystal structure of Hbta is stabilized by numerous intermolecular interactions, including O-H···O, C-H···O, C-H···S and C-H···π contacts. Thermal decomposition of the obtained material takes place above 150 °C.

  11. Synchrotron macro ATR-FTIR microspectroscopic analysis of silica nanoparticle-embedded polyester coated steel surfaces subjected to prolonged UV and humidity exposure.

    Science.gov (United States)

    Vongsvivut, Jitraporn; Truong, Vi Khanh; Al Kobaisi, Mohammad; Maclaughlin, Shane; Tobin, Mark J; Crawford, Russell J; Ivanova, Elena P

    2017-01-01

    Surface modification of polymers and paints is a popular and effective way to enhance the properties of these materials. This can be achieved by introducing a thin coating that preserves the bulk properties of the material, while protecting it from environmental exposure. Suitable materials for such coating technologies are inorganic oxides, such as alumina, titania and silica; however, the fate of these materials during long-term environmental exposure is an open question. In this study, polymer coatings that had been enhanced with the addition of silica nanoparticles (SiO2NPs) and subsequently subjected to environmental exposure, were characterized both before and after the exposure to determine any structural changes resulting from the exposure. High-resolution synchrotron macro ATR-FTIR microspectroscopy and surface topographic techniques, including optical profilometry and atomic force microscopy (AFM), were used to determine the long-term effect of the environment on these dual protection layers after 3 years of exposure to tropical and sub-tropical climates in Singapore and Queensland (Australia). Principal component analysis (PCA) based on the synchrotron macro ATR-FTIR spectral data revealed that, for the 9% (w/w) SiO2NP/polymer coating, a clear discrimination was observed between the control group (no environmental exposure) and those samples subjected to three years of environmental exposure in both Singapore and Queensland. The PCA loading plots indicated that, over the three year exposure period, a major change occurred in the triazine ring vibration in the melamine resins. This can be attributed to the triazine ring being very sensitive to hydrolysis under the high humidity conditions in tropical/sub-tropical environments. This work provides the first direct molecular evidence, acquired using a high-resolution mapping technique, of the climate-induced chemical evolution of a polyester coating. The observed changes in the surface topography of the

  12. Single-particle investigation of summertime and wintertime Antarctic sea spray aerosols using low-Z particle EPMA, Raman microspectrometry, and ATR-FTIR imaging techniques

    Directory of Open Access Journals (Sweden)

    H.-J. Eom

    2016-11-01

    Full Text Available Two aerosol samples collected at King Sejong Korean scientific research station, Antarctica, on 9 December 2011 in the austral summer (sample S1 and 23 July 2012 in the austral winter (sample S2, when the oceanic chlorophyll a levels on the collection days of the samples were quite different, by  ∼  19 times (2.46 vs. 0.13 µg L−1, respectively, were investigated on a single-particle basis using quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA, called low-Z particle EPMA, Raman microspectrometry (RMS, and attenuated total reflection Fourier transform infrared (ATR-FTIR imaging techniques to obtain their characteristics based on the elemental chemical compositions, molecular species, and mixing state. X-ray analysis showed that the supermicron summertime and wintertime Antarctic aerosol samples have different elemental chemical compositions, even though all the individual particles analyzed were sea spray aerosols (SSAs; i.e., the contents of C, O, Ca, S, and Si were more elevated, whereas Cl was more depleted, for sample S1 than for sample S2. Based on qualitative analysis of the chemical species present in individual SSAs by the combined application of RMS and ATR-FTIR imaging, different organic species were observed in samples S1 and S2; i.e., Mg hydrate salts of alanine were predominant in samples S1 and S2, whereas Mg salts of fatty acids internally mixed with Mg hydrate salts of alanine were significant in sample S2. Although CaSO4 was observed significantly in both samples S1 and S2, other inorganic species, such as Na2SO4, NaNO3, Mg(NO32, SiO2, and CH3SO3Mg, were observed more significantly in sample S1, suggesting that those compounds may be related to the higher phytoplankton activity in summer.

  13. SB-ATR FTIR Spectroscopic Monitoring of Free Fatty Acids in Commercially Available Nigella sativa (Kalonji Oil

    Directory of Open Access Journals (Sweden)

    S. A. Mahesar

    2014-01-01

    Full Text Available Free fatty acids (FFA in Nigella sativa (N. sativa commercial and seed oil were determined using single-bounce attenuated total reflectance (SB-ATR Fourier transform infrared (FTIR spectroscopy. Gravimetrical mixing was done by adding 0.1–40% oleic acids in neutralized N. sativa oil containing 0.1% FFA. FTIR spectroscopy technique and partial least square (PLS calibration were used to detect the absorption region of carbonyl (C=O which is in the range of 1690–1727 cm−1. The results of PLS calibration model and root mean square error of calibration (RMSEC are 0.999 and 0.449, respectively. Comparing the FFA obtained in N. sativa oil by using FTIR with the FFA obtained using AOCS titrimetric method shows a positive correlation and confirms that the described method is a useful procedure.

  14. A rapid ATR-FTIR spectroscopic method for detection of sibutramine adulteration in tea and coffee based on hierarchical cluster and principal component analyses.

    Science.gov (United States)

    Cebi, Nur; Yilmaz, Mustafa Tahsin; Sagdic, Osman

    2017-08-15

    Sibutramine may be illicitly included in herbal slimming foods and supplements marketed as "100% natural" to enhance weight loss. Considering public health and legal regulations, there is an urgent need for effective, rapid and reliable techniques to detect sibutramine in dietetic herbal foods, teas and dietary supplements. This research comprehensively explored, for the first time, detection of sibutramine in green tea, green coffee and mixed herbal tea using ATR-FTIR spectroscopic technique combined with chemometrics. Hierarchical cluster analysis and PCA principle component analysis techniques were employed in spectral range (2746-2656cm -1 ) for classification and discrimination through Euclidian distance and Ward's algorithm. Unadulterated and adulterated samples were classified and discriminated with respect to their sibutramine contents with perfect accuracy without any false prediction. The results suggest that existence of the active substance could be successfully determined at the levels in the range of 0.375-12mg in totally 1.75g of green tea, green coffee and mixed herbal tea by using FTIR-ATR technique combined with chemometrics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. ATR-FTIR characterization of generic brand-named and counterfeit sildenafil- and tadalafil-based tablets found on the Brazilian market.

    Science.gov (United States)

    Coelho Neto, José; Lisboa, Fernanda L C

    2017-07-01

    Viagra and Cialis are among the most counterfeited medicines in many parts of the world, including Brazil. Despite the many studies that have been made regarding discrimination between genuine and counterfeit samples, most published works do not contemplate generic and similar versions of these medicines and also do not explore excipients/adjuvants contributions when characterizing genuine and suspected samples. In this study, we present our findings in exploring ATR-FTIR spectral profiles for characterizing both genuine and questioned samples of several generic and brand-name sildenafil- and tadalafil-based tablets available on the Brazilian market, including Viagra and Cialis. Multi-component spectral matching (deconvolution), objective visual comparison and correlation tests were used during analysis. Besides from allowing simple and quick identification of counterfeits, results obtained evidenced the strong spectral similarities between generic and brand-named tablets employing the same active ingredient and the indistinguishability between samples produced by the same manufacturer, generic or not. For all sildenafil-based and some tadalafil-based tablets tested, differentiation between samples from different manufacturers, attributed to slight variations in excipients/adjuvants proportions, was achieved, thus allowing the possibility of tracing an unknown/unidentified tablet back to a specific manufacturer. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  16. Kinetic Parameters during Bis-GMA and TEGDMA Monomer Polymerization by ATR-FTIR: The Influence of Photoinitiator and Light Curing Source

    Directory of Open Access Journals (Sweden)

    Aline B. Denis

    2016-01-01

    Full Text Available This study aimed to analyze the kinetic parameters of two monomers using attenuated total reflectance Fourier transform infrared (ATR-FTIR: 2,2-bis-[4-(2-hydroxy-3-methacryloxypropyl-1-oxy-phenyl] propane (Bis-GMA and triethylene glycol dimethacrylate (TEGDMA. The following were calculated to evaluate the kinetic parameters: maximum conversion rate (Rpmax, time at the maximum polymerization rate (tmax, conversion at Rpmax, and total conversion recorded at the maximum conversion point after 300 s. Camphorquinone (CQ and phenyl propanedione (PPD were used in this study as photoinitiators, whereas N,N-dimethyl-p-toluidine (DMPT amine was used as a coinitiator. LED apparatus and halogen lamp were used in turn to evaluate the effect that light source had on the monomer kinetics. The mass concentration ratio for the three resin preparations was 0.7 : 0.3 for Bis-GMA and TEGDMA: R1 (CQ + DMPT, R2 (PPD + DMPT, and R3 (PPD + CQ + DMPT. The PPD association with the CQ photoinitiator altered the polymerization kinetics compared to a resin containing only the CQ photoinitiator. The light sources exhibited no significant differences for tmax of R1 and R3. Resins containing only the PPD initiator exhibited a higher tmax than those containing only CQ. However, the Rpmax decreased for resins containing the PPD photoinitiator.

  17. Instrumented Bit for In-Situ Spectroscopy (IBISS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build and critically test the Instrumented Bit for In-Situ Spectroscopy (IBISS), a novel system for in-situ, rapid analyses of planetary subsurface...

  18. In-situ ATR-FTIR and surface complexation modeling studies on the adsorption of dimethylarsenic acid and p-arsanilic acid on iron-(oxyhydr)oxides

    Science.gov (United States)

    Arsenic is an element that exists naturally in many rocks and minerals around the world. It also accumulates in petroleum, shale, oil sands and coal deposits as a result of biogeochemical processes, and it has been found in fly ash from the combustion of solid biofuels. Arsenic compounds in their o...

  19. In-situ ATR-FTIR and AFM studies on poly(etyhleneimine)/poly(acrylic acid) multilayers: dependence on medium parameters and protein selectivity

    Czech Academy of Sciences Publication Activity Database

    Müller, M.; Bohatá, Karolína; Kessler, B.; Ouyang, W.; Pientka, Zbyněk; Brynda, Eduard

    2007-01-01

    Roč. 96, - (2007), s. 157-158 ISSN 0743-0515. [PMSE Spring Meeting: Designed Macromolecules Assemblies for Biomedical Applications. Chicago, 25.03.2007-29.03.2007] Institutional research plan: CEZ:AV0Z40500505 Keywords : alternating polyelectrolyte multilayers * selective protein adsorption Subject RIV: CD - Macromolecular Chemistry

  20. Comparison of Raman, NIR, and ATR FTIR spectroscopy as analytical tools for in-line monitoring of CO2 concentration in an amine gas treating process

    NARCIS (Netherlands)

    Kachko, A.; Ham, L.V. van der; Bardow, A.; Vlugt, T.J.H.; Goetheer, E.L.V.

    2016-01-01

    Chemical absorption of CO2 using aqueous amine-based solvents is one of the common approaches to control acidic gases emissions to the atmosphere. Improvement in the efficiency of industrial processes requires precise monitoring tools that fit with the specific application. Process monitoring using

  1. IR spectroscopy together with multivariate data analysis as a process analytical tool for in-line monitoring of crystallization process and solid-state analysis of crystalline product

    DEFF Research Database (Denmark)

    Pöllänen, Kati; Häkkinen, Antti; Reinikainen, Satu-Pia

    2005-01-01

    Fourier transform infra red (ATR-FTIR) spectroscopy provides valuable information on process, which can be utilized for more controlled crystallization processes. Diffuse reflectance Fourier transform infra red (DRIFT-IR) is applied for polymorphic characterization of crystalline product using X......Crystalline product should exist in optimal polymorphic form. Robust and reliable method for polymorph characterization is of great importance. In this work, infra red (IR) spectroscopy is applied for monitoring of crystallization process in situ. The results show that attenuated total reflection...... techniques provide the powerful tool for rapid evaluation of spectral data and also enable more reliable quantification of polymorphic composition of samples being mixtures of two or more polymorphs. This opens new perspectives for understanding crystallization processes and increases the level of safety...

  2. Evaluation of low trans fat edible oils by attenuated total reflection-Fourier transform infrared spectroscopy and gas chromatography: a comparison of analytical approaches.

    Science.gov (United States)

    Tyburczy, Cynthia; Mossoba, Magdi M; Fardin-Kia, Ali Reza; Rader, Jeanne I

    2012-08-01

    Current interest by the food industry in exploring reformulation options that lower the content of trans fat in edible fats and oils requires methods to accurately measure low levels of trans fat. In the present study, the quantitation of trans fat in 25 edible fat and oil samples was evaluated using two current analytical approaches, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), and gas chromatography with flame ionization detection (GC-FID) according to Official Methods of the American Oil Chemists' Society. Significant differences between the ATR-FTIR and reference GC-FID quantitations were found for samples with a trans fat content absorbance bands at or near 966 cm(-1) in the ATR-FTIR spectra, a region that was previously identified as being characteristic of isolated trans double bonds. Results demonstrate that the natural content of such oil constituents could result in significant overestimations of trans fat when ATR-FTIR is used to analyze edible fats and oils with a trans fat content <2% of total fat.

  3. Precise determination of graphene functionalization by in situ Raman spectroscopy

    Science.gov (United States)

    Vecera, Philipp; Chacón-Torres, Julio C.; Pichler, Thomas; Reich, Stephanie; Soni, Himadri R.; Görling, Andreas; Edelthalhammer, Konstantin; Peterlik, Herwig; Hauke, Frank; Hirsch, Andreas

    2017-01-01

    The verification of a successful covalent functionalization of graphene and related carbon allotropes can easily be carried out by Raman spectroscopy. Nevertheless, the unequivocal assignment and resolution of individual lattice modes associated with the covalent binding of addends was elusive up to now. Here we present an in situ Raman study of a controlled functionalization of potassium intercalated graphite, revealing several new bands appearing in the D-region of the spectrum. The evolution of these bands with increasing degree of functionalization from low to moderate levels provides a basis for the deconvolution of the different components towards quantifying the extent of functionalization. By complementary DFT calculations we were able to identify the vibrational changes in the close proximity of the addend bearing lattice carbon atoms and to assign them to specific Raman modes. The experimental in situ observation of the developing functionalization along with the reoxidation of the intercalated graphite represents an important step towards an improved understanding of the chemistry of graphene. PMID:28480893

  4. Elementary Steps of Faujasite Formation Followed by in Situ Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prodinger, Sebastian [Institute; Vjunov, Aleksei [Institute; Hu, Jian Zhi [Institute; Fulton, John L. [Institute; Camaioni, Donald M. [Institute; Derewinski, Miroslaw A. [Institute; Lercher, Johannes A. [Institute; Department

    2018-01-24

    Ex situ and in situ spectroscopy was used to identify the kinetics of processes during the formation of the faujasite (FAU) zeolite lattice from a hydrous gel. Using solid-state 27Al MAS NMR, the autocatalytic transformation from the amorphous gel into the crystalline material was monitored. Al-XANES shows that most Al already adopts a tetrahedral coordination in the X-ray-amorphous aluminosilicate at the beginning of the induction period, which hardly changes throughout the rest of the synthesis. Using 23Na NMR spectroscopy, environments in the growing zeolite crystal were identified and used to define the processes in the stepwise formation of the zeolite lattice. The end of the induction period was accompanied by a narrowing of the 27Al and 23Na MAS NMR peak widths, indicating the increased long-range order. The experiments show conclusively that the formation of faujasite occurs via the continuous formation and subsequent condensation of intermediary sodalite-like units that constitute the key building block of the zeolite. Acknowledgement The authors thank T. Huthwelker for assistance with XAFS experiment setup at the Swiss Light Source (PSI, Switzerland). Further, we would like to acknowledge V. Shutthanandan and B.W. Arey for performing Helium ion microscopy as well as Z. Zhao, N.R. Jaeger, M. Weng, C. Wan and M. Hu for aiding in the NMR experimental procedure. T. Varga is acknowledged for his help with the capillary XRD. A.V., D.M.C., J.H., J.L.F and J.A.L. were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. S.P. and M.A.D. acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL. The in situ NMR experiments were supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. Part of the research

  5. In situ and ex situ low-field NMR spectroscopy and MRI endowed by SABRE hyperpolarization.

    Science.gov (United States)

    Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V; He, Ping; Groome, Kirsten A; Best, Quinn A; Shi, Fan; Goodson, Boyd M; Shchepin, Roman V; Truong, Milton L; Coffey, Aaron M; Waddell, Kevin W; Chekmenev, Eduard Y

    2014-12-15

    By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 10(5)-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The application of fourier transform raman spectroscopy to the study of paint systems

    Science.gov (United States)

    Ellis, G.; Claybourn, M.; Richards, S. E.

    This paper describes the application of FT Raman spectroscopy to three fields of analytical interest in the coatings industry: (1) an emulsion polymerization is monitored; (2) it is used, in conjunction with FTIR, to characterize an alkyd resin, and to follow its curing reactions; (3) it is used, along with ATR-FTIR, to evaluate painted panels which have been subjected to a prolonged weathering cycle. Points of interest to the analyst are noted, and future developments briefly discussed.

  7. Fast optical in situ spectroscopy in III-V MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Kaspari, C.

    2007-09-29

    This work describes the application of optical in situ measurement techniques (reflectance anisotropy spectroscopy, RAS, and spectroscopic ellipsometry, SE) to processes that are important for the growth of III-V semiconductors like GaAs, InP, InAs and GaP in metal-organic vapour phase epitaxy (MOVPE). Special emphasis is placed on the determination of the free carrier concentration (doping level) and the study of the thermal desorption properties of III-V oxides. A large part of this work is concerned with the development and the construction of a multichannel RAS setup that allows the recording of RAS spectra within fractions of a second. On the basis of benchmark measurements it was shown that the spectral resolution is sufficiently accurate for application in epitaxy. To demonstrate the recording of spectra with high temporal resolution, RAS monolayer oscillations during growth of GaAs were studied and it was shown that the surface changes periodically between a relatively smooth morphology with adsorbed methyl groups (type III) and a stepped, gallium-rich surface (type II). Furthermore the non-reversible process of growing InAs quantum dots on GaAs was studied. It was shown that the multichannel RAS is capable of detecting the 2D-3D transition as well as the following morphological change of the surface at high temporal resolution. For the measurement of the doping level, the relationship between the doping-induced internal electric field and the anisotropy of the sample was studied. To understand the effect of the so-called doping oscillations, a theoretical model was developed. For the investigation of the thermal desorption of the III-V oxides in MOVPE, a number of test series were realised. It was also found that the formation of the reconstructed surface is finished a considerable time after the SE transient indicates stable conditions (no further reduction of the oxide layer). The activation energy for oxide desorption from InAs, GaAs and InP was

  8. Comparison of 13C Nuclear Magnetic Resonance and Fourier Transform Infrared spectroscopy for estimating humification and aromatization of soil organic matter

    Science.gov (United States)

    Rogers, K.; Cooper, W. T.; Hodgkins, S. B.; Verbeke, B. A.; Chanton, J.

    2017-12-01

    Solid state direct polarization 13C NMR spectroscopy (DP-NMR) is generally considered the most quantitatively reliable method for soil organic matter (SOM) characterization, including determination of the relative abundances of carbon functional groups. These functional abundances can then be used to calculate important soil parameters such as degree of humification and extent of aromaticity that reveal differences in reactivity or compositional changes along gradients (e.g. thaw chronosequence in permafrost). Unfortunately, the 13C NMR DP-NMR experiment is time-consuming, with a single sample often requiring over 24 hours of instrument time. Alternatively, solid state cross polarization 13C NMR (CP-NMR) can circumvent this problem, reducing analyses times to 4-6 hours but with some loss of quantitative reliability. Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) is a quick and relatively inexpensive method for characterizing solid materials, and has been suggested as an alternative to NMR for analysis of soil organic matter and determination of humification (HI) and aromatization (AI) indices. However, the quantitative reliability of ATR-FTIR for SOM analyses has never been verified, nor have any ATR-FTIR data been compared to similar measurements by NMR. In this work we focused on FTIR vibrational bands that correspond to the three functional groups used to calculate HI and AI values: carbohydrates (1030 cm-1), aromatics (1510, 1630 cm-1), and aliphatics (2850, 2920 cm-1). Data from ATR-FTIR measurements were compared to analogous quantitation by DP- and CP-NMR using peat samples from Sweden, Minnesota, and North Carolina. DP- and CP-NMR correlate very strongly, although the correlations are not always 1:1. Direct comparison of relative abundances of the three functional groups determined by NMR and ATR-FTIR yielded satisfactory results for carbohydrates (r2= 0.78) and aliphatics (r2=0.58), but less so for aromatics (r2= 0

  9. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-03-30

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (Ptechnique for the quantification of enamel erosion.

  10. In situ monitoring of cocrystals in formulation development using low-frequency Raman spectroscopy.

    Science.gov (United States)

    Otaki, Takashi; Tanabe, Yuta; Kojima, Takashi; Miura, Masaru; Ikeda, Yukihiro; Koide, Tatsuo; Fukami, Toshiro

    2018-03-07

    In recent years, to guarantee a quality-by-design approach to the development of pharmaceutical products, it is important to identify properties of raw materials and excipients in order to determine critical process parameters and critical quality attributes. Feedback obtained from real-time analyses using various process analytical technology (PAT) tools has been actively investigated. In this study, in situ monitoring using low-frequency (LF) Raman spectroscopy (10-200 cm -1 ), which may have higher discriminative ability among polymorphs than near-infrared spectroscopy and conventional Raman spectroscopy (200-1800 cm -1 ), was investigated as a possible application to PAT. This is because LF-Raman spectroscopy obtains information about intermolecular and/or lattice vibrations in the solid state. The monitoring results obtained from Furosemide/Nicotinamide cocrystal indicate that LF-Raman spectroscopy is applicable to in situ monitoring of suspension and fluidized bed granulation processes, and is an effective technique as a PAT tool to detect the conversion risk of cocrystals. LF-Raman spectroscopy is also used as a PAT tool to monitor reactions, crystallizations, and manufacturing processes of drug substances and products. In addition, a sequence of conversion behaviors of Furosemide/Nicotinamide cocrystals was determined by performing in situ monitoring for the first time. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. In situ gas temperature measurements by UV-absorption spectroscopy

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    2009-01-01

    The absorption spectrum of the NO A(2)Sigma(+) <- X(2)Pi gamma-system can be used for in situ evaluation of gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path in t....... The accuracy of both methods is discussed. Validation of the classical Lambert-Beer law has been demonstrated at NO concentrations up to 500 ppm and gas temperatures up to 1,500 degrees C over an optical absorption path length of 0.533 m....

  12. Solid Acid-Catalyzed Cellulose Hydrolysis Monitored by In Situ ATR-IR Spectroscopy

    NARCIS (Netherlands)

    Zakzeski, J.; Grisel, R.J.H.; Smit, A.T.; Weckhuysen, B.M.

    2012-01-01

    The solid acid-catalyzed hydrolysis of cellulose was studied under elevated temperatures and autogenous pressures using in situ ATR-IR spectroscopy. Standards of cellulose and pure reaction products, which include glucose, fructose, hydroxymethylfurfural (HMF), levulinic acid (LA), formic acid, and

  13. Photoswitchable Intramolecular Hydrogen Bonds in 5-Phenylazopyrimidines Revealed By In Situ Irradiation NMR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Procházková, Eliška; Čechová, Lucie; Kind, J.; Janeba, Zlatko; Thiele, C. M.; Dračínský, Martin

    2018-01-01

    Roč. 24, č. 2 (2018), s. 492-498 ISSN 0947-6539 R&D Projects: GA ČR GA15-11223S Institutional support: RVO:61388963 Keywords : azopyrimidines * heterocycles * hydrogen bonds * NMR spectroscopy * UV/Vis in situ irradiation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.317, year: 2016

  14. Thermodynamics of Silica Dissolution From In-situ Raman +Spectroscopy

    Science.gov (United States)

    Davis, M. K.; Fumagalli, P.; Stixrude, L. P.

    2001-12-01

    Solubilities of cations, such as silicon, in water strongly effect both the physical and thermodynamical properties of supercritical metamorphic fluids. Modeling the thermodynamics of fluid-rock interactions requires therefore a profound understanding of cation dissolution and aqueous speciation. In-situ Raman experiments of the silica-water system were performed in an externally heated Bassett-type diamond-anvil cell at the Department of Geological Sciences, University of Michigan. Natural quartz samples (from Owl Creek Mountains, Wyoming) were loaded in the sample chamber with de-ionized or spectrographic water. All experiments used doubly polished rhenium gaskets with a thickness of 200 μ m, diameter of 1.0 mm, and a 500 μ m drillhole for the sample chamber. Temperature was measured using K-type thermocouples wrapped around both the upper and lower diamond anvils. Pressures are obtained on the basis of the shift of the 464 cm-1 Raman mode of quartz. In-situ Raman spectra were collected from 250-1200 cm-1, focusing on the vibrational modes of aqueous silica species at temperatures up to 700 ° C and pressures up to 14 kbar. We observed Si-O stretching modes attributable to dimer (H6Si2O7, 965 cm-1) and monomer (H4SiO4, 771 cm-1) aqueous silica species. The relative intensities of these two bands as a function of isochoric heating place constraints on the energetics of the polymerization reaction, if we assume that the intensity ratio is linearly related to concentration ratio. We have been able to perform experiments along two different isochores (0.9 and 0.75 g/cm3, respectively) from which we are able to derive the enthalpy of reaction.

  15. In situ TEM Raman spectroscopy and laser-based materials modification

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.I., E-mail: fiallen@lbl.gov [Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kim, E. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Andresen, N.C. [Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Grigoropoulos, C.P. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Minor, A.M., E-mail: aminor@lbl.gov [Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-07-15

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS{sub 2} combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. - Highlights: • Raman spectroscopy and laser-based materials processing in a TEM are demonstrated. • A lensed Raman probe is mounted in the sample chamber for close approach. • Localized laser processing is achieved using a tapered optical fiber. • Raman spectroscopy and pulsed laser ablation of MoS{sub 2} are performed in situ.

  16. Systematic Assessment of Attenuated Total Reflectance-Fourier Transforms Infrared Spectroscopy Coupled with Multivariate Analysis for Forensic Analysis of Black Ball-point Pen Inks

    International Nuclear Information System (INIS)

    Lee, L.C.; Mohamed Rozali Othman; Pua, H.; Lee, L.C.

    2012-01-01

    This manuscript aims to provide a new and non-destructive method for systematic analysis of inks on a questioned document. Ink samples were analyzed in situ on the paper substrate by micro-ATR-FTIR spectroscopy and the data obtained was processed and evaluated by a series of multivariate chemometrics. Absorbance value from wavenumbers of 2000-675 cm -1 were first processed by cluster analysis (CA), followed by principal component analysis (PCA) to form a set of new variables. Subsequently, the variables set was used for classification, differentiation and identification of 155 sample pens that comprise nine different brands. Results show that nine black ball-point pen brands could be classified into three main groups via discriminant analysis (DA). Differentiation analyses of nine different pen brands performed using one-way ANOVA indicated only two pairs of brands cannot be differentiated at 95 % confidence interval. Finally an identification flow chart was proposed to determine the brand of unknown pen inks. As a conclusion, the proposed method for extracting and creating a new variable set from infrared spectrum was evaluated to be satisfactory for systematic analysis of inks based on their infrared spectrum. (author)

  17. Análise exploratória aplicada a espectros de reflexão total atenuada no infravermelho com transformada de Fourier (ATR-FTIR de blendas de biodiesel/diesel

    Directory of Open Access Journals (Sweden)

    Carla Felippi Chiella Ruschel

    2014-06-01

    Full Text Available In this study, hierarchical cluster analysis (HCA and principal component analysis (PCA were used to classify blends produced from diesel S500 and different kinds of biodiesel produced by the TDSP methodology. The different kinds of biodiesel studied in this work were produced from three raw materials: soybean oil, waste cooking oil and hydrogenated vegetable oil. Methylic and ethylic routes were employed for the production of biodiesel. HCA and PCA were performed on the data from attenuated total reflectance Fourier transform infrared spectroscopy, showing the separation of the blends into groups according to biodiesel content present in the blends and to the kind of biodiesel used to form the mixtures.

  18. In situ spectroscopy and spectroelectrochemistry of uranium in high-temperature alkali chloride molten salts.

    Science.gov (United States)

    Polovov, Ilya B; Volkovich, Vladimir A; Charnock, John M; Kralj, Brett; Lewin, Robert G; Kinoshita, Hajime; May, Iain; Sharrad, Clint A

    2008-09-01

    Soluble uranium chloride species, in the oxidation states of III+, IV+, V+, and VI+, have been chemically generated in high-temperature alkali chloride melts. These reactions were monitored by in situ electronic absorption spectroscopy. In situ X-ray absorption spectroscopy of uranium(VI) in a molten LiCl-KCl eutectic was used to determine the immediate coordination environment about the uranium. The dominant species in the melt was [UO 2Cl 4] (2-). Further analysis of the extended X-ray absorption fine structure data and Raman spectroscopy of the melts quenched back to room temperature indicated the possibility of ordering beyond the first coordination sphere of [UO 2Cl 4] (2-). The electrolytic generation of uranium(III) in a molten LiCl-KCl eutectic was also investigated. Anodic dissolution of uranium metal was found to be more efficient at producing uranium(III) in high-temperature melts than the cathodic reduction of uranium(IV). These high-temperature electrolytic processes were studied by in situ electronic absorption spectroelectrochemistry, and we have also developed in situ X-ray absorption spectroelectrochemistry techniques to probe both the uranium oxidation state and the uranium coordination environment in these melts.

  19. In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces

    Science.gov (United States)

    Wu, Yimin A.; Yin, Zuwei; Farmand, Maryam; Yu, Young-Sang; Shapiro, David A.; Liao, Hong-Gang; Liang, Wen-I.; Chu, Ying-Hao; Zheng, Haimei

    2017-02-01

    We report the study of Mg cathodic electrochemical deposition on Ti and Au electrode using a multimodal approach by examining the sample area in-situ using liquid cell transmission electron microscopy (TEM), scanning transmission X-ray microscopy (STXM) and X-ray absorption spectroscopy (XAS). Magnesium Aluminum Chloride Complex was synthesized and utilized as electrolyte, where non-reversible features during in situ charging-discharging cycles were observed. During charging, a uniform Mg film was deposited on the electrode, which is consistent with the intrinsic non-dendritic nature of Mg deposition in Mg ion batteries. The Mg thin film was not dissolvable during the following discharge process. We found that such Mg thin film is hexacoordinated Mg compounds by in-situ STXM and XAS. This study provides insights on the non-reversibility issue and failure mechanism of Mg ion batteries. Also, our method provides a novel generic method to understand the in situ battery chemistry without any further sample processing, which can preserve the original nature of battery materials or electrodeposited materials. This multimodal in situ imaging and spectroscopy provides many opportunities to attack complex problems that span orders of magnitude in length and time scale, which can be applied to a broad range of the energy storage systems.

  20. Developing a rapid and sensitive method for determination of trans-fatty acids in edible oils using middle-infrared spectroscopy.

    Science.gov (United States)

    da Costa Filho, Paulo Augusto

    2014-09-01

    Several countries have adopted labelling policy concerning the declaration of trans fatty acids (TFAs) content in the nutritional facts panel of processed food. Consequently, the food industry requires rapid methods to measure low levels of TFAs. This paper reports the development of a rapid method to determine TFAs fat samples extracted from finished products using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). Traditional linear regression and Partial Least Squares (PLS) statistical tools were applied to model the spectroscopic data. The calibration models of edible oils/fat samples showed a coefficient-of-correlation ⩾0.982 and standard error of prediction (SEP) between 0.03% and 0.06%. The ATR-FTIR results of extracted oils/fat are in good agreement with the capillary gas chromatography with flame ionisation detector (GC/FID). This study has demonstrated that ATR-FTIR technique can be used to rapidly determine trans fatty acids fat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy.

    Science.gov (United States)

    Olsztyńska-Janus, Sylwia; Szymborska-Małek, Katarzyna; Gąsior-Głogowska, Marlena; Walski, Tomasz; Komorowska, Małgorzata; Witkiewicz, Wojciech; Pezowicz, Celina; Kobielarz, Magdalena; Szotek, Sylwia

    2012-01-01

    Among the currently used methods of monitoring human tissues and their components many types of research are distinguished. These include spectroscopic techniques. The advantage of these techniques is the small amount of sample required, the rapid process of recording the spectra, and most importantly in the case of biological samples - preparation of tissues is not required. In this work, vibrational spectroscopy: ATR-FTIR and Raman spectroscopy will be used. Studies are carried out on tissues: tendons, blood vessels, skin, red blood cells and biological components: amino acids, proteins, DNA, plasma, and deposits.

  2. Ammonia absorption in calcium graphite intercalation compound: in situ neutron diffraction, Raman spectroscopy and magnetization.

    Science.gov (United States)

    Srinivas, G; Lovell, A; Skipper, N T; Bennington, S M; Kurban, Z; Smith, R I

    2010-06-21

    The structure and superconducting properties of ammoniated calcium-graphite intercalation compound (Ca-GIC) have been investigated using in situ time-of-flight neutron diffraction, Raman spectroscopy and magnetization studies. Ammonia absorption has been carried out by exposing preformed Ca-GIC to ammonia vapour at various pressures. Our in situ neutron diffraction data reveal a complex ammonia pressure dependent structural transformation, in which the growth of secondary ammoniated Ca-GIC phases are observed at the expense of the pristine CaC(6) and graphite. The ammonia absorption is irreversible in nature, and degassing the sample at elevated temperature leads to the formation of calcium amide and hydrogen. The Raman spectroscopy and magnetization studies show that the ammonia absorption not only leads to a large stacking disorder, but it also reduces the superconducting CaC(6) phase fraction. Finally, we propose a molecular stacking model which accounts for the observed ammonia absorption and concomitant structural phase transitions.

  3. In-situ investigation of the calcination process of mixed oxide xerogels with Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Panitz, J.C. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The controlled calcination of materials derived by sol-gel reactions is important for the evolution of the final structure. Raman spectroscopy is an ideal tool for the identification of surface species under in-situ conditions, as demonstrated in the following for the example of a molybdenum oxide-silica xerogel. Raman spectra of this particular sample were recorded at temperatures as high as 1173 K, and compared with those of a reference material.(author) 3 figs., 4 refs.

  4. Setup for in situ deep level transient spectroscopy of semiconductors during swift heavy ion irradiation.

    Science.gov (United States)

    Kumar, Sandeep; Kumar, Sugam; Katharria, Y S; Safvan, C P; Kanjilal, D

    2008-05-01

    A computerized system for in situ deep level characterization during irradiation in semiconductors has been set up and tested in the beam line for materials science studies of the 15 MV Pelletron accelerator at the Inter-University Accelerator Centre, New Delhi. This is a new facility for in situ irradiation-induced deep level studies, available in the beam line of an accelerator laboratory. It is based on the well-known deep level transient spectroscopy (DLTS) technique. High versatility for data manipulation is achieved through multifunction data acquisition card and LABVIEW. In situ DLTS studies of deep levels produced by impact of 100 MeV Si ions on Aun-Si(100) Schottky barrier diode are presented to illustrate performance of the automated DLTS facility in the beam line.

  5. [Characterization of kale (Brassica oberacea var acephala) under thallium stress by in situ attenuated total reflection FTIR].

    Science.gov (United States)

    Yao, Yan; Zhang, Ping; Wang, Zhen-Chun; Chen, Yong-Heng

    2009-01-01

    The experiment was designed based on consumption of carbon dioxide through the photosynthesis of Brassica oberacea var acephala leaf, and the photosynthesis of kale leaf under thallium stress was investigated by in situ attenuated total reflection FTIR (in situ ATR-FTIR). The ATR-FTIR showed that the absorption peaks of leaves had no obvious difference between plants growing in thallium stress soil and plants growing in non-thallium pollution soil, and the strong peaks at 3,380 cm(-1) could be assigned to the absorption of water, carbohydrate, protein or amide; the strong peaks at 2,916 and 2,850 cm(-1) assigned to the absorption of carbohydrate or aliphatic compound; the peaks at 1,640 cm(-1) assigned to the absorption of water. However, as detected by the in situ ATR-FTIR, the double peaks (negative peaks) at 2,360 and 2,340 cm(-1) that are assigned to the absorption of CO2 appeared and became high gradually. It was showed that kale was carrying photosynthesis. At the same time, the carbon dioxide consumption speed of leaf under thallium stress was obviously larger than that of the blank It was expressed that photosynthesis under thallium stress was stronger than the blank All these represented that kale had certain tolerance to the heavy metal thallium. Meanwhile, the carbon dioxide consumption of grown-up leaf was more than that of young leaf whether or not under thallium stress. It was also indicated that the intensity of photosynthesis in grown-up leaf is higher than that in young leaf.

  6. Characterization of TiAlN thin film annealed under O2 by in situ time of flight direct recoil spectroscopy/mass spectroscopy of recoiled ions and ex situ x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Tempez, A.; Bensaoula, A.; Schultz, A.

    2002-01-01

    The oxidation of an amorphous TiAlN coating has been studied by in situ direct recoil spectroscopy (DRS) and mass spectroscopy of recoiled ions (MSRI) and ex situ x-ray photoelectron spectroscopy (XPS). DRS and MSRI monitored the changes in surface composition as the sample was heated to 460 deg. C under an 18 O 2 pressure of 10 -6 Torr. Angular resolved XPS data were acquired for thickness-dependence information. The initial surface was partially oxidized from air exposure. Both DRS and XPS showed the Al-rich near surface and the presence of N in the subsurface. As shown by DRS and MSRI, oxidation at elevated temperatures yielded surface nitrogen loss and Ti enrichment. XPS confirmed the preferential formation of TiO 2 on the surface. This study also provides a comparison between the direct recoil (neutrals and ions) and the ionic recoil signals. In our conditions, the negative ionic fraction of all elements except H tracks their true surface content variations given by DRS. The results were compared with early work performed on identical samples. In this case the TiAlN film was oxidized with an O 2 pressure in the mTorr range and the surface changes are followed in situ by positive MSRI and XPS. This experiment also indicates that Al and N are buried under TiO 2 but from 600 deg. C

  7. Design, development, and demonstration of a fully LabVIEW controlled in situ electrochemical Fourier transform infrared setup combined with a wall-jet electrode to investigate the electrochemical interface of nanoparticulate electrocatalysts under reaction conditions.

    Science.gov (United States)

    Nesselberger, Markus; Ashton, Sean J; Wiberg, Gustav K H; Arenz, Matthias

    2013-07-01

    We present a detailed description of the construction of an in situ electrochemical ATR-FTIR setup combined with a wall-jet electrode to investigate the electrocatalytic properties of nanoparticulate catalysts in situ under controlled mass transport conditions. The presented setup allows the electrochemical interface to be probed in combination with the simultaneous determination of reaction rates. At the same time, the high level of automation allows it to be used as a standard tool in electrocatalysis research. The performance of the setup was demonstrated by probing the oxygen reduction reaction on a platinum black catalyst in sulfuric electrolyte.

  8. Infrared spectroscopy with multivariate analysis to interrogate endometrial tissue: a novel and objective diagnostic approach.

    Science.gov (United States)

    Taylor, S E; Cheung, K T; Patel, I I; Trevisan, J; Stringfellow, H F; Ashton, K M; Wood, N J; Keating, P J; Martin-Hirsch, P L; Martin, F L

    2011-03-01

    Endometrial cancer is the most common gynaecological malignancy in the United Kingdom. Diagnosis currently involves subjective expert interpretation of highly processed tissue, primarily using microscopy. Previous work has shown that infrared (IR) spectroscopy can be used to distinguish between benign and malignant cells in a variety of tissue types. Tissue was obtained from 76 patients undergoing hysterectomy, 36 had endometrial cancer. Slivers of endometrial tissue (tumour and tumour-adjacent tissue if present) were dissected and placed in fixative solution. Before analysis, tissues were thinly sliced, washed, mounted on low-E slides and desiccated; 10 IR spectra were obtained per slice by attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy. Derived data was subjected to principal component analysis followed by linear discriminant analysis. Post-spectroscopy analyses, tissue sections were haematoxylin and eosin-stained to provide histological verification. Using this approach, it is possible to distinguish benign from malignant endometrial tissue, and various subtypes of both. Cluster vector plots of benign (verified post-spectroscopy to be free of identifiable pathology) vs malignant tissue indicate the importance of the lipid and secondary protein structure (Amide I and Amide II) regions of the spectrum. These findings point towards the possibility of a simple objective test for endometrial cancer using ATR-FTIR spectroscopy. This would facilitate earlier diagnosis and so reduce the morbidity and mortality associated with this disease.

  9. In-situ Raman spectroscopy to elucidate the influence of adsorption in graphene electrochemistry.

    Science.gov (United States)

    van den Beld, Wesley T E; Odijk, Mathieu; Vervuurt, René H J; Weber, Jan-Willem; Bol, Ageeth A; van den Berg, Albert; Eijkel, Jan C T

    2017-03-24

    Electrochemistry on graphene is of particular interest due to graphene's high surface area, high electrical conductivity and low interfacial capacitance. Because the graphene Fermi level can be probed by its strong Raman signal, information on the graphene doping can be obtained which in turn can provide information on adsorbed atoms or molecules. For this paper, the adsorption analysis was successfully performed using three electroactive substances with different electrode interaction mechanisms: hexaammineruthenium(III) chloride (RuHex), ferrocenemethanol (FcMeOH) and potassium ferricyanide/potassium ferrocyanide (Fe(CN) 6 ). The adsorption state was probed by analysing the G-peak position in the measured in-situ Raman spectrum during electrochemical experiments. We conclude that electrochemical Raman spectroscopy on graphene is a valuable tool to obtain in-situ information on adsorbed species on graphene, isolated from the rest of the electrochemical behaviour.

  10. In-situ Raman spectroscopy as a characterization tool for carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Panitz, J.-C.; Joho, F.B.; Novak, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Lithium intercalation and de-intercalation into/from graphite electrodes in a nonaqueous electrolyte has been studied using in-situ Raman spectroscopy. Our experiments give information on the electrode-electrolyte interface with improved spatial resolution. The spectra taken from the electrode surface change with electrode potential. In this way, information on the nature of the chemical species present during charging and discharging half cycles is gained. For the first time, mapping techniques were applied to investigate if lithium intercalation proceeds homogeneously on the carbon electrode. (author) 3 figs., 1 tab., 4 refs.

  11. Development of experimental in-situ Pu monitoring system based on passive gamma spectroscopy technique

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vinod, M.; Paulson, M.; Das, D.; Ananthakrishnan, T.S.; Pithawa, C.K.; Debdas, A.; Udagatti, S.V.; Singh, Pratap; Rajendra Kumar

    2013-01-01

    To meet the requirements of in-situ 239 Pu monitoring at various stages of fuel reprocessing for NRB, an indigenous Pu monitoring system is developed by Electronics Division, BARC. The system is based on passive gamma spectroscopy technique and utilizes an advanced scintillation detector along-with compact spectroscopy hardware. The system hardware and application software have been installed at Control Lab, PREFRE-2, Tarapur for testing and evaluation. Quantification accuracy of better than 10% is achieved during the initial phase of evaluation. The system is targeted for quantification of Pu in samples drawn from Pu purification cycles with operational frequency of 3-5 samples in Round-The-Clock shifts. The system will significantly minimize manual handling of Pu samples in comparison with the existing methods. (author)

  12. Monitoring lactic acid production during milk fermentation by in situ quantitative proton nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Bouteille, R; Gaudet, M; Lecanu, B; This, H

    2013-04-01

    When fermenting milk, lactic bacteria convert part of α- and β-lactoses into d- and l- lactic acids, causing a pH decrease responsible for casein coagulation. Lactic acid monitoring during fermentation is essential for the control of dairy gel textural and organoleptic properties, and is a way to evaluate strain efficiency. Currently, titrations are used to follow the quantity of acids formed during jellification of milk but they are not specific to lactic acid. An analytical method without the use of any reagent was investigated to quantify lactic acid during milk fermentation: in situ quantitative proton nuclear magnetic resonance spectroscopy. Two methods using in situ quantitative proton nuclear magnetic resonance spectroscopy were compared: (1) d- and l-lactic acids content determination, using the resonance of their methyl protons, showing an increase from 2.06 ± 0.02 to 8.16 ± 0.74 g/L during 240 min of fermentation; and (2) the determination of the α- and β-lactoses content, decreasing from 42.68 ± 0.02 to 30.76 ± 1.75 g/L for the same fermentation duration. The ratio between the molar concentrations of produced lactic acids and consumed lactoses enabled cross-validation, as the value (2.02 ± 0.18) is consistent with lactic acid bacteria metabolism. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. A flexible gas flow reaction cell for in situ x-ray absorption spectroscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Kroner, Anna B., E-mail: anna.kroner@diamond.ac.uk; Gilbert, Martin; Duller, Graham; Cahill, Leo; Leicester, Peter; Woolliscroft, Richard; Shotton, Elizabeth J. [Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Chilton, Oxfordshire, OX110DE (United Kingdom); Mohammed, Khaled M. H. [UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX110FA (United Kingdom); School of Chemistry, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2016-07-27

    A capillary-based sample environment with hot air blower and integrated gas system was developed at Diamond to conduct X-ray absorption spectroscopy (XAS) studies of materials under time-resolved, in situ conditions. The use of a hot air blower, operating in the temperature range of 298-1173 K, allows introduction of other techniques e.g. X-ray diffraction (XRD), Raman spectroscopy for combined techniques studies. The flexibility to use either quartz or Kapton capillaries allows users to perform XAS measurement at energies as low as 5600 eV. To demonstrate performance, time-resolved, in situ XAS results of Rh catalysts during the process of activation (Rh K-edge, Ce L{sub 3}-edge and Cr K-edge) and the study of mixed oxide membrane (La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ}) under various partial oxygen pressure conditions are described.

  14. Integrated Fourier transform infrared spectroscopy and gas chromatography tandem mass spectrometry for forensic engine lubricating oil and biodiesel analysis

    International Nuclear Information System (INIS)

    Shang, D.

    2009-01-01

    Gas chromatography/mass spectrometry(GC/MS) is commonly used for oil fingerprinting and provides investigators with good forensic data. However, new challenges face oil spill forensic chemistry with the growing use of biodiesel as well as the recycling and reprocessing of used oil, particularly lubricating oils. This paper demonstrated that Fourier transform infrared (FTIR) spectroscopy may be a fast, cost effective and complementary method for forensic analysis of biodiesels (fatty acid methyl esters) and lubricating oils. Attenuated total reflectance (ATR)-FTIR spectroscopy was shown to be an interesting analytic method because of its use in monitoring and quantifying minor chemical compounds in sample matrices and its ability to identify a broad range or organic compounds. Unlike chromatography, FTIR spectroscopy with ATR can provide results without compound separation or lengthy sample preparation steps. This study described the combined use of GC and ATR-FTIR in environmental oil spill identification through the matching of source lube oil samples with artificially weathered samples. Samples recovered from a biodiesel spill incident were also investigated. ATR-FTIR provided detailed spectral information for rapid lube oil differentiation. This study was part of a continuing effort to develop a methodology to deal with chemical spills of unknown origin, which is an important aspect in environmental protection and emergency preparedness. This method was only successfully applied to the short term artificially weathered and fresh lube oil characterization, and to limited cases of biodiesel spills. It was concluded that further validation tests are needed to determine if this method can be applied to real-world weather lube oil samples. 10 refs., 11 figs.

  15. In Situ Spectroscopy and Mechanistic Insights into CO Oxidation on Transition-Metal-Substituted Ceria Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Joseph S.; Stoerzinger, Kelsey A.; Hong, Wesley T.; Risch, Marcel; Giordano, Livia [Dipartimento; Mansour, Azzam N. [Naval; Shao-Horn, Yang

    2017-09-12

    Herein we investigate the reaction intermediates formed during CO oxidation on copper-substituted ceria nanoparticles (Cu0.1Ce0.9O2–x) by means of in situ spectroscopic techniques and identify an activity descriptor that rationalizes a trend with other metal substitutes (M0.1Ce0.9O2–x, M = Mn, Fe, Co, Ni). In situ X-ray absorption spectroscopy (XAS) performed under catalytic conditions demonstrates that O2– transfer occurs at dispersed copper centers, which are redox active during catalysis. In situ XAS reveals a dramatic reduction at the copper centers that is fully reversible under catalytic conditions, which rationalizes the high catalytic activity of Cu0.1Ce0.9O2–x. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) show that CO can be oxidized to CO32– in the absence of O2. We find that CO32– desorbs as CO2 only under oxygen-rich conditions when the oxygen vacancy is filled by the dissociative adsorption of O2. These data, along with kinetic analyses, lend support to a mechanism in which the breaking of copper–oxygen bonds is rate-determining under oxygen-rich conditions, while refilling the resulting oxygen vacancy is rate-determining under oxygen-lean conditions. On the basis of these observations and density functional calculations, we introduce the computed oxygen vacancy formation energy (Evac) as an activity descriptor for substituted ceria materials and demonstrate that Evac successfully rationalizes the trend in the activities of M0.1Ce0.9O2–x catalysts that spans three orders of magnitude. The applicability of Evac as a useful design descriptor is demonstrated by the catalytic performance of the ternary oxide Cu0.1La0.1Ce0.8O2–x, which has an apparent activation energy rivaling those of state-of-the-art Au/TiO2 materials. Thus, we suggest that cost-effective catalysts for CO oxidation can be rationally designed by judicious choice of substituting

  16. In situ semi-quantitative analysis of polluted soils by laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Ismaël, Amina; Bousquet, Bruno; Michel-Le Pierrès, Karine; Travaillé, Grégoire; Canioni, Lionel; Roy, Stéphane

    2011-05-01

    Time-saving, low-cost analyses of soil contamination are required to ensure fast and efficient pollution removal and remedial operations. In this work, laser-induced breakdown spectroscopy (LIBS) has been successfully applied to in situ analyses of polluted soils, providing direct semi-quantitative information about the extent of pollution. A field campaign has been carried out in Brittany (France) on a site presenting high levels of heavy metal concentrations. Results on iron as a major component as well as on lead and copper as minor components are reported. Soil samples were dried and prepared as pressed pellets to minimize the effects of moisture and density on the results. LIBS analyses were performed with a Nd:YAG laser operating at 1064 nm, 60 mJ per 10 ns pulse, at a repetition rate of 10 Hz with a diameter of 500 μm on the sample surface. Good correlations were obtained between the LIBS signals and the values of concentrations deduced from inductively coupled plasma atomic emission spectroscopy (ICP-AES). This result proves that LIBS is an efficient method for optimizing sampling operations. Indeed, "LIBS maps" were established directly on-site, providing valuable assistance in optimizing the selection of the most relevant samples for future expensive and time-consuming laboratory analysis and avoiding useless analyses of very similar samples. Finally, it is emphasized that in situ LIBS is not described here as an alternative quantitative analytical method to the usual laboratory measurements but simply as an efficient time-saving tool to optimize sampling operations and to drastically reduce the number of soil samples to be analyzed, thus reducing costs. The detection limits of 200 ppm for lead and 80 ppm for copper reported here are compatible with the thresholds of toxicity; thus, this in situ LIBS campaign was fully validated for these two elements. Consequently, further experiments are planned to extend this study to other chemical elements and other

  17. Infrared spectroscopy as a screening technique for colitis

    Science.gov (United States)

    Titus, Jitto; Ghimire, Hemendra; Viennois, Emilie; Merlin, Didier; Perera, A. G. Unil

    2017-05-01

    There remains a great need for diagnosis of inflammatory bowel disease (IBD), for which the current technique, colonoscopy, is not cost-effective and presents a non-negligible risk for complications. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy is a new screening technique to evaluate colitis. Comparing infrared spectra of sera to study the differences between them can prove challenging due to the complexity of its biological constituents giving rise to a plethora of vibrational modes. Overcoming these inherent infrared spectral analysis difficulties involving highly overlapping absorbance peaks and the analysis of the data by curve fitting to improve the resolution is discussed. The proposed technique uses colitic and normal wild type mice dried serum to obtain ATR/FTIR spectra to effectively differentiate colitic mice from normal mice. Using this method, Amide I group frequency (specifically, alpha helix to beta sheet ratio of the protein secondary structure) was identified as disease associated spectral signature in addition to the previously reported glucose and mannose signatures in sera of chronic and acute mice models of colitis. Hence, this technique will be able to identify changes in the sera due to various diseases.

  18. In situ differential reflectance spectroscopy of thin crystalline films of PTCDA on different substrates

    International Nuclear Information System (INIS)

    Proehl, Holger; Nitsche, Robert; Dienel, Thomas; Leo, Karl; Fritz, Torsten

    2005-01-01

    We report an investigation of the excitonic properties of thin crystalline films of the archetypal organic semiconductor PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) grown on poly- and single crystalline surfaces. A sensitive setup capable of measuring the optical properties of ultrathin organic molecular crystals via differential reflectance spectroscopy (DRS) is presented. This tool allows to carry out measurements in situ, i.e., during the actual film growth, and over a wide spectral range, even on single crystalline surfaces with high symmetry or metallic surfaces, where widely used techniques like reflection anisotropy spectroscopy (RAS) or fluorescence excitation spectroscopy fail. The spectra obtained by DRS resemble mainly the absorption of the films if transparent substrates are used, which simplifies the analysis. In the case of mono- to multilayer films of PTCDA on single crystalline muscovite mica(0001) and Au(111) substrates, the formation of the solid state absorption from monomer to dimer and further to crystal-like absorption spectra can be monitored

  19. Fast in situ gamma spectroscopy using hand-held spectrometer with NaI probe.

    Science.gov (United States)

    Guguła, Szymon; Kozak, Krzysztof; Mazur, Jadwiga; Grządziel, Dominik; Mroczek, Mariusz

    2018-08-01

    In this work a hand-held spectrometer InSpector 1000 with NaI (Tl) 2″ x 2″ detector has been adapted to fast in situ gamma-ray spectroscopy. Two specially designed mounting stands with shielding have been built, allowing conducting measurements in different geometries. Three particular geometries (NW, IS50, IS00) have been chosen for efficiency calibration and further study. The first one (NW) is intended for small environmental samples (volume ca 140 cm 3 ) collected on site. IS50 geometry is a typical in situ geometry meant for radioactivity measurements in soil with detector pointed towards the ground. In this geometry the probe is shielded and mounted 50 cm above the soil surface. The new proposed geometry IS00 is designed in the way that the detector is inserted directly into the soil in order to increase the counting efficiency. The methods of efficiency calibration involved using calibration standards (in NW geometry) and the results obtained in previous in situ measurements with InSpector 2000 portable spectrometer with HPGe detector and ISOCS™ Shield Systems, which is routinely used in environmental measurements. NW geometry turned out to be useful for natural radioisotopes concentrations (K-40, U-238 and Th-232), which significantly exceed typical values of those concentrations observed in Poland. Both IS50 and IS00 geometries are applicative for quick (2 h long measurement) evaluation of typical concentrations of K, U and Th in soils. The newly proposed geometry IS00 is superior as it showed lower detection limits and uncertainties as well as its handling was far easier than of IS50. Authors have proven that hand-held spectrometer InSpector 1000, together with mounting stands and shielding, can be successfully used for fast in situ gamma-spectroscopy. Its relatively small weight and good mobility are additional assets. Moreover, detailed procedures for measurements in each geometry have been developed to conduct such analyses properly. Copyright

  20. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    Science.gov (United States)

    Blanc, Frédéric; Leskes, Michal; Grey, Clare P

    2013-09-17

    Electrochemical cells, in the form of batteries (or supercapacitors) and fuel cells, are efficient devices for energy storage and conversion. These devices show considerable promise for use in portable and static devices to power electronics and various modes of transport and to produce and store electricity both locally and on the grid. For example, high power and energy density lithium-ion batteries are being developed for use in hybrid electric vehicles where they improve the efficiency of fuel use and help to reduce greenhouse gas emissions. To gain insight into the chemical reactions involving the multiple components (electrodes, electrolytes, interfaces) in the electrochemical cells and to determine how cells operate and how they fail, researchers ideally should employ techniques that allow real-time characterization of the behavior of the cells under operating conditions. This Account reviews the recent use of in situ solid-state NMR spectroscopy, a technique that probes local structure and dynamics, to study these devices. In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. The battery is placed inside the NMR coil, leads are connected to a potentiostat, and the NMR spectra are recorded as a function of state of charge. (7)Li is used for many of these experiments because of its high sensitivity, straightforward spectral interpretation, and relevance to these devices. For example, (7)Li spectroscopy was used to detect intermediates formed during electrochemical cycling such as LixC and LiySiz species in batteries with carbon and silicon anodes, respectively. It was also used to observe and quantify the formation and growth of metallic lithium microstructures, which can cause short circuits and battery failure. This approach can be utilized to identify conditions that promote dendrite formation and whether different electrolytes and additives can help

  1. In situ/Operando studies of electrocatalysts using hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lassalle-Kaiser, Benedikt [Synchrotron SOLEIL, Gif-sur-Yvette (France); Gul, Sheraz [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; Kern, Jan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Yachandra, Vittal K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; Yano, Junko [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.

    2017-05-02

    This review focuses on the use of X-ray absorption and emission spectroscopy techniques using hard X-rays to study electrocatalysts under in situ/operando conditions. The importance and the versatility of methods in the study of electrodes in contact with the electrolytes are described, when they are being cycled through the catalytic potentials during the progress of the oxygen-evolution, oxygen reduction and hydrogen evolution reactions. The catalytic oxygen evolution reaction is illustrated with examples using three oxides, Co, Ni and Mn, and two sulfides, Mo and Co. These are used as examples for the hydrogen evolution reaction. A bimetallic, bifunctional oxygen evolving and oxygen reducing Ni/Mn oxide is also presented. The various advantages and constraints in the use of these techniques and the future outlook are discussed.

  2. In and ex situ optical spectroscopy of HCI-bombarded solid surfaces

    International Nuclear Information System (INIS)

    Tona, Masahide; Baba, Yukari; Takahashi, Satoshi; Nagata, Kazuo; Nakamura, Nobuyuki; Yoshiyasu, Nobuo; Yamada, Chikashi; Ohtani, Shunsuke

    2005-01-01

    We have observed Raman scattering from highly oriented pyrolytic graphite (HOPG) surfaces after irradiation with highly charged ions (HCIs) as ex situ spectroscopy. HCIs having various potential energies from 5 keV for Ar 16+ to 99 keV for Xe 50+ were normally incident onto HOPG surfaces with the same collision velocities (5 x 10 5 m/s). In all spectra at fluence of 1 x 10 11 ions/cm 2 , disorder induced peaks (D peak) appeared around 1580 cm -1 in addition to narrower peaks (G peak) which were also observed unirradiated HOPG at 1358 cm -1 . Relative intensities of the D peak with respect to the G peak increase gradually as increasing potential energies of the HCIs. This shows obviously the effect of potential energy deposition on structural deformation of HOPG

  3. Instrument for x-ray absorption spectroscopy with in situ electrical control characterizations

    International Nuclear Information System (INIS)

    Huang, Chun-Chao; Chang, Shu-Jui; Yang, Chao-Yao; Tseng, Yuan-Chieh; Chou, Hsiung

    2013-01-01

    We report a synchrotron-based setup capable of performing x-ray absorption spectroscopy and x-ray magnetic circular dichroism with simultaneous electrical control characterizations. The setup can enable research concerning electrical transport, element- and orbital-selective magnetization with an in situ fashion. It is a unique approach to the real-time change of spin-polarized electronic state of a material/device exhibiting magneto-electric responses. The performance of the setup was tested by probing the spin-polarized states of cobalt and oxygen of Zn 1-x Co x O dilute magnetic semiconductor under applied voltages, both at low (∼20 K) and room temperatures, and signal variations upon the change of applied voltage were clearly detected

  4. Quantitative laser-induced breakdown spectroscopy of potassium for in-situ geochronology on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Stipe, Christopher B., E-mail: stipec@seattleu.edu [Department of Mechanical Engineering, Seattle University, Seattle, WA 98122 (United States); Guevara, Edward; Brown, Jonathan [Department of Mechanical Engineering, Seattle University, Seattle, WA 98122 (United States); Rossman, George R. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-04-15

    Laser-induced breakdown spectroscopy is explored for the development of an in-situ K-Ar geochronology instrument for Mars. Potassium concentrations in standard basaltic glasses and equivalent rock samples in their natural form are quantified using the potassium doublet at 766.49 and 769.90 nm. Measurement precision varies from 0.5 to 5.5 (% RSD) over the 3.63% to 0.025% potassium by weight for the standard samples, and little additional precision is achieved above 20 laser shots at 5 locations. For the glass standards, the quantification limits are 920 and 66 ppm for non-weighted and weighted calibration methods, respectively. For the basaltic rocks, the quantification limits are 2650 and 328 ppm for the non-weighted and weighted calibration methods, respectively. The heterogeneity of the rock samples leads to larger variations in potassium signal; however, normalizing the potassium peak by base area at 25 locations on the rock improved calibration accuracy. Including only errors in LIBS measurements, estimated age errors for the glasses range from approximately {+-} 30 Ma for 3000 Ma samples to {+-} 2 Ma for 100 Ma samples. For the basaltic rocks, the age errors are approximately {+-} 120 Ma for 3000 Ma samples and {+-} 8 Ma for 100 Ma samples. - Highlights: Black-Right-Pointing-Pointer Measurement of basaltic glasses and rocks by laser-induced breakdown spectroscopy. Black-Right-Pointing-Pointer Quantification of potassium for K-Ar dating. Black-Right-Pointing-Pointer Development of an instrument for in-situ geochronology on Mars. Black-Right-Pointing-Pointer Detection limit is 35 ppm, relative standard deviations range from 0.5% to 5.5%. Black-Right-Pointing-Pointer Estimated errors for the glass standards range from {+-} 30 Ma for 3000 Ma and {+-} 2 Ma for 100 Ma; estimated errors for the basaltic rocks range from {+-} 120 Ma for 3000 Ma and {+-} 8 Ma for 100 Ma.

  5. In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms

    Science.gov (United States)

    Haochih Liu, Bernard; Li, Kun-Lin; Kang, Kai-Li; Huang, Wen-Ke; Liao, Jiunn-Der

    2013-07-01

    This work presents in situ biosensing approaches to study the nanomechanical and electrochemical behaviour of Streptococcus mutans biofilms under different cultivation conditions and microenvironments. The surface characteristics and sub-surface electrochemistry of the cell wall of S. mutans were measured by atomic force microscopy (AFM) based techniques to monitor the in situ biophysical status of biofilms under common anti-pathogenic procedures such as ultraviolet (UV) radiation and alcohol treatment. The AFM nanoindentation suggested a positive correlation between nanomechanical strength and the level of UV radiation of S. mutans; scanning impedance spectroscopy of dehydrated biofilms revealed reduced electrical resistance that is distinctive from that of living biofilms, which can be explained by the discharge of cytoplasm after alcohol treatment. Furthermore, the localized elastic moduli of four regions of the biofilm were studied: septum (Z-ring), cell wall, the interconnecting area between two cells and extracellular polymeric substance (EPS) area. The results indicated that cell walls exhibit the highest elastic modulus, followed by Z-ring, interconnect and EPS. Our approach provides an effective alternative for the characterization of the viability of living cells without the use of biochemical labelling tools such as fluorescence dyeing, and does not rely on surface binding or immobilization for detection. These AFM-based techniques can be very promising approaches when the conventional methods fall short.

  6. In-situ electrochemical impedance spectroscopy measurements of zirconium alloy oxide conductivity: Relationship to hydrogen pickup

    International Nuclear Information System (INIS)

    Couet, Adrien; Motta, Arthur T.; Ambard, Antoine; Livigni, Didier

    2017-01-01

    Highlights: • In-situ electrochemistry on zirconium alloys in 360 °C pure water show oxide layer resistivity changes during corrosion. • A linear relationship is observed between oxide resistivity and instantaneous hydrogen pickup fraction. • The resistivity of the oxide layer formed on Zircaloy-4 (and thus its hydrogen pickup fraction) is higher than on Zr-2.5Nb. - Abstract: Hydrogen pickup during nuclear fuel cladding corrosion is a critical life-limiting degradation mechanism for nuclear fuel. Following a program dedicated to zirconium alloys, corrosion, it has been hypothesized that oxide electronic resistivity determines hydrogen pickup. In-situ electrochemical impedance spectroscopy experiments were performed on Zircaloy-4 and Zr-2.5Nb alloys in 360 °C water. The oxide resistivity was measured as function of time. The results show that as the oxide resistivity increases so does the hydrogen pickup fraction. The resistivity of the oxide layer formed on Zircaloy-4 is higher than on Zr-2.5Nb, resulting in a higher hydrogen pickup fraction of Zircaloy-4, compared to Zr-2.5Nb.

  7. Monitoring electrochemical reactions in situ using steady-state free precession {sup 13}C NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Luiza M.S. [Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13560-070 (Brazil); Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos, São Paulo 13560-970 (Brazil); Moraes, Tiago B. [Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos, São Paulo 13560-970 (Brazil); Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13566-590 (Brazil); Barbosa, Lucio L. [Departamento de Química, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari 514, Vitória, Espírito Santo 29075-910 (Brazil); Mazo, Luiz H. [Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13560-070 (Brazil); and others

    2014-11-19

    Highlights: • Analysis of electrochemical reaction in situ by 13C NMR spectroscopy was demonstrated. • {sup 13}C NMR signals are obtained in few minutes, using steady-state free precession (SSFP) pulse sequence. • The analysis is performed in standard NMR spectrometer. • KBDM can be an alternative to Fourier Transform to process SSFP signal. - Abstract: All attempts to use in situ{sup 13}C NMR in spectroelectrochemical studies, using static cells and unlabeled substrates, have failed due to the very long average time (several hours). In this paper, we demonstrated that steady-state free precession (SSFP) pulse sequence can enhance signal to noise ratio and reduces the average time of {sup 13}C NMR signals by more than one order of magnitude. The results showed that each {sup 13}C NMR spectrum during the electrochemical reduction of 9-chloroanthracene, in a static cell, can be acquired in eleven minutes. This short averaging time allowed the analysis of the reaction every 30 min during 3 h. The phase and truncation anomalies present in SSFP spectra were minimized using Traff apodization function and Krylov basis diagonalization method (KBDM)

  8. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    Science.gov (United States)

    Hu, Jian Zhi [Richland, WA; Sears, Jr., Jesse A.; Hoyt, David W [Richland, WA; Wind, Robert A [Kennewick, WA

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  9. [In situ diffuse reflectance FTIR spectroscopy characterization of titanium silicalite-1 catalytic oxidization of styrene].

    Science.gov (United States)

    Zhang, Ping; Wang, Le-fu; Chen, Yong-heng

    2007-05-01

    The Stability of framework of titanium silicalite-1 (TS-1) was investigated by high temperature diffuse reflectance FT-IR spectroscopy (DRIFTS), and the results showed that the 960 cm(-1) peak belonging to Ti-framework was stabilized at 673 K, but the two peaks belonging to framework shifted to lower frequencies by about 13 cm(-1) at 673 K. The effect on the framework after H2O2 adsorption was discussed. The results showed that the 960 cm(-1) peak lowered and shifted to high frequencies by about 11 cm(-1), but it recovered with vacuum or heating up. It was suggested that the 960 cm(-1) peak characterizes Ti==O, and this explained why the 960 cm(-1) peak shifted to high frequencies well. TS-1 catalytic oxidization of styrene was investigated by in situ DRIFTS. The reaction process was detected and phenyl aldehyde was the main product. Based on in situ analysis, it was proposed that H2O2 was adsorbed on Ti in framework of TS-1 to form active center.

  10. Prion structure investigated in situ, ex vivo, and in vitro by FTIR spectroscopy

    Science.gov (United States)

    Kneipp, Janina; Miller, Lisa M.; Spassov, Sashko; Sokolowski, Fabian; Lasch, Peter; Beekes, Michael; Naumann, Dieter

    2004-07-01

    Syrian hamster nervous tissue was investigated by FTIR microspectroscopy with conventional and synchrotron infrared light sources. Various tissue structures from the cerebellum and medulla oblongata of scrapie-infected and control hamsters were investigated at a spatial resolution of 50 μm. Single neurons in dorsal root ganglia of scrapie-infected hamsters were analyzed by raster scan mapping at 6 μm spatial resolution. These measurements enabled us to (i) scrutinize structural differences between infected and non-infected tissue and (ii) analyze for the first time the distribution of different protein structures in situ within single nerve cells. Single nerve cells exhibited areas of increased β-sheet content, which co-localized consistently with accumulations of the pathological prion protein (PrPSc). Spectral data were also obtained from purified, partly proteinase K digested PrPSc isolated from scrapie-infected nervous tissue of hamsters to elucidate similarities/dissimilarities between prion structure in situ and ex vivo. A further comparison is drawn to the recombinant Syrian hamster prion protein SHaPrP90-232, whose in vitro transition from the predominantly a-helical isoform to β-sheet rich oligomeric structures was also investigated by FTIR spectroscopy.

  11. In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms

    International Nuclear Information System (INIS)

    Liu, Bernard Haochih; Li, Kun-Lin; Kang, Kai-Li; Huang, Wen-Ke; Liao, Jiunn-Der

    2013-01-01

    This work presents in situ biosensing approaches to study the nanomechanical and electrochemical behaviour of Streptococcus mutans biofilms under different cultivation conditions and microenvironments. The surface characteristics and sub-surface electrochemistry of the cell wall of S. mutans were measured by atomic force microscopy (AFM) based techniques to monitor the in situ biophysical status of biofilms under common anti-pathogenic procedures such as ultraviolet (UV) radiation and alcohol treatment. The AFM nanoindentation suggested a positive correlation between nanomechanical strength and the level of UV radiation of S. mutans; scanning impedance spectroscopy of dehydrated biofilms revealed reduced electrical resistance that is distinctive from that of living biofilms, which can be explained by the discharge of cytoplasm after alcohol treatment. Furthermore, the localized elastic moduli of four regions of the biofilm were studied: septum (Z-ring), cell wall, the interconnecting area between two cells and extracellular polymeric substance (EPS) area. The results indicated that cell walls exhibit the highest elastic modulus, followed by Z-ring, interconnect and EPS. Our approach provides an effective alternative for the characterization of the viability of living cells without the use of biochemical labelling tools such as fluorescence dyeing, and does not rely on surface binding or immobilization for detection. These AFM-based techniques can be very promising approaches when the conventional methods fall short. (paper)

  12. An in situ Raman spectroscopy study of stress transfer between carbon nanotubes and polymer

    International Nuclear Information System (INIS)

    Mu Minfang; Winey, Karen I; Osswald, Sebastian; Gogotsi, Yury

    2009-01-01

    The transfer mechanism of applied stress in single-wall carbon nanotube (SWCNT)/poly(methyl methacrylate) (PMMA) nanocomposites was investigated using in situ Raman spectroscopy on composite fibers. These SWCNT/PMMA nanocomposite fibers have no specific SWCNT-polymer interactions and the high degree of nanotube alignment minimizes the contributions from nanotube-nanotube interactions. Although tensile testing found significantly improved overall mechanical properties of the fibers, effective stress transfer to SWCNTs is limited to a small strain regime (ε<0.2%). At higher strains, the stress on the SWCNTs decreases due to the slippage at the nanotube-polymer interface. Slippage was also evident in scanning electron micrographs of fracture surfaces produced by tensile testing of the composite fibers. Above ε = 0.2%, the strain-induced slippage was accompanied by irreversible responses in stress and Raman peak shifts. This paper shows that efficient stress transfer to nanotubes as monitored by Raman spectroscopy is crucial to improving the mechanical properties of polymer nanocomposites and to detecting internal damage in nanocomposites.

  13. Raman spectroscopy and in situ Raman spectroelectrochemistry of isotopically engineered graphene systems.

    Science.gov (United States)

    Frank, Otakar; Dresselhaus, Mildred S; Kalbac, Martin

    2015-01-20

    CONSPECTUS: The special properties of graphene offer immense opportunities for applications to many scientific fields, as well as societal needs, beyond our present imagination. One of the important features of graphene is the relatively simple tunability of its electronic structure, an asset that extends the usability of graphene even further beyond present experience. A direct injection of charge carriers into the conduction or valence bands, that is, doping, represents a viable way of shifting the Fermi level. In particular, electrochemical doping should be the method of choice, when higher doping levels are desired and when a firm control of experimental conditions is needed. In this Account, we focus on the electrochemistry of graphene in combination with in situ Raman spectroscopy, that is, in situ Raman spectroelectrochemistry. Such a combination of methods is indeed very powerful, since Raman spectroscopy not only can readily monitor the changes in the doping level but also can give information on eventual stress or disorder in the material. However, when Raman spectroscopy is employed, one of its main strengths lies in the utilization of isotope engineering during the chemical vapor deposition (CVD) growth of the graphene samples. The in situ Raman spectroelectrochemical study of multilayered systems with smartly designed isotope compositions in individual layers can provide a plethora of knowledge about the mutual interactions (i) between the graphene layers themselves, (ii) between graphene layers and their directly adjacent environment (e.g., substrate or electrolyte), and (iii) between graphene layers and their extended environment, which is separated from the layer by a certain number of additional graphene layers. In this Account, we show a few examples of such studies, from monolayer to two-layer and three-layer specimens and considering both turbostratic and AB interlayer ordering. Furthermore, the concept and the method can be extended further

  14. Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces

    Science.gov (United States)

    Kubicki, J. D.; Schroeter, L. M.; Itoh, M. J.; Nguyen, B. N.; Apitz, S. E.

    1999-09-01

    A suite of naturally-occurring carboxylic acids (acetic, oxalic, citric, benzoic, salicylic and phthalic) and their corresponding sodium salts were adsorbed onto a set of common mineral substrates (quartz, albite, illite, kaolinite and montmorillonite) in batch slurry experiments. Solution pH's of approximately 3 and 6 were used to examine the effects of pH on sorption mechanisms. Attenuated total reflectance Fourier-transform infrared (ATR FTIR) spectroscopy was employed to obtain vibrational frequencies of the organic ligands on the mineral surfaces and in solution. UV/visible spectroscopy on supernatant solutions was also employed to confirm that adsorption from solution had taken place for benzoic, salicylic and phthalic acids. Molecular orbital calculations were used to model possible surface complexes and interpret the experimental spectra. In general, the tectosilicates, quartz and albite feldspar, did not chemisorb (i.e., strong, inner-sphere adsorption) the carboxylate anions in sufficient amounts to produce infrared spectra of the organics after rinsing in distilled water. The clays (illite, kaolinite and montmorillonite) each exhibited similar ATR FTIR spectra. However, the illite sample used in this study reacted to form strong surface and aqueous complexes with salicylic acid before being treated to remove free Fe-hydroxides. Chemisorption of carboxylic acids onto clays is shown to be limited without the presence of Fe-hydroxides within the clay matrix.

  15. Quantitative Raman Spectroscopy to monitor microbial metabolism in situ under pressure

    Science.gov (United States)

    Picard, A.; Daniel, I.; Oger, P.

    2006-12-01

    Although high hydrostatic pressure (HHP) biotopes are ubiquitous on Earth, little is known about the metabolism of piezophile organisms. Cell culture under HHP can be technically challenging, and equipment- dependent. In addition, the depressurization step required for analysis can lead to erroneous data. Therefore, to understand how piezophile organisms react to pressure, it is crucial to be able to monitor their activity in situ under HHP. We developed the use of Quantitative Raman Spectroscopy (QRS, 1) to monitor in situ the metabolism of organic molecules. This technique is based on the specific spectral signature of an analyte from which its concentration can be deduced. An application of this technique to the monitoring of alcoholic fermentation by the piezotolerant micro-eucaryote Saccharomyces cerevisiae is presented. Ethanol fermentation from glucose was monitored during 24h from ambient P up to 100 MPa in the low- pressure Diamond Anvil Cell (lpDAC, 2). The experimental compression chamber consisted in a 300 μm-thick Ni gasket in which a 500 μm-diameter hole was drilled. Early-stationnary yeast cells were inoculated into fresh low-fluorescence medium containing 0.15 M of glucose. Ethanol concentration was determined in situ by QRS using the symmetric C-C stretching mode of ethanol at 878 cm-1 normalizing the data to the intensity of the sulfate S-O stretching mode at 980 cm-1. In our setup, the detection limit of ethanol is lower than 0.05 mM with a precision below 1%. At ambient P, ethanol production in the lpDAC and in control experiments proceeds with the same kinetics. Thus, yeast is not affected by its confinement. This is further confirmed by its ability to bud with a generation time similar to control experiments performed in glass tubes at ambient pressure inside the lpDAC. Ethanol production by yeast occurs to at least 65 MPa (3). At 10 MPa, fermentation proceeds 3 times faster than at ambient P. Fermentation rates decrease linearly from 20 to

  16. Discrimination of fennel chemotypes applying IR and Raman spectroscopy – discovery of a new -asarone chemotype

    Directory of Open Access Journals (Sweden)

    Krähmer, Andrea

    2016-07-01

    Full Text Available Various vibrational spectroscopy methods have been applied to classify different fennel chemotypes according to their individual profile of volatile substances. Intact fennel fruits of different chemotypes could be successfully discriminated by Attenuated Total Reflectance Fourier transform Infrared (ATR-FTIR and Near Infrared (NIR spectroscopy. Solvent extracts (CCl4 of the considered fennel fruits showed characteristic fingerprints with marker bands related to the individual volatile components (trans-anethole, fenchone, estragole, piperitenone oxide, -asarone, limonene for ATR-FTIR and FT-Raman spectroscopy. Especially C=C and C=O absorption bands contribute to the different spectral profiles. Based on hierarchical cluster analysis, the considered fennel accessions were classified according to gas chromatographic (GC and vibrational spectroscopic data. Furthermore, even a discrimination of “sweet” and “bitter” fennel fruits, both belonging to the trans-anethole chemotype, could be successfully performed. All vibrational spectroscopical techniques used in this study are rapid and easy to apply. Hence, they allow different fennel chemotypes to be reliably distinguished and can also be used for on-site measurement in free nature.

  17. Using Deep UV Raman Spectroscopy to Identify In Situ Microbial Activity

    Science.gov (United States)

    Sapers, H. M.; Wanger, G.; Amend, J.; Orphan, V. J.; Bhartia, R.

    2017-12-01

    Microbial communities living in close association with lithic substrates play a critical role in biogeochemical cycles. Understanding the interactions between microorganisms and their abiotic substrates requires knowledge of microbial activity. Identifying active cells adhered to complex environmental substrates, especially in low biomass systems, remains a challenge. Stable isotope probing (SIP) provides a means to trace microbial activity in environmental systems. Active members of the community take up labeled substrates and incorporate the labels into biomolecules that can be detected through downstream analyses. Here we show for the first time that Deep UV (248 nm) Raman spectroscopy can differentiate microbial cells labeled with stable isotopes. Previous studies have used Raman spectroscopy with a 532 nm source to identify active bacterial cells by measuring a Raman shift between peaks corresponding to amino acids incorporating 13C compared to controls. However, excitation at 532 nm precludes detection on complex substrates due to high autofluorescence of native minerals. Excitation in the DUV range offers non-destructive imaging on mineral surfaces - retaining critical contextual information. We prepared cultures of E. coli grown in 50 atom% 13C glucose spotted onto Al wafers to test the ability of DUV Raman spectroscopy to differentiate labeled and unlabeled cells. For the first time, we are able to demonstrate a distinct and repeatable shift between cells grown in labeled media and unlabeled media when imaged on Al wafers with DUV Raman spectroscopy. The Raman spectra are dominated by the characteristic Raman bands of guanine. The dominant marker peak for guanine attributed to N7-C8 and C8-N9 ring stretching and C8-H in-plane bending, is visible at 1480 cm-1 in the unlabeled cells and is blue-shifted by 20 wavenumbers to 1461 cm-1 in the labeled cells. The ability of DUV Raman to effectively identify regions containing cells that have incorporated isotopic

  18. In situ x-ray diffraction and in situ x-ray absorption spectroscopy for investigation of intercalation batteries

    International Nuclear Information System (INIS)

    Levy-Clement, C.; Mondoloni, C.; Godart, C.; Cortes, R.

    1991-01-01

    This paper presents applications of in situ X-ray diffraction and absorption techniques to the study of H + /MnO 2 alkaline batteries. The two complementary in situ techniques are described. Investigation of the electrochemical insertion and deinsertion of H + has been made through its influence on the evolution of the crystallographic structure of γ-MnO 2 , while investigation of the transfer of e - has been undertaken through the variation of the oxidation state of the manganese during the discharging and charging process of a battery. New insights in the understanding of the mechanisms of proton insertion and charge transfer into γ-MnO 2 are discussed

  19. In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Wang, Fei; Wang, Hua-Lin; Qiu, Yang; Chang, Yu-Long; Long, Yi-Tao

    2015-12-01

    In this study, we performed micro-scale dynamic laminar flow extraction and site-specific in situ chloride concentration measurements. Surface-enhanced Raman spectroscopy was utilized to investigate the diffusion process of chloride ions from an oil phase to a water phase under laminar flow. In contrast to common logic, we used SERS intensity gradients of Rhodamine 6G to quantitatively calculate the concentration of chloride ions at specific positions on a microfluidic chip. By varying the fluid flow rates, we achieved different extraction times and therefore different chloride concentrations at specific positions along the microchannel. SERS spectra from the water phase were recorded at these different positions, and the spatial distribution of the SERS signals was used to map the degree of nanoparticle aggregation. The concentration of chloride ions in the channel could therefore be obtained. We conclude that this method can be used to explore the extraction behaviour and efficiency of some ions or molecules that enhance the SERS intensity in water or oil by inducing nanoparticle aggregation.

  20. Monitoring the in-situ oxide growth on uranium by ultraviolet-visible reflectance spectroscopy

    Science.gov (United States)

    Schweke, Danielle; Maimon, Chen; Chernia, Zelig; Livneh, Tsachi

    2012-11-01

    We demonstrate the in-situ monitoring of oxide growth on U-0.1 wt. % Cr by means of UV-visible reflectance spectroscopy in the thickness range of ˜20-150 nm. Two different approaches are presented: In the "modeling approach," we employ a model for a metallic substrate covered by a dielectric layer, while taking into account the buildup of oxygen gradient and surface roughness. Then, we fit the simulated spectra to the experimental one. In the "extrema analysis," we derive an approximated analytical expression, which relates the oxide thickness to the position of the extrema in the reflectance spectra based on the condition for optical interference of the reflected light. Good agreement is found between the values extracted by the two procedures. Activation energy of ˜21 kcal/mole was obtained by monitoring the oxide growth in the temperature range of 22-90 °C. The upper bound for the thickness determination is argued to be mostly dictated by cracking and detachment processes in the formed oxide.

  1. A numerical method for the calibration of in situ gamma ray spectroscopy systems.

    Science.gov (United States)

    Dewey, S C; Whetstone, Z D; Kearfott, K J

    2010-05-01

    High purity germanium in situ gamma ray spectroscopy systems are typically calibrated using pre-calculated tables and empirical formulas to estimate the response of a detector to an exponentially distributed source in a soil matrix. Although this method is effective, it has estimated uncertainties of 10-15%, is limited to only a restricted set of measurement scenarios, and the approach only applies to an exponentially distributed source. In addition, the only soil parameters that can be varied are density and moisture content, while soil attenuation properties are fixed. This paper presents a more flexible method for performing such calibrations. For this new method, a three- or four-dimensional analytical expression is derived that is a combination of a theoretical equation and experimentally measured data. Numerical methods are used to integrate this expression, which approximates the response of a detector to a large variety of source distributions within any soil, concrete, or other matrix. The calculation method is flexible enough to allow for the variation of multiple parameters, including media attenuation properties and the measurement geometry. The method could easily be adapted to horizontally non-uniform sources as well. Detector responses are calculated analytically and Monte Carlo radiation transport simulations are used to verify the results. Results indicate that the method adds an uncertainty of only approximately 5% to the other uncertainties typically associated with the calibration of a detector system.

  2. In situ analysis of ion-induced polymer surface modification using secondary ion mass spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Okuji, Shigeto, E-mail: s-okuji@post.lintec.co.jp [Lintec Corporation, 5-14-42 Nishiki-cho, Warabi, Saitama 335-0005 (Japan); Quantum Beam Unit, National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Kitazawa, Hideaki [Quantum Beam Unit, National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003 (Japan); Takeda, Yoshihiko, E-mail: TAKEDA.Yoshihiko@nims.go.jp [Quantum Beam Unit, National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan)

    2016-06-15

    We have investigated the surface modification process consisting of ion irradiation immediately followed by exposure to ambient gas for three types of polymers having the same main chain, −C−C−, but different atoms bound to the main chain, using in situ secondary ion mass spectroscopy. The polymers’ surface was irradiated with 30 keV Au ions at a total fluence for up to 1 × 10{sup 17} cm{sup −2} and exposed to ambient gas in a ultra-high-vacuum chamber (1 × 10{sup −6} Pa) for 30 min after the ion irradiation. Low density polyethylene mainly exhibited a hydrogen dissociation during the ion irradiation and a recombination with hydrogen atoms by the exposure, polytetrafluoroethylene mainly showed a main chain scission and no recombination during the exposure, and polyvinylidene difluoride lost hydrogen and fluorine atoms by the ion irradiation and partially recombined with hydrogen and fluorine atoms upon the exposure. The deposited energy density on the polymer surfaces reflects the dependence of the modification on the incident ion species, Au or Ga ions.

  3. Design of a facility for the in situ measurement of catalytic reaction by neutron scattering spectroscopy

    Science.gov (United States)

    Tan, Shuai; Cheng, Yongqiang; Daemen, Luke L.; Lutterman, Daniel A.

    2018-01-01

    Catalysis is a critical enabling science for future energy needs. The next frontier of catalysis is to evolve from catalyst discovery to catalyst design, and for this next step to be realized, we must develop new techniques to better understand reaction mechanisms. To do this, we must connect catalytic reaction rates and selectivities to the kinetics, energetics, and dynamics of individual elementary steps and relate these to the structure and dynamics of the catalytic sites involved. Neutron scattering spectroscopies offer unique capabilities that are difficult or impossible to match by other techniques. The current study presents the development of a compact and portable instrumental design that enables the in situ investigation of catalytic samples by neutron scattering techniques. The developed apparatus was tested at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory and includes a gas handling panel that allows for computer hookups to control the panel externally and online measurement equipment such as coupled GC-FID/TCD (Gas Chromatography-Flame Ionization Detector/Thermal Conductivity Detector) and MS (Mass Spectrometry) to characterize offgassing while the sample is in the neutron scattering spectrometer. This system is flexible, modular, compact, and portable enabling its use for many types of gas-solid and liquid-solid reactions at the various beamlines housed at the SNS.

  4. Local detection of X-ray spectroscopies with an in-situ Atomic Force Microscope

    International Nuclear Information System (INIS)

    Rodrigues, M S; Dhez, O; Denmat, S Le; Felici, R; Comin, F; Chevrier, J

    2008-01-01

    The in situ combination of Scanning Probe Microscopies with X-ray microbeams adds a variety of new possibilities to the panoply of synchrotron radiation techniques. This paper describes an optics-free Atomic Force Microscope that can be directly installed on most of the synchrotron radiation end-stations for combined X-ray and atomic force microscopy experiments. The instrument can be used for atomic force imaging of the investigated sample or to locally measure the X-ray absorption or diffraction, or it can also be used to mechanically interact with the sample while simultaneously taking spectroscopy or diffraction measurements. The local character of these measurements is intrinsically linked with the use of the Atomic Force Microscope tip. It is the sharp tip that gives the opportunity to measure the photons flux impinging on it, or to locally measure the absorption coefficient or the shape of the diffraction pattern. At the end an estimation of the limits of the various techniques presented is also discussed.

  5. In Situ FTIR Analysis of CO-Tolerance of a Pt-Fe Alloy with Stabilized Pt Skin Layers as a Hydrogen Anode Catalyst for Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Ogihara

    2016-12-01

    Full Text Available The CO-tolerance mechanism of a carbon-supported Pt-Fe alloy catalyst with two atomic layers of stabilized Pt-skin (Pt2AL–PtFe/C was investigated, in comparison with commercial Pt2Ru3/C (c-Pt2Ru3/C, by in situ attenuated total reflection Fourier transform infrared (ATR-FTIR spectroscopy in 0.1 M HClO4 solution at 60 °C. When 1% CO (H2-balance was bubbled continuously in the solution, the hydrogen oxidation reaction (HOR activities of both catalysts decreased severely because the active sites were blocked by COad, reaching the coverage θCO ≈ 0.99. The bands in the IR spectra observed on both catalysts were successfully assigned to linearly adsorbed CO (COL and bridged CO (COB, both of which consisted of multiple components (COL or COB at terraces and step/edge sites. The Pt2AL–PtFe/C catalyst lost 99% of its initial mass activity (MA for the HOR after 30 min, whereas about 10% of the initial MA was maintained on c-Pt2Ru3/C after 2 h, which can be ascribed to a suppression of linearly adsorbed CO at terrace sites (COL, terrace. In contrast, the HOR activities of both catalysts with pre-adsorbed CO recovered appreciably after bubbling with CO-free pure H2. We clarify, for the first time, that such a recovery of activity can be ascribed to an increased number of active sites by a transfer of COL, terrace to COL, step/edge, without removal of COad from the surface. The Pt2AL–PtFe/C catalyst showed a larger decrease in the band intensity of COL, terrace. A possible mechanism for the CO-tolerant HOR is also discussed.

  6. Reflectance-difference spectroscopy as an optical probe for in situ determination of doping levels in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Lastras-Martinez, A.; Lara-Velazquez, I.; Balderas-Navarro, R.E.; Ortega-Gallegos, J.; Guel-Sandoval, S.; Lastras-Martinez, L.F. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi, SLP 78000 (Mexico)

    2008-07-01

    We report on in situ Reflectance Difference Spectroscopy measurements carried out on GaAs(001). Measurements were performed at temperatures of 580 C and 430 C, in both n and p-type doped films and for both (2 x 4) and c(4 x 4) reconstructions. Samples employed were grown by Molecular Beam Epitaxy with doping levels in the range from 10{sup 16}-10{sup 19} cm{sup -3}. We demonstrate the potential of Reflectance Difference Spectroscopy for impurity level determinations under growth conditions. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Characterization of ionizing radiation effects on bone using Fourier Transform Infrared Spectroscopy and multivariate analysis of spectra

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Pedro Arthur Augusto de; Dias, Derly Augusto; Zezell, Denise Maria, E-mail: zezell@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Ionizing radiation has been used as an important treatment and diagnostic method for several diseases. Optical techniques provides an efficient clinical diagnostic to support an accurate evaluation of the interaction of radiation with molecules. Fourier-transform infrared spectroscopy coupled with attenuated total reflectance (ATR-FTIR) is a label-free and nondestructive optical technique that can recognize functional groups in biological samples. In this work, 30 fragments of bone were collected from bovine femur diaphysis. Samples were cut and polished until 1 cm x 1 cm x 1 mm, which were then stored properly in the refrigerated environment. Samples irradiation was performed with a Cobalt-60 Gammacell Irradiator source at doses of 0.1 kGy, 1 kGy, whereas the fragments exposed to dose of 15 kGy was irradiated in a multipurpose irradiator of Cobalt-60. Spectral data was submitted to principal component analysis followed by linear discriminant analysis. Multivariate analysis was performed with Principal component analysis(PCA) followed by Linear Discriminant Analysis(LDA) using MATLAB R2015a software (The Mathworks Inc., Natick, MA, USA). We demonstrated the feasibility of using ATR-FTIR spectroscopy associated with PCA-LDA multivariate technique to evaluate the molecular changes in bone matrix caused by different doses: 0.1 kGy, 1 kGy and 15 kGy. These alterations between the groups are mainly reported in phosphate region. Our results open up new possibilities for protein monitoring relating to dose responses. (author)

  8. Infrared Spectroscopy as a Tool to Study the Antioxidant Activity of Polyphenolic Compounds in Isolated Rat Enterocytes

    Science.gov (United States)

    Barraza-Garza, Guillermo; Castillo-Michel, Hiram; de la Rosa, Laura A.; Martinez-Martinez, Alejandro; Pérez-León, Jorge A.; Cotte, Marine; Alvarez-Parrilla, Emilio

    2016-01-01

    The protective effect of different polyphenols, catechin (Cat), quercetin (Qc) (flavonoids), gallic acid (GA), caffeic acid (CfA), chlorogenic acid (ChA) (phenolic acids), and capsaicin (Cap), against H2O2-induced oxidative stress was evaluated in rat enterocytes using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy and Fourier Transform Infrared Microspectroscopy (FTIRM), and results were compared to standard lipid peroxidation techniques: conjugated dienes (CD) and Thiobarbituric Acid Reactive Substances (TBARS). Analysis of ATR-FTIR and FTIRM spectral data allowed the simultaneous evaluation of the effects of H2O2 and polyphenols on lipid and protein oxidation. All polyphenols showed a protective effect against H2O2-induced oxidative stress in enterocytes, when administered before or after H2O2. Cat and capsaicin showed the highest protective effect, while phenolic acids had weaker effects and Qc presented a mild prooxidative effect (IR spectral profile of biomolecules between control and H2O2-treated cells) according to FTIR analyses. These results demonstrated the viability to use infrared spectroscopy to evaluate the oxidant and antioxidant effect of molecules in cell systems assays. PMID:27213031

  9. Characterization of ionizing radiation effects on bone using Fourier Transform Infrared Spectroscopy and multivariate analysis of spectra

    International Nuclear Information System (INIS)

    Castro, Pedro Arthur Augusto de; Dias, Derly Augusto; Zezell, Denise Maria

    2017-01-01

    Ionizing radiation has been used as an important treatment and diagnostic method for several diseases. Optical techniques provides an efficient clinical diagnostic to support an accurate evaluation of the interaction of radiation with molecules. Fourier-transform infrared spectroscopy coupled with attenuated total reflectance (ATR-FTIR) is a label-free and nondestructive optical technique that can recognize functional groups in biological samples. In this work, 30 fragments of bone were collected from bovine femur diaphysis. Samples were cut and polished until 1 cm x 1 cm x 1 mm, which were then stored properly in the refrigerated environment. Samples irradiation was performed with a Cobalt-60 Gammacell Irradiator source at doses of 0.1 kGy, 1 kGy, whereas the fragments exposed to dose of 15 kGy was irradiated in a multipurpose irradiator of Cobalt-60. Spectral data was submitted to principal component analysis followed by linear discriminant analysis. Multivariate analysis was performed with Principal component analysis(PCA) followed by Linear Discriminant Analysis(LDA) using MATLAB R2015a software (The Mathworks Inc., Natick, MA, USA). We demonstrated the feasibility of using ATR-FTIR spectroscopy associated with PCA-LDA multivariate technique to evaluate the molecular changes in bone matrix caused by different doses: 0.1 kGy, 1 kGy and 15 kGy. These alterations between the groups are mainly reported in phosphate region. Our results open up new possibilities for protein monitoring relating to dose responses. (author)

  10. Fourier Transform Infrared Radiation Spectroscopy Applied for Wood Rot Decay and Mould Fungi Growth Detection

    Directory of Open Access Journals (Sweden)

    Bjørn Petter Jelle

    2012-01-01

    Full Text Available Material characterization may be carried out by the attenuated total reflectance (ATR Fourier transform infrared (FTIR radiation spectroscopical technique, which represents a powerful experimental tool. The ATR technique may be applied on both solid state materials, liquids, and gases with none or only minor sample preparations, also including materials which are nontransparent to IR radiation. This facilitation is made possible by pressing the sample directly onto various crystals, for example, diamond, with high refractive indices, in a special reflectance setup. Thus ATR saves time and enables the study of materials in a pristine condition, that is, the comprehensive sample preparation by pressing thin KBr pellets in traditional FTIR transmittance spectroscopy is hence avoided. Materials and their ageing processes, both ageing by natural and accelerated climate exposure, decomposition and formation of chemical bonds and products, may be studied in an ATR-FTIR analysis. In this work, the ATR-FTIR technique is utilized to detect wood rot decay and mould fungi growth on various building material substrates. An experimental challenge and aim is to be able to detect the wood rot decay and mould fungi growth at early stages when it is barely visible to the naked eye. Another goal is to be able to distinguish between various species of fungi and wood rot.

  11. In situ measurement of some soil properties in paddy soil using visible and near-infrared spectroscopy.

    Science.gov (United States)

    Wenjun, Ji; Zhou, Shi; Jingyi, Huang; Shuo, Li

    2014-01-01

    In situ measurements with visible and near-infrared spectroscopy (vis-NIR) provide an efficient way for acquiring soil information of paddy soils in the short time gap between the harvest and following rotation. The aim of this study was to evaluate its feasibility to predict a series of soil properties including organic matter (OM), organic carbon (OC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK) and pH of paddy soils in Zhejiang province, China. Firstly, the linear partial least squares regression (PLSR) was performed on the in situ spectra and the predictions were compared to those with laboratory-based recorded spectra. Then, the non-linear least-square support vector machine (LS-SVM) algorithm was carried out aiming to extract more useful information from the in situ spectra and improve predictions. Results show that in terms of OC, OM, TN, AN and pH, (i) the predictions were worse using in situ spectra compared to laboratory-based spectra with PLSR algorithm (ii) the prediction accuracy using LS-SVM (R2>0.75, RPD>1.90) was obviously improved with in situ vis-NIR spectra compared to PLSR algorithm, and comparable or even better than results generated using laboratory-based spectra with PLSR; (iii) in terms of AP and AK, poor predictions were obtained with in situ spectra (R2estimation of soil properties of paddy soils.

  12. In Situ Measurement of Some Soil Properties in Paddy Soil Using Visible and Near-Infrared Spectroscopy

    Science.gov (United States)

    Wenjun, Ji; Zhou, Shi; Jingyi, Huang; Shuo, Li

    2014-01-01

    In situ measurements with visible and near-infrared spectroscopy (vis-NIR) provide an efficient way for acquiring soil information of paddy soils in the short time gap between the harvest and following rotation. The aim of this study was to evaluate its feasibility to predict a series of soil properties including organic matter (OM), organic carbon (OC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK) and pH of paddy soils in Zhejiang province, China. Firstly, the linear partial least squares regression (PLSR) was performed on the in situ spectra and the predictions were compared to those with laboratory-based recorded spectra. Then, the non-linear least-square support vector machine (LS-SVM) algorithm was carried out aiming to extract more useful information from the in situ spectra and improve predictions. Results show that in terms of OC, OM, TN, AN and pH, (i) the predictions were worse using in situ spectra compared to laboratory-based spectra with PLSR algorithm (ii) the prediction accuracy using LS-SVM (R2>0.75, RPD>1.90) was obviously improved with in situ vis-NIR spectra compared to PLSR algorithm, and comparable or even better than results generated using laboratory-based spectra with PLSR; (iii) in terms of AP and AK, poor predictions were obtained with in situ spectra (R2soil properties of paddy soils. PMID:25153132

  13. Detection of Reactive Oxygen Species in Anion Exchange Membrane Fuel Cells using In Situ Fluorescence Spectroscopy.

    Science.gov (United States)

    Zhang, Yunzhu; Parrondo, Javier; Sankarasubramanian, Shrihari; Ramani, Vijay

    2017-08-10

    The objectives of this study were: 1) to confirm superoxide anion radical (O 2 .- ) formation, and 2) to monitor in real time the rate of O 2 .- generation in an operating anion exchange membrane (AEM) fuel cell using in situ fluorescence spectroscopy. 1,3-Diphenlisobenzofuran (DPBF) was used as the fluorescent molecular probe owing to its selectivity and sensitivity toward O 2 .- in alkaline media. The activation energy for the in situ generation of O 2 .- during AEM fuel cell operation was estimated to be 18.3 kJ mol -1 . The rate of in situ generation of O 2 .- correlated well with the experimentally measured loss in AEM ion-exchange capacity and ionic conductivity attributable to oxidative degradation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantitative in situ attenuated total internal reflection Fourier transform infrared study of the isotherms of poly(sodium 4-styrene sulfonate) adsorption to a TiO2 surface over a range of cetylpyridinium bromide monohydrate concentration.

    Science.gov (United States)

    Hase, Mike; Scheffelmaier, Ryan; Hayden, Sarah; Rivera, Dion

    2010-04-20

    Quantitative in situ attenuated total internal reflection Fourier transform infrared (ATR FTIR) spectroscopy has been used to study the isotherm of poly(sodium 4-styrene sulfonate), PSS, adsorption to a TiO(2) surface in aqueous solution at a pH of 3.5. The effect of adding surfactant cetylpyridinium bromide monohydrate (CPBM) on the adsorption isotherm of PSS was investigated at CPBM concentrations of 3.60 x 10(-7), 1.02 x 10(-5), and 1.04 x 10(-4) M. The use of in situ ATR FTIR allowed for the calculation of the concentration of both PSS and CPBM at the TiO(2)/water interface over the entire course of all experiments. It was found that the addition of a small amount of CPBM, 3.60 x 10(-7) M, to PSS solutions resulted in 23 +/- 3% less PSS accumulating at the TiO(2)/water interface compared to isotherm studies with no CPBM present. The mole ratio of CPBM to PSS varies from 4 +/- 1 to 1 to 20 +/- 4 to 1 in a stepwise manner as the solution concentration of PSS is increased for solutions with a CPBM concentration of 3.60 x 10(-7). The addition of CPBM at concentrations of 1.02 x 10(-5) and 1.04 x 10(-4) M showed distinct differences in the behavior of the PSS isotherm, but at the highest solution PSS concentrations, the amount of PSS at the TiO(2)/water interface compared to that of PSS solutions with no CPBM added is indistinguishable within the experimental uncertainties. For these higher concentrations of CPBM, both PSS and CPBM appear to come to the TiO(2) surface as aggregates and the mole ratio of CPBM to PSS at the TiO(2)/water interface decreases as the concentration of PSS is increased. For a CPBM concentration of 1.02 x 10(-5) M, the mole ratio of CPBM to PSS changes from 139 +/- 29 to 1 to 33 +/- 7 to 1 as the solution PSS concentration is increased. For a CPBM concentration of 1.04 x 10(-4) M, the mole ratio of CPBM to PSS changes from 630 +/- 130 to 1 to 110 +/- 21 to 1 as the solution PSS concentration is increased. Despite the large differences in the

  15. In-situ characterization of meat aging with diode-laser Raman spectroscopy

    Science.gov (United States)

    Schmidt, Heinar; Blum, Jenny; Sowoidnich, Kay; Sumpf, Bernd; Schwägele, Fredi; Kronfeldt, Heinz-Detlef

    2009-05-01

    Due to the narrow linewidth signals and its fingerprinting nature, Raman spectra provide information about the molecular structure and composition of the samples. In this paper, the applicability of Raman spectroscopy is shown for the in-situ characterization of the aging of meat. Miniaturized diode lasers are utilized as light sources with excitation wavelengths of 671 nm and 785 nm with a view to the development of a portable field device for meat. As test sample, musculus longissimus dorsi from pork was taken. The chops were stored refrigerated at 5 °C and Raman spectra were measured daily from slaughter up to three weeks. Throughout the entire period of one month, the Raman spectra preserve the basic spectral features identifying the samples as meat. More specific, the spectra exhibit gradual changes of the Raman signals and they show a time-dependent modification of the background signal which arises from a laser-induced fluorescence (LIF). To analyze the time-correlation of the complex spectra, multivariate statistical methods are employed. By means of principal components analysis (PCA) a distinction of spectra is found on the time scale between day 8 and 10. This corresponds to the transition from ripened meat to meat at and beyond the limit of inedibility. After ca. 10 days of storage at 5 °C the microbial load is overwhelming and LIF increases. The results of the Raman measurements depending on the storage time of meat are discussed in the context of reference analyses which have been performed in parallel.

  16. Support effects in catalysis studied by in-situ sum frequency generation vibrational spectroscopy and in-situ x-ray spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Griffin John [Univ. of California, Berkeley, CA (United States)

    2017-04-14

    Here, kinetic measurements are paired with in-situ spectroscopic characterization tools to investigate colloidally based, supported Pt catalytic model systems in order to elucidate the mechanisms by which metal and support work in tandem to dictate activity and selectivity. The results demonstrate oxide support materials, while inactive in absence of Pt nanoparticles, possess unique active sites for the selective conversion of gas phase molecules when paired with an active metal catalyst.

  17. In situ analyses of Ag speciation in tissues of cucumber and wheat using synchrotron-based X-ray absorption spectroscopy

    Data.gov (United States)

    U.S. Environmental Protection Agency — In situ analyses of Ag speciation in tissues of cucumber and wheat using synchrotron-based X-ray absorption spectroscopy showing spectral fitting and linear...

  18. Photocatalytic oxidation of cyclohexane over TiO2: Evidence for a Mars-van krevelen mechanism

    NARCIS (Netherlands)

    Almeida, A.R.; Almeida, Ana Rita; Moulijn, Jacob A.; Mul, Guido

    2011-01-01

    Cyclohexane photocatalytic oxidation with 18O2 over anatase TiO2 was analyzed by in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, to gain insight in the mechanistic steps of formation of cyclohexanone and deactivating carboxylate species, respectively.

  19. Infrared spectroscopy of secondary organic aerosol precursors and investigation of the hygroscopicity of SOA formed from the OH reaction with guaiacol and syringol.

    Science.gov (United States)

    Ahmad, Waed; Coeur, Cecile; Tomas, Alexandre; Fagniez, Thomas; Brubach, Jean-Blaise; Cuisset, Arnaud

    2017-04-10

    Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) synchrotron analyses supplemented by density functional theory (DFT) anharmonic calculations have been undertaken to study the fundamental vibrational signatures of guaiacol and syringol, two methoxyphenol compounds found at the highest concentrations in fresh wood smoke and precursors of secondary organic aerosols (SOA) affecting the radiative balance and chemistry of the atmosphere. Nitroderivatives of these two compounds have also been studied experimentally for nitroguaiacol and theoretically for nitrosyringol. All the active fundamental vibrational bands have been assigned and compared to available gas phase measurements, providing a vibrational database of the main precursors for the analysis of SOA produced by atmospheric oxidation of methoxyphenols. In addition, the SOA formed in an atmospheric simulation chamber from the OH reaction with guaiacol and syringol were analyzed using the ATR-FTIR synchrotron spectroscopy and their hygroscopic properties were also investigated. The vibrational study confirms that nitroguaiacol and nitrosyringol are the main oxidation products of methoxyphenols by OH and are key intermediates in SOA production. The hydration experiments highlight the hydrophilic and hydrophobic characters of nitrosyringol and nitroguaiacol, respectively.

  20. Nanoscale investigation of the interaction of colistin with model phospholipid membranes by Langmuir technique, and combined infrared and force spectroscopies.

    Science.gov (United States)

    Freudenthal, Oona; Quilès, Fabienne; Francius, Grégory; Wojszko, Kamila; Gorczyca, Marcelina; Korchowiec, Beata; Rogalska, Ewa

    2016-11-01

    Colistin (Polymyxin E), an antimicrobial peptide, is increasingly put forward as salvage for severe multidrug-resistant infections. Unfortunately, colistin is potentially toxic to mammalian cells. A better understanding of the interaction with specific components of the cell membranes may be helpful in controlling the factors that may enhance toxicity. Here, we report a physico-chemical study of model phospholipid (PL) mono- and bilayers exposed to colistin at different concentrations by Langmuir technique, atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The effect of colistin on chosen PL monolayers was examined. Insights into the topographical and elastic changes in the PL bilayers within time after peptide injection are presented via AFM imaging and force spectra. Finally, changes in the PL bilayers' ATR-FTIR spectra as a function of time within three bilayer compositions, and the influence of colistin on their spectral fingerprint are examined together with the time-evolution of the Amide II and νCO band integrated intensity ratios. Our study reveals a great importance in the role of the PL composition as well as the peptide concentration on the action of colistin on PL model membranes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Growth of block copolymer stabilized metal nanoparticles probed simultaneously by in situ XAS and UV-Vis spectroscopy.

    Science.gov (United States)

    Nayak, C; Bhattacharyya, D; Jha, S N; Sahoo, N K

    2016-01-01

    The growth of Au and Pt nanoparticles from their respective chloride precursors using block copolymer-based reducers has been studied by simultaneous in situ measurement of XAS and UV-Vis spectroscopy at the energy-dispersive EXAFS beamline (BL-08) at INDUS-2 SRS at RRCAT, Indore, India. While the XANES spectra of the precursor give real-time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed at the intermediate stages of growth. The growth kinetics of both types of nanoparticles are found to be almost similar and are found to follow three stages, though the first stage of nucleation takes place earlier in the case of Au than in the case of Pt nanoparticles due to the difference in the reduction potential of the respective precursors. The first two stages of the growth of Au and Pt nanoparticles as obtained by in situ XAS measurements could be corroborated by simultaneous in situ measurement of UV-Vis spectroscopy also.

  2. Revealing the Role of Interfacial Properties on Catalytic Behaviors by in Situ Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Zhang, Hua; Zhang, Xia-Guang; Wei, Jie; Wang, Chen; Chen, Shu; Sun, Han-Lei; Wang, Ya-Hao; Chen, Bing-Hui; Yang, Zhi-Lin; Wu, De-Yin; Li, Jian-Feng; Tian, Zhong-Qun

    2017-08-02

    Insightful understanding of how interfacial structures and properties affect catalytic processes is one of the most challenging issues in heterogeneous catalysis. Here, the essential roles of Pt-Au and Pt-oxide-Au interfaces on the activation of H 2 and the hydrogenation of para-nitrothiophenol (pNTP) were studied at molecular level by in situ surface-enhanced Raman spectroscopy (SERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Pt-Au and Pt-oxide-Au interfaces were fabricated through the synthesis of Pt-on-Au and Pt-on-SHINs nanocomposites. Direct spectroscopic evidence demonstrates that the atomic hydrogen species generated on the Pt nanocatalysts can spill over from Pt to Au via the Pt-Au and Pt-TiO 2 -Au interfaces, but would be blocked at the Pt-SiO 2 -Au interfaces, leading to the different reaction pathways and product selectivity on Pt-on-Au and Pt-on-SHINs nanocomposites. Such findings have also been verified by the density functional theory calculation. In addition, it is found that nanocatalysts assembled on pinhole-free shell-isolated nanoparticles (Pt-on-pinhole-free-SHINs) can override the influence of the Au core on the reaction and can be applied as promising platforms for the in situ study of heterogeneous catalysis. This work offers a concrete example of how SERS/SHINERS elucidate details about in situ reaction and helps to dig out the fundamental role of interfaces in catalysis.

  3. In situ Raman spectroscopy of LiFePO4: size and morphology dependence during charge and self-discharge

    Science.gov (United States)

    Wu, Jing; Krishna Phani Dathar, Gopi; Sun, Chunwen; Theivanayagam, Murali G.; Applestone, Danielle; Dylla, Anthony G.; Manthiram, Arumugam; Henkelman, Graeme; Goodenough, John B.; Stevenson, Keith J.

    2013-10-01

    Previous studies of the size dependent properties of LiFePO4 have focused on the diffusion rate or phase transformation pathways by bulk analysis techniques such as x-ray diffraction (XRD), neutron diffraction and electrochemistry. In this work, in situ Raman spectroscopy was used to study the surface phase change during charge and self-discharge on a more localized scale for three morphologies of LiFePO4: (1) 25 ± 6 nm width nanorods, (2) 225 ± 6 nm width nanorods and (3) ˜2 μm porous microspheres. Both the large nanorod and microsphere geometries showed incomplete delithiation at the end of charge, which was most likely caused by anti-site defects along the 1D diffusion channels in the bulk of the larger particles. Based on the in situ Raman measurements, all of the morphologies studied exhibited self-discharge with time. Among them, the smallest FePO4 particles self-discharged (lithiated) the fastest. While nanostructuring LiFePO4 can offer advantages in terms of lowering anti-site defects within particles, it also creates new problems due to high surface energies that allow self-discharge. The in situ Raman spectroscopy also showed that carbon coating did not provide significant improvement to the stability of the lithiated particles.

  4. In-situ Transmission Electron Microscopy and Spectroscopy Studies of Interfaces in Li-ion Batteries: Challenges and Opportunities

    International Nuclear Information System (INIS)

    Wang, Chong M.; Xu, Wu; Liu, Jun; Choi, Daiwon; Arey, Bruce W.; Saraf, Laxmikant V.; Zhang, Jiguang; Yang, Zhenguo; Thevuthasan, Suntharampillai; Baer, Donald R.; Salmon, Norman

    2010-01-01

    The critical challenge facing the lithium ion battery development is the basic understanding of the structural evolution during the cyclic operation of the battery and the consequence of the structural evolution on the properties of the battery. Although transmission electron microscopy (TEM) and spectroscopy have been evolved to a stage such that it can be routinely used to probe into both the structural and chemical composition of the materials with a spatial resolution of a single atomic column, a direct in-situ TEM observation of structural evolution of the materials in lithium ion battery during the dynamic operation of the battery has never been reported. This is related to three factors: high vacuum operation of a TEM; electron transparency requirement of the region to be observed, and the difficulties dealing with the liquid electrolyte of lithium ion battery. In this paper, we report the results of exploring the in-situ TEM techniques for observation of the interface in lithium ion battery during the operation of the battery. A miniature battery was fabricated using a nanowire and an ionic liquid electrolyte. The structure and chemical composition of the interface across the anode and the electrolyte was studied using TEM imaging, electron diffraction, and electron energy loss spectroscopy. In addition, we also explored the possibilities of carrying out in-situ TEM studies of lithium ion batteries with a solid state electrolyte.

  5. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    Science.gov (United States)

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  6. Direct comparison of photoemission spectroscopy and in situ Kelvin probe work function measurements on indium tin oxide films

    International Nuclear Information System (INIS)

    Beerbom, M.M.; Laegel, B.; Cascio, A.J.; Doran, B.V.; Schlaf, R.

    2006-01-01

    The work function of commercially available indium tin oxide (ITO) films on glass substrates was measured using photoemission spectroscopy (PES) and ultra-high vacuum (UHV) Kelvin probe in direct comparison. Absolute Kelvin probe work function values were determined via calibration of the measured contact potential difference (CPD) using an in situ sputtered Au reference sample. The Kelvin probe data confirmed that ultraviolet photoemission spectroscopy (UPS) measurements change the work function of ITO surfaces previously exposed to ambient environment, when measured without in situ surface cleaning procedures. The results also demonstrate that both Kelvin probe and PES yield virtually identical work function values, as long as the Kelvin probe data are calibrated against a known standard. As a consequence, previously reported higher work function values determined with Kelvin probe as compared to values obtained with UPS on similar samples are likely related to a photochemically generated surface dipole during UPS measurements. Comparison between Kelvin probe and low intensity X-ray photoemission spectroscopy (LIXPS) work function measurements demonstrated that accurate work function measurements on ITO previously exposed to the ambient are possible with PES

  7. In Situ SIMS and IR Spectroscopy of Well-Defined Surfaces Prepared by Soft Landing of Mass-Selected Ions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia

    2014-06-16

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.

  8. In situ SIMS and IR spectroscopy of well-defined surfaces prepared by soft landing of mass-selected ions.

    Science.gov (United States)

    Johnson, Grant E; Gunaratne, K Don Dasitha; Laskin, Julia

    2014-06-16

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3](2+) (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.

  9. Better understanding of dissolution behaviour of amorphous drugs by in situ solid-state analysis using Raman spectroscopy

    DEFF Research Database (Denmark)

    Savolainen, M; Kogermann, K; Heinz, A

    2009-01-01

    form. The purpose of this study was to use in situ Raman spectroscopy in combination with either partial least squares discriminant analysis (PLS-DA) or partial least squares (PLS) regression analysis to monitor as well as quantify the solid-phase transitions that take place during the dissolution...... of two amorphous drugs, indomethacin (IMC) and carbamazepine (CBZ). The dissolution rate was higher from amorphous IMC compared to the crystalline alpha- and gamma-forms. However, the dissolution rate started to slow down during the experiment. In situ Raman analysis verified that at that time point...... the sample started to crystallize to the alpha-form. Amorphous CBZ instantly started to crystallize upon contact with the dissolution medium. The transition from the amorphous form to CBZ dihydrate appears to go through the anhydrate form I. Based on the PLS analysis the amount of form I formed in the sample...

  10. Mechanical Anisotropy and Pressure Induced Structural Changes in Piroxicam Crystals Probed by In Situ Indentation and Raman Spectroscopy

    Science.gov (United States)

    Manimunda, Praveena; Hintsala, Eric; Asif, Syed; Mishra, Manish Kumar

    2017-01-01

    The ability to correlate mechanical and chemical characterization techniques in real time is both lacking and powerful tool for gaining insights into material behavior. This is demonstrated through use of a novel nanoindentation device equipped with Raman spectroscopy to explore the deformation-induced structural changes in piroxicam crystals. Mechanical anisotropy was observed in two major faces ( 0bar{1}1 ) and (011), which are correlated to changes in the interlayer interaction from in situ Raman spectra recorded during indentation. The results of this study demonstrate the considerable potential of an in situ Raman nanoindentation instrument for studying a variety of topics, including stress-induced phase transformation mechanisms, mechanochemistry, and solid state reactivity under mechanical forces that occur in molecular and pharmaceutical solids.

  11. In situ Spectroscopy of Solid-State Chemical Reaction in PbBr2-Deposited CsBr Crystals

    Science.gov (United States)

    Kondo, Shin-ichi; Matsunaga, Toshihiro; Saito, Tadaaki; Asada, Hiroshi

    2003-09-01

    It is possible to measure the fundamental optical absorption spectra of CsPbBr3 and Cs4PbBr6, whose stability is predicted by the study of phase diagram in the binary system CsBr-PbBr2, by means of in situ optical absorption and reflection spectroscopy of thermally induced solid-state chemical reaction in PbBr2-deposited CsBr crystals. On heavy annealing of the crystals, the Pb2+ ions are uniformly dispersed in the crystal matrix. The present experiment provides a novel method for measuring intrinsic optical absorption of ternary metal halides and also for in situ monitoring of doping metal halide crystal with impurities (metal ions or halogen ions).

  12. Monte Carlo simulation of an in-situ search of water on the Martian surface by using neutron spectroscopy

    CERN Document Server

    Vincke, H H; Müller, H; Bruckner, J

    2003-01-01

    In this paper the concept for in-situ search of water in the Martian soil by applying neutron spectroscopy is examined. Monte-Carlo simulations were carried out to determine homogeneous water concentrations in the Martian surface. In addition, the effect of an ice layer with a thickness of 10 cm, buried in the soil, was investigated. Furthermore, a method is presented that provides the ability to distinguish between the effects caused by a homogeneous water distribution and an ice layer located at different depths.

  13. In situ study of the Porticello Bronzes by portable X-ray fluorescence and laser-induced breakdown spectroscopy

    Science.gov (United States)

    Ferretti, M.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Tognoni, E.; Console, E.; Palaia, P.

    2007-12-01

    This paper reports the results of a measurement campaign performed at the National Museum of Magna Grecia in Reggio Calabria (Italy). Portable X-Ray Fluorescence (XRF) and Laser-Induced Breakdown Spectroscopy (LIBS) instrumentation allowed in situ analysis of several bronze pieces belonging to the group of the so-called Porticello Bronzes. The find occurred at sea, off the village of Porticello (Reggio Calabria) in 1969 and consists of a number of fragments, including a bearded head, pertaining to at least two statues. The use of X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy techniques allowed for a classification of the fragments according to their elemental composition. The fragments appear to belong to at least two different statues; although, in general, the compositional classification agrees well with the stylistic analysis of the fragments, significant improvements with respect to previous achievements emerge from the joint results of the two techniques used.

  14. In situ study of the Porticello Bronzes by portable X-ray fluorescence and laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, M. [Istituto per le Tecnologie Applicate ai Beni Culturali, Via Salaria, km 29.300, c.p.10, 00016 Monterotondo St. - Roma (Italy); Cristoforetti, G.; Legnaioli, S. [Applied Laser Spectroscopy Laboratory, Istituto per i Processi Chimico Fisici del CNR, Area di Ricerca di Pisa, Via G.Moruzzi, 1-56124 Pisa (Italy); Palleschi, V. [Applied Laser Spectroscopy Laboratory, Istituto per i Processi Chimico Fisici del CNR, Area di Ricerca di Pisa, Via G.Moruzzi, 1-56124 Pisa (Italy); Salvetti, A.; Tognoni, E. [Applied Laser Spectroscopy Laboratory, Istituto per i Processi Chimico Fisici del CNR, Area di Ricerca di Pisa, Via G.Moruzzi, 1-56124 Pisa (Italy); Console, E. [T.E.A. s.a.s., Via Luigi Pascali, 23/25-88100 Catanzaro (Italy)], E-mail: elena@teacz.191.it; Palaia, P. [T.E.A. s.a.s., Via Luigi Pascali, 23/25-88100 Catanzaro (Italy)

    2007-12-15

    This paper reports the results of a measurement campaign performed at the National Museum of Magna Grecia in Reggio Calabria (Italy). Portable X-Ray Fluorescence (XRF) and Laser-Induced Breakdown Spectroscopy (LIBS) instrumentation allowed in situ analysis of several bronze pieces belonging to the group of the so-called Porticello Bronzes. The find occurred at sea, off the village of Porticello (Reggio Calabria) in 1969 and consists of a number of fragments, including a bearded head, pertaining to at least two statues. The use of X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy techniques allowed for a classification of the fragments according to their elemental composition. The fragments appear to belong to at least two different statues; although, in general, the compositional classification agrees well with the stylistic analysis of the fragments, significant improvements with respect to previous achievements emerge from the joint results of the two techniques used.

  15. Towards combinatorial spectroscopy: the case of minor milk fatty acids determination.

    Science.gov (United States)

    Stefanov, I; Baeten, V; De Baets, B; Fievez, V

    2013-08-15

    Chemometrical models for determination of milk fatty acids (FA) are typically developed using spectral data from a single spectroscopy technique, e.g., mid-infrared spectroscopy in milk control. Such models perform poorly in determining minor components and are highly dependent on the spectral data source and on the type of matrix. In milk fat, the unsuccessful determination of minor (fatty acids lower than 1.0 g/100g in total fat) FA is often the result of: (1) the molecular structure similarity between the minor and the major FA within the milk fat matrix (thus the chemical signature specific to individual fatty acids has restricted specificity), and (2) the low signal intensity (detection limit) for specific vibrational modes. To overcome these limitations, data from different types of spectroscopy techniques, which brings additional chemical information in relation to the variation of the FA, could be included in the regression models to improve quantification. Here, Fourier transform (FT) Raman spectra were concatenated with attenuated total reflectance FT infrared (ATR/FTIR) spectra. The new combinatorial models showed up to 25% decrease in the root mean squared error of cross-validation (RMSECV) values, accompanied with a higher Rcv(2) for most individual FA or sums of FA groups, as compared to regression models based on Raman only or ATR/FTIR only spectra. In addition, improved models included less PLS components indicating an increased robustness. Interpretation of the most contributing regression coefficients indicated the value of newly combined spectral regions as carriers of specific chemical information. Although requiring additional spectroscopy instrumentation and prolonged acquisition time, this new combinatorial approach can be automated and is sufficient for semi-routine determination of the milk FA profile. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. In situ deuterium inventory measurements of a-C:D layers on tungsten in TEXTOR by laser induced ablation spectroscopy

    International Nuclear Information System (INIS)

    Gierse, N; Brezinsek, S; Coenen, J W; Huber, A; Laengner, M; Möller, S; Nonhoff, M; Philipps, V; Pospieszczyk, A; Schweer, B; Sergienko, G; Xiao, Q; Zlobinski, M; Samm, U; Giesen, T F

    2014-01-01

    Laser induced ablation spectroscopy (LIAS) is a diagnostic to provide temporally and spatially resolved in situ measurements of tritium retention and material migration in order to characterize the status of the first wall in future fusion devices. In LIAS, a ns-laser pulse ablates the first nanometres of the first wall plasma-facing components into the plasma edge. The resulting line radiation by plasma excitation is observed by spectroscopy. In the case of the full ionizing plasma and with knowledge of appropriate photon efficiencies for the corresponding line emission the amount of ablated material can be measured in situ. We present the photon efficiency for the deuterium Balmer α-line resulting from ablation in TEXTOR by performing LIAS on amorphous hydrocarbon (a-C:D) layers deposited on tungsten substrate of thicknesses between 0.1 and 1.1 μm. An experimental inverse photon efficiency of [(D/(XB))] D α (EXP) a-C:D→ LIAS D =75.9±23.4 was determined. This value is a factor 5 larger than predicted values from the ADAS database for atomic injection of deuterium under TEXTOR plasma edge conditions and about twice as high, assuming normal wall recycling and release of molecular deuterium and break-up of D 2 via the molecular ion which is usually observed at the high temperature tokamak edge (T e  > 30 eV). (paper)

  17. Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy

    Science.gov (United States)

    Zhang, Chunjuan; Grass, Michael E.; McDaniel, Anthony H.; Decaluwe, Steven C.; Gabaly, Farid El; Liu, Zhi; McCarty, Kevin F.; Farrow, Roger L.; Linne, Mark A.; Hussain, Zahid; Jackson, Gregory S.; Bluhm, Hendrik; Eichhorn, Bryan W.

    2010-11-01

    Photoelectron spectroscopic measurements have the potential to provide detailed mechanistic insight by resolving chemical states, electrochemically active regions and local potentials or potential losses in operating solid oxide electrochemical cells (SOCs), such as fuel cells. However, high-vacuum requirements have limited X-ray photoelectron spectroscopy (XPS) analysis of electrochemical cells to ex situ investigations. Using a combination of ambient-pressure XPS and CeO2-x/YSZ/Pt single-chamber cells, we carry out in situ spectroscopy to probe oxidation states of all exposed surfaces in operational SOCs at 750°C in 1mbar reactant gases H2 and H2O. Kinetic energy shifts of core-level photoelectron spectra provide a direct measure of the local surface potentials and a basis for calculating local overpotentials across exposed interfaces. The mixed ionic/electronic conducting CeO2-x electrodes undergo Ce3+/Ce4+ oxidation-reduction changes with applied bias. The simultaneous measurements of local surface Ce oxidation states and electric potentials reveal the active ceria regions during H2 electro-oxidation and H2O electrolysis. The active regions extend ~150μm from the current collectors and are not limited by the three-phase-boundary interfaces associated with other SOC materials. The persistence of the Ce3+/Ce4+ shifts in the ~150μm active region suggests that the surface reaction kinetics and lateral electron transport on the thin ceria electrodes are co-limiting processes.

  18. Application of micro-attenuated total reflectance Fourier transform infrared spectroscopy to ink examination in signatures written with ballpoint pen on questioned documents.

    Science.gov (United States)

    Nam, Yun Sik; Park, Jin Sook; Lee, Yeonhee; Lee, Kang-Bong

    2014-05-01

    Questioned documents examined in a forensic laboratory sometimes contain signatures written with ballpoint pen inks; these signatures were examined to assess the feasibility of micro-attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy as a forensic tool. Micro-ATR FTIR spectra for signatures written with 63 ballpoint pens available commercially in Korea were obtained and used to construct an FTIR spectral database. A library-searching program was utilized to identify the manufacturer, blend, and model of each black ballpoint pen ink based upon their FTIR peak intensities, positions, and patterns in the spectral database. This FTIR technique was also successfully used in determining the sequence of homogeneous line intersections from the crossing lines of two ballpoint pen signatures. We have demonstrated with a set of sample documents that micro-ATR FTIR is a viable nondestructive analytical method that can be used to identify the origin of the ballpoint pen ink used to mark signatures. © 2014 American Academy of Forensic Sciences.

  19. Degradation of the ethyl glucuronide content in hair by hydrogen peroxide and a non-destructive assay for oxidative hair treatment using infra-red spectroscopy.

    Science.gov (United States)

    Ammann, Dominic; Becker, Roland; Kohl, Anka; Hänisch, Jessica; Nehls, Irene

    2014-11-01

    The assessment of quantification results of the alcohol abuse marker ethyl glucuronide (EtG) in hair in comparison to the cut-off values for the drinking behavior may be complicated by cosmetic hair bleaching. Thus, the impact of increasing exposure to hydrogen peroxide on the EtG content of hair was investigated. Simultaneously, the change of absorbance in the range of 1000-1100 cm(-1) indicative for the oxidation of cystine was investigated non-destructively by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) using pulverized portions of the respective hair samples. Hair samples treated with hydrogen peroxide consistently displayed a significantly increased absorbance at 1040 cm(-1) associated with the formation of cysteic acid. The EtG content decreased significantly if the hair was treated with alkaline hydrogen peroxide as during cosmetic bleaching. It could be shown that ATR-FTIR is capable of detecting an exposure to hydrogen peroxide when still no brightening was visible and already before the EtG content deteriorated significantly. Thus, hair samples suspected of having been exposed to oxidative treatment may be checked non-destructively by a readily available technique. This assay is also possible retrospectively after EtG extraction and using archived samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy on Intact Dried Leaves of Sage (Salvia officinalis L.): Accelerated Chemotaxonomic Discrimination and Analysis of Essential Oil Composition.

    Science.gov (United States)

    Gudi, Gennadi; Krähmer, Andrea; Krüger, Hans; Schulz, Hartwig

    2015-10-07

    Sage (Salvia officinalis L.) is cultivated worldwide for its aromatic leaves, which are used as herbal spice, and for phytopharmaceutical applications. Fast analytical strategies for essential oil analysis, performed directly on plant material, would reduce the delay between sampling and analytical results. This would enhance product quality by improving technical control of cultivation. The attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) method described here provides a reliable calibration model for quantification of essential oil components [EOCs; R(2) = 0.96; root-mean-square error of cross-validation (RMSECV) = 0.249 mL 100 g(-1) of dry matter (DM); and range = 1.115-5.280 mL 100 g(-1) of DM] and main constituents [e.g., α-thujone/β-thujone; R(2) = 0.97/0.86; RMSECV = 0.0581/0.0856 mL 100 g(-1) of DM; and range = 0.010-1.252/0.005-0.893 mL 100 g(-1) of DM] directly on dried intact leaves of sage. Except for drying, no further sample preparation is required for ATR-FTIR, and the measurement time of less than 5 min per sample contrasts with the most common alternative of hydrodistillation followed by gas chromatography analysis, which can take several hours per sample.

  1. In-situ virtual metrology for the silicon-dioxide etch rate by using optical emission spectroscopy data

    International Nuclear Information System (INIS)

    Kim, Boomsoo; Hong, Sangjeen

    2014-01-01

    As a useful tool for process control in a high volume semiconductor manufacturing environment, virtual metrology for the etch rate in a plasma etch process is investigated using optical emission spectroscopy (OES) data. Virtual metrology is a surrogate measurement taken from the process instead of from direct measurement, and it can provide in-situ metrology of a wafer's geometry from a predictive model. A statistical regression model that correlates the selected wavelengths of the optical emission spectra to the etch rate is established using the OES data collected over 20 experimental runs. In addition, an argon actinometry study is employed to quantify the OES data, and it provides valuable insight into the analysis of the OES data. The established virtual metrology model is further verified with an additional 20 runs of data. As a result, the virtual metrology model with both process recipe tool data and in-situ data shows higher prediction accuracy by as much as 56% compared with either the process recipe tool data or the in-situ data alone.

  2. In situ fluorescence spectroscopy correlates ionomer degradation to reactive oxygen species generation in an operating fuel cell.

    Science.gov (United States)

    Prabhakaran, Venkateshkumar; Arges, Christopher G; Ramani, Vijay

    2013-11-21

    The rate of generation of reactive oxygen species (ROS) within the polymer electrolyte membrane (PEM) of an operating proton exchange member fuel cell (PEMFC) was monitored using in situ fluorescence spectroscopy. A modified barrier layer was introduced between the PEM and the electrocatalyst layer to eliminate metal-dye interactions and fluorescence resonance energy transfer (FRET) effects during measurements. Standard fuel cell operating parameters (temperature, relative humidity, and electrode potential) were systematically varied to evaluate their influence on the rate of ROS generation during PEMFC operation. Independently, the macroscopic rate of PEM degradation was measured by monitoring the fluoride ion emission rate (FER) in the effluent stream at each operating condition. The ROS generation reaction rate constant (estimated from the in situ fluorescence experiments) correlated perfectly with the measured FER across all conditions, demonstrating unequivocally for the first time that a direct correlation exists between in situ ROS generation and PEM macroscopic degradation. The activation energy for ROS generation within the PEM was estimated to be 12.5 kJ mol(-1).

  3. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  4. The Multispectral Microscopic Imager: Integrating Microimaging with Spectroscopy for the In-Situ Exploration of the Moon

    Science.gov (United States)

    Nunez, J. I.; Farmer, J. D.; Sellar, R. G.; Allen, Carlton C.

    2010-01-01

    To maximize the scientific return, future robotic and human missions to the Moon will need to have in-situ capabilities to enable the selection of the highest value samples for returning to Earth, or a lunar base for analysis. In order to accomplish this task efficiently, samples will need to be characterized using a suite of robotic instruments that can provide crucial information about elemental composition, mineralogy, volatiles and ices. Such spatially-correlated data sets, which place mineralogy into a microtextural context, are considered crucial for correct petrogenetic interpretations. . Combining microscopic imaging with visible= nearinfrared reflectance spectroscopy, provides a powerful in-situ approach for obtaining mineralogy within a microtextural context. The approach is non-destructive and requires minimal mechanical sample preparation. This approach provides data sets that are comparable to what geologists routinely acquire in the field, using a hand lens and in the lab using thin section petrography, and provide essential information for interpreting the primary formational processes in rocks and soils as well as the effects of secondary (diagenetic) alteration processes. Such observations lay a foundation for inferring geologic histories and provide "ground truth" for similar instruments on orbiting satellites; they support astronaut EVA activities and provide basic information about the physical properties of soils required for assessing associated health risks, and are basic tools in the exploration for in-situ resources to support human exploration of the Moon.

  5. In situ Raman spectroscopy of topological insulator BiTe films with varying thickness

    DEFF Research Database (Denmark)

    Wang, C.; Zhu, X.; Nilsson, Louis

    2013-01-01

    Topological insulators (TIs) are a new state of quantum matter with a band gap in bulk and conducting surface states. In this work, the Raman spectra of topological insulator Bi2Te3 films prepared by molecular beam epitaxy (MBE) have been measured by an in situ ultrahigh vacuum (UHV...

  6. Vibrational spectroscopy of proteins

    International Nuclear Information System (INIS)

    Schwaighofer, A.

    2013-01-01

    Two important steps for the development of a biosensor are the immobilization of the biological component (e.g. protein) on a surface and the enhancement of the signal to improve the sensitivity of detection. To address these subjects, the present work describes Fourier transform infrared (FTIR) investigations of several proteins bound to the surface of an attenuated total reflection (ATR) crystal. Furthermore, new nanostructured surfaces for signal enhancement were developed for use in FTIR microscopy. The mitochondrial redox-protein cytochrome c oxidase (CcO) was incorporated into a protein-tethered bilayer lipid membrane (ptBLM) on an ATR crystal featuring a roughened two-layer gold surface for signal enhancement. Electrochemical excitation by periodic potential pulses at different modulation frequencies was followed by time-resolved FTIR spectroscopy. Phase sensitive detection was used for deconvolution of the IR spectra into vibrational components. A model based on protonation-dependent chemical reaction kinetics could be fitted to the time evolution of IR bands attributed to several different redox centers of the CcO. Further investigations involved the odorant binding protein 14 (OBP14) of the honey bee (Apis mellifera), which was studied using ATR-FTIR spectroscopy and circular dichroism. OBP14 was found to be thermally stable up to 45 °C, thus permitting the potential application of this protein for the fabrication of biosensors. Thermal denaturation measurements showed that odorant binding increases the thermal stability of the OBP-odorant complex. In another project, plasmonic nanostructures were fabricated that enhance the absorbance in FTIR microscopy measurements. The nanostructures are composed of an array of round-shaped insulator and gold discs on top of a continuous gold layer. Enhancement factors of up to ⁓125 could be observed with self-assembled monolayers of dodecanethiol molecules immobilized on the gold surface (author) [de

  7. Transmission-geometry electrochemical cell for in-situ scattering and spectroscopy investigations

    Science.gov (United States)

    Chupas, Peter J.; Chapman, Karena W.; Kurtz, Charles A.; Borkiewicz, Olaf J.; Wiaderek, Kamila Magdelena; Shyam, Badri

    2015-05-05

    The present invention relates to a test chamber that can be used to perform a variety of X-ray and neutron spectroscopy experiments including powder diffraction, small-angle scattering, X-ray absorption spectroscopy, and pair distribution functions, such chamber comprising a first electrode with an X-ray transparent window; a second electrode with an X-ray transparent window; a plurality of insulating gaskets providing a hermetic seal around the sample and preventing contact between said first and second electrodes; and an insulating housing into which the first electrode is secured.

  8. In situ spectroscopy of ligand exchange reactions at the surface of colloidal gold and silver nanoparticles

    International Nuclear Information System (INIS)

    Dinkel, Rebecca; Peukert, Wolfgang; Braunschweig, Björn

    2017-01-01

    Gold and silver nanoparticles with their tunable optical and electronic properties are of great interest for a wide range of applications. Often the ligands at the surface of the nanoparticles have to be exchanged in a second step after particle formation in order to obtain a desired surface functionalization. For many techniques, this process is not accessible in situ . In this review, we present second-harmonic scattering (SHS) as an inherently surface sensitive and label-free optical technique to probe the ligand exchange at the surface of colloidal gold and silver nanoparticles in situ and in real time. First, a brief introduction to SHS and basic features of the SHS of nanoparticles are given. After that, we demonstrate how the SHS intensity decrease can be correlated to the thiol coverage which allows for the determination of the Gibbs free energy of adsorption and the surface coverage. (topical review)

  9. [Research on shortwave NIR spectroscopy and its application to in situ flammable liquid detection].

    Science.gov (United States)

    Wu, Juan; Du, Zhen-hui; Liu, Jin; Xu, Ke-zin

    2008-09-01

    Fast, accurate and highly effective detection in situ was important to the control of illegal transportation and the use of liquid state dangerous goods. The present article used the strong penetrability of the shortwave near-infrared ray to the packing material and liquid and measured the absorption spectra of some flammable liquids such as the absolute ethyl alcohol, absolute methanol, ammonia, turpentine, gasoline, diesel oil, petroleum etc and the partial liquors in the short wavelength region of NIR (667-1000 nm). The primitive spectral data were standardized and compressed, and then, the characteristic wavelength of the absorption spectra was analyzed using the SPSS statistics software. A math model for flammable liquid distinction was established based on the designated characteristic wavelength and can correctly detect flammable liquid using the absorbency of 3 wavelengths (881, 935 and 981 nm). According to the above the authors may construct the inexpensive spectrum instrument to check the flammable liquid non-destructively in situ.

  10. Comparison on in situ and laboratory gamma-ray spectroscopy of ...

    African Journals Online (AJOL)

    In situ - ray spectroscopic method of measeruments, using the calibration factor by Zombori et al, and laboratory method for soil samples were carried out in Ibadan, SW Nigeria. The average specific activities of 40K, 238U and 232Th in the soil were 299.0 16.5 Bqkg-1, 40.0 5.8 Bqkg-1 and 95.0 7.8 Bqkg-1, respectively, by in ...

  11. Decoupling Bulk and Surface Contributions in Water- Splitting Photocatalysts by In Situ Ultrafast Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Appavoo, Kannatassen [Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials; Mingzhao, Liu [Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials; Black, Charles T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials; Sfeir, Matthew Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials

    2015-05-10

    By performing ultrafast emission spectroscopy in an operating, bias-controlled photoelectrochemical cell, we distinguish between bulk (charge transport) and surface (chemical reaction) recombination processes in a nanostructured photocatalyst and correlate its electronic properties directly with its incident-photon-to-current efficiency.

  12. Raman Spectroscopy and in Situ Raman Spectroelectrochemistry of Isotopically Engineered Graphene Systems

    Czech Academy of Sciences Publication Activity Database

    Frank, Otakar; Dresselhaus, M. S.; Kalbáč, Martin

    2015-01-01

    Roč. 48, č. 1 (2015), s. 111-118 ISSN 0001-4842 R&D Projects: GA MŠk LH13022; GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : Raman spectroscopy * spectroelectrochemistry * graphene Subject RIV: CG - Electrochemistry Impact factor: 22.003, year: 2015

  13. Using Raman spectroscopy and SERS for in situ studies of rhizosphere bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Hooman; Agahi, Massoud H.; Razeghi, Manijeh; Polisetti, Sneha; Baig, Nameera; Bible, Amber; Morrell-Falvey, Jennifer; Doktycz, Mitchel; Bohn, Paul W.

    2015-08-21

    Bacteria colonize plant roots to form a symbiotic relationship with the plant and can play in important role in promoting plant growth. Raman spectroscopy is a useful technique to study these bacterial systems and the chemical signals they utilize to interact with the plant. We present a Raman study of Pantoea YR343 that was isolated from the rhizosphere of Populus deltoides (Eastern Cottonwood). Pantoea sp. YR343 produce yellowish carotenoid pigment that play a role in protection against UV radiation, in the anti-oxidative pathways and in membrane fluidity. Raman spectroscopy is used to non-invasively characterize the membrane bound carotenoids. The spectra collected from a mutant strain created by knocking out the crtB gene that encodes a phytoene synthase responsible for early stage of carotenoid biosynthesis, lack the carotenoid peaks. Surface Enhanced Raman Spectroscopy is being employed to detect the plant phytoharmone indoleacetic acid that is synthesized by the bacteria. This work describes our recent progress towards utilizing Raman spectroscopy as a label free, non-destructive method of studying plant-bacteria interactions in the rhizosphere.

  14. [In-situ monitoring algorithm of gases poisonous elements concentration with ultraviolet optical absorption spectroscopy based on recursion iterative method].

    Science.gov (United States)

    Wang, Hui-feng; Jiang, Xu-qian

    2012-01-01

    The key and challenge problem of in-situ monitoring poisonous elements of gases is how to separate the various gases absorption signal from mixed gases absorption spectroscopy and compute it's accuracy concentration? Here we present a new algorithms in return recursion iteration based on Lambert-Beer principle. In the algorithms, recurred by the character of absorption peak of various gases in the band of 190-290 nm UV rays continuous spectroscopy and the character of twin element fold for absorbance are used. Firstly, the authors suppose that there is no absorption for others gases in the character absorption band for a certain gas, the authors can inference the initial concentration of the gas. Then the authors switch to another character spectroscopy, and put the photons that gases absorption out of the total number of absorbed photons that are measured. So we could get the initial concentration of another gas. By analogy the authros can get the initial concentration of all kinds of other poisonous elements. Then come back to the character spectroscopy of the first gas, the authors can get a new concentration of the first gas from the difference between the total number of absorbed photons and the photons that other gases absorption. By analogy the authors can get the iterative concentration of other gases, by irterating this process repeatly for some times until the measurement error of the adjacent gas concentration is smaller than a certain numerical value. Finally the authors can get the real and accurate concentration of all kinds of gases. Experiment shows that the authors can get the accurate concentration of all kinds of gases with the algorithm. The accuracy can be within 2%, and at the same time, it is easy enough to satisfy the necessity of real-time requirement. In addition it could be used to measure the concentration of many kinds of gas at a time. It is robust and suitable to be taken into practice.

  15. In situ monitoring of polymer redox states by resonance µRaman spectroscopy and its applications in polymer modified microfluidic channels

    OpenAIRE

    Logtenberg, Hella; Jellema, Laurens-Jan C.; Lopez-Martinez, Maria J.; Areephong, Jetsuda; Verpoorte, Elisabeth; Feringa, Ben L.; Browne, Wesley R.

    2012-01-01

    We report the application of multi-wavelength resonance Raman (rR) spectroscopy for the characterisation of vinyl-bridged polysexithiophene films formed by electropolymerisation on gold electrodes. Resonance Raman spectroscopy of the neutral, polaronic and bipolaronic states of the polymer were determined by in situ mu Raman spectroelectrochemistry. In particular the differences in the UV/Vis-NIR absorption spectra of the neutral, monopolaronic and bipolaronic states of the polymer allow for ...

  16. Nanomechanical IR spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials

    DEFF Research Database (Denmark)

    Andersen, Alina Joukainen; Yamada, Shoko; Ek, Pramod Kumar

    2016-01-01

    The proliferated use of engineered nanomaterials (ENMs), e.g. in nanomedicine, calls for novel techniques allowing for fast and sensitive analysis of minute samples. Here we present nanomechanical IR spectroscopy (NAM-IR) for chemical analysis of picograms of ENMs. ENMs are nebulized directly from...... dispersion and efficiently collected on nanomechanical string resonators through a non-diffusion limited sampling method. Even very small amounts of sample can convert absorbed IR light into a measurable frequency detuning of the string through photothermal heating. An IR absorption spectrum is thus readily...... obtained by recording this detuning of the resonator over a range of IR wavelengths. Results recorded using NAM-IR agree well with corresponding results obtained through ATR-FTIR, and remarkably, measurement including sample preparation takes only a few minutes, compared to ∼2 days sample preparation...

  17. Preliminary method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Niece, Krista L; Akers, Kevin S

    2015-09-01

    Colistin use has increased in response to the advent of infections caused by multidrug-resistant organisms. It is administered parenterally as an inactive prodrug, colistin methanesulfonate (CMS). Various formulations of CMS and labeling conventions can lead to confusion about colistin dosing, and questions remain about the pharmacokinetics of CMS. Since CMS does not have strong UV absorbance, current methods employ a laborious process of chemical conversion to colistin followed by precolumn derivatization to detect formed colistin by high-performance liquid chromatography. Here, we report a method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. In situ optical absorption and reflection spectroscopy of doping CsCl crystal with Pb{sup 2+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, S.; Amaya, K.; Saito, T. [Research Center for Development of Far-Infrared Region, Fukui University, Bunkyo, Fukui (Japan); Higuchi, S.; Asada, H.; Ishikane, M. [Department of Applied Physics, Faculty of Engineering, Fukui University, Bunkyo, Fukui (Japan)

    2001-12-03

    Behaviours of Pb{sup 2+} ions during thermal treatments of PbCl{sub 2}-deposited CsCl crystals have been observed in situ by optical absorption and reflection spectroscopy. In the early stages of the treatments, the Pb{sup 2+} ions take part in the formation of Cs{sub 4}PbCl{sub 6} crystallites near the surface of the CsCl crystals. The crystallites exhibit a novel absorption spectrum suggesting that the 6s and 6p states of the Pb{sup 2+} ions are strongly localized. On heavy annealing at a high temperature (673 K) followed by a rapid cooling to room temperature, the Pb{sup 2+} ions are uniformly dispersed throughout the CsCl crystals, exhibiting the absorption spectrum attributable to isolated Pb{sup 2+}-ion centres. (author)

  19. Probing the Gas-Phase Dynamics of Graphene Chemical Vapour Deposition using in-situ UV Absorption Spectroscopy.

    Science.gov (United States)

    Shivayogimath, Abhay; Mackenzie, David; Luo, Birong; Hansen, Ole; Bøggild, Peter; Booth, Timothy J

    2017-07-21

    The processes governing multilayer nucleation in the chemical vapour deposition (CVD) of graphene are important for obtaining high-quality monolayer sheets, but remain poorly understood. Here we show that higher-order carbon species in the gas-phase play a major role in multilayer nucleation, through the use of in-situ ultraviolet (UV) absorption spectroscopy. These species are the volatilized products of reactions between hydrogen and carbon contaminants that have backstreamed into the reaction chamber from downstream system components. Consequently, we observe a dramatic suppression of multilayer nucleation when backstreaming is suppressed. These results point to an important and previously undescribed mechanism for multilayer nucleation, wherein higher-order gas-phase carbon species play an integral role. Our work highlights the importance of gas-phase dynamics in understanding the overall mechanism of graphene growth.

  20. Precise in situ etch depth control of multilayered III−V semiconductor samples with reflectance anisotropy spectroscopy (RAS equipment

    Directory of Open Access Journals (Sweden)

    Ann-Kathrin Kleinschmidt

    2016-11-01

    Full Text Available Reflectance anisotropy spectroscopy (RAS equipment is applied to monitor dry-etch processes (here specifically reactive ion etching (RIE of monocrystalline multilayered III–V semiconductors in situ. The related accuracy of etch depth control is better than 16 nm. Comparison with results of secondary ion mass spectrometry (SIMS reveals a deviation of only about 4 nm in optimal cases. To illustrate the applicability of the reported method in every day settings for the first time the highly etch depth sensitive lithographic process to form a film lens on the waveguide ridge of a broad area laser (BAL is presented. This example elucidates the benefits of the method in semiconductor device fabrication and also suggests how to fulfill design requirements for the sample in order to make RAS control possible.

  1. Blue- and red-shifts of V2O5 phonons in NH3 environment by in situ Raman spectroscopy

    Science.gov (United States)

    Adeleke Akande, Amos; Machatine, Augusto Goncalo Jose; Masina, Bathusile; Chimowa, George; Matsoso, Boitumelo; Roro, Kittessa; Duvenhage, Mart-Mari; Swart, Hendrik; Bandyopadhyay, Jayita; Sinha Ray, Suprakas; Wakufwa Mwakikunga, Bonex

    2018-01-01

    A layer of ~30 nm V2O5/100 nm-SiO2 on Si was employed in the in situ Raman spectroscopy in the presence of NH3 effluent from a thermal decomposition of ammonium acetate salt with the salt heated at 100 °C. When the layer is placed at 25 °C, we observe a reversible red-shift of 194 cm-1 V2O5 phonon by 2 cm-1 upon NH3 gas injection to saturation, as well as a reversible blue-shift of the 996 cm-1 by 4 cm-1 upon NH3 injection. However when the sensing layer is placed at 100 °C, the 194 cm-1 remains un-shifted while the 996 cm-1 phonon is red-shifted. There is a decrease/increase in intensity of the 145 cm-1 phonon at 25 °C/100 °C when NH3 interacts with V2O5 surface. Using the traditional and quantitative gas sensor tester system, we find that the V2O5 sensor at 25 °C responds faster than at 100 °C up to 20 ppm of NH3 beyond which it responds faster at 100 °C than at 25 °C. Overall rankings of the NH3 gas sensing features between the two techniques showed that the in situ Raman spectroscopy is faster in response compared with the traditional chemi-resistive tester. Hooke’s law, phonon confinement in ~51 nm globular particles with ~20 nm pore size and physisorption/chemisorption principles have been employed in the explanation of the data presented.

  2. In Situ and in Operando Characterization of Mixing Dynamics in Liquid-Phase Reactions by129Xe NMR Spectroscopy.

    Science.gov (United States)

    Zaheer, Muhammad A; Zill, Jeremias C; Matysik, Jörg; Gläser, Roger; Dvoyashkin, Muslim

    2017-06-20

    129 Xe NMR spectroscopy is applied under in situ and in operando conditions to study the mixing process in a multicomponent liquid mixture with partially miscible components. The process of mixing of an oil-methanol mixture was triggered by an industrially relevant catalytic transesterification reaction to form fatty acid methyl esters and glycerol. Up to date, kinetic limitations in liquid-phase reactions originating from the poor miscibility of the reacting species have been addressed solely under ex situ conditions, typically by chromatography. In the approach presented here, xenon gas, solvated in the reacting species, acts as a sensor, providing information on the progress of mixing and on the composition during the course of the catalytic reaction. We believe that this study offers a new tool to the set of established techniques for addressing mixing and/or separation processes in liquids, including but not limited to the ones resulting from catalytic reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. In situ IR, NMR, EPR, and UV/Vis Spectroscopy: Tools for New Insight into the Mechanisms of Heterogeneous Catalysis.

    Science.gov (United States)

    Hunger, M; Weitkamp, J

    2001-01-01

    The development of new solid catalysts for use in industrial chemistry has hitherto been based to a large extent upon the empirical testing of a wide range of different materials. In only a few exceptional cases has success been achieved in understanding the overall, usually very complex mechanism of the chemical reaction through the elucidation of individual intermediate aspects of a heterogeneously catalyzed reaction. With the modern approach of combinatorial catalysis it is now possible to prepare and test much more rapidly a wide range of different materials within a short time and thus find suitable catalysts or optimize their chemical composition. Our understanding of the mechanisms of reactions catalyzed by these materials must be developed, however, by spectroscopic investigations on working catalysts under conditions that are as close as possible to practice (temperature, partial pressures of the reactants, space velocity). This demands the development and the application of new techniques of in situ spectroscopy. This review will show how this objective is being achieved. By the term in situ (Lat.: in the original position) is meant the investigation of the chemical reactions which are taking place as well as the changes in the working catalysts directly in the spectrometer. Copyright © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  4. Direct evidence from in situ FTIR spectroscopy that o-quinonemethide is a key intermediate during the pyrolysis of guaiacol.

    Science.gov (United States)

    Cheng, Hao; Wu, Shubin; Huang, Jinbao; Zhang, Xiaohua

    2017-04-01

    Although o-quinonemethide (6-methylene-2,4-cyclohexadien-1-one) has been proposed as a key intermediate in char formation during the pyrolysis of guaiacol (2-methoxyphenol), direct evidence of this (e.g., spectroscopic data) has not yet been provided. Using in situ FTIR spectroscopy, the pyrolysis of guaiacol was investigated from 30 °C to 630 °C at 40 °C/min. The IR profiles showed direct evidence of o-quinonemethide production at about 350 °C, which vanished rapidly at around 420 °C in the vapor phase, indicating char formation. In addition, at 400 °C, salicyl aldehyde was observed, which decomposed slowly at about 500 °C. In combination with the known products of guaiacol pyrolysis, these results allowed the major reaction pathways of guaiacol pyrolysis to be discerned. Density functional theory calculations were performed, and the results were found to be in good agreement with the experimentally obtained IR profiles. These findings provide guidance on how to suppress secondary reactions of guaiacol during lignin pyrolysis. Graphical abstract On-line analysis of pyrolysis process of guaiacol using in situ FTIR.

  5. Fourier transform infrared spectroscopy as a new tool to determine rosmarinic acid in situ.

    Science.gov (United States)

    Stehfest, Katja; Boese, Matthias; Kerns, Gerhard; Piry, Alexander; Wilhelm, Christian

    2004-02-01

    A new procedure has been developed for the in situ FT-IR determination of rosmarinic acid (RA) in suspension cultures of Lavandula officinalis. The method involves sample preparation on ZnSe crystals or microplates from silicon, and measuring absorbance spectra between 4000 and 700 cm(-1). First derivative spectra were analysed after normalisation using partial least square (PLS) algorithm. The correlation between spectral analysis and HPLC measurements of cell extracts shows that the FT-IR procedure is suitable for qualitative and quantitative analyses of RA in cell suspension cultures.

  6. In situ monitoring of ZnO formation by photoemission spectroscopy

    International Nuclear Information System (INIS)

    Noothongkaew, Suttinart; Supruangnet, Ratchadaporn; Meevasana, Worawat; Nakajima, Hideki; Limpijumnong, Sukit; Songsiriritthigul, Prayoon

    2009-01-01

    Exposure of a clean Zn metal to oxygen in ultra high vacuum provides a mean to gradually form ZnO. With in situ synchrotron photoelectron measurement, the progressive change in the spectra with the oxygen exposure time is observed. The analysis of the spectra allows the determination of ZnO formation. It was found that the oxidation process takes place until reaching the critical thickness, at which the oxidation rate reduces greatly to nearly zero. The critical thickness was determined to be about 2 monolayers.

  7. In situ Raman Spectroscopy Study of the Formation of Graphene from Urea and Graphite Oxide

    Science.gov (United States)

    2012-09-01

    part and a vibrational part. Raman spectroscopy is then concerned with the vibrational part of the polarizability tensor which reduces to [28...pp. 1558–1565, Mar., 2007. [15] F. Li, J. Song, H. Yang , S. Gan, Q. Zhang, D. Han, A. Ivaska, and L. Niu. “One- step synthesis of graphene/SnO2...and phase transformation in graphite produced by ball milling .” Nanostructured Materials, vol. 7, no. 4, pp. 393–399, May, 1996. [23] A. Ferrari, J

  8. Interaction of nanodiamond with in situ generated sp-carbon chains probed by Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Zukalová, Markéta; Kalbáč, Martin; Osawa, E.; Dunsch, L.

    2006-01-01

    Roč. 44, č. 14 (2006), s. 3113-3116 ISSN 0008-6223 R&D Projects: GA AV ČR IAA4040306; GA MŠk LC510 Grant - others:NEDO International Grant(XE) 20041T081 Institutional research plan: CEZ:AV0Z40400503 Keywords : carbyne * diamond * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 3.884, year: 2006

  9. Development of microfluidic devices for in situ investigation of cells using surface-enhanced Raman spectroscopy (Conference Presentation)

    Science.gov (United States)

    Ho, Yu-Han; Galvan, Daniel D.; Yu, Qiuming

    2016-03-01

    Surface-enhanced Raman spectroscopy (SERS) has immerged as a power analytical and sensing technique for many applications in biomedical diagnosis, life sciences, food safety, and environment monitoring because of its molecular specificity and high sensitivity. The inactive Raman scattering of water molecule makes SERS a suitable tool for studying biological systems. Microfluidic devices have also attracted a tremendous interest for the aforementioned applications. By integrating SERS-active substrates with microfluidic devices, it offers a new capability for in situ investigation of biological systems, their dynamic behaviors, and response to drugs or microenvironment changes. In this work, we designed and fabricated a microfluidic device with SERS-active substrates surrounding by cell traps in microfluidic channels for in situ study of live cells using SERS. The SERS-active substrates are quasi-3D plasmonic nanostructure array (Q3D-PNA) made in h-PDMS/PMDS with physically separated gold film with nanoholes op top and gold nanodisks at the bottom of nanowells. 3D finite-difference time-domain (3D-FDTD) electromagnetic simulations were performed to design Q3D-PNAs with the strongest local electric fields (hot spots) at the top or bottom water/Au interfaces for sensitive analysis of cells and small components, respectively. The Q3D-PNAs with the hot spots on top and bottom were placed at the up and down stream of the microfluidic channel, respectively. Each Q3D-PNA pattern was surrounded with cell trapping structures. The microfluidic device was fabricated via soft lithography. We demonstrated that normal (COS-7) and cancer (HpeG2) cells were captured on the Q3D-PNAs and investigated in situ using SERS.

  10. Evaluation of ionizing radiation effects in bone tissue by FTIR spectroscopy and dynamic mechanical analysis

    International Nuclear Information System (INIS)

    Veloso, Marcelo N.; Santin, Stefany P.; Benetti, Carolina; Pereira, Thiago M.; Mattor, Monica B.; Politano, Rodolfo; Zezell, Denise M.

    2013-01-01

    In many medical practices the bone tissue exposure to ionizing radiation is necessary. However, this radiation can interact with bone tissue in a molecular level, causing chemical and mechanical changes related with the dose used. The aim of this study was verify the changes promoted by different doses of ionizing radiation in bone tissue using spectroscopy technique of Attenuate Total Reflectance - Fourier Transforms Infrared (ATR-FTIR) and dynamic mechanical analysis. Samples of bovine bone were irradiated using irradiator of Cobalt-60 with five different doses between 0.01 kGy, 0.1 kGy,1 kGy, 15 kGy and 75 kGy. To study the effects of ionizing irradiation on bone chemical structure the sub-bands of amide I and the crystallinity index were studied. The mechanical changes were evaluated using the elastic modulus and the damping value. To verify if the chemical changes and the bone mechanic characteristics were related, it was made one study about the correlation between the crystallinity index and the elastic modulus, between the sub-bands ratio and the damping value and between the sub-bands ratio and the elastic modulus. It was possible to evaluate the effects of different dose of ionizing radiation in bone tissue. With ATR-FTIR spectroscopy analysis, it was possible observe changes in the organic components and in the hydroxyapatite crystals organization. Changes were also observed in the mechanical properties. A good correlation between the techniques was found, however, it was not possible to establish a linear or exponential dependence between dose and effect. (author)

  11. Sensing local pH and ion concentration at graphene electrode surfaces using in situ Raman spectroscopy.

    Science.gov (United States)

    Shi, Haotian; Poudel, Nirakar; Hou, Bingya; Shen, Lang; Chen, Jihan; Benderskii, Alexander V; Cronin, Stephen B

    2018-02-01

    We report a novel approach to probe the local ion concentration at graphene/water interfaces using in situ Raman spectroscopy. Here, the upshifts observed in the G band Raman mode under applied electrochemical potentials are used to determine the charge density in the graphene sheet. For voltages up to ±0.8 V vs. NHE, we observe substantial upshifts in the G band Raman mode by as much as 19 cm -1 , which corresponds to electron and hole carrier densities of 1.4 × 10 13 cm -2 and Fermi energy shifts of ±430 meV. The charge density in the graphene electrode is also measured independently using the capacitance-voltage characteristics (i.e., Q = CV), and is found to be consistent with those measured by Raman spectroscopy. From charge neutrality requirements, the ion concentration in solution per unit area must be equal and opposite to the charge density in the graphene electrode. Based on these charge densities, we estimate the local ion concentration as a function of electrochemical potential in both pure DI water and 1 M KCl solutions, which span a pH range from 3.8 to 10.4 for pure DI water and net ion concentrations of ±0.7 mol L -1 for KCl under these applied voltages.

  12. Role of Bi promotion and solvent in platinum-catalyzed alcohol oxidation probed by in situ X-ray absorption and ATR-IR spectroscopy

    DEFF Research Database (Denmark)

    Mondelli, C.; Grunwaldt, Jan-Dierk; Ferri, D.

    2010-01-01

    the catalysts under working conditions using in situ X-ray absorption spectroscopy (XAS) and attenuated total reflection infrared spectroscopy (ATR-IR), aiming at uncovering the roles of the metal promoter and the reaction medium. XAS confirms that Bi is oxidized more easily than Pt, maintaining the catalytic....... This behaviour is not observed in the presence of Bi, whose geometric effect (site blocking) is interpreted as additionally limiting the adsorption of toluene and the premature deactivation of Pt. ATR-IR spectroscopy during CO adsorption on Pt and during reaction indicates that Bi is located rather on extended...

  13. New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study

    NARCIS (Netherlands)

    Karwacki, L.; Weckhuysen, B.M.

    2011-01-01

    A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400–750 nm region

  14. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  15. Raman Spectroscopy and in Situ Raman Spectroelectrochemistry of Bilayer 12C/13C Graphene

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Farhat, H.; Kong, J.; Janda, Pavel; Kavan, Ladislav; Dresselhaus, M. S.

    2011-01-01

    Roč. 11, č. 5 (2011), s. 1957-1963 ISSN 1530-6984 R&D Projects: GA AV ČR IAA400400911; GA AV ČR IAA400400804; GA AV ČR KAN200100801; GA MŠk ME09060; GA MŠk LC510; GA ČR GC203/07/J067; GA ČR GAP204/10/1677 Institutional research plan: CEZ:AV0Z40400503 Keywords : graphene * bilayer * Raman Spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 13.198, year: 2011

  16. The Bone Black Pigment Identification by Noninvasive, In Situ Infrared Reflection Spectroscopy

    Directory of Open Access Journals (Sweden)

    Alessia Daveri

    2018-01-01

    Full Text Available Two real case studies, an oil painting on woven paper and a cycle of mural paintings, have been presented to validate the use of infrared reflection spectroscopy as suitable technique for the identification of bone black pigment. By the use of the sharp weak band at 2013 cm−1, it has been possible to distinguish animal carbon-based blacks by a noninvasive method. Finally, an attempt for an eventual assignment for the widely used sharp band at 2013 cm−1 is discussed.

  17. In-situ Characterization of Molecular Processes in Liquids by Ultrafast X-ray Absorption Spectroscopy

    Science.gov (United States)

    Chergui, Majed

    The need to visualize molecular and electronic structure in the course of a chemical reaction, a phase transformation a biological function has been the dream of scientists for decades. The development of time-resolved X-ray and electron based methods is making this true. X-ray absorption spectroscopy is ideal for the study of structural dynamics in liquids, because it can be implemented in amorphous media and it is chemically selective. Using X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) in laser pump/X-ray probe experiments allows the retrieval of the local geometric structure of the system under study, but also the underlying photoinduced electronic structure changes that drive the structural dynamics. We review the recent development in picosecond and femtosecond X-ray absorption spectroscopy applied to molecular systems in solution: examples on ultrafast photoinduced processes such as intramolecular electron transfer, high-to-low spin change, bond formation and water dynamics are presented.

  18. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  19. Interface electronic properties of co-evaporated MAPbI3 on ZnO(0001): In situ X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy study

    International Nuclear Information System (INIS)

    Zhou, Xianzhong; Li, Xiaoli; Huang, Feng; Zhong, Dingyong; Liu, Yuan

    2016-01-01

    In this work, the interface electronic properties of ZnO(0001)/CH 3 NH 3 PbI 3 were investigated by both X-ray and ultraviolet photoelectron spectroscopy. The CH 3 NH 3 PbI 3 thin films were grown on single crystalline ZnO(0001) substrate in situ by co-evaporation of PbI 2 and CH 3 NH 3 I at room temperature with various thickness from 1.5 nm to 190 nm. It was found that the conduction band minimum of ZnO lies 0.3 eV below that of CH 3 NH 3 PbI 3 , while the valence band maximum of ZnO lies 2.1 eV below that of CH 3 NH 3 PbI 3 , implying that the electrons can be effectively transported from CH 3 NH 3 PbI 3 to ZnO, and the holes can be blocked in the same time. A PbI 2 rich layer was initially formed at the interface of ZnO(0001)/CH 3 NH 3 PbI 3 during the growth. As a consequence, an interface barrier was built up which may prevent the electron transport at the interface.

  20. Acrylamide inverse miniemulsion polymerization: in situ, real-time monitoring using nir spectroscopy

    Directory of Open Access Journals (Sweden)

    M. M. E. Colmán

    2014-12-01

    Full Text Available In this work, the ability of on-line NIR spectroscopy for the prediction of the evolution of monomer concentration, conversion and average particle diameter in acrylamide inverse miniemulsion polymerization was evaluated. The spectral ranges were chosen as those representing the decrease in concentration of monomer. An increase in the baseline shift indicated that the NIR spectra were affected by particle size. Multivariate partial least squares calibration models were developed to relate NIR spectra collected by the immersion probe with off-line conversion and polymer particle size data. The results showed good agreement between off-line data and values predicted by the NIR calibration models and these latter were also able to detect different types of operational disturbances. These results indicate that it is possible to monitor variables of interest during acrylamide inverse miniemulsion polymerizations.

  1. In situ Analysis of Fireworks Using Laser-Induced Breakdown Spectroscopy and Chemometrics

    Science.gov (United States)

    Awasthi, S.; Kumar, R.; Rai, A. K.

    2017-11-01

    Different types of fireworks are analyzed using the laser-induced breakdown spectroscopy (LIBS) technique. The system employed for spectral acquisition consists of a Nd:YAG laser (532 nm, FWHM = 4 ns) and an Andor Mechelle ME 5000 echelle spectrometer. The presence of Ba, Ca, Mg, Fe, Na, Sr, Si, and Al is identified in the LIBS spectra of different fireworks. These elements can mix easily into the surroundings and thus pollute the environment. In combination with LIBS, multivariate statistical methods, such as principal component analysis and partial least square discriminant analysis, are employed for qualitative classification, regression, and prediction purposes. These methods show good applicability for the classification and prediction of a large data set.

  2. In situ light spectroscopy in the environmental transmission electron microscope (ETEM)

    DEFF Research Database (Denmark)

    Cavalca, Filippo; Langhammer, C.; Pedersen, Thomas

    2012-01-01

    is often recorded on a limited portion of the sample. Being able to probe the sample with INPS and ETEM at the same time allows parallel investigation at the local and macro scale, as well as aids the assessment of beam effects. A dedicated custom TEM specimen holder containing two optical fibers, five...... electrical contacts, a fixed miniaturized optical bench for light handling and a heating element (Fig. 1) has been designed. A system of pre-aligned mirrors and a MEMS heater are implemented in the holder. The system is primarily designed for use in combination with LSPR spectroscopy, but it is flexible...... and can be employed with a variety of other methods that require light input and/or output. The two fibers can be used as parallel light inlets to activate a photoinduced reaction, e.g. photoinduced reduction of particles or nanoparticle photodeposition [7]. Alternatively, both fibers can be used...

  3. In Situ Raman Spectroscopy of COOH-Functionalized SWCNTs Trapped with Optoelectronic Tweezers

    Directory of Open Access Journals (Sweden)

    Peter J. Pauzauskie

    2012-01-01

    Full Text Available Optoelectronic tweezers (OETs were used to trap and deposit aqueous dispersions of carboxylic-acid-functionalized single-walled carbon nanotube bundles. Dark-field video microscopy was used to visualize the dynamics of the bundles both with and without virtual electrodes, showing rapid accumulation of carbon nanotubes when optical virtual electrodes are actuated. Raman microscopy was used to probe SWCNT materials following deposition onto metallic fiducial markers as well as during trapping. The local carbon nanotube concentration was observed to increase rapidly during trapping by more than an order of magnitude in less than one second due to localized optical dielectrophoresis forces. This combination of enrichment and spectroscopy with a single laser spot suggests a broad range of applications in physical, chemical, and biological sciences.

  4. Development of in situ time-resolved Raman spectroscopy facility for dynamic shock loading in materials

    Science.gov (United States)

    Chaurasia, S.; Rastogi, V.; Rao, U.; Sijoy, C. D.; Mishra, V.; Deo, M. N.

    2017-11-01

    The transient state of excitation and relaxation processes in materials under shock compression can be investigated by coupling the laser driven shock facility with Raman spectroscopy. For this purpose, a time resolved Raman spectroscopy setup has been developed to monitor the physical and the chemical changes such as phase transitions, chemical reactions, molecular kinetics etc., under shock compression with nanosecond time resolution. This system consist of mainly three parts, a 2 J/8 ns Nd:YAG laser system used for generation of pump and probe beams, a Raman spectrometer with temporal and spectral resolution of 1.2 ns and 3 cm-1 respectively and a target holder in confinement geometry assembly. Detailed simulation for the optimization of confinement geometry targets is performed. Time resolved measurement of polytetrafluoroethylene (PTFE) targets at focused laser intensity of 2.2 GW/cm2 has been done. The corresponding pressure in the Aluminum and PTFE are 3.6 and 1.7 GPa respectively. At 1.7 GPa in PTFE, a red shift of 5 cm-1 is observed for the CF2 twisting mode (291 cm-1). Shock velocity in PTFE is calculated by measuring rate of change of ratios of the intensity of Raman lines scattered from shocked volume to total volume of sample in the laser focal spot along the laser axis. The calculated shock velocity in PTFE is found to be 1.64 ± 0.16 km/s at shock pressure of 1.7 GPa, for present experimental conditions.

  5. Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function

    Science.gov (United States)

    Hochberg, E. J.

    2016-02-01

    Coral reefs are threatened at local to global scales by a litany of anthropogenic impacts, including overfishing, coastal development, marine and watershed pollution, rising ocean temperatures, and ocean acidification. However, available data for the primary indicator of coral reef condition — proportional cover of living coral — are surprisingly sparse and show patterns that contradict the prevailing understanding of how environment impacts reef condition. Remote sensing is the only available tool for acquiring synoptic, uniform data on reef condition at regional to global scales. Discrimination between coral and other reef benthos relies on narrow wavebands afforded by imaging spectroscopy. The same spectral information allows non-invasive quantification of photosynthetic pigment composition, which shows unexpected phenological trends. There is also potential to link biodiversity with optical diversity, though there has been no effort in that direction. Imaging spectroscopy underlies the light-use efficiency model for reef primary production by quantifying light capture, which in turn indicates biochemical capacity for CO2 assimilation. Reef calcification is strongly correlated with primary production, suggesting the possibility for an optics-based model of that aspect of reef function, as well. By scaling these spectral models for use with remote sensing, we can vastly improve our understanding of reef structure, function, and overall condition across regional to global scales. By analyzing those remote sensing products against ancillary environmental data, we can construct secondary models to predict reef futures in the era of global change. This final point is the objective of CORAL (COral Reef Airborne Laboratory), a three-year project funded under NASA's Earth Venture Suborbital-2 program to investigate the relationship between coral reef condition at the ecosystem scale and various nominal biogeophysical forcing parameters.

  6. Composition-thermal expandability relations and oxidation processes in tourmaline studied by in situ Raman spectroscopy

    Science.gov (United States)

    Watenphul, Anke; Malcherek, Thomas; Wilke, Franziska D. H.; Schlüter, Jochen; Mihailova, Boriana

    2017-11-01

    The crystal chemistry of tourmaline, XY3Z6(T6O18)(BO3)3V3W, has a strong influence on the structure and physical properties. Since tourmalines occur in a wide range of geological settings and have large temperature and pressure stability fields, the understanding of the relation between the tourmaline chemistry and thermal expansion allows for better thermodynamic modeling of geological processes. Here, we report dynamic and static thermal expansions as well as mode Grüneisen parameters studied by Raman spectroscopy and single-crystal X-ray diffraction data on several tourmaline species. In addition, oxidation processes in fluor-schorl and Fe2+-bearing elbaite were followed by Raman spectroscopy. Our results emphasize the role of Y-/Z-site occupancy disorder to reduce the local strains and demonstrate that small-size octahedrally coordinated cations perturb the topology of the SiO4 rings, which in turn seems to enhance the anisotropic thermal-expansion response. In addition, it is shown that the temperature-dependent behavior of the VOH modes primarily depends on the occupancy of the Y site, whereas that of the WOH modes depends on the occupancy of the X site. High-temperature Raman experiments in air allowed to follow the oxidation of Fe2+ to Fe3+ in fluor-schorl by analyzing both the framework and OH-stretching phonon modes. It is further demonstrated that under the same conditions, no oxidation of iron is observed for Fe2+-bearing elbaite, which implies that at high oxygen fugacity, iron is only oxidized in tourmaline species with prevalent divalent cations at the Y site.

  7. Optical stress probe: in-situ stress mapping with Raman and Photo-stimulated luminescence spectroscopy

    International Nuclear Information System (INIS)

    Freihofer, G; Poliah, L; Walker, K; Medina, A; Raghavan, S

    2010-01-01

    The optical stress probe system, developed in this work, provides a non-invasive method of monitoring and mapping the optical properties of a material during in situ stress tests. The design and construction of such a system was achieved by coupling a fiber optic probe based spectrometer system with an electromechanical loading system. This novel instrumentation integration enables the quantitative study of Raman or Photo-stimulated luminescence peak shifts with stress, known as piezospectroscopy. It further enables mapping of these spectral shifts over a surface of the specimen under load. To achieve this, a focusing method was developed that optimizes the intensity of specific optical bands of interest with the probe position. Individual software programs for the various systems that make up the instrumentation including the spectrometer, load frame and the XYZ stage were integrated and a single user interface was created. The system was calibrated by replicating published linear correlation between compressive stress and spectral peak position, 2.5cm -1 /GPa for polycrystalline alumina.

  8. Portable Raman spectroscopy for an in-situ monitoring the ripening of tomato (Solanum lycopersicum) fruits

    Science.gov (United States)

    Trebolazabala, Josu; Maguregui, Maite; Morillas, Héctor; de Diego, Alberto; Madariaga, Juan Manuel

    2017-06-01

    Ripening is one of the most important transformations that fruits and vegetables suffer, from an unripe to a ripe stage. In this study, it was followed up and analyzed the variations in the composition of tomato fruits at different ripening stages (green or unripe, orange or middle ripe, red or ripe and brown or overripe). The results obtained from the Raman measurements carried out showed a change in the composition of tomato fruits in the transit from green to brown. The analysis confirmed an increase of carotenoids from an unripe to a ripe stage of these fruits, being lycopene the characteristic carotenoid of the optimum ripe stage. The presence of chlorophyll and cuticular waxes decrease from the unripe to the ripe stage. Moreover, the relative intensity of phytofluene, a transition compound in the carotenoid biosynthetic pathway, is higher in the orange or middle ripening stage. The results obtained in-situ, without cutting and handling the tomato fruits, by means of a portable Raman spectrometer offered the same information that can be achieved using a more expensive and sophisticated confocal Raman microscope.

  9. Total Water Measurements Using In Situ UV Fragment Fluorescence Spectroscopy in Support of CRYSTAL-FACE

    Science.gov (United States)

    Anderson, James G.

    2004-01-01

    Given both the powerful diagnostic importance of the condensed phases of water for dynamics and the impact of phase changes in water on the radiation field, the accurate, in situ observation of total water is of central importance to CRYSTAL-FACE. This is clear both from the defined scientific objectives of the NRA and from developments in the coupled fields of stratosphere/troposphere exchange, cirrus cloud formation/removal and mechanisms for the distribution of water vapor in the middle/upper troposphere. Accordingly, we were funded under NASA Grant NAG5-115487 to perform the following tasks for the CRYSTAL-FACE mission that took place in Key West, Florida, during July 2001: 1) Prepare the Total Water instrument for integration into the WB57F and test flights scheduled for Spring 2002. 2) Calibrate and prepare the Total Water instrument for the Summer 2002 CRYSTAL-FACE science flights based in Jacksonville, Florida. 3) Provide both science and engineering support for the above-mentioned efforts. 4) Analyze and interpret the CRYSTAL-FACE data in collaboration with the other mission scientists. 5) Attend the proposed science workshop in Spring 2003. 6) Publish the data and analysis in peer-reviewed journals.

  10. In situ measurements of organic carbon in soil profiles using vis-NIR spectroscopy on the Qinghai-Tibet plateau.

    Science.gov (United States)

    Li, Shuo; Shi, Zhou; Chen, Songchao; Ji, Wenjun; Zhou, Lianqing; Yu, Wu; Webster, Richard

    2015-04-21

    We wish to estimate the amount of carbon (C) stored in the soil at high altitudes, for which there is little information. Collecting and transporting large numbers of soil samples from such terrain are difficult, and we have therefore evaluated the feasibility of scanning with visible near-infrared (vis-NIR) spectroscopy in situ for the rapid measurement of the soil in the field. We took 28 cores (≈1 m depth and 5 cm diameter) of soil at altitudes from 2900 to 4500 m in the Sygera Mountains on the Qinghai-Tibet Plateau, China. Spectra were acquired from fresh, vertical faces 5 × 5 cm in area from the centers of the cores to give 413 spectra in all. The raw spectra were pretreated by several methods to remove noise, and statistical models were built to predict of the organic C in the samples from the spectra by partial least-squares regression (PLSR) and least-squares support vector machine (LS-SVM). The bootstrap was used to assess the uncertainty of the predictions by the several combinations of pretreatment and models. The predictions by LS-SVM from the field spectra, for which R(2) = 0.81, the root-mean-square error RMSE = 8.40, and the ratio of the interquartile distance RPIQ = 2.66, were comparable to the PLSR predictions from the laboratory spectra (R(2) = 0.85, RMSE = 7.28, RPIQ = 3.09). We conclude that vis-NIR scanning in situ in the field is a sufficiently accurate rapid means of estimating the concentration of organic C in soil profiles in this high region and perhaps elsewhere.

  11. Mechanism for microwave heating of 1-(4'-cyanophenyl)-4-propylcyclohexane characterized by in situ microwave irradiation NMR spectroscopy.

    Science.gov (United States)

    Tasei, Yugo; Yamakami, Takuya; Kawamura, Izuru; Fujito, Teruaki; Ushida, Kiminori; Sato, Motoyasu; Naito, Akira

    2015-05-01

    Microwave heating is widely used to accelerate organic reactions and enhance the activity of enzymes. However, the detailed molecular mechanism for the effect of microwave on chemical reactions is not yet fully understood. To investigate the effects of microwave heating on organic compounds, we have developed an in situ microwave irradiation NMR spectroscopy. (1)H NMR spectra of 1-(4'-cyanophenyl)-4-propylcyclohexane (PCH3) in the liquid crystalline and isotropic phases were observed under microwave irradiation. When the temperature was regulated at slightly higher than the phase transition temperature (Tc=45 °C) under a gas flow temperature control system, liquid crystalline phase mostly changed to the isotropic phase. Under microwave irradiation and with the gas flow temperature maintained at 20 °C, which is 25 °C below the Tc, the isotropic phase appeared stationary as an approximately 2% fraction in the liquid crystalline phase. The temperature of the liquid crystalline state was estimated to be 38 °C according to the line width, which is at least 7 °C lower than the Tc. The temperature of this isotropic phase should be higher than 45 °C, which is considered to be a non-equilibrium local heating state induced by microwave irradiation. Microwaves at a power of 195 W were irradiated to the isotropic phase of PCH3 at 50 °C and after 2 min, the temperature reached 220 °C. The temperature of PCH3 under microwave irradiation was estimated by measurement of the chemical shift changes of individual protons in the molecule. These results demonstrate that microwave heating generates very high temperature within a short time using an in situ microwave irradiation NMR spectrometer. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. In situ continuous visible and near-infrared spectroscopy of an alpine snowpack

    Science.gov (United States)

    Dumont, Marie; Arnaud, Laurent; Picard, Ghislain; Libois, Quentin; Lejeune, Yves; Nabat, Pierre; Voisin, Didier; Morin, Samuel

    2017-05-01

    Snow spectral albedo in the visible/near-infrared range has been continuously measured during a winter season at Col de Porte alpine site (French Alps; 45.30° N, 5.77° E; 1325 m a.s.l.). The evolution of such alpine snowpack is complex due to intensive precipitation, rapid melt events and Saharan dust deposition outbreaks. This study highlights that the resulting intricate variations of spectral albedo can be successfully explained by variations of the following snow surface variables: specific surface area (SSA) of snow, effective light-absorbing impurities content, presence of liquid water and slope. The methodology developed in this study disentangles the effect of these variables on snow spectral albedo. The presence of liquid water at the snow surface results in a spectral shift of the albedo from which melt events can be identified with an occurrence of false detection rate lower than 3.5 %. Snow SSA mostly impacts spectral albedo in the near-infrared range. Impurity deposition mostly impacts the albedo in the visible range but this impact is very dependent on snow SSA and surface slope. Our work thus demonstrates that the SSA estimation from spectral albedo is affected by large uncertainties for a tilted snow surface and medium to high impurity contents and that the estimation of impurity content is also affected by large uncertainties, especially for low values below 50 ng g-1 black carbon equivalent. The proposed methodology opens routes for retrieval of SSA, impurity content, melt events and surface slope from spectral albedo. However, an exhaustive accuracy assessment of the snow black properties retrieval would require more independent in situ measurements and is beyond the scope of the present study. This time series of snow spectral albedo nevertheless already provides a new insight into our understanding of the evolution of snow surface properties.

  13. Study on the degradation of PLEDs by in-situ micro-Raman spectroscopy

    Science.gov (United States)

    Xu, Xiaoxuan; Qin, Zhe; Lin, Haibo; Xu, Wei

    2007-11-01

    Electro luminescence spectra and in-suit micro-Raman spectra was used to study voltaic aging of organic light emitting devices with two kinds of conjugated macromolecule polymer emission layer, one is called PFO-BT15 and the other is poly (2-(4-Ethylhexyl) phenyl-1 , 4-phenylene vinylene) (P-PPV) polymer. The first device has a configuration of ITO glass/ PEDOT( 120nm ) PFO-BT15(80nm)/Ba( 4nm )/Al(200nm) , and we encapsulated the cathode of diode with epoxy resin to reduce the entrance of oxygen and water. After long time current stress, the electro luminescent spectra and Raman spectra show that the polymer device's molecular configuration of polymer layer is unchanged , but the PEDOT anode's breakage which lead to the emission failure of the device, which indicates that this kind of polymer materials have relatively steady photoelectric performance . The second device, during current stress , the reduction of conjugation length is provided by Raman spectroscopy. This reduction of the conjugation length , which dramatically increases the resistance and cuts off the current density , was the main reason for the failure of lighting. These findings provide an important insight into the intrinsic degradation mechanisms of the polymer LEDs and help in the development of even more stable devices.

  14. In situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS).

    Science.gov (United States)

    Kurouski, Dmitry; Van Duyne, Richard P

    2015-03-03

    Hair is one of the most common types of physical evidence found at a crime scene. Forensic examination may suggest a connection between a suspect and a crime scene or victim, or it may demonstrate an absence of such associations. Therefore, forensic analysis of hair evidence is invaluable to criminal investigations. Current hair forensic examinations are primarily based on a subjective microscopic comparison of hair found at the crime scene with a sample of suspect's hair. Since this is often inconclusive, the development of alternative and more-accurate hair analysis techniques is critical. In this study, we utilized surface-enhanced Raman spectroscopy (SERS) to demonstrate that artificial dyes can be directly detected on hair. This spectroscopic technique is capable of a confirmatory identification of analytes with single molecule resolution, requires minimal sample, and has the advantage of fluorescence quenching. Our study reveals that SERS can (1) identify whether hair was artificially dyed or not, (2) determine if a permanent or semipermanent colorants were used, and (3) distinguish the commercial brands that are utilized to dye hair. Such analysis is rapid, minimally destructive, and can be performed directly at the crime scene. This study provides a novel perspective of forensic investigations of hair evidence.

  15. Oxygen diluted hexamethyldisiloxane plasmas investigated by means of in situ infrared absorption spectroscopy and mass spectrometry

    Science.gov (United States)

    Magni, D.; Deschenaux, Ch; Hollenstein, Ch; Creatore, A.; Fayet, P.

    2001-01-01

    The gas phase species produced in rf plasmas of hexamethyldisiloxane (HMDSO), Si2O(CH3)6, diluted with oxygen, have been investigated. The complementarity of Fourier transform infrared absorption spectroscopy and mass spectrometry allows the determination of the most abundant neutral components present in the discharge. The measurements reveal that methyl groups (CH3), abundantly formed by the dissociation of the HMDSO molecule, are the precursor for the most abundant species which stem from two kinds of reaction. The first kind of reaction is combustion of CH3 by oxygen-producing formaldehyde (COH2), formic acid (CO2H2), carbon monoxide (CO), carbon dioxide (CO2) and water. It is shown that high mass carbonated radicals, such as SixOyCzHt, first diffuse to the surface and then the carbon is removed by oxygen etching to form CO2. The second is hydrocarbon chemistry promoted by CH3, producing mainly hydrogen (H2), methane (CH4) and acetylene (C2H2).

  16. Structural investigations of LiFePO4 electrodes and in situ studies by Fe X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Deb, Aniruddha; Bergmann, Uwe; Cramer, S.P.; Cairns, Elton J.

    2005-01-01

    Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on electrodes containing LiFePO 4 to determine the local atomic and electronic structure and their stability with electrochemical cycling. A versatile electrochemical in situ cell has been constructed for long-term soft and hard X-ray experiments for the structural investigation on battery electrodes during the lithium-insertion/extraction processes. The device is used here for an X-ray absorption spectroscopic study of lithium insertion/extraction in a LiFePO 4 electrode, where the electrode contained about 7.7 mg of LiFePO 4 on a 20 μm thick Al-foil. Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on this electrode to determine the local atomic and electronic structure and their stability with electrochemical cycling. The initial state (LiFePO 4 ) showed iron to be in the Fe 2+ state corresponding to the initial state (0.0 mAh) of the cell, whereas in the delithiated state (FePO 4 ) iron was found to be in the Fe 3+ state corresponding to the final charged state (3 mAh). XANES region of the XAS spectra revealed a high spin configuration for the two states (Fe (II), d 6 and Fe (III), d 5 ). The results confirm that the olivine structure of the LiFePO 4 and FePO 4 is retained by the electrodes in agreement with the XRD observations reported previously. These results confirm that LiFePO 4 cathode material retains good structural short-range order leading to superior cycling capability

  17. Quantitative Soil Carbon Analysis with in Situ Laser-Induced Breakdown Spectroscopy by Multivariate Analysis

    Science.gov (United States)

    Harris, R. D.; Clegg, S. M.; Barefield, J. E.; Fessenden-Rahn, J. E.; Wiens, R. C.; Ebinger, M. H.

    2007-12-01

    The Earth's oceans, forests, agricultural lands and other natural areas absorb about half of the carbon dioxide emitted from anthropogenic sources. Terrestrial carbon sequestration strategies are immediately available to bridge the gap between current terrestrial sequestration capacity and high-capacity geologic sequestration projects available in 10 to 20 years. Terrestrial carbon sequestration strategies consist of implementing land management practices aimed at decreasing CO2 emitted into the atmosphere and developing advanced measurement tools to inventory and monitor carbon processes in soils and biota. Laser-Induced Breakdown Spectroscopy (LIBS) is one of the analytical tools used to determine the total soil carbon in samples within the Big Sky and Southwest Carbon Sequestration Regional Partnerships. LIBS involves focusing a Nd:YAG laser operating at 1064nm onto the surface of the sample. The laser ablates material from the surface, generating an expanding plasma containing electronically excited ions, atoms, and small molecules. As these electronically excited species relax back to the ground state, they emit light at wavelengths characteristic of the species present in the sample. Some of this emission is directed into one of three dispersive spectrometers. The experiments discussed in this paper were completed with a person portable LIBS instrument designed and built at Los Alamos National Laboratory that uses a Kigre Laser (25mJ/pulse) and an Ocean Optics HR2000 dispersive spectrometer. This instrument was used to probe samples collected from Illinois (no-till loam), Michigan (no-till clay), and North Dakota (reduced-till sand). A new multivariate analysis technique was employed to extract concentrations to 0.5%C with significantly greater statistical accuracy than conventional univariate techniques. These MVA techniques appear to completely compensate for these matrix effects because the analysis identifies the correlations between the spectra

  18. Laser-induced breakdown spectroscopy for in situ qualitative and quantitative analysis of mineral ores

    Energy Technology Data Exchange (ETDEWEB)

    Pořízka, P. [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany); Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 61669 Brno (Czech Republic); Demidov, A. [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany); Kaiser, J. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 61669 Brno (Czech Republic); Keivanian, J. [Institute for Mining, Technical University Clausthal, Erzstraße 18, 38678 Clausthal-Zellerfeld (Germany); Gornushkin, I. [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany); Panne, U. [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany); Chemistry Department, Humboldt Univerisät zu Berlin, Brook-Taylor-Straße 2, D-12489 Berlin (Germany); Riedel, J., E-mail: jens.riedel@bam.de [BAM, Federal Institute for Materials Research and Testing, Richard Willstätter-Straße 11, D-12489 Berlin (Germany)

    2014-11-01

    In this work, the potential of laser-induced breakdown spectroscopy (LIBS) for discrimination and analysis of geological materials was examined. The research was focused on classification of mineral ores using their LIBS spectra prior to quantitative determination of copper. Quantitative analysis is not a trivial task in LIBS measurement because intensities of emission lines in laser-induced plasmas (LIP) are strongly affected by the sample matrix (matrix effect). To circumvent this effect, typically matrix-matched standards are used to obtain matrix-dependent calibration curves. If the sample set consists of a mixture of different matrices, even in this approach, the corresponding matrix has to be known prior to the downstream data analysis. For this categorization, the multielemental character of LIBS spectra can be of help. In this contribution, a principal component analysis (PCA) was employed on the measured data set to discriminate individual rocks as individual matrices against each other according to their overall elemental composition. Twenty-seven igneous rock samples were analyzed in the form of fine dust, classified and subsequently quantitatively analyzed. Two different LIBS setups in two laboratories were used to prove the reproducibility of classification and quantification. A superposition of partial calibration plots constructed from the individual clustered data displayed a large improvement in precision and accuracy compared to the calibration plot constructed from all ore samples. The classification of mineral samples with complex matrices can thus be recommended prior to LIBS system calibration and quantitative analysis. - Highlights: • Twenty seven igneous rocks were measured on different LIBS systems. • Principal component analysis (PCA) was employed for classification. • The necessity of the classification of the rock (ore) samples prior to the quantification analysis is stressed. • Classification based on the whole LIP spectra and

  19. Characterization of foreign materials in paraffin-embedded pathological specimens using in situ multi-elemental imaging with laser spectroscopy.

    Science.gov (United States)

    Busser, Benoit; Moncayo, Samuel; Trichard, Florian; Bonneterre, Vincent; Pinel, Nicole; Pelascini, Frédéric; Dugourd, Philippe; Coll, Jean-Luc; D'Incan, Michel; Charles, Julie; Motto-Ros, Vincent; Sancey, Lucie

    2018-03-01

    Pathologists typically encounter many disparate exogenous materials in clinical specimens during their routine histopathological examinations, especially within the skin, lymph nodes, and lungs. These foreign substances may be free extracellular deposits or induce several clinical abnormalities or histopathological patterns. However, pathologists almost never investigate or report the chemical nature of exogenous metals in clinical specimens due to a lack of convenient and available technologies. In this paper, a novel strategy based on laser-induced breakdown spectroscopy (LIBS) technology is evaluated for in situ multi-elemental tissue imaging. The improved procedures allow visualization of the presence of chemical elements contained within paraffin-embedded specimens of medical interest with elemental images that are stackable with conventional histology images. We selected relevant medical situations for which the associated pathology reports were limited to the presence of lymphohistiocytic and inflammatory cells containing granules (a granuloma and a pseudolymphoma) or to lymph nodes or skin tissues containing pigments or foreign substances. Exogenous elements such as aluminum, titanium, copper, and tungsten were identified and localized within the tissues. The all-optical LIBS elemental imaging instrument that we developed is fully compatible with conventional optical microscopy used for pathology analysis. When combined with routine histopathological analysis, LIBS is a versatile technology that might help pathologists establish or confirm diagnoses for a wide range of medical applications, particularly when the nature of external agents present in tissues needs to be investigated.

  20. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.

    2013-08-08

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  1. In-situ monitoring of Saccharomyces cerevisiae ITV01 bioethanol process using near-infrared spectroscopy NIRS and chemometrics.

    Science.gov (United States)

    Corro-Herrera, Víctor Abel; Gómez-Rodríguez, Javier; Hayward-Jones, Patricia Margaret; Barradas-Dermitz, Dulce María; Aguilar-Uscanga, María Guadalupe; Gschaedler-Mathis, Anne Christine

    2016-03-01

    The application feasibility of in-situ or in-line monitoring of S. cerevisiae ITV01 alcoholic fermentation process, employing Near-Infrared Spectroscopy (NIRS) and Chemometrics, was investigated. During the process in a bioreactor, in the complex analytical matrix, biomass, glucose, ethanol and glycerol determinations were performed by a transflection fiber optic probe immersed in the culture broth and connected to a Near-Infrared (NIR) process analyzer. The NIR spectra recorded between 800 and 2,200 nm were pretreated using Savitzky-Golay smoothing and second derivative in order to perform a partial least squares regression (PLSR) and generate the calibration models. These calibration models were tested by external validation and then used to predict concentrations in batch alcoholic fermentations. The standard errors of calibration (SEC) for biomass, ethanol, glucose and glycerol were 0.212, 0.287, 0.532, and 0.296 g/L and standard errors of prediction (SEP) were 0.323, 0.369, 0.794, and 0.507 g/L, respectively. Calibration and validation criteria were defined and evaluated in order to generate robust and reliable models for an alcoholic fermentation process matrix. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:510-517, 2016. © 2016 American Institute of Chemical Engineers.

  2. Sol-to-Gel Transition in Fast Evaporating Systems Observed by in Situ Time-Resolved Infrared Spectroscopy.

    Science.gov (United States)

    Innocenzi, Plinio; Malfatti, Luca; Carboni, Davide; Takahashi, Masahide

    2015-06-22

    The in situ observation of a sol-to-gel transition in fast evaporating systems is a challenging task and the lack of a suitable experimental design, which includes the chemistry and the analytical method, has limited the observations. We synthesise an acidic sol, employing only tetraethylorthosilicate, SiCl4 as catalyst and deuterated water; the absence of water added to the sol allows us to follow the absorption from the external environment and the evaporation of deuterated water. The time-resolved data, obtained by attenuated total reflection infrared spectroscopy on an evaporating droplet, enables us to identify four different stages during evaporation. They are linked to specific hydrolysis and condensation rates that affect the uptake of water from external environment. The second stage is characterized by a decrease in hydroxyl content, a fast rise of condensation rate and an almost stationary absorption of water. This stage has been associated with the sol-to-gel transition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. In situ chemical state analysis of buried polymer/metal adhesive interface by hard X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ozawa, Kenichi; Kakubo, Takashi; Shimizu, Katsunori; Amino, Naoya; Mase, Kazuhiko; Ikenaga, Eiji; Nakamura, Tetsuya; Kinoshita, Toyohiko; Oji, Hiroshi

    2014-01-01

    Highlights: • Chemical state analysis of the buried rubber/brass interface is conducted by HAXPES. • Ultrathin rubber films are prepared on the brass surface by two methods. • A high density of Cu 2 S is found on the rubber side of the buried adhesive layer. • The chemical states of the buried and exposed interfaces are compared. - Abstract: Chemical state analysis of adhesive interfaces is important to understand an adhesion mechanism between two different materials. Although photoelectron spectroscopy (PES) is an ideal tool for such an analysis, the adhesive interfaces must be exposed to the surface because PES is essentially a surface sensitive technique. However, an in situ observation is possible by hard X-ray PES (HAXPES) owing to its large probing depth. In the present study, HAXPES is applied to investigate the adhesive interface between rubber and brass without exposing the interface. It is demonstrated that copper sulfides formed at the buried rubber/brass interface are distinguished from S-containing species in the rubber overlayer. The chemical state of the buried interface is compared with that of the “exposed” interface prepared by so-called a filter-paper method

  4. Raman spectroscopy and in situ Raman spectroelectrochemistry of bilayer ¹²C/¹³C graphene.

    Science.gov (United States)

    Kalbac, Martin; Farhat, Hootan; Kong, Jing; Janda, Pavel; Kavan, Ladislav; Dresselhaus, Mildred S

    2011-05-11

    Bilayer graphene was prepared by the subsequent deposition of a (13)C single-layer graphene and a (12)C single-layer graphene on top of a SiO(2)/Si substrate. The bilayer graphene thus prepared was studied using Raman spectroscopy and in situ Raman spectroelectrochemistry. The Raman frequencies of the (13)C graphene bands are significantly shifted with respect to those of (12)C graphene, which allows us to investigate the single layer components of bilayer graphene individually. It is shown that the bottom layer of the bilayer graphene is significantly doped from the substrate, while the top layer does not exhibit a signature of the doping from the environment. The electrochemical doping has the same effect on the charge carrier concentration at the top and the bottom layer despite the top layer being the only layer in contact with the electrolyte. This is here demonstrated by essentially the same frequency shifts of the G and G' bands as a function of the electrode potential for both the top and bottom layers. Nevertheless, analysis of the intensity of the Raman modes showed an anomalous bleaching of the Raman intensity of the G mode with increasing electrode potential, which was not observed previously in one-layer graphene.

  5. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Sun, Mengtao; Zhang, Zhenglong; Zheng, Hairong; Xu, Hongxing

    2012-01-01

    With strong surface plasmons excited at the metallic tip, tip-enhanced Raman spectroscopy (TERS) has both high spectroscopic sensitivity and high spatial resolution, and is becoming an essential tool for chemical analysis. It is a great challenge to combine TERS with a high vacuum system due to the poor optical collection efficiency. We used our innovatively designed home-built high vacuum TERS (HV-TERS) to investigate the plasmon-driven in-situ chemical reaction of 4-nitrobenzenethiol dimerizing to dimercaptoazobenzene. The chemical reactions can be controlled by the plasmon intensity, which in turn can be controlled by the incident laser intensity, tunneling current and bias voltage. The temperature of such a chemical reaction can also be obtained by the clearly observed Stokes and Anti-Stokes HV-TERS peaks. Our findings offer a new way to design a highly efficient HV-TERS system and its applications to chemical catalysis and synthesis of molecules, and significantly extend the studies of chemical reactions.

  6. In Situ Nondestructive Analysis of Kalanchoe pinnata Leaf Surface Structure by Polarization-Modulation Infrared Reflection-Absorption Spectroscopy.

    Science.gov (United States)

    Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki; Enami, Shinichi; Shimoaka, Takafumi; Hasegawa, Takeshi

    2017-12-14

    The outermost surface of the leaves of land plants is covered with a lipid membrane called the cuticle that protects against various stress factors. Probing the molecular-level structure of the intact cuticle is highly desirable for understanding its multifunctional properties. We report the in situ characterization of the surface structure of Kalanchoe pinnata leaves using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Without sample pretreatment, PM-IRRAS measures the IR spectra of the leaf cuticle of a potted K. pinnata plant. The peak position of the CH 2 -related modes shows that the cuticular waxes on the leaf surface are mainly crystalline, and the alkyl chains are highly packed in an all-trans zigzag conformation. The surface selection rule of PM-IRRAS revealed the average orientation of the cuticular molecules, as indicated by the positive and negative signals of the IR peaks. This unique property of PM-IRRAS revealed that the alkyl chains of the waxes and the main chains of polysaccharides are oriented almost perpendicular to the leaf surface. The nondestructive, background-free, and environmental gas-free nature of PM-IRRAS allows the structure and chemistry of the leaf cuticle to be studied directly in its native environment.

  7. In situ surface-enhanced Raman spectroscopy effect in zeolite due to Ag2Se quantum dots

    International Nuclear Information System (INIS)

    Martinez-Nuñez, C. E.; Cortez-Valadez, M.; Delgado-Beleño, Y.; Flores-López, N. S.; Román-Zamorano, J. F.; Flores-Valenzuela, J.; Flores-Acosta, M.

    2017-01-01

    This study shows the presence of surface-enhanced Raman spectroscopy (SERS) effect caused by Ag 2 Se quantum dots embedded in the zeolite matrix. The quantum dots that were synthesised and stabilised in the matrix of F9-NaX zeolite show a size of 5 nm and a quasi-spherical morphology. The calculated interplanar distances confirm the presence of quantum dots in cubic phase Im-m. We suppose that the in situ SERS effect in the material is caused by chemical-enhancement mechanism (CEM). The density functional theory (DFT) is undertaken to corroborate our hypothesis. The structure H 8 Si 8 Al 8 O 12 represents the zeolite cavity unit, and small clusters of (Ag 2 Se) n represent the quantum dots. Both structures interact in the cavity to obtain the local minimum of the potential energy surface, leading to new molecular orbitals. After the analysis of the predicted Raman spectrum, the Raman bands increase significantly, agreeing with the experimental results at low wavenumbers in F9-NaX zeolite.

  8. In situ surface-enhanced Raman spectroscopy effect in zeolite due to Ag{sub 2}Se quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Nuñez, C. E. [Universidad de Sonora, Departamento de Investigación en Física (Mexico); Cortez-Valadez, M., E-mail: jose.cortez@unison.mx, E-mail: manuelcortez@live.com [Universidad de Sonora, CONACYT-Departamento de Investigación en Física (Mexico); Delgado-Beleño, Y.; Flores-López, N. S. [Universidad de Sonora, Departamento de Investigación en Física (Mexico); Román-Zamorano, J. F. [Centro de Investigación y Desarrollo Tecnológico en Electroquímica (Mexico); Flores-Valenzuela, J. [Universidad Autónoma de Sinaloa (Mexico); Flores-Acosta, M. [Universidad de Sonora, Departamento de Investigación en Física (Mexico)

    2017-02-15

    This study shows the presence of surface-enhanced Raman spectroscopy (SERS) effect caused by Ag{sub 2}Se quantum dots embedded in the zeolite matrix. The quantum dots that were synthesised and stabilised in the matrix of F9-NaX zeolite show a size of 5 nm and a quasi-spherical morphology. The calculated interplanar distances confirm the presence of quantum dots in cubic phase Im-m. We suppose that the in situ SERS effect in the material is caused by chemical-enhancement mechanism (CEM). The density functional theory (DFT) is undertaken to corroborate our hypothesis. The structure H{sub 8}Si{sub 8}Al{sub 8}O{sub 12} represents the zeolite cavity unit, and small clusters of (Ag{sub 2}Se){sub n} represent the quantum dots. Both structures interact in the cavity to obtain the local minimum of the potential energy surface, leading to new molecular orbitals. After the analysis of the predicted Raman spectrum, the Raman bands increase significantly, agreeing with the experimental results at low wavenumbers in F9-NaX zeolite.

  9. Detection and Identification of potentially toxic elements in urban soil using in situ spectroscopy

    Science.gov (United States)

    Brook, Anna; Kopel, Daniella; Wittenberg, Lea

    2017-04-01

    Anthropogenic urban soils are the foundation of the urban green infrastructure, the green net quality is as good as each of its patches. In early days of pedology urban soil has been recognized with respect to contamination and the risks for human health but in study performed since the 70s, the importance of urban soil for the urban ecology became increasingly significant. Urban soils are highly disturbed land that was created by the process of urbanization. The dominant agent in the creation of urban soils is human activity which modifies the natural soil through mixing, filling or by contamination of land surfaces so as to create a layer of urban soil which can be more than 50 cm thick. The objective of this study is to determine the extent to which field spectroscopy methods can be used to extend the knowledge of toxic elements in urban soils. The majority of the studies on urban soils concentrate on identifying and mapping of known pollution mostly certain heavy metals, we are focusing on almost non disturbed soils where no direct disturbance occurred but the urban matrix inflicted on it. The elements in those soils where an-knowns features. In this study a top-down analysis is applied for detecting the presence of minerals, organic matter and pollutants in mixed soil samples. Results of the proposed top-down unmixing method suggest that the analysis is made very fast due to the simplified hierarchy which avoids the high-learning curve associated with unmixing algorithms showed that the most abundant components were coarse organic matter 12% followed by concrete dust, plastic crumbs, other man made materials, clay and other minerals. The results of the soils pH, measured electrometrically and the particle size distribution, measured by Laser diffraction, indicate there is no big different between the samples particle size distribution and the pH values of the samples but they are not significantly different from the expected, except for the OM percentage which

  10. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  11. In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan, E-mail: dany@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Jia, Shaojie [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Fodjo, Essy Kouadio [Laboratory of Physical Chemistry, University Felix Houphouet Boigny, 22 BP 582, Abidjan 22, Cote d’Ivoire (Cote d' Ivoire); Xu, Hu [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Wang, Yuhong, E-mail: yuhong_wang502@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Deng, Wei [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China)

    2016-03-30

    Graphical abstract: The orientation of anthraquinone-2-carboxylic acid (AQ-2-COOH) has been investigated by in situ surface-enhanced Raman scattering (in situ SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) on silver surface. - Highlights: • The adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on Ag electrode is influenced by the pH. • The pH-dependant adsorption of AQ-2-COOH has been confirmed by in situ surface-enhanced Raman scattering (in situ SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS). • The results can provide insights into electron transfer reactions of AQ-2-COOH in biological systems. - Abstract: In this study, in situ surface-enhanced Raman scattering (SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) are used to investigate the redox reaction and adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on an Ag electrode at different pH values. The obtained results indicate that AQ-2-COOH is adsorbed tilted on the Ag electrode through O-atom of ring carbonyl in a potential range from −0.3 to −0.5 V vs. SCE, but the orientation turns to more tilted orientation with both O-atom of the ring carbonyl and carboxylate group in positive potential region for pH 6.0 and 7.4. However, at pH 10.0, the orientation adopts tilted conformation constantly on the Ag electrode with both O-atom of the anthraquinone ring and carboxylate group in the potential range from −0.3 to −0.5 V vs. SCE or at positive potentials. Moreover, the adsorption behavior of AQ-2-COOH has been further confirmed by AR-XPS on the Ag surface. Proposed reasons for the observed changes in orientation are presented.

  12. In situ analysis of the Zn(S,O) buffer layer preparation for chalcopyrite solar cells by Zn L-edge X-ray absorption spectroscopy.

    Science.gov (United States)

    Lauermann, Iver; Kropp, Timo; Vottier, Damien; Ennaoui, Ahmed; Eberhardt, Wolfgang; Aziz, Emad F

    2009-02-23

    Bridging the gap between high-vacuum soft X-ray absorption spectroscopy and real systems under ambient conditions probes chemical reactions in situ during deposition and annealing processes. The origin of highly efficient buffer layers in Zn(S,O) is the complex formation between Zn(2+) and the S=C group of thiourea (see schematic), which allows ligand-to-metal and metal-to-ligand charge transfer (LMCT and MLCT).

  13. In situ study by polarization modulated Fourier transform infrared spectroscopy of the structure and orientation of lipids and amphipathic peptides at the air-water interface

    OpenAIRE

    Cornut, I.; Desbat, B.; Turlet, J.M.; Dufourcq, J.

    1996-01-01

    Free amphipathic peptides and peptides bound to dimyristoylphosphatidylcholine (DMPC) were studied directly at the air/water interface using polarization modulation infrared reflection absorption spectroscopy (PMIRRAS). Such differential reflectivity measurements proved to be a sensitive and efficient technique to investigate in situ the respective conformations and orientations of lipid and peptide molecules in pure and mixed films. Data obtained for melittin, a natural hemolytic peptide, ar...

  14. In situ x-ray photoelectron spectroscopy and capacitance voltage characterization of plasma treatments for Al2O3/AlGaN/GaN stacks

    International Nuclear Information System (INIS)

    Qin, Xiaoye; Lucero, Antonio; Azcatl, Angelica; Kim, Jiyoung; Wallace, Robert M.

    2014-01-01

    We investigate the Al 2 O 3 /AlGaN/GaN metal-oxide-semiconductor structure pretreated by O 2 anneals, N 2 remote plasma, and forming gas remote plasma prior to atomic layer deposition of Al 2 O 3 using in situ X-ray photoelectron spectroscopy, low energy electron diffraction, and capacitance- voltage measurements. Plasma pretreatments reduce the Ga-oxide/oxynitride formation and the interface state density, while inducing a threshold voltage instability.

  15. In-situ CdCl{sub 2}-treated CdTe film surface analysis by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vamsi Krishna, K.; Dutta, V. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 100 016 (India)

    2004-07-01

    CdTe thin films are deposited using a spray pyrolysis technique without and with in-situ CdCl{sub 2} treatment. An X-ray photoelectron spectroscopy technique is used to study the Cd, Te, O and Cl chemical environments and the valence-band spectra of the CdTe film surface. A shift in the Fermi-level position of {proportional_to}200 meV towards the valence-band maximum is observed in the CdTe film after the in-situ CdCl{sub 2} treatment, which is attributed to the increment of the Cl concentration and the improvement in the grain growth of the CdTe film. In addition to the increment of the Cl concentration, less surface oxidation is observed compared to that for ex-situ treatment. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Sulfur X-Ray Absorption Spectroscopy of Living Mammalian Cells: An Enabling Tool for Sulfur Metabolomics. in Situ Observation of Uptake of Taurine Into MDCK Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gnida, M.; Sneeden, E.Yu; Whitin, J.C.; Prince, R.C.; Pickering, I.J.; Korbas, M.; George, G.N.

    2009-06-01

    Sulfur is essential for life, with important roles in biological structure and function. However, because of a lack of suitable biophysical techniques, in situ information about sulfur biochemistry is generally difficult to obtain. Here, we present an in situ sulfur X-ray absorption spectroscopy (S-XAS) study of living cell cultures of the mammalian renal epithelial MDCK cell line. A great deal of information is retrieved from a characteristic sulfonate feature in the X-ray absorption spectrum of the cell cultures, which can be related to the amino acid taurine. We followed the time and dose dependence of uptake of taurine into MDCK cell monolayers. The corresponding uptake curves showed a typical saturation behavior with considerable levels of taurine accumulation inside the cells (as much as 40% of total cellular sulfur). We also investigated the polarity of uptake of taurine into MDCK cells, and our results confirmed that uptake in situ is predominantly a function of the basolateral cell surface.

  17. In Situ Industrial Bimetallic Catalyst Characterization using Scanning Transmission Electron Microscopy and X-ray Absorption Spectroscopy at One Atmosphere and Elevated Temperature.

    Science.gov (United States)

    Prestat, Eric; Kulzick, Matthew A; Dietrich, Paul J; Smith, Mr Matthew; Tien, Mr Eu-Pin; Burke, M Grace; Haigh, Sarah J; Zaluzec, Nestor J

    2017-08-18

    We have developed a new experimental platform for in situ scanning transmission electron microscope (STEM) energy dispersive X-ray spectroscopy (EDS) which allows real time, nanoscale, elemental and structural changes to be studied at elevated temperature (up to 1000 °C) and pressure (up to 1 atm). Here we demonstrate the first application of this approach to understand complex structural changes occurring during reduction of a bimetallic catalyst, PdCu supported on TiO 2 , synthesized by wet impregnation. We reveal a heterogeneous evolution of nanoparticle size, distribution, and composition with large differences in reduction behavior for the two metals. We show that the data obtained is complementary to in situ STEM electron energy loss spectroscopy (EELS) and when combined with in situ X-ray absorption spectroscopy (XAS) allows correlation of bulk chemical state with nanoscale changes in elemental distribution during reduction, facilitating new understanding of the catalytic behavior for this important class of materials. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. In-situ Optical Spectroscopy Investigation of Water and Its influence on Forsterite Transformation in Supercritical CO2

    Science.gov (United States)

    Wang, Z.; Thompson, C. J.; Joly, A. G.; Sklarew, D. S.; Poindexter, L.; Rosso, K. M.

    2009-12-01

    Carbon capture and sequestration (CCS) from coal/gas-burning power plants is currently viewed as one of the most promising technologies for mitigating green house gas emissions. This strategy involves injection of supercritical CO2 (scCO2) into deep geological formations such as depleted oil and gas reservoirs and deep saline aquifers. The feasibility of this approach and the ultimate fate of the stored CO2 are determined by the interactions between scCO2, various minerals in the rock formations, and the host fluids. Currently, there is only limited knowledge about both the thermodynamic and kinetic aspects of the physical and chemical processes that occur between scCO2 and relevant minerals, such as metal silicates and metal aluminosilicates, and the role of water activity for catalyzing mineral transformation reactions. In this work, we have developed a modular in situ optical spectroscopic platform that integrates a scCO2 generation and manipulation system with an array of optical and laser spectroscopies including UV-visible, IR, Raman and laser fluorescence spectroscopy. We have used the system to study i) the dissolution and quantification of H2O/D2O in scCO2 and ii) interaction between scCO2 and a model metal silicate, forsterite (Mg2SiO4), and the effects of the presence of water under variable pressure, temperature and water content. Our results showed that H2O and D2O have unique IR spectral features over a broad spectral range from 700 cm-1 to ~ 2900 cm-1 in scCO2 and their concentrations are directly proportional to the characteristic IR bands that correspond to their stretching (D2O) and bending frequencies (both D2O and H2O). These bands offer a unique spectroscopic signature useful for qualitative and quantitative analysis of the properties and reactivity of small amounts of H2O in scCO2. metal carbonation reactions relevant to sequestration.

  19. Classification of pumpkin seed oils according to their species and genetic variety by attenuated total reflection Fourier-transform infrared spectroscopy.

    Science.gov (United States)

    Saucedo-Hernández, Yanelis; Lerma-García, María Jesús; Herrero-Martínez, José Manuel; Ramis-Ramos, Guillermo; Jorge-Rodríguez, Elisa; Simí-Alfonso, Ernesto F

    2011-04-27

    Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), followed by multivariate treatment of the spectral data, was used to classify seed oils of the genus Cucurbita (pumpkins) according to their species as C. maxima, C. pepo, and C. moschata. Also, C. moschata seed oils were classified according to their genetic variety as RG, Inivit C-88, and Inivit C-2000. Up to 23 wavelength regions were selected on the spectra, each region corresponding to a peak or shoulder. The normalized absorbance peak areas within these regions were used as predictors. Using linear discriminant analysis (LDA), an excellent resolution among all categories concerning both Cucurbita species and C. moschata varieties was achieved. The proposed method was straightforward and quick and can be easily implemented. Quality control of pumpkin seed oils is important because Cucurbita species and genetic variety are both related to the pharmaceutical properties of the oils.

  20. Design and implementation of a laser-based absorption spectroscopy sensor for in situ monitoring of biomass gasification

    Science.gov (United States)

    Viveros Salazar, David; Goldenstein, Christopher S.; Jeffries, Jay B.; Seiser, Reinhard; Cattolica, Robert J.; Hanson, Ronald K.

    2017-12-01

    Research to demonstrate in situ laser-absorption-based sensing of H2O, CH4, CO2, and CO mole fraction is reported for the product gas line of a biomass gasifier. Spectral simulations were used to select candidate sensor wavelengths that optimize sensitive monitoring of the target species while minimizing interference from other species in the gas stream. A prototype sensor was constructed and measurements performed in the laboratory at Stanford to validate performance. Field measurements then were demonstrated in a pilot scale biomass gasifier at West Biofuels in Woodland, CA. The performance of a prototype sensor was compared for two sensor strategies: wavelength-scanned direct absorption (DA) and wavelength-scanned wavelength modulation spectroscopy (WMS). The lasers used had markedly different wavelength tuning response to injection current, and modern distributed feedback lasers (DFB) with nearly linear tuning response to injection current were shown to be superior, leading to guidelines for laser selection for sensor fabrication. Non-absorption loss in the transmitted laser intensity from particulate scattering and window fouling encouraged the use of normalized WMS measurement schemes. The complications of using normalized WMS for relatively large values of absorbance and its mitigation are discussed. A method for reducing adverse sensor performance effects of a time-varying WMS background signal is also presented. The laser absorption sensor provided measurements with the sub-second time resolution needed for gasifier control and more importantly provided precise measurements of H2O in the gasification products, which can be problematic for the typical gas chromatography sensors used by industry.

  1. In situ spectroscopy reveals that microorganisms in different phyla use different electron transfer biomolecules to respire aerobically on soluble iron

    Directory of Open Access Journals (Sweden)

    Robert Blake

    2016-12-01

    transfer pathways that are characterized by different redox-active prosthetic groups. In situ absorbance spectroscopy is shown to be a useful complement to existing means of investigating the details of energy generation in intact microorganisms under physiological conditions.

  2. High-Capacitance Mechanism for Ti3C2Tx MXene by in Situ Electrochemical Raman Spectroscopy Investigation.

    Science.gov (United States)

    Hu, Minmin; Li, Zhaojin; Hu, Tao; Zhu, Shihao; Zhang, Chao; Wang, Xiaohui

    2016-12-27

    MXenes represent an emerging family of conductive two-dimensional materials. Their representative, Ti 3 C 2 T x , has been recognized as an outstanding member in the field of electrochemical energy storage. However, an in-depth understanding of fundamental processes responsible for the superior capacitance of Ti 3 C 2 T x MXene in acidic electrolytes is lacking. Here, to understand the mechanism of capacitance in Ti 3 C 2 T x MXene, we studied electrochemically the charge/discharge processes of Ti 3 C 2 T x electrodes in sulfate ion-containing aqueous electrolytes with three different cations, coupled with in situ Raman spectroscopy. It is demonstrated that hydronium in the H 2 SO 4 electrolyte bonds with the terminal O in the negative electrode upon discharging while debonding occurs upon charging. Correspondingly, the reversible bonding/debonding changes the valence state of Ti element in the MXene, giving rise to the pseudocapacitance in the acidic electrolyte. In stark contrast, only electric double layer capacitance is recognized in the other electrolytes of (NH 4 ) 2 SO 4 or MgSO 4 . The charge storage ways also differ: ion exchange dominates in H 2 SO 4 , while counterion adsorption in the rest. Hydronium that is characterized by smaller hydration radius and less charge is the most mobile among the three cations, facilitating it more kinetically accommodated on the deep adsorption sites between the MXene layers. The two key factors, i.e., surface functional group-involved bonding/debonding-induced pseudocapacitance, and ion exchange-featured charge storage, simultaneously contribute to the superior capacitance of Ti 3 C 2 T x MXene in acidic electrolytes.

  3. Miniaturized Laser-Induced Breakdown Spectroscopy for the in-situ analysis of the Martian surface: Calibration and quantification

    International Nuclear Information System (INIS)

    Rauschenbach, I.; Jessberger, E.K.; Pavlov, S.G.; Huebers, H.-W.

    2010-01-01

    We report on our ongoing studies to develop Laser-Induced Breakdown Spectroscopy (LIBS) for planetary surface missions to Mars and other planets and moons, like Jupiter's moon Europa or the Earth's moon. Since instruments for space missions are severely mass restricted, we are developing a light-weight miniaturized close-up LIBS instrument to be installed on a lander or rover for the in-situ geochemical analysis of planetary surface rocks and coarse fines. The total mass of the instrument will be ∼ 1 kg in flight configuration. Here we report on a systematic performance study of a LIBS instrument equipped with a prototype laser of 216 g total mass and an energy of 1.8 mJ. The LIBS measurements with the prototype laser and the comparative measurements with a regular 40 mJ laboratory laser were both performed under Martian atmospheric conditions. We calibrated 14 major and minor elements by analyzing 18 natural samples of certified composition. The calibration curves define the limits of detection that are > 5 ppm for the lab laser and > 400 ppm for the prototype laser, reflecting the different analyzed sample masses of ∼ 20 μg and ∼ 2 μg, respectively. To test the accuracy we compared the LIBS compositions, determined with both lasers, of Mars analogue rocks with certified or independently measured compositions and found agreements typically within 10-20%. In addition we verified that dust coverage is effectively removed from rock surfaces by the laser blast. Our study clearly demonstrates that a close-up LIBS instrument (spot size ∼ 50 μm) will decisively enhance the scientific output of planetary lander missions by providing a very large number of microscopic elemental analyses.

  4. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... Full Length Research Paper. Determination of lactic acid bacteria in Kaşar cheese and identification by Fourier transform infrared (FTIR) spectroscopy. İlkay Turhan1* and Zübeyde Öner2. 1Department of Nutrition and Dietetic, School of Health Sciences, T.C.Istanbul Arel University, 34537 Buyukcekmece /.

  5. Correlations between physical properties, formulations, and ATR FTIR spectra of polyurethane foams

    Science.gov (United States)

    Caughran, Joel A.; Bhat, Sanmitra A.; de Haseth, James A.

    1994-01-01

    Polyurethane foams of varying surfactant, tin catalyst, and amine catalyst levels were prepared to find formulations that made `good' foams. A good foam is characterized by rise and density. Attenuated Total Reflectance spectra of the foams were collected after the foams were allowed to cure for 24 hours. Because the infrared spectrum shows morphology as well as structure, the ATR spectrum can be used to measure physical properties that are dependent on structure and morphology. The ATR FT-IR spectra were baseline corrected and then normalized by the area in the C-H stretch region to correct for differences in contact area with the ATR crystal. Samples were then taken from the cured foam parallel to the direction of rise to measure tensile strength and air permeability. Correlations were then made between the ATR spectra and the physical properties. Partial least squares (PLS) and principle component regression (PCR) were used to do the correlations.

  6. Evolution of Active Sites in Pt-Based Nanoalloy Catalysts for the Oxidation of Carbonaceous Species by Combined in Situ Infrared Spectroscopy and Total X-ray Scattering.

    Science.gov (United States)

    Petkov, Valeri; Maswadeh, Yazan; Lu, Aolin; Shan, Shiyao; Kareem, Haval; Zhao, Yinguang; Luo, Jin; Zhong, Chuan-Jian; Beyer, Kevin; Chapman, Karena

    2018-03-23

    We present results from combined in situ infrared spectroscopy and total X-ray scattering studies on the evolution of catalytically active sites in exemplary binary and ternary Pt-based nanoalloys during a sequence of CO oxidation-reactivation-CO oxidation reactions. We find that when within a particular compositional range, the fresh nanoalloys may exhibit high catalytic activity for low-temperature CO oxidation. Using surface-specific atomic pair distribution functions (PDFs) extracted from the in situ total X-ray scattering data, we find that, regardless of their chemical composition and initial catalytic activity, the fresh nanoalloys suffer a significant surface structural disorder during CO oxidation. Upon reactivation in oxygen atmosphere, the surface of used nanoalloy catalysts both partially oxidizes and orders. Remarkably, it largely retains its structural state when the nanoalloys are reused as CO oxidation catalysts. The seemingly inverse structural changes of studied nanoalloy catalysts occurring under CO oxidation and reactivation conditions affect the active sites on their surface significantly. In particular, through different mechanisms, both appear to reduce the CO binding strength to the nanoalloy's surface and thus increase the catalytic stability of the nanoalloys. The findings provide clues for further optimization of nanoalloy catalysts for the oxidation of carbonaceous species through optimizing their composition, activation, and reactivation. Besides, the findings demonstrate the usefulness of combined in situ infrared spectroscopy and total X-ray scattering coupled to surface-specific atomic PDF analysis to the ongoing effort to produce advanced catalysts for environmentally and technologically important applications.

  7. In-situ Raman spectroscopy. A method to study and control the growth of microcrystalline silicon for thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Muthmann, Stefan

    2012-08-22

    This work deals with the design and application of a novel experiment, which enables in-situ Raman measurements during the parallel plate plasma enhanced chemical vapor deposition (PECVD) of {mu}cSi:H. Measurements of the crystalline volume fraction (I{sub C}{sup RS}) and the temperature of a growing film are carried out using the novel setup. To enable in-situ Raman measurement of central regions of the coated substrate in a PECVD system, optical access under normal incidence is necessary. An experimental setup in which an optical feed-through was integrated into a PECVD electrode was developed. This setup introduces a disturbance to the electrical field which sustains the plasma. By designing metallic shields the impact of the feed through was reduced considerably at low optical losses. The homogeneity of films deposited with the novel setup in different growth regimes was studied. A correlation between the magnitude of the inhomogeneity caused by the feed-through and the characteristics of the deposition regimes is found. Raman spectroscopy demands the illumination of a sample with a laser and the collection of the scattered radiation. Due to absorption of the laser light the temperature of the illuminated film is increased. Since the temperature determines the properties of a growing film the laser-induced temperature increase was studied. By pulsing the laser radiation of minimal temperature increase at maximal signal intensity was obtained. The crystalline volume fraction of a growing {mu}cSi:H layer was determined in-situ with the novel setup. A minimal temporal resolution of less than 17.5 s at sufficient signal-to-noise-ratio was achieved, which corresponds to less than 9 nm of deposited material during one measurement interval at the industrial standard growth rate of 0.5 nm/s. The obtained results were compared to depth resolved measurements which were carried out after the deposition. An excellent agreement between both methods validates the reliability

  8. Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet-visible spectroscopy

    NARCIS (Netherlands)

    Mesu, J. Gerbrand; Beale, Andrew M.|info:eu-repo/dai/nl/325802068; de Groot, Frank M. F.|info:eu-repo/dai/nl/08747610X; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2006-01-01

    Time-resolved in situ video monitoring and ultraviolet-visible spectroscopy in combination with X-ray absorption near-edge spectroscopy (XANES) have been used for the first time in a combined manner to study the effect of synchrotron radiation on a series of homogeneous aqueous copper solutions in a

  9. Assessment of Laser Induced Ablation Spectroscopy (LIAS) as a method for quantitative in situ surface diagnostic in plasma environments

    International Nuclear Information System (INIS)

    Gierse, Niels Hannes Gustav

    2014-01-01

    In this work Laser Induced Ablation Spectroscopy (LIAS) is investigated as an in situ plasma surface interaction diagnostic for fusion reactors and fusion experiments. In LIAS an intensive laser pulse is used to ablate the material under investigation during plasma operation. Ablation products penetrate into the edge region of the plasma and are excited and ionized. In case of molecules and clusters additionally dissociation occurs. The emitted line radiation is observed by radiometric calibrated spectroscopy. Results from LIAS of W/C/Al/D-mixed layers and amorphous hydrocarbon layers are presented. Using a fast camera system time resolved measurements of the LIAS.process could be performed, allowing investigation of the temporal behavior of excitation, dissociation and ionization processes. For Tungsten, 90% of the LIAS light is observed within 10±3 μs after the laser pulse. In case of carbon within 20±3 μs. Additionally separation in time of LIAS emission and the LIBS emission caused by the laser pulse at the surface within single measurements was demonstrated. This allows the separate analysis of both processes in a coaxial setup which is foreseen for future experiments. The inverse photon efficiency of the Balmer D α -emission from LIAS of a-C:D-layers was found to be [(D)/(XB)] a-C:D LIAS → D D α =71±7. The plasma perturbation due to LIAS was investigated by laser energy density variation when ablating W/C/Al/D.mixed layers. Local plasma perturbation is found to increase with laser energy density. Balmer H γ /H δ - line intensity ratio measurements only show for ohmic discharges and the case of the lowest central density signs of local plasma perturbation in LIAS of graphite samples. A simple analytical model for local plasma perturbation during LIAS is introduced and evaluated. Qualitative agreement between the model and the above reported experimental observations is found; a stronger influence on local conditions is found by tungsten than by

  10. In situ Raman Spectroscopy Investigation of Siderite Dissolution in Aqueous Fluids up to 400°C

    Science.gov (United States)

    Marocchi, M.; Bureau, H.; Fiquet, G.; Guyot, F. J.

    2010-12-01

    Detailed studies of devolatilization reactions, fluid-rock interactions and metamorphic transformations occurring in subducting slabs play a key role in unraveling the complex physical-chemical transformations of crust and mantle at convergent margins and in the understanding of fluids and element fluxes involved. One of the main characteristics of subduction zones is the presence of water released from oceanic lithosphere that interacts with mantle wedge rocks. In particular, reaction of water with ferrous iron-rich minerals contained in ultramafic rocks can develop highly reducing conditions and generation of H2 during serpentinization. Fluids interacting with peridotite in this temperature range may have important biological implications and play a key role on metasomatism of the forearc mantle. In particular, the dissolution of Fe-bearing minerals can be responsible for the generation of reactive reduced species, as is the case, for example, of deep-sea hydrothermal systems (cf Seewald et al., 2006). For a better understanding of these processes, H2 and CO2 generation can be monitored by experiments at the P and T conditions expected during subduction and serpentinization at shallow levels. Experiments on dissolution of iron (II) carbonate (FeCO3 siderite) in aqueous fluids (pure water, saline solution and ammonium solution) have been performed at temperatures up to 400°C and pressures in the range 730-1150 MPa using an externally heated hydrothermal diamond anvil cell (HDAC). In situ Raman spectroscopy allowed direct characterization of the new phases and of the C-O-H-N species dissolved in the aqueous fluid. For the simplest C-O-H aqueous system (H2O and H2O-NaCl) we document reduction of oxidized carbon to organic molecules (formaldehyde and formic acid) and H2 production in the fluid. HDAC quenched samples characterized at room temperature and pressure by Raman spectroscopy and SEM (Scanning Electron Microscopy) have also revealed the occurrence of complex

  11. Application of FTIR spectroscopy for analysis of the quality of honey

    Directory of Open Access Journals (Sweden)

    Kędzierska-Matysek Monika

    2018-01-01

    Full Text Available Every kind of honey is a very precious natural product which is made by Mellifera bees species. The chemical composition of honey depends on its origin or mode of production. Honey consists essentially of different sugars, predominantly fructose and glucose. There are also non – sugar ingredients like proteins and amino acids, as well as some kind of enzymes, such as: invertase, amylase, glucose oxidase, catalase and phosphatase. The fact that honey is one of the oldest medicine known worldwide is remarkable. Scientists all over the world have been trying to improve analytical methods as well as to implement new ones in order to reaffirm the high quality of honey the benefits of which may be distracted or disturbed. There are many methods and popular analytical techniques, including as follows: mass spectroscopy and molecular spectroscopy (especially FTIR spectroscopy. The infrared spectroscopy technique is one of the most common analytical methods which are used to analyse honey nowadays. The main aim of the task was to use ATR-FTIR infrared spectroscopy to compare selected honey samples as well as typical sequences coming out from certain functional groups in the analysed samples.

  12. Charging of Self-Doped Poly(Anilineboronic Acid) Films Studied by in Situ ESR/UV/Vis/NIR Spectroelectrochemistry and ex Situ FTIR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Moraes, I. R.; Kalbáč, Martin; Dmitrieva, E.; Dunsch, L.

    2011-01-01

    Roč. 12, č. 16 (2011), s. 2920-2924 ISSN 1439-4235 R&D Projects: GA ČR GC203/07/J067 Institutional research plan: CEZ:AV0Z40400503 Keywords : conducting polymers * films * FTIR spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 3.412, year: 2011

  13. Gamma-ray spectroscopy of in-situ SNM with the M3CA and a new room-temperature detector

    International Nuclear Information System (INIS)

    Russo, P.A.; Close, D.A.; Hsue, S.T.

    1995-01-01

    Gamma-ray spectroscopy with real-time readout is applied in portable and fixed (continuous) quantitative assays of in-situ special nuclear materials (SNM). Hold-up, in-process inventory, stored inventory, and dynamic materials are several categories of SNM for which in-situ measurements are required. Conventional room-temperature gamma-ray detectors serve in a limited number of these applications, but these detectors have a low gamma energy resolution that limits their sensitivities. It is necessary to develope room temperature detectors with improved sensitivity, and the promising approach is an elegant new detector design that benefits from the recent advances in solid-state materials technology for the production of large, good-quality crystals of CdZnTe. The detector operates with a miniature, modular, multi-channel analyzer. Characteristics of this detector are briefly discussed in this paper

  14. In-situ laser spectroscopy of CO, Ch4, and H2O in a particle laden laboratory-scale fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Lackner Maximilian

    2002-01-01

    Full Text Available The pyrolysis, devolatilization and char combustion of bituminous coal and biomass (beechwood, firwood were investigated in a laboratory-scale fluidized bed combustor by tunable diode laser spectroscopy. Individual fuel particles were suspended in the freeboard of the unit. The bed temperature was 800 °C, the oxygen partial pressure 0 to 20 kPa (0-10 vol.%. Two Fabry Perot type tunable near infrared diode lasers were deployed for quantitative in-situ species concentration measurements. CH4 and CO were measured simultaneously during devolatilization and char combustion in-situ 10 mm above the surface of the fuel particles as well as H2O using laser spectroscopy. Sand particles were passing the probing laser beam path. Besides the resonant absorption of the laser light by CO, CH4 and H2O severe and strongly transient non-resonant attenuation by partial blocking of the beam and beam steering effects occurred. By wavelength tuning the two laser sources, species concentrations could be determined. The measured absorbances had to be corrected for the real temperature measured at the position of the probing laser beam. In addition, CO, CO2 and O2 were determined ex-situ by con ventional methods. A spatial profile inside the FBC of major species (CH4, CO, CO2, O, H, OH was calculated using a chemical kinetics program for a single fuel particle in a plug flow reactor geometry. The results were compared to the experimental findings. Good agreement was found. Tunable diode laser spectroscopy was found to be an apt method of determining quantitative species concentrations of multiple gases in a high temperature multi phase environment.

  15. In Situ Visible to Short Wavelength Imaging Spectroscopy with the Ultra Compact Imaging Spectrometer (UCIS): Case Studies from the Mars Exploration Rovers

    Science.gov (United States)

    Blaney, D.; Mouroulis, P.; Green, R.; Rodriguez, J.; Sellar, G.; Van Gorp, B.; Wilson, D.

    2011-01-01

    In Situ imaging spectroscopy provides a way to address complex questions of geological evolution for both aqueous and igneous processes by mapping mineral composition at the spatial scale of rocks and outcrops. Examination of locations studied by the Mars Exploration Rovers Spirit and Opportunity can provide examples of the potential utility and define the needed measurement requirements. A compact instrument is needed to be able to adequately address these science questions from a rover platform. The Ultra Compact Imaging Spectrometer (UCIS) is an instrument designed to address the science need and implementation constraints.

  16. Hydrogen-Mediated Electron Doping of Gold Clusters As Revealed by In Situ X-ray and UV-vis Absorption Spectroscopy.

    Science.gov (United States)

    Ishida, Ryo; Hayashi, Shun; Yamazoe, Seiji; Kato, Kazuo; Tsukuda, Tatsuya

    2017-06-01

    We previously reported that small (∼1.2 nm) gold clusters stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP) exhibited a localized surface plasmon resonance (LSPR) band at ∼520 nm in the presence of NaBH 4 . To reveal the mechanism of this phenomenon, the electronic structure of Au:PVP during the reaction with NaBH 4 in air was examined by means of in situ X-ray absorption spectroscopy at Au L 3 -edge and UV-vis spectroscopy. These measurements indicated that the appearance of the LSPR band is not associated with the growth in size but is ascribed to electron doping to the Au sp band by the adsorbed H atoms.

  17. Quantification of hydrolysis of toxic organophosphates and organophosphonates by diisopropyl fluorophosphatase from Loligo vulgaris by in situ Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Gäb, Jürgen; Melzer, Marco; Kehe, Kai; Richardt, André; Blum, Marc-Michael

    2009-02-15

    The enzyme diisopropyl fluorophosphatase (DFPase) from the squid Loligo vulgaris effectively catalyzes the hydrolysis of diisopropyl fluorophosphate (DFP) and a number of organophosphorus nerve agents, including sarin, soman, cyclosarin, and tabun. Up to now, the determination of kinetic data has been achieved by techniques such as pH-stat titration, ion-selective electrodes, and fluorogenic substrate analogs. We report a new assaying method using in situ Fourier transform infrared (FTIR) spectroscopy with attenuated total reflection (ATR) for the real-time determination of reaction rates. The method employs changes in the P-O-R stretching vibration of DFP and nerve agent substrates when hydrolyzed to their corresponding phosphoric and phosphonic acids. It is shown that the Lambert-Beer law holds and that changes in absorbance can be directly related to changes in concentration. Compared with other methods, the use of in situ FTIR spectroscopy results in a substantially reduced reaction volume that adds extra work safety when handling highly toxic substrates. In addition, the new method allows the noninvasive measurement of buffered solutions with varying ionic strengths complementing existing methods. Because the assay is independent of the used enzyme, it should also be applicable to other phosphotriesterase enzymes such as organophosphorus hydrolase (OPH), organophosphorus acid anhydrolase (OPAA), and paraoxonase (PON).

  18. In Situ Near Infrared Spectroscopy for Analyte-Specific Monitoring of Glucose and Ammonium in Streptomyces coelicolor Fermentations

    DEFF Research Database (Denmark)

    Petersen, Nanna; Ödman, Peter; Cervera Padrell, Albert Emili

    2010-01-01

    There are many challenges associated with in situ collection of near infrared (NIR) spectra in a fermentation broth, particularly for highly aerated and agitated fermentations with filamentous organisms. In this study, antibiotic fermentation by the filamentous bacterium Streptomyces coelicolor...... was used as a model process. Partial least squares (PLS) regression models were calibrated for glucose and ammonium based on NIR spectra collected in situ. To ensure that the models were calibrated based on analyte-specific information, semisynthetic samples were used for model calibration in addition...... resulting in a RMSEP of 1.1 g/L. The prediction of ammonium based on NIR spectra collected in situ was not satisfactory. A comparison with models calibrated based on NIR spectra collected off line suggested that this is caused by signal attenuation in the optical fibers in the region above 2,000 nm...

  19. Mechanistic insights into the reduction of carbon dioxide on tin and bismuth electrodes using in situ infrared spectroscopy and differential electrochemical mass spectrometry

    Science.gov (United States)

    Baruch, Maor F.

    The factors that govern the electrochemical reduction of CO2 on Sn and Bi electrodes were studied. Chapter 1 discusses the relevant literature, the merits of reducing CO2 electrochemically, the ways in which CO2 reduction systems are characterized, and the outstanding challenges. Chapter 2 describes the design and construction of a differential electrochemical mass spectrometry (DEMS) system that can be used to probe the products of electrochemical reactions in situ and in real time. In Chapter 3, the role of surface oxides and hydroxides in the reduction of CO2 on Sn electrodes is discussed. in situ attenuated total reflectance infrared (ATR-IR) spectroscopy is the main analytical technique by which the system was studied. Peaks that are attributed to a surface-bound Sn carbonate are present under conditions that are suitable for CO2 reduction. A strong correlation between the presence of these peaks and catalytic activity exists with respect to the applied potential, the pH of the electrolyte, and the surface condition of the electrode. X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and electrochemical analysis were also used characterize the catalysts. Based on these data, a mechanism for the reduction of CO2 on Sn cathodes is proposed. The roles of morphology and surface oxide presence in the reduction of CO2 on Bi cathodes are discussed in Chapter 4. ATR-IR spectroscopy, XPS, EDX, SEM, cyclic voltammetry, and preparative electrolysis are used to demonstrate that, unlike Sn, Bi electrodes do not possess oxide-dependent catalytic behavior. Instead, it is shown that Bi electrodes are highly sensitive to morphological changes in surface structure, and that surface roughness is detrimental to HCOO-- production from CO2. Finally, it is shown that oxide-derived Bi, formed by the in situ reduction of Bi2O3 nanoparticles at cathodic potentials, can reduce CO2 to HCOO-- at near unit efficiencies at

  20. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy.

    Science.gov (United States)

    Shimoyamada, Atsushi; Yamamoto, Kazuo; Yoshida, Ryuji; Kato, Takehisa; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2015-12-01

    All-solid-state Li-ion batteries (LIBs) with solid electrolytes are expected to be the next generation devices to overcome serious issues facing conventional LIBs with liquid electrolytes. However, the large Li-ion transfer resistance at the electrode/solid-electrolyte interfaces causes low power density and prevents practical use. In-situ-formed negative electrodes prepared by decomposing the solid electrolyte Li(1+x+3z)Alx(Ti,Ge)(2-x)Si(3z)P(3-z)O12 (LASGTP) with an excess Li-ion insertion reaction are effective electrodes providing low Li-ion transfer resistance at the interfaces. Prior to our work, however, it had still been unclear how the negative electrodes were formed in the parent solid electrolytes. Here, we succeeded in dynamically visualizing the formation by in situ spatially resolved electron energy-loss spectroscopy in a transmission electron microscope mode (SR-TEM-EELS). The Li-ions were gradually inserted into the solid electrolyte region around 400 nm from the negative current-collector/solid-electrolyte interface in the charge process. Some of the ions were then extracted in the discharge process, and the rest were diffused such that the distribution was almost flat, resulting in the negative electrodes. The redox reaction of Ti(4+)/Ti(3+) in the solid electrolyte was also observed in situ during the Li insertion/extraction processes. The in situ SR-TEM-EELS revealed the mechanism of the electrochemical reaction in solid-state batteries. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Magnetic resonance spectroscopy for measuring the biodistribution and in situ in vivo pharmacokinetics of fluorinated compounds: validation using an investigation of liver and heart disposition of tecastemizole.

    Science.gov (United States)

    Schneider, E; Bolo, N R; Frederick, B; Wilkinson, S; Hirashima, F; Nassar, L; Lyoo, I K; Koch, P; Jones, S; Hwang, J; Sung, Y; Villafuerte, R A; Maier, G; Hsu, R; Hashoian, R; Renshaw, P F

    2006-06-01

    The study of biodistribution and in situ pharmacokinetics is a challenging, but sometimes very important, aspect of premarketing characterization of drugs. We aimed to develop a non-invasive fluorine magnetic resonance (MR) spectroscopic method for the absolute quantitation of a mono-fluorinated compound and of its metabolites in the heart and liver of healthy subjects for this purpose. We used fluorine MR spectroscopy (MRS) at 4 T (Tesla) and external standardization in an open label multiple-dose study. Twenty-three healthy adult subjects were enrolled in the study. The surface coil localized fluorine MR spectrum was monitored in the heart and liver at baseline and after oral administration of multiple doses of tecastemizole. Steady-state measurements were made at set time points that depended upon dose, and washout measurements were made only on subjects in which in vivo fluorine signal was observed. At 4 T, under the given experimental conditions, the method had a lower limit of quantitation (LLOQ) of about 2.6 microm and a limit of detection (LOD) of about 0.3 microm for solution state samples (linewidth approximately 15 Hz). The measurement reproducibility was 6.4% using a 50 microm phantom. The effect of MR operator and spectral analyst on the calculated calibration curve slope was small, with inter-rater correlation coefficients of 0.999 and 0.998 respectively. MR signal from fluorine-containing tecastemizole-related moieties was observed in situ only at day 8 in the liver of three of five subjects dosed at 270 mg/day. The average in situ concentration was estimated to be 58+/-22 microm, with an average test-retest reproducibility of 216%. Extrapolating the in vitro results to human measurements, with an approximate linewidth of 250 Hz, predicts in situ LOD and LLOQ values of approximately 6 and 44 microm respectively. However, the human study had a fluorine MRS LOD of approximately 20 microm. The decrease in sensitivity and the increase in variability of

  2. The 'Nuts and Bolts' of 13C NMR Spectroscopy at Elevated-Pressures and -Temperatures for Monitoring In Situ CO2 Conversion to Metal Carbonates

    Science.gov (United States)

    Moore, J. K.; Surface, J. A.; Skemer, P. A.; Conradi, M. S.; Hayes, S. E.

    2013-12-01

    characterization of multiple metastable mineral phases in pure forms and in mixtures. Notably, NMR spectroscopy is able to observe signals from amorphous materials, and mixtures of both crystalline and amorphous species can be analyzed. NMR results are verified through a combination of Raman spectroscopy and powder XRD (of crystalline species). Further, we have examined the effects on mineralization reactions of pH gradients in the sample--also monitored in situ by NMR--and these results will be presented. Reference: 'In Situ Measurement of Magnesium Carbonate Formation from CO2 Using Static High-Pressure and -Temperature 13C NMR' J. Andrew Surface, Philip Skemer, Sophia E. Hayes, and Mark S. Conradi, Environ. Sci. Technol. 2013, 47, 119-125. DOI: 10.1021/es301287n

  3. Transient Reactivity of Solid Silver Acetate in Hydrogen and Oxygen by In Situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy*

    OpenAIRE

    Tohru, KANNO; Masayoshi, KOBAYASHI

    1985-01-01

    The reactivity of solid silver acetate in hydrogen and oxygen has been studied by using the transient response method and the in situ diffuse reflectance infrared fourier transform spectroscopic (DKIFTS) technique to compare its nature to that of the reaction intermediates in ethylene oxidation. 0n the analysis of the transient response curves, solid silver acetate produced acetic acid and a small amount of carbon dioxide in a hydrogen stream, and produced CO_2 and a small amount of CH_3COOH ...

  4. Hydrolysis of polycarbonate in sub-critical water in fused silica capillary reactor with in situ Raman spectroscopy

    Science.gov (United States)

    Pan, Z.; Chou, I-Ming; Burruss, R.C.

    2009-01-01

    The advantages of using fused silica capillary reactor (FSCR) instead of conventional autoclave for studying chemical reactions at elevated pressure and temperature conditions were demonstrated in this study, including the allowance for visual observation under a microscope and in situ Raman spectroscopic characterization of polycarbonate and coexisting phases during hydrolysis in subcritical water.

  5. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature

    Science.gov (United States)

    Wang, Jinlong; Yunus, Rizwangul; Li, Jinge; Li, Peilin; Zhang, Pengyi; Kim, Jeonghyun

    2015-12-01

    Removal of low-level formaldehyde (HCHO) is of great interest for indoor air quality improvement. Supported materials especially those with low air pressure drop are of necessity for air purification. Manganese oxides (MnOx) was in situ deposited on the surface of fibers of a non-woven fabric made of polyethylene terephthalate (PET). As-synthesized MnOx/PET were characterized by SEM, XRD, TEM, ATR-FTIR and XPS analysis. The growth of MnOx layer on PET is thought to start with partial hydrolysis of PET, followed by surface oxidation by KMnO4 and then surface-deposition of MnOx particles from the bulk phase. The MnOx particles assembled with nanosheets were uniformly coated on the PET fibers. MnOx/PET showed good activity for HCHO decomposition at room temperature which followed the Mars-van Krevelen mechanism. The removal of HCHO was kept over 94% after 10 h continuous reaction under the conditions of inlet HCHO concentration ∼0.6 mg/m3, space velocity ∼17,000 h-1 and relative humidity∼50%. This research provides a facile method to deposit active MnOx onto polymers with low air resistance, and composite MnOx/PET material is promising for indoor air purification.

  6. Studies on electrochemical hydrodebromination mechanism of 2,5-dibromobenzoic acid on Ag electrode by in situ FTIR spectroscopy

    International Nuclear Information System (INIS)

    Li Meichao; Bao Dandan; Ma Chunan

    2011-01-01

    Research highlights: → Silver is a good catalyst for the hydrodebromination of 2,5-dibromobenzoic acid. → 3-Bromobenzoic acid as main intermediate product. → The finally product is benzoic acid. → In situ FTIR is useful to study the electrochemical hydrodebromination mechanism. - Abstract: Cyclic voltammetry and in situ FTIR were employed to study the electrochemical hydrodebromination (EHB) mechanism of 2,5-dibromobenzoic acid (2,5-DBBA) in NaOH solution. Compared with titanium and graphite electrodes, silver electrode exhibited a high electrocatalytic activity for the hydrodebromination reaction of 2,5-DBBA. On the basis of in situ FTIR data, EHB reaction of 2,5-DBBA on Ag cathode might be represented as a sequence of electron additions and bromine expulsions. Firstly, from potential at approximately -1100 mV, 2,5-DBBA received an electron to form 2,5-DBBA radical anion, which lost a bromine ion in the 2-position to form 3-bromobenzoic acid (3-BBA) free radical. Then the free radical received a proton to give 3-BBA. Finally, 3-BBA further took off another bromine ion to produce benzoic acid free radical and the end product benzoic acid was obtained by receiving another electron and a proton with the potential shifting to more negative values.

  7. Removal of heavy metal ions from aqueous solution using rice ...

    African Journals Online (AJOL)

    The prepared materials were characterized by acid titration, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy, Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX) spectroscopy and nitrogen physisorption analysis. Results from the ATR-FTIR analysis indicated that pure silica ...

  8. Fourier-transform infrared spectroscopy discriminates a spectral signature of endometriosis independent of inter-individual variation.

    Science.gov (United States)

    Cheung, Karen T; Trevisan, Júlio; Kelly, Jemma G; Ashton, Katherine M; Stringfellow, Helen F; Taylor, Siân E; Singh, Maneesh N; Martin-Hirsch, Pierre L; Martin, Francis L

    2011-05-21

    Endometriosis is the growth of endometrial tissue outside of the uterine cavity. Its aetiology remains obscure, and it is difficult to diagnose ranging from asymptomatic to debilitating disease. Mid-infrared (IR) spectroscopy has become recognised as a potential clinical diagnostic tool. Biomolecules absorb mid-IR (4000 cm(-1) to 400 cm(-1)) and from this, a biochemical-cell fingerprint in the form of an absorbance spectrum can be derived. We set out to determine if IR spectroscopy could be used to identify underlying biochemical differences between endometrial tissues growing outside of the uterus (ectopic) from endometrial tissue of the uterus (eutopic). For comparative purposes, endometrial tissues from endometriosis-free women were also obtained (benign eutopic). Attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy or transmission FTIR microspectroscopy was employed for spectral acquisition. Principal component analysis (PCA)-linear discriminant analysis (LDA) was used for chemometric analysis. A clear segregation was exhibited between the three categories independent of inter-individual confounding differences. Importantly, there was a marked difference between eutopic endometrial tissue from patients with or without endometriosis. This indicates that IR spectroscopy coupled with multivariate analysis (e.g., PCA-LDA) may provide a non-invasive diagnostic tool for endometriosis. By analysing the underlying biochemistry of these endometrial tissues, this approach may facilitate a better understanding of this pathology.

  9. Formation of Copper Catalysts for CO2 Reduction with High Ethylene/Methane Product Ratio Investigated with In Situ X-ray Absorption Spectroscopy.

    Science.gov (United States)

    Eilert, André; Roberts, F Sloan; Friebel, Daniel; Nilsson, Anders

    2016-04-21

    Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)-carbonate/hydroxide is also reported. This study highlights the importance of using oxidized copper precursors for constructing selective CO2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation.

  10. Gas sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of trichloroethylene adsorption and reactions on SnO2 films

    Science.gov (United States)

    Zhang, Zhenxin; Huang, Kaijin; Yuan, Fangli; Xie, Changsheng

    2014-05-01

    The detection of trichloroethylene has attracted much attention because it has an important effect on human health. The sensitivity of the SnO2 flat-type coplanar gas sensor arrays to 100 ppm trichloroethylene in air was investigated. The adsorption and surface reactions of trichloroethylene were investigated at 100-200 °C by in-situ diffuse reflection Fourier transform infrared spectroscopy (DIRFTS) on SnO2 films. Molecularly adsorbed trichloroethylene, dichloroacetyl chloride (DCAC), phosgene, HCl, CO, H2O, CHCl3, Cl2 and CO2 surface species are formed during trichloroethylene adsorption at 100-200 °C. A possible mechanism of the reaction process is discussed.

  11. Depth probing of the hydride formation process in thin Pd films by combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy.

    Science.gov (United States)

    Wickman, Björn; Fredriksson, Mattias; Feng, Ligang; Lindahl, Niklas; Hagberg, Johan; Langhammer, Christoph

    2015-07-15

    We demonstrate a flexible combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy setup to gain insight into the depth evolution of electrochemical hydride and oxide formation in Pd films with thicknesses of 20 and 100 nm. The thicknesses of our model systems are chosen such that the films are thinner or significantly thicker than the optical skin depth of Pd to create two distinctly different situations. Low power white light is irradiated on the sample and analyzed in three different configurations; transmittance through, and, reflectance from the front and the back side of the film. The obtained optical sensitivities correspond to fractions of a monolayer of adsorbed or absorbed hydrogen (H) and oxygen (O) on Pd. Moreover, a combined simultaneous readout obtained from the different optical measurement configurations provides mechanistic insights into the depth-evolution of the studied hydrogenation and oxidation processes.

  12. Growth and structure of water on SiO2 films on Si investigated byKelvin probe microscopy and in situ X-ray Spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Verdaguer, A.; Weis, C.; Oncins, G.; Ketteler, G.; Bluhm, H.; Salmeron, M.

    2007-06-14

    The growth of water on thin SiO{sub 2} films on Si wafers at vapor pressures between 1.5 and 4 torr and temperatures between -10 and 21 C has been studied in situ using Kelvin Probe Microscopy and X-ray photoemission and absorption spectroscopies. From 0 to 75% relative humidity (RH) water adsorbs forming a uniform film 4-5 layers thick. The surface potential increases in that RH range by about 400 mV and remains constant upon further increase of the RH. Above 75% RH the water film grows rapidly, reaching 6-7 monolayers at around 90% RH and forming a macroscopic drop near 100%. The O K-edge near-edge X-ray absorption spectrum around 75% RH is similar to that of liquid water (imperfect H-bonding coordination) at temperatures above 0 C and ice-like below 0 C.

  13. Evaluation of various polyethylene as potential dosimeters by attenuated total reflectance-Fourier-transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Halperin, Fred; Collins, Greta; DiCicco, Michael; Logar, John

    2014-01-01

    Various types of polyethylene (PE) have been evaluated in the past for use as a potential dosimeter, chiefly via the formation of an unsaturated transvinylene (TV) double-bond resulting from exposure to ionizing radiation. The utilization of attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy in characterizing TV formation in irradiated PE for a potential dosimeter has yet to be fully developed. In this initial investigation, various PE films/sheets were exposed to ionizing radiation in a high-energy 5 megaelectron volt (MeV) electron beam accelerator in the 10–500 kilogray (kGy) dose range, followed by ATR-FTIR analysis of TV peak formation at the 965 cm −1 wavenumber. There was an upward trend in TV formation for low-density polyethylene (LDPE) films and high-density polyethylene (HDPE) sheets as a function of absorbed dose in the 10–50 kGy dose range, however, the TV response could not be equated to a specific absorbed dose. LDPE film displayed a downward trend from 50 kGy to 250 kGy and then scattering up to 500 kGy; HDPE sheets demonstrated an upward trend in TV formation up to 500 kGy. For ultra-high molecular weight polyethylene (UHMWPE) sheets irradiated up to 150 kGy, TV response was equivalent to non-irradiated UHMWPE, and a minimal upward trend was observed for 200 kGy to 500 kGy. The scatter of the data for the irradiated PE films/sheets is such that the TV response could not be equated to a specific absorbed dose. A better correlation of the post-irradiation TV response to absorbed dose may be attained through a better understanding of variables. - Highlights: • Various types of PE films/sheets have been evaluated for use as a potential dosimeter. • Attenuated total reflectance FTIR spectroscopy was utilized to analyze transvinylene formation in irradiated PE films/sheets. • PE films/sheets were exposed to ionizing radiation using a 5 MeV high-energy electron beam accelerator. • Analysis of TV peak formation at

  14. Time-resolved in situ studies of oxygen intercalation into SrCoO2.5, performed by neutron diffraction and X-ray absorption spectroscopy.

    Science.gov (United States)

    Le Toquin, Ronan; Paulus, Werner; Cousson, Alain; Prestipino, Carmelo; Lamberti, Carlo

    2006-10-11

    Electrochemical oxidation of the antiferromagnetically ordered SrCoO(2.5), with brownmillerite-type structure, to the cubic ferromagnet SrCoO(3), with perovskite structure, has been investigated in situ by neutron diffraction as well as by X-ray absorption fine structure (XAFS) spectroscopy in specially designed electrochemical cells. The neutron diffraction experiments were performed twice, using two different wavelengths (lambda = 1.2921(2) and 4.74 A) in order to better discriminate structural and magnetic changes as functions of the charge transfer. From the neutron diffraction experiments, two intermediate phases, SrCoO(2.75) and SrCoO(2.82)(+/-)(0.07), were characterized. No superstructure reflections were observed for the corresponding SrCoO(2.75) phase. Instead we observed here, for the first time, 3D oxygen ordering during an oxygen intercalation reaction, as established for SrCoO(2.82)(+/-)(0.07), which can be described as a tetragonal unit cell, related to the perovskite cell by a approximately 2(a radical2) and c approximately 2a. The structure of this intermediate phase confirms the strongly topotactic character of the oxygen intercalation reaction. We were also able to prove, from in situ XAFS spectroscopy at the Co absorption edge, that the evolution of the Co valence state from formally +3 for SrCoO(2.5) to +4 for the final reaction product (SrCoO(3.0)) does not proceed continuously but gives evidence for the formation of O(-) species for stoichiometries corresponding to SrCoO(2.82)(+/-)(0.07). The use of neutrons (vs X-rays) in the diffraction experiments and the choice of the transmission (vs fluorescence) mode in the XAFS experiment guarantee that the obtained data well represent bulk and not just surface properties.

  15. Effect of Cl2- and HBr-based inductively coupled plasma etching on InP surface composition analyzed using in situ x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bouchoule, S.; Vallier, L.; Patriarche, G.; Chevolleau, T.; Cardinaud, C.

    2012-01-01

    A Cl 2 -HBr-O 2 /Ar inductively coupled plasma (ICP) etching process has been adapted for the processing of InP-based heterostructures in a 300-mm diameter CMOS etching tool. Smooth and anisotropic InP etching is obtained at moderate etch rate (∼600 nm/min). Ex situ x-ray energy dispersive analysis of the etched sidewalls shows that the etching anisotropy is obtained through a SiO x passivation mechanism. The stoichiometry of the etched surface is analyzed in situ using angle-resolved x-ray photoelectron spectroscopy. It is observed that Cl 2 -based ICP etching results in a significantly P-rich surface. The phosphorous layer identified on the top surface is estimated to be ∼1-1.3-nm thick. On the other hand InP etching in HBr/Ar plasma results in a more stoichiometric surface. In contrast to the etched sidewalls, the etched surface is free from oxides with negligible traces of silicon. Exposure to ambient air of the samples submitted to Cl 2 -based chemistry results in the complete oxidation of the P-rich top layer. It is concluded that a post-etch treatment or a pure HBr plasma step may be necessary after Cl 2 -based ICP etching for the recovery of the InP material.

  16. Vibrational spectroscopic characterisation of salmeterol xinafoate polymorphs and a preliminary investigation of their transformation using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Hassan Refat H. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)], E-mail: H.G.M.Edwards@bradford.ac.uk; Hargreaves, Michael D.; Munshi, Tasnim; Scowen, Ian J.; Telford, Richard J. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)

    2008-07-14

    Knowledge and control of the polymorphic phases of chemical compounds are important aspects of drug development in the pharmaceutical industry. Salmeterol xinafoate, a long acting {beta}-adrenergic receptor agonist, exists in two polymorphic Forms, I and II. Raman and near infrared spectra were obtained of these polymorphs at selected wavelengths in the range of 488-1064 nm; significant differences in the Raman and near-infrared spectra were apparent and key spectral marker bands have been identified for the vibrational spectroscopic characterisation of the individual polymorphs which were also characterised with X ray diffractometry. The solid-state transition of salmeterol xinafoate polymorphs was studied using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry isothermally between transitions. This method assisted in the unambiguous characterisation of the two polymorphic forms by providing a simultaneous probe of both the thermal and vibrational data. The study demonstrates the value of a rapid in situ analysis of a drug polymorph which can be of potential value for at-line in-process control.

  17. In-situ investigation of the order-disorder transition in Cu2ZnSnSe4 by optical transmission spectroscopy

    Directory of Open Access Journals (Sweden)

    Christiane Stroth

    2017-02-01

    Full Text Available The existence of disorder is one possible reason for the limited performance of kesterite solar cells. Therefore further knowledge of the order-disorder phase transition, of factors which influence the degree of order and of methods to determine this material property is still required. In this study we investigated the order-disorder transition in the kesterite material Cu2ZnSnSe4 by in-situ optical transmission spectroscopy during heat treatments. We show in-situ results for the temperature dependence of the band gap and its tailing properties. The influence of cooling rates on the phase transition was analyzed as well as the ordering kinetics during annealing at a constant temperature. The critical temperature of the phase transition was determined and the existence of a control temperature range is shown, which allows for controlling the degree of order by the cooling rate within this range. Additionally we performed Raman analysis to link Raman spectra to the degree of order in Cu2ZnSnSe4. A correlation between the intensity ratio of A-modes as well as B-/ E- Raman modes and the degree of order was found.

  18. Vibrational spectroscopic characterisation of salmeterol xinafoate polymorphs and a preliminary investigation of their transformation using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry

    International Nuclear Information System (INIS)

    Ali, Hassan Refat H.; Edwards, Howell G.M.; Hargreaves, Michael D.; Munshi, Tasnim; Scowen, Ian J.; Telford, Richard J.

    2008-01-01

    Knowledge and control of the polymorphic phases of chemical compounds are important aspects of drug development in the pharmaceutical industry. Salmeterol xinafoate, a long acting β-adrenergic receptor agonist, exists in two polymorphic Forms, I and II. Raman and near infrared spectra were obtained of these polymorphs at selected wavelengths in the range of 488-1064 nm; significant differences in the Raman and near-infrared spectra were apparent and key spectral marker bands have been identified for the vibrational spectroscopic characterisation of the individual polymorphs which were also characterised with X ray diffractometry. The solid-state transition of salmeterol xinafoate polymorphs was studied using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry isothermally between transitions. This method assisted in the unambiguous characterisation of the two polymorphic forms by providing a simultaneous probe of both the thermal and vibrational data. The study demonstrates the value of a rapid in situ analysis of a drug polymorph which can be of potential value for at-line in-process control

  19. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    Science.gov (United States)

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Photocatalytic oxidation of the organic monolayers on TiO2 surface investigated by in-situ sum frequency generation spectroscopy

    Directory of Open Access Journals (Sweden)

    Yujin Tong

    2015-10-01

    Full Text Available In-situ vibrational sum frequency generation (SFG spectroscopy has been employed to investigate the photocatalytic oxidation of two types of well-ordered organic monolayers, namely, an arachidic acid (AA monolayer prepared by the Langmuir-Blodgett method and an octadecyltrichlorosilane (OTS monolayer prepared by the self-assembling method, on a TiO2 surface under ultraviolet (UV irradiation. The extremely high sensitivity and unique selectivity of the SFG spectroscopy enabled us to directly probe the structural changes in these monolayers during the surface photocatalytic oxidation and further elucidate their reaction mechanisms at a molecular level. It was revealed that the ordering of the monolayers during the photocatalytic reaction is strongly dependent on their interaction with the substrate; the AA monolayer maintains its ordered conformation until the final oxidation stage, while the OTS monolayer shows a large increase in disordering during the initial oxidation stage, indicating a different photocatalytic reaction mechanism of the two monolayers on the TiO2 surface.

  1. Photocatalytic oxidation of the organic monolayers on TiO{sub 2} surface investigated by in-situ sum frequency generation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yujin; Peng, Qiling; Ma, Tongsen; Nishida, Takuma; Ye, Shen, E-mail: ye@cat.hokudai.ac.jp [Catalysis Research Center, Hokkaido University, Sapporo 060-0811 (Japan)

    2015-10-01

    In-situ vibrational sum frequency generation (SFG) spectroscopy has been employed to investigate the photocatalytic oxidation of two types of well-ordered organic monolayers, namely, an arachidic acid (AA) monolayer prepared by the Langmuir-Blodgett method and an octadecyltrichlorosilane (OTS) monolayer prepared by the self-assembling method, on a TiO{sub 2} surface under ultraviolet (UV) irradiation. The extremely high sensitivity and unique selectivity of the SFG spectroscopy enabled us to directly probe the structural changes in these monolayers during the surface photocatalytic oxidation and further elucidate their reaction mechanisms at a molecular level. It was revealed that the ordering of the monolayers during the photocatalytic reaction is strongly dependent on their interaction with the substrate; the AA monolayer maintains its ordered conformation until the final oxidation stage, while the OTS monolayer shows a large increase in disordering during the initial oxidation stage, indicating a different photocatalytic reaction mechanism of the two monolayers on the TiO{sub 2} surface.

  2. In situ UV–Vis diffuse reflectance spectroscopy — on line activity measurements of supported chromium oxide catalysts: relating isobutane dehydrogenation activity with Cr-speciation via experimental design

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Verberckmoes, A.A.; Debaere, J.; Ooms, K.; Langhans, I.; Schoonheydt, R.A.

    2000-01-01

    The dehydrogenation of isobutane over supported chromium oxide catalysts was studied by a combination of in situ UV–Vis diffuse reflectance spectroscopy and on line GC analysis. A well-defined set of experiments, based on an experimental design, was carried out to develop mathematical models, which

  3. Application of FT-Raman spectroscopy for in situ detection of microorganisms on the surface of textiles.

    Science.gov (United States)

    Rygula, Anna; Jekiel, Katarzyna; Szostak-Kot, Jadwiga; Wrobel, Tomasz P; Baranska, Malgorzata

    2011-11-01

    In this work we present the usefulness of FT-Raman spectroscopy for microbiological analysis of textiles. This technique was used for non-destructive identification of Escherichia coli bacteria on cotton and polyester fabrics. It was possible to discriminate between infected and non-infected materials. Moreover, this technique allowed detection of detergent traces as well as investigation of the influence of microorganisms on different textiles. Raman analysis supported by chemometrics (cluster analysis and principal component analysis) was shown to be a method for identification of textiles with inoculum of microorganisms in a short time. The results can be potentially used in the fabric industry and related areas.

  4. Infrared imaging spectroscopy and chemometric tools for in situ analysis of an imiquimod pharmaceutical preparation presented as cream

    Science.gov (United States)

    Carneiro, Renato Lajarim; Poppi, Ronei Jesus

    2014-01-01

    In the present work the homogeneity of a pharmaceutical formulation presented as a cream was studied using infrared imaging spectroscopy and chemometric methodologies such as principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS). A cream formulation, presented as an emulsion, was prepared using imiquimod as the active pharmaceutical ingredient (API) and the excipients: water, vaseline, an emulsifier and a carboxylic acid in order to dissolve the API. After exposure at 45 °C during 3 months to perform accelerated stability test, the presence of some crystals was observed, indicating homogeneity problems in the formulation. PCA exploratory analysis showed that the crystal composition was different from the composition of the emulsion, since the score maps presented crystal structures in the emulsion. MCR-ALS estimated the spectra of the crystals and the emulsion. The crystals presented amine and C-H bands, suggesting that the precipitate was a salt formed by carboxylic acid and imiquimod. These results indicate the potential of infrared imaging spectroscopy in conjunction with chemometric methodologies as an analytical tool to ensure the quality of cream formulations in the pharmaceutical industry.

  5. The electrochemical impedance spectroscopy of silver doped hydroxyapatite coating in simulated body fluid used as corrosive agent

    Directory of Open Access Journals (Sweden)

    Mišković-Stanković Vesna

    2012-01-01

    Full Text Available Titanium is a key biomedical material due its good biocompatibility, mechanical properties and corrosion stability, but infections of the implantation site still pose serious threat. One approach to prevent infection is to improve antimicrobial ability of the coating material. Silver doped hydroxyapatite (Ag/HAP nanoparticles were synthesized by new modified precipitation method. The synthesized powder was used for preparation of Ag/HAP coating on titanium by electrophoretic deposition. The coating was characterized in terms of phase composition and structure by Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR and X-ray diffraction (XRD; surface morphology and chemical composition was assessed using scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS. Research focused on evaluation of the corrosion behaviour of Ag/HAP coating in simulated body fluid (SBF at 37 ºC during prolonged immersion time by electrochemical impedance spectroscopy (EIS. Silver doped HAP coating provided good corrosion protection in SBF solution. [Acknowledgements. This research was financed by the Ministry of Education, Science and Technological Development of the Republic of Serbia, contracts No. III 45019 and by National Sciences and Engineering Research Council of Canada (NSERC. Dr Ana Jankovic was financed by the FP7 Nanotech FTM Grant Agreement 245916

  6. Theory of in situ measurement of wave-vector-dependent dynamic susceptibility and ESR spectroscopy using the ac Josephson effect

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, S.E.; Mehran, F.

    1986-10-01

    The elementary theory of in situ measurements of the wave-vector-dependent dynamic susceptibility chi(q,..omega..) in superconductor-insulator-superconductor (SIS) and superconductor--normal-metal--superconductor (SNS) Josephson junctions is presented in some detail. The theory for more complicated SISN and SINS junctions is also described. In addition, the theory of point-contact and superconducting quantum interference device geometries, relevant to the recent experiments of Baberschke, Bures, and Barnes is developed. Involved is a detailed application of the Maxwell and London equations along with the distributed Josephson effect. In a measurement of chi(q,..omega..), the frequency ..omega.. is determined by the relation 2eV/sub 0/ = h-dash-bar..omega.. where V/sub 0/ is the voltage applied across the junction, and the wave vector q is determined by the relation 2edB/sub 0/ = h-dash-barq where d is the effective width of the junction and B/sub 0/ is the magnetic field applied perpendicular to the direction of the current. The relative merits of the different types of junctions are discussed and the expected signal strengths are estimated. The limitations for the maximum measurable frequency and wave vector are also given. It seems probable that the proposed technique can be used to measure spin-wave branches from zero wave vector up to about 10% of the way to the Brillouin zone edge.

  7. Developments in laser-induced fluorescence spectroscopy for quantitative in situ measurements of free radicals in the troposphere

    Science.gov (United States)

    Heard, Dwayne

    2015-04-01

    Photo-oxidation in the troposphere is highly complex, being initiated by short lived free radical species, in the daytime dominated by the hydroxyl radical, OH. Chemical oxidation cycles, which also involve peroxy radicals (HO2 and RO2), remove natural or anthropogenic emissions (for example methane) and generate a range of secondary products, for example ozone, nitrogen dioxide, acidic and multifunctional organic species, and secondary organic aerosol, which impact on human health and climate. Owing to their short lifetime in the atmosphere, the abundance of radicals is determined solely by their rate of chemical production and loss, and not by transport. Field measurements of the concentrations of radicals and comparison with calculations using a numerical model therefore constitutes one of the very best ways to test whether the chemistry in each of these locations is understood and accurately represented in the model. Validation of the chemistry is important, as the predictions of climate and air quality models containing this chemistry are used to drive the formulation of policy and legislation. However, in situ measurements of radical species, owing to their very low abundance (often sub part per trillion) and short lifetimes (pulse repetition rate tunable laser systems, will be discussed, together with calibration methods to make signals absolute, and identification of potential interferences. LIF instruments have been operated on ground, ship and aircraft platforms at a number of locations worldwide, and examples from recent fieldwork involving the Leeds instruments will be presented.

  8. In Situ Water Vapor Measurements Using Coupled UV Fragment Fluorescence/Absorption Spectroscopy in Support of CRYSTAL-FACE

    Science.gov (United States)

    Anderson, James G.

    2004-01-01

    Understanding the coupling of dynamics, chemistry, and radiation within the context of the NASA Earth Science Enterprise (ESE) and the national Climate Change Science Program (CCSP) requires, as a first-order priority, high spatial resolution, high-accuracy observations of water in its various phases. Given the powerful diagnostic importance of the condensed phases of water for dynamics and the impact of phase changes in water on the radiation field, the accurate, in situ observation of water vapor is of central importance to CRYSTAL FACE (CF). This is clear both from the defined scientific objectives of the NRA and from developments in the coupled fields of stratosphere/troposphere exchange, cirrus cloud formation/removal and mechanisms for the distribution of water vapor in the middle/upper troposphere. Accordingly, we were funded under NASA Grant NAG5-11548 to perform the following tasks for the CF mission: 1. Prepare the water vapor instrument for integration into the WB57F and test flights scheduled for Spring 2002. 2. Calibrate and prepare the water vapor instrument for the Summer 2002 CF science flights based in Jacksonville, Florida. 3. Provide both science and engineering support for the above-mentioned efforts. 4. Analyze and interpret the CF data in collaboration with other mission scientists. 5. Attend the science workshop in Spring 2003. 6. Publish the data and analysis in peer-reviewed journals.

  9. Rapid in situ detection of street samples of drugs of abuse on textile substrates using microRaman spectroscopy

    Science.gov (United States)

    Ali, Esam M. A.; Edwards, Howell G. M.; Scowen, Ian J.

    2011-10-01

    Trace amounts of street samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine (MDMA) on natural and synthetic textiles were successfully detected in situ using confocal Raman microscopy. The presence of some excipient bands in the spectra of the drugs did not prevent the unambiguous identification of the drugs. Raman spectra of the drugs were readily obtained without significant interference from the fibre substrates. Interfering bands arising from the fibre natural or synthetic polymer structure and/or dye molecules did not overlap with the characteristic Raman bands of the drugs. If needed, interfering bands could be successfully removed by spectral subtraction. Also, Raman spectra could be acquired from drug particles trapped between the fibres of highly fluorescent textile specimens. The total acquisition time of the spectra of the drug particles was 90 s accomplished non-destructively and without detachment from their substrates. Sample preparation was not required and spectra of the drugs could be obtained non-invasively preserving the integrity of the evidential material for further analysis.

  10. In situ analysis of lipid oxidation in oilseed-based food products using near-infrared spectroscopy and chemometrics: The sunflower kernel paste (tahini) example.

    Science.gov (United States)

    Mureșan, Vlad; Danthine, Sabine; Mureșan, Andruța Elena; Racolța, Emil; Blecker, Christophe; Muste, Sevastița; Socaciu, Carmen; Baeten, Vincent

    2016-08-01

    A new near-infrared (NIR) spectroscopic method was developed for the analytical measurement of lipid oxidation in sunflower kernel paste (tahini), which was chosen as an example of a complex oilseed-based food product. The NIR spectra of sunflower tahini were acquired for the extracted fat phase (EFP) and for the intact sunflower tahini (IST) samples during controlled storage. The best peroxide value (PV) calibration models were considered suitable for quality control (ratio of performance of deviation [RPD]>5). The best PV partial least squares (PLS) model result for EFP (RPD 6.36) was obtained when using standard normal variate (SNV) and the Savitzky-Golay first derivative in the 1140-1184nm, 1388-1440nm and 2026-2194nm regions. In the case of IST spectra, the best PV models (RPD 5.23) were obtained when either multiple scattering correction (MSC) or SNV were followed by the Savitzky-Golay second derivative for the 1148-1180nm and 2064-2132nm regions. There were poor correlations between the NIR-predicted values and the reference data of the p-anisidine value (pAV) for both EFP and IST. Overall, the results obtained showed that NIR spectroscopy is an appropriate analytical tool for monitoring sunflower paste PV in situ. Due to the nonexistence of the extraction step, it demonstrates a unique and substantial advantage over presently known methods. Based on these results it is strongly recommended that, when using NIR PLS models to assess lipid oxidation in situ in similar oilseed-based food products (e.g., sesame tahini, hazelnut and cocoa liquor used for chocolate production, peanut butter, hazelnut, almond, pistachio spreads), suitable calibration sets containing samples of different particle sizes and stored at different temperatures be selected. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Nano- and macroscale structural and mechanical properties of in situ synthesized bacterial cellulose/PEO-b-PPO-b-PEO biocomposites.

    Science.gov (United States)

    Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Domeneguetti, Rafael R; Ribeiro, Sidney J L

    2015-02-25

    Highly transparent biocomposite based on bacterial cellulose (BC) mat modified with poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymer (EPE) were fabricated in situ during biosynthesis of bacterial cellulose in a static culture from Gluconacetobacter xylinum. The effect of the addition to the culture medium of water-soluble EPE block copolymer on structure, morphology, crystallinity, and final properties of the novel biocomposites was investigated at nano- and macroscale. High compatibility between components was confirmed by ATR-FTIR indicating hydrogen bond formation between the OH group of BC and the PEO block of EPE block copolymer. Structural properties of EPE/BC biocomposites showed a strong effect of EPE block copolymer on the morphology of the BC mats. Thus, the increase of the EPE block copolymer content lead to the generation of spherulites of PEO block, clearly visualized using AFM and MO technique, changing crystallinity of the final EPE/BC biocomposites investigated by XRD. Generally, EPE/BC biocomposites maintain thermal stability and mechanical properties of the BC mat being 1 wt % EPE/BC biocomposite material with the best properties. Biosynthesis of EPE/BC composites open new strategy to the utilization of water-soluble block copolymers in the preparation of BC mat based biocomposites with tunable properties.

  12. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell

    International Nuclear Information System (INIS)

    Deb, A.; Bergmann, U.; Cairns, E.L.; California Univ., Berkeley, CA; Cramer, S.P.; California Univ., Davis, CA

    2004-01-01

    The extraction and insertion of lithium in LiFePO 4 has been investigated in practical Li-ion intercalation electrodes for Li-ion batteries using Fe K-edge X-ray absorption spectroscopy (XAS). A versatile electrochemical in situ reaction cell was utilized, specifically designed for long-term X-ray experiments on battery electrodes during the lithium-extraction/insertion process in electrode materials for Li-ion batteries. The electrode contained about 7.7 mg of LiFePO 4 on a 20 μm-thick Al foil. In order to determine the charge compensation mechanism and structural perturbations occurring in the system during cycling, in situ X-ray absorption fine-structure spectroscopy (XAFS) measurements were conducted on the cell at a moderate rate using typical Li-ion battery operating voltages (3.0-4.1 V versus Li/Li + ).XAS studies of the LiFePO 4 electrode measured at the initial state (LiFePO 4 ) showed iron to be in the Fe(II) state corresponding to the initial state (0.0 mAh) of the battery, whereas in the delithiated state (FePO 4 ) iron was found to be in the FE(III) state corresponding to the final charged state (3 m Ah) of the battery. The X-ray absorption near-edge structure (XANES) region of the XAS spectra revealed a high-spin configuration for the two states [Fe(II), d 6 and Fe(III), d 5 ]. The XAFS data analysis confirmed that the olivine structure of the LeFePO 4 and FePO 4 is retained by the electrodes, which is in agreement with the X-ray diffraction observations on these compounds. The XAFS data that were collected continuously during cycling revealed details about the response of the cathode to Li insertion and extraction. These measurements on the LiFePO 4 cathode show that the material retains good structural short-range order leading to superior cycling

  13. Interactions of nitrogen and hydrogen with various 1D and 3D carbon materials probed via in-situ vibrational spectroscopy

    Science.gov (United States)

    Ray, Paramita

    Nanostructured carbon materials are perhaps the most widely studied adsorbents, and cryogenic nitrogen adsorption is likely the most common method to assess textural properties of adsorbents. Yet, in-situ vibrational spectroscopic studies of nitrogen's interactions with three nanostructured carbon materials have provided new insight into carbon-nitrogen interactions. In this dissertation I present the work of 2 projects: (i) Study of the interaction of N2 with different carbon geometries at a molecular level and (ii) exploration of novel C-H interactions on carbon materials via mechano-chemistry. Both of these projects utilize in-situ Raman spectroscopy for exploring gas-surface interactions. Chapters 2 and 3 explore the interaction of molecular Nitrogen on carbon surfaces. With complementary theoretical studies and systematic experimental studies at various temperatures and pressures for different surfaces, I demonstrate how the spectroscopic peak features of N2 gives an indication of gas-surface binding energy, pore structure, and surface chemistry. Using 1D and 3D carbon architectures, spectroscopic perturbation of N2 is probed as a function of adsorption potential and pore dimension, and the spectroscopic response is mapped to the cryogenic volumetric adsorption isotherms. Whereas the latter required multiple days and ˜100 mg of sample, the spectroscopic technique provided similar structural information in the matter of a few hours for a few micrograms of the sample. It is anticipated that the development of the site-specific spectroscopic technique will advance the understanding of adsorbent geometry versus chemical functionality in a way not possible with deconstruction of bulk gas adsorption measurements of pore dimension, surface area, and diffusivity. The second project probed mechanochemical means to polymerize aromatics and hydro-aromatics in the presence of hydrogen in an attempt to form localized carbon cages that trap hydrogen. Interesting aspects of

  14. Mechanism of Phenol Alkylation in Zeolite H-BEA Using In Situ Solid-State NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhenchao [Institute; Shi, Hui [Institute; Wan, Chuan [Institute; Hu, Mary Y. [Institute; Liu, Yuanshuai [Department; Mei, Donghai [Institute; Camaioni, Donald M. [Institute; Hu, Jian Zhi [Institute; Lercher, Johannes A. [Institute; Department

    2017-06-27

    Alkylation of phenolic compounds in the liquid phase is of fundamental and practical importance to the conversion of biomass-derived feedstocks into fuels and chemicals. In this work, the reaction mechanism for phenol alkylation with cyclohexanol and cyclohexene has been investigated on a commercial HBEA zeolite by in situ 13C MAS NMR, using decalin as the solvent. From the variable temperature 13C MAS NMR measurements of phenol and cyclohexanol adsorption on HBEA from decalin solutions, it is shown that the two molecules have similar adsorption strength in the HBEA pore. Phenol alkylation with cyclohexanol, however, becomes significantly measurable only after cyclohexanol is largely converted to cyclohexene via dehydration. This is in contrast to the initially rapid alkylation of phenol when using cyclohexene as the co-reactant. 13C isotope scrambling results demonstrate that the electrophile, presumably cyclohexyl carbenium ion, is directly formed in a protonation step when cyclohexene is the co-reactant, but requires re-adsorption of the alcohol dehydration product, cyclohexene, when cyclohexanol dimer is the dominant surface species (e.g., at 0.5 M cyclohexanol concentration) that is unable to generate carbenium ion. At the initial reaction stage of phenol-cyclohexanol alkylation on HBEA, the presence of the cyclohexanol dimer species hinders the adsorption of cyclohexene at the Brønsted acid site and the subsequent activation of the more potent electrophile (carbenium ion). Isotope scrambling data also show that intramolecular rearrangement of cyclohexyl phenyl ether, the O-alkylation product, does not significantly contribute to the formation of C-alkylation products.

  15. In situ characterization of organo-modified and unmodified montmorillonite aqueous suspensions by UV-visible spectroscopy.

    Science.gov (United States)

    Alin, Jonas; Rubino, Maria; Auras, Rafael

    2015-10-15

    UV-visible (UV-Vis) spectroscopy (Tyndall spectra) was applied and tested for its ability to measure organo-modified and unmodified montmorillonite (MMT) clays in aqueous suspensions. A full factorial design of experiments was used to study the influence of pH, NaCl and clay concentrations on the average particle size of the clay agglomerates. The methodology was evaluated by observing results that were consistent with previous research about the unmodified clay's behavior in aqueous suspensions. The results from this evaluation corresponded to accepted theories about the unmodified clay's behavior, indicating that the methodology is precise enough to distinguish the effects of the studied factors on these clay suspensions. The effect of clay concentration was related to the amount of ions per clay particle for the unmodified clay, but was not significant for the organo-modified MMT. The average particle size of the organo-modified MMT in suspension was significantly larger than that of the unmodified clay. Size of the organo-modified MMT agglomerates in suspension decreased in the presence of NaCl and at both high and low pH; this behavior was opposite to that of the unmodified clay. These results demonstrate that the UV-Vis methodology is well-suited for characterizing clay particle size in aqueous suspensions. The technique also is simple, rapid, and low-cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Electron beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in-situ electron beam induced desorption

    Energy Technology Data Exchange (ETDEWEB)

    Olynick, D.L.; Cord, B.; Schipotinin, A.; Ogletree, D.F.; Schuck, P.J.

    2009-11-13

    Hydrogen Silsesquioxane (HSQ) is used as a high-resolution resist with resolution down below 10nm half-pitch. This material or materials with related functionalities could have widespread impact in nanolithography and nanoscience applications if the exposure mechanism was understood and instabilities controlled. Here we have directly investigated the exposure mechanism using vibrational spectroscopy (both Raman and Fourier transform Infrared) and electron beam desorption spectrocscopy (EBDS). In the non-networked HSQ system, silicon atoms sit at the corners of a cubic structure. Each silicon is bonded to a hydrogen atom and bridges 3 oxygen atoms (formula: HSiO3/2). For the first time, we have shown, via changes in the Si-H2 peak at ~;;2200 cm -1 in the Raman spectra and the release of SiHx products in EBID, that electron-bam exposed materials crosslinks via a redistribution reaction. In addition, we observe the release of significantly more H2 than SiH2 during EBID, which is indicative of additional reaction mechanisms. Additionally, we compare the behavior of HSQ in response to both thermal and electron-beam induced reactions.

  17. In situ determination of growing stages and harvest time of tomato (Lycopersicon esculentum ) fruits using fiber-optic visible-near-infrared (Vis-NIR) spectroscopy.

    Science.gov (United States)

    Yang, Haiqing; Kuang, Boyan; Mouazen, Abdul Mounem

    2011-08-01

    Nondestructive in situ measurement of tomato fruits is essential to determine growing stages and to assist in automatic picking of fruits. This study evaluates the applicability of visible and near-infrared (Vis-NIR) spectroscopy for in situ determination of growing stages and harvest time of three cultivars of tomato fruits. A mobile fiber-type AgroSpec Vis-NIR spectrophotometer (Tec5 Co., Germany) with a spectral range of 350-2200 nm was used to measure tomato spectra in reflection mode. A new growing stage (GS) index defined as the ratio of the current growing age in days to the on-vine duration before harvest in days was proposed. After dividing spectra into a calibration set (70%) and an independent prediction set (30%), spectra in the calibration set were subjected to a partial least squares regression (PLSR) with leave-one-out cross-validation to establish calibration models relating GS to the spectra of tomato fruits. Separate models were developed for each tomato cultivar and compared with a general model that used combined spectra of all three cultivars. The results show that PLSR based on the new GS is successful and robust in predicting the growing stages and harvest time of tomato fruits. Validation of calibration models on the independent prediction set indicates that successful prediction of GS can be achieved using the three models developed separately for each cultivar with a coefficient of determination (R(2)) of 0.91-0.92, root mean square error of prediction (RMSEP) of 0.081-0.097, and residual prediction deviation (RPD) of 3.29-3.70. General calibration using the combined spectra produces good prediction performance, although less accurate than that for the three individual cultivar models. The analysis of regression coefficient plots resulting from PLSR analysis indicates consistent assignment of important wavelengths for individual cultivar spectra and combined spectra. It is concluded that the Vis-NIR PLSR based on GS index can be adopted

  18. Quantitative Potassium Measurements with Laser-Induced Breakdown Spectroscopy Using Low-Energy Lasers: Application to In Situ K-Ar Geochronology for Planetary Exploration.

    Science.gov (United States)

    Cho, Yuichiro; Horiuchi, Misa; Shibasaki, Kazuo; Kameda, Shingo; Sugita, Seiji

    2017-08-01

    In situ radiogenic isotope measurements to obtain the absolute age of geologic events on planets are of great scientific value. In particular, K-Ar isochrons are useful because of their relatively high technical readiness and high accuracy. Because this isochron method involves spot-by-spot K measurements using laser-induced breakdown spectroscopy (LIBS) and simultaneous Ar measurements with mass spectrometry, LIBS measurements are conducted under a high vacuum condition in which emission intensity decreases significantly. Furthermore, using a laser power used in previous planetary missions is preferable to examine the technical feasibility of this approach. However, there have been few LIBS measurements for K under such conditions. In this study, we measured K contents in rock samples using 30 mJ and 15 mJ energy lasers under a vacuum condition (10 -3  Pa) to assess the feasibility of in situ K-Ar dating with lasers comparable to those used in NASA's Curiosity and Mars 2020 missions. We obtained various calibration curves for K using internal normalization with the oxygen line at 777 nm and continuum emission from the laser-induced plasma. Experimental results indicate that when K 2 O K emission line at 769 nm normalized with that of the oxygen line yields the best results for the 30 mJ laser energy, with a detection limit of 88 ppm and 20% of error at 2400 ppm of K 2 O. Futhermore, the calibration curve based on the K 769 nm line intensity normalized with continuum emission yielded the best result for the 15 mJ laser, giving a detection limit of 140 ppm and 20% error at 3400 ppm K 2 O. Error assessments using obtained calibration models indicate that a 4 Ga rock with 3000 ppm K 2 O would be measured with 8% (30 mJ) and 10% (15 mJ) of precision in age when combined with mass spectrometry of 40 Ar with 10% of uncertainty. These results strongly suggest that high precision in situ isochron K-Ar dating is feasible with a laser used in

  19. Quantification of water and silanol species on various silicas by coupling IR spectroscopy and in-situ thermogravimetry.

    Science.gov (United States)

    Gallas, Jean-Paul; Goupil, Jean-Michel; Vimont, Alexandre; Lavalley, Jean-Claude; Gil, Barbara; Gilson, Jean-Pierre; Miserque, Olivier

    2009-05-19

    Five silica samples (four precipitated silicas provided by commercial suppliers and one with the MCM-41 structure) have been studied by infrared spectroscopy and by a homemade thermogravimetry-infrared spectrum (TG-IR) setup. The silanol amount, accessibility to water, and different alcohols, and the affinity to water of these various silicas were compared and quantified. TG-IR measurements allowed the precise determination of the integrated molar absorption coefficient of the (nu+delta)OH band, epsilon(nu+delta)OH=(0.16+/-0.01) cm micromol(-1). It is independent of the sample origin and the concentration of silanol groups on silicas. For the precipitated dried samples evacuated at room temperature, the silanol concentration COH varies between 3.6 and 7.0 mmol g(-1). It is 5.3 mmol g(-1) in the case of the MCM-41 sample. Exchange experiments with D2O, followed by back-exchanges with different alcohols (methanol, propan-2-ol, 2-methyl-propan-2-ol, and 3-ethyl-pentan-3-ol) have been followed by infrared spectroscopy. All of the silanols of the MCM-41 sample are accessible to water and alcohol molecules. By contrast, about 20% of the silanols in precipitated samples are not exchanged by D2O (internal silanols). Accessibility decreases with alcohol size; the main effect is relative to methanol. Taking into account the sample specific surface areas and the silanol accessibility to D2O, the surface silanol density of precipitated silicas is close to 8 OH per nm2, at maximum coverage. At variance, the silanol surface density of the MCM silica is much lower, 4 OH per nm2. The TG-IR setup has also been used to determine the amount of water adsorbed on silicas through the intensity of the deltaH2O band. It varies linearly with the concentration of adsorbed water, whatever the silica sample. The integrated molar absorption coefficient of two bands, epsilondeltaH2O=(1.53+/-0.03) cm micromol(-1) and epsilon(nu+delta)H2O=(0.22+/-0.01) cm micromol(-1), have been determined. The

  20. In situ optical absorption spectroscopy of annealing behaviours of quench-deposited films in the binary system CsI- PbI{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, S; Amaya, K; Saito, T [Research Centre for Development of the Far-Infrared Region, Fukui University, Bunkyo, Fukui (Japan)

    2003-02-19

    We have investigated annealing behaviours of quench-deposited films of the binary CsI-PbI{sub 2} system by in situ optical absorption spectroscopy. Various films composed of multiple crystalline phases of CsPbI{sub 3} and/or Cs{sub 4}PbI{sub 6} as well as of CsI and/or PbI{sub 2} are obtained, depending on the mixing ratio of the CsI and PbI{sub 2}. It is difficult to prepare films purely composed of a single CsPbI{sub 3} or Cs{sub 4}PbI{sub 6} phase alone. However, it is possible to obtain films where crystallites of either CsPbI{sub 3} or Cs{sub 4}PbI{sub 6} coexist with the CsI phase. Using such films, we measure the fundamental optical absorption spectrum of CsPbI{sub 3} and Cs{sub 4}PbI{sub 6} for the first time. Cs{sub 4}PbI{sub 6} exhibits stronger oscillator-like absorption compared to CsPbI{sub 3}, due to the localized nature of both the Pb 6s and 6p states.

  1. Generalised two-dimensional correlation analysis of the Co, Ce, and Pd mixed oxide catalytic systems for methane combustion using in situ infrared spectroscopy

    Science.gov (United States)

    Chlebda, Damian K.; Jodłowski, Przemysław J.; Jędrzejczyk, Roman J.; Łojewska, Joanna

    2018-03-01

    The process of methane combustion over the surface of a catalyst is still not fully understood. The identification of the reaction path and the intermediates created during catalysis is crucial for understanding the transformation of methane molecules. Two-dimensional (2D) correlation spectroscopy was engaged as a tool for the quantitative analysis of a series of temperature-dependent infrared spectra registered in situ during methane combustion. The prepared samples of catalysts were based on a Co, Pd and Ce mixed oxide adsorbed on an aluminium oxide layer deposited on kanthal steel. The registered spectra were transformed into 2D synchronous and asynchronous contour maps. The sequential order of spectral intensity changes was determined, and the resolution enhancement of overlapping IR bands by 2D correlation was demonstrated. The changes in the bands' intensity and information about band position can be correlated with a specific bond, and thus, the possible process intermediates can be identified. The 2DCoS analysis proved to be a powerful tool for band enhancement and revealed the changes occurring within the analysed catalyst systems as responses to increased temperature.

  2. An in situ near-ambient pressure X-ray Photoelectron Spectroscopy study of Mn polarised anodically in a cell with solid oxide electrolyte

    International Nuclear Information System (INIS)

    Bozzini, Benedetto; Amati, Matteo; Bocchetta, Patrizia; Dal Zilio, Simone; Knop-Gericke, Axel; Vesselli, Erik; Kiskinova, Maya

    2015-01-01

    This paper reports an in situ study of the anodic behavior of a model solid oxide electrolysis cell (SOEC) by means of near-ambient pressure X-ray Photoelectron Spectroscopy (XPS) combined with near edge X-ray absorption fine structure (NEXAFS) measurements. The focus is on the anodic surface chemistry of MnO x , a model anodic material already considered in cognate SOFC-related studies, during electrochemical operation in CO 2 , CO 2 /H 2 O and H 2 O ambients. The XPS and NEXAFS results we obtained, complemented by electrochemical measurements and SEM characterisation, reveal the chemical evolution of Mn under electrochemical control. MnO is the stable chemical form at open-circuit potential (OCP), while Mn 3 O 4 forms under anodic polarisation in all the investigated gas ambients. Carbon deposits are present on the Mn electrode at OCP, but they are readily oxidised under anodic conditions. Prolonged operation of the MnO x anode leads to pitting of the Mn films, damaging of the triple-phase boundary region and also to formation of discontinuities in the Mn patch. This is accompanied by chemical transformations of the electrolyte and formation of ZrC without impact on the surface chemistry of the Mn-based anode

  3. Evolution of the SrTiO3/MoO3 interface electronic structure: An in situ photoelectron spectroscopy study

    KAUST Repository

    Du, Yuanmin

    2015-05-12

    Modifying the surface energetics, particularly the work function, of advanced materials is of critical importance for a wide range of surface- and interface-based devices. In this work, using in situ photoelectron spectroscopy, we investigated the evolution of electronic structure at the SrTiO3 surface during the growth of ultrathin MoO3 layers. Thanks to the large work function difference between SrTiO3 and MoO3, the energy band alignment on the SrTiO3 surface is significantly modified. The charge transfer and dipole formation at the SrTiO3/MoO3 interface leads to a large modulation of work function and an apparent doping in SrTiO3. The measured evolution of electronic structure and upward band bending suggest that the growth of ultrathin MoO3 layers is a powerful tool to modulate the surface energetics of SrTiO3, and this surface-engineering approach could be generalized to other functional oxides.

  4. In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Zhao, Chunjiang; Dong, Daming; Du, Xiaofan; Zheng, Wengang

    2016-10-22

    Sensing and mapping element distributions in plant tissues and its growth environment has great significance for understanding the uptake, transport, and accumulation of nutrients and harmful elements in plants, as well as for understanding interactions between plants and the environment. In this study, we developed a 3-dimensional elemental mapping system based on laser-induced breakdown spectroscopy that can be deployed in- field to directly measure the distribution of multiple elements in living plants as well as in the soil. Mapping is performed by a fast scanning laser, which ablates a micro volume of a sample to form a plasma. The presence and concentration of specific elements are calculated using the atomic, ionic, and molecular spectral characteristics of the plasma emission spectra. Furthermore, we mapped the pesticide residues in maize leaves after spraying to demonstrate the capacity of this method for trace elemental mapping. We also used the system to quantitatively detect the element concentrations in soil, which can be used to further understand the element transport between plants and soil. We demonstrate that this method has great potential for elemental mapping in plant tissues and soil with the advantages of 3-dimensional and multi-elemental mapping, in situ and in vivo measurement, flexible use, and low cost.

  5. In situ electrochemical impedance spectroscopy/synchrotron radiation grazing incidence X-ray diffraction-A powerful new technique for the characterization of electrochemical surfaces and interfaces

    International Nuclear Information System (INIS)

    De Marco, Roland; Jiang, Z.-T.; Martizano, Jay; Lowe, Alex; Pejcic, Bobby; Riessen, Arie van

    2006-01-01

    A marriage of electrochemical impedance spectroscopy (EIS) and in situ synchrotron radiation grazing incidence X-ray diffraction (SR-GIXRD) has provided a powerful new technique for the elucidation of the mechanistic chemistry of electrochemical systems. In this study, EIS/SR-GIXRD has been used to investigate the influence of metal ion buffer calibration ligands, along with natural organic ligands in seawater, on the behaviour of the iron chalcogenide glass ion-selective electrode (ISE). The SR-GIXRD data demonstrated that citrate - a previously reported poor iron calibration ligand for the analysis of seawater - induced an instantaneous and total dissolution of crystalline GeSe and Sb 2 Se 3 in the modified surface layer (MSL) of the ISE, while natural organic ligands in seawater and a mixture of ligands in a mimetic seawater ligand system protected the MSL's crystalline inclusions of GeSe and Sb 2 Se 3 from oxidative attack. Expectedly, the EIS data showed that citrate induced a loss in the medium frequency time constant for the MSL of the ISE, while seawater's natural organic ligands and the mimetic ligand system preserved the medium frequency EIS response characteristics of the ISE's MSL. The new EIS/SR-GIXRD technique has provided insights into the suitability of iron calibration ligands for the analysis of iron in seawater

  6. In-situ Fourier transform infrared spectroscopy gas phase studies of vanadium (IV) oxide coating by atmospheric pressure chemical vapour deposition using vanadyl (IV) acetylacetonate

    Energy Technology Data Exchange (ETDEWEB)

    Vernardou, D. [Institute for Materials Research, University of Salford, Cockroft Building, Salford, Manchester, M5 4WT (United Kingdom); Pemble, M.E. [Tyndall National institute, Lee Maltings, Prospect Row, Cork (Ireland)], E-mail: martyn.pemble@tyndall.ie; Sheel, D.W. [Institute for Materials Research, University of Salford, Cockroft Building, Salford, Manchester, M5 4WT (United Kingdom)

    2008-05-30

    This paper describes the use of in-situ Fourier transform infrared spectroscopy to monitor the gas phase reactions of the formation of VO{sub 2} thin films from VO(acac){sub 2} under atmospheric pressure chemical vapour deposition conditions. In the absence of O{sub 2}, it is found that anhydride species may form, while there is also some evidence of ester species. In the presence of O{sub 2}, the spectra obtained are almost identical to those in the absence of O{sub 2}. However in this case, there is also some indication for the enhanced production of CO and the suppression of the formation of C-H species. A possible mechanism for the formation of VO{sub 2} is proposed, which involves the release of two C{sub 3}H{sub 4} molecules and the decomposition of vanadyl (IV) acetylacetonate into VO(CH{sub 3}COO){sub 2}, which then further decomposes to yield (CH{sub 3}CO){sub 2}O and VO{sub 2}. However, while spectroscopic evidence for the formation of these species is presented, the mechanism proposed cannot be confirmed on the basis of these data alone.

  7. Diffusion processes in Cu-Al-Ni shape memory alloys studied by mechanical spectroscopy and in situ transmission electron microscopy at high temperatures

    International Nuclear Information System (INIS)

    No, M.L.; Ibarra, A.; Lopez-Echarri, A.; Bocanegra, E.H.; San Juan, J.

    2006-01-01

    We have studied the mobility of defects in the frozen β phase of the Cu-Al-Ni shape memory alloys by mechanical spectroscopy as a function of temperature. In parallel, we have characterized the microstructure and their evolution with over-heating treatments. Thermal treatments have been performed in situ in a transmission electron microscope by using a heating stage. Internal friction and modulus defect measurements have been correlated with the microstructural observations by transmission electron microscopy. We discuss the behavior of the internal friction spectra, corresponding to over-heating in the β-phase, and propose microscopic mechanisms responsible for the evolution when the material is not in thermal equilibrium. In particular, the dislocations became mobile in the temperature range between 750 and 800 K where the L2 1 atomic order changes to the B2 order. A relaxation peak has been observed in the equilibrium β phase domain, which has been examined in detail by isothermal measurements as a function of frequency. The activation enthalpy of the peak has been determined to be 3.05 ± 0.1 eV, and possible microscopic mechanisms responsible for the peak are discussed

  8. In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode

    Science.gov (United States)

    Li, Dan; Jia, Shaojie; Fodjo, Essy Kouadio; Xu, Hu; Wang, Yuhong; Deng, Wei

    2016-03-01

    In this study, in situ surface-enhanced Raman scattering (SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) are used to investigate the redox reaction and adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on an Ag electrode at different pH values. The obtained results indicate that AQ-2-COOH is adsorbed tilted on the Ag electrode through O-atom of ring carbonyl in a potential range from -0.3 to -0.5 V vs. SCE, but the orientation turns to more tilted orientation with both O-atom of the ring carbonyl and carboxylate group in positive potential region for pH 6.0 and 7.4. However, at pH 10.0, the orientation adopts tilted conformation constantly on the Ag electrode with both O-atom of the anthraquinone ring and carboxylate group in the potential range from -0.3 to -0.5 V vs. SCE or at positive potentials. Moreover, the adsorption behavior of AQ-2-COOH has been further confirmed by AR-XPS on the Ag surface. Proposed reasons for the observed changes in orientation are presented.

  9. In-situ unsaturated zone stable water isotope (2H and 18O) measurements in semi-arid environments using tunable off-axis integrated cavity output spectroscopy

    Science.gov (United States)

    Gaj, M.; Beyer, M.; Koeniger, P.; Wanke, H.; Hamutoko, J.; Himmelsbach, T.

    2015-06-01

    Stable isotopes (deuterium, 2H, and oxygen-18, 18O) of soil pore water were measured directly in the field using tunable off-axis integrated cavity output spectroscopy (OA-ICOS) and commercially available soil gas probes in a semi-arid region of the Cuvelai-Etosha-Basin, Namibia. High spatial and temporal resolution was achieved in the study area with reasonable accuracy and measurements were in agreement with laboratory-based cryogenic vacuum extraction and subsequent cavity ring down laser spectroscopic isotope analysis (CRDS). After drift correction of the isotope data, mean precision for over 140 measurements of two consecutive field campaigns in June and November 2014 were 1.8 and 0.46 ‰ for δ2H and 18O, respectively. Mean Accuracy using quality check standards was 5 and 0.3 ‰ for δ2H and δ18O, respectively. Results support the applicability of an in-situ measurement system for the determination of stable isotopes in soil pore water. Spatio-temporal variability could be deduced with the observed data in an extremely dry evaporation dominated environment which was sporadically affected by intermittent rainfall.

  10. In-Situ Studies of Structure Transformation and Al Coordination of KAl(MoO42 during Heating by High Temperature Raman and 27Al NMR Spectroscopies

    Directory of Open Access Journals (Sweden)

    Min Wang

    2017-03-01

    Full Text Available Recent interest in optimizing composition and synthesis conditions of functional crystals, and the further exploration of new possible candidates for tunable solid-state lasers, has led to significant research on compounds in this family MIMIII(MVIO42 (MI = alkali metal, MIII = Al, In, Sc, Fe, Bi, lanthanide; MVI = Mo, W. The vibrational modes, structure transformation, and Al coordination of crystalline, glassy, and molten states of KAl(MoO42 have been investigated by in-situ high temperature Raman scattering and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR spectroscopy, together with first principles density functional simulation of room temperature Raman spectrum. The results showed that, under the present fast quenching conditions, Al is present predominantly in [AlO6] octahedra in both KAl(MoO42 glass and melt, with the tetrahedrally coordinated Al being minor at approximately 2.7%. The effect of K+, from ordered arrangement in the crystal to random distribution in the melt, on the local chemical environment of Al, was also revealed. The distribution and quantitative analysis of different Al coordination subspecies are final discussed and found to be dependent on the thermal history of the glass samples.

  11. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions

    Science.gov (United States)

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F.; van Bokhoven, Jeroen A.

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  12. Non-Destructive Evaluation of Polyolefin Thermal Aging Using Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.

    2017-04-19

    Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for non-destructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to track oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.

  13. Rapid detection of melamine adulteration in dairy milk by SB-ATR-Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Jawaid, Sana; Talpur, Farah N; Sherazi, S T H; Nizamani, Shafi M; Khaskheli, Abid A

    2013-12-01

    Melamine is a nitrogenous chemical substance used principally as a starting material for the manufacture of synthetic resins. Due to its very high proportion of nitrogen melamine has been added illegitimately to foods and feeds to increase the measured protein content, which determines the value of the product. These issues prompted private as well as governmental laboratories to develop methods for the analysis of melamine in a wide variety of food products and ingredients. Owing to this fact present study is aimed to use single bounce attenuated total reflectance (SB-ATR) Fourier transform infrared spectroscopy (FTIR) method as an effective rapid tool for the detection and quantification of melamine in milk (liquid and powder). Partial least-squares (PLS) models were established for correlating spectral data to melamine concentration with R(2)>0.99, and RMSEC 0.370. Linear calibration curves were obtained over the calibration range of 25-0.0625%. The LOD and LOQ of the method was 0.00025% (2.5 ppm) and 0.0015% (15 ppm) respectively. Proposed SB-ATR-FTIR method requires little or no sample preparation with an assay time of 1-2 min. Copyright © 2013. Published by Elsevier Ltd.

  14. Identification of Forged Bank of England 20 Gbp Banknotes Using IR Spectroscopy

    Science.gov (United States)

    Sonnex, Emily

    2014-06-01

    Bank of England notes of 20 GBP denomination have been studied using infrared spectroscopy in order to generate a method to identify forged notes. A principal aim of this work was to develop a method so that a small, compact ATR FTIR instrument could be used by bank workers, police departments or others such as shop assistants to identify forged notes in a non-lab setting. The ease of use of the instrument is the key to this method, as well as the relatively low cost. The presence of a peak at 1400 wn from the blank paper section of a forged note proved to be a successful indicator of the note's illegality for the notes that we studied. Moreover, differences between the spectra of forged and genuine 20 GBP notes were observed in the ν(OH) (ca. 3500 wn), ν(C-H) (ca. 2900 wn) and ν(C=O) (ca. 1750 wn) regions of the IR spectrum recorded for the polymer film covering the holographic strip. In cases where these simple tests fail, we have shown how an infrared microscope can be used to further differentiate genuine and forged banknotes by producing infrared maps of selected areas of the note contrasting inks with background paper. Further to this, with an announcement by the Bank of England to produce polymer banknotes in the future, the work has been extended using Australian polymer banknotes to show that the method would be transferable.

  15. Organic and inorganic content of fluorotic rat incisors measured by FTIR spectroscopy

    Science.gov (United States)

    Porto, Isabel Maria; Saiani, Regina Aparecida; Chan, K. L. Andrew; Kazarian, Sergei G.; Gerlach, Raquel Fernanda; Bachmann, Luciano

    2010-09-01

    Details on how fluoride interferes in enamel mineralization are still controversial. Therefore, this study aimed at analyzing the organic contents of fluorosis-affected teeth using Fourier Transformation Infrared spectroscopy. To this end, 10 male Wistar rats were divided into two groups: one received 45 ppm fluoride in distilled water for 60 days; the other received distilled water only. Then, the lower incisors were removed and prepared for analysis by two FTIR techniques namely, transmission and micro-ATR. For the first technique, the enamel was powdered, whereas in the second case one fluorotic incisor was cut longitudinally for micro-ATR. Using transmission and powdered samples, FTIR showed a higher C-H content in the fluorotic enamel compared with control enamel ( p enamel, with values decreasing toward the dentine-enamel junction, and reaching the lowest values at the subsuperficial enamel. These results agree with the morphological data, which indicate that in the rat incisor the fluorotic lesion is superficial, rather than subsuperficial, as in the case of human enamel. The results also suggest that the increased C-H bond content may extend toward the more basal enamel (intraosseous), indicating that fluorotic enamel may intrinsically contain more protein. Finally, particularly when coupled to ATR, FTIR is a suitable tool to study the rat incisor enamel, which is a largely used model of normal and abnormal amelogenesis. Further studies along this line may definitely answer some questions regarding protein content in fluorotic enamel as well as their origin.

  16. Infrared spectra of U.S. automobile original finishes (post - 1989). VIII: In situ identification of bismuth vanadate using extended range FT-IR spectroscopy, Raman spectroscopy, and X-ray fluorescence spectrometry.

    Science.gov (United States)

    Suzuki, Edward M

    2014-03-01

    Chrome Yellow (PbCrO4 ·xPbSO4 ) was a common pigment in U.S. automobile OEM finishes for more than three decades, but in the early 1990s its use was discontinued. One of its main replacements was Bismuth Vanadate (BiVO4 ·nBi2 MoO6 , n = 0-2), which was commercially introduced in 1985, as this inorganic pigment also produces a very bright hue and has excellent outdoor durability. This paper describes the in situ identification of Bismuth Vanadate in automotive finishes using FT-IR and dispersive Raman spectroscopy and XRF spectrometry. Some differentiation of commercial formulations of this pigment is possible based on far-infrared absorptions, Raman data, and elemental analysis. The spectral differences arise from the presence or absence of molybdenum, the use of two crystal polymorphs of BiVO4 , and differences in pigment stabilizers. Bismuth Vanadate is usually not used alone, and it is typically found with Isoindoline Yellow, hydrous ferric oxide, rutile, Isoindolinone Yellow 3R, or various combinations of these. © 2013 American Academy of Forensic Sciences.

  17. Monitoramento in situ e em tempo real de variáveis morfológicas do poli(cloreto de vinila usando espectroscopia NIR Monitoring in situ and in real time the morphological variables of pvc using NIR spectroscopy

    Directory of Open Access Journals (Sweden)

    João M. de Faria Jr.

    2009-06-01

    Full Text Available Este trabalho ilustra o uso de espectroscopia do infravermelho próximo (NIRS para fins de monitoramento da polimerização em suspensão de cloreto de vinila em tempo real. Resultados inéditos mostraram que é possível acompanhar a evolução de importantes propriedades morfológicas de resinas de PVC [poli(cloreto de vinila], como por exemplo, BD (densidade aparente, CPA (absorção de plastificante a frio, DTP (distribuição de tamanho de partículas e Dp (diâmetro de partícula. Mostrou-se também, pela primeira vez, que é possível analisar quantitativamente, com o auxílio da sonda NIRS in situ, a estrutura morfológica da partícula de PVC. Com a possibilidade de predizer a evolução dinâmica dos parâmetros morfológicos em tempo real, mostrou-se que é possível injetar dispersantes e variar a velocidade de agitação durante a reação para fins de controle das variáveis BD, CPA e DTP do PVC, até que o ponto de identificação da partícula seja atingido. Por meio do monitoramento e da estratégia de controle proposta, é possível antecipar fugas de temperatura no reator, aumentar a segurança do processo, diminuir o tempo de desenvolvimento de resinas com características morfológicas diferenciadas, evitando perdas de margem oriundas da venda de produtos fora de especificação, e otimizar os recursos para o desenvolvimento de novos produtos.This work illustrates the use of near infrared spectroscopy (NIRS for monitoring of the suspension polymerization of vinyl chloride in real time. Obtained results showed that it is possible to track in situ and in real time important morphological properties of PVC resins, such as BD (bulk density, CPA (cold plasticizer absorption, PSD (particle size distribution and Dp (average particle diameter. It was also shown for the first time that it is possible to analyze quantitatively, with the help of in situ NIRS probe, the morphological structure of the PVC particles. As a consequence, it

  18. Rapid and high sensitive structure evaluation of ferroelectric films using micro-Raman spectroscopy: In-situ observation of stress accumulation and release in PbTiO3 films during first cooling process

    International Nuclear Information System (INIS)

    Nishide, M; Nishida, K; Yamamoto, T; Matsuoka, M; Tai, T; Katoda, T; Funakubo, H

    2011-01-01

    Stress changes of the (100)/(001)-oriented PbTiO 3 (PT) films deposited on MgO(100), Pt(100)/MgO(100) and Pt(111)/Ti/SiO 2 /Si(100) substrates under the cooling process after film deposition was investigated by in-situ observation using metal organic chemical vapor deposition (MOCVD)-Raman spectroscopy combined system. The stress changed from compressive to tensile near T c and large compressive stress made high c-domain volume fraction. It was made clear that the stress condition at T c affects the c-domain volume fraction at room temperature (R.T.). These results indicate that in-situ Raman spectroscopy measurement is useful tool for monitoring the stress state under the cooling process.

  19. Distinguishing nuclei-specific benzo[a]pyrene-induced effects from whole-cell alterations in MCF-7 cells using Fourier-transform infrared spectroscopy.

    Science.gov (United States)

    Obinaju, Blessing E; Fullwood, Nigel J; Martin, Francis L

    2015-09-01

    Exposure to chemicals such as benzo[a]pyrene (B[a]P) can generate intracellular toxic mechanisms. Fourier-transform infrared (FTIR) spectroscopy is a novel approach that allows the non-destructive analysis of underlying chemical bond alterations in patho-physiological processes. This study set out to examine whether B[a]P-induced whole cell alterations could be distinguished from effects on nuclei of exposed cells. Using attenuated total reflection FTIR (ATR-FTIR) spectroscopy, alterations in nuclei isolated from B[a]P-treated MCF-7 cells concentrated either in G0/G1- or S-phase were observed. B[a]P-induced effects in whole-cells included alterations to lipids, DNA and protein spectral regions. Absorbance areas for protein and DNA/RNA regions in B[a]P-treated whole cells differed significantly (PFTIR spectroscopy has the ability to identify specific chemical-induced alterations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. In situ UV–Vis diffuse reflectance spectroscopy — on line activity measurements of supported chromium oxide catalysts: relating isobutane dehydrogenation activity with Cr-speciation via experimental design

    OpenAIRE

    Weckhuysen, B.M.; Verberckmoes, A.A.; Debaere, J.; Ooms, K.; Langhans, I.; Schoonheydt, R.A.

    2000-01-01

    The dehydrogenation of isobutane over supported chromium oxide catalysts was studied by a combination of in situ UV–Vis diffuse reflectance spectroscopy and on line GC analysis. A well-defined set of experiments, based on an experimental design, was carried out to develop mathematical models, which quantitatively relate Cr-speciation and dehydrogenation activity with reaction temperature and time, support composition, gas composition and Cr loading. It will be shown that: (1) the dehydrogenat...

  1. The microwave heating mechanism of N-(4-methoxybenzyliden)-4-butylaniline in liquid crystalline and isotropic phases as determined using in situ microwave irradiation NMR spectroscopy.

    Science.gov (United States)

    Tasei, Yugo; Tanigawa, Fumikazu; Kawamura, Izuru; Fujito, Teruaki; Sato, Motoyasu; Naito, Akira

    2015-04-14

    Microwave heating effects are widely used in the acceleration of organic, polymerization and enzymatic reactions. These effects are primarily caused by the local heating induced by microwave irradiation. However, the detailed molecular mechanisms associated with microwave heating effects on the chemical reactions are not yet well understood. This study investigated the microwave heating effect of N-(4-methoxybenzylidene)-4-butylaniline (MBBA) in liquid crystalline and isotropic phases using in situ microwave irradiation nuclear magnetic resonance (NMR) spectroscopy, by obtaining (1)H NMR spectra of MBBA under microwave irradiation. When heated simply using the temperature control unit of the NMR instrument, the liquid crystalline MBBA was converted to the isotropic phase exactly at its phase transition temperature (Tc) of 41 °C. The application of microwave irradiation at 130 W for 90 s while maintaining the instrument temperature at 20 °C generated a small amount of isotropic phase within the bulk liquid crystal. The sample temperature of the liquid crystalline state obtained during microwave irradiation was estimated to be 35 °C by assessing the linewidths of the (1)H NMR spectrum. This partial transition to the isotropic phase can be attributed to a non-equilibrium local heating state induced by the microwave irradiation. The application of microwave at 195 W for 5 min to isotropic MBBA while maintaining an instrument temperature of 50 °C raised the sample temperature to 160 °C. In this study, the MBBA temperature during microwave irradiation was estimated by measuring the temperature dependent chemical shifts of individual protons in the sample, and the different protons were found to indicate significantly different temperatures in the molecule. These results suggest that microwave heating polarizes bonds in polar functional groups, and this effect may partly explain the attendant acceleration of organic reactions.

  2. Tuning excitation laser wavelength for secondary resonance in low-intensity phase-selective laser-induced breakdown spectroscopy for in-situ analytical measurement of nanoaerosols

    Science.gov (United States)

    Xiong, Gang; Li, Shuiqing; Tse, Stephen D.

    2018-02-01

    In recent years, a novel low-intensity phase-selective laser-induced breakdown spectroscopy (PS-LIBS) technique has been developed for unique elemental-composition identification of aerosolized nanoparticles, where only the solid-phase nanoparticles break down, forming nanoplasmas, without any surrounding gas-phase breakdown. Additional work has demonstrated that PS-LIBS emissions can be greatly enhanced with secondary resonant excitation by matching the excitation laser wavelength with an atomic transition line in the formed nanoplasma, thereby achieving low limits of detection. In this work, a tunable dye laser is employed to investigate the effects of excitation wavelength and irradiance on in-situ PS-LIBS measurements of TiO2 nanoaerosols. The enhancement factor by resonant excitation can be 220 times greater than that for non-resonant cases under similar conditions. Moreover, the emitted spectra are unique for the selected resonant transition lines for a given element, suggesting the potential to make precise phase-selective and analyte-selective measurements of nanoparticles in a multicomponent multiphase system. The enhancement factor by resonant excitation is highly sensitive to excitation laser wavelength, with narrow excitation spectral windows, i.e., 0.012 to 0.023 nm (FWHM, full width at half maximum) for Ti (I) neutral atomic lines, and 0.051 to 0.139 nm (FWHM) for Ti (II) single-ionized atomic lines. Boltzmann analysis of the emission intensities, temporal response of emissions, and emission dependence on excitation irradiance are investigated to understand aspects of the generated nanoplasmas such as temperature, local thermodynamic equilibrium (LTE), and excitation mechanism.

  3. Structure Sensitivity in Pt Nanoparticle Catalysts for Hydrogenation of 1,3-Butadiene: In Situ Study of Reaction Intermediates Using SFG Vibrational Spectroscopy

    KAUST Repository

    Michalak, William D.

    2013-01-31

    The product selectivity during 1,3-butadiene hydrogenation on monodisperse, colloidally synthesized, Pt nanoparticles was studied under reaction conditions with kinetic measurements and in situ sum frequency generation (SFG) vibrational spectroscopy. SFG was performed with the capping ligands intact in order to maintain nanoparticle size by reduced sintering. Four products are formed at 75 C: 1-butene, cis-2-butene, trans-2-butene, and n-butane. Ensembles of Pt nanoparticles with average diameters of 0.9 and 1.8 nm exhibit a ∼30% and ∼20% increase in the full hydrogenation products, respectively, as compared to Pt nanoparticles with average diameters of 4.6 and 6.7 nm. Methyl and methylene vibrational stretches of reaction intermediates observed under working conditions using SFG were used to correlate the stable reaction intermediates with the product distribution. Kinetic and SFG results correlate with previous DFT predictions for two parallel reaction pathways of 1,3-butadiene hydrogenation. Hydrogenation of 1,3-butadiene can initiate with H-addition at internal or terminal carbons leading to the formation of 1-buten-4-yl radical (metallocycle) and 2-buten-1-yl radical intermediates, respectively. Small (0.9 and 1.8 nm) nanoparticles exhibited vibrational resonances originating from both intermediates, while the large (4.6 and 6.7 nm) particles exhibited vibrational resonances originating predominately from the 2-buten-1-yl radical. This suggests each reaction pathway competes for partial and full hydrogenation and the nanoparticle size affects the kinetic preference for the two pathways. The reaction pathway through the metallocycle intermediate on the small nanoparticles is likely due to the presence of low-coordinated sites. © 2012 American Chemical Society.

  4. Interface electronic properties of co-evaporated MAPbI{sub 3} on ZnO(0001): In situ X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xianzhong; Li, Xiaoli; Huang, Feng; Zhong, Dingyong, E-mail: dyzhong@mail.sysu.edu.cn [School of Physics and Engineering and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275 Guangzhou (China); Liu, Yuan [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou (China); University of the Chinese Academy of Sciences, 100049 Beijing (China)

    2016-03-21

    In this work, the interface electronic properties of ZnO(0001)/CH{sub 3}NH{sub 3}PbI{sub 3} were investigated by both X-ray and ultraviolet photoelectron spectroscopy. The CH{sub 3}NH{sub 3}PbI{sub 3} thin films were grown on single crystalline ZnO(0001) substrate in situ by co-evaporation of PbI{sub 2} and CH{sub 3}NH{sub 3}I at room temperature with various thickness from 1.5 nm to 190 nm. It was found that the conduction band minimum of ZnO lies 0.3 eV below that of CH{sub 3}NH{sub 3}PbI{sub 3}, while the valence band maximum of ZnO lies 2.1 eV below that of CH{sub 3}NH{sub 3}PbI{sub 3}, implying that the electrons can be effectively transported from CH{sub 3}NH{sub 3}PbI{sub 3} to ZnO, and the holes can be blocked in the same time. A PbI{sub 2} rich layer was initially formed at the interface of ZnO(0001)/CH{sub 3}NH{sub 3}PbI{sub 3} during the growth. As a consequence, an interface barrier was built up which may prevent the electron transport at the interface.

  5. Preliminary Discrimination of Cheese Adulteration by FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Lucian Cuibus

    2014-11-01

    Full Text Available The present work describes a preliminary study to compare some traditional Romanian cheeses and adulterated cheeses using Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. For PLS model calibration (6 concentration levels and validation (5 concentration levels sets were prepared from commercial Dalia Cheese from different manufacturers by spiking it with palm oil at concentrations ranging 2-50 % and 5-40 %, respectively. Fifteen Dalia Cheese were evaluated as external set. The spectra of each sample, after homogenization, were acquired in triplicate using a FTIR Shimatsu Prestige 21 Spectrophotometer, with a horizontal diamond ATR accessory in the MIR region 4000-600 cm-1. Statistical methods as PLS were applied using MVC1 routines written for Matlab R2010a. As first step the optimal condition for PLS model were obtained using cross-validation on the Calibration set. Spectral region in 3873-652 cm-1, and 3 PLS-factors were stated as the best conditions and showed an R2 value of 0.9338 and a relative error in the calibration of 17.2%. Then validation set was evaluated, obtaining good recovery rates (108% and acceptable dispersion of the data (20%. The curve of actual vs. predicted values shows slope near to 1 and origin close to 0, with an R2 of 0.9695. When the external sample set was evaluated, samples F19, F21, F22 and F24, showed detectable levels of palm fats. The results proved that FTIR-PLS is a reliable non-destructive technique for a rapid quantification the level of adulteration in cheese.  The spectroscopic methods could assist the quality control authority, traders and the producers to discriminate the adulterated cheeses with palm oil.

  6. The development of novel organically modified sol-gel media for use with ATR/FTIR sensing.

    Science.gov (United States)

    Flavin, K; Mullowney, J; Murphy, B; Owens, E; Kirwan, P; Murphy, K; Hughes, H; McLoughlin, P

    2007-03-01

    The ability to prepare and develop novel pre-concentration media by the sol-gel process, and their integration with mid-infrared transparent waveguides has been demonstrated. This research approach resulted in a mid-infrared sensing methodology in which the properties (porosity, functionality, polarity, etc.) of the recognition layer could be tailored by variation of the sol-gel precursors and processing conditions. Cross-linker type and concentration notably influenced p-xylene absorption and diffusion rate. Unreacted silanol groups appeared to be the dominant factor in the hydrophobicity of sol-gel layers. Variation of sol-gel precursors and thermal treatment altered both film cross-link density and polarity, as demonstrated by variation in the rate of analyte diffusion and equilibrium analyte concentration. The use of a novel 1 : 1 PTMOS : DPDMS material as pre-concentration medium in this analytical sensing approach was validated through the determination of p-nitrochlorobenzene in an aqueous environment. The response demonstrated linearity between 0-30 mg L(-1) with a correlation coefficient of 0.989 and a limit of detection of 0.7 mg L(-1). Sensing times for p-nitrochlorobenzene were also reduced from several hours to 24 minutes, without loss of measurement accuracy or sensitivity, by a 10 degrees C increase in the sensing temperature and the use of a predictive Fickian model previously developed by this research group.

  7. ATR-FTIR and density functional theory study of the structures, energetics, and vibrational spectra of phosphate adsorbed onto goethite.

    Science.gov (United States)

    Kubicki, James D; Paul, Kristian W; Kabalan, Lara; Zhu, Qing; Mrozik, Michael K; Aryanpour, Masoud; Pierre-Louis, Andro-Marc; Strongin, Daniel R

    2012-10-16

    Periodic plane-wave density functional theory (DFT) and molecular cluster hybrid molecular orbital-DFT (MO-DFT) calculations were performed on models of phosphate surface complexes on the (100), (010), (001), (101), and (210) surfaces of α-FeOOH (goethite). Binding energies of monodentate and bidentate HPO(4)(2-) surface complexes were compared to H(2)PO(4)(-) outer-sphere complexes. Both the average potential energies from DFT molecular dynamics (DFT-MD) simulations and energy minimizations were used to estimate adsorption energies for each configuration. Molecular clusters were extracted from the energy-minimized structures of the periodic systems and subjected to energy reminimization and frequency analysis with MO-DFT. The modeled P-O and P---Fe distances were consistent with EXAFS data for the arsenate oxyanion that is an analog of phosphate, and the interatomic distances predicted by the clusters were similar to those of the periodic models. Calculated vibrational frequencies from these clusters were then correlated with observed infrared bands. Configurations that resulted in favorable adsorption energies were also found to produce theoretical vibrational frequencies that correlated well with experiment. The relative stability of monodentate versus bidentate configurations was a function of the goethite surface under consideration. Overall, our results show that phosphate adsorption onto goethite occurs as a variety of surface complexes depending on the habit of the mineral (i.e., surfaces present) and solution pH. Previous IR spectroscopic studies may have been difficult to interpret because the observed spectra averaged the structural properties of three or more configurations on any given sample with multiple surfaces.

  8. Determination of quality parameters of beers by the use of attenuated total reflectance-Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Llario, Rafael; Iñón, Fernando A; Garrigues, Salvador; de la Guardia, Miguel

    2006-04-15

    The estimation of important quality parameters of beers, such as original and real extracts and alcohol content, has been evaluated by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) using a partial least square (PLS) calibration approach. Two sample populations, one consisting of 24 samples and other of 21 samples, obtained from the Spanish market and covering different types of beer were used. The first set was used for building and validating the model, whereas the second, measured 6 months after, was used for evaluating its robustness. The spectral range and the size of the calibration set and its suitability for building the PLS model have been evaluated. Considering a calibration set comprised of 12 samples, selected via hierarchical cluster analysis, and a validation data set of 11 samples, the absolute mean difference (d(x-y)) and standard deviation of mean differences (s(x-y)) of the real extract, original extract and alcohol content were 0.009 and 0.069% (w/w), -0.021 and 0.20% (w/w) and -0.003 and 0.130% (v/v), respectively. The maximum error for the prediction of any of these three parameters for a new sample did not exceed 2.5%. These values were practically invariant for both tested data sets. The developed methodology favourably compares with the automatic reference methodology in terms of speed and reagent consumption and waste generation.

  9. The sorption of uranium(VI) and neptunium(V) onto surfaces of selected metal oxides and alumosilicates studied by in situ vibrational spectroscopy

    International Nuclear Information System (INIS)

    Mueller, Katharina

    2010-05-01

    The migration behavior of actinides and other radioactive contaminants in the environment is controlled by prominent molecular phenomena such as hydrolysis and complexation reactions in aqueous solutions as well as the diffusion and sorption onto minerals present along groundwater flow paths. These reactions significantly influence the mobility and bioavailability of the metal ions in the environment, in particular at liquid-solid interfaces. Hence, for the assessment of migration processes the knowledge of the mechanisms occurring at interfaces is crucial. The required structural information can be obtained using various spectroscopic techniques. In the present study, the speciation of uranium(VI) and neptunium(V) at environmentally relevant mineral-water interfaces of oxides of titania, alumina, silica, zinc, and alumosilicates has been investigated by the application of attenuated total reflection Fouriertransform infrared (ATR FT-IR) spectroscopy. Moreover, the distribution of the hydrolysis products in micromolar aqueous solutions of U(VI) and Np(V/VI) at ambient atmosphere has been characterized for the first time, by a combination of ATR FT-IR spectroscopy, near infrared (NIR) absorption spectroscopy, and speciation modeling applying updated thermodynamic databases. From the infrared spectra, a significant change of the U(VI) speciation is derived upon lowering the U(VI) concentration from the milli- to the micromolar range, strongly suggesting the dominance of monomeric U(VI) hydrolysis products in the micromolar solutions. In contradiction to the predicted speciation, monomeric hydroxo species are already present at pH ≥ 2.5 and become dominant at pH 3. At higher pH levels (> 6), a complex speciation is evidenced including carbonate containing complexes. For the first time, spectroscopic results of Np(VI) hydrolysis reactions are provided in the submillimolar concentration range and at pH values up to 5.3, and they are comparatively discussed with U

  10. Atomic layer deposition of ultrathin Cu{sub 2}O and subsequent reduction to Cu studied by in situ x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Dileep [Center for Microtechnologies—ZfM, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Assim, Khaybar; Lang, Heinrich [Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Bruener, Philipp; Grehl, Thomas [ION-TOF GmbH, Heisenbergstr. 15, D-48149 Münster (Germany); Georgi, Colin; Waechtler, Thomas; Ecke, Ramona; Schulz, Stefan E., E-mail: stefan.schulz@zfm.tu-chemnitz.de; Gessner, Thomas [Center for Microtechnologies—ZfM, Technische Universität Chemnitz, D-09107 Chemnitz, Germany and Fraunhofer Institute for Electronic Nano Systems—ENAS, Technologie-Campus 3, D-09126 Chemnitz (Germany)

    2016-01-15

    The growth of ultrathin (<5 nm) Ru-doped Cu{sub 2}O films deposited on SiO{sub 2} by atomic layer deposition (ALD) and Cu films by subsequent reduction of the Cu{sub 2}O using HCO{sub 2}H or CO is reported. Ru-doped Cu{sub 2}O has been deposited by a mixture of 16: 99 mol. % of [({sup n}Bu{sub 3}P){sub 2}Cu(acac)] as Cu precursor and 17: 1 mol. % of [Ru(η{sup 5}-C{sub 7}H{sub 11})(η{sup 5}-C{sub 5}H{sub 4}SiMe{sub 3})] as Ru precursor. The catalytic amount of Ru precursor was to support low temperature reduction of Cu{sub 2}O to metallic Cu by formic acid (HCO{sub 2}H) on arbitrary substrate. In situ x-ray photoelectron spectroscopy investigations of the Cu{sub 2}O ALD film indicated nearly 1 at. % of carbon contamination and a phosphorous contamination below the detection limit after sputter cleaning. Systematic investigations of the reduction of Ru-doped Cu{sub 2}O to metallic Cu by HCO{sub 2}H or CO as reducing agents are described. Following the ALD of 3.0 nm Cu{sub 2}O, the ultrathin films are reduced between 100 and 160 °C. The use of HCO{sub 2}H at 110 °C enabled the reduction of around 90% Cu{sub 2}O. HCO{sub 2}H is found to be very effective in the removal of oxygen from Ru-doped Cu{sub 2}O films with 2.5–4.7 nm thickness. In contrast, CO was effective for the removal of oxygen from the Cu{sub 2}O films only below 3.0 nm at 145 °C. Root mean square surface roughness of 0.4 ± 0.1 nm was observed from atomic force microscopy (AFM) investigations after the ALD of Cu{sub 2}O, followed by the subsequent reduction of 3.0 nm Cu{sub 2}O using either HCO{sub 2}H at 110 °C or CO at 145 °C on SiO{sub 2}. Furthermore, ex situ low energy ion scattering and AFM investigations confirmed that the Cu{sub 2}O film after ALD and Cu films after subsequent reduction was continuous on the SiO{sub 2} substrate.

  11. Application of cavity ring-down spectroscopy for in situ, real-time measurements of properties of oceanographic interest in the surface ocean

    Science.gov (United States)

    Huang, Kuan; Ma, Jian; Winkler, Renato; Dennis, Kate

    2015-04-01

    In situ, real-time measurements of chemical properties, e.g., dissolved CO2 and its carbon isotopic compositions, dissolved inorganic carbon, water isotopes, etc., are highly desired for understanding various physical and biogeochemical processes in the surface ocean. Due to its high sensitivity, stability and portability, cavity ring-down spectroscopy (CRDS) has been increasingly used as a core technique for shipboard systems that automatically measure properties of oceanographic interest at high spatial-temporal resolution. These systems typically require front-end components that convert the sample into a continuous gas flow that can be continuously sampled by the CRDS. Here, we review the progress in the development of CRDS-based systems for shipboard, high-frequency measurements of various properties in the surface ocean, including pCO2, δ13C-CO2, pCH4, δ13C-CH4, and water isotopes. In most systems, gas extraction devices are keys to the sample preparation units that are coupled with the CRDS analyzers. In our present work, we summarize the major gas extraction techniques used in these methods (e.g. the showerhead-type equilibration, the bubbling equilibration, the high-porosity membrane contactor extraction, the expanded polytetrafluoroethylene-based extraction, etc.), present examples how these techniques are coupled with CRDS analyzers, and evaluate the major factors that determine the overall performance (precision, accuracy, response time, etc.) of the systems. Based on the working principles and field data generated by these systems, we were able to identify the major factors that affect the system performance, including the efficiency (completeness) of gas extraction, magnitude and stability of isotopic fractionation during the gas extraction, internal volume of the system (e.g., the volume of the equilibration chamber and that of the CRDS cavity) and the carrier gas flow rate. Finally, we make recommendations, for each type of system, the optimal

  12. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinlong [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center for Regional Environmental Quality (China); Yunus, Rizwangul [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Xinjiang Zhongtai Chemical Company, Xinjiang 831511 (China); Li, Jinge; Li, Peilin [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Zhang, Pengyi, E-mail: zpy@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center for Regional Environmental Quality (China); Kim, Jeonghyun [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center for Regional Environmental Quality (China)

    2015-12-01

    Graphical abstract: - Highlights: • The MnO{sub x} particles assembled with nanosheets were uniformly coated on PET fibers. • The growth process of MnO{sub x} layer on PET is clearly clarified. • MnO{sub x}/PET showed good activity for HCHO decomposition at room temperature. • MnO{sub x}/PET material is promising for indoor air purification due to its light, flexible and low air-resistant properties. - Abstract: Removal of low-level formaldehyde (HCHO) is of great interest for indoor air quality improvement. Supported materials especially those with low air pressure drop are of necessity for air purification. Manganese oxides (MnO{sub x}) was in situ deposited on the surface of fibers of a non-woven fabric made of polyethylene terephthalate (PET). As-synthesized MnO{sub x}/PET were characterized by SEM, XRD, TEM, ATR-FTIR and XPS analysis. The growth of MnO{sub x} layer on PET is thought to start with partial hydrolysis of PET, followed by surface oxidation by KMnO{sub 4} and then surface-deposition of MnO{sub x} particles from the bulk phase. The MnO{sub x} particles assembled with nanosheets were uniformly coated on the PET fibers. MnO{sub x}/PET showed good activity for HCHO decomposition at room temperature which followed the Mars–van Krevelen mechanism. The removal of HCHO was kept over 94% after 10 h continuous reaction under the conditions of inlet HCHO concentration ∼0.6 mg/m{sup 3}, space velocity ∼17,000 h{sup −1} and relative humidity∼50%. This research provides a facile method to deposit active MnO{sub x} onto polymers with low air resistance, and composite MnO{sub x}/PET material is promising for indoor air purification.

  13. Oxide ion diffusion mechanism related to Co and Fe ions in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ using in-situ X-ray absorption spectroscopy

    Science.gov (United States)

    Itoh, Takanori; Imai, Hideto

    2018-03-01

    The time changes of the white line and pre-edge intensities of Co and Fe K-edge in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ (BSCF) were observed to estimate the oxide ion diffusion related to Co and Fe ions by using in - situ X-ray absorption spectroscopy (XAS) during oxidation. The 20 μm self-standing BSCF film was prepared for in - situ XAS measurements. The time changes of absorption were fitted to the exponential decay function with two terms. The longer relaxation time (τ), related to the oxide ion diffusion during the oxidation of BSCF, is dependent on temperature. The oxide ion diffusion coefficients (D) were calculated from the τ s estimated by in - situ XAS. The values of the activation energy (Ea) for D related to Co K-edge white line, Co pre-edge, and Fe pre-edge were 1.8-2.0 eV. The value of Ea for D related to Fe K-edge white line, however, was higher than other absorption values at approximately 2.3 eV. We discussed the oxide ion diffusion mechanism related to Co and Fe ions in BSCF using in - situ XAS.

  14. In situ monitoring of polymer redox states by resonance µRaman spectroscopy and its applications in polymer modified microfluidic channels

    NARCIS (Netherlands)

    Logtenberg, Hella; Jellema, Laurens-Jan C.; Lopez-Martinez, Maria J.; Areephong, Jetsuda; Verpoorte, Elisabeth; Feringa, Ben L.; Browne, Wesley R.

    We report the application of multi-wavelength resonance Raman (rR) spectroscopy for the characterisation of vinyl-bridged polysexithiophene films formed by electropolymerisation on gold electrodes. Resonance Raman spectroscopy of the neutral, polaronic and bipolaronic states of the polymer were

  15. Spectroscopic characterization of sixteenth century panel painting references using Raman, surface-enhanced Raman spectroscopy and helium-Raman system for in situ analysis of Ibero-American Colonial paintings.

    Science.gov (United States)

    García-Bucio, María Angélica; Casanova-González, Edgar; Ruvalcaba-Sil, José Luis; Arroyo-Lemus, Elsa; Mitrani-Viggiano, Alejandro

    2016-12-13

    Colonial panel paintings constitute an essential part of Latin-American cultural heritage. Their study is vital for understanding the manufacturing process, including its evolution in history, as well as its authorship, dating and other information significant to art history and conservation purposes. Raman spectroscopy supplies a non-destructive characterization tool, which can be implemented for in situ analysis, via portable equipment. Specific methodologies must be developed, comprising the elaboration of reference panel paintings using techniques and materials similar to those of the analysed period, as well as the determination of the best analysis conditions for different pigments and ground preparations. In order to do so, Raman spectroscopy at 532, 785 and 1064 nm, surface-enhanced Raman spectroscopy (SERS) and a helium-Raman system were applied to a panel painting reference, in combination with X-ray fluorescence analysis. We were able to establish the analysis conditions for a number of sixteenth century pigments and dyes, and other relevant components of panel paintings from this period, 1064 nm Raman and SERS being the most successful. The acquired spectra contain valuable specific information for their identification and they conform a very useful database that can be applied to the analysis of Ibero-American Colonial paintings.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'. © 2016 The Author(s).

  16. Oxygen Reduction on Platinum

    DEFF Research Database (Denmark)

    Nesselberger, Markus

    . The influence of the ion adsorption strength, which is observed in the “particle size studies” on the oxygen reduction rate on Pt/C catalysts, is further investigated under similar reaction conditions by infrared spectroscopy. The designed in situ electrochemical ATR-FTIR setup features a high level...... bands are observed on the Pt/C layer: bands arising from the functional groups of the carbon support, bands related to water and hydronium, and bands related to the sulfur anion interaction with the catalyst. The correlation of the anion absorption to the ORR current leads to the proposition that anion...

  17. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil: in vitro evaluation of drug permeation by infrared spectroscopy.

    Science.gov (United States)

    Mura, Simona; Manconi, Maria; Fadda, Anna Maria; Sala, Maria Chiara; Perricci, Jacopo; Pini, Elena; Sinico, Chiara

    2013-01-01

    Recently, we carried out a research on new liposomal systems prepared by using in their composition a few penetration enhancers which differ for chemical structure and physicochemical properties. The penetration enhancer-containing vesicles (PEVs) were prepared by using soy lecithin and different amounts of three penetration enhancers, 2-(2-ethoxyethoxy) ethanol (Transcutol(®)), capryl-caproyl macrogol 8-glyceride (Labrasol(®)), and cineole.To study the influence of the PEVs on (trans)dermal delivery of minoxidil, in vitro diffusion experiments were performed through new born pig skin and the results were compared with that obtained applying the vesicular system without enhancer (control) after pretreatment of the skin with the various enhancers. In this study, Fourier transform infrared spectroscopy (FTIR), attenuated total reflectance FTIR (ATR-FTIR) and FTIR imaging were used to evaluate the effective penetration of minoxidil in the skin layers and to discover the influence of the enhancer on the drug topical delivery. These analytical studies allowed us to characterize the drug formulations and to evaluate the vesicle distribution into the skin. Recorded spectra confirmed that the vesicle formulations with penetration enhancers promoted drug deposition into the skin.

  18. SERS and in situ SERS spectroscopy of riboflavin adsorbed on silver, gold and copper substrates. Elucidation of variability of surface orientation based on both experimental and theoretical approach

    Science.gov (United States)

    Dendisová-Vyškovská, Marcela; Kokaislová, Alžběta; Ončák, Milan; Matějka, Pavel

    2013-04-01

    Surface-enhanced Raman scattering and in situ surface-enhanced Raman scattering spectra have been collected to study influences of (i) used metal and (ii) applied electrode potential on orientation of adsorbed riboflavin molecules. Special in situ SERS spectroelectrochemical cell was used to obtain in situ SERS spectra of riboflavin adsorbed on silver, gold and copper nanostructured surfaces. Varying electrode potential was applied in discrete steps forming a cycle from positive values to negative and backward. Observed spectral features in in situ SERS spectra, measured at alternate potentials, have been changing very significantly and the spectra have been compared with SERS spectra of riboflavin measured ex situ. Raman spectra of single riboflavin molecule in the vicinity to metal (Ag, Au and Cu) clusters have been calculated for different mutual positions. The results demonstrate significant changes of bands intensities which can be correlated with experimental spectra measured at different potentials. Thus, the orientation of riboflavin molecules adsorbed on metal surfaces can be elucidated. It is influenced definitely by the value of applied potential. Furthermore, the riboflavin adsorption orientation on the surface depends on the used metal. Adsorption geometries on the copper substrates are more diverse in comparison with the orientations on silver and gold substrates.

  19. Room temperature redox reaction by oxide ion migration at carbon/Gd-doped CeO2 heterointerface probed by an in situ hard x-ray photoemission and soft x-ray absorption spectroscopies

    Directory of Open Access Journals (Sweden)

    Takashi Tsuchiya, Shogo Miyoshi, Yoshiyuki Yamashita, Hideki Yoshikawa, Kazuya Terabe, Keisuke Kobayashi and Shu Yamaguchi

    2013-01-01

    Full Text Available In situ hard x-ray photoemission spectroscopy (HX-PES and soft x-ray absorption spectroscopy (SX-XAS have been employed to investigate a local redox reaction at the carbon/Gd-doped CeO2 (GDC thin film heterointerface under applied dc bias. In HX-PES, Ce3d and O1s core levels show a parallel chemical shift as large as 3.2 eV, corresponding to the redox window where ionic conductivity is predominant. The window width is equal to the energy gap between donor and acceptor levels of the GDC electrolyte. The Ce M-edge SX-XAS spectra also show a considerable increase of Ce3+ satellite peak intensity, corresponding to electrochemical reduction by oxide ion migration. In addition to the reversible redox reaction, two distinct phenomena by the electrochemical transport of oxide ions are observed as an irreversible reduction of the entire oxide film by O2 evolution from the GDC film to the gas phase, as well as a vigorous precipitation of oxygen gas at the bottom electrode to lift off the GDC film. These in situ spectroscopic observations describe well the electrochemical polarization behavior of a metal/GDC/metal capacitor-like two-electrode cell at room temperature.

  20. Feasibility of atomic and molecular laser induced breakdown spectroscopy (LIBS) to in-situ determination of chlorine in concrete : final report.

    Science.gov (United States)

    2016-10-01

    Laser-induced breakdown spectroscopy (LIBS) has been studied as a fast method of detecting chlorine in concrete samples. Both single pulse (SP) and double pulse (DP) experiments have been tested. Several combinations of lasers (Neodymium-Yttrium Alum...

  1. Identification of Intermediates in Zeolite-Catalyzed Reactions Using In-situ UV/Vis Micro- Spectroscopy and a Complementary Set of Molecular Simulations

    NARCIS (Netherlands)

    Hemelsoet, K.L.J.; Qian, Q.|info:eu-repo/dai/nl/34138609X; De Meyer, T.; De Wispelaere, K.; De Sterck, B.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397; Waroquier, M.; Van Speybroeck, V.

    2013-01-01

    The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol-toolefins (MTO) process. In situ UV/Vis microscopy

  2. Thyroid lesions diagnosis by Fourier transformed infrared absorption spectroscopy (FTIR)

    International Nuclear Information System (INIS)

    Albero, Felipe Guimaraes

    2009-01-01

    Thyroid nodules are a common disorder, with 4-7% of incidence in the Brazilian population. Although the fine needle aspiration (FNA) is an accurate method for thyroid tumors diagnosis, the discrimination between benign and malignant neoplasm is currently not possible in some cases with high incidence of false negative diagnosis, leading to a surgical intervention due to the risk of carcinomas. The aim of this study was to verify if the Fourier Transform infrared spectroscopy (FTIR) can contribute to the diagnosis of thyroid carcinomas and goiters, using samples of tissue and aspirates. Samples of FNA, homogenates and tissues of thyroid nodules with histopathological diagnosis were obtained and prepared for FTIR spectroscopy analysis. The FNA and homogenates samples were measured by μ-FTIR (between 950 . 1750 cm -1 ), at a nominal resolution of 4 cm -1 and 120 scans). Tissue samples were analyzed directly by ATR-FTIR technique, at a resolution 2 cm -1 , with 60 scans in the same region. All spectra were corrected by the baseline and normalized by amides area (1550-1640 cm -1 ) in order to minimize variations of sample homogeneity. Then, spectra were converted into second derivatives using the Savitzk-Golay algorithm with a 13 points window. The Ward's minimum variance algorithm and Euclidean distances among the points were used for cluster analysis. Some FNA samples showed complex spectral pattern. All samples showed some cell pellets and large amount of hormone, represented by the bands of 1545 and 1655 cm -1 . Bands in 1409, 1412, 1414, 1578 and 1579 cm -1 were also found, indicating possible presence of sugar, DNA, citric acid or metabolic products. In this study, it was obtained an excellent separation between goiter and malign lesion for the samples of tissues, with 100% of specificity in specific cluster and 67% sensibility and 50 of specificity. In homogenate and FNA samples this sensibility and specificity were lower, because among these samples, it were

  3. The nature of the charge carriers in polyazulene as studied by in situ electron spin resonance-UV-visible-near-infrared spectroscopy.

    Science.gov (United States)

    Osterholm, Anna; Petr, Andreas; Kvarnström, Carita; Ivaska, Ari; Dunsch, Lothar

    2008-11-13

    In situ spectroelectrochemistry is of high importance for the characterization of doping reactions in pi-conjugated polymers. In this paper we present the results of simultaneous ESR and UV-vis-NIR measurements performed in situ during electrochemical p- and n-doping of polyazulene (PAz). In previous studies on p-doping of PAz the assignment of the optical absorption bands to specific charge carriers have been somewhat controversial, therefore the aim of this study is to clarify the nature of the doping-induced charge carriers and their corresponding optical absorption bands by in situ ESR-UV-vis-NIR spectroelectrochemistry. PAz was polymerized in two different potential ranges in order to obtain films with different structures and morphologies. On the basis of our spectroelectrochemical results we propose that polarons and polaron pairs are formed during p-doping in the two different types of PAz films electrodeposited on ITO. For studying n-doping of PAz, a Pt electrode was used. The ESR signal first decreased in intensity at low doping levels and then increased in intensity at higher doping levels pointing to the formation of new paramagnetic species. At high negative potentials there occurred an additional line broadening of the ESR signal indicating the existence of rather localized negative charge carriers.

  4. In situ investigations of laser and thermally modified As.sub.2./sub.S.sub.3./sub. nanolayers: synchrotron radiation photoelectron spectroscopy and density functional theory calculations

    Czech Academy of Sciences Publication Activity Database

    Kondrat, O.; Holomb, R.; Popovich, N.; Mitsa, V.; Veres, M.; Csik, A.; Feher, A.; Tsud, N.; Vondráček, Martin; Matolín, V.; Prince, K. C.

    2015-01-01

    Roč. 118, č. 22 (2015), "225307-1"-"225307-7" ISSN 0021-8979 R&D Projects: GA MŠk(CZ) LM2011029 Institutional support: RVO:68378271 Keywords : As 2 S 3 * photoemission spectroscopy * DFT * nanolayer * laser illumination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.101, year: 2015

  5. Insight into the structure of Pd/ZrO2 during the total oxidation of methane using combined in situ XRD, X.-ray absorption and Raman spectroscopy

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk; van Vegten, Niels; Baiker, Alfons

    2009-01-01

    for the oxidation of methane. Upon heating in the reaction mixture a sudden reduction accompanied by strong sintering of the palladium particles occurs leading to a less active catalyst. Raman spectroscopy combined with XAS shows that palladium is re-oxidized during cooling but is not as finely dispersed as in its...

  6. In Situ FTIR Spectroscopy Study of the Photodegradation of Acetaldehyde and azo Dye Photobleaching on Bismuth-Modified TiO2

    Czech Academy of Sciences Publication Activity Database

    Henych, Jiří; Štengl, Václav; Mattsson, A.; Österlund, L.

    2015-01-01

    Roč. 91, č. 1 (2015), s. 48-58 ISSN 0031-8655 Institutional support: RVO:61388980 Keywords : TITANIUM - DIOXIDE PHOTOCATALYSTS * RAY PHOTOELECTRON-SPECTROSCOPY * DOPED TIO2 * SURFACE * ADSORPTION Subject RIV: CA - Inorganic Chemistry Impact factor: 2.008, year: 2015

  7. Study of water adsorption and capillary bridge formation for SiO(2) nanoparticle layers by means of a combined in situ FT-IR reflection spectroscopy and QCM-D set-up.

    Science.gov (United States)

    Torun, B; Kunze, C; Zhang, C; Kühne, T D; Grundmeier, G

    2014-04-28

    Water adsorption and capillary bridge formation within a layer of SiO2-nanoparticles were studied in situ by means of a combination of quartz crystal microbalance (QCM-D) with dissipation analysis and Fourier transformation infrared reflection absorption spectroscopy (FT-IRRAS). FT-IR data were employed to distinguish the "ice-like" and "liquid-like" contributions and to support the analysis of the QCM-D data concerning mass change and dissipation. Combined measurements show that for SiO2-nanoparticles with a diameter of about 250 nm, the formation of two adsorbed monolayers of water as well as bulk water leads to a rather linear increase in the dissipation for relative humidity values of up to 60% which is followed by a strong increase in dissipation during the actual liquid bridge formation. Subsequently, the dissipation drops again when the relative humidity is further increased to values >90%.

  8. In vitro evaluation of ionizing radiation effects in bone tissue by FTIR spectroscopy and dynamic mechanical analysis

    International Nuclear Information System (INIS)

    Veloso, Marcelo Noronha

    2013-01-01

    Ionizing radiation from gamma radiation sources or X-ray generators is frequently used in Medical Science, such as radiodiagnostic exams, radiotherapy, and sterilization of haloenxerts. Ionizing radiation is capable of breaking polypeptidic chains and causing the release of free radicals by radiolysis.of water. It interacts also with organic material at the molecular level, and it may change its mechanical properties. In the specific case of bone tissue, studies report that ionizing radiation induces changes in collagen molecules and reduces the density of intermolecular crosslinks. The aim of this study was to verify the changes promoted by different doses of ionizing radiation in bone tissue using Fourier Transform Infrared Spectroscopy (FTIR) and dynamic mechanical analysis (DMA). Samples of bovine bone were irradiated using Cobalt-60 with five different doses: 0.01 kGy, 0.1 kGy, 1 kGy, 15 kGy and 75 kGy. To study the effects of ionizing irradiation on the chemical structure of the bone, the sub-bands of amide I, the crystallinity index and relation of organic and inorganic materials, were studied. The mechanical changes were evaluated using the elastic modulus and the damping value. To verify whether the chemical changes and the mechanical characteristics of the bone were correlated, the relation between the analysis made with spectroscopic data and the mechanical analysis data was studied. It was possible to evaluate the effects of different doses of ionizing radiation in bone tissue. With ATR-FTIR spectroscopy, it was possible to observe changes in the organic components and in the hydroxyapatite crystals organization. Changes were also observed in the elastic modulus and in the damping value. High correlation with statistical significance was observed among (amide III + collagen)/ v1,v3 , PO 4 3- and the delta tangent, and among 1/FHWM and the elastic modulus. (author)

  9. In situ infrared emission spectroscopy for quantitative gas-phase measurement under high temperature reaction conditions: an analytical method for methane by means of an innovative small-volume flowing cell.

    Science.gov (United States)

    Usseglio, Sandro; Thorshaug, Knut; Karlsson, Arne; Dahl, Ivar M; Nielsen, Claus J; Jens, Klaus-J; Tangstad, Elisabeth

    2010-02-01

    We have used infrared emission spectroscopy (IRES) in order to perform in situ studies under flowing gas-phase conditions. When the small-volume cell developed herein is used, we can (1) observe emission spectra from a hot gas-phase sample having an effective volume much less than one milliliter, (2) observe spectra of typical molecular species present, and (3) observe spectra of the more important molecular species down to below 10% and in some cases even as low as 1%. In addition, an analytical method has been derived in order to conduct quantitative studies under typical reaction conditions. We show that simplifications can be made in the data acquisition and handling for a direct linear correlation between band intensity and concentration with only simple background correction. The practical lower limit for methane in the present setup is approximately 0.5-1% v/v depending on the selected temperature. Our data were collected at 500, 600, and 700 degrees C, respectively. The major features of the present cell design are fairly simple and basically formed by a quartz tube (outer diameter=6 mm, inner diameter=4 mm) inside a metal pipe and two tubular ceramic heaters. This simple setup has advantages and attractive features that have extended the application of IRES to new fields and, in particular, for in situ studies of hydrocarbon reactions at different residence times at high temperature.

  10. In situ soft X-ray absorption spectroscopy investigation of electrochemical corrosion of copper in aqueous NaHCO3 solution

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Peng; Chen, Jeng-Lung; Borondics, Ferenc; Glans, Per-Anders; West, Mark W.; Chang, Ching-Lin; Salmeron, Miquel; Guo, Jinghua

    2010-03-31

    A novel electrochemical setup has been developed for soft x-ray absorption studies of the electronic structure of electrode materials during electrochemical cycling. In this communication we illustrate the operation of the cell with a study of the corrosion behavior of copper in aqueous NaHCO3 solution via the electrochemically induced changes of its electronic structure. This development opens the way for in situ investigations of electrochemical processes, photovoltaics, batteries, fuel cells, water splitting, corrosion, electrodeposition, and a variety of important biological processes.

  11. In-line near-infrared (NIR) and Raman spectroscopy coupled with principal component analysis (PCA) for in situ evaluation of the transesterification reaction.

    Science.gov (United States)

    Fontalvo-Gómez, Miriam; Colucci, José A; Velez, Natasha; Romañach, Rodolfo J

    2013-10-01

    Biodiesel was synthesized from different commercially available oils while in-line Raman and near-infrared (NIR) spectra were obtained simultaneously, and the spectral changes that occurred during the reaction were evaluated with principal component analysis (PCA). Raman and NIR spectra were acquired every 30 s with fiber optic probes inserted into the reaction vessel. The reaction was performed at 60-70 °C using magnetic stirring. The time of reaction was 90 min, and during this time, 180 Raman and NIR spectra were collected. NIR spectra were collected using a transflectance probe and an optical path length of 1 mm at 8 cm(-1) spectral resolution and averaging 32 scans; for Raman spectra a 3 s exposure time and three accumulations were adequate for the analysis. Raman spectroscopy showed the ester conversion as evidenced by the displacement of the C=O band from 1747 to 1744 cm(-1) and the decrease in the intensity of the 1000-1050 cm(-1) band and the 1405 cm(-1) band as methanol was consumed in the reaction. NIR spectra also showed the decrease in methanol concentration with the band in the 4750-5000 cm(-1) region; this signal is present in the spectra of the transesterification reaction but not in the neat oils. The variations in the intensity of the methanol band were a main factor in the in-line monitoring of the transesterification reaction using Raman and NIR spectroscopy. The score plot of the first principal component showed the progress of the reaction. The final product was analyzed using (1)H nuclear magnetic resonance ((1)H NMR) spectroscopy and using mid-infrared spectroscopy, confirming the conversion of the oils to biodiesel.

  12. In-situ Raman Spectroscopy of the Graphene / Water Interface of a Solution-Gated Field Effect Transistor: Electron-Phonon Coupling and Spectroelectrochemistry

    OpenAIRE

    Binder, J.; Urban, J. M.; Stepniewski, R.; Strupinski, W.; Wysmolek, A.

    2014-01-01

    We present a novel measurement approach which combines the electrical characterization of solution-gated field effect transistors based on epitaxial bilayer graphene on 4H-SiC (0001) with simultaneous Raman spectroscopy. By changing the gate voltage, we observed Raman signatures related to the resonant electron-phonon coupling. An analysis of these Raman bands enabled the extraction of the geometrical capacitance of the system and an accurate calculation of the Fermi levels for bilayer graphe...

  13. Designing a miniaturised heated stage for in situ optical measurements of solid oxide fuel cell electrode surfaces, and probing the oxidation of solid oxide fuel cell anodes using in situ Raman spectroscopy

    KAUST Repository

    Brightman, E.

    2012-01-01

    A novel miniaturised heated stage for in operando optical measurements on solid oxide fuel cell electrode surfaces is described. The design combines the advantages of previously reported designs, namely, (i) fully controllable dual atmosphere operation enabling fuel cell pellets to be tested in operando with either electrode in any atmosphere being the focus of study, and (ii) combined electrochemical measurements with optical spectroscopy measurements with the potential for highly detailed study of electrochemical processes; with the following advances, (iii) integrated fitting for mounting on a mapping stage enabling 2-D spatial characterisation of the surface, (iv) a compact profile that is externally cooled, enabling operation on an existing microscope without the need for specialized lenses, (v) the ability to cool very rapidly, from 600 °C to 300 °C in less than 5 min without damaging the experimental apparatus, and (vi) the ability to accommodate a range of pellet sizes and thicknesses. © 2012 American Institute of Physics.

  14. Development of in situ Brillouin spectroscopy at high pressure and high temperature with synchrotron radiation and infrared laser heating system: Application to the Earth's deep interior

    Science.gov (United States)

    Murakami, Motohiko; Asahara, Yuki; Ohishi, Yasuo; Hirao, Naohisa; Hirose, Kei

    2009-05-01

    Seismic wave velocity profiles in the Earth provide one of the strongest constraints on structure, mineralogy and elastic properties of the Earth's deep interior. Accurate sound velocity data of deep Earth materials under relevant high-pressure and high-temperature conditions, therefore, are essential for interpretation of seismic data. Such information can be directly obtained from Brillouin scattering measurement. Here we describe an in situ Brillouin scattering system for measurements at high pressure and high temperature using a laser heated diamond anvil cell and synchrotron radiation for sample characterization. The system has been used with single-crystal and polycrystalline materials, and with glass and fluid phase. It provided high quality sound velocity and elastic data with X-ray diffraction data at high pressure and/or high temperature. Those combined techniques can potentially offer the essential information for resolving many remaining issues in mineral physics.

  15. Synthesis of 1 nm Pd Nanoparticles in a Microfluidic Reactor: Insights from in Situ X ray Absorption Fine Structure Spectroscopy and Small-Angle X ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Ayman M.; Al Hasan, Naila M.; Ivanov, Sergei A.; Siefert, Soenke; Kelly, Ryan T.; Hallfors, Nicholas G.; Benavidez, Angelica D.; Kovarik, Libor; Jenkins, Aaron; Winans, R. E.; Datye, Abhaya K.

    2015-06-11

    In this paper we show that the temporal separation of nucleation and growth is not a necessary condition for the colloidal synthesis of monodisperse nanoparticles. The synthesis mechanism of Pd nanoparticles was determined by in situ XAFS and SAXS in a microfluidic reactor capable of millisecond up to an hour time resolution. The SAXS results showed two autocatalytic growth phases, a fast growth phase followed by a very slow growth phase. The steady increase in the number of particles throughout the two growth phases indicates the synthesis is limited by slow continuous nucleation. The transition from fast to slow growth was caused by rapid increase in bonding with the capping agent as shown by XAFS. Based on this fundamental understanding of the synthesis mechanism, we show that 1 nm monodisperse Pd nanoparticles can be synthesized at low temperature using a strong binding capping agent such as trioctylphosphine (TOP).

  16. Using in situ dynamic cultures to rapidly biofabricate fabric-reinforced composites of chitosan/bacterial nanocellulose for antibacterial wound dressings

    Directory of Open Access Journals (Sweden)

    Peng eZhang

    2016-03-01

    Full Text Available Bacterial nano-cellulose (BNC is considered to possess incredible potential in biomedical applications due to its innate unrivalled nano-fibrillar structure and versatile properties. However its use is largely restricted by inefficient production and by insufficient strength when it is in a highly swollen state. In this study, a fabric skeleton reinforced chitosan (CS/BNC hydrogel with high mechanical reliability and antibacterial activity was fabricated by using an efficient dynamic culture that could reserve the nano-fibrillar structure. By adding CS in culture media to 0.25-0.75% (w/v during bacterial cultivation, the CS/BNC composite hydrogel was biosynthesized in situ on a rotating drum composed of fabrics. With the proposed method, BNC biosynthesis became less sensitive to the adverse antibacterial effects of CS and the production time of the composite hydrogel with desirable thickness could be halved from 10 days to 5 days as compared to the conventional static cultures. Although its concentration was low in the medium, CS accounted for more than 38% of the CS/BNC dry weight. FE-SEM observation confirmed conservation of the nano-fibrillar networks and covering of CS on BNC. ATR-FTIR showed a decrease in the degree of intra-molecular hydrogen bonding and water absorption capacity was improved after compositing with CS. The fabric-reinforced CS/BNC composite exhibited bacteriostatic properties against Escherichia coli and Staphylococcus aureus and significantly improved mechanical properties as compared to the BNC sheets from static culture. In summary, the fabric-reinforced CS/BNC composite constitutes a desired candidate for advanced wound dressings. From another perspective, coating of BNC or CS/BNC could upgrade the conventional wound dressings made of cotton gauze to reduce pain during wound healing, especially for burn patients.

  17. Measurement of H and H2 populations in-situ in a low-temperature plasma by vacuum-ultraviolet laser-absorption spectroscopy

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Young, A.T.; Stutzin, G.C.; Stearns, J.W.; Doebele, H.G.; Leung, K.N.; Kunkel, W.B.

    1988-12-01

    A new technique, vacuum-ultraviolet laser-absorption spectroscopy, has been developed to quantitatively determine the absolute density of H and H 2 within a plasma. The technique is particularly well suited to measurement in a plasma, where high charged particle and photon background complicate other methods of detection. The high selectivity and sensitivity of the technique allows for the measurement of the rotational-vibrational state distribution of H 2 as well as the translational temperature of the atoms and molecules. The technique has been used to study both pulsed and continuous H/sup /minus// ion-source plasma discharges. H 2 state distributions in a multicusp ''volume'' H/sup /minus// ion- source plasma show a high degree of internal excitation, with levels up to v = 5 and J = 8 being observed. The method is applicable for a very wide range of plasma conditions. Emission measurements from excited states of H are also reported. 17 refs., 9 figs

  18. The Reactivity and Structural Dynamics of Supported Metal Nanoclusters Using Electron Microscopy, in situ X-Ray Spectroscopy, Electronic Structure Theories, and Molecular Dynamics Simulations

    International Nuclear Information System (INIS)

    Yang, Judith C.; Nuzzo, Ralph G.; Johnson, Duane; Frenkel, Anatoly

    2008-01-01

    The distinguishing feature of our collaborative program of study is the focus it brings to emergent phenomena originating from the unique structural/electronic environments found in nanoscale materials. We exploit and develop frontier methods of atomic-scale materials characterization based on electron microscopy (Yang) and synchrotron X-ray absorption spectroscopy (Frenkel) that are in turn coupled innately with advanced first principles theory and methods of computational modeling (Johnson). In the past year we have made significant experimental advances that have led to important new understandings of the structural dynamics of what are unquestionably the most important classes of heterogeneous catalysts-the materials used to both produce and mitigate the consequences of the use of liquid hydrocarbon fuels.

  19. The efficiency calibration and development of environmental correction factors for an in situ high-resolution gamma spectroscopy well logging system

    International Nuclear Information System (INIS)

    Giles, J.R.

    1996-05-01

    A Gamma Spectroscopy Logging System (GSLS) has been developed to study sub-surface radionuclide contamination. Absolute efficiency calibration of the GSLS was performed using simple cylindrical borehole geometry. The calibration source incorporated naturally occurring radioactive material (NORM) that emitted photons ranging from 186-keV to 2,614-keV. More complex borehole geometries were modeled using commercially available shielding software. A linear relationship was found between increasing source thickness and relative photon fluence rates at the detector. Examination of varying porosity and moisture content showed that as porosity increases, relative photon fluence rates increase linearly for all energies. Attenuation effects due to iron, water, PVC, and concrete cylindrical shields were found to agree with previous studies. Regression analyses produced energy-dependent equations for efficiency corrections applicable to spectral gamma-ray well logs collected under non-standard borehole conditions

  20. The use of in situ Fourier-transform infrared spectroscopy for the study of surface phenomena on electrodes in selected lithium battery electrolyte solutions

    Science.gov (United States)

    Aurbach, D.; Chusid, O.

    This paper presents some examples of surface studies of noble metals and Li electrodes in Li battery electrolyte solutions using in situ FT-IR spectroscopic techniques. These examples include the study of a mixture of solvents, the role of the reduction of salt in the build-up of surface films on the electrodes and the impact of contaminants such as traces of oxgen and water. The techniques included multiple and single internal reflectance modes and external reflectance (SNIFTIRS-type) mode. The following conclusions were drawn from this study: (i) salts containing the -SO 2CF 3 group are much more reactive on Li than LiAsF 6. Their reduction dominates the surface chemistry developed on Li in ethereal solutions; (ii) water reduction on Li in wet 1,3-dioxolane solution may not form stable LiOH films due to the further reaction of the hydroxy group with the solvent; (iii) in spite of its low solubility, oxygen dissolved in propylene carbonate and tetrahydrofuran solutions has some impact on the surface chemistry developed on Li in these solutions (probably due to Li 2O formation).

  1. Electronic Structure of Epitaxial Thin Films of the Transparent Conducting Oxide La:BaSnO3 Measured By In-Situ Angle-Resolved Photoemission Spectroscopy

    Science.gov (United States)

    Lochocki, Edward; Paik, Hanjong; Uchida, Masaki; Schlom, Darrell; Shen, Kyle

    Lanthanum-doped barium stannate (La:BaSnO3) is a transparent conducting oxide where single crystals have exhibited unusually high mobility and oxygen stability. Here we present in-situ angle-resolved photoemission (ARPES) measurements of La:BaSnO3 epitaxial films that were co-deposited onto lattice-matched rare-earth scandate substrates by molecular-beam epitaxy (MBE). Density functional theory (DFT) calculations agree well with the observed valence bands and predict a parabolic conduction band. However, the features observed near the Fermi energy (EF) are non-dispersive yet localized in momentum space. This unusual appearance may be the result of quasi-localized charge carriers or out-of-plane momentum broadening. Over long measurement periods, we also observe changes to the valence band and near-EF feature that bear a strong resemblance to the beam-induced two-dimensional electron gases previously reported in SrTiO3 and KTaO3. The origin of these unexpected phenomena and their relationship to the structural and transport properties of these films will be discussed.

  2. Comparison of infrared spectroscopy techniques: developing an efficient method for high resolution analysis of sediment properties from long records

    Science.gov (United States)

    Hahn, Annette; Rosén, Peter; Kliem, Pierre; Ohlendorf, Christian; Persson, Per; Zolitschka, Bernd; Pasado Science Team

    2010-05-01

    The analysis of sediment samples in visible to mid-infrared spectra is ideal for high-resolution records. It requires only small amounts (0.01-0.1g dry weight) of sample material and facilitates rapid and cost efficient analysis of a wide variety of biogeochemical properties on minerogenic and organic substances (Kellner et al. 1998). One of these techniques, the Diffuse Reflectance Fourier Transform Infrared Spectrometry (DRIFTS), has already been successfully applied to lake sediment from very different settings and has shown to be a promising technique for high resolution analyses of long sedimentary records on glacial-interglacial timescales (Rosén et al. 2009). However, the DRIFTS technique includes a time-consuming step where sediment samples are mixed with KBr. To assess if alternative and more rapid infrared (IR) techniques can be used, four different IR spectroscopy techniques are compared for core catcher sediment samples from Laguna Potrok Aike - an ICDP site located in southernmost South America. Partial least square (PLS) calibration models were developed using the DRIFTS technique. The correlation coefficients (R) for correlations between DRIFTS-inferred and conventionally measured biogeochemical properties show values of 0.80 for biogenic silica (BSi), 0.95 for total organic carbon (TOC), 0.91 for total nitrogen (TN), and 0.92 for total inorganic carbon (TIC). Good statistical performance was also obtained by using the Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy ATR-FTIRS technique which requires less sample preparation. Two devices were used, the full-sized Bruker Equinox 252 and the smaller and less expensive Bruker Alpha. R for ATR-FTIRS-inferred and conventionally measured biogeochemical properties were 0.87 (BSi), 0.93 (TOC), 0.90 (TN), and 0.91 (TIC) for the Alpha, and 0.78 (TOC), 0.85 (TN), 0.79 (TIC) for the Equinox 252 device. As the penetration depth of the IR beam is frequency dependent, a firm surface contact of

  3. Characterization of caries progression on dentin after irradiation with Nd:YAG laser by FTIR spectroscopy and fluorescence imaging

    Science.gov (United States)

    Ana, P. A.; Brito, A. M. M.; Zezell, D. M.; Lins, E. C. C. C.

    2015-06-01

    Considering the use of high intensity lasers for preventing dental caries, this blind in vitro study evaluated the compositional and fluorescence effects promoted by Nd:YAG laser (λ=1064 nm) when applied for prevention of progression of dentin caries, in association or not with topical application of acidulated phosphate fluoride (APF). Sixty bovine root dentin slabs were prepared and demineralized by 32h in order to create early caries lesions. After, the slabs were distributed into six experimental groups: G1- untreated and not submitted to a pH-cycling model; G2- untreated and submitted to a pH-cycling model; G3- acidulated phosphate fluoride application (APF); G4- Nd:YAG irradiation (84.9 J/cm2, 60 mJ/pulse); G5- treated with Nd:YAG+APF; G6- treated with APF+Nd:YAG. After treatments, the samples of groups G2 to G6 were submitted to a 4-day pH-cycling model in order to simulate the progression of early caries lesions. All samples were characterized by the micro-attenuated total reflection technique of Fourier transformed infrared spectroscopyATR-FTIR), using a diamond crystal, and by a fluorescence imaging system (FIS), in which it was used an illuminating system at λ= 405±30 nm. Demineralization promoted reduction in carbonate and phosphate contents, exposing the organic matter; as well, it was observed a significant reduction of fluorescence intensity. Nd:YAG laser promoted additional chemical changes, and increased the fluorescence intensity even with the development of caries lesions. It was concluded that the compositional changes promoted by Nd:YAG, when associated to APF, are responsible for the reduction of demineralization progression observed on root dentin.

  4. Oxygen Reduction on Platinum

    DEFF Research Database (Denmark)

    Nesselberger, Markus

    This thesis investigates the electro reduction of oxygen on platinum nanoparticles, which serve as catalyst in low temperature fuel cells. Kinetic studies on model catalysts as well as commercially used systems are presented in order to investigate the particle size effect, the particle proximity...... effect and anion adsorption on the performance of Pt based electrocatalysts. The anion adsorption is additionally studied by in situ electrochemical infrared spectroscopy during the oxygen reduction reaction (ORR). For this purpose an in situ FTIR setup in attenuated total refection (ATR) configuration....... The influence of the ion adsorption strength, which is observed in the “particle size studies” on the oxygen reduction rate on Pt/C catalysts, is further investigated under similar reaction conditions by infrared spectroscopy. The designed in situ electrochemical ATR-FTIR setup features a high level...

  5. Phase Separation and Crystallization in soda-lime borosilicate glass enriched in MoO{sub 3} studied by in situ Raman spectroscopy at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Magnin, M.; Schuller, S.; Advocat, T. [CEA Valrho, DEN/DTCD/SCDV, Laboratoire d' Etude de Base sur les Verres, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Caurant, D.; Majerus, O. [Laboratoire de Chimie de la Matiere Condensee de Paris- LCMCP - UMR-CNRS 7574, Ecole Nationale Superieure de Chimie de Paris - ENSCP, Paristech, 75231 Paris (France); Ligny, D. de [Laboratoire de Physico-Chimie des Materiaux Luminescents- LPCML - UMR-CNRS 5620, Universite Claude Bernard Lyon1, 69622 Villeurbanne (France)

    2008-07-01

    Phase separation and crystallisation processes may arise in molten glass when the MoO{sub 3} content exceeds its solubility limit. Molybdenum combined with other elements such as alkali and alkaline-earth may form crystalline molybdates, known as 'yellow phases' in nuclear glasses. In order to establish the sequence of phase separation and crystallization processes occurring during the cooling of the melt, a non-radioactive simplified glass composition was chosen in the SiO{sub 2}-B{sub 2}O{sub 3}-Na{sub 2}O-CaO system, with 2 mol.% MoO{sub 3}. Various cooling scenarios were tested: cooling by air blowing, quenching between two copper plates and cooling on metallic plate. The resulting glass specimens were then characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy in temperature. These observations made it possible to determine the sequence and the appearance temperature of phenomena upon cooling: first, a phase separation occurs, (small droplets dispersed in the molten glass) followed by molybdates crystallization inside the droplets. (authors)

  6. In situ photoemission spectroscopy using synchrotron radiation for O2 translational kinetic energy induced oxidation processes of partially-oxidized Si(001) surfaces

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2001-01-01

    The influence of translational kinetic energy of incident O 2 molecules for the passive oxidation process of partially-oxidized Si(001) surfaces has been studied by photoemission spectroscopy. The translational kinetic energy of O 2 molecules was controlled up to 3 eV by a supersonic seed beam technique using a high temperature nozzle. Two translational kinetic energy thresholds (1.0 eV and 2.6 eV) were found out in accordance with the first-principles calculation for the oxidation of clean surfaces. Si-2p photoemission spectra measured in representative translational kinetic energies revealed that the translational kinetic energy dependent oxidation of dimers and the second layer (subsurface) backbonds were caused by the direct dissociative chemisorption of O 2 molecules. Moreover, the difference in chemical bonds for oxygen atoms was found out to be as low and high binding energy components in O-1s photoemission spectra. Especially, the low binding energy component increased with increasing the translational kinetic energy that indicates the translational kinetic energy induced oxidation in backbonds. (author)

  7. Simultaneous in situ characterisation of bubble dynamics and a spatially resolved concentration profile: a combined Mach–Zehnder holography and confocal Raman-spectroscopy sensor system

    Directory of Open Access Journals (Sweden)

    J. Guhathakurta

    2017-05-01

    Full Text Available For a reaction between a gaseous phase and a liquid phase, the interaction between the hydrodynamic conditions, mass transport and reaction kinetics plays a crucial role with respect to the conversion and selectivity of the process. Within this work, a sensor system was developed to simultaneously characterise the bubble dynamics and the localised concentration measurement around the bubbles. The sensor system is a combination of a digital Mach–Zehnder holography subsystem to measure bubble dynamics and a confocal Raman-spectroscopy subsystem to measure localised concentration. The combined system was used to investigate the chemical absorption of CO2 bubbles in caustic soda in microchannels. The proposed set-up is explained and characterised in detail and the experimental results are presented, illustrating the capability of the sensor system to simultaneously measure the localised concentration of the carbonate ion with a good limit of detection and the 3-D position of the bubble with respect to the spot where the concentration was measured.

  8. High-pressure in situ 129Xe NMR spectroscopy and computer simulations of breathing transitions in the metal-organic framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni)).

    Science.gov (United States)

    Hoffmann, Herbert C; Assfour, Bassem; Epperlein, Fanny; Klein, Nicole; Paasch, Silvia; Senkovska, Irena; Kaskel, Stefan; Seifert, Gotthard; Brunner, Eike

    2011-06-08

    Recently, we have described the metal-organic framework Ni(2)(2,6-ndc)(2)(dabco), denoted as DUT-8(Ni) (1) (DUT = Dresden University of Technology, 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]octane). Upon adsorption of molecules such as nitrogen and xenon, this material exhibits a pronounced gate-pressure effect which is accompanied by a large change of the specific volume. Here, we describe the use of high-pressure in situ (129)Xe NMR spectroscopy, i.e., the NMR spectroscopic measurements of xenon adsorption/desorption isotherms and isobars, to characterize this effect. It appears that the pore system of DUT-8(Ni) takes up xenon until a liquid-like state is reached. Deeper insight into the interactions between the host DUT-8(Ni) and the guest atom xenon is gained from ab initio molecular dynamics (MD) simulations. van der Waals interactions are included for the first time in these calculations on a metal-organic framework compound. MD simulations allow the identification of preferred adsorption sites for xenon as well as insight into the breathing effect at a molecular scale. Grand canonical Monte Carlo (GCMC) simulations have been performed in order to simulate adsorption isotherms. Furthermore, the favorable influence of a sample pretreatment using solvent exchange and drying with supercritical CO(2) as well as the influence of repeated pore opening/closure processes, i.e., the "aging behavior" of the compound, can be visualized by (129)Xe NMR spectroscopy.

  9. Ethylene hydrogenation catalysis on Pt(111) single-crystal surfaces studied by using mass spectrometry and in situ infrared absorption spectroscopy

    Science.gov (United States)

    Tillekaratne, Aashani; Simonovis, Juan Pablo; Zaera, Francisco

    2016-10-01

    The catalytic hydrogenation of ethylene promoted by a Pt(111) single crystal was studied by using a ultrahigh-vacuum surface-science instrument equipped with a so-called high-pressure cell. Kinetic data were acquired continuously during the catalytic conversion of atmospheric-pressure mixtures of ethylene and hydrogen by using mass spectrometry while simultaneously characterizing the surface species in operando mode by reflection-absorption infrared spectroscopy (RAIRS). Many observations reported in previous studies of this system were corroborated, including the presence of adsorbed alkylidyne intermediates during the reaction and the zero-order dependence of the rate of hydrogenation on the pressure of ethylene. In addition, the high quality of the kinetic data, which could be recorded continuously versus time and processed to calculate time-dependent turnover frequencies (TOFs), afforded a more detailed analysis of the mechanism. Specifically, deuterium labeling could be used to estimate the extent of isotope scrambling reached with mixed-isotope-substituted reactants (C2H4 + D2 and C2D4 + H2). Perhaps the most important new observation from this work is that, although extensive H-D exchange takes place on ethylene before being fully converted to ethane, the average stoichiometry of the final product retains the expected stoichiometry of the gas mixture, that is, four regular hydrogen atoms and two deuteriums per ethane molecule in the case of the experiments with C2H4 + D2. This means that no hydrogen atoms are removed from the surface via their inter-recombination to produce X2 (X = H or D). It is concluded that, under catalytic conditions, hydrogen surface recombination is much slower than ethylene hydrogenation and H-D exchange.

  10. Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy

    International Nuclear Information System (INIS)

    Xia, Daniel; Davis, Richard L.; Crawford, Judith A.; Abraham, Jerrold L.

    2010-01-01

    Background: Gadolinium (Gd)-containing MRI contrast agents (GdCA) are widely used in studies of brain tumors, and a number of reports suggest that under certain conditions, such as renal failure, Gd may be released from GdCA into patient's tissues. Whether this may happen in abnormal tissues in the absence of renal failure has not been studied. Purpose: To test the hypothesis that the local retention of GdCA resulting from brain tumor-associated alterations in the blood-brain barrier (BBB) may result in the deposition of Gd released from the GdCA, depending on stability. Material and Methods: In this retrospective study, 30 selected brain tumor biopsies from 28 patients (taken before and after an institutional switch from a less stable to an intermediate stable GdCA) were searched for Gd-containing deposits using scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Relevant histories and laboratory results were obtained through institutional electronic records. Associations between the presence of deposits and other variables were tested for statistical significance using the two-tailed Fisher's exact test. Results: Insoluble deposits containing Gd associated with phosphorus and calcium were found in seven biopsies from five patients. These deposits were found in patients with estimated GFRs above 53 ml/min, and were detected more often in those receiving GdCA before the switch from a less stable to an intermediate stable GdCA (P = 0.04), and may be more frequent in patients receiving more than one contrast-enhanced MR scan (P = 0.15). Conclusion: Gd-containing deposits are present in brain tumors following contrast-enhanced MR scans in patients without severe renal disease. Further studies are needed to assess the clinical importance of the deposits we observed and to determine whether they are also found in other conditions that alter the integrity of the BBB

  11. Formation of a ZnO/ZnS interface passivation layer on (NH4)2S treated In0.53Ga0.47As: Electrical and in-situ X-ray photoelectron spectroscopy characterization

    Science.gov (United States)

    Lucero, Antonio T.; Byun, Young-Chul; Qin, Xiaoye; Cheng, Lanxia; Kim, Hyoungsub; Wallace, Robert M.; Kim, Jiyoung

    2016-08-01

    Atomic layer deposition is used to convert an (NH4)2S cleaned p-In0.53Ga0.47As with diethylzinc (DEZ) and water, resulting in the formation of a ZnO/ZnS interfacial passivation layer (IPL). The process is studied using in-situ X-ray photoelectron spectroscopy. DEZ reacts with sulfur and oxygen present on the surface, chemically reducing arsenic 3+ and gallium 3+ to lower oxidation states. The sulfur concentration remains constant during the deposition process while the oxygen concentration on the surface remains small, confirming that the IPL is composed of both ZnO and ZnS. Measurements of metal-oxide-semiconductor capacitors with HfO2 for the dielectric show that the ZnO/ZnS IPL can nearly eliminate frequency dispersion (<1% per frequency decade) in accumulation and results in small hysteresis (<60 mV) with a D it in the 1011 eV-1 cm-2 range in the midgap. Frequency dispersion is observed in the depletion region and is attributed to minority carrier generation from the ZnO present in the IPL.

  12. Etude par diffraction des rayons X in situ des mécanismes d'oxydation de l'acier AISI 304 entre 800°C et 1000°C. Influence des dépôts sol-gel de lanthane et de cérium. Apport de la spectroscopie infrarouge à l'identification des oxydes mixtes

    OpenAIRE

    Karimi , Noureddine

    2007-01-01

    This work presents a study on the AISI 304 oxidation mechanism within the temperature range of 800 to 1000°C, in air. We have closely examined the effect of Lanthanum and Cerium sol-gel coating on the oxidation process. IR spectroscopy enables us to better identify the mixed oxides FeCr2O4 and Mn1,5Cr1,5O4 and the corundum type oxides Fe2O3 and Cr2O3. The combination of various analytical techniques such as: in situ XRD, IR spectroscopy, MEB, EDS and MET, lead us to propose a new oxidation me...

  13. Study of calcification formation and disease diagnostics utilising advanced vibrational spectroscopy

    Science.gov (United States)

    Kerssens, Marleen Maartje

    The accurate and safe diagnosis of breast cancer is a significant societal issue, with annual disease incidence of 48,000 women and around 370 men in the UK. Early diagnosis of the disease allows more conservative treatments and better patient outcomes. Microcalcifications in breast tissue are an important indicator for breast cancers, and often the only sign of their presence. Several studies have suggested that the type of calcification formed may act as a marker for malignancy and its presence may be of biological significance. In this work, breast calcifications are studied with FTIR, synchrotron FTIR, ATR FTIR, and Raman mapping to explore their disease specific composition. From a comparison between vibrational spectroscopy and routine staining procedures it becomes clear that calcium builds up prior to calcification formation. Raman and FTIR indicate the same size for calcifications and are in agreement with routine staining techniques. From the synchrotron FTIR measurements it can be proven that amide is present in the centre of the calcifications and the intensity of the bands depends on the pathology. Special attention is paid to the type of carbonate substitution in the calcifications relating to different pathology grades. In contrast to mammography, Raman spectroscopy has the capability to distinguish calcifications based on their chemical composition. The ultimate goal is to turn the acquired knowledge from the mapping studies into a clinical tool based on deep Raman spectroscopy. Deep Raman techniques have a considerable potential to reduce large numbers of normal biopsies, reduce the time delay between screening and diagnosis and therefore diminish patient anxiety. In order to achieve this, a deep Raman system is designed and after evaluation of its performance tested on buried calcification standards in porcine soft tissue and human mammary tissue. It is shown that, when the calcification is probed through tissue, the strong 960 cm-1 phosphate band

  14. Composition of Cypripedium calceolus (Orchidaceae) seeds analyzed by attenuated total reflectance IR spectroscopy: in search of understanding longevity in the ground.

    Science.gov (United States)

    Barsberg, Søren; Rasmussen, Hanne N; Kodahl, Nete

    2013-10-01

    Orchid seeds are minute and covered with a thin coat, yet they often have a long life after dispersal. They are notorious for low and irregular germination, in nature as well as in vitro. Since orchids are often rare species of conservational and commercial interest, reproduction by seeds is an important concern. The purpose of this study was to learn more about the resilience of these highly specialized seeds and stimulatory processes toward germination. • We studied testa and embryos of Cypripedium calceolus to identify natural components in intact seeds and the impact of 7 yr in soil in its natural habitat. We also analyzed the effects of Ca(OCl)2, used technically to enhance germination for cultivation in vitro. For the first time with this kind of plant material, we used attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, an ideal method for minute sample sizes and surface selectivity. Thus, we could link treatments with changes in seed surface chemistry. • A lignin-like polymer is an essential testa component that undergoes degradation by soil or hypochlorite processes. In both cases, we found a build-up of CaCO3 on the testa, which could interact with lignin to enhance germination. Very minor changes occurred in embryo reserve nutrient content after a long sojourn underground, which supports their continued viability. • We suggest that degradation of lignin and enrichment of the testa surface with CaCO3 are important stimulants of germination both in the habitat and during laboratory sowing.

  15. Attenuated Total Reflectance Fourier transform infrared spectroscopy for determination of Long Chain Free Fatty Acid concentration in oily wastewater using the double wavenumber extrapolation technique.

    Science.gov (United States)

    Hao, Zisu; Malyala, Divya; Dean, Lisa; Ducoste, Joel

    2017-04-01

    Long Chain Free Fatty Acids (LCFFAs) from the hydrolysis of fat, oil and grease (FOG) are major components in the formation of insoluble saponified solids known as FOG deposits that accumulate in sewer pipes and lead to sanitary sewer overflows (SSOs). A Double Wavenumber Extrapolative Technique (DWET) was developed to simultaneously measure LCFFAs and FOG concentrations in oily wastewater suspensions. This method is based on the analysis of the Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectrum, in which the absorbance of carboxyl bond (1710cm -1 ) and triglyceride bond (1745cm -1 ) were selected as the characteristic wavenumbers for total LCFFAs and FOG, respectively. A series of experiments using pure organic samples (Oleic acid/Palmitic acid in Canola oil) were performed that showed a linear relationship between the absorption at these two wavenumbers and the total LCFFA. In addition, the DWET method was validated using GC analyses, which displayed a high degree of agreement between the two methods for simulated oily wastewater suspensions (1-35% Oleic acid in Canola oil/Peanut oil). The average determination error of the DWET approach was ~5% when the LCFFA fraction was above 10wt%, indicating that the DWET could be applied as an experimental method for the determination of both LCFFAs and FOG concentrations in oily wastewater suspensions. Potential applications of this DWET approach includes: (1) monitoring the LCFFAs and FOG concentrations in grease interceptor (GI) effluents for regulatory compliance; (2) evaluating alternative LCFFAs/FOG removal technologies; and (3) quantifying potential FOG deposit high accumulation zones in the sewer collection system. Published by Elsevier B.V.

  16. Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Kozak, Halyna; Rezek, Bohuslav; Ukraintsev, Egor; Babchenko, Oleg; Kromka, Alexander; Girard, H.A.; Arnault, J.-C.; Bergonzo, P.

    2013-01-01

    Roč. 270, APR (2013), s. 411-417 ISSN 0169-4332 R&D Projects: GA ČR GAP108/12/0910; GA ČR GPP205/12/P331; GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : ATR FTIR * CVD * hydrogenation * microwave * nanocrystalline diamond * nanopowder Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.538, year: 2013

  17. NOR and nitroxide-based HAS in accelerated photooxidation of carbon-chain polymers; comparison with secondary HAS: an ESRI and ATR FTIR study

    Czech Academy of Sciences Publication Activity Database

    Pilař, Jan; Michálková, Danuše; Šeděnková, Ivana; Pfleger, Jiří; Pospíšil, Jan

    2011-01-01

    Roč. 96, č. 5 (2011), s. 847-862 ISSN 0141-3910 R&D Projects: GA AV ČR IAA400500804 Institutional research plan: CEZ:AV0Z40500505 Keywords : commodity carbon-chain polymers * photodegradation * accelerated weathering Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.769, year: 2011

  18. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  19. Voltammetry and in situ scanning tunnelling spectroscopy of osmium, iron, and ruthenium complexes of 2,2′:6′,2′′-terpyridine covalently linked to Au(111)-electrodes

    DEFF Research Database (Denmark)

    Salvatore, Princia; Hansen, Allan Glargaard; Moth-Poulsen, Kasper

    2011-01-01

    prepared in situ by first linking the terpy ligand to the surface via the S-atom, followed by addition of suitable metal compounds. The metal-terpy SAMs were studied by cyclic voltammetry (CV), and in situ scanning tunnelling microscopy with full electrochemical potential control of substrate and tip (in...

  20. In-situ Studies of the Reactions of Bifunctional and Heterocyclic Molecules over Noble Metal Single Crystal and Nanoparticle Catalysts Studied with Kinetics and Sum-Frequency Generation Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kliewer, Christopher J. [Univ. of California, Berkeley, CA (United States)

    2009-06-30

    Sum frequency generation surface vibrational spectroscopy (SFG-VS) in combination with gas chromatography (GC) was used in-situ to monitor surface bound reaction intermediates and reaction selectivities for the hydrogenation reactions of pyrrole, furan, pyridine, acrolein, crotonaldehyde, and prenal over Pt(111), Pt(100), Rh(111), and platinum nanoparticles under Torr reactant pressures and temperatures of 300K to 450K. The focus of this work is the correlation between the SFG-VS observed surface bound reaction intermediates and adsorption modes with the reaction selectivity, and how this is affected by catalyst structure and temperature. Pyrrole hydrogenation was investigated over Pt(111) and Rh(111) single crystals at Torr pressures. It was found that pyrrole adsorbs to Pt(111) perpendicularly by cleaving the N-H bond and binding through the nitrogen. However, over Rh(111) pyrrole adsorbs in a tilted geometry binding through the {pi}-aromatic orbitals. A surface-bound pyrroline reaction intermediate was detected over both surfaces with SFG-VS. It was found that the ring-cracking product butylamine is a reaction poison over both surfaces studied. Furan hydrogenation was studied over Pt(111), Pt(100), 10 nm cubic platinum nanoparticles and 1 nm platinum nanoparticles. The product distribution was observed to be highly structure sensitive and the acquired SFG-VS spectra reflected this sensitivity. Pt(100) exhibited more ring-cracking to form butanol than Pt(111), while the nanoparticles yielded higher selectivities for the partially saturated ring dihydrofuran. Pyridine hydrogenation was investigated over Pt(111) and Pt(100). The α-pyridyl surface adsorption mode was observed with SFG-VS over both surfaces. 1,4-dihydropyridine was seen as a surface intermediate over Pt(100) but not Pt(111). Upon heating the surfaces to 350K, the adsorbed pyridine changes to a flat-lying adsorption mode. No evidence was found for the pyridinium cation. The hydrogenation of the

  1. Using Fourier transform infrared spectroscopy to evaluate biological effects induced by photodynamic therapy.

    Science.gov (United States)

    Lima, Cassio A; Goulart, Viviane P; Correa, Luciana; Zezell, Denise M

    2016-07-01

    skin was discriminated from healthy tissue with 93.5% accuracy and post-PDT cutaneous lesions was discriminated from healthy tissue with 89.7% accuracy. PC-LDA was able to discriminate ATR-FTIR spectra of non-treated and post-PDT neoplastic lesions, as well as from healthy skin. Thus, the method can be used for early diagnosis of premalignant skin lesions, as well as to evaluate the response to photodynamic treatment. Lasers Surg. Med. 48:538-545, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. In situ

    Science.gov (United States)

    Tremsin, Anton S; Makowska, Małgorzata G; Perrodin, Didier; Shalapska, Tetiana; Khodyuk, Ivan V; Trtik, Pavel; Boillat, Pierre; Vogel, Sven C; Losko, Adrian S; Strobl, Markus; Kuhn, L Theil; Bizarri, Gregory A; Bourret-Courchesne, Edith D

    2016-06-01

    Neutrons are known to be unique probes in situations where other types of radiation fail to penetrate samples and their surrounding structures. In this paper it is demonstrated how thermal and cold neutron radiography can provide time-resolved imaging of materials while they are being processed ( e.g. while growing single crystals). The processing equipment, in this case furnaces, and the scintillator materials are opaque to conventional X-ray interrogation techniques. The distribution of the europium activator within a BaBrCl:Eu scintillator (0.1 and 0.5% nominal doping concentrations per mole) is studied in situ during the melting and solidification processes with a temporal resolution of 5-7 s. The strong tendency of the Eu dopant to segregate during the solidification process is observed in repeated cycles, with Eu forming clusters on multiple length scales (only for clusters larger than ∼50 µm, as limited by the resolution of the present experiments). It is also demonstrated that the dopant concentration can be quantified even for very low concentration levels (∼0.1%) in 10 mm thick samples. The interface between the solid and liquid phases can also be imaged, provided there is a sufficient change in concentration of one of the elements with a sufficient neutron attenuation cross section. Tomographic imaging of the BaBrCl:0.1%Eu sample reveals a strong correlation between crystal fractures and Eu-deficient clusters. The results of these experiments demonstrate the unique capabilities of neutron imaging for in situ diagnostics and the optimization of crystal-growth procedures.

  3. Thyroid lesions diagnosis by Fourier transformed infrared absorption spectroscopy (FTIR); Diagnostico de lesoes da tireoide pela espectroscopia de absorcao no infravermelho por transformada de Fourier - FTIR

    Energy Technology Data Exchange (ETDEWEB)

    Albero, Felipe Guimaraes

    2009-07-01

    Thyroid nodules are a common disorder, with 4-7% of incidence in the Brazilian population. Although the fine needle aspiration (FNA) is an accurate method for thyroid tumors diagnosis, the discrimination between benign and malignant neoplasm is currently not possible in some cases with high incidence of false negative diagnosis, leading to a surgical intervention due to the risk of carcinomas. The aim of this study was to verify if the Fourier Transform infrared spectroscopy (FTIR) can contribute to the diagnosis of thyroid carcinomas and goiters, using samples of tissue and aspirates. Samples of FNA, homogenates and tissues of thyroid nodules with histopathological diagnosis were obtained and prepared for FTIR spectroscopy analysis. The FNA and homogenates samples were measured by {mu}-FTIR (between 950 . 1750 cm{sup -1}), at a nominal resolution of 4 cm{sup -1} and 120 scans). Tissue samples were analyzed directly by ATR-FTIR technique, at a resolution 2 cm{sup -1}, with 60 scans in the same region. All spectra were corrected by the baseline and normalized by amides area (1550-1640 cm{sup -1}) in order to minimize variations of sample homogeneity. Then, spectra were converted into second derivatives using the Savitzk-Golay algorithm with a 13 points window. The Ward's minimum variance algorithm and Euclidean distances among the points were used for cluster analysis. Some FNA samples showed complex spectral pattern. All samples showed some cell pellets and large amount of hormone, represented by the bands of 1545 and 1655 cm{sup -1}. Bands in 1409, 1412, 1414, 1578 and 1579 cm{sup -1} were also found, indicating possible presence of sugar, DNA, citric acid or metabolic products. In this study, it was obtained an excellent separation between goiter and malign lesion for the samples of tissues, with 100% of specificity in specific cluster and 67% sensibility and 50 of specificity. In homogenate and FNA samples this sensibility and specificity were lower

  4. An investigation on changes in chemical properties of pure ethylene-propylene-diene rubber in aqueous acidic environments

    DEFF Research Database (Denmark)

    Mitra, S.; Ghanbari-Siahkali, Afshin; Kingshott, Peter

    2006-01-01

    The influence of two aqueous acidic environments on two types of pure ethylene-propylene-diene (EPDM) rubber (i.e., elastomer) thin films is studied. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) results revealed the formation of several oxygenated species...... on the surface after exposure. Raman spectroscopy along with ATR-FTIR results confirmed the vulnerability of the olefinic double bonds (C=C) of 5-ethylidene-2-norbomene (ENB) in acidic environments. In addition, the aggressive nature of 20% Cr(VI)/H2SO4 was also observed through an increase in oxygenated species...

  5. Infrared spectroscopy and multivariate methods as a tool for identification and quantification of fuels and lubricant oils in soil.

    Science.gov (United States)

    Nespeca, Maurílio Gustavo; Piassalonga, Gabriel Baroffaldi; de Oliveira, José Eduardo

    2018-01-09

    Environmental contamination caused by leakage of fuels and lubricant oils at gas stations is of great concern due to the presence of carcinogenic compounds in the composition of gasoline, diesel, and mineral lubricant oils. Chromatographic methods or non-selective infrared methods are usually used to assess soil contamination, which makes environmental monitoring costly or not appropriate. In this perspective, the present work proposes a methodology to identify the type of contaminant (gasoline, diesel, or lubricant oil) and, subsequently, to quantify the contaminant concentration using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and multivariate methods. Firstly, gasoline, diesel, and lubricating oil samples were acquired from gas stations and analyzed by gas chromatography to determine the total petroleum hydrocarbon (TPH) fractions (gasoline range organics, diesel range organics, and oil range organics). Then, solutions of these contaminants in hexane were prepared in the concentration range of about 5-10,000 mg kg -1 . The infrared spectra of the solutions were obtained and used for the development of the pattern recognition model and the calibration models. The partial least square discriminant analysis (PLS-DA) model could correctly classify 100% of the samples of each type of contaminant and presented selectivity equal to 1.00, which provides a suitable method for the identification of the source of contamination. The PLS regression models were developed using multivariate filters, such as orthogonal signal correction (OSC) and general least square weighting (GLSW), and selection variable by genetic algorithm (GA). The validation of the models resulted in correlation coefficients above 0.96 and root-mean-square error of prediction values below the maximum permissible contamination limit (1000 mg kg -1 ). The methodology was validated through the addition of fuels and lubricating oil in soil samples and quantification of

  6. In-situ IR reflexion spectroscopy characterization of the passivation layer developed on the surface of lithium electrodes in organic medium; Passivation de surface: une nouvelle voie pour reduire l`autodecharge dans les batteries rechargeables a ions lithium LiMn{sub 2}O{sub 4}/Li

    Energy Technology Data Exchange (ETDEWEB)

    Barusseau, S. [Alcatel Alsthom Recherche, 91 - Marcoussis (France); Perton, F. [SAFT, Advanced and Industrial Battery Group, 86 - Poitiers (France); Rakotondrainibe, A.; Lamy, C. [Poitiers Univ., 86 (France). Laboratoire de Chimie 1, ``Electrochimie et Interactions``

    1996-12-31

    the development of lithium metal batteries is hindered by the bad reversibility of the Li{sup +}/Li pair, due to dendrites formation which limits the amount of active matter and can generate short-circuits. The chemical and electrochemical phenomena which take place at the electrode/organic electrolyte interface lead to the formation of a complex passivation film which is of prime importance for the functioning of this type of batteries. The in-situ infrared reflection spectroscopy is well adapted to the chemical study of the passivation layer. Two different techniques were used: the substraction normalized interfacial transform infrared spectroscopy (SNIFTIRS) and the electro-chemically modulated infrared reflectance spectroscopy. These methods have shown that the passivation layer that develops on the surface of the lithium electrode in contact with organic solutions (propylene carbonate, ethylene carbonate and dimethoxyethane) is mainly made of lithium alkyl carbonates (ROCO{sub 2}Li) and lithium carbonates (Li{sub 2}CO{sub 3}). (J.S.) 14 refs.

  7. In situ

    Science.gov (United States)

    Chamlagain, Bhawani; Sugito, Tessa A; Deptula, Paulina; Edelmann, Minnamari; Kariluoto, Susanna; Varmanen, Pekka; Piironen, Vieno

    2018-01-01

    The in situ production of active vitamin B12 was investigated in aqueous cereal-based matrices with three strains of food-grade Propionibacterium freudenreichii . Matrices prepared from malted barley flour (33% w/v; BM), barley flour (6%; BF), and wheat aleurone (15%; AM) were fermented. The effect of cobalt and the lower ligand 5,6-dimethylbenzimidazole (DMBI) or its natural precursors (riboflavin and nicotinamide) on active B12 production was evaluated. Active B12 production was confirmed by UHPLC-UV-MS analysis. A B12 content of 12-37 μg·kg -1 was produced in BM; this content increased 10-fold with cobalt and reached 940-1,480 μg·kg -1 with both cobalt and DMBI. With riboflavin and nicotinamide, B12 production in cobalt-supplemented BM increased to 712 μg·kg -1 . Approximately, 10 μg·kg -1 was achieved in BF and AM and was increased to 80 μg·kg -1 in BF and 260 μg·kg -1 in AM with cobalt and DMBI. The UHPLC and microbiological assay (MBA) results agreed when both cobalt and DMBI or riboflavin and nicotinamide were supplemented. However, MBA gave ca. 20%-40% higher results in BM and AM supplemented with cobalt, indicating the presence of human inactive analogues, such as pseudovitamin B12. This study demonstrates that cereal products can be naturally fortified with active B12 to a nutritionally relevant level by fermenting with P. freudenreichii .

  8. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  9. Terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In this presentation I will review methods for spectroscopy in the THz range, with special emphasis on the practical implementation of the technique known ad THz time-domain spectroscopy (THz-TDS). THz-TDS has revived the old field of far-infrared spectroscopy, and enabled a wealth of new...... activities that promise commercial potential for spectroscopic applications in the THz range. This will be illustrated with examples of spectroscopy of liquids inside their bottles as well as sensitive, quantitative spectroscopy in waveguides....

  10. Performance and stability of (ZrO2)0.89(Y2O3)0.01(Sc2O3)0.10-LaCr0.85Cu0.10Ni0.05O3-δ oxygen transport membranes under conditions relevant for oxy-fuel combustion

    DEFF Research Database (Denmark)

    Pirou, Stéven; Bermudez, Jose M.; Tak Na, Beom

    2018-01-01

    flue-gas conditions (CO2, SO2, H2O). The analyses of the exposed composites by X-ray diffraction (XRD), X-ray fluorescence (XRF), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Raman spectroscopy revealed an excellent stability. Oxygen permeation fluxes were measured...

  11. Modern spectroscopy

    CERN Document Server

    Hollas, J Michael

    2013-01-01

    The latest edition of this highly acclaimed title introduces the reader to a wide range of spectroscopies, and includes both the background theory and applications to structure determination and chemical analysis.  It covers rotational, vibrational, electronic, photoelectron and Auger spectroscopy, as well as EXAFs and the theory of lasers and laser spectroscopy. A  revised and updated edition of a successful, clearly written book Includes the latest developments in modern laser techniques, such as cavity ring-down spectroscopy and femtosecond lasers Provides numerous worked examples, calculations and questions at the end of chapters.

  12. Explosive Residue Detection by Laser Surface Photo-Fragmentation-Fragment Detection Spectroscopy. 2. In Situ and Real-Time Monitoring of RDX. HMX, CL20, and TNT, by an Improved Ion Probe

    Science.gov (United States)

    2005-04-01

    RDX, HMX, CL20, and TNT, by an Improved Ion Probe by Jerry B. Cabalo and Rosario C. Sausa ARL-TR-3478 April 2005...In Situ and Real-time Monitoring of RDX, HMX, CL20, and TNT, by an Improved Ion Probe Jerry B. Cabalo and Rosario C. Sausa Weapons and Materials...TNT, by an Improved Ion Probe 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 622618H8011 5e. TASK NUMBER 6. AUTHOR(S) Jerry B. Cabalo

  13. In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratio

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Duchstein, Linus Daniel Leonhard; Chiarello, Gian Luca

    2014-01-01

    the same reduction conditions, the particle sizes of reduced Cu-Ni alloys decrease with increasing Ni content. Estimates of the metal surface area from sulfur chemisorption and from the XRD particle size generally agree well on the trend across the composition range, but show some disparity in terms...... of the absolute magnitude of the metal area. This work provides practical synthesis guidelines towards preparation of Cu-Ni alloy nanomaterials with different Cu/Ni ratios, and insight into the application of different in situ techniques for characterization of the alloy formation. Copyright © 2014 WILEY...

  14. Electronic spectroscopies

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Diffuse reflectance spectroscopy (DRS) in the ultraviolet, visible and near-infrared region is a versatile spectroscopic technique, as both d-d and charge transfer transitions of supported TMI can be probed. One of the advantages of electronic spectroscopy is that the obtained information is

  15. Raman Spectroscopy.

    Science.gov (United States)

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  16. Chemical spectroscopy

    International Nuclear Information System (INIS)

    Eckert, J.; Brun, T.O.; Dianoux, A.J.; Howard, J.; Rush, J.J.; White, J.W.

    1984-01-01

    The purpose of chemical spectroscopy with neutrons is to utilize the dependence of neutron scattering cross-sections on isotope and on momentum transfer (which probes the spatial extent of the excitation) to understand fundamental and applied aspects of the dynamics of molecules and fluids. Chemical spectroscopy is divided into three energy ranges: vibrational spectroscopy, 25-500 MeV, for which much of the work is done on Be-filter analyzer instruments; low energy spectroscopy, less than 25 MeV; and high resolution spectroscopy, less than 1 MeV, which typically is performed on backscattering spectrometers. Representative examples of measurements of the Q-depenence of vibrational spectra, higher energy resolution as well as extension of the Q-range to lower values at high energy transfers, and provisions of higher sensitivities in vibrational spectroscopy are discussed. High resolution, high sensitivity, and polarization analysis studies in low energy spectroscopy are discussed. Applications of very high resolution spectroscopy are also discussed

  17. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... containing systems and are characterized using techniques in optical spectroscopy. Of the standard techniques in optical spectroscopy, particular attention has been paid to those based on time-resolved measurements and polarization, which is reflected in the experiment design in the projects. Not all...... reactions by optical spectroscopy. In project 1 simple steady-state absorption and fluorescence spectroscopy is used to determine the stoichiometries and equilibrium constants in the inclusion complex formation between cyclodextrins and derivatives of the water-insoluble oligo(phenylene vinylene) in aqueous...

  18. In situ Remediation Technologies

    NARCIS (Netherlands)

    Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2011-01-01

    A summary of two decades of developments of In Situ remediation is presented in this chapter. The basic principles of In Situ technology application are addressed, such as equilibrium relations between contaminant phases, factors controlling biological and geochemical processes, contaminant

  19. Industrial Applications of Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Berry, Frank J.

    2002-01-01

    The historical development of the use of Moessbauer spectroscopy in industrial applications is briefly outlined. The power of the technique for the study of commercially important materials and its capacity to make contributions as a research tool, in quality control, and for in-service evaluation are reviewed. The disadvantages of the technique in the industrial setting are considered. The power of Moessbauer spectroscopy when used to approach specific industrial problems is illustrated by its use in monitoring the nature of corrosion resistant coated steel for automobile manufacture and the in situ characterization of Fischer-Tropsch catalysts.

  20. The effect of Au on TiO2 catalyzed selective photocatalytic oxidation of cyclohexane

    NARCIS (Netherlands)

    Carneiro, J.T.; Carneiro, Joana T.; Savenije, Tom J.; Moulijn, Jacob A.; Mul, Guido

    2011-01-01

    Gold does not induce visible light activity of anatase Hombikat UV100 in the selective photo-oxidation of cyclohexane, as can be concluded from in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) measurements. Extremely small conductance values measured at 530 nm in Time

  1. In Situ Adsorption Studies at the Solid/Liquid Interface: Characterization of Biological Surfaces and Interfaces Using Sum Frequency Generation Vibrational Spectroscopy, Atomic Force Microscopy, and Quartz Crystal Microbalance

    International Nuclear Information System (INIS)

    Phillips, D.C.

    2006-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures (α-helix and β-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste

  2. In Situ Adsorption Studies at the Solid/Liquid Interface:Characterization of Biological Surfaces and Interfaces Using SumFrequency Generation Vibrational Spectroscopy, Atomic Force Microscopy,and Quartz Crystal Microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Diana Christine [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures (α-helix and β-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste.

  3. FTIR spectroscopy as a unified method for simultaneous analysis of intra- and extracellular metabolites in high-throughput screening of microbial bioprocesses.

    Science.gov (United States)

    Kosa, Gergely; Shapaval, Volha; Kohler, Achim; Zimmermann, Boris

    2017-11-13

    Analyses of substrate and metabolites are often bottleneck activities in high-throughput screening of microbial bioprocesses. We have assessed Fourier transform infrared spectroscopy (FTIR), in combination with high throughput micro-bioreactors and multivariate statistical analyses, for analysis of metabolites in high-throughput screening of microbial bioprocesses. In our previous study, we have demonstrated that high-throughput (HTS) FTIR can be used for estimating content and composition of intracellular metabolites, namely triglyceride accumulation in oleaginous filamentous fungi. As a continuation of that research, in the present study HTS FTIR was evaluated as a unified method for simultaneous quantification of intra- and extracellular metabolites and substrate consumption. As a proof of concept, a high-throughput microcultivation of oleaginous filamentous fungi was conducted in order to monitor production of citric acid (extracellular metabolite) and triglyceride lipids (intracellular metabolites), as well as consumption of glucose in the cultivation medium. HTS FTIR analyses of supernatant samples was compared with an attenuated total reflection (ATR) FTIR, which is an established method for bioprocess monitoring. Glucose and citric acid content of growth media was quantified by high performance liquid chromatography (HPLC). Partial least square regression (PLSR) between HPLC glucose and citric acid data and the corresponding FTIR spectral data was used to set up calibration models. PLSR results for HTS measurements were very similar to the results obtained with ATR methodology, with high coefficients of determination (0.91-0.98) and low error values (4.9-8.6%) for both glucose and citric acid estimates. The study has demonstrated that intra- and extracellular metabolites, as well as nutrients in the cultivation medium, can be monitored by a unified approach by HTS FTIR. The proof-of-concept study has validated that HTS FTIR, in combination with Duetz

  4. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  5. Hadron Spectroscopy

    International Nuclear Information System (INIS)

    Binon, F.; Frere, J.M.; Peigneux, J.P.

    1989-01-01

    HADRON 89 is the third of a series of biennial conferences on hadron spectroscopy which are now replacing the former separate meson and baryon spectroscopy conferences. The first one, HADRON 85, was held at the University of Maryland. The second one, HADRON 87, has taken place at KEK in Tsukuba in Japan. This conference is divided into 7 sessions bearing on: - session 1 Light mesons and exotics (19 conferences) - session 2 Light mesons and exotics-theory-phonomenology (15 conferences) - session 3 Theoretical problems (14 conferences) - session 4 New detectors factories (9 conferences) - session 5 Baryons (7 conferences) - session 6 Heavy flavor spectroscopy (7 conferences) - session 7 Concluding hadron 89 (3 conferences)

  6. Compact High Sensitive Laser-Induced Breakdown Spectroscopy Instrument Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Laser induced breakdown spectroscopy (LIBS) is a versatile tool for in situ substance characterization. Existing LIBS instruments are not compact enough for space...

  7. Electronic spectroscopies

    OpenAIRE

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Diffuse reflectance spectroscopy (DRS) in the ultraviolet, visible and near-infrared region is a versatile spectroscopic technique, as both d-d and charge transfer transitions of supported TMI can be probed. One of the advantages of electronic spectroscopy is that the obtained information is directly chemical since the outer shell electrons of the TMI are probed and provide information about the oxidation state and coordination environment of TMI on surfaces. Furthermore, the DRS technique ca...

  8. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  9. Color and surface chemistry changes of extracted wood flour after heating at 120 °C

    Science.gov (United States)

    Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark

    2013-01-01

    To investigate the effect of heat on color and surface chemistry of wood flour (WF), unextracted, extracted and delignified samples of commercial WF were heated at 120 °C for 24 h and analyzed by colorimetry, diffuse reflectance visible (DRV), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and Fourier transform Raman (FT-Raman) spectroscopies....

  10. Chemical Modification of Kraft Lignin: Effect on Chemical and Thermal Properties

    Science.gov (United States)

    Yao Chen; Nicole M. Stark; Zhiyong Cai; Charles R. Frihart; Linda F. Lorenz; Rebecca E. Ibach

    2014-01-01

    Esterified kraft lignins (KL) were prepared by reaction with maleic anhydride (MA), succinic anhydride (SA), and phthalic anhydride (PA) in acetone solutions. The esterified lignins were characterized using ATR-FTIR, solid state CP-MAS 13C NMR spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). PA...

  11. Laser-Induced Breakdown Spectroscopy and Chlorophyll a Flourescence Transients

    DEFF Research Database (Denmark)

    Frydenvang, Jens

    of a sufficient quality; something that remains a problem for many in-situ methods. In my PhD, I present my work with two such in-situ methods, Laser-Induced Breakdown Spectroscopy (LIBS) and OJIP transients, the rising part of chlorophyll a fluorescence transients from dark-adapted leaves....

  12. Surface-Enhanced Raman Spectroscopy for Heterogeneous Catalysis Research

    NARCIS (Netherlands)

    Harvey, C.E.

    2013-01-01

    Raman spectroscopy is valuable characterization technique for the chemical analysis of heterogeneous catalysts, both under ex-situ and in-situ conditions. The potential for Raman to shine light on the chemical bonds present in a sample makes the method highly desirable for detailed catalyst

  13. Effect of silica particles modified by in-situ and ex-situ methods on the reinforcement of silicone rubber

    International Nuclear Information System (INIS)

    Song, Yingze; Yu, Jinhong; Dai, Dan; Song, Lixian; Jiang, Nan

    2014-01-01

    Highlights: • In-situ and ex-situ methods were applied to modify silica particles. • In-situ method was more beneficial to preparing silica particles with high BET surface area. • Silicone rubber filled with in-situ modified silica exhibits excellent mechanical and thermal properties. - Abstract: In-situ and ex-situ methods were applied to modify silica particles in order to investigate their effects on the reinforcement of silicone rubber. Surface area and pore analyzer, laser particle size analyzer, Fourier-transform infrared spectroscopy (FTIR), contact-angle instrument, and transmission electron microscope (TEM) were utilized to investigate the structure and properties of the modified silica particles. Dynamic mechanical thermal analyzer (DMTA) was employed to characterize the vulcanizing behavior and mechanical properties of the composites. Thermogravimetric analysis (TGA) was performed to test the thermal stability of the composites. FTIR and contact angle analysis indicated that silica particles were successfully modified by these two methods. The BET surface area and TEM results reflected that in-situ modification was more beneficial to preparing silica particles with irregular shape and higher BET surface area in comparison with ex-situ modification. The DMTA and TGA data revealed that compared with ex-situ modification, the in-situ modification produced positive influence on the reinforcement of silicone rubber

  14. A study of the reactivity of elemental Cr/Se/Te thin multilayers using X-ray reflectometry, in situ X-ray diffraction and X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Behrens, Malte; Tomforde, Jan; May, Enno; Kiebach, Ragnar; Bensch, Wolfgang; Haeussler, Dietrich; Jaeger, Wolfgang

    2006-01-01

    The reactivity of [Cr/Se/Te] multilayers under annealing was investigated using X-ray reflectometry, in situ X-ray diffraction, X-ray absorption fine structure (XAFS) measurements and transmission electron microscopy. For all samples, interdiffusion was complete at temperatures between 100 and 300 deg. C, depending on the repeating tri-layer thickness. A crystalline phase nucleated approximately 20 deg. C above the temperature where interdiffusion was finished. The first crystalline phase in a binary Cr/Te sample was layered CrTe 3 nucleating at 230 deg. C. In ternary samples (Se:Te=0.6-1.2), the low-temperature nucleation of such a layered CrQ 3 (Q=Se, Te) phase is suppressed and instead the phase Cr 2 Q 3 nucleates first. Interestingly, this phase decomposes around 500 deg. C into layered CrQ 3 . In contrast, binary Cr/Se samples form stable amorphous alloys after interdiffusion and Cr 3 Se 4 nucleates around 500 deg. C as the only crystalline phase. Evaluation of the XAFS data of annealed samples yield Se-Cr distances of 2.568(1) and 2.552(1) A for Cr 2 Q 3 and CrQ 3 , respectively. In the latter sample, higher coordination shells around Se are seen accounting for the Se-Te contacts in the structure. - Graphical abstract: The first step of the reaction of elemental Cr/Te/Se-multilayers is the interdiffusion of the elements as evidenced by the decay of the modulation peaks in the low-angle region of the X-ray diffraction patterns. The subsequent growth of Bragg peaks at higher scattering angles indicates crystallization of chromium chalcogenide Cr 2 Te 3- x Se x

  15. An evaluation of microwave-driven stannylation followed by in situ {sup 119}Sn MAS n.m.r. spectroscopy as a probe for hydroxyl functionality in medium-rank British coals and macerals

    Energy Technology Data Exchange (ETDEWEB)

    Manak, H.; Monsef-Mirzai, P.; McWhinnie, W.R.; Hamor, T.A. [Aston University, Birmingham (United Kingdom). Dept. of Chemical Engineering and Applied Chemistry

    1997-07-01

    The paper describes the derivatization of hydroxyl groups in coals and coal macerals by stannylation. Stannylation of a range of phenolic compounds with Me{sub 3}SnCl, Bu{sub 3}SnCl and (Bu{sub 3}Sn){sub 2}O (TMTO) was carried out under both microwave-driven and conventional conditions. The degree of Stannylation was influenced by the steric environment of the OH group, implying that stannylation in comparison with, say trimethylsilylation of OH groups could help to map the steric environments of phenolic groups in coals. Good maceral separations of Creswell coal and acceptable separation of Cottonwood coal were achieved. The whole coals and the macerals were stannylated with TBTO under microwave-enhanced conditions and the products were examined by {sup 119}Sn MAS n.m.r. and X-ray photoelectron spectroscopy. The reaction was confined to surface regions. Differences were found in the behaviour of the macerals. The crystal and molecular structures of the trimethylstannyl derivative of 2,6-diphenylphenol were determined, to establish the validity of the claim to have stannylated model compounds. Molecular parameters were compared with related systems. 18 refs., 3 figs., 5 tabs.

  16. Optogalvanic spectroscopy

    International Nuclear Information System (INIS)

    Pianarosa, P.; Demers, Y.; Gagne, J.M.

    1983-01-01

    Laser induced optogalvanic spectroscopy in a hollow cathode-produced plasma has been used to resolve the isotopic structure of some absorption lines in uranium. We have shown that the optogalvanic signal associated with any isotope can be related to the concentration of that isotope in a multi-isotopic sample. From the results we have obtained, optogalvanic spectroscopy of sputtered samples appears to be an interesting approach to the isotopic analysis of both natural and enriched uranium and could easily be applied to the analysis of other fissile elements, such as the plutonium isotopes

  17. Emission spectroscopy

    International Nuclear Information System (INIS)

    Barnes, R.M.

    1978-01-01

    This 16th article in the series of biennial reviews of emission spectroscopy surveys with emphasis the emission spectrochemical literature appearing in referred publications during 1976 and 1977. Books and general reviews of emission spectroscopy and closely related subjects are considered in the first section, whereas specific reviews and texts are included in each of the five tropical sections. Spectral descriptions and classifications are examined in the second section. An abbreviated instrumentation section follows, and standards, samples, calibrations, and calculations are evaluated in the fourth section. The emphasis on excitation sources reflects the size of section five. In the sixth section, important applications are explored

  18. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (< 30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain.

  19. Laser induced breakdown spectroscopy in water | Boudjemai ...

    African Journals Online (AJOL)

    Sparks were generated in water by the focused beam of a Q-switched Nd:YAG laser Na and Cu aqueous solutions exhibited fluorescence signal on the decaying edge of plasma emission at their respective characteristic resonance lines. Potential of the laser plasma spectroscopy for in-situ pollution monitoring in natural ...

  20. Adsorption behavior and mechanism of glufosinate onto goethite.

    Science.gov (United States)

    Xu, Jian; Gu, Xueyuan; Guo, Yong; Tong, Fei; Chen, Liangyan

    2016-08-01

    The adsorption of glufosinate (GLU), a widely used herbicide similar to glyphosate (GLY), onto goethite was investigated as a function of the pH, ionic strength, background cations and anions, heavy metal ions and fulvic acids (FAs) by using batch adsorption experiments. In situ ATR-FTIR spectroscopy and density functional theory (DFT) calculations were carried out to characterize the molecular interactions between GLU and goethite surfaces. The macroscopic results indicated that an increasing pH exerted an adverse effect on GLU adsorption because of the electrostatic repulsion, and the adsorption was not sensitive to ionic strengths or background cation types, indicating that an inner-sphere surface complex was involved. GLU adsorption can be considerably depressed by PO4(3-), SO4(2-), and a high level of FA because of the competitive effect, while being enhanced by Cu(2+) with a maximum adsorption at approximately pH5 because of the metal ion bridging effect. Other examined divalent metal cations (Cd(2+), Zn(2+), and Pb(2+)) showed almost no effect on GLU adsorption, indicating weak interaction between them. ATR-FTIR spectra and the DFT calculations further proved that GLU was bonded to goethite surfaces through the formation of a monodentate mononuclear inner-sphere complex between the phosphinic moiety and surface Fe(III) centers under an acidic condition. The results showed that GLU had a similar adsorption mechanism to that of GLY onto goethite, but with a lower adsorption affinity, possibly exerting higher mobility and risk in soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Local structure change around Co and Fe ions in (La0.6Sr0.4)(Co0.2Fe0.8)O3-δ as revealed by in-situ X-ray absorption spectroscopy and first-principles calculation

    Science.gov (United States)

    Itoh, Takanori; Idemoto, Yasushi; Imai, Hideto

    2018-02-01

    Local structures around Co and Fe ions in (La0.6Sr0.4)(Co0.2Fe0.8) O3-δ (LSCF) with different oxygen ion content (3 - δ : 2.78 ∼ 3.00) were investigated by in-situ X-ray absorption spectroscopy (XAS) and first-principles density functional theory (DFT) calculations. The degrees of change in the pre-edges and white lines in the X-ray absorption near-edge structure of Fe ions were greater than those of Co ions with varying 3 - δ from 2.94 to 2.78 in LSCF at 1000 K. From the XAS and DFT calculations, we found that the CoO6 octahedral units remained in the rhombohedral symmetry by changing 3 - δ from 2.94 to 2.78. In contrast, 30 ∼ 40 % of the FeO6 octahedral units changed from the rhombohedral to the cubic symmetry when decreasing 3 - δ from 2.94 to 2.78. The DFT calculations also predicted that it was easier for the oxygen ions in LSCF to migrate in the FeO6 octahedral units in the cubic symmetry.

  2. In situ observation of surface reactions with synchrotron radiation induced semiconductor processes by infrared reflection absorption spectroscopy using buried metal layer substrates; Umekomi kinzokuso kiban wo mochiita sekigai hansha kyushu supekutoruho ni yoru hoshako reiki handotai process hanno no sonoba kansatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshigoe, A.; Hirano, S. [The Graduate University for Advanced Studies, Yokohama (Japan); Mase, K.; Urisu, T. [Institute for Molecular Science, Aichi (Japan)

    1996-11-20

    It is known that infrared reflection absorption spectroscopy (IRAS) on semiconductor or insulator surfaces becomes practicable by using buried metal layer (BML) substrates, in which the metal thin film is buried order semiconductor or insulator films. In this work, IRAS has been measured for Langmuir-Blodgett films deposited on the BML substrate with SiO2/Al/Si(100) structure and the observed spectrum intensity has been quantitatively compared with the calculation assuming the ideal multilayer structure for the BML substrate. The BML-IRAS using CoSi2 has been adopted to the detection of SiHn on the Si (100) substrate during synchrotron radiation (SR) stimulated Si2H6 gas source molecular beam epitaxy. It has been found that SiH2 and SiH3 on the Si (100) surface are easily decomposed by SR, but SiH can`t be decomposed. From these experiments, it has been concluded that the BML-IRAS is an useful in situ observation technique for the photo-stimulated surface reactions. 26 refs., 9 figs.

  3. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  4. Bioimpedance Spectroscopy

    DEFF Research Database (Denmark)

    Klösgen, Beate; Rümenapp, Christine; Gleich, Bernhard

    2011-01-01

    causes relaxation processes with characteristic contributions to the frequency-dependent complex dielectric constant. These dipolar relaxations were initially described by Debye (Polare Molekeln 1929). They are the basis of impedance spectroscopy (K’Owino and Sadik Electroanalysis 17(23):2101–2113, 2005...

  5. Characterization of VPO ammoxidation catalysts by in situ methods

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Luecke, B.; Brueckner, A.; Steinike, U. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany); Brzezinka, K.W. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Meisel, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Chemie

    1998-12-31

    In-situ methods are well known as powerful tools in studying catalyst formation processes, their solid state properties under working conditions and the interaction with the feed, intermediates and products to reveal reaction mechanisms. This paper gives a short overview on results of intense studies using in-situ techniques to reveal VPO catalyst generation processes, interaction of educts, intermediates and products with VPO catalyst surfaces and mechanistic insights. Catalytic data of the ammoxidation of toluene on different VPOs complete these findings. The precursor-catalyst transformation processes were preferently investigated by in-situ XRD, in-situ Raman and in-situ ESR spectroscopy. The interaction of aromatic molecules and intermediates, resp., and VPO solid surfaces was followed by in-situ ESR and in-situ FTIR spectroscopy. Mechanistic information was mainly obtained using in-situ FTIR spectroscopy and the temporal-analysis-of-products (TAP) technique. Catalytic studies were carried out in a fixed-bed microreactor on pure (NH{sub 4}){sub 2}(VO){sub 3}(P{sub 2}O{sub 7}){sub 2}, generated [(NH{sub 4}){sub 2}(VO{sub 3})(P{sub 2}O{sub 7}){sub 2}+V{sub x}O{sub y}] catalysts, having different V{sub x}O{sub y} proportions by use of VOHPO{sub 4} x 1/2H{sub 2}O (V/P=1) and recently studied (VO){sub 3}(PO{sub 4}){sub 2} x 7 H{sub 2}O (V/P=1.5) precursors; the well-known (VO){sub 2}P{sub 2}O{sub 7} was used for comparison. (orig.)

  6. Flexoelectric spectroscopy.

    Science.gov (United States)

    Scott, J F

    2013-08-21

    Flexoelectricity is an increasingly popular subject because it can be extremely large in thin films and permits switching of devices in nonpolar (non-piezoelectric) crystals via application of inhomogeneous stresses. However, recent work has been limited to macroscopic measurement of voltage or strain. Here, we discuss the vibrational spectroscopy of flexoelectricity as a recommended new tool for thin-film characterization, with special emphasis upon incommensurate crystals.

  7. Flexoelectric spectroscopy

    International Nuclear Information System (INIS)

    Scott, J F

    2013-01-01

    Flexoelectricity is an increasingly popular subject because it can be extremely large in thin films and permits switching of devices in nonpolar (non-piezoelectric) crystals via application of inhomogeneous stresses. However, recent work has been limited to macroscopic measurement of voltage or strain. Here, we discuss the vibrational spectroscopy of flexoelectricity as a recommended new tool for thin-film characterization, with special emphasis upon incommensurate crystals. (viewpoint)

  8. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bosch, A.

    1982-01-01

    In this work examples of the various aspects of photoelectron spectroscopy are given. The investigation was started with the development of an angle-resolved spectrometer so that the first chapters deal with angle-resolved ultra-violet photoelectron spectroscopy. To indicate the possibilities and pitfalls of the technique, in chapter II the theory is briefly reviewed. In chapter III the instrument is described. The system is based on the cylindrical mirror deflection analyzer, which is modified and improved for angle-resolved photoelectron spectroscopy. In combination with a position sensitive detector, a spectrometer is developed with which simultaneously several angle-resolved spectra can be recorded. In chapter IV, the results are reported of angle-integrated UPS experiments on dilute alloys. Using the improved energy resolution of the instrument the author was able to study the impurity states more accurately and shows that the photoemission technique has become an important tool in the study of impurities and the interactions involved. XPS and Auger results obtained from dilute alloys are presented in chapter V. It is shown that these systems are especially suited for the study of correlation effects and can provide interesting problems related to the satellite structure and the interaction of the impurity with the host. In chapter VI, the valence bands of ternary alloys are studied with UPS and compared to recent band structure calculation. The core level shifts are analyzed in a simple, thermodynamic scheme. (Auth.)

  9. In-situ deposition of hydroxyapatite on graphene nanosheets

    OpenAIRE

    Neelgund, Gururaj M.; Oki, Aderemi; Luo, Zhiping

    2013-01-01

    Graphene nanosheets were effectively functionalized by in-situ deposition of hydroxyaptite through a facile chemical precipitation method. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. The resulting hydroxyapatite functionalized graphene nanosheets were characterized by attenuated total reflection IR spectroscopy, X-ray diffraction, field emission scanning electron microscopy, trans...

  10. Development of MEMS photoacoustic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alex Lockwood; Eichenfield, Matthew S.; Griffin, Benjamin; Harvey, Heidi Alyssa; Nielson, Gregory N.; Okandan, Murat; Langlois, Eric; Resnick, Paul James; Shaw, Michael J.; Young, Ian; Givler, Richard C.; Reinke, Charles M.

    2014-01-01

    After years in the field, many materials suffer degradation, off-gassing, and chemical changes causing build-up of measurable chemical atmospheres. Stand-alone embedded chemical sensors are typically limited in specificity, require electrical lines, and/or calibration drift makes data reliability questionable. Along with size, these "Achilles' heels" have prevented incorporation of gas sensing into sealed, hazardous locations which would highly benefit from in-situ analysis. We report on development of an all-optical, mid-IR, fiber-optic based MEMS Photoacoustic Spectroscopy solution to address these limitations. Concurrent modeling and computational simulation are used to guide hardware design and implementation.

  11. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  12. Laser spectroscopy of sputtered atoms

    International Nuclear Information System (INIS)

    Gruen, D.M.; Pellin, M.J.; Young, C.E.; Calaway, W.F.

    1985-01-01

    The use of laser radiation to study the sputtering process is of relatively recent origin. Much has been learned from this work about the basic physics of the sputtering process itself through measurements of velocity and excited state distributions of sputtered atoms and the effects of adsorbates on substrate sputtering yields. Furthermore, the identification, characterization, and sensitive detection of sputtered atoms by laser spectroscopy has led to the development of in situ diagnostics for impurity fluxes in the plasma edge regions of tokamaks and of ultrasensitive methods (ppB Fe in Si) for surface analysis with ultralow (picocoulomb) ion fluences. The techniques involved in this work, laser fluorescence and multiphoton resonance ionization spectroscopy, will be described and illustrations given of results achieved up to now. 55 refs., 5 figs., 1 tab

  13. Hadron spectroscopy

    International Nuclear Information System (INIS)

    Oka, Makoto

    2012-01-01

    Spectra of hadrons show various and complex structures due to the strong coupling constants of the quantum chromodynamics (QCD) constituting its fundamental theory. For their understandings, two parameters, i.e., (1) the quark mass and (2) their excitation energies are playing important roles. In low energies, for example, rather simple structures similar to the positronium appear in the heavy quarks such as charms and bottoms. It has been, however, strongly suggested by the recent experiments that the molecular resonant state shows up when the threshold to decay to mesons is exceeded. On the other hand, chiral symmetry and its breaking play important roles in the dynamics of light quarks. Strange quarks are in between and show special behaviors. In the present lecture, the fundamental concept of the hadron spectroscopy based on the QCD is expounded to illustrate the present understandings and problems of the hadron spectroscopy. Sections are composed of 1. Introduction, 2. Fundamental Concepts (hadrons, quarks and QCD), 3. Quark models and exotic hadrons, 4. Lattice QCD and QCD sum rules. For sections 1 to 3, only outline of the concepts is described because of the limited space. Exotic hadrons, many quark pictures of light hadrons and number of quarks in hadrons are described briefly. (S. Funahashi)

  14. Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Zemcik, T.

    1984-01-01

    The emission and absorption of photons taking place without changes in the frequency spectrum of the crystal lattice are known as the Moessbauer effect. It takes place in the low energy levels of heavy nuclei in solid lattices at low temperatures. On the basis of the hyperfine structure of Moessbauer spectra the notions are explained of isomer shift, quadrupole splitting and magnetic splitting. The principle and function are explained of Moessbauer spectrometers and the methods of graphical processing of spectra, also the use of the least square fit. Moessbauer spectroscopy is nondestructive, highly sensitive and selective and makes structural resolution possible. It is used for quantitative and qualitative analysis of compounds. Examples are given of the use of this method for mineralogical and crystallo-chemical analysis of lunar minerals and rocks, for analysis of corrosion products of iron and for phase analysis of alloys. (M.D.)

  15. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Shirley, D.A.

    1976-01-01

    Research activities in photoelectron spectroscopy at Lawrence Radiation Laboratory during 1976 are described. Topics covered include: the orientation of CO on Pt(III) and Ni(III) surfaces from angle-resolved photoemission; photoemission from CO on Pt(III) in the range 40 eV less than or equal to dirac constant ω less than or equal to 150 eV; photoemission studies of electron states at clean surfaces using synchrotron radiation; angle and energy dependent photoemission studies of plasmon loss structure in Al and In; d-orbital directed photoemission from copper; interpretation of angle-resolved x-ray photoemission from valence bands; atomic cross-section effects in soft x-ray photoemission from Ag, Au, and Pt valence bands; x-ray photoelectron spectroscopic studies of the electronic structure of transition metal difluorides; x-ray photoemission investigation of the density of states of B'-NiAl; the electronic structure of SrTiO 3 and some simple related oxides; fluorescence lifetime measurements of np 5 (n+1)S' states in krypton and xenon; Zeeman beats in the resonance fluorescence of the 3P 1 , states in krypton and xenon; lifetime measurements of rare-gas dimers; configuration interaction effects in the atomic photoelectron spectra of Ba, Sm, Eu, and Yb; glow discharge lamps as electron sources for electron impact excitation; electron impact excitation of electron correlation states in Ca, Sr, and Ba; photoelectron spectroscopy of atomic and molecular bismuth; relativistic effects in the uv photoelectron spectra of group VI diatomic molecules; and relative gas-phase acidities and basicities from a proton potential model

  16. Gamma spectroscopy for fast in-situ measurements

    International Nuclear Information System (INIS)

    Lovranich, E.; Steger, F.; Urbanich, E.

    1990-01-01

    The problem is to determine the dose rate contributions from particular radionuclides deposited in the soil. The authors show how information from the gamma energy spectra for a particular measurement chain can be evaluated. In particular the chain has a portable germanium detector above the ground with a multichannel and an associated IBM-PC. A comparison of doses gained by this method and by soil samplings from different depths and sample preparation is made. (Quittner)

  17. Analysis of basidiomycete pigments in situ by Raman spectroscopy.

    Science.gov (United States)

    Tauber, James P; Matthäus, Christian; Lenz, Claudius; Hoffmeister, Dirk; Popp, Jürgen

    2018-02-07

    Basidiomycetes, that is, mushroom-type fungi, are known to produce pigments in response to environmental impacts. As antioxidants with a high level of unsaturation, these compounds can neutralize highly oxidative species. In the event of close contact with other microbes, the enzymatically controlled pigment production is triggered and pigment secretion is generated at the interaction zone. The identification and analysis of these pigments is important to understand the defense mechanism of fungi, which is essential to counteract an uncontrolled spread of harmful species. Usually, a detailed analysis of the pigments is time consuming as it depends on laborious sample preparation and isolation procedures. Furthermore, the applied protocols often influence the chemical integrity of the compound of interest. A possibility to noninvasively investigate the pigmentation is Raman microspectroscopy. The methodology has the potential to analyze the chemical composition of the sample spatially resolved at the interaction zone. After the acquisition of a representative spectroscopic library, the pigment production by basidiomycetes was monitored for during response to different fungi and bacteria. The presented results describe a very efficient noninvasive way of pigment analysis which can be applied with minimal sample preparation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In-situ analysis of planetary surfaces by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Klingelhoefer, G.

    1998-01-01

    Iron is one of the key elements in the evolution of the solar system and is highly abundant in terrestrial planets. Its oxidation state reflects the history of the oxidation-reduction reactions on planetary surfaces. The identification of iron mineralogies and the relative abundance of iron oxidation states (2+ and 3+) will contribute to a much deeper understanding of the evolution of planetary bodies and their surfaces. Miniaturized Moessbauer spectrometers are under development primarily for missions to the planet Mars and the Moon, but there is also an interest on using such an instrument for space missions to the planet Venus, comets and asteroids. The instrument MIMOS II developed at TU Darmstadt meets the requirements for space application as low mass (about 500 g), small volume, and low power consumption (about 1 W). The instrument has been tested extensively in the laboratory but also recently in the field mounted on the robotic arm of a prototype Martian Rover under development at JPL/NASA, United States

  19. Enhanced Data Discoverability for in Situ Hyperspectral Datasets

    Science.gov (United States)

    Rasaiah, B.; Bellman, C.; Hewson, R. D.; Jones, S. D.; Malthus, T. J.

    2016-06-01

    Field spectroscopic metadata is a central component in the quality assurance, reliability, and discoverability of hyperspectral data and the products derived from it. Cataloguing, mining, and interoperability of these datasets rely upon the robustness of metadata protocols for field spectroscopy, and on the software architecture to support the exchange of these datasets. Currently no standard for in situ spectroscopy data or metadata protocols exist. This inhibits the effective sharing of growing volumes of in situ spectroscopy datasets, to exploit the benefits of integrating with the evolving range of data sharing platforms. A core metadataset for field spectroscopy was introduced by Rasaiah et al., (2011-2015) with extended support for specific applications. This paper presents a prototype model for an OGC and ISO compliant platform-independent metadata discovery service aligned to the specific requirements of field spectroscopy. In this study, a proof-of-concept metadata catalogue has been described and deployed in a cloud-based architecture as a demonstration of an operationalized field spectroscopy metadata standard and web-based discovery service.

  20. ENHANCED DATA DISCOVERABILITY FOR IN SITU HYPERSPECTRAL DATASETS

    Directory of Open Access Journals (Sweden)

    B. Rasaiah

    2016-06-01

    Full Text Available Field spectroscopic metadata is a central component in the quality assurance, reliability, and discoverability of hyperspectral data and the products derived from it. Cataloguing, mining, and interoperability of these datasets rely upon the robustness of metadata protocols for field spectroscopy, and on the software architecture to support the exchange of these datasets. Currently no standard for in situ spectroscopy data or metadata protocols exist. This inhibits the effective sharing of growing volumes of in situ spectroscopy datasets, to exploit the benefits of integrating with the evolving range of data sharing platforms. A core metadataset for field spectroscopy was introduced by Rasaiah et al., (2011-2015 with extended support for specific applications. This paper presents a prototype model for an OGC and ISO compliant platform-independent metadata discovery service aligned to the specific requirements of field spectroscopy. In this study, a proof-of-concept metadata catalogue has been described and deployed in a cloud-based architecture as a demonstration of an operationalized field spectroscopy metadata standard and web-based discovery service.